This CVPR2014 paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

The Fastest Deformable Part Model for Object Detection

Junjie Yan Zhen Lei

Longyin Wen

StanZ. Li*

Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences, China

{jjvan, zlei, lywen, szli}@nlpr.ia.ac.cn

Abstract

This paper solves the speed bottleneck of deformable
part model (DPM), while maintaining the accuracy in de-
tection on challenging datasets. Three prohibitive steps in
cascade version of DPM are accelerated, including 2D cor-
relation between root filter and feature map, cascade part
pruning and HOG feature extraction. For 2D correlation,
the root filter is constrained to be low rank, so that 2D cor-
relation can be calculated by more efficient linear combi-
nation of 1D correlations. A proximal gradient algorithm is
adopted to progressively learn the low rank filter in a dis-
criminative manner. For cascade part pruning, neighbor-
hood aware cascade is proposed to capture the dependence
in neighborhood regions for aggressive pruning. Instead
of explicit computation of part scores, hypotheses can be
pruned by scores of neighborhoods under the first order ap-
proximation. For HOG feature extraction, look-up tables
are constructed to replace expensive calculations of orien-
tation partition and magnitude with simpler matrix index
operations. Extensive experiments show that (a) the pro-
posed method is 4 times faster than the current fastest DPM
method with similar accuracy on Pascal VOC, (b) the pro-
posed method achieves state-of-the-art accuracy on pedes-
trian and face detection task with frame-rate speed.

1. Introduction

The deformable part model (DPM) [11] is one of the
most popular object detection methods. It is originally pro-
posed for Pascal VOC [9] challenge and is the foundation
of champion systems in Pascal VOC 2007-2011. Recen-
t works have extended DPM to related tasks and achieved
leading performance, such as articulated human pose esti-
mation [35], face detection [36, 34] and pedestrian detec-
tion [33, 32]. DPM has advantage in handling large appear-
ance variations for challenging datasets, however, it takes
more than 10 seconds (without parallelization) per image
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in Pascal VOC. The speed is a bottleneck of DPM in real
application, where speed is often as important as accuracy.

Recent works have accelerated deformable part model
(DPM) by one order of magnitude, such as cascade [10],
coarse-to-fine [22], branch-and-bound [16] and FFT [£]. In
DPM, the detection score of each hypothesis is determined
by the score of appearance minus the deformation cost. The
appearance score is calculated by the correlation between
HOG feature and a sequence of filters including root and
parts, which takes most of the time due to the high dimen-
sion. [10] and [22] reduced the computation by pruning un-
promising hypothesis early. [8] used FFT to accelerate cor-
relation. These methods, however, still take about 1 second
per image for Pascal VOC detection. We take cascade DPM
[10] as the baseline, and find that each step in 2D correlation
by root filter, cascade part pruning and HOG feature extrac-
tion makes DPM prohibitive even if the other two steps are
free. To finally remedy the speed bottleneck of DPM, we
thus need accelerate all these three steps.

Discriminative Low Rank Root Filter In DPM (and
accelerated versions [10, 22, 16]), root scores are dense-
ly computed by 2D correlation between the root filter and
HOG feature map. This paper reduces the cost by constrain-
ing the rank of root filter. As used in other computer vision
tasks [13, 21, 31, 25], the 2D correlation can be divided into
linear combination of more efficient 1D correlations, where
the combination number is the rank of the filter. To learn
the low rank filter while preserving the discriminative abil-
ity, an additional nuclear norm is added to traditional SVM
objective function. This paper adopts a proximal gradient
algorithm to progressively learn it by minimizing an upper
bound function with closed form solution. The discrimina-
tively learned low rank root filter can reduce the correlation
cost and help to prune a large number of negative hypothe-
ses.

Neighborhood Aware Cascade DPM can be more effi-
cient through cascade based pruning of low score hypothe-
ses after evaluating a subset of parts, as explored in [10].
However, there are still two kinds of redundancy in this
cascade. The first is that one object can activate multiple



overlapping hypotheses to pass through the whole cascade,
while only one hypothesis with the highest score is useful
for detection. The second is that if one hypothesis has very
low score, its neighborhoods tend to have low scores and
probably can avoid evaluation. Motivated by the crosstalk
[5] in boosting classifier, this paper proposes neighborhood
aware cascade for DPM to reduce the two kinds of redun-
dancy. Many hypotheses in this cascade can be aggressively
pruned according to the first order approximation of stage
scores by their neighborhoods, instead of explicit computa-
tion.

Look-up Table HOG HOG is used in DPM as a low-
level representation due to the advantage in tolerating local
transformation. However, the original HOG calculation has
high computational cost, mainly due to the operations in
calculating the orientation partition and magnitude. This
paper shows that look-up table (LUT) can be used to replace
them with much simpler matrix index operations, based on
the fact that there are only finite possibilities of gradient and
orientation.

