
A Tutorial on Quantitative Trajectory Evaluation
for Visual(-Inertial) Odometry

Zichao Zhang, Davide Scaramuzza

Abstract— In this tutorial, we provide principled methods to
quantitatively evaluate the quality of an estimated trajectory
from visual(-inertial) odometry (VO/VIO), which is the foun-
dation of benchmarking the accuracy of different algorithms.
First, we show how to determine the transformation type to use
in trajectory alignment based on the specific sensing modality
(i.e., monocular, stereo and visual-inertial). Second, we describe
commonly used error metrics (i.e., the absolute trajectory error
and the relative error) and their strengths and weaknesses.
To make the methodology presented for VO/VIO applicable to
other setups, we also generalize our formulation to any given
sensing modality. To facilitate the reproducibility of related
research, we publicly release our implementation of the methods
described in this tutorial.

OPEN SOURCE CODE

A trajectory evaluation toolbox that implements the meth-
ods in this tutorial is available at https://github.com/
uzh-rpg/rpg_trajectory_evaluation.

I. INTRODUCTION

Visual(-inertial) odometry (VO/VIO) uses cameras and
inertial measurement units (IMUs), which are complemen-
tary sensors, to estimate the state (position, orientation and
velocity) of the robot. VO/VIO is able to provide robust
state estimate for other tasks, such as control and planning,
and therefore is widely used in robotic applications. The
accuracy of a VO/VIO algorithm is quantified by evaluating
the estimated trajectory (i.e., the time history of the state)
with respect to the groundtruth, which is necessary to under-
standing and benchmarking different algorithms.

Quantitatively comparing the estimated trajectory with
the groundtruth, however, is not an easy task. There are
two major difficulties. First, the estimated trajectory and
the groundtruth are usually expressed in different reference
frames, and, therefore, cannot be compared directly. Second,
a trajectory consists of the states at many different times and,
therefore, is high-dimensional data. Thus, how to summarize
the information of the whole trajectory into concise accuracy
metrics is not trivial. To address the first problem, the
estimated trajectory requires to be properly transformed into
the same reference frame as the groundtruth, which is often
called trajectory alignment. To address the second problem,
meaningful error metrics need to be used and their properties
well understood.
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Fig. 1: The process of quantitative trajectory evaluation. First, the estimated
trajectory (blue) needs to be aligned with the groundtruth (black), Then, the
trajectory estimation error can be calculated from the aligned estimate and
the groundtruth using certain error metrics.

To tackle the above difficulties, this tutorial provides
principled methods for trajectory alignment with the focus on
VO/VIO and discusses different error metrics, as illustrated
in Fig. 1. We first detail the trajectory alignment methods
for different visual-inertial systems (monocular, stereo and
visual-inertial) and discuss the strengths and weaknesses of
commonly used error metrics. We then further formulate the
trajectory estimation and quantitative evaluation problem in
a sensor-agnostic manner, from which we can generalize the
methods presented in this tutorial to trajectory evaluation for
other sensing modalities. Note that in this tutorial, we assume
that the temporal correspondence of the estimate and the
groundtruth has already been established.

A. Related Work

Most existing quantitative trajectory evaluation approaches
were introduced together with a specific algorithm or a
dataset. Sturm et al. [1] provided a benchmark for RBG-D
simultaneous localization and mapping (SLAM) systems,
and proposed to use both the Absolute Trajectory Error
(ATE) and the Relative Pose Error (RPE). ATE is also
widely used to evaluate visual odometry/SLAM algorithms,
for example, in [2], [3], [4]. Compared with ATE, relative
error, as analyzed in Burgard et al. [5] and Kümmerle et al.
[6], is less sensitive to the specific time the estimation error
occurs. Geiger et al. [7] further extended the relative error
as a function of sub-trajectory length and velocity to provide
more informative results.

Despite the rich literature in this field, there is very little
work dedicated to the exact problem of quantitative trajectory
evaluation for VO/VIO, which leaves many open issues. It is
not clear, for example, to what extent the current approaches



are applicable: is the method for one sensing modality also
suitable for another (e.g., can the same evaluation method be
used for both VO and VIO)? More importantly, quantitatively
evaluating an estimated trajectory involves many details,
which are often described vaguely in the literature but have
a big impact on the final result. This severely hinders the
reproducibility of related research.

