George Ombo 24 Proven One-Hour Lessons

“This is a great book to help you quickly get up and running with Node js.
1t covers all aspocts of the platform and guides you theough producing roal,
production-ready applications.”

—Andrew Nesbitt. Developer, Forward Internet Group

SamsTeach Yourself

Node.js

FREE SAMPLE CHAPTER
£

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672335952
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672335952
https://plusone.google.com/share?url=http://www.informit.com/title/9780672335952
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672335952
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672335952/Free-Sample-Chapter

George Ornbo

SamsTeachYourself

Node.js

N
Ours

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Node.js in 24 Hours
Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 9780672335952
ISBN-10: 0672335956

Library of Congress Cataloging-in-Publication Data:
Printed in the United States of America

First Printing September 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Mark Taub

Acquisitions Editor
Laura Lewin

Development
Editor

Sheri Cain
Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Geneil Breeze

Indexer
Tim Wright
Proofreader

Sarah Kearns

Technical Editor
Remy Sharp
Publishing
Coordinator
Olivia Basegio

Interior Designer
Gary Adair

Cover Designer
Anne Jones

Senior Compositor
Gloria Schurick

Contents at a Glance

INtrOAUCHION ...covvviieeeiieieeee e

Part I: Getting Started

HOUR 1 Introducing NOAe.jscccceervuieririiiiiiniiiieenieee e
2 npm (Node Package Manager)cccceeeeveeeecnveeennnneenn.
3 What Node.js Is Used FOr.......ccooooeiiriiiiiniiiiiniieeeeieene
4 CallbaCKS.....cccuiiiiiiiiiiiiiiiii

Part lI: Basic Websites with Node.js

HOUR 5 HTTP....ooooiiiiiiiiiicc
6 Introducing EXPIeSSceeeeeuriieinimieeerniieeeniiieeesnieee e
7 MOTe ON EXPIESS...cuvviiiiiiiiiiiiiiiiiiiiiiiiniiieeeeeiniieneeeeeeens

8 Persisting DAtccvveviiiiiiiiiiiiiiiiiiiiiie

Part IlI: Debugging, Testing, and Deploying

HOUR 9 Debugging Node.js Applications...........cccoevveeirnreeeennnen.
10 Testing Node.js Applications.........cccccevvvveeerniiiiiniiieenns
11 Deploying Node.js Applications.......cccccceeeerviereeniieeennnns

Part IV: Intermediate Sites with Node.js

HOUR 12 Introducting SOcket.IO........ccooviiiiriieiiniiiiiiiieeeeieeeene
13 A Socket.IO Chat Server.........ccoeviviiiiiiiniiniiiniiien,
14 A Streaming Twitter Client........ccoocceeeriiieieniiiieeniieeennns
15 JSON APIS..cciiiiiiiiiiiiiiiiicieteccee e

iv Sams Teach Yourself Node.js in 24 Hours

Part V: Exploring the Node.js API

HOUR 16 The Process ModUleceeiiiimiiiiiiiiiiiiiiiiiieeeee ettt 291
17 The Child Process MOAUIEccoeeeiiiiiiiieiieiiieeee e eeeeeee e 305
18 The Events Module........oooouiiiiiiiiiiiiiiiiieee ettt 317
19 The Buffer ModUulecccueeiiiiiiiiiiiiiiieiieeeeiteeeeee ettt 333
20 The Stream Module............cooiiiiiiiiiiiiiieiieee e 345

Part VI: Further Node.js Development

HOUR 21 COffe@SCIIPt ..eeiruiiiiiiiiiiiiiiieeeiiee ettt ettt 361
22 Creating Node.js Modules............cccccocuiviiiiiiiiiiiniiiiiiieceen 381
23 Creating Middleware with CoNNectccoccveeeriiieeiniieiinnieeeeiieeeeee 399
24 Using Node.js with Backbone.js.........ccccccoevviiiiiniiiiiiiiiiiniiiiiiieeas 417

Table of Contents

Introduction 1
Who Should Read This BOOK?cooiciiiiiiiiiiiniiiiiiiicceieiecreccceee e 1
Why Should I Learn NOAe.js?........ueiiiiiieiiiiieiiiiiteeeiieeeeieeeeeiiee e e 2
How This Book Is Organized.............cccoeeiiiiiiiiiiiniiiiiniiciiiiccieecceee e 2
COde EXAIMIPLES ...eeiiniiiiiiiiiee ettt ettt ettt e e s ibte e s ettt e e eabte e e sabaeeesnbaeeeas 2
Conventions Used in This BOOKcooeeiiiiiiiiiiiiiiiiiiiiicciceecceceeeee 3

Part I: Getting Started

HOUR 1: Introducing Node.js 7
WAt IS NOAEJS?....eiiiiiiiiiiiiiiieieeeeec ettt 7
What You Can Do With NOAe.jS.....ccovuiieiriiiiiiiiiiiiieeeieeeeiieeeeeee et 8
Installing and Creating Your First Node.js Program.........ccccccceeeeveeencniecennnneenn. 9
SUITIITIATY ceeiiiiiiiiiiiiee ettt et ettt e e e ettt e e e s e erbae e e e e e e s ssanbaaeeeeeeeeennnnneee 11
QEA s 12
WOTKSNIOP . ¢ttt ettt ettt e s st e s eeee e e snnee 12
EX@ICISES ...oiuiiiiiiiiiiiiciiii e 13

HOUR 2: npm (Node Package Manager) 15
WRAE IS NIPIMI7? ettt ettt et e et e s st e s sseeeesnnee 15
INStAIlING NPIM...oiiiiiiiiiiiiii e 16
INStAlling MOAUIES......ccooiiiiiiiiiieiteeete et s 17
USING MOAUIESoeeiiiiiiiiiiiiciiiicc ettt s 17
HOoW t0 FINA MOAUIEScooouiiiiiiiiiiiiiiiiiiitec ettt 19
Local and Global Installation...........cooviiiiiiiiiiiniiiiiiicceceeec e, 21
How to Find Module Documentationcccoecuueeeeriieeiniiieeiniiieeinieeeeeieeeeeee 22
Specifying Dependencies with package.jsonccccccevvieiiniiiiiiniieiiniieeennnee 23
SUITIITIATY eeiiiiiiiiiieee ettt ettt e e e e et e e e s e irbree e e e e e e ssanbeeteeeeseesnnnnnees 25
QBA s 25
WOTKSHIOP . ¢ttt ettt et s bt e e st e e s eaee e e s 26

|55 CS) (o R < PR 26

Sams Teach Yourself Node.js in 24 Hours

HOUR 3: What Node.js Is Used For 27
What Node.js Is Designed t0 DOcccceoviieiiiiiiiiiiiieiiieeeeceeceree e 27
Understanding I/Ooeooiiiiiiieiiicte ettt 27
Dealing with INPUL......ccccoiiiiiiiiii e 29
Networked I/O Is Unpredictableccoocueiiiniiiiiiiiiiiiiiiieeinieeeeeee e 33
Humans Are Unpredictablecccociviiiiiiiiiiiniiiiiiicce 35
Dealing with Unpredictabilityc.cccceirviiiiiniiiiiiiiiieiiieeeieeceeee e 37
SUIMIMATY .ottt ssaa e e e sanes 38
QA ettt a et 38
WOTKSROPD ..t 39
EX@ICISES ..ciiiiiiiiiiiiiiciic e 39

HOUR 4: Callbacks 41
What Is @ CallDACK?coiiiiiiiiiiiiiieieeeee ettt e 41
The Anatomy of @ CallbACK.......c.ueeiiiiiiiiniiiiiiiiiicceec e 46
How Node.js Uses CallDACKS.......ccccivriiiriiiiiiiiiiiiiiiiiiccneeeieeeee e 47
Synchronous and Asynchronous Code...........ccceeeeviieeiriiieeiniiieeeinnieeenneeeennnee 50
The EVent LOOP ...cocuiiiiiiiiiiiiiiiiiicii s 53
SUITIINIATY ceeiiiiiiiiiiiiiieiiiiiittee ettt e ibr et e e e e s s ssibbaaseeeesssssnnnaaes 54
Q&Aoo 55
WOTKSRIOPD . ettt ettt e s e 55
EX@ICISES ...ttt 56

Part lI: Basic Websites with Node.js

HOUR 5: HTTP 59
WAL IS HTTP? ittt ettt ettt e et e s st e s seeeeesanee 59
HTTP Servers with NOe.jS.....ccuutiiriiiiiiiiiiiiiieciiteceteeceee e 59
HTTP Clients with NOde.js.....cccceiiiiiiiiiiiiiiiiiiiirc e 69
SUIMIMNIATY ceeiiiiiiiiiiiiieiiiiiiiiiteee ettt srba st e e e e e s ssbbaaseeeesssssnnnases 70
Q&Aoo 71
WOTKSRIOPD . ettt ettt e s e s 71

|5) o R <SRN 72

Contents vii

HOUR 6: Introducing Express 73
WAL IS EXPIESS?...eeiiiiiiiiiiiiiiieeiiie ettt ettt st e e s e s snne e e snnee 73
WY USE EXPIESS? ...ceiiuiiiiieiiiieeeiitee ettt e sitte e et e e ettt e s et e e sibaeesssreeessaseeeesnnee 73
INStAIlING EXPIESS ..neeviiiiiiiiiiiiiiieciiee ettt 74
Creating a BasiC EXPress Sitecccciiiiiiiiiiiiiiiiiiiiiiieeeeeeeeceee e 74
EXPIOTINIG EXPIESS ..eeoeiiiiiiiiiieiiiieeeiitee ettt ettt e e e st esenae e e snnee 76
INtrodUCING JAAE ... ueviiiiiiiiieiieee ettt s 77

WOTKSRIOPD . ettt 90
EXOICISES «eeeeiiiiiiiiite ettt ettt e e et e e e e e s e e e e e e nnnrneee 90
HOUR 7: More on Express 91
Routing in Web Applications.......cccceeiiviiiiiiiiiiiiniiiiiiiicceiccccec e 91
How Routing WoOTKS in EXPIess........cccceeerrueiiiniiiiiniiiieeniieeeniieeeeeiteeeseeeee e 91
Adding @ GET ROULEeiiiiiiiiiiiiieiiiice ettt 92
Adding @ POST ROULEcceiiiiiiiiiiieeeiiieeeeiee ettt ettt e e e 94
Using Parameters in ROULEScccuviiiiiiiiiiiiiiiiiiiiiiiiiienecinee 95

Keeping Routes Maintainable

View Rendering

Using Local VAriables.......c.ueeiiiiiiiiiiiiiiiiiieeeiteeeitee ettt 99
N 03460040 | o 2P OPPTPPRRRPPR 101
QA e e et 101
WOTKSROPD . ¢ttt 101
EXOICISES «eeeetieeiiiiiite ettt ettt ettt e e e sttt e e e e e s e e e e e e e nnnee 102
HOUR 8: Persisting Data 103
What Is Persistent DAta?ccoooouiiiiiiiiiiiiiiieiiiccenieeeece e 103
WTIiting Data t0 @ FIlecoooiiiiiiiiiiiiiieeeec et