The rest of the paper is organized as follows. Section 2
reviews the related work. An overall introduction of DPM
is presented in section 3. The discriminative low rank root
filter, neighborhood aware cascade and LUT HOG are de-
scribed in section 4, 5, 6 respectively. We show experiments
in section 7 and conclude the paper in section 8.

2. Related Work

Acceleration of DPM This work is most related to ap-
proaches that accelerate single category DPM in detection.
[10] proposed to convert star-structure to cascade, which
can efficiently prune unpromising hypotheses. [22] pro-
posed a coarse-to-fine approach based on that model at low
resolution can prune a lot of hypotheses with low compu-
tational cost. FFT was used to accelerate the correlation in
[8]. Motivated by the branch-and-bound approach [20] for
object detection, [16] introduced it to DPM with carefully
designed bound. For a category with 6 components, these
methods run at about 1 FPS per Pascal VOC image on a sin-
gle thread, which is faster than DPM by one order, but still
relatively slow for real application.

Acceleration of Multi-category DPM Quite a large
number of recent works [23, 27, 15, 3, 17] were proposed to
accelerate DPM for multi-category detection, e.g. simulta-
neous detection of 20 categories on Pascal VOC. Steerable
part model [23] used a part bank with linear combination
to approximate correlation score of different categories. S-
parselet [27, 15] used a large part bank with sparse linear
combination. [15] and [23] both achieve three times accel-
eration over the original DPM for 20 category object detec-
tion, however, they are slower than the cascade DPM [10]
which detects each category independently. Very recently,
[3] proposed to use locality-sensitive hashing to approxi-

mate the correlation in DPM with a decline of performance
to detect 100,000 categories on a single workstation.

Acceleration of Pedestrian Detection Recently, large
improvements on efficiency were achieved in pedestrian de-
tection task [6, 5]. [6] proposed to approximate features at
nearby scales for fast computation of multiple channel fea-
tures. Based on the feature and boosting classifier in [6],
[5] further proposed crosstalk cascade by considering the
dependence in neighborhood. [5] is considered to be one of
the best detectors in Viola-Jones framework [30] in terms of
speed and accuracy. We extend this idea to neighborhood
aware cascade in DPM.

HOG computation The widely used HOG implemen-
tation in [12] takes about 0.5 second per VGA image on a
single thread, which itself slows down DPM. Unfortunate-
ly, this step is often directly ignored by recent works on
acceleration of deformable part model. Some recent works
[27, 28, 24] accelerated HOG with the computation capacity
of GPU, however, the algorithm itself is not improved. With
the help of LUT, HOG implementation in this paper runs on
a single CPU thread is as fast as the GPU implementation
reported in [24]. LUT based method can be applied on GPU
for more acceleration.

3. DPM and Cascade DPM

This part gives a brief review of DPM and cascade DPM,
and then analyzes the bottleneck in computation.

The DPM is composed of a root filter wy and n part-
s, where the ¢-th part is parameterized by filter w; and de-
formation term d;. An object hypothesis ~ is specified by
{Po,p1," - ,bn}, where py is the location of root, and p; is
the location of the ¢-th part. Root and parts are connected
by a pictorial structure. The detection score s(vy) is defined
as:

s(y) = w§ da(po 1) + Y wf Ga(pe, I) — df $alps, po),
t=1
9]

where ¢, is the HOG feature for appearance, and ¢4 is sep-
arable quadratic function for deformation. Mixture compo-
nents can be naturally added to represent objects in different
poses, but we leave them out to simplify the notation.

For a hypothesis 7 in detection, only root location pg is
known, while the part location p; is inferred by maximiz-
ing the part appearance score minus the deformation cost
associated with displacement:

p = arg mgxth%(p, I)—dl alp,po), (2

where p traverses possible locations of the part. Since parts
are directly attached to the root, their locations are inferred
independently for a fixed root. It has been found in previous
works [10, 22, 8] that in DPM most of the time is spent on
calculating the appearance term due to the high dimension.



Time Cost of Cascade DPM and Proposed Method

cascade DPM 0'45 0.15 _
0.08
Proposed ) HOG Root M Part
Method §
SECOND 0 0.5 1 1.5

Figure 1. Average time cost (second) of the cascade DPM [10] and
the proposed method on Pascal VOC with a single CPU thread.
The time for HOG extraction, root and part are listed, while other
steps are nearly free. For each category, the DPM has 6 mixture
components and each component has 8 parts.

In cascade DPM [10], acceleration is achieved by reduc-
ing the number of parts evaluated. The cascade DPM places
the root filter in the first stage and part filters sequently in
following stages. In each stage, hypothesis can be pruned if
its score is below a pre-learned threshold. The time cost of
each step in cascade DPM is shown in Fig. 1. It has accel-
erated DPM by one order, however, all these three steps are
still prohibitive.

