
1Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.

The key idea behind the probabilistic framework to machine learn-
ing is that learning can be thought of as inferring plausible models
to explain observed data. A machine can use such models to make

predictions about future data, and take decisions that are rational given
these predictions. Uncertainty plays a fundamental part in all of this.
Observed data can be consistent with many models, and therefore which
model is appropriate, given the data, is uncertain. Similarly, predictions
about future data and the future consequences of actions are uncertain.
Probability theory provides a framework for modelling uncertainty.

This Review starts with an introduction to the probabilistic approach
to machine learning and Bayesian inference, and then discusses some of
the state-of-the-art advances in the field. Many aspects of learning and
intelligence crucially depend on the careful probabilistic representation of
uncertainty. Probabilistic approaches have only recently become a main-
stream approach to artificial intelligence1, robotics2 and machine learn-
ing3,4. Even now, there is controversy in these fields about how important
it is to fully represent uncertainty. For example, advances using deep neural
networks to solve challenging pattern-recognition problems such as speech
recognition5, image classification6,7, and prediction of words in text8, do not
overtly represent the uncertainty in the structure or parameters of those
neural networks. However, my focus will not be on these types of pattern-
recognition problems, characterized by the availability of large amounts
of data, but on problems for which uncertainty is really a key ingredient,
for example where a decision may depend on the amount of uncertainty.

I highlight five areas of current research at the frontier of probabilistic
machine learning, emphasizing areas that are of broad relevance to sci-
entists across many fields: probabilistic programming, which is a general
framework for expressing probabilistic models as computer programs
and which could have a major impact on scientific modelling; Bayes-
ian optimization, which is an approach to globally optimizing unknown
functions; probabilistic data compression; automating the discovery of
plausible and interpretable models from data; and hierarchical modelling
for learning many related models, for example for personalized medicine
or recommendation. Although considerable challenges remain, the com-
ing decade promises substantial advances in artificial intelligence and
machine learning based on the probabilistic framework.

Probabilistic modelling and representing uncertainty
At the most basic level, machine learning seeks to develop methods for
computers to improve their performance at certain tasks on the basis of

observed data. Typical examples of such tasks might include detecting
pedestrians in images taken from an autonomous vehicle, classifying
gene-expression patterns from leukaemia patients into subtypes by clin-
ical outcome, or translating English sentences into French. However, as
I discuss, the scope of machine-learning tasks is even broader than these
pattern classification or mapping tasks, and can include optimization
and decision making, compressing data and automatically extracting
interpretable models from data.

Data are the key ingredients of all machine-learning systems. But
data, even so-called big data, are useless on their own until one extracts
knowledge or inferences from them. Almost all machine-learning
tasks can be formulated as making inferences about missing or latent
data from the observed data — I will variously use the terms inference,
prediction or forecasting to refer to this general task. Elaborating the
example mentioned, consider classifying people with leukaemia into
one of the four main subtypes of this disease on the basis of each person’s
measured gene-expression patterns. Here, the observed data are pairs of
gene-expression patterns and labelled subtypes, and the unobserved or
missing data to be inferred are the subtypes for new patients. To make
inferences about unobserved data from the observed data, the learning
system needs to make some assumptions; taken together these assump-
tions constitute a model. A model can be very simple and rigid, such as a
classic statistical linear regression model, or complex and flexible, such
as a large and deep neural network, or even a model with infinitely many
parameters. I return to this point in the next section. A model is con-
sidered to be well defined if it can make forecasts or predictions about
unobserved data having been trained on observed data (otherwise, if
the model cannot make predictions it cannot be falsified, in the sense
of the philosopher Karl Popper’s proposal for evaluating hypotheses, or
as the theoretical physicist Wolfgang Pauli said the model is “not even
wrong”). For example, in the classification setting, a well-defined model
should be able to provide predictions of class labels for new patients.
Since any sensible model will be uncertain when predicting unobserved
data, uncertainty plays a fundamental part in modelling.

There are many forms of uncertainty in modelling. At the lowest
level, model uncertainty is introduced from measurement noise, for
example, pixel noise or blur in images. At higher levels, a model may
have many parameters, such as the coefficients of a linear regression,
and there is uncertainty about which values of these parameters will
be good at predicting new data. Finally, at the highest levels, there is

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning,
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization,
data compression and automatic model discovery.