Reading Data from a File.......cccccooviiiiiniiiiiiiiiiiiiiccecccc e
Reading Environment Variables
USING DALADASEScooevriiiiiiiiiiiiiieiiitte ettt e et ee e sene e eenaee e
Using MongoDB With NOde.jSccoevuiiiiriiiiiiiiieiiiieeeeiiee et

viii

Sams Teach Yourself Node.js in 24 Hours

WOTKSRIOPD . ¢ttt ettt e e e e 132
|55 2] o8 R 132

Part lll: Debugging, Testing, and Deploying

HOUR 9: Debugging Node.js Applications 135
DEDUQGQING ..ttt 135
The STDIO MOAUIEoeiiiiiiiiiiiiieieiteeeieee ettt ettt 136
The Node.js DEDUGQGETccoocuviiiiiiiiiiiiiiiiiiicciicc e 141
INOAE INSPECLOT.....eeeeiiiiieieiiiee ettt ettt e et e sttt e e sabee e s esaeeesenreeeeeanee 144
A Note 0N TeStiNgG.....ciiiiiiiiiiiiiiiiii e 147
SUITIIMIATY ittt ettt e e e e e e e s et e e e e s esnnnnne 148
Q&A e 148
WOTKSIIOPD . ¢ttt ettt et e e e 149
EXEICISES ..couniiiiiiiiiicctec et 149
HOUR 10: Testing Node.js Applications 151
WY TESE? ettt sttt e sttt e sttt e e e e e s nreeeeas 151
The Assert Module...........cccooviiiiiiiiiiiiiiii 152
Third-Party Testing TOOLScoiiriiiiiiiiiiiitee et 155
Behavior Driven Development............ccoovuiiiiiiiiiiiniiieiiiiiceiiiieeeeeeceieee e 159
SUITIINIATY ettt st e e e e s s e e e e e e e eannnae 167
Q&A e 167
WOTKSHIOPD . ¢ttt ettt et e e e s 168
EXEICISES ..oouniiiiiiiiiiciii e 168
HOUR 11: Deploying Node.js Applications 169
Ready t0 DEPLOY! ..cooneiiiiiiiiieee et 169
Hosting in the Cloud........cccciiiiiiiiiiiiiiicecec e 169
HETOKU ..ttt ettt e e s e e 171
CloUud FOUNAIYcoiiiiiiiiiiiiiiiiiicceice ettt e e 176
INOAESLOT ...ttt ettt et e st e e s eabae e e smbeeesesbeeeesembeeeeeanne 180
Other PaaS ProVIAerS......cc.ciiiviiiiiiiiiiiiiiieiiiiceeee e e 184
SUITIINIATY ettt et e e e e e e s e e e e e e e enannne 184
Q&A e 184
WOTKSHIOPD . ¢ttt ettt e e e e 185

|55 =) (o8 R =P 186

Contents ix

Part IV: Intermediate Sites with Node.js

HOUR 12: Introducting Socket.l0 189
Now for Something Completely Differentccceccveeiviiiiiiniiiiininiiiniieeennns 189
Brief History of the Dynamic Web........ccccceiiriiiiiiiiiiiiiiiieineeceeeeceeeeeee 189
SOCKEL.IO i 191
Basic SOCKet.IO EXAMPIEcoiiiiiiiiiiiiiiiieeeiteeette et 191
Sending Data from the Server to Clents........cccceevveiieiiiiieeiniiieiniieceieeeeee 194
Broadcasting Data to CHeNtsccoocueiiriiiiiiiiiieeiiieee et 199
Bi-Directional DatQcooouiiiiiiiiiiiiiiiii i 204
SUITIITIATY ittt ettt et et e e sttt e e e e e s earbe et e e e e e eeannnnne 209
Q&A e 209
WOTKSHIOP . ¢ttt ettt e et e e nree e 210
EX@ICISES ...oiuiiiiiiiiiiiiiitiicc e 210
HOUR 13: A Socket.lO Chat Server 213
Express and SOCKET.TO ...ccccuiiiiiiiiiiiiiiieiiie ettt e 213
Adding NICKNAIMES.........cciiviiiiiiiiiiiiiiieeee ettt 216
SUITIIMIATY ittt e e eiar e e e e e s s sree e e e e e e eennnnne 235
QEA e 235
WOTKSIIOPD . ¢ttt ettt et eeaeee e 236
EXEICISES ..ooiuiiiiiiiiiiii et 236
HOUR 14: A Streaming Twitter Client 237
SEreamINg APIS ...ooviiiiiiiiiee e e 237
Signing Up fOr TWITET ...coooviiiiiiiiiiiiiiiieiiiectcerec e 238
Using Twitter's API with NOde.jS.....ccuueiirriiiiiiiiiiiiiiieieiieeereec e 241
Extracting Meaning from the Dataccccceeveiiiiiiiiiiiiiiieeiniiceececeieeeeee 244
Pushing Data to the BIOWSETccc.ueeiriiteiiiiiieeiiieeeeieeeeeieeeeeiree et e e 247
Creating a Real-Time Lovehateometer...........cccoveuiiiiniiiiiiniiieeniiecinieec e, 252
SUITIITIATY ceeiiiiiiiitee ettt ettt e e st e e e e e e s sbee et e e e e eeannnne 262
QEA e 263
WOTKSIIOPD . ¢ttt ettt e et e e e e s nreee e 263

|55 2] (o R 264

Sams Teach Yourself Node.js in 24 Hours

HOUR 15: JSON APIs 265
APIS oo s 265
JSON o 266
Sending JSON Data with NOde.jS........ccoovuiiiriiiiiiiiiiiiiiieenieeeee e 268
Creating JSON from JavaScript ObJects.....c...cooceeeeiiernieiniieniieeeeeeceeeeene 269
Consuming JSON Data with NOde.jS......cccceerviiiiiniiiiiiiiiieiiieeereeceeeeeeee 271
Creating a JSON API with NOde.jS......ccooeviiiiiiiiiiiiiiiiiiiiiiiiccieeceeecee 275
SUITIIMIATY ottt errr e e e e s rra et e e e s esaannaee 285
QA o 286
WOTKSNIOPD . ettt ettt e e e e 286
EX@ICISES ...eiiiiiiiiiiccctc e 287

Part V: Exploring the Node.js API

HOUR 16: The Process Module 291
WA PIOCESSES ATE.......eiiiiiiiiieiieeniieertee ettt e esreesteeereeeneeesaneeseneeseneeeneeennes 291
Exiting and EITOIS in PrOCESSEScccccuvriirimiieeiniiiieeiiieeeritee et eereeeeeireee e 293
Processes and SIgNaAlSccooviiiiiiiiiiiiiiiiiiice e 293
Sending Signals 0 PIrOCESSESccoovueeiiiiiiiiriiiieieiiieeeiee et 295
Creating Scripts with NOde.js......ccooociiiiiiiiiiiiiiiiiiiiiiiccec e 297
Passing Arguments t0 SCIIPES.....cccuvviiiiiiiiiiiiiiiiiicirtceceeee e 298
SUIMIMATY ..ottt e e sae e e e siae e eanee 301
QA ettt st st e s s s st eae 302
WOTKSNOPD ...ttt 302
EXEICISES ..evviiiiiiiiiiiiiiee ettt st e e e e 303

HOUR 17: The Child Process Module 305
What Is a Child ProCeSS?........cccoviiviiiriiiiiieiiieeieenieeeree et 305
Killing a Child ProCess.........ccoveuieeimiiiiiiiiiieeniiteeeieeeeeitte et eeeeaee e 308
Communicating with a Child Process.........ccccccccoevviiiiiiiiiiniiiiniciiiccns 309
The Cluster Modulecccoiiiiiiiiiiiiiiii e, 311
SUIMIMATY ..ottt s e s sae e e saae e eanes 314
QA e et s st s e s s e e st 314
WOTKSNOPD ...ttt 314

|55 ¢3) Yol KT S SO R PR UPPRURPPRRRRRY 315

Contents

HOUR 18: The Events Module 317
Understanding EVENTScciiriiiiiiiiiiiiiieceiieeeiee et 317
Demonstrating Events Through HTTPccooviiiiiiiiiiiiniieeiieeeeeeeeeieeeeee 321
Playing Ping-Pong with EVENtsccovviiiiiiiiiiiiiiiiiiiecciccceiec e 324
Programming Event Listeners Dynamically...........ccccoeeiiiiiinniinniiinicinnneen. 326
SUIMIMNAIY ceeiiiiiiiiiiiiiiiiiiiiiiieee ettt s e e e s s srba e e e e e s ssaannnns 330
QA et sttt e e sttt 330
WOTKSRIOPD . ¢ttt 331
EX@ICISES ..coiiiiiiiiiiiiiiiiiiiiiii e 331

HOUR 19: The Buffer Module 333
A Primer on Binary DAtceeeiiiiiiiiiiiiiiiiiiininccccnecceeeee 333
BINATIY 10 TOXT..uuiiiiiiiiiiiiieieeee ettt e e e e e e e e e e 334
BINAry and NOAE.jS.......ccivruiiiiriiiiiiiitiiiiiie ettt eree et e e e e 335
What Are Buffers in NOde.js?.......cccceeiiiiiiiiiiiiiiiiiiieeeeceeccccee e 338
WIItINg 10 BUSFEIS ...cciiiiiiiiiiiiiieiiiececeee et 340
Appending to BUfErSccociiiiiiiiiiiiiiiiiiiccecce e 340
COPYING BUITETS ..ceineiiiiiiiiiieiiieeeiee ettt e 342
Modifying Strings in BUffers............ccceevciiiiiiiiiiiiicceeccccceee e 343
SUIMIMNATY oottt e e e e s e sba e e e e s s saaannns 343
QA et st ettt ettt e e e e 343
WOTKSRIOPD . ¢ttt st 344
EX@ICISES ..cuviiiiiiiiiiiiiiccc e 344

HOUR 20: The Stream Module 345
A Primer on StreQmMSoovuiiiiiiiiiiiiiiiiiiii 345
ReAdADIE STIEAIMSeeeieiiiiiiiiieeeiieee ettt et s st e s 347
Writable Streams ..., 352
Piping STreQmis........ccciiiiiiiiiiiiiiiiiii 353
Streaming MP3S......ccooiiiiiiiiiiiiii e 354
SUIMIMATY ...ttt saa e e 356
Q&A e 356
WOTKSIOPD . e it 356

|55 €] (o R =TSP 357

Xi

Xii Sams Teach Yourself Node.js in 24 Hours

Part VI: Further Node.js Development

HOUR 21.: CoffeeScript

What Is CoffeeSCript?ccooviiiiiiiiiiiiiieeeeee e
Installing and Running CoffeeScriptccoeeveeiiiiiiiiniiiiiiniiiiennns
Why Use a Pre-Compiler?ccccueeeriieeiniiieeiniieeenieeeeeieeeeeiieeens
Features of CoffeeScript.......cccovviiiiriiiiiiiiiiiiiiieccieececc e

Debugging CoffeeSCript........ccovvieiiriiiiiiniiiieiiieeerieee e

WOTKSNOPD . ettt

|55 €] (o R RN

HOUR 22: Creating Node.js Modules

Why Create Modules?ccooeiiiiiiiiieeiniieeinieeeeieeeeeeeeeeiieeeas
Popular Node.js ModUIESccoeeviiiiriiiiiiniiieiiiieeiee e
The package.json Fileccciiiiiiiiiiiiiiiniieceeceeeceeeeee e
Folder Structure.........cccociiiiiiiiiiiiiiiii
Developing and Testing Your Module..........ccccceerviiiiiiniieiinneeennne
Adding an Executable...........cccoeeiiiiiiiiiiiniiiieee

Using Object-Oriented or Prototype-Based Programming

Sharing Code Via GitHUDcccooviiiiiiiiiiiiiiiiiiiiiccicc e
USING Travis Cl....ouiiiiiiiiiiiiieeeeeeeteee e e
Publishing to NPM.......ccooociiiiiiiiiiiiee e