B. Contributions and Outline

The contributions of this tutorial are:
• We derive and describe in details the methods to eval-

uate an estimated trajectory from VO/VIO, including
trajectory alignment (based on the specific sensing
modality) and commonly used error metrics.

• We provide a general formulation for quantitative tra-
jectory evaluation, which can be used to generalize the
presented methods to other setups.

• We release our implementation of the evaluation meth-
ods to the public.

The rest of the tutorial is structured as follows. The formu-
lation of visual(-inertial) odometry as a least squares problem
is introduced in Section II. The ambiguity of visual-inertial
systems and the trajectory alignment method, which is tightly
related to the ambiguity, are detailed in Section III. Com-
monly used error metrics (absolute and relative errors) are
then described in Section IV. In Section V, the presented
trajectory evaluation methods are generalized to other setups
than VO/VIO. Finally, example VIO evaluation on real data
is demonstrated in Section VI.

II. VISUAL(-INERTIAL) ODOMETRY FORMULATION

In this section, we first define the states and the noise-
free measurement model for a visual-inertial system and then
formulate VO/VIO as a least squares problem.

A. States and Measurement Models

States: For a general visual-inertial system, the variables
of interest (called state) at ti is

xi = {pi, Ri, vi, bai , bgi }, (1)

where pi ∈ R3 is the position of the system, Ri ∈ SO(3) the
rotation matrix, vi ∈ R3 the velocity, and bgi ,b

a
i ∈ R3 the

gyroscope and accelerometer biases. xi is expressed in the
world frame, except that the biases in the body frame (the
IMU frame is assumed to be the same as the body frame
for simplicity). It is also common to maintain a map of 3D
points (landmarks) as auxiliary states L = {lj}Jj=0.

A trajectory can be parameterized either discretely or using
continuous-time representations (e.g., [8]), and the former is
dominant in VO/VIO. When a discrete parameterization is
used, a trajectory can be represented using the states at a set
of discrete times ts = {ti}N−1

i=0 , namely X = {xi}N−1
i=0 .

Measurement Models: The measurements of a visual-
inertial system come from the cameras and the IMUs. The
camera project 3D points to 2D points on the image plane.
The pixel coordinates of the tracked features ũij are usually

uij us
ij

pi

lj

Ts

Fig. 2: Camera measurement model and scale ambiguity for a single camera.
The camera projects 3D points (red crosses) to 2D points (black circles)
on the image plane. For a single camera, 3D points that are in the same
direction but at different distances (gray crosses) are projected to the same
2D point, which leads to the scale ambiguity in (9). When a second camera
with a constant transformation Ts relative to the first one is added, the scale
ambiguity is eliminated.

used as the measurements, and the noise-free measurement
model is

uij = proj(R>i lj − R>i pi), (2)
where proj(·) projects a 3D point in the camera frame to the
pixel coordinates. In a stereo configuration, for the same 3D
landmark, we also have another measurement ũsij with the
noise-free measurement model

usij = proj(R>i lj − R>i pi − tbs), (3)
where tbs is the baseline between the stereo pair. Note that
we made a few simplifications in the above formulations: the
camera frame in (2) is assumed to be the same as the body
frame, and the stereo cameras in (3) is assumed to be only
different by a translation. For a more general setup, it can
be shown that the conclusions in this section still hold. The
camera measurement model is illustrated in Fig. 2.

The IMU outputs the angular velocity ω̃ωωi and the specific
force (acceleration together with gravity) ãi in the body
frame. The measurement model is

ωωωi = ωωωb
i + bgi , ai = R>i (aw

i − g) + bai , (4)
where ωωωb

i is the angular velocity in the body frame, aw
i the

acceleration in the world frame, g the gravity vector in the
world frame. The IMU measurement model (4) is illustrated
in Fig. 3. The outputs of the gyroscope and the accelerometer
(4) are usually at a high frequency and do not directly relate
to our states (1). Therefore, a common practice in (keyframe-
based) VIO algorithms is to use the integration of (4). In this
paper, we use the preintegrated IMU measurements proposed
in [9], [10]. Roughly speaking, we integrate the raw IMU
measurements to get the relative rotation ∆R̃ik, velocity
∆ṽik and position ∆p̃ik between two states xi and xk, and
the integration is formulated to be independent of the states
(except for the biases) so that re-integration is not needed
when the states change (e.g., during optimization iterations).
The corresponding measurement model is