Probabilistic machine learning
and artificial intelligence
Zoubin Ghahramani1

4 5 2 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEW
doi:10.1038/nature14541

© 2015 Macmillan Publishers Limited. All rights reserved

often uncertainty about even the general structure of the model: is linear
regression or a neural network appropriate, if the latter, how many layers
should it have, and so on.

The probabilistic approach to modelling uses probability theory to
express all forms of uncertainty9. Probability theory is the mathematical
language for representing and manipulating uncertainty10, in much the
same way as calculus is the language for representing and manipulating
rates of change. Fortunately, the probabilistic approach to modelling is
conceptually very simple: probability distributions are used to represent
all the uncertain unobserved quantities in a model (including structural,
parametric and noise-related) and how they relate to the data. Then the
basic rules of probability theory are used to infer the unobserved quan-
tities given the observed data. Learning from data occurs through the
transformation of the prior probability distributions (defined before
observing the data), into posterior distributions (after observing data).
The application of probability theory to learning from data is called
Bayesian learning (Box 1).

Apart from its conceptual simplicity, there are several appealing prop-
erties of the probabilistic framework for machine intelligence. Simple
probability distributions over single or a few variables can be com-
posed to form the building blocks of larger, more complex models. The
dominant paradigm in machine learning over the past two decades for
representing such compositional probabilistic models has been graphi-
cal models11, with variants including directed graphs (also known as
Bayesian networks and belief networks), undirected graphs (also known
as Markov networks and random fields), and mixed graphs with both
directed and undirected edges (Fig. 1). As discussed later, probabilistic
programming offers an elegant way of generalizing graphical models,
allowing a much richer representation of models. The compositionality
of probabilistic models means that the behaviour of these building blocks
in the context of the larger model is often much easier to understand
than, say, what will happen if one couples a non-linear dynamical system
(for example, a recurrent neural network) to another. In particular, for
a well-defined probabilistic model, it is always possible to generate data
from the model; such ‘imaginary’ data provide a window into the ‘mind’
of the probabilistic model, helping us to understand both the initial prior
assumptions and what the model has learned at any later stage.

Probabilistic modelling also has some conceptual advantages over
alternatives because it is a normative theory for learning in artificially
intelligent systems. How should an artificially intelligent system represent
and update its beliefs about the world in light of data? The Cox axioms
define some desiderata for representing beliefs; a consequence of these
axioms is that ‘degrees of belief ’, ranging from ‘impossible’ to ‘absolutely
certain’, must follow all the rules of probability theory10,12,13. This justifies
the use of subjective Bayesian probabilistic representations in artificial
intelligence. An argument for Bayesian representations in artificial intel-
ligence that is motivated by decision theory is given by the Dutch book
theorem. The argument rests on the idea that the strength of beliefs of an
agent can be assessed by asking the agent whether it would be willing to
accept bets at various odds (ratios of payoffs). The Dutch book theorem
states that unless an artificial intelligence system’s (or human’s, for that
matter) degrees of beliefs are consistent with the rules of probability it
will be willing to accept bets that are guaranteed to lose money14. Because
of the force of these and many other arguments on the importance of a
principled handling of uncertainty for intelligence, Bayesian probabilistic
modelling has emerged not only as the theoretical foundation for ration-
ality in artificial intelligence systems, but also as a model for normative
behaviour in humans and animals15–18 (but see refs 19, 20 for a discussion),
and much research is devoted to understanding how neural circuitry may
be implementing Bayesian inference21,22.