Publicizing Your Module...........ccooeiiiiiiniiiiiiniiieiiieeeeeee e

WOTKSNOPD ..ttt

| 55:¢3) (o N1 S USRS RURURNt

HOUR 23: Creating Middleware with Connect

What Is MiddleWAre?coovvviieeeeeeieiiiiieieeeeeeeviieeeeeeeeerraeeeeeeeeerananns
Middleware in CONMNECEccoeiiiiiuiiieeeieieeieeeeeeeee e ee e eeeeeaes

Access Control with Middleware..........cccooeeevrviiiiieieeeiieiiiieiee e,

361

................ 361

................ 365

381

................ 381

399

................ 399

Contents Xiii

SUITIINIATY ettt ar e e e e e s e e e e e s esaannne 414
Q&A e 414
WOTKSIIOPD . ¢ttt ettt ettt e e s 415
EXEICISES ..ooiunriiiiiiiiicctic et 415
HOUR 24: Using Node.js with Backbone.js 417
What Is BACKDONE.JS?coiiiiiiiiiiiiieeeiieeeiee ettt ettt e 417
How Backbomne.js WOIKSccccviiiiiiiiiiiiieiiiiiccec e 418
A Simple BackbOne.js VIEWccccuiiiiiiiiiiiiiiieeiiieeeeitec ettt 425
Creating Records with Backbone.js..........cccoovviiiiiiiiniiiiiiniiiiiiicceccee 429
SUITIIMIATY ettt ettt e e e e e e e s e e e e e e e e ennnnne 432
QEA e 432
WOTKSIIOPD . ¢ttt ettt et e e aeee e 433
EXEICISES ..ooiuiiiiiiiiiiiiiciic et 433

Index 435

About the Author

George Ornbo is a UK-based JavaScript and Ruby developer. He has been creating web
applications for more than eight years, first as a freelancer and more recently working at
pebble {code} in London. He blogs at http://shapeshed.com and can be found in most of the
usual places around the web as @shapeshed.

http://shapeshed.com

Dedication

This book is dedicated to my wife, Kirsten.
Without your support, this book would not have been possible.

Acknowledgments

Thanks to Trina MacDonald and the team at Pearson for giving me the chance to write this
book. Your encouragement and guidance was invaluable.

Thanks to Remy Sharp, the technical editor on the book. You picked up numerous mistakes
and oversights over the course of the reviews. I owe you a beer! Any mistakes left in the
book are, of course, my own.

Thanks to my colleagues at pebble {code}. From the start, you were right behind me writing
the book. I am grateful for the flexibility around big projects that allowed me to finish this
book.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: errata@informit.com
Mail: Addison-Wesley/Prentice Hall Publishing
ATTN: Reader Feedback
1330 Avenue of the Americas
35th Floor
New York, New York, 10019

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

The ability to use JavaScript on the server allows developers who are familiar with JavaScript to
add server-side development to their curriculum vitae. Node.js is much more than that, though.
It rethinks network programming in the context of the modern web where an application may
rely on reading and writing data from many different places and may have millions of concur-
rent users.

JavaScript is often seen as a toy language by developers who have traditional computer science
degrees. But, JavaScript has survived numerous challenges and is now integral to the direction

of the web both in the browser and with Node.js on the server-side too. There has never been a

better time to write JavaScript, especially on the server!

Node.js represents a development platform that can respond to creating applications for the
modern web. This includes

» Real-time applications
» Multiplayer games
» Single-page applications

» JSON-based APIs

It is focused on speed and scalability and can handle thousands of concurrent users without
needing expensive hardware. The Node.js project recently became the most watched project on
GitHub and is now being used by companies like eBay, LinkedIn, and Microsoft.

Node.js is much more than JavaScript on the server. It is a fully featured network programming
platform for responding to the demands of modern web programming.

Who Should Read This Book?

This book makes few assumptions about programming experience, but it is helpful to have
some basic experience with JavaScript. Because Node.js is primarily run from the terminal, it is
helpful to understand what a terminal is and how to run basic commands. Finally, because
Node.js is primarily a network programming tool, it helps to understand a little of how the
Internet works, although this is not essential.

2 Introduction

Why Should | Learn Node.js?

If you are interested in creating applications that have many users, deal with networked data, or
have real-time requirements, then Node.js is a great tool for the job. Furthermore, if you are cre-
ating applications for the browser, Node.js allows your server to be JavaScript, making it much
simpler to share data between your server and client. Node.js is a modern toolkit for the modern
web!

How This Book Is Organized

This books starts with the basics of Node.js, including running your first Node.js program and
using npm (Node’s package manager). You are then introduced to network programming and
how Node.js uses JavaScript callbacks to support an asynchronous style of programming.

In Part II, you learn how to create basic websites with Node.js first by using the HTTP module
and then using Express, a web framework for Node.js. You also learn how to persist data with
MongoDB.

Part III introduces tools for debugging and testing Node.js application. You are introduced to a
number of debugging tools and testing frameworks to support your development. You learn how
to deploy your Node.js applications to a number of third-party services, including Heroku and
Nodester.

Part IV showcases the real-time capabilities of Node.js and introduces Socket.IO. You learn how
to send messages between the browser and server and build full examples of a chat server and a
real-time Twitter client. Finally, you learn how to create JSON APIs with Node.js.

Part V focuses on the Node.js API and explores the building blocks for creating Node.js applica-
tions. You learn about processes, child processes, events, buffers, and streams.

Part VI introduces areas that you may want to explore once you get beyond the basics. You learn
about CoffeeScript, a JavaScript pre-compiler, how to use Middleware with Node.js, and how to
use Backbone.js to create single-page applications with Node.js. Hour 22 also introduces how to
write and publish your own Node.js modules with npm.

Code Examples

Each hour in this book comes with several code examples. These examples help you learn
about Node.js as much as the text in this book. You can download this code at http://bit.ly/
nodejsbook-examples, and they are also available as a GitHub repository at https://github.com/
shapeshed/nodejsbook.io.examples.

http://bit.ly/nodejsbook-examples
http://bit.ly/nodejsbook-examples
https://github.com/shapeshed/nodejsbook.io.examples
https://github.com/shapeshed/nodejsbook.io.examples

Conventions Used in This Book

Conventions Used in This Book

Each hour starts with “What You'll Learn in This Hour,” which includes a brief list of bulleted
points highlighting the hour’s contents. A summary concluding each hour provides a bit of
insight reflecting on what you as the reader should have learned along the way.

In each hour, any text that you type appears as bold monospace, whereas text that appears on
your screen is presented in monospace type.

It will look like this to mimic the way text looks on your screen.

Finally, the following icons introduce other pertinent information used in the book:

BY THE WAY

By the Way presents interesting pieces of information related to the surrounding discussion.

DID YOU KNOW?

Did You Know? offers advice or teaches an easier way to do something.

WATCH OUT

Watch Out! advises you about potential problems and helps you steer clear of disaster.

This page intentionally left blank

HOUR 14

A Streaming Twitter Client

What You’ll Learn in This Hour:

v

Receive data from Twitter’s streaming API
Parse data received from Twitter’s streaming API
Push third-party data out to clients in real-time

Create a real-time graph

v v .v'v

Discover whether there is more love or hate in the world by using real-time data from
Twitter

Streaming APls

In Hour 13, “A Socket.IO Chat Server,” you learned how to create a chat server with Socket.IO
and Express. This involved sending data from clients (or browsers) to the Socket.IO server and
then broadcasting it out to other clients. In this hour, you learn how Node.js and Socket.IO can
be used to consume data directly from the web and then broadcast the data to connected clients.
You will work with Twitter’s streaming Application Programming Interface (API) and push data
out to the browser in real-time.

With Twitter’s standard API, the process for getting data is as follows:
1. You open a connection to the API server.
2. You send a request for some data.
3. You receive the data that you requested from the API.
4

. The connection is closed.

238 A Streaming Twitter Client

With Twitter’s streaming API, the process is different:
1. You open a connection to the API server.
2. You send a request for some data.
3. Data is pushed to you from the API.
4. The connection remains open.
5

. More data is pushed to you when it becomes available.

Streaming APIs allow data to be pushed from the service provider whenever new data is avail-
able. In the case of Twitter, this data can be extremely frequent and high volume. Node.js is a
great fit for this type of scenario, where large numbers of events are happening frequently as
data is received. This hour represents another excellent use case for Node.js and highlights some
of the features that make Node.js different from other languages and frameworks.

Signing Up for Twitter

Twitter provides a huge amount of data to developers via a free, publically available API. Many
Twitter desktop and mobile clients are built on top of this API, but this is also open to developers
to use however they want.

If you do not already have a Twitter account, you need one for this hour. You can sign up for
an account for free at https://twitter.com/. It takes less than a minute! Once you have a Twitter
account, you need to sign into the Twitter Developers website with your details at http://
dev.twitter.com/. This site provides documentation and forums for anything to do with the
Twitter API. The documentation is thorough, so if you want, you can get a good understanding
of what types of data you can request from the API here.

Within the Twitter Developers website, you can also register applications that you create with the
Twitter API. You create a Twitter application in this hour, so to register your application, do the
following:

1. Click the link Create an App.

2. Pick a name for your application and fill out the form (see Figure 14.1). Application names
on Twitter must be unique, so if you find that the name has already been taken, choose
another one.

http://dev.twitter.com/
http://dev.twitter.com/
https://twitter.com/

Signing Up for Twitter 239

© O O/ s create an application | Twitt % _\
€ C |2 heips://dev.twitter.com/apps/new S

kwitter developers |Search @ APIHealth Blog Discussions Documentation -« nodejsbooic

Home — My applications
Create an application

Application Details

Name: *
lovehateometer

Your application name. This is used to attribute the source of a tweet and in user-facing authorization screens. 32 characters max.

Description: *
A lovehateometer to show if there is more love or hate in the world

Your application description, which wil be shown in user-facing authorization screens. Between 10.and 200 characters max.

WebSite: *

Your application's publicly accessible home page, whare users can o to downioad, make use of, or find out mare information about your application. This fully-qualfied URL is used in
the source aftriution for twasts Greated by your application and wil be Shown in user-facing authorization Scraens.
(I you don't have a URL yet, just put a placeholder here but remember to change t later.)

Callback URL:

FIGURE 14.1
Creating a Twitter application

Once you create your application, you need to generate an access token and an access-
token secret to gain access to the API from your application.

3. At the bottom of the Details tab is a Create My Access Token button (see Figure 14.2). Click
this button to create an access token and an access token secret.

240 HOUR 14: A Streaming Twitter Client

— P,
© 0 0O /' 3 jovehateometer | Twitter De. % |||

€ - C | @ https://dev.twitter.com/apps/1570495 /show

k
OAuth settings

ter developers |Search Q' APIHealth Blog

Your application’s OAuth settings. Keep the “Consumer secret” a secret. This key should never be human-readable in your application.

Access level Read-only
About the application permission model

Gonsumer key NwiidmbK1JbJxSRCuQOW)

Consumer secret 5SEZCLP3pQt2KKKGPEj2X1Vpruc3TrjeihEKNEotHwe
Reguest token URL https://api.twitter.com/oauth/request_token
Authorize URL https://api.twitter.com/oauth/authorize
Access token URL https://api.twitter.com/oauth/access_token
Gallback URL None

Your access token

It looks like you haven't authorized this application for your own Twitter account yet. For your convenience, we give you the opportunity to create your OAuth access
token here, S you can start signing your requests right away. The access token generated will reflect your application's current permission level.

3 Follow @twitterapi Terms APIStatus Blog Dis

entation A Drupal ce

FIGURE 14.2
Requesting an access token

4. When the page refreshes, you see that values have been added for access token and access
token secret (see Figure 14.3). Now, you are ready to start using the API!

