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Theorem: We are considering the function:

                 For n  integer:
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one has:  kk pFp 1  for all 1k  where   1kkp  are the prime numbers and
 x  is the greatest integer less than or equal to x.

Observe that the knowledge of 1kp  only depends on knowledge of kp  and
the knowledge of the fore primes is unnecessary.

Proof:

Suppose that we have found a function )(iP with the following property:
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This function is called Smarandache prime function.(Ref.)

Consider the following product:
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Here is the sum:
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The second sum is zero since all products have the factor )( 1kpP = 0.

Therefore we have the following recurrence relation:

                        
 

 
kp

kpm

m

kpi
kk iPpp

2

1 1
1 )(1

Let’s now see we can find )(iP  with the asked property.

Consider:
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We deduce of this relation:
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where )(id  is the number of divisors of i . 



If i  is prime 2)( id   therefore:
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If i  is composite 2)( id  therefore:
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Therefore we have obtained the Smarandache Prime Function )(iP which
is:
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With this,  the theorem is already proved .
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