Although conceptually simple, a fully probabilistic approach to
machine learning poses a number of computational and modelling chal-
lenges. Computationally, the main challenge is that learning involves mar-
ginalizing (summing out) all the variables in the model except for the
variables of interest (Box 1). Such high-dimensional sums and integrals
are generally computationally hard, in the sense that for many models

There are two simple rules that underlie probability theory: the sum
rule:

and the product rule:

Here x and y correspond to observed or uncertain quantities, taking
values in some sets X and Y, respectively. For example, x and y might
relate to the weather in Cambridge and London, respectively, both
taking values in the set X = Y = {rainy,cloudy,sunny}. P(x) corresponds
to the probability of x, which can be either a statement about the
frequency of observing a particular value, or a subjective belief about
it. P(x,y) is the joint probability of observing x and y, and P(y|x) is the
probability of y conditioned on observing the value of x. The sum rule
states that the marginal of x is obtained by summing (or integrating
for continuous variables) the joint over y. The product rule states that
the joint can be decomposed as the product of the marginal and the
conditional. Bayes rule is a corollary of these two rules:

We can apply probability theory to machine learning by replacing
the symbols above: we replace x by D to denote the observed data,
we replace y by θ to denote the unknown parameters of a model, and
we condition all terms on m, the class of probabilistic models we are
considering. For learning, we thus get:

where P(D|θ,m) is the likelihood of parameters θ in model m,
P(θ|m) is the prior probability of θ and P(θ|D, m) is the posterior of θ
given data D.

For example, the data D might be a time series of hourly
observations of the weather in Cambridge and London, and the
model might attempt to capture the joint weather patterns at both
locations over successive hours, with parameters θ modelling
correlations over time and space. Learning is the transformation
of prior knowledge or assumptions about the parameters P(θ|m),
through the data D, into posterior knowledge about the parameters,
P(θ|D,m). This posterior is now the prior to be used for future data.
A learned model can be used to predict or forecast new unseen test
data, Dtest, by simply applying the sum and product rule to get the
prediction:

Finally, different models can be compared by applying Bayes rule
at the level of m:

The term P(D|m) is the marginal likelihood or model evidence,
and implements a preference for simpler models known as
Bayesian Ockham’s razor 78,96,97.

BOX 1

Bayesian machine learning

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 5 3

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

there is no known polynomial time algorithm for performing them
exactly. Fortunately, a number of approximate integration algorithms have
been developed, including Markov chain Monte Carlo (MCMC) meth-
ods, variational approximations, expectation propagation and sequential
Monte Carlo23–26. It is worth noting that computational techniques are one
area in which Bayesian machine learning differs from much of the rest
of machine learning: for Bayesian researchers the main computational
problem is integration, whereas for much of the rest of the community the
focus is on optimization of model parameters. However, this dichotomy
is not as stark as it appears: many gradient-based optimization meth-
ods can be turned into integration methods through the use of Langevin
and Hamiltonian Monte Carlo methods27,28, while integration problems
can be turned into optimization problems through the use of variational
approximations24. I revisit optimization in a later section.

The main modelling challenge for probabilistic machine learning is
that the model should be flexible enough to capture all the properties of
the data required to achieve the prediction task of interest. One approach
to addressing this challenge is to develop a prior distribution that encom-
passes an open-ended universe of models that can adapt in complexity to
the data. The key statistical concept underlying flexible models that grow
in complexity with the data is non-parametrics.

Flexibility through non-parametrics
One of the lessons of modern machine learning is that the best predic-
tive performance is often obtained from highly flexible learning systems,
especially when learning from large data sets. Flexible models can make
better predictions because to a greater extent they allow data to ‘speak
for themselves’. (But note that all predictions involve assumptions and

therefore the data are never exclusively ‘speaking for themselves’.) There
are essentially two ways of achieving flexibility. The model could have
a large number of parameters compared with the data set (for exam-
ple, the neural network recently used to achieve translations of English
and French sentences that approached the accuracy of state-of-the-art
methods is a probabilistic model with 384 million parameters29). Alter-
natively, the model can be defined using non-parametric components.

The best way to understand non-parametric models is through com-
parison to parametric ones. In a parametric model, there are a fixed,
finite number of parameters, and no matter how much training data
are observed, all the data can do is set these finitely many parameters
that control future predictions. By contrast, non-parametric approaches
have predictions that grow in complexity with the amount of training
data, either by considering a nested sequence of parametric models with
increasing numbers of parameters or by starting out with a model with
infinitely many parameters. For example, in a classification problem,
whereas a linear (parametric) classifier will always make predictions
using a linear boundary between classes, a non-parametric classifier can
learn a non-linear boundary whose shape becomes more complex with
more data. Many non-parametric models can be derived starting from
a parametric model and considering what happens as the model grows
to the limit of infinitely many parameters30. Clearly, fitting a model with
infinitely many parameters to finite training data would result in ‘over-
fitting’, in the sense that the model’s predictions might reflect quirks
of the training data rather than regularities that can be generalized to
test data. Fortunately, Bayesian approaches are not prone to this kind
of overfitting since they average over, rather than fit, the parameters
(Box 1). Moreover, for many applications we have such huge data sets
that the main concern is underfitting from the choice of an overly sim-
plistic parametric model, rather than overfitting.