Using Twitter’s APl with Node.js 241

—_— o

© O 0O /' wlovehateometer | Twitter D

€« C' | @ https://dev.twitter.com/apps/1570495 /show EAdE S

kwitter developers [Saareh @] APiHoath Blog Discussions Documentation | nodejsbook

OAuth settings

Your application's OAuth settings. Keep the *Consumer secret” a secret. This key should never be human-readable in your application.

Access level Read-only

About the application permission model
Consumer key NwiidmbK1JbJIxSRCuQOWD
Gonsumer secret 5SEZCLP3pQt2KKKgPEj2X1Vpruc3TrjeihEKNtotWwe
Request token URL https://api.twitter.com/ocauth/request_token
Authorize URL https://api.twitter.com/oauth/authorize
Access token URL https://api.twitter.com/oauth/access_token
Gallback URL None

Your access token

Use the access token string as your ‘cauth_token" and the access token secret as your *oauth_token_secret” to sign requests with your own Twitter
account. Do not share your oauth_token_secrat with anyone.

Access token 359840007-XFKQB6WcVmIoXTImrG7t)5wIPq8z53wBBRwWBGKSk
Access token secret KG6rSapoKCx8IFHISLO2gZmNmIvnmgecwXtapeWsH1A
Access level Read-only

FIGURE 14.3
A successful creation of an access token

BY THE WAY

OAuth Is a Way of Allowing Access to Online Accounts

OAuth is an open standard for authentication, typically used within the context of web applications.
It allows users to grant access to all or parts of an account without handing over a username or
password. When a user grants an application access to their account, a unique token is generated.
This can be used by a third-party services to access all or parts of a user’s account. At any time, the
user can revoke access and the token will no longer be valid so an application would no longer have
access to the account.

Using Twitter’s APl with Node.js

Once you create your application within the Twitter Developers website and request an OAuth
access token, you are ready to start using the Twitter API. An excellent Node.js module is avail-
able for interacting with the Twitter API called ntwitter. This module was initially developed by
technoweenie (Rick Olson), then jdub (Jeff Waugh), and is now maintained AvianFlu (Charlie
McConnell). All the authors have done an amazing job of abstracting the complexity of interact-
ing with Twitter’s API to make it simple to get data and do things with it. You continue to use
Express in this hour, so the package.json file for the application will include the Express and
ntwitter modules.

242 A Streaming Twitter Client

"name":"socket.lo-twitter-example",
"version":"0.0.1",
"private":true,
"dependencies" : {
"express":"2.5.4",
"ntwitter":"0.2.10"

The ntwitter module uses OAuth to authenticate you, so you must provide four pieces of infor-
mation:

» Consumer key
» Consumer secret
» Access token key

» Access token secret

If you requested these when you were setting up the application in the Twitter Developers web-
site, these will be available on the Details page for your application. If you did not request them
when you set up the application, you need to do so now under the Details tab. Once you have
the keys and secrets, you can create a small Express server to connect to Twitter’s streaming API:

var app = require('express').createServer(),
twitter = require('ntwitter');

app.listen(3000) ;

var twit = new twitter ({
consumer_key: 'YOUR_CONSUMER_KEY',
consumer_secret: 'YOUR CONSUMER_SECRET',
access_token_key: 'YOUR_ACCESS_TOKEN_KEY',
access_token_secret: 'YOUR_ACCESS_TOKEN_KEY'

D

Of course, you need to remember to replace the values in the example with your actual values.
This is all you need to start interacting with Twitter’s API! In this example, you answer the ques-
tion, “Is there more love or hate in the world?” by using real-time data from Twitter. You request
tweets from Twitter’s streaming API that mention the words “love” or “hate” and perform a
small amount of analysis on the data to answer the question. The ntwitter module makes it easy

to request this data:

Using Twitter’s APl with Node.js 243

twit.stream('statuses/filter', { track: ['love', 'hate'] }, function(stream) ({
stream.on('data', function (data) {

console.log(data) ;
3N
13N

This requests data from the 'statuses/filter' endpoint that allows developers to track tweets
by keyword, location, or specific users. In this case, we are interested in the keywords 'love'
and 'hate'. The Express server opens a connection to the API server and listens for new data
being received. Whenever a new data item is received, it writes the data to the console. In other
words, you can see the stream live for the keywords “love” and “hate” in the terminal.

TRY IT YOURSELF V¥

If you have downloaded the code examples for this book, this code is hourl4/exampleO1.
To stream data from Twitter, follow these steps:
1. Create a new folder called express_twitter.

2. Within the express_twitter folder, create a new file called package.json and add the follow-
ing content to declare ntwitter and Express as dependencies:

{

"name":"socket.lo-twitter-example",
"version":"0.0.1",
"private":true,
"dependencies" : {
"express":"2.5.4",
"ntwitter":"0.2.10"

3. Within the express_twitter folder, create a new file called app.js with the following content.
Remember to replace the keys and secrets with your own:

var app = require('express').createServer(),
twitter = require('ntwitter');

app.listen(3000) ;

var twit = new twitter ({
consumer_ key: 'YOUR_CONSUMER _KEY',
consumer_secret: 'YOUR CONSUMER SECRET',
access_token key: 'YOUR_ACCESS_TOKEN_KEY',
access_token_ secret: 'YOUR_ACCESS_TOKEN_KEY'

244 A Streaming Twitter Client
1)
twit.stream('statuses/filter', { track: ['love', 'hate']l }, function(stream) ({
stream.on('data', function (data) {
console.log(data) ;
i
1)
4. Install the dependencies by running the following from a terminal:
npm install
5. Start the server by running the following from a terminal:
node app.js
6. Watch the terminal; you should see data being received from Twitter's streaming API (see
Figure 14.4). There is a lot of data, so expect it to move fast!
7. Kill the server pressing Ctrl+C in the terminal.

800

Terminal — node — 80x24 '

notifications: null,
profile_background_tile:
follow_request_sent: null,
profile_sidebar_fill_color:
created_at:
protected:
default_profile_image: false,
contributors_enabled: false,
profile_sidebar_border_color:
followers_count: 21,
profile_image_url:
l.jpg',
name: ‘Noura’,
id_str: '225434395°',
favourites_count: @,
id: 225434305,
lang: 'en',
profile_use_background_image:
utc_offset: -18880,
url: null 3,
in_reply_to_screen_name:
id: 164@108555434352680,
entities: { user_mentions:

false,

null,

false,

'252428°',
'Sat Dec 11 15:04:33 +@eee 2010',

'http://a@.twimg.com/profile_images/178973B168/ norma

1, urls:

'1B1A1E',

true,

11, hashtags: [[Object] 1 } }

FIGURE 14.4
Streaming data to the terminal

Extracting Meaning from the Data

So far, you created a way to retrieve data in real-time from Twitter, and you saw a terminal
window move very fast with a lot of data. This is good, but in terms of being able to understand
the data, you are not able to answer the question set. To work toward this, you need to parse the
tweets received and extract information. Twitter provides data in JSON, a subset of JavaScript,
and this is great news for using it with Node.js. For each response, you can simply use dot

Extracting Meaning from the Data 245

notation to retrieve the data that you are interested in. So, if you wanted to view the screen
name of the user along with the tweet, this can be easily achieved:
twit.stream('statuses/filter', { track: ['love', 'hate']l }, function(stream) ({

stream.on('data', function (data) {
console.log(data.user.screen_name + ': ' + data.text);

i
)

Full documentation on the structure of the data received from Twitter is available on the docu-
mentation for the status element. This can be viewed online at https://dev.twitter.com/docs/
api/1/get/statuses/show/%3Aid. Under the section, “Example Request,” you can see the data
structure for a status response. Using dot notation on the data object returned from Twitter, you
are able to access any of these data points. For example, if you want the URL for the user, you
can use data.user.url. Here is the full data available for the user who posted the tweet:

"user": {

"profile sidebar border color": "eeeeee",

"profile background tile": true,

"profile_sidebar fill color": "efefef",

"name": "Eoin McMillan ",

"profile image url": "http://al.twimg.com/profile images/1380912173/Screen
= shot 2011-06-03_at 7.35.36_PM normal.png",

"created at": "Mon May 16 20:07:59 +0000 2011",

"location": "Twitter",

"profile link color": "009999",

"follow_request_sent": null,

"is_translator": false,

"id str": "299862462",

"favourites_ count": 0,

"default_profile": false,

"url": "http://www.eoin.me",

"contributors_enabled": false,

"id": 299862462,

"utc_offset": null,

"profile image url https": "https://si0.twimg.com/profile images/1380912173/
= Screen_shot_2011-06-03_at_7.35.36_PM normal.png",

"profile use background image": true,

"listed count": 0,

"followers_count": 9,

"lang": "en",

"profile text color": "333333",

"protected": false,

"profile background image url https": "https://si0O.twimg.com/images/themes/
= themeld/bg.gif",

"description": "Eoin's photography account. See @mceoin for tweets.",

"geo_enabled": false,

"verified": false,

https://dev.twitter.com/docs/api/1/get/statuses/show/%3Aid
https://dev.twitter.com/docs/api/1/get/statuses/show/%3Aid

246

A Streaming Twitter Client
"profile background color": "131516",
"time zone": null,

"notifications": null,
"statuses_count": 255,
"friends_count": 0,
"default_profile image": false,

"profile background image url": "http://al.twimg.com/images/themes/themel4/
= bg.gif",
"screen_name": "imeoin",

"following": null,
"show_all inline media": false

There is much more information available with each response, including geographic coordi-

nates, whether the tweet was retweeted, and more.

V¥ TRY IT YOURSELF

If you have downloaded the code examples for this book, this code is hourl4/example02.

To parse data from Twitter, follow these steps:

1.
2.

Create a new folder called parsing_twitter_data.

Within the parsing_twitter_data folder, create a new file called package.json and add the
following content to declare ntwitter and Express as dependencies:

{

"name":"socket.lo-twitter-example",
"version":"0.0.1",
"private":true,
"dependencies" : {
"express":"2.5.4",
"ntwitter":"0.2.10"

Within the express_twitter folder, create a new file called app.js with the following content.
Remember to replace the keys and secrets with your own:

var app = require('express').createServer(),
twitter = require ('ntwitter');

app.listen(3000) ;

var twit = new twitter ({
consumer key: 'YOUR_CONSUMER _KEY',

Pushing Data to the Browser

consumer_ secret: 'YOUR CONSUMER_ SECRET',
access_token key: 'YOUR ACCESS_TOKEN KEY',
access_token_secret: 'YOUR_ACCESS_TOKEN_KEY'

1)

247

twit.stream('statuses/filter', { track: ['love', 'hate']l }, function(stream) ({

stream.on('data', function (data) {

console.log(data.user.screen name + ': ' + data.text);

)i
)

4. Install the dependencies by running the following from a terminal:

npm install

5. Start the server by running the following from a terminal:

node app.js

6. Watch the terminal; you should see that now only the screen name of the user and the

tweet are displayed (see Figure 14.5).

7. Kill the server by pressing Ctrl+C in the terminal.

FIGURE 14.5

800 Terminal — node — 80x24 el

accioabbie: RT @justsaypenny: I love @acciocabbie and @underapapermo@n they are m | B
y Llife MuxxxxxxXxXxxXXxxXXxXxXXXARAAKCC

JacobIrsan: RT"@monicaaakim: pacaran : love you beb, miss you &1t;3 .. putus :
uck you! damn you..."