∆Rik = R>i Rk,

∆vik = R>i (vk − vi − g∆tik), (5)

∆pik = R>i (pk − pi − vi∆tik −
1

2
g∆t2ik),
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Fig. 3: IMU measurement model (4). The biases are not visualized. In
the illustration of the accelerometer, if the body frame (black) is rotated
around the gravity direction (red), the gravity components on the axes of
the body frame remain unchanged (invariant). The invariance does not hold
for rotations around any other axis.

where ∆tik = tk − ti.

B. VO/VIO as a Least Squares Problem

By collecting the visual measurements z̃V (pixel coordi-
nates of the observed landmarks) and inertial measurements
z̃I (preintegrated IMU measurements e.g., [10]), VO/VIO can
be formulated as a nonlinear least squares (NLLS) problem

X̂∗ = arg min
X

J(X), (6)

where

J(X) = arg min
X

‖fV(X)� z̃V‖2ΣV
+ ‖fI(X)� z̃I‖2ΣI

(7)

where fV(·) and fI(·) denote the aforementioned noise-free
visual and inertial measurement models respectively, Σ is the
measurement covariance and ‖r‖2Σ , r>Σ−1r is the squared
Mahalanobis distance 1. In words, (6) aims to find the X
that minimizes the sum of covariance weighted visual and
inertial residuals. Note that � is used because the inertial
residual involves rotation. For the complete formulation of
the residuals, we refer the reader to [10].

Next, we will show the inherent ambiguity of the NLLS
problem (6) and how the trajectory alignment should be
performed accordingly.

III. VISUAL(-INERTIAL) AMBIGUITY AND TRAJECTORY
ALIGNMENT

In this section, we first discuss the ambiguities in different
visual(-inertial) setups and the complication of quantitative
trajectory evaluation due to the ambiguities. We then show
how to perform trajectory alignment for specific visual(-
inertial) setups.

A. Ambiguities and Equivalent Parameters

(6) has infinite solutions that have the same minimum
cost. The reason is that the predicted measurements f(X)
are invariant to certain transformations g(·) of the parameter,
namely f(X) = f(X′) with X′ = g(X). Since the measure-
ments z̃ are constant, the cost function (7) is also invariant to

1Strictly speaking, directly solving (6) and (7) results in a batch optimiza-
tion approach. Other methods such as filters and sliding window estimators
aim to solve the same problem but in a recursive manner.

such transformations. Therefore, the NLLS problem (6) has
certain ambiguities related to g(·), and parameters that are
different by such transformations are equivalent. Note that
in practice, a unique solution can be obtained by enforcing
additional constraints [11].

Obviously, the transformations g(·) depend on the specific
sensors used. To see this, we now derive the transformations
that will not change the predicted measurements (2), (3) and
(5). Consider a similarity transformation parameterized by
S = {s, R, t} as a starting point, where s is a scalar, R ∈
SO(3) and t ∈ R3. S transforms the state xi and lj as

p′i = sRpi + t, R′i = RRi, v′i = sRvi, l′j = sRlj + t, (8)

and the biases are expressed in the body frame and, thus are
not changed by S.

Substituting (8) into the monocular measurement model
(2), and it is obvious that

u′ij = proj(sR>i lj − sR>i pi) = uij (9)

for any S. For a stereo setup (3), the predicted measurement
using the transformed states is

us
′

ij = proj(sR>i lj − sR>i pi − tbs), (10)

and us
′

ij = usij holds only when s = 1, and S becomes a
rigid body transformation. The difference of a monocular
and a stereo setup is illustrated in Fig. 2.

From the inertial measurement model (5), we have

∆R′ik = R>i Rk,

∆v′ik = R>i (svk − svi − R>g∆tik), (11)

∆p′ik = R>i (spk − spi − svi∆tik − sR>
1

2
g∆t2ik).