A full discussion of Bayesian non-parametrics is outside the scope of
this Review (see refs 9, 31, 32 for this), but it is worth mentioning a few
of the key models. Gaussian processes are a very flexible non-paramet-
ric model for unknown functions, and are widely used for regression,
classification, and many other applications that require inference on
functions33. Consider learning a function that relates the dose of some
chemical to the response of an organism to that chemical. Instead of
modelling this relationship with, say, a linear parametric function, a
Gaussian process could be used to learn directly a non-parametric dis-
tribution of non-linear functions consistent with the data. A notable
example of a recent application of Gaussian processes is GaussianFace, a
state-of-the-art approach to face recognition that outperforms humans
and deep-learning methods34. Dirichlet processes are a non-paramet-
ric model with a long history in statistics35 and are used for density
estimation, clustering, time-series analysis and modelling the topics
of documents36. To illustrate Dirichlet processes, consider an applica-
tion to modelling friendships in a social network, where each person
can belong to one of many communities. A Dirichlet process makes it
possible to have a model whereby the number of inferred communities
(that is, clusters) grows with the number of people37. Dirichlet processes
have also been used for clustering gene-expression patterns38,39. The
Indian buffet process (IBP)40 is a non-parametric model that can be
used for latent feature modelling, learning overlapping clusters, sparse
matrix factorization, or to non-parametrically learn the structure of
a deep network41. Elaborating the social network modelling example,
an IBP-based model allows each person to belong to some subset of a
large number of potential communities (for example, as defined by dif-
ferent families, workplaces, schools, hobbies, and so on) rather than a
single community, and the probability of friendship between two people
depends on the number of overlapping communities they have42. In this
case, the latent features of each person correspond to the communities,
which are not assumed to be observed directly. The IBP can be thought
of as a way of endowing Bayesian non-parametric models with ‘distrib-
uted representations’, as popularized in the neural network literature43.
An interesting link between Bayesian non-parametrics and neural net-
works is that, under fairly general conditions, a neural network with

Figure 1 | Bayesian inference. A simple example of Bayesian inference
applied to a medical diagnosis problem. Here the problem is diagnosing a rare
disease using information from the patient’s symptoms and, potentially, the
patient’s genetic marker measurements, which indicate predisposition (gen
pred) to this disease. In this example, all variables are assumed to be binary.
T, true; F, false. The relationships between variables are indicated by directed
arrows and the probability of each variable given other variables they directly
depend on is also shown. Yellow nodes denote measurable variables, whereas
green nodes denote hidden variables. Using the sum rule (Box 1), the prior
probability of the patient having the rare disease is: P(rare disease = T) = P(rare
disease = T|gen pred = T) p(gen pred = T) + p(rare disease = T|gen pred = F) p(gen
pred = F) = 1.1 × 10−5. Applying Bayes rule we find that for a patient observed
to have the symptom, the probability of the rare disease is: p(rare disease =
T|symptom = T) = 8.8 × 10−4, whereas for a patient observed to have the genetic
marker (gen marker) it is p(rare disease = T|gen marker = T) = 7.9 × 10−4.
Assuming that the patient has both the symptom and the genetic marker the
probability of the rare disease increases to p(rare disease = T|symptom = T,
gen marker = T) = 0.06. Here, we have shown fixed, known model parameters,
that is, the numbers θ = (10−4, 0.1, 10−6, 0.8, 0.01, 0.8, 0.01). However, both these
parameters and the structure of the model (the presence or absence of arrows
and additional hidden variables) could be learned from a data set of patient
records using the methods in Box 1.