In the first stage of cascade, correlation is calculated
densely between root filter and feature map, while in fol-
lowing part stages, correlation is only calculated sparsely
for unpruned hypotheses. In this paper, different method-
s are used to accelerate the two kinds of computation. We
learn discriminative low rank root filter in first stage for both
efficient dense correlation and safe pruning of unpromis-
ing hypotheses after the correlation. For parts, we design
more aggressive pruning by exploring the first order neigh-
borhood information. Besides, the HOG feature extraction
is also accelerated by look-up tables. With these three ac-
celeration techniques, the proposed method is 4 times faster
than the cascade DPM (shown in Fig. 1). We show details
of these three techniques in following three sections.

4. Discriminative Low Rank Root Filter

In this part, we aim to reduce the cost on computation of
root score, which is the result of dense correlation between
HOG feature map and root filter. The acceleration comes
from the separability and linearity of correlation. Suppose
we have a 2D feature map K € R™!*" and a 2D filter
F € R™*™ with rank r (r < min(ms,ng)). With the
SVD decomposition, F' can be expressed as:

F=> omu, (©)
i=1

where o; € R is the i-th singular value. Herein u; €
R™2%1 g, € R™>1 With this expression, it can be easily

proved that:

KoF = KoZUiuwiT = Zai((Foui) ovl), )
=1 =1

where o denotes the correlation operator. In the last term,
the correlation is firstly conducted on each column by 1D
filter u;, and then on each row by 1D filter v;. This proce-
dure requires r(ms + n2)ming multiplications', while the
original 2D correlation need monemqni multiplications. It
is easy to see that the combination of two 1D correlations
in Eq. 4 needs fewer multiplications if the rank r is small
enough, so that we expect to have low rank root filter for
computation efficiency.

Besides the low rank property, the ability to distinguish
objects and backgrounds is also preferred for the root filter,
in order to efficiently prune negative hypotheses after the
correlation. In the following part, we describe how to learn
this kind of discriminative low rank root filter.

Matrix based representations are used to simplify the no-
tation. Let the dimension of HOG cell be [. The i-th 2D
HOG feature plane of root specified by «y of image I is de-
noted as {®; (v, I) }1<i<i, and the i-th 2D plane of root filter
is denoted as {W; }1<;<;. We denote diag{W, }1<i<; as W
and diag{®;(~, I)}1<i<; as ®(v, I). The correlation score
can then be denoted as Tr(WT®(v, 1)), where Tr(-) is the
trace operator. One traditional way to get the discriminative
root filter is SVM based learning, where the filter is expect-
ed to distinguish true object hypotheses from backgrounds.
Given M training samples, W can be learned by SVM:

. 1 2 T
mv‘l/n§|‘W||F+C;max(0a1*ymT7’(W @(ym, Im))), ()

where || - |7 is the Frobenius norm. y,, € {—1,1} is the
label of hypothesis specified by +,, and I,,,, where 1 indi-
cates object and —1 indicates background. The first term is
used for regularization, and the last term is used to measure
the loss in detection.

As aforementioned, the root filter is desired to be low
rank for efficient correlation computation. Motivated by re-
cent works on matrix completion [2], we use additional nu-
clear norm to constrain the rank of W in learning:

. 1 2
min p[W + S Wik ©
+C Z maz(0,1 — Yy Tr(WT®(ym, In))),
M
where || - ||« is the nuclear norm. g controls the trade-off

between the efficiency and loss in detection. Despite Eq. 6
being convex, there are two difficulties in optimization. The
first is the large number of negative samples, for which we
use the hard sample mining procedure similar to [11]. The

!In implementation, u; is replaced with the “dot product” result o; - u;
to avoid additional multiplications of o; at runtime.



second is the convergence when training set is fixed, for
which we adopt the proximal gradient method [29].
Denoting the sum of the last two terms in Eq. 6 as f (V)
(which is also convex), one sub-gradient of f(7) can be
formulated as:
VW) =W +CY bW, Ym, Ym;, Im), )

M

where h(W, Yy, Ym, Im) is set to be:

0 if ymTT(WT(I)("YmaIm)) >1
—YmP(Ym, Im) otherwise.

®)

Defining Y as a local region of W, the sub-gradient

satisfies the Lipschitz condition |V f(W) — Vf(Y)||r <

L¢|W — Y||p, where a conservative L; is set to be

cM (which is a constant in this problem), since that

|2 (~m, L) || F can be naturally bounded by a constant c.