NSUCoachlones: No ESPN love, 16-6, B8-8 Conference, preseason player of year and
they show the 5th and 6th place teams..

jockinmyfresh24: Call me a jerk one more time ctfu lmao RT @TassieBaddAss: @jock
inmyfresh24 you freakin love me you 1il jerk!!!

Huangaholic: @TheManuMania This, a thousand times this. See, this is why I love
you guys. Eforewords5 @jeannette_sites

imaginebojan: Jefferson Airplane Somebody To Love http://t.co/1blORH76 W & A
ALdmlwww ZHE?

raulorlandol: "Never love someone easily" real man

iWant_GUMMiES: i hate when #Twitter try to tell me i already tweeted something a
nd i didn't

ChoczBB: Lowkey Wizkid RT @DONJAYYYY: Kalamoko Skally RT @ChoczBB: Oti yan yan
S1im joe RT @DONJAYYYY: Dadubule Skally RT @ChoczBB: No Love Eminem
_YummyKellogs: I hate Mondays, and I'm tired |:

kcruzz2: But jealousy is just love n hate at the same time

hishh: Among the all actress i know @divyaspandana is a sweet heart. Real gem ,
brave , dedicated and the best.. Respect.. Loads of love

LUcKyAcE_183: RT @Mr_Gjasmin5: I love google

JakePena7: RT @BWORD: You're tacky and I hate you

Parsing data received from Twitter

Pushing Data to the Browser

Now that data from Twitter is in a more digestible format, you can push this data out to
connected browsers using Socket.IO and use some client-side JavaScript to display the tweets.

This is similar to the patterns you saw in Hours 12 and 13, where data is received by a Socket.

248 A Streaming Twitter Client

IO server and then broadcast to connected clients. To use Socket.IO, it must first be added as a
dependency in the package.json file:
{
"name":"socket.io-twitter-example",
"version":"0.0.1",
"private":true,
"dependencies" : {
"express":"2.5.4",
"ntwitter":"0.2.10",
"socket.io":"0.8.7"

Then, Socket.IO must be required in the main server file and instructed to listen to the Express
server. This is exactly the same as the examples you worked through in Hours 12 and 13:
var app = require('express').createServer(),

twitter = require('ntwitter'),

io = require('socket.IO') .listen (app) ;

The streaming API request can now be augmented to push the data out to any connected
Socket.IO clients whenever a new data event is received:
twit.stream('statuses/filter', { track: ['love', 'hate']l }, function(stream) ({
stream.on('data', function (data) {
io.sockets.volatile.emit ('tweet', {

user: data.user.screen_name,
text: data.text

13N
i
D

Instead of logging the data to the console, you are now doing something useful with the data
by pushing it out to connected clients. A simple JSON structure is created to hold the name of
the user and the tweet. If you want to send more information to the browser, you could simply
extend the JSON object to hold other attributes.

You may have noticed that, instead of using io.sockets.emit as you did in Hours 12 and 13,
you are now using io.sockets.volatile.emit. This is an additional method provided by
Socket.IO for scenarios where certain messages can be dropped. This may be down to network
issues or a user being in the middle of a request-response cycle. This is particularly the case
where high volumes of messages are being sent to clients. By using the volatile method, you
can ensure that your application will not suffer if a certain client does not receive a message. In
other words, it does not matter whether a client does not receive a message.

The Express server is also instructed to serve a single HTML page so that the data can be viewed
in a browser.

Pushing Data to the Browser 249

app.get ('/', function (req, res) ({
res.sendfile(dirname + '/index.html');

13K

On the client side (or browser), some simple client-side JavaScript is added to the index.html file
to listen for new tweets being sent to the browser and display them to the user. The full HTML
file is available in the following example:

<ul class="tweets">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></
= scripts>

<script src="/socket.io/socket.io.js"></script>
<script>
var socket = io.connect () ;
jQuery (function ($) {
var tweetList = $('ul.tweets');
socket.on('tweet', function (data)
tweetList
.prepend('<1li>' + data.user + ': ' + data.text + '');
b
3N

</scripts>

An empty unordered list is added to the DOM (Document Object Model), and this is filled with
a new list item containing the screen name of the user and the tweet each time a new tweet is
received. This uses jQuery’s prepend () method to insert data received into a list item within the
unordered list. This has the effect of creating a stream on the page.

Now, whenever Socket.IO pushes a new tweet event out, the browser receives it and writes it
to the page immediately. Instead of viewing the stream of tweets in a terminal, it can now be
viewed in the browser.

TRY IT YOURSELF V¥

If you have downloaded the code examples for this book, this code is hourl4/example03.
Here’s how to stream Twitter data to a browser:
1. Create a new folder called socket.io-twitter-example.

2. Within the socket.io-twitter-example folder, create a new file called package.json and add
the following content to declare ntwitter, Express, and Socket.lO as dependencies:

{

"name":"socket.lo-twitter-example",
"version":"0.0.1",

"private":true,

"dependencies" : {

A Streaming Twitter Client

"express":"2.5.4",
"ntwitter":"0.2.10",
"socket.io":"0.8.7"

Within the socket.io-twitter-example folder, create a new file called app.js with the following
content. Remember to replace the keys and secrets with your own:

var app = require ('express') .createServer(),
twitter = require('ntwitter'),

io = require('socket.io') .listen (app) ;
app.listen(3000) ;

var twit = new twitter ({
consumer_key: 'YOUR_CONSUMER _KEY',
consumer_ secret: 'YOUR CONSUMER_ SECRET',
access_token key: 'YOUR _ACCESS_TOKEN KEY',
access_token_secret: 'YOUR_ACCESS_TOKEN_KEY'

1)

twit.stream('statuses/filter', { track: ['love', 'hate']l }, function(stream) ({
stream.on('data', function (data) {
io.sockets.volatile.emit ('tweet', {
user: data.user.screen name,
text: data.text
g
)i
)i

app.get ('/', function (reqg, res) ({
res.sendfile(_ dirname + '/index.html');

)i

Within the Socket.lO-twitter-example, create a file called index.html and add the following
content:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Socket.IO Twitter Example</titles>
</head>
<body>
<hl>Socket.IO Twitter Example</hl>
<ul class="tweets">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.
= min.js"></script>

Pushing Data to the Browser

<script src="/socket.io/socket.io.js"></script>
<scripts>
var socket = io.connect() ;
jQuery (function ($) {
var tweetList = $('ul.tweets');
socket.on('tweet', function (data) {
tweetList
.prepend ('' + data.user + ': ' + data.text + '</1li>');
P
)
</script>
</body>
</html>

5. Install the dependencies by running the following from a terminal:

npm install

6. Start the server by running the following from a terminal:
node app.js
7. Open a browser window at http://127.0.0.1:3000.
8. You should see a stream of tweets in your browser (see Figure 14.6).

9. Kill the server by pressing Ctrl+C in the terminal.

800

") Socket.io Twitter Example

€ C | 127.0.0.1:3000 =1

Socket.io Twitter Example

PowPowPowx3: RT @EpicTweets_: My best friend and I have so much love for each other that people think we're lesbians.
83KaramelKisses: I love @iamviviangreen 's Beautiful song... 1)

ScapellatoGabi: we found love no @acesso_mty :)

ShaMoniquee: I may complain, I may mope around, I may hate the position I'm in at times to the point I seem ungrateful but I'm only human!
KILLisaac: RT @Mayor_WestS: Idgaf i hate school more than anyone.

jelell: RT @Brooklynn1083: @jclell I Love you!

GrindExtrodnare: lol.. thanks for the love again...and I'm hustlin and...growin up again.. flowin

Lee_LmGL: I hate it when I have to stop doing my homework and do home hardwares..

tashaaFierce_: Ilove her |

LL_DeeKay21: I just called to say I love you #Wrong

kayyraw: RT @aLohaLanix3: i love @kayyraw

GIiLETSZKIE: Gudnyt! Loveyou! “@ohwangee: Out nako @ GiLETSZKIE @jillaneteodosio. THANK YOU.ILOVE YOU BOTH SO MUCH!! :*#
<3 see you tomorrow "

kymariel3: @JillieCee thanks love! Hope all is well!

JackBurton4365: I hate tax time this is whn the broke people act like they have money

ZanzanMar: #give your love

JenniferScott_7: Most pointless lab ever. Love how @1laurakilgour's kept malfunctioning though ;). #onlyyou

TJayyAshley: 1 love the look on peoples face when they first see my Vibrams... the comments will never get old. My patients call me "lizard feet".
taylerpittman12: I hate high school. #noseypeople #getoutthewayyy

NOt_NiceBusybNB: Waking up to the person u love next to u...is like its ur bday every day. :wink: Haha... ;P

BeliebInBieb57: Hate school eughh.

priincessmoe: Love it!! “@ SittinPretty923: @priincessmoe u like ur job?"

lizadonnelly: @Wzzy yay!! Photo? Love your house:)

AHeep05: @Fumer23 you hate me and you think I'm ugly #ontoyourgame

basilroumie: @ farahtalaat come on farah we all love girl on girl #lesbionest

Savanap: RT @girlproverb: Sending a girl a text that says "I love you Beautiful" can change her attitude for the whole day

mizzfantaz: ya know? I'm def in love with my pipe. It's sexy in a unique way.

BeautyOfJonas: i love how i just answered 13 questions with the same gif. LOOOL.

FIGURE 14.6
Streaming tweets to the browser

251

http://127.0.0.1:3000

252 A Streaming Twitter Client

Creating a Real-Time Lovehateometer

Although the application can now stream tweets to a browser window, it is still not very useful.
It is still impossible to answer the question of whether there is more love or hate in the world.

To answer the question, you need a way to visualize the data. Assuming that the tweets received
from the API are indicative of human sentiment, you set up several counters on the server

that increment when the words “love” and “hate” are mentioned in the streaming data that is
received. Furthermore, by maintaining another counter for the total number of tweets with either
love or hate in them, you can calculate whether love or hate is mentioned more often. With this
approach, it is possible to say—in unscientific terms—that there is x% of love and y% of hate in
the world.

To be able to show data in the browser, you need counters on the server to hold:
» Total number of tweets containing “love” or “hate”
» Total number of tweets containing “love”

» Total number of tweets containing “hate”

This can be achieved by initializing variables and setting these counters to zero on the Node.js
server:

var app = require('express') .createServer(),
twitter = require('ntwitter'),
io = require('socket.io') .listen (app),
love = 0,
hate = 0,
total = 0;

Whenever new data is received from the API, the love counter will be incremented if the word
“love” is found and so on. JavaScript’s indexOf () string function can be used to look for words
within a tweet and provides a simple way to analyze the content of tweets:

twit.stream('statuses/filter', { track: ['love', 'hate'] }, function(stream) ({
stream.on('data', function (data) {

var text = data.text.toLowerCase () ;

if (text.indexOf ('love') !== -1) {
love++
total++

}

if (text.indexOf ('hate') !== -1) {
hate++

total++

Creating a Real-Time Lovehateometer 253

Because some tweets may contain both “love” and “hate,” the total is incremented each time a
word is found. This means that the total counter represents the total number of times “love” or
“hate” was mentioned in a tweet rather than the total number of tweets.