Rare
disease

Genetic
predisposition

Symptom Genetic
markers

P(gen pred = T) = 10–4

P(gen marker = T | gen pred = T) = 0.8

P(gen marker = T | gen pred = F) = 0.01

P(symptom = T | rare disease = T) = 0.8

P(symptom = T | rare disease = F) = 0.01

P(rare disease = T | gen pred = T) = 0.1

P(rare disease = T | gen pred = F) = 10–6

4 5 4 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

infinitely many hidden units is equivalent to a Gaussian process44. Note
that the above non-parametric components should be thought of again
as building blocks, which can be composed into more complex models
as described earlier. The next section describes an even more power-
ful way of composing models — through probabilistic programming.

Probabilistic programming
The basic idea in probabilistic programming is to use computer pro-
grams to represent probabilistic models (http://probabilistic-program-
ming.org)45–47. One way to do this is for the computer program to define
a generator for data from the probabilistic model, that is, a simulator
(Fig. 2). This simulator makes calls to a random number generator in
such a way that repeated runs from the simulator would sample different
possible data sets from the model. This simulation framework is more
general than the graphical model framework described previously since
computer programs can allow constructs such as recursion (functions
calling themselves) and control flow statements (for example, ‘if ’ state-
ments that result in multiple paths a program can follow), which are
difficult or impossible to represent in a finite graph. In fact, for many
of the recent probabilistic programming languages that are based on
extending Turing-complete languages (a class that includes almost all
commonly used languages), it is possible to represent any computable
probability distribution as a probabilistic program48.

The full potential of probabilistic programming comes from automat-
ing the process of inferring unobserved variables in the model condi-
tioned on the observed data (Box 1). Conceptually, conditioning needs
to compute input states of the program that generate data matching the
observed data. Whereas normally we think of programs running from
inputs to outputs, conditioning involves solving the inverse problem of
inferring the inputs (in particular the random number calls) that match
a certain program output. Such conditioning is performed by a ‘univer-
sal inference engine’, usually implemented by Monte Carlo sampling
over possible executions of the simulator program that are consistent
with the observed data. The fact that defining such universal inference
algorithms for computer programs is even possible is somewhat surpris-
ing, but it is related to the generality of certain key ideas from sampling
such as rejection sampling, sequential Monte Carlo methods25 and
‘approximate Bayesian computation’49.

As an example, imagine you write a probabilistic program that simu-
lates a gene regulatory model that relates unmeasured transcription

factors to the expression levels of certain genes. Your uncertainty in each
part of the model would be represented by the probability distributions
used in the simulator. The universal inference engine can then condition
the output of this program on the measured expression levels, and auto-
matically infer the activity of the unmeasured transcription factors and
other uncertain model parameters. Another application of probabilistic
programming implements a computer vision system as the inverse of a
computer graphics program50.

There are several reasons why probabilistic programming could
prove to be revolutionary for machine intelligence and scientific mod-
elling (its potential has been noticed by US Defense Advanced Research
Projects Agency, which is currently funding a major programme called
Probabilistic Programming for Advancing Machine Learning). First,
the universal inference engine obviates the need to manually derive
inference methods for models. Since deriving and implementing
inference methods is generally the most rate-limiting and bug-prone
step in modelling, often taking months, automating this step so that
it takes minutes or seconds will greatly accelerate the deployment of
machine learning systems. Second, probabilistic programming could
be potentially transformative for the sciences, since it allows for rapid
prototyping and testing of different models of data. Probabilistic pro-
gramming languages create a very clear separation between the model
and the inference procedures, encouraging model-based thinking51.
There are a growing number of probabilistic programming languages.
BUGS52, Stan53, AutoBayes54 and Infer.NET55 allow only a restrictive
class of models to be represented compared with systems based on
Turing-complete languages. In return for this restriction, inference
in such languages can be much faster than for the more general lan-
guages56, such as IBAL57, BLOG58, Church59, Figaro60, Venture61, and
Anglican62. A major emphasis of recent work is on fast inference in
general languages (see for example ref. 63). Nearly all approaches to
probabilistic programming are Bayesian since it is hard to create other
coherent frameworks for automated reasoning about uncertainty.
Notable exceptions are systems such as Theano, which is not itself a
probabilistic programming language but uses symbolic differentia-
tion to speed up and automate optimization of parameters of neural
networks and other probabilistic models64.