A quadratic approximation of the objective function in Eq.
6 by Taylor expansion can be formulated as:

QUV,Y) = ul[ Wl + f(¥) ©
FTHV AT = ) + 2w - Y

It can be easily proved that Q(W,Y") is the tight upper
bound of the Eq.6 due to the Lipschitz condition of sub-
gradient. Defining a matrix G =Y — Lifo(Y), Eq. 9 can
be minimized by the following problem instead:

. _ . Ly 2
argmin Q(W, G) = argmin p[|Wl. + =W — G|l
(10)
Suppose the SVD decomposition of G is ULV T, the
closed form solution to Eq. 10 can be obtained as (see [1]):

W =UD,(Z)VT, an

where D, (X) = diag({max(o; — 7,0)}), and 7 = p/Ly.
The Eq. 9 can be iteratively optimized according to a se-
quences of {Yj;} once the the training set is fixed. In
each iteration, following the advice in [29], we set Y =
fA+2

Wi + %(Wk — Wk—l)» and t;, = w

The details of the optimization procedure in root filter
learning are shown in Alg. 1. We use standard hard nega-
tive sample mining procedure according to the learned W
in the outer loop, and then refine W by mined samples in
the inner loop. The initialization of W is set to be root filter
used in the first stage of cascade DPM [10], which is the
original DPM root filter with PCA dimension reduction. In
experiments, the rank of filter in each plane is 2 or 3, which
is about 1 times faster than the original full rank filter for
correlation. Moreover, since that the root filter is discrimi-
natively learned, it is able to prune many negative hypothe-
ses. Note that the root filter at the first stage of cascade is
not necessarily to be optimal for the whole DPM, and we
can re-compute scores for unpruned hypotheses with origi-
nal root filter at later stage.

Algorithm 1 Proximal Gradient Algorithm for Discrimina-
tive Low Rank Root Filter Learning
Input: We set Wy and W to be the root filter after PCA in o-
riginal DPM. to = t; = 1 and k£ = 1. Initial training set
{T'n, In} is initialized by all positive samples and sampled
negative samples.
Output: Discriminative low rank root filter W
1: while Not Converged do
2: Mine hard negative samples with W to update the training
set {F]\@ IM}.
while Not Converged do
Y« Wi + tkziil(Wk — Wi—1).

3
4
5 VIiYe) Yo +CY h(Wk, Ym, Ym, Im)
6.
7
8

Gr + Y, — %fo(Yk)
(Uk7 Ek, Vk) < svd(Gk)
Wi < UkDLLf(Ek)VkT
2
9: thar — SVE k1

10: end while
11: W + W;.
12: end while

5. Neighborhood Aware Cascade

In this part, we focus on the reduction of parts computa-
tion cost by neighborhood aware cascade.

Cascade DPM [10] improves the efficiency by pruning
unpromising hypotheses early. Starting from the calculation
of root score so(7) in the first stage for each hypothesis -,
parts are evaluated sequently in following stages. The score
of the ¢-th (t > 1) stage is defined as:

s:(7) = st-1(7) + Wi a(pe, I) — di da(pe,po), (12)

where each stage evaluates a part. There are two pruning
criteria in [10]. The hypothesis « can be pruned directly if
the ¢-th stage satisfies that s;(y) < p¢, where p; is a pre-
defined threshold. By traversing optimal part location in a
local region, the deformation pruning is adopted if the score
s¢(7y) minus deformation cost is below ¢;. However, there
are still two kinds of redundancy can be reduced for further
acceleration, as discussed in the following part.

The first redundancy, which is always ignored by pre-
vious works, exists in evaluating positive hypotheses. It is
well known that an object instance always active multiple
overlapping detections. A merge step such as non-maximal
suppression (NMS) is usually adopted to eliminate these
overlapping hypotheses and finally preserve the detection
with the highest score. The redundancy is that we only need
one per overlapping detection group, but all of them pass
the whole cascade. In experiments we test the cascade DP-
M and find that one final detection corresponds to average
21.85 detections before NMS step (with default threshold).
We name these eliminated overlapping positive hypotheses
as semi-positive hypotheses. They can take about half of the



time (most hypotheses in later stages belong to this case),
and we want to prune them early to save computation.

The second redundancy exists in evaluating negative hy-
potheses. In traditional cascade based pruning, each hy-
pothesis is evaluated independently. Nevertheless, the pro-
cedure ignores the fact that there has great dependency a-
mong detection scores in neighborhood regions. For ex-
ample, a hypothesis with very low score indicates that it-
s neighborhoods probably have very low score and do not
need to be evaluated any more. We name these negative
hypotheses with low score neighborhood as semi-negative
hypotheses and want to prune them before explicitly evalu-
ating their scores at certain stages.

Motivated by [5], we use the “first order” information
in DPM cascade pruning to avoid the two kinds of redun-
dancy. That is, besides explicitly calculating stage score,
we can also estimate it according to their neighborhood-
s by first order approximation. We name this cascade as
neighborhood aware cascade. Let the neighborhood of v be
N (7). We add the following two first order pruning criteria
to decide whether -y is pruned or passed to next stage (the
formal proofs can be found in supplementary material).