Comparing (11) with (5), we can see that the predicted
measurements remain unchanged only when s = 1 and
R>g = g, which means R can only be a rotation around
z-axis and is parameterized by only one parameter θ:

Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (12)

This yaw-only rigid body transformation (one DoF rotation
plus a translation) corresponds to the four unobservable
DoFs for visual-inertial systems [12]. Note that although the
above derivation is based on the preintegration measurement
model (5), the conclusion is generally applicable for inertial
sensors. Intuitively, as illustrated in Fig. 3, the gyroscope
and the accelerometer measure the angular velocity and
acceleration in the body frame, which are not affected
by rigid body transformations. However, the accelerometer
additionally measures the gravity, whose projections on the
axes of the body frame only remain unchanged when the
rotation is around the gravity (i.e., in the form of (12)).

To summarize, for a monocular setup, parameters that are
different by a similarity transformation are equivalent. Such
transformations for a stereo setup and inertial sensors are
rigid body transformations and 4 DoF yaw-only rigid body
transformations (i.e., a rotation around the gravity plus a
translation) respectively.



B. Trajectory Evaluation with Ambiguities

The aforementioned ambiguities complicate the trajectory
evaluation process: we cannot directly take the difference
(e.g., Euclidean distance of the positions) between an esti-
mate X̂ and the groundtruth Xgt as the estimation error. To
see this, consider the subspaces (in the parameter space) of
the equivalent parameters of X̂ and Xgt, denoted as Eest and
Egt respectively, each of which contains an infinite number
of equivalent parameters. For arbitrary X̂a, X̂b ∈ Eest, the
estimation error computed from X̂a and Xgt (or any element
in Egt) should be exactly the same as the error with X̂b due
to the equivalence. This is obviously not the case if we use
the difference as an error metric directly.

Therefore, instead of the difference between the estimate
and the groundtruth, it is the “distance” between the two
corresponding equivalent parameter subspaces that should be
used to quantify the estimation error. A common practice is
to first find an equivalent estimate X̂′ ∈ Eest that is, by some
metric, closest to the groundtruth Xgt and then calculate the
difference from X̂′ and Xgt (see Section IV). The process
of finding X̂′ is referred to as trajectory alignment, which
we will see next for different sensor combinations.

C. Trajectory Alignment in Visual(-inertial) Systems

To find the equivalent estimate X̂′, we essentially need
to find a transformation g′(·), which can be of different
types as described in Section III-A, and then calculate X̂′ =
g′(X). For both similarity and rigid body transformations,
the method proposed in Umeyama et al. [13] has become the
de-facto standard. In this section, we first present Umeyama’s
method and then show how it can be adapted to calculate the
4 DoF transformation for visual-inertial systems.

One remaining open choice is which states should be
used to calculate the transformation. While there is no “gold
standard”, two common ways are usually used in practice:
1) using all the estimated states; 2) using only the first one
or several initial states. The former tends to give a lower error
if later an error metric for the whole trajectory (e.g., ATE)
is used, and the latter gives an intuitive error distribution
that the estimation error increases over time. We will see
the examples about this point on real data in Section VI-
B. In terms of computing the alignment transformation,
Umeyama’s method is only suitable for calculating the trans-
formation using multiple estimated states, and, therefore, we
will in addition show how to calculate rigid body and 4 DoF
transformations from the first state, which will also be used
for calculating the relative error metric in Section IV.

1) Alignment Using Multiple States: As discussed in Salas
et al. [14], it is usually sufficient to calculate the trajec-
tory alignment transformation using only the translational
components of the estimation and the groundtruth. To put
it formally, given the estimated positions {p̂i}N−1

i=0 and the
groundtruth positions {pi}N−1

i=0 , we want to find a similarity
transformation S′ = {s′, R′, t′} that satisfies:

S′ = arg min
S={s,R,t}

N−1∑
i=0

‖pi − sRp̂i − t‖2 (13)

Algorithm 1: Closed-form solution to (13)