Now that the application is maintaining a count of the occurrences of words, this data can be
added to the tweet emitter and pushed to connected clients in real-time. Some simple calculation
is also used to send the values as a percentage of the total number of tweets:

io.sockets.volatile.emit ('tweet',
user: data.user.screen_name,
text: data.text,
love: (love/total)*100,
hate: (hate/total)*100

1

On the client side, by using an unordered list and some client-side JavaScript, the browser can
receive the data and show it to users. Before any data is received from the server, the values are
set to zero:

<ul class="percentage">
<li class="love">0</1i>
<1i class="hate">0</1i>

Finally, a client-side listener can be added to receive the tweet event and replace the percentage
values with the ones received from the server. By starting the server and opening the browser,

you can now answer the question!
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></
= script>
<script src="/socket.io/socket.io.js"></scripts>
<script>
var socket = io.connect();
jQuery (function ($) {
var tweetList = $('ul.tweets'),
loveCounter = $('li.love'),
hateCounter = $('li.hate');
d

socket.on('tweet', function (data)
tweetList
.prepend('' + data.user + ': ' + data.text + '');
loveCounter

.text (data.love + '%');
hateCounter
.text (data.hate + '%');
b
b

</scripts>

254

A Streaming Twitter Client

V¥ TRY IT YOURSELF

If you have downloaded the code examples for this book, this code is hourl4/exampleO4.

To analyze data from Twitter’s streaming API, follow these steps:

1.

2. Within the percentages folder, create a new file called package.json and add the following

Create a new folder called percentages.

content to declare ntwitter, Express, and Socket.lO as dependencies:

{

"name": "socket.io-twitter-example",

"version":"0.0.1",

"private":true,

"dependencies" : {
"express":"2.5.4",
"ntwitter":"0.2.10",
"socket.io":"0.8.7"

Within the percentages folder, create a new file called app.js with the following content.
Remember to replace the keys and secrets with your own:

var app = require ('express').createServer(),
twitter = require('ntwitter'),
io = require('socket.io') .listen (app),

love = 0,
hate = 0,
total = 0;

app.listen(3000) ;

var twit = new twitter ({
consumer key: 'YOUR_CONSUMER_KEY',
consumer_ secret: 'YOUR CONSUMER_ SECRET',
access_token key: 'YOUR ACCESS_TOKEN KEY',
access_token_ secret: 'YOUR_ACCESS_TOKEN_KEY'

)i

twit.stream('statuses/filter', { track: ['love',
stream.on('data', function (data) {
var text = data.text.toLowerCase() ;
if (text.indexOf ('love') !== -1) {
love++

total++

if (text.indexOf ('hate') !== -1) {

'hate']

}, function(stream)

{

Creating a Real-Time Lovehateometer

hate++
total++

}

io.sockets.volatile.emit ('tweet', {
user: data.user.screen name,
text: data.text,
love: (love/total)*100,
hate: (hate/total)*100

app.get ('/', function (req, res) ({
res.sendfile(_ dirname + '/index.html');

1)

Within the percentages folder, create a file called index.html and add the following
content:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Socket.IO Twitter Example</title>
</head>
<body>
<hl>Socket.IO Twitter Example</hl>
<ul class="percentage">
<1li class="love">0</1li>
<li class="hate">0</1li>

<ul class="tweets">

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.

= min.js"></script>
<script src="/socket.io/socket.io.js"></script>
<scripts>
var socket = io.connect () ;
jQuery (function ($) {
var tweetList = $('ul.tweets'),
loveCounter = $('li.love'),
hateCounter = $('li.hate');
socket.on('tweet', function (data) {
tweetList
.prepend('' + data.user + ': ' + data.text + '</1li>');
loveCounter
.text (data.love + '%');

7

hateCounter

255

256 A Streaming Twitter Client

.text (data.hate + '%"');
) s
1)
</script>
</body>
</html>

5. Install the dependencies by running the following from a terminal:

npm install

6. Start the server by running the following from a terminal:

node app.js

7. Open a browser window at http://127.0.0.1:3000.

8. You should see a stream of tweets in your browser, along with the percentages being
dynamically updated (see Figure 14.7).

9. Kill the server by pressing Ctrl+C in the terminal.

: ¥
0 00 /7 socketio Twitter Example

€« G © 127.0.0.1:3000 RS

Socket.io Twitter Example

« 77.72511848341233%
22.274881516587676%

.

Me_Chynese: @_SkoopDat cheer up barbara! mwah, love you

JasmineReeves39: We LOVE Jordan Janse: ‘orever like if you do!! <3 -Jasmine and Kirsten

BigManOn_Campus: RT @LiL._MaMa_NiNa: @BigManOn_Campus Good Mornin love.. Ive missed you <3

AyaTinandra: Wanjis, jero tah kanu hate aing :) RT @ ERWINMADMORON: Sepi mang...doger monyet siapkeun RT @ AyaTinandra: Lieur ...
htp:/t.co/EOBdYoLa

haaileyy_: the thing i love about us, is when we say "goodbye" it's only til tomorrow

alondra_xo: @ Jroctme love you 2

Tour_TheWorld: by my side i swallow my pride, your love is so sweet, it knocks me right off my feet. can't explain why your love it makes me weak
veelud: love causing trouble

Tsunamii_ BXTCH: OMG Camp Lazlo is on I use to love this show!!

iseberg2: LOVE grocery shopping on a Monday moming! #storewasempty

Jjenicanicolexx: just got home from the red roof with friends @ thanks guyzzz ¥ anddd.. happy bday again @PatsyyHere love you!! xx
DA_BREADWINNER: I don't love you I love the memories

Jordan_LeVann: S/n my lil Sigh will be 1 tomorrow #Hype haha love my babbe

LuluMajor_: RT @emmaaa_louise: Hate when teachers leave you work to do that is 10000 times harder than anything you usually do in lessons
AbbyRoyer: THATE WHEN I SMUDGE MY NAIL POLISH! DAMMIT.

twertz21: Sitting in the Fuckin library i hate #historyclass

_helloMsDay: @Trell_Benji I don't hate you lol I do happen to think your no good tho lol

BOH_Gucci: I Hate Bumm Broke Bitches

JaylansWife: I Hate When People Text Me And Call Me Baby Knowing Good And Well I Dont Llke You #LameAndChildish !

edhisGaradisu: Wkwkwkw don't cry :p"@ynats_ziG: Hahahaha... U are beautyful 2x RT @edhisGaradisu: Lgi dgr lagux cherry belle Love is you make
meto ...

CalmYourTatas: I don't know why bitches that are like twelve are in love 0.0

AdoreUAri: Perfect Payne, Tasty Tomlinson, Sexy Styles aaand Muscyl Malik :D :D Vas Happenin here!?! :D love these TTs%

AREMcGhee0614: RT @Marlyn_Monroe: “Haters only hate the things they can't have and people they can't be.”

virginmobilecan: Hey you! Let us know what songs you want to hear in our phone system. We love Katy Perry, but it's time for some new tunes. je
Mary_BoatzNHoez: Hey love! RT @NiHao_Zanotti @Mary_BoatzZNHoez hi boo

maddykeels: I love big black cock in my mouth

alwiinaa: RT @Gi ing: RT if vou love food more than ocople. Te amo. ¥

DRI

DR R R A)

o o000 o0

FIGURE 14.7
Dynamically updating percentage values

http://127.0.0.1:3000

Creating a Real-Time Lovehateometer 257

Adding a Real-Time Graph

The application is now able to answer the question. Hurray! In terms of visualization, though,
it is still just data. It would be great if the application could generate a small bar graph that
moved dynamically based on the data received. The server is already sending this data to the
browser, so this can be implemented entirely using client-side JavaScript and some CSS. The
application has an unordered list containing the percentages, and this is perfect to create a sim-
ple bar graph. The unordered list will be amended slightly so that it is easier to style. The only
addition here is to wrap the number in a span tag:

<ul class="percentage">

<li class="love">

0
</1i>
<li class="hate">
0
</1li>
</uls>

Some CSS can then be added to the head of the HTML document that makes the unordered list
look like a bar graph. The list items represent the bars with colors of pink to represent love and
black to represent hate:

<style>
ul.percentage { width: 100% }
ul.percentage li { display: block; width: 0 }
ul.percentage li span { float: right; display: block}
ul .percentage li.love { background: #£f0066; color: #fff}
ul.percentage li.hate { background: #000; color: #fff}
</style>

Finally, some client-side JavaScript allows the bars (the list items) to be resized dynamically

based on the percentage values received from the server:
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></
= scripts>
<script src="/socket.io/socket.io.js"></script>
<script>
var socket = io.connect();
jQuery (function ($) {
var tweetList = $('ul.tweets'),
loveCounter = $('li.love'),
hateCounter = $('li.hate'),
loveCounterPercentage = $('li.love span'),
hateCounterPercentage = $('li.hate span');
socket.on('tweet', function (data) {
loveCounter

258 A Streaming Twitter Client

.css ("width", data.love + '%');
loveCounterPercentage

.text (Math.round (data.love * 10) / 10 + '$');
hateCounter

.css ("width", data.hate + '$');
hateCounterPercentage

.text (Math.round (data.hate * 10) / 10 + '$');
tweetList

.prepend('<1li>' + data.user + ': ' + data.text + '');

b
P

</scripts>

Whenever a new tweet event is received from Socket.IO, the bar graph is updated by dynami-
cally setting the CSS width of the list items with the percentage values received from the server.
This has the effect of adjusting the graph each time a new tweet event is received. You have cre-
ated a real-time graph!

V¥ TRY IT YOURSELF

If you have downloaded the code examples for this book, this code is hourl4/example05.
Follow these steps to visualize real-time data:
1. Create a new folder called realtime_graph.

2. Within the realtime_graph folder, create a new file called package.json and add the follow-
ing content to declare ntwitter, Express, and Socket.lO as dependencies:

{

"name":"socket.lo-twitter-example",

"version":"0.0.1",

"private":true,

"dependencies" : {
"express":"2.5.4",
"ntwitter":"0.2.10",
"socket.io":"0.8.7"

3. Within the realtime_graph folder, create a new file called app.js with the following content.
Remember to replace the keys and secrets with your own:

var app = require('express').createServer(),
twitter = require('ntwitter'),
io = require('socket.io') .listen (app),
love = 0,
hate = 0,

total =

0;

app.listen(3000) ;

var twit = new twitter ({

consumer_key:
consumer secret:
access_token key:

access_token secret:

)i

twit.stream(

stream.on (
var text

love++
total+
}
if (text
hate++
total+

io.sockets.volatile.emit ('tweet',

user:
text:
love:
hate:
) g
B 5
)i
app.get ('/"',

res.sendfile(_ dirname + '/index.html');

1)

Within the realtime_graph folder, create a file called index.html and add the following

content:

'statuses/filter', { track:

'data', function (data)

= data.text.toLowerCase () ;
if (text.indexOf ('love') !== -1)

o
.indexOf ('hate') !== -1)

au

data.user.screen name,
data.text,
(love/total) *100,
(hate/total) *100

function (reqg, res) ({

<!doctype htmls>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Socket.IO Twitter Example</titles>

<style>

ul.percentage { width: 100% }

'YOUR_CONSUMER_KEY',

'YOUR_CONSUMER SECRET',
'YOUR_ACCESS_TOKEN KEY',

'YOUR_ACCESS_TOKEN_ KEY'

{

{

Creating a Real-Time Lovehateometer

}, function (stream)

259

{

260 A Streaming Twitter Client

ul.percentage 1li { display: block; width: 0 }
ul.percentage 1li span { float: right; display: block}
ul.percentage li.love { background: #f£f0066; color: #fff}
ul.percentage li.hate { background: #000; color: #fff}
</style>
</head>
<body>
<hl>Socket.IO Twitter Example</hl>
<ul class="percentage">
<li class="love">
Love 0
</1li>
<1li class="hate">
Hate 0
</1li>

<ul class="tweets">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.
= min.js"></script>
<script src="/socket.io/socket.io.js"></script>
<scripts>
var socket = io.connect () ;
jQuery (function (%) {
var tweetList = $('ul.tweets'),
loveCounter = $('li.love'),
hateCounter = $('li.hate'),
loveCounterPercentage = $('li.love span'),
hateCounterPercentage = $('li.hate span');
socket.on('tweet', function (data) {
loveCounter
.css("width", data.love + '%');
loveCounterPercentage
.text (Math.round (data.love * 10) / 10 + '$');
hateCounter
.css ("width", data.hate + '%');
hateCounterPercentage
.text (Math.round (data.hate * 10) / 10 + '$');
tweetList
.prepend ('' + data.user + ': ' + data.text + '</1li>');
1)
I s
</scripts>
</body>
</html>

Creating a Real-Time Lovehateometer 261

5. Install the dependencies by running the following from a terminal: n

npm install

6. Start the server by running the following from a terminal:

node app.js

7. Open a browser window at http://127.0.0.1:3000.

8. You should see a stream of tweets in your browser, along with a real-time graph resizing
based on data received (see Figure 14.8).