Semi-Positive Pruning: If 37/ € N(v) which satisfies
that s;(y") > s¢(y) + pt, v is pruned without evaluating left
stages. Herein p; is a pre-learned threshold. It is reasonable
since that if score of a hypothesis is much lower than its
neighborhood, it will be pruned in NMS step even it passed
all the cascade.

Semi-Negative Pruning: If score of a hypothesis at the ¢-
th stage is below a threshold s;(y) < v, all the hypotheses
in its neighborhood region N () are pruned without eval-
uating. This is because the score of a hypothesis can be
bounded by its neighborhoods under first order approxima-
tion.

The details of the neighborhood aware cascade for DP-
M are listed in Alg. 2. Z(vy) in Alg. 2 indicates whether
~ is pruned or not. The neighborhood N (7) is set to be a
5 x 5 region centered at y empirically after cross-validation.
The algorithm is started from root score computation with
the learned low rank root filter. The lines 9-15 in Alg. 2 are
used to find the best part location by searching a local region
A(po, t) and add its score. In the final step, we also use NM-
S to merge overlapping hypotheses, but the number is much
fewer than the cascade DPM. In implementation, similar to
[10], PCA is used to simplify the appearance in early stages,
and then original full filters are used at late stages. Anoth-
er useful detail is that part scores can be cached to avoid
repeated calculation by its neighborhoods.

To learn the thresholds {, v4, pt, (¢}, we run original
DPM detector on labeled object hypotheses and their neigh-
borhoods, and cache their scores of root and parts. The op-
timal threshold should be as large as possible for aggressive
pruning, but must ensure not prune true object hypotheses.

Algorithm 2 Neighborhood Aware Cascade in DPM

Input: Pre-learned thresholds { ¢, v¢, pt, (¢ }, hypothesis set I" of
an input image /, index set Z with all value initialized by 1.
Output: Detection set D
1: Calculate the root score of all hypotheses in first stage by
dense correlation between feature map and low rank root filter.
2: fort =1tondo

3 foryel & Z(y)=1do

4 if s(v) < vy then

5: Z(N(y))«0

6 else if s(y) < pr or s(N(v)) — s(y) > e then
7 Z(v)+0

8 else

9: [+ —©

10: for p € A(po,t) do

11: if s(v) — df da(p,po) > : then

12: f<_max(f7w?¢a(p71) _d?¢d(p7p0))
13: end if

14: end for

15: s(y) < s(y) + f

16: end if

17: end for

18: end for

19: D + NMS(I'(Z = 1))

Let the object hypothesis training set be X, we set p; =
min,ex s¢(7), and ¢; = min,ex (s:(7) — df pa(pr, po)),
where d} ¢4(ps, po) is the deformation cost. The yi; and v;
are defined based on neighborhoods of labeled positive hy-
potheses. We set 1, = min,ex (s:(y) — max(s:(N(7))))
and v = minyecx s:(N(7y)). Although it is better to learn
thresholds from a new validation set, we find that learning
thresholds from the training set is good enough in experi-
ments.

We note that in experiments, the semi-negative pruning
mainly appears in early stages, the semi-positive pruning
mainly appears in later stages, and the traditional “zero or-
der” pruning appears in all stages. A comparison between
cascade [10] and proposed neighborhood aware cascade on
the number of pruned parts in each stage is shown in Fig. 2.
We also try to use neighborhood aware pruning in the first
stage for root (instead of dense correlation in line 1 of Al-
g. 2), but we find that it is not as efficient as dense low rank
correlation.

6. LUT HOG

In this part we show how to dramatically reduce the com-
putation cost while generating exactly the same HOG fea-
ture.

The HOG feature map is constructed on each scale in-
dependently by resizing input image. For each scale, the
pixel-wise feature map, spatial aggregation and normaliza-
tion are operated in sequence. In pixel-wise feature map
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Figure 2. Average pruned part number at each stage on VOC 2007.

step, the gradient of each pixel is discretized into different
partitions according to the orientation. In spatial aggrega-
tion step, the gradient magnitude of each pixel is added to
its corresponding bins in four cells around it with bilinear
interpolation weight. Finally, a normalization step is ap-
plied to gain the invariance by normalizing feature vector
with energy of four cells around. By analyzing a popular
and well optimized implementation in [ 2], we find that the
first two steps takes most of the time. The analysis here is
also valid for implementations in [8, 22].

We use look-up table (LUT) to accelerate the first two
steps for HOG. With the LUT, the runtime computation is
replaced with simpler and more efficient array indexing op-
eration. It is based on the fact that the pixels in image are
represented by “uint8” integral numbers. They can only
generate limited cases of gradient orientation and magni-
tude, so that can be computed in advance and stored as part
of model initialization. LUT is also valid for the compu-
tation of the bilinear interpolation weight in spatial aggres-
sion step since that the possible bilinear weight number is
the HOG bin size.