Data: estimation {p̂i}N−1
i=0 , groundtruth {pi}N−1

i=0

Result: s, R, t that minimize
∑N−1
i=0 ‖pi − sRp̂i − t‖2

1 Calculate: µµµp = 1
N

N−1∑
i=0

pi µµµp̂ = 1
N

N−1∑
i=0

p̂i

σσσ2
p = 1

N

N−1∑
i=0

‖pi −µµµp‖2 σσσ2
p̂ = 1

N

N−1∑
i=0

‖p̂i −µµµp̂‖2

Σ = 1
N

N−1∑
i=0

(pi −µµµp)(p̂i −µµµp̂)>

2 Singular value decomposition: Σ = UDV >

3 if det(U)det(V ) < 0 then
4 W = diag(1, 1,−1)
5 else
6 W = I3×3

7 end
8 R = UWV >

9 s = 1
σσσ2

p̂
trace(DW ) or s = 1 if the scale is known

10 t = µµµp − sRµµµp̂

To solve the least squares problem (13), the method in
Umeyama et al. [13] is often used, as summarized in Alg. 1.
Note that if the scale is known (stereo and inertial setup in
Section III-A), we directly set s = 1 in line 9 of Alg. 1 After
calculating the transformation S′, the aligned estimation is
then:

p̂′i = s′R′p̂i + t′, R̂′i = R′R̂i, v̂′i = s′R′v̂i (14)

If a yaw-only rigid body transformation is desired, we
need to adapt the rotation calculation in Umeyama’s method.
As proved in [13], the rotation calculated in line 8 of Alg. 1
is the closed-form solution of

R′ = arg min
R∈SO(3)

‖P− RP̂‖2F , (15)

where P = [r0, r1, . . . , rN−1], P̂ = [r̂0, r̂1, . . . , r̂N−1], ri =
pi − µµµp, r̂i = p̂i − µµµp̂ , and ‖·‖F is the Frobenius norm.
The cost in (15) can be further written as

‖P− RP̂‖2F = trace(PP> + P̂P̂
> − 2RP̂P>), (16)

and therefore (15) is equivalent to

R′ = arg max
R∈SO(3)

trace(RP̂P>). (17)

If the rotation is of the form (12), we only need to find the
following maximum with respect to θ:

θ′ = arg max
θ

(p12 − p21) sin θ + (p11 + p22) cos θ (18)

where pij is the coefficient of P̂P>. With the solution θ′

to (18), we can calculate the desired rotation R′z using (12)
and the translation with line 10 in Alg. 1 (with s = 1). The
aligned estimation is calculated the same as (14).

It is worth noting that, in this section, the alignment
is based on a least squares solution, which is valid only
when all the states are of the same uncertainty. If we



TABLE I: Transformations in trajectory alignment for different visual and
inertial configurations.

Configuration Monocular Stereo Inertial(+visual)

Type Similarity Rigid body Yaw-only rigid body
Align-Multi Alg. 1 Alg. 1 Alg. 1 with rotation (18)
Align-Single ×* (19) (19) with rotation (20)

* Scale cannot be estimated from a single state.

have the knowledge about the quality of the state estimate,
for example, covariance from VO/VIO, more sophisticated
methods can be used to account for this (e.g., optimization
as in [14]).

2) Alignment Using A Single State: It is possible to
calculate a rigid body transformation or a yaw-only trans-
formation with only the first state. Calculating a rigid body
transformation is trivially

R′ = R0R̂
>
0 , t′ = p0 − R′p̂0. (19)

Similar to the previous case, computing a yaw-only transfor-
mation needs a different treatment. Specifically, the rotation
R̂′0 = R′z R̂0 should be as close to R0 as possible:

R′z = arg min
Rz

‖R0 − Rz R̂0‖2F

⇒ R′z = arg max
Rz

trace(Rz R̂0R
>
0 ), (20)

which is of the same form as (17) and can be solved similarly.
Once we have R′z , the translational component t′ is calculated
the same as (19).

D. Summary

To summarize, different combinations of visual and iner-
tial sensors result in different ambiguities in VO/VIO. Due
to the ambiguities, certain types of transformations should
be used to align the estimation with the groundtruth before
calculating the estimation error. For various combinations
of visual and inertial sensors, we summarize the types of
trajectory alignment transformations and the methods to
calculate them in Table. I. Using the aligned trajectory
estimate, we can now calculate different error metrics to
quantify the accuracy of VO/VIO.

IV. TRAJECTORY ERROR METRICS

To calculate the estimation error from the groundtruth
Xgt and the aligned estimation X̂′, two commonly used
error metrics are the absolute trajectory error (ATE) and the
relative error (RE). In this section, we will describe them in
details and discuss their advantages and disadvantages.