Although parameter optimization is commonly used to improve
probabilistic models, in the next section I will describe recent work
on how probabilistic modelling can be used to improve optimization.

Figure 2 | Probabilistic programming. A probabilistic program in Julia
(left) defining a simple three-state hidden Markov model (HMM), inspired
by an example in ref. 62. The HMM is a widely used probabilistic model for
sequential and time-series data, which assumes the data were obtained by
transitioning stochastically between a discrete number of hidden states98.
The first four lines define the model parameters and the data. Here ‘trans’ is
the 3 × 3 state-transition matrix, ‘initial’ is the initial state distribution, and
‘statesmean’ are the mean observations for each of the three states; actual
observations are assumed to be noisy versions of this mean with Gaussian
noise. The function hmm starts the definition of the HMM, drawing the

sequence of states with the @assume statements, and conditioning on the
observed data with the @observe statements. Finally @predict states that we
wish to infer the states and data; this inference is done automatically by the
universal inference engine, which reasons over the configurations of this
computer program. It would be trivial to modify this program so that the
HMM parameters are unknown rather than fixed. A graphical model (right)
corresponding to the HMM probabilistic program showing dependencies
between the parameters (blue), hidden state variables (green) and observed
data (yellow). This graphical model highlights the compositional nature of
probabilistic models.

statesmean = [-1, 1, 0] # Emission parameters.
initial = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]),
 Categorical([0.15, 0.15, 0.7])] # Trans distr for each state.
data = [Nil, 0.9, 0.8, 0.7, 0, -0.025, -5, -2, -0.1, 0, 0.13]

@model hmm begin # Define a model hmm.
 states = Array(Int, length(data))
 @assume(states[1] ~ initial)
 for i = 2:length(data)
 @assume(states[i] ~ trans[states[i-1]])
 @observe(data[i] ~ Normal(statesmean[states[i]], 0.4))
 end
 @predict states
end

states[1] states[2] states[3] …

…data[1] data[2] data[3]

initial trans

statesmean

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 5 5

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

Bayesian optimization
Consider the very general problem of finding the global maximum of an
unknown function that is expensive to evaluate (say, evaluating the func-
tion requires performing lots of computation or conducting an experi-
ment). Mathematically, for a function f on a domain X, the goal is to find
a global maximizer x*:

Bayesian optimization poses this as a problem in sequential deci-
sion theory: where should one evaluate next so as most quickly to
maximize f, taking into account the gain in information about the
unknown function f (refs 65,66)? For example, having evaluated at
three points, measuring the corresponding values of the function at
those points, [(x1, f(x1)), (x2,f(x2)),(x3,f(x3))], which point x should
the algorithm evaluate next, and where does it believe the maximum
to be? This is a classic machine-intelligence problem with a wide
range of applications in science and engineering, from drug design
(where the function could be the drug’s efficacy) to robotics (where
the function could be the speed of a robot’s gait). It can be applied
to any problem involving the optimization of expensive functions;
the qualifier ‘expensive’ comes because Bayesian optimization might
use substantial computational resources to decide where to evaluate
next, and a trade-off for these resources has to be made with the cost
of function evaluations.

The current best-performing global optimization methods maintain a
Bayesian representation of the probability distribution over the uncertain
function f being optimized, and use this uncertainty to decide where
(in X) to query next67–69. In continuous spaces, most Bayesian optimiza-
tion methods (Fig. 3) use Gaussian processes (as described in the section
on non-parametrics) to model the unknown function. A recent high-
impact application has been the optimization of the training process for
machine-learning models, including deep neural networks70. This and
related recent work71 are further examples of the application of machine
intelligence to improve machine intelligence.

There are interesting links between Bayesian optimization and rein-
forcement learning. Specifically, Bayesian optimization is a sequential
decision problem where the decisions (choices of x to evaluate) do
not affect the state of the system (the actual function f). Such state-less
sequential decision problems fall under the rubric of multi-arm bandits72,

a subclass of reinforcement-learning problems. More broadly, important
recent work takes a Bayesian approach to learning to control uncertain
systems73 (for a review see ref. 74). Faithfully representing uncertainty
about the future outcome of actions is particularly important in decision
and control problems. Good decisions rely on good representations of
the probability of different outcomes and their relative payoffs.