9. Kill the server by pressing Ctrl+C in the terminal.

(%) Socket.fo Twitter Example

Socket.io Twitter Example

[Love
[Hate 29.89

ericalewis62: @ChelsJadel18 still love youuuuuuu

TheeKiddFoskey: Hey shey RT @TheySaySheyy: No one said hi to me, I hate you guys.

DiaryOf_Sha: Tlove my family .

PrettyxPaul: Her lollipops ain't suppose to match her eyes -___- Lol, I love my one & only niece! http//t.co/VWEODhQS

tony6r: @_M_Jo lol. All T can think is id love to snowboard down that

momoiidools: RT @TheLoveStories: Love your haters, because they are your biggest fans. They keep on wasting time just to watch your every wrong
move.

ZUMZUMPARKER: @thewantedmusic I'm italian and i bought TWTOTPMAG !love you! Xxxxxxxxx

SpazP: @WickedLPixie What shirt? Also, I love the new Star ratings! Just added the 4 to my Sat post - they're awesome!

_laurenhead: @_iPav love u bbz

JPigg_YaDigg: @ AssasinFromAbov love ya

Lickem_Stickem_: T love it wen she call me daddy it jus drive me crazii

Ssnoop_DGAF: Hate when niggaz try to come at my neck cause once I say sumthin feelings get caught-__-

s_cheesecake: @Rez_TRizzy I love n miss u

MeLauraCorrea: RT @GirlConfession_: They say "Find a heart that will love you at your worst" - I did, problem is, I still want the one who broke it.
#GC

‘Wamby21: O how I hate chemistry. That exam was brutal.

HopOn_This: I'm really not mean, so I hate when people say Iam :/

milenasegantine: sometimes it lasts in love, but sometimes it hurts instead..

paponadacabeca: hoje € dia de ir na cidade catar a fantasia pro I love Cafusu!! c/c @piuolegario @gaabizz

alexisnicole_ox: RT @GirlSpeaking: RT if you love food more than people. Te amo. ¥

AStewMane: RT @NickBamnett: Take into account that great love and great achicvements involve great risk....

YesItsMeScrapp: Damn the 1st is teo days away I hate bills..

court__cobain: #love&pain it comes and goes but I wont change.

AdultSexVideo: This is my Fav! http:/t.co/gOUYLip2 You gotta love ® @jessejane One of my favs!!!

chynna_rosexx: "@EpicTweets_: My best friend and I have so much love for each other that people think we're lesbians." Lmao

amandagaines: @ DritaDavanzo you are Carla are my favoriteece ! Oh & Ilove big ang !!! Ahah so funny :D <3

TheOnlyHolly_: How long am I suppose to carry these babies for? Twins are a pain in the ass... But I love them and will guard them with my life. *Nods*

DA RS

DI R R Y

e s 0000 00 s

FIGURE 14.8
A real-time graph

The application that you created provides a visual representation of whether there is more love
than hate in the world based on real-time data from Twitter. Granted, this is totally unscientific,
but it showcases the capabilities of Node.js and Socket.IO to receive large amounts of data and
push it out to the browser. With a little more CSS work, the application can be styled to look
better (see Figure 14.9).

http://127.0.0.1:3000

262 HOUR 14: A Streaming Twitter Client

T — o

© O O /) paddy is there more love or

< C |® 127.0.0.1:3000 RS

Daddy is there more love or hate in the world?

Love 72.7%
Hate 27.3%
Some Lovers Some Haters
% }
o _bucketoflove: Lintang siad,our original hair A xKirstyxChantel: I hate junk mail
MPEN color's white Hate it or love it that's the ‘l” #stopsendingmeit #fuckoff

original.And grey hair?Yeap,that's our original
hair.
3 ashleyrey12: RT @CaseyDaltonFord: | hate
[people that are so negative all the time.

nyrizzy: Shout outto@_MissV. For being very
= understanding and a frue friend! Nothing but love

for her!!! H CharliTWx: @NarryUK hate em

Fentymeme_: | love The OMG Girlz *shrugs*
DLuxNj: @auniquebeauty1 don't u just hate
== that?! Such atum offif in the 1st convo it

immediately tuns 2 sex, &ex, or media gossip?!
uptown_boogie: RT @UptownRally: Tell them i #noeducation
said happy anniversary RT @uptown_boogie:
today... my parents have been married for 29

years... thats love i» Kent_Wreckless: @lucgoose_ haters gon hate ;)

FIGURE 14.9
The finished application with additional styling

If you want to run this example yourself, this version is available in the code for this book as
hour14/example06.

Summary

In this hour, you answered a fundamental question about human nature using Node.js, Twitter,
and Socket.IO. Not bad for an hour’s work! At the time of writing, there is more love in the
world, so if you take nothing else from this hour, rejoice! You learned how a Node.js server

can receive large amounts of data from a third-party service and push it out to the browser in
real-time using Socket.IO. You saw how to manipulate the data to extract meaning from it and
perform simple calculations on the data to extract percentage values. Finally, you added some
client-side JavaScript to receive the data and create a real-time graph. This hour showcased
many of the strengths of Node.js, including the ease that data can be sent between the server
and browser, the ability to process large amounts of data, and the strong support for networking.

Workshop 263

Q&A

Q. Are there other streaming APIs that | can use to create applications like this?

A. Yes. An increasing number of streaming APls is becoming available to developers. At the
time of writing, some APIs of interest include Campfire, Salesforce, Datasift, and Apigee,
with many more expected to be created.

Q. How accurate is this data?

A. Not very. This data is based on the “statuses/filter” method from Twitter's streaming API.
More information about what goes into this feed is available at https://dev.twitter.com/
docs/streaming-api/methods. In short, do not base any anthropological studies on it.

Q. Can | save this data somewhere?

A. The application created in this hour does not persist data anywhere, so if the server is
stopped, the counters and percentages are reset. Clearly, the longer that data can be col-
lected, the more accurate the results. The application could be extended to store the coun-
ters with a data store that can handle high volumes of writes, like Redis. This is outside
the scope of this hour, though!

Workshop

This workshop contains quiz questions and exercises to help cement your learning in this hour.

Quiz
1. What is different about a streaming API?
2. What is OAuth?

3. Why is Node.js a good fit for working with streaming APIs?

Quiz Answers

1. A streaming APl keeps the connection between client and server open and is able to push
new data to the client when it becomes available. This enables applications to become real-
time as data is pushed to the client as soon as it is available.

2. OAuth is a way for applications to grant access to data without exposing user credentials.
Authorization is granted on a per-application basis and can be revoked at any time. If you
have connected your Twitter account with any other services, you may be familiar with allow-
ing other services to access your data. OAuth is used to achieve this.

3. As Node.js is designed around evented I/0, it can respond very well to new data being
received from a streaming API. It can handle large amounts of data without needing huge
amounts of memory. Because Node.js is JavaScript, it is easy to communicate with clients
like browsers that understand JSON. Node.js is able to receive, process, and transmit large
numbers of data events without needing many machines to process it on.

https://dev.twitter.com/docs/streaming-api/methods
https://dev.twitter.com/docs/streaming-api/methods

264 A Streaming Twitter Client

Exercises

1. Amend the example available in this book’s code examples, as hourl4/example02, to
display the user’s real name and URL. Consult the data structure earlier in this hour
to understand which attributes you need for this.

2. Amend the server to receive data from Twitter’'s streaming API based on some keywords
that you are interested in. If there are more than two keywords, update the application to
show more than two bars on the graph.

3. Think about how you could create an application to provide visualizations of different
streaming Twitter datasets. Remember that you can limit your query by location, certain
users, and keywords. Some examples to get you started:

» Do people talk more about beer or wine in London?
» How often do famous people use the words “me” or “you”?

» Are the Beatles more popular than the Rolling Stones?

This page intentionally left blank

A

access control with Middleware,
406-414

access, limiting by IP address,
407-409

forcing users onto single
domain, 410-414

adding
Backbone.js views, 425-429

executables to modules,
387-389

HTTP headers, 60-62

Ajax (Asynchronous JavaScript
and XML), 190

Allamaraju, Subbu, 37
analyzing Twitter data, 252-262
APls, 265-266
streaming APls, 237-238
appending to buffers, 340-342
arguments, passing to scripts,
298-300
ASCII (American Standard Code
for Information Exchange),
334-335

Index

Ashkenas, Jeremy, 361
assert module, 152-155
asynchronous code, 50-53
testing, 157
authentication, OAuth, 241

Backbone.js, 417-418
operability with Node.js,
418422

records, creating, 428-430
views, 425-429

BDD (Behavior Driven
Development), 159-167

bi-directional data, 202-208

binary data, 333-334
converting to text, 334-335

bits, 106, 334

Blagovest, Dachev, 20

blocking code, 50-53

Brandzeg, Eirik, 21

436

broadcasting data to cients
(Socket.l0), 197-203

Buffer module, 333-337
objects, 335-334

buffers, 338-339
appending to, 340-342
copying, 341
strings, modifying, 343
writing to, 340

bugs, 135

C

callbacks, 41-49

in chat server application,
221-225

characters, encoding, 335-334
chat server application
callbacks, 221-225
messaging, 229-231
nicknames, adding, 214-231
child processes, 305-307

communicating with, 308-310

killing, 308-309
classes, CoffeeScript, 371-376
clients

HTTP, 68
client-side JavaScript, 8
Cloud Foundry, 175-179

JSON API, creating, 275-285
Cluster module, 311-312
code execution, 34

callbacks, 41-45

synchronous code, 50-53

broadcasting data to cients (Socket.l0)

CoffeeScript, 361-363
classes, 371-376
comparisons, 368
conditions, 368
debugging, 376-377
features of, 366-376
Heredocs, 371-372
inheritance, 371-376
installing, 362-364
loops, 368-370
numbers, cubing, 366
objects, 371
reactions to, 377
strings, 370

Comet, 190

CommonlS, 384

communicating with child
processes, 308-310

companies using Node.js, 8
comparisons (CoffeeScript), 368

compiling CoffeeScript to
JavaScript, 365-364

concatenating data from streams,

350

concurrency, 37
conditions

CoffeeScript, 368

Jade, 84-86
Connect, Middleware, 400-405
connecting

to MongDB, 113-114

Socket.lO client and server,
191-194

consuming JSON data, 270-274

Continuous Integration servers,
Travis Cl, 392-395

converting
binary data to text, 334-335

JavaScript objects to JSON,
268-271

copying buffers, 341
create view (MongoDB), 118-121
creating
Backbone.js records, 428-430
child processes, 305-307
Express sites, 74-76
HTML clients, 68
JSON API, 275-285