A. Absolute Trajectory Error

For a single state, the error between x̂′i and the groundtruth
xi can be parameterized as

∆xi = {∆Ri,∆pi,∆vi} (21)

and satisfies

Ri = ∆RiR̂
′
i, pi = ∆Rip̂

′
i + ∆pi, vi = ∆Riv̂

′
i + ∆vi (22)

Note that the parameterization of the error (21) and (22)
is not unique. For example, ∆Ri can also appear on the
right side of R̂′i in (22). While there is no standard for
error parameterization, one must be consistent during the
trajectory evaluation. In addition, since the biases are always
expressed in the body frame, the biases error is trivially the
Euclidean distance of the estimate and the groundtruth.

With (22), we can easily calculate the error ∆xi

∆Ri = Ri(R̂
′
i)
>,

∆pi = pi −∆Rip̂
′
i, (23)

∆vi = vi −∆Riv̂
′
i.

To quantify the quality of the whole trajectory, the root mean
square error (RMSE) is usually used

ATErot = (
1

N

N−1∑
i=0

‖∠(∆Ri)‖2)
1
2 ,

ATEpos = (
1

N

N−1∑
i=0

‖∆pi‖2)
1
2 ,

(24)

where ∠(·) means converting the rotation matrix to angle-
axis representation and using the rotation angle as the error.
Alternatively, one can also convert ∆Ri to other representa-
tions (e.g., Euler angles) and get the corresponding rotation
errors. The velocity error is defined similarly and omitted
here. The calculation of ATE is illustrated in Fig. 4a.

The advantage of ATE is that it gives a single number
metric for the position/rotation/velocity estimation, which
is easy to compare. However, as recognized by several
researchers [5], [6], [7], ATE is sensitive to the time when the
error occurs. For example, a rotation estimation error tends
to give a larger ATE when it happens at the beginning of
the trajectory than the situation when it occurs at the end.
Therefore, in addition to ATE, the relative error is also widely
used to provide more informative evaluation.

B. Relative Error

The basic idea of relative error is that, since VO/VIO
systems do not have a global reference (global position and
yaw), the estimation quality can be evaluated by measuring
the relative relations between the states at different times.

To put it formally, first a set of K pairs of states is selected
by some criteria (e.g., distance along the trajectory) from X̂:

F = {dk}K−1
k=0 , dk = {x̂s, x̂e}, (25)

where e > s, and each pair defines a sub-trajectory. For each
dk, a relative error δdk is calculated in a similar way as
the absolute error. Specifically, an alignment transformation,
depending on the sensor configuration as in Table. I, is
computed from the first state x̂s and the corresponding
groundtruth xs, and the aligned second state x̂′e computed
using (14). Then the error δdk for the state pair dk is

δφφφk = ∠ δRk = ∠ Re(R̂
′
e)
>,

δpk = ‖pe − δRkp̂′e‖2, (26)
δvk = ‖ve − δRkv̂′e‖2,
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Fig. 4: Illustrations of absolute trajectory error and relative error. The
error after alignment is exaggerated for visualization. For relative error, the
trajectory segments should be all possible pairs of states that satisfy certain
criteria, and they are un-overlapped in (b) for the ease of visualization.

which are all scalars. Collecting the error (26) for all the
pairs of states (sub-trajectories) in F gives

RErot = {δφφφk}K−1
k=0 ,

REpos = {δpk}K−1
k=0 , (27)

REvel = {δvk}K−1
k=0 .

The calculation of RE is illustrated in Fig. 4b.
Since the relative error (27) does not generate a single

number but a collection of errors for all the sub-trajectories
that satisfy certain criteria, statistics such as the median,
average and percentiles can be calculated, which gives more
information than ATE. Another advantage is that by select-
ing the states according to different criteria, RE can have
different meanings. For example, a common practice is to
select pairs of states that are spaced by a certain distance
along the trajectory. The RE from the states pairs that are
spatially close reflects the local consistency, while the error
for a larger distance reflects more the long-term accuracy.
The disadvantage of RE is that it is relatively complicated to
calculate, and it is less obvious to rank the estimation quality
than using a single number metric as ATE.