Take the pixel-level feature map computation for exam-
ple. Since pixels are in range of [0, 255], the gradients at x
and y directions are in range of 511 integers [—255, 255].
We pre-calculate three 511 x 511 look-up tables 77, T and
T3, where 17, Ty and T3 store the index of contrast sensi-
tive and insensitive orientation partition, and the magnitude
for possible gradient combinations in = and y directions, re-
spectively. In runtime, these three values for each pixel can
be indexed in 7%, T and T3 instead of explicit computation.

The LUT based HOG computation is very simple and
easy for implementation. Our implementation based on
LUT is 6 times faster than the implementation in [11] on
the same hardware, which clears up the time bottleneck in
computing HOG feature.

7. Experiments

To evaluate the speed and accuracy of the proposed
method, experiments are conducted on Pascal VOC 2007
object detection task [9]. Due to the special interests on

pedestrian and face in real applications, we also conduc-
t experiments on challenging Caltech pedestrian detection
task [7] and AFW face detection task [36].

7.1. Pascal VOC 2007

On Pascal VOC 2007, the proposed method is imple-
mented based on DPM release4” [12]. Besides the im-
plementation of DPM release4, we compare accelerated
DPM versions, including cascade [10], branch-bound [16],
coarse-to-fine [22] and FFT [8]. All these methods except
coarse-to-fine [22] use the default setting and model in DP-
M release4, where the number of levels in an octave is 10,
HOG bin size is 8, part number for each component is 8
and component number for each category is 6. For coarse-
to-fine DPM, the setting advised by the paper [22] is used,
where component number is 4. The average feature extrac-
tion time, detection time and full time of the 20 categories
are reported in Tab. 1, where the detection time sums the
root and parts computation time. For fair comparison, all
the codes run on the same PC with 2.66GHz Intel X5650
CPU, and only one thread is used in reporting Tab. 1. The
accuracy on Pascal VOC 2007 testset (shown in Tab. 2) is
measured by average-precision (AP) [9].

Table 1. Average time (measured by second) on Pascal VOC 2007.
Note that 6 components are used for each category and the times
are measured on a single thread implementation.

Feature Extraction Detection Full Time
DPM [12] 0.46 11.77 12.23
Branch-Bound (DPM) [16] 0.46 2.75 3.21
Cascade (DPM) [10] 0.46 0.99 (0.15+0.84) 145
FFT (DPM) [8] 0.48 0.98 1.46
Coarse-to-fine (DPM) [22] 0.67 0.99 1.66
Proposed Method 0.07 0.22 (0.08+0.14) 0.29

Different DPM methods get similar accuracy on Pascal
VOC. Cascade [10], FFT [8] and coarse-to-fine [22] get
similar 10 times acceleration over the DPM release4. With
three acceleration techniques proposed in this paper, the
proposed method runs 4 times faster than these accelerat-
ed DPM methods. Compared with the cascade DPM, pro-
posed method takes 1/2 time in calculation of root, 1/6 time
in calculation parts and 1/7 time in calculation of HOG fea-
ture. Proposed method runs at 3-4 FPS for a category with
6 components per image on Pascal VOC. When paralleliza-
tion is allowed, e.g. one thread for a component, the speed
of proposed method is up to 15 FPS.

One may also be interested in the comparison between
Viola-Jones based detector and proposed method for ob-
ject detection. Detectors are trained on Pascal VOC based
on the state-of-the-art Viola-Jones style detector ACF [4],
with DPM style mixture components. Although ACF is one

2We use release4 instead of release5, mainly due to that most algo-
rithms compared are based on release4. Generally speaking, release5
would give a slight higher accuracy with exactly the same speed.



Table 2. Average-Precision (AP) of different methods on 20 categories of Pascal VOC 2007 testset.

plane | bicycle | bird | boat | bottle | bus | car | cat

chair | cow |table | dog | horse | motor | person | plant | sheep | sofa |train| tv |mean

DPM [12] 29.2 | 56.1 | 9.9 |16.5]| 24.6 |45.7|54.9(17.2
Branch-Bound (DPM) [16]| 24.1 | 56.1 | 0.0 | 9.1 | 22.2 |42.1|53.6] 9.1
Cascade (DPM) [10] 276 | 562 | 9.9 |16.6| 24.7 |45.5|55.0(17.3
FFT (DPM) [8] 30.1| 56.2 | 9.8 |15.0]| 23.7 |48.3|54.8|16.4
Coarse-to-fine (DPM) [22]| 27.9 | 54.8 [10.2|16.1| 16.2 |49.7|48.3|17.5
Proposed Method 27.1| 579 |99 |16.1]| 24.2 |45.2|54.1|17.1

21.6 |23.1]14.4|10.3| 57.6 | 47.6 | 41.9 | 12.3| 18.0 [28.2|44.2|40.1
19.2116.2{ 9.1 | 9.1 | 56.7 | 46.0 | 40.0 | 9.1 | 9.1 |24.5/42.3|37.2
21.6(22.8|14.4(10.4| 57.7 | 48.0 | 41.8 |12.3| 18.1 {28.6|44.3|40.1
22 122.4|18.1|10.5|56.3 | 46.4 | 409 |12.4| 17.7 |29.7|42.6|37.2
17.226.4|21.4|11.4|55.7 | 422 | 30.7 |11.4| 20.9 |29.1|41.5(30.0
20.9(22.7|14.4(10.3| 57.1 | 47.8 | 41.5 |12.2| 18.1 |27.8|44.2|38.5

times faster (i.e., 0.12s per image) than proposed method, it
can only get half the accuracy (i.e., 15.4 mean AP).