More generally, Bayesian optimization is a special case of Bayesian
numerical computation75,76, which is re-emerging as a very active area of
research (http://www.probabilistic-numerics.org), and includes topics
such as solving ordinary differential equations and numerical integration.
In all these cases, probability theory is being used to represent computa-
tional uncertainty; that is, the uncertainty that one has about the outcome
of a deterministic computation.

Data compression
Consider the problem of compressing data so as to communicate them
or store them in as few bits as possible in such a manner that the original
data can be recovered exactly from the compressed data. Methods for such
lossless data compression are ubiquitous in information technology, from
computer hard drives to data transfer over the internet. Data compression
and probabilistic modelling are two sides of the same coin, and Bayesian
machine-learning methods are increasingly advancing the state-of-the-art
in compression. The connection between compression and probabilistic
modelling was established in the mathematician Claude Shannon’s semi-
nal work on the source coding theorem77, which states that the number
of bits required to compress data in a lossless manner is bounded by the
entropy of the probability distribution of the data. All commonly used
lossless data compression algorithms (for example, gzip) can be viewed
as probabilistic models of sequences of symbols.

The link to Bayesian machine learning is that the better the
probabilistic model one learns, the higher the compression rate
can be78. These models need to be flexible and adaptive, since dif-
ferent kinds of sequences have very different statistical patterns
(say, Shakespeare’s plays or computer source code). It turns out
that some of the world’s best compression algorithms (for example,
Sequence Memoizer79 and PPM with dynamic parameter updates80)
are equivalent to Bayesian non-parametric models of sequences,
and improvements to compression are being made through a better
understanding of how to learn the statistical structure of sequences.
Future advances in compression will come with advances in

Figure 3 | Bayesian optimization. A simple illustration of Bayesian
optimization in one dimension. The goal is to maximize some true
unknown function f (not shown). Information about this function is
gained by making observations (circles, top), which are evaluations of
the function at specific x values. These observations are used to infer a
posterior distribution over the function values (shown as mean, blue line;
and standard deviations, blue shaded area) representing the distribution of
possible functions; note that uncertainty grows away from the observations.
On the basis of this distribution over functions, an acquisition function is

computed (green shaded area, bottom panels), which represents the gain
from evaluating the unknown function f at different x values; note that the
acquisition function is high where the posterior over f has both high mean
and large uncertainty. Different acquisition functions can be used such as
‘expected improvement’ or ‘information gain’. The peak of the acquisition
function (red line) is the best next point to evaluate, and is therefore chosen
for evaluation (red dot, new observation). The left and right panels show
an example of what could happen after three and four function evaluations,
respectively.

t = 4t = 3

New
observation

A
cq

u
is

iti
on

 f
u
n
ct

io
n

P
os

te
ri

or

A
cq

u
is

iti
on

 f
u
n
ct

io
n

P
os

te
ri

or

Next
point

4 5 6 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

probabilistic machine learning, including special compression
methods for non-sequence data such as images, graphs and other
structured objects.

Automatic discovery of interpretable models from data
One of the grand challenges of machine learning is to fully automate the
process of learning and explaining statistical models from data. This is the
goal of the Automatic Statistician (http://www.automaticstatistician.com),
a system that can automatically discover plausible models from data, and
explain what it has discovered in plain English81. This could be useful
to almost any field of endeavour that is reliant on extracting knowledge
from data. In contrast to the methods described in much of the machine-
learning literature, which have been focused on extracting increasing

performance improvements on pattern-recognition problems using
techniques such as kernel methods, random forests or deep learning, the
Automatic Statistician builds models that are composed of interpretable
components, and has a principled way of representing uncertainty about
model structures given the data. It also gives reasonable answers not just
for big data sets, but also for small ones. Bayesian approaches provide an
elegant way of trading off the complexity of the model and the complexity
of the data, and probabilistic models are compositional and interpretable,
as already described.

A prototype version of the Automatic Statistician