C. Discussion and Summary

As discussed above, both ATE and the RE have their own
advantages and disadvantages. It is probably not possible to
say that a metric should be preferred in all situations over the

TABLE II: Comparison of absolute trajectory error and relative error.

absolute trajectory error relative error

Compute

1. Align the estimated
trajectory.
2. Calculate the RMSE
using the aligned
estimation and the
groundtruth (24)

1. Select all sub-trajectory of
length d.
2. Align each sub-trajectory
using the first state.
3. Calculate the error of the
end state of each
sub-trajectory (26).
4. Collect the errors for all
the sub-trajectories (27).
5. For different lengths d,
repeat step 1-4.

Pros • Single number metric,
easy for comparison.

• Informative statistics can
be computed from the errors
of all sub-trajectories.
• By changing the length d,
the relative error can reflect
both short and long term
accuracy.

Cons
• Sensitive to the time
when the estimation error
occurs.

• Relatively complicated to
compute.
• Less straightforward for
ranking the estimation
accuracy.

other one. However, as pointed by [1], the two error metrics
are actually highly correlated. In practice, providing both
error metrics, if possible, will give a better understanding
of the actual estimation quality from different aspects. We
summarize the computation and properties of ATE and RE
in Table. II.

Together with the trajectory alignment described in Sec-
tion III, we can quantify the accuracy of a trajectory es-
timate from VO/VIO. Before demonstrating the evaluation
procedures on real data in Section VI, we first show that the
aforementioned methods for VO/VIO can be generalized to
arbitrary sensing modalities.

V. GENERAL TRAJECTORY EVALUATION PROBLEM

A. Trajectory Estimation Problem

Similar to VO/VIO in Section II, we define the estimation
problem by specifying the parametrization of the trajectory,
the measurements, and the cost function to minimize.

Parameterization: Using discrete parameterization, a
trajectory can be represented using the states X = {xi}N−1

i=0

at a set of discrete times ts = {ti}N−1
i=0 .

Measurements: The measurements are collected at ts,
denoted as M̃ = {z̃i}N−1

i=0 , Note that z̃i can be either the
raw readings from the sensors or the output of processing
the raw data (e.g., keypoint coordinates (2), preintegrated
IMU measurements (5)). The corresponding noise-free mea-
surement model is denoted as f(x).

Cost: For an estimate of the system parameters X, a
commonly used cost is the sum of the squared Mahalanobis
distance between the actual and the predicted measurements:

c(X, M̃) =

N−1∑
i=0

‖f(xi)− z̃i‖2Σi
, (28)
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Fig. 5: Illustration of the equivalent subspaces (blue) and the trajectory
evaluation process in the parameter space. Directly using the difference
(dashed gray line) between an estimation and the groundtruth does not give
the same estimation error for equivalent parameters. Instead, the distance
between the equivalent subspaces should be used. The first step (green) is to
find a unique equivalent estimation X̂′ that is closest to Xgt by a distance
metric dg(·). The second step (red) is to calculate the distance between X̂′

and Xgt using an error metric e(·).

where Σi is the measurement covariance. The trajectory esti-
mation is then the process of determining a set of trajectory
parameters that minimize the cost (28):

X̂∗ = arg min
X

c(X, M̃). (29)

B. Ambiguities and Equivalent Parameters
With only the sensor measurements, the estimation prob-

lem (29) usually does not have a unique solution. For
example, the absolute position cannot be determined for a
visual(-inertial) odometry system. To put it formally, there
exist a set of transformations G = {g(·)} that satisfy

c(g(X), M̃) = c(X, M̃) ∀X, ∀g(·) ∈ G, (30)

where G is determined by the sensor combinations. In other
words, for any X, there is a subspace EX (in the parameter
space) where each element has the same cost (28) as X.

Due to this ambiguity, we cannot directly take the dif-
ference (e.g., Euclidean distance if the states are vectors)
between the estimation X̂ and the groundtruth Xgt as the
estimation error, as illustrated in Fig. 5.

C. Quantitative Trajectory Evaluation
To uniquely define the estimation error of an estimate X̂,

the first step is to find an equivalent estimation X̂′ that is
closest to Xgt according to a certain distance metric dg(·):

g′(·) = arg min
g(·)∈G

dg(g(X̂), Xgt), X̂′ = g′(X̂), (31)

which is the trajectory alignment process. Then we can
quantify the difference between the estimation and the
groundtruth by calculating the error between X̂′ and Xgt

using a certain error metric e(·) as e(X̂′,Xgt). The above
process in the parameter space is illustrated in Fig. 5. We
denote the distance metric dg(·) and error metric e(·) only
conceptually, because there is no standard way for defining
them, as described in Section III and Section IV.