7.2. Caltech Pedestrians

Caltech pedestrian benchmark [7] is one of the most
challenging pedestrian detection task due to large appear-
ance variations in occlusion, pose, deformation and resolu-
tion. It is taken as a testbed to compare proposed method
with other state-of-the-art methods for pedestrian detection.
Following the protocol in [7], set00-set05 are used to train
model and set06-10 are used for test. The “reasonable” set-
ting in [7] is used to report the performance, where pedes-
trians above 50 pixels in height of each 30 frames are taken
into consideration.

We report ROC and mean miss rate of the top method-
s? plus Viola-Jones and HOG in Fig. 3. Since this paper
just considers the frame-wise detection, only methods with-
out usage of in-frame and between-frame context are com-
pared. The proposed method is on par with the best perfor-
mance method MT-DPM [33] and outperforms the Viola-
Jones style detector ACF [4] by 2%. These three methods
largely outperform other methods. We compare the speed
of these top three methods. The number of scales evaluat-
ed per octave is 5 and the mixture component number is 1,
which are good enough for pedestrian detection task. In this
setting, the proposed method runs at 10 FPS, while the MT-
DPM runs at 1.2 FPS with FFT based acceleration. The well
optimized ACF runs at 21 FPS with lower accuracy. When
6 cores are used for parallelization (mainly for HOG feature
in this experiment), speed of the proposed method is about
40 FPS, which is fast enough for most applications.

7.3. AFW Faces

The proposed method is also validated on AFW face de-
tection task [36]. It contains 205 images with 468 faces in
the wild. Model in proposed method is trained on AFLW
dataset [18]. Training faces are split into 6 components
based on the pose annotations provided in [18] with yaw
angles in [0°,30°), [30°,60°), [60°,90°] and their mirrors.
Similar to the configuration for Pascal VOC, 8 parts are used
for each component.

Recall-precision curve and average precision are used to
report the performance. The results from [36] and a very re-

3Details can be found in Dollar’s website http://www.vision.
caltech.edu/Image_Datasets/CaltechPedestrians/.

Pedestrian Detection ROC on Caltech Reasonable Set
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Figure 3. ROC curve and mean miss rate of leading methods on
Caltech “reasonable” testset. We only report pure detection meth-
ods (without context) for fair comparison. (Best viewed in color)

cent work [26] are used for comparison. Note that the TSM
(tree structure model [36]) and DPM reported in [36] are
trained on Multi-PIE, while the proposed method is trained
by more wild faces from AFLW. As shown in Fig. 4, the
proposed method obtains a 93.7% AP on AFW, which is
better than Face.com and very close to Google Picasa. The
proposed method is about 100 times faster than TSM [36].
Although accuracy is not the main concern of the paper, the
proposed method is better than TSM [36] by 5% AP. For full
yaw pose face detection in VGA image, proposed method
runs at 5 FPS on a single thread and 25 FPS if 6 threads are
used. If only frontal faces are concerned, proposed method
runs about 11 FPS (single thread) or 42 FPS (after paral-
lelization), which approximates the speed of Viola-Jones
detector in OpenCV *. Considering the large performance
gain and similar speed, the proposed method has the poten-
tial to replace Viola-Jones detector for face detection in the
wild.

8. Conclusion

In this paper, three novel techniques are proposed to
solve the speed bottleneck of deformable part model, while
maintaining its advantage in accuracy for various detection
tasks. The proposed method runs at 4 times faster than the
previous fastest DPM method on Pascal VOC. For pedes-
trian and face detection, it runs at frame-rate with state-of-

4We note that Google Picasa has similar time cost when running the
software.
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Face Detection Precision Recall Curve on AFW
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Figure 4. Face detection Precision-recall and average precision on
AFW dataset. The proposed method dramatically outperforms the
methods reported in [36] and Face.com, and very close to Google
Picasa. (Best viewed in color)

the-art accuracy, i.e. 10 FPS on a single CPU thread and 40
FPS after parallelization. We expect this work can extend
the DPM to real applications, such as video surveillance and
HCI. Techniques discussed in this paper can also be used to
accelerate related models, such as deep convolutional net-
work [19, 14], which is taken as one of the future work.

Acknowledgement

We thank the anonymous reviewers for their valu-
able feedbacks. This work was supported by the
Chinese National Natural Science Foundation Projects
61105023, 61103156, 61105037, 61203267, 61375037,
National Science and Technology Support Program Project
2013BAK02B01, Chinese Academy of Sciences Project
KGZD-EW-102-2 and AuthenMetric Research and Devel-
opment Funds.

References

[1] J.-F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization,
2010. 4

[2] E.J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal compo-
nent analysis? Journal of the ACM (JACM), 2011. 3

[3] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan,
and J. Yagnik. Fast, accurate detection of 100,000 object classes on
a single machine. In CVPR, 2013. 2

[4] P.Dollar, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids
for object detection. PAMI, 2014. 6,7

[5]1 P. Dollar, R. Appel, and W. Kienzle. Crosstalk cascades for frame-
rate pedestrian detection. In ECCV. Springer, 2012. 2, 5

[6] P. Dolldr, S. Belongie, and P. Perona. The fastest pedestrian detector
in the west. BMVC 2010, 2010. 2

[7]1 P. Dollér, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection:
An evaluation of the state of the art. PAMI, 34, 2012. 6,7

[8] C. Dubout and F. Fleuret. Exact acceleration of linear object detec-
tors. In ECCV. Springer, 2012. 1,2, 6,7

[9]1 M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. IJCV, 2010.
1,6

[10]

(11]

[12]

[13]

[14]

[15]
[16]
(17]

(18]

[19]

[20]

(21]

(22]

[23]
[24]
[25]
[26]

[27]

(28]

[29]

[30]
[31]
[32]

[33]

[34]
(35]

[36]

P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object
detection with deformable part models. In CVPR. IEEE, 2010. 1, 2,
3,4,5,6,7

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. PAMI,
2010. 1, 3,6

P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Dis-
criminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-released/. 2, 6, 7

W. T. Freeman and E. H. Adelson. The design and use of steerable
filters. TPAMI, 1991. 1

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation. In
CVPR, 2014. 8

R. B. Girshick, H. O. Song, and T. Darrell. Discriminatively activated
sparselets. In ICML, 2013. 2

I. Kokkinos. Rapid deformable object detection using dual-tree
branch-and-bound. In NIPS, 2011. 1,2,6,7

I. Kokkinos. Shufflets: Shared mid-level parts for fast object detec-
tion. In ICCV. IEEE, 2013. 2

M. Kostinger, P. Wohlhart, P. Roth, and H. Bischof. Annotated facial
landmarks in the wild: A large-scale, real-world database for facial
landmark localization. In ICCV Workshops. IEEE, 2011. 7

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, 2012. 8

C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwin-
dow search: A branch and bound framework for object localization.
PAMI, 2009. 2

R. Manduchi, P. Perona, and D. Shy. Efficient deformable filter
banks. TSP, 1998. 1

M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine approach
for fast deformable object detection. In CVPR. IEEE, 2011. 1, 2, 6,
7

H. Pirsiavash and D. Ramanan. Steerable part models. In CVPR.
IEEE, 2012. 2

V. Prisacariu and I. Reid. fasthog - a real-time gpu implementation
of hog. Technical report, Oxford University, 2009. 2

R. Rigamonti, V. Lepetit, and P. Fua. Learning separable filters. In
CVPR. IEEE, 2012. 1

X. Shen, Z. Lin, J. Brandt, and W. Ying. Detecting and aligning faces
by image retrieval. In CVPR. IEEE, 2013. 7

H. O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz, C. Gey-
er, P. Felzenszwalb, and T. Darrell. Sparselet models for efficient
multiclass object detection. In ECCV. Springer, 2012. 2

P. Sudowe and B. Leibe. Efficient Use of Geometric Constraints for
Sliding-Window Object Detection in Video. In ICVS’11,2011. 2
K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems. Pacific
Journal of Optimization, 2010. 4

P. Viola and M. Jones. Robust real-time face detection. ZJCV, 2004.
2

L. Wolf, H. Jhuang, and T. Hazan. Modeling appearances with low-
rank svm. In CVPR. IEEE, 2007. 1

J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multi-pedestrian detection in
crowded scenes: A global view. In CVPR. IEEE, 2012. 1

J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Z. Li. Robust multi-
resolution pedestrian detection in traffic scenes. In CVPR. IEEE,
2013. 1,7

J. Yan, X. Zhang, Z. Lei, D. Yi, and S. Z. Li. Structural models for
face detection. In FG. IEEE, 2013. 1

Y. Yang and D. Ramanan. Articulated pose estimation with flexible
mixtures-of-parts. In CVPR. IEEE, 2011. 1

X. Zhu and D. Ramanan. Face detection, pose estimation, and land-
mark localization in the wild. In CVPR. IEEE, 2012. 1,6, 7, 8