JSON from JavaScript objects,
268-271

lovehateometer, 252-262
modules, 381
scripts, 297
Crockford, Douglas, 266
cubing numbers
in CoffeeScript, 366
in JavaScript, 367
Cucumber, 29
cURL, 62-65

custom headers, adding with
Middleware, 404

Dahl, Ryan, 7
databases, 107-109
MongoDB, 109-131
connecting to, 113-114
create view, 118121
documents, defining,
edit view, 120-125

index view, 117-119
installing, 110-112
Twitter Bootstrap, 116-117
NoSQL, 109
relational databases, 107-109
debugging, 135, 173-174
in CoffeeScript, 376-377
Node Inspector, 144-147
Node.js debugger, 141-143
See also testing
STDIO module, 136-140

declaring classes in CoffeeScript,
373

defining
mixins, 87-89
MongoDB documents,
page structure in Jade, 79-82

deleting tasks (MongoDB),
126-127

dependencies, specifying, 23-24
deployment

Cloud Foundry, 175-179

Heroku, 175

preparing applications for,
173-174

hosting in the cloud, 169-171

Nodester, 180-183
developing modules, 385-387

DHTML (Dynamic HyperText
Markup Language), 190

discovering process id, 291-293

documentation for modules,
22-23

edit view (MongoDB), 120-125
emitting events, 321-320
encoding, 335-334

buffers, 338-339

environment variables, reading,
106-108

event loops, 53-54
event-driven programming, 34
events

emitting, 321-320

firing, 318-320

HTTP, 320-322

listeners, 325-327

pingpong, playing, 324-325
Events module, 317
examples

of Middleware, 400

of Socket.l0, 191-194

executables, adding to modules,
387-389

exiting Process module, 293
Express, 73

GET requests, specifying,
9293

installing, 74

Jade, 77-89
conditions, 84-86
includes, 87-88
inline JavaScript, 84
loops, 83-85
mixins, 87-89

folders 437

page structure, defining,
79-82

variables, 82
JSON data, serving, 277-278
local variables, 99-101
parameters, 94-96

POST requests, specifying,
94-95

reasons for using, 73-74
routing, 91

organization, 96-97
Sinatra, 74
sites, creating, 74-76
and Socket.l0, 213-214
structure, 75-77
view rendering, 97-98

extracting meaning from Twitter
data, 243-247

F

features of CoffeeScript, 366-376

files
reading data from, 105-106
reading with streams, 349
writing data to, 104

finding modules, 19-21

Firefox, Live HTTP Headers
add-on, 62-64

firing events, 318-320
flash messages, 126-130
folders

Express, 75-77

in modules, 384-385

How can we make this index more useful? Email us at indexes@samspublishing.com

438 forcing users onto single domain

forcing users onto single domain,

410-414
fork() method, 308
functions
callbacks, 41-49
event loops, 53-54

-g flag, 74
GET requests, 91
specifying, 92-93
GitHub, 391-392
global module installation, 22
Gmail, 190
Google Chrome, 7

HTTP Headers Extension,
62-63

handling unpredictability, 37
headers (HTTP), adding, 60-62
Hello World program, 10
Heredocs, 371-372

Heroku

deploying applications to,
174-175

preparing applications for,
173174

hosting in the cloud, 169-171
HTML clients, creating, 68

HTTP (HyperText Transfer
Protocol), 59

clients, 68

events, 320-322

GET requests, 92-93
headers, adding, 60-62
POST requests, 94-95

requests, responding to,
66-69

response headers, 62-65
routing, 91
organization, 96-97
parameters, 94-96
verbs, 91
HTTP Headers Extension, 62-63

includes, Jade, 87-88
indentation, 78-79
index view (MongoDB), 117-119
inheritance, 371-376
inline JavaScript, 84
input, 29-32
input data, validating, 130-131
installing

CoffeeScript, 362-364

Express, 74

modules, 17

global installation, 22

local installation, 21-22

MongoDB, 110-112
Node.js, 9-10

1/0 (input/output), 27-28
input, 29-32
unpredictability of, 33-34

J-K

Jade, 77-89
conditions, 84-86
includes, 87-88
inline JavaScript, 84
loops, 83-85
mixins, 87-89
outputting data, 82-89

page structure, defining,
79-82

variables, 82
JavaScript

numbers, cubing, 367

objects, converting to JSON,

268271

jsconf.eu, 7

JSON (JavaScript Object Notation),

266-268

creating from JavaScript
objects, 268-271

data
consuming, 270-274
sending, 268

L

layout files (Express), 97-98
lightweight frameworks, 73

limiting access by IP address,
407-409

listening for events, 321-320
Live HTTP Headers add-on, 62-64
local module installation, 21-22
local variables (Express), 99-101
locating modules, 19-21
loops

CoffeeScript, 368-370

in Jade, 83-85

lovehateometer, creating,
252-262

managing events dynamically,
325-327

McConnell, Charlie, 241
messaging
in chat server application,
229-231

in Socket.l0, 202-208
Middleware, 399-400
access control, 406-414

forcing users onto single
domain, 410-414

limiting access by IP
address, 407-409

custom headers, adding, 404

mixins, Jade, 87-89
Mocha, 163-166
modifying strings in buffers, 343
modules, 15-16, 381-383
assert module, 152-155
Buffer module, 333-337
Cluster module, 311-312
creating, 381
developing, 385-387
documentation, 22-23
locating, 22-23
Events module, 317
executables, adding, 387-389
folder structure, 384-385
HTTP, 59-69
installing, 17
global installation, 22
local installation, 21-22
locating, 19-21
Process module, 291-293
exiting, 293
publicizing, 397
requiring, 17-18
Socket.l0, 189-191

bi-directional data,
202-208

data, broadcasting to
clients, 197-203

data, sending from server
to clients, 192-198

example of, 191-194
and Express, 213-214

Node.js debugger 439

STDIO, 136-140
Stream module, 345-346
MP3s, streaming, 354-355

testing, 385-387

third-party, 18

URL, 67

websites, 381-383
MongoDB, 109-131

connecting to, 113-114

create view, 118-121

edit view, 120-125

flash messages, 126-130

index view, 117-119

input data, validating,
130-131

installing, 110-112

tasks, deleting, 126-127

Twitter Bootstrap, 116-117
MP3s, streaming, 354-355

network programming
frameworks, 54

networked 1/0, unpredictability
of, 33-34
nibbles, 334

nicknames, adding (chat server
application), 214-231

Node Inspector, 144-147
Node.js, installing, 9-10
Node.js debugger, 141-143

How can we make this index more useful? Email us at indexes@samspublishing.com

440 Nodester

Nodester, 180-183
Nodeunit, 156-157
non-blocking code, 50-53
NoSQL databases, 109

npm (Node Package Manager),
15-16

Express, installing, 74
installing, 16
publishing to, 395-396

numbers, cubing, 367

o

OAuth, 241

object-oriented programming,
390-391

objects, CoffeeScript, 371
official module sources, 19-20
Olson, Rick, 241

organization of routes, 96-97

output, 28

P

PaaS (Platform as a Service),
170, 184

Cloud Foundry, 175-179

Heroku, 173-175

Nodester, 180-183
package managers, npm, 15-16
package.json, 23-24, 383-384
page structure

Jade, 79-82

parameters (Express), 94-96
parsing
JSON data, 270-274
Twitter data, 243-247

passing arguments to scripts,
298-300

persistent data, 103
files

reading data from,
105-106

writing data to, 104
piping streams, 353-354
playing pingpong with events,

324-325

popular Node.js modules,
381-383

POST requests, 91
specifying, 94-95

pre-compilers, 364

preparing applications for Heroku,

173174
printing stack traces, 140
process id, discovering, 291-293
Process module, 291-293
exiting, 293
processes, 291-293
child processes, 305-307

communicating with,
308-310

killing, 308-309
signals, 293-295
programming
event listeners, 325-327
event-driven, 34
object-oriented, 390-391
prototype-based, 390-391

prototype-based programming,
390-391

publicizing modules, 397
publishing to npm, 395-396
pushing
Twitter data to browser,
246251

QR

ql.io, 37
reactions to CoffeeScript, 377
readable streams, 347-351

piping data from writable
streams, 353-354

reading
data from files, 105-106

environment variables,
106-108

files, 349

records (Backbone.js), creating,
428-430

redirects, 62
relational databases, 107-109

requests (HTTP), responding to,
66-69

requiring modules, 17-18

responding to HTTP requests,
66-69

response headers (HTTP), 62-65
routes, 77
routing, 66, 91
in Express, 91
organization, 96-97
parameters, 94-96

S

scripts
creating, 297

passing arguments to,
298-300

sending
data with JSON, 268

signals to processess,
295-297

server-side JavaScript, 8

sharing code with GitHub,
391-392

shebangs, 297
signals, 293-295

sending to processes,
295-297

signing up for Twitter, 238-241
Sinatra, 74
sites (Express), creating, 74-76
Socket.l0, 191

bi-directional data, 202-208

chat server application,
213-214

callbacks, 221-225

nicknames, adding,
214-231

data

broadcasting to clients,
197-203

sending from server to
clients, 192-198

example of, 191-194
and Express, 213-214

specifying
dependencies, 23-24
GET requests, 92-93
POST requests, 94-95
stack traces, 140
STDIO module, 136-140
stepping through code, 141-143
Stream module, 345-346
MP3s, streaming, 354-355
streaming APls, 237-238
Twitter, 241-244

data, extracting meaning
from, 243-247

data, pushing to browser,
246-251

lovehateometer, creating,
252-262

streams

concatenating data from, 350

piping, 353-354
readable, 347-351
writable, 351
strings
CoffeeScript, 370
modifying in buffers, 343
structure
of Express, 75-77
of module folders, 384-385

subclassing (CoffeeScript),
373-375

synchronous code, 50-53

Twitter Bootstrap 441

T

tasks, MongoDB, 118-121
deleting, 126-127

TDD (Test Driven Development),
151-152

template engines, Jade, 77-89

terminating child processes,
308-309

testing, 147-148, 151-152
assert module, 152-155
BDD, 159-167
JSON API, 282-285
Mocha, 163-166
modules, 385-387

TDD (Test Driven
Development), 151-152

third-party testing tools,
155-157

Vows, 159-162

text, converting binary data to,
334-335

third-party modules, 18
third-party testing tools, 155-157
Travis Cl, 392-395

Twitter

data, extracting meaning from,
243-247

data, pushing to browser,
246-251

lovehateometer, creating,
252-262

signing up for, 238-241
streaming API, 241-244
Twitter Bootstrap, 116-117

How can we make this index more useful? Email us at indexes@samspublishing.com

442 Underscore

Underscore, 382

unofficial module sources, 20-21

unpredictability, handling, 37

unpredictability of networked 1/0,
33-34

URL module, 67

UTF-8, 106

Vv

V8, 7
validating input data, 130-131
variables, Jade, 82
verbs (HTTP), 91
verifying
Node.js installation, 9-10
npm installation, 16
view rendering, 97-98
views (Backbone.js), 425-429
views folder (Express), 77

Vows, 159-162

W-Z

Waugh, Jeff, 241

websites, popular Node.js
modules, 381-383

WebSockets, 190-191
writable streams, 351

piping data from readable
streams, 353-354

writing
data to buffers, 340
data to files, 104

	Table of Contents
	Introduction
	Who Should Read This Book?
	Why Should I Learn Node.js?
	How This Book Is Organized
	Code Examples
	Conventions Used in This Book

	HOUR 14: A Streaming Twitter Client
	Streaming APIs
	Signing Up for Twitter
	Using Twitter's API with Node.js
	Extracting Meaning from the Data
	Pushing Data to the Browser
	Creating a Real-Time Lovehateometer
	Summary
	Q&A
	Workshop
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