Therefore, for any sensor combination with ambiguities,
to calculate the estimation error, we need to follow similar
procedures as VO/VIO : 1) align the estimate with the
groundtruth; 2) calculate the estimation error using certain
metrics. Importantly, the transformation used for trajectory
alignment needs to be computed by considering the proper-
ties of the sensors used, as we already see for visual(-inertial)
systems in Section III.
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Fig. 6: Trajectory alignment for the estimate from VINS-Mono on Machine
Hall 01. The left is the top view of the unaligned estimation and the
groundtruth, and the right is the aligned trajectory. The states correspon-
dences are shown as gray lines (every 10th is drawn for clear visualization).

VI. EXAMPLE QUANTITATIVE EVALUATION

To illustrate the methods described in Section III and
Section IV with concrete examples, we first demonstrate
the complete process of computing ATE and RE from an
unaligned estimation and the groundtruth. Then we show the
impact of the number of frames used for trajectory alignment,
which seems to be a trivial detail but turns out rather crucial.

A. ATE and RE: a Complete Example

We ran VINS-Mono [15], which is a visual-inertial odom-
etry algorithm, on the Machine Hall 01 sequence from the
EuRoC dataset [16] and evaluated the estimated trajectory.

As discussed above, the first step is to align the estimation
with the groundtruth. We used all the states to calculate a
yaw-only rigid-body transformation to align the trajectory
as described in Section III. The process is illustrated in
Fig. 6. We can see the “raw” estimation from VINS-Mono
is in a different reference frame as the groundtruth, and
therefore cannot be directly compared. We then computed
the estimation error using the aligned trajectory and the
groundtruth. The absolute error for each state (23) is plotted
in Fig. 7, and the ATE (24) described in the caption.

The relative position and rotation errors (27) are plotted in
Fig. 8. We calculated the relative errors for sub-trajectories
of different lengths. It is clear from Fig. 8 that the estimation
error (both translation and rotation) increases with the length
of the sub-trajectories.

B. ATE: How Many Frames to Align?

As discussed in Section III, there is no standard for
selecting the number of states to be used for trajectory
alignment. However, it is of interest to understand how this
choice affects the computed estimation error. To this end,
we performed the same evaluation as the previous section,
but used different states for trajectory alignment: the first Q
states are used, where Q varies from 1 to the number of all
the states in the trajectory.

We show the ATE of the whole trajectory for five different
alignments in Table. III. We can see that the position ATE
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trajectory lengths shown as a series of boxplots. The box in the middle
indicates the two quartiles of all the estimation errors, the line through the
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decreases when more states are used in the alignment,
while the rotation ATE does not show a obvious tendency.
Intuitively, since the trajectory alignment aims to minimize
the least squares position error (13), the more states that
are used, the smaller the position ATE is likely to be. The
rotation components are not used in computing the alignment
transformation and thus are less correlated.

Note that in Table. III, the difference of ATEtrans between
using the first state and all the states for alignment is quite
large (∼ 150%). Therefore, in practice, when comparing
different algorithms, one needs to be consistent in which
states are used for trajectory alignment across different
algorithms for a fair comparison. Moreover, this information
is quite crucial to reproduce quantitative accuracy evaluations
for VO/VIO and should always be presented together with
the evaluation results.

VII. CONCLUSION

In this tutorial, we presented principled approaches for
quantitative trajectory evaluation for VO/VIO algorithms. We
discussed the ambiguities in visual(-inertial) systems, which

TABLE III: ATE using different states for trajectory alignment. When more
states are used in the alignment, the translation ATE tends to be smaller.

States used ATEpos (m) ATErot (deg)

1 0.4383 2.4919
1 - 452 0.4134 2.7427
1 - 904 0.3515 2.7902

1 - 1355 0.3180 2.8365
1 - 1807 (all) 0.2795 2.4935

is the main source of the complication in trajectory evalu-
ation. Then we detailed the quantitative evaluation methods
for VO/VIO, including the trajectory alignment and error
metrics. We further showed that similar approaches can be
adopted for other sensing modalities that has ambiguities. To
benefit the reproducibility of related research, we release our
implementation of the methods in this tutorial to the public.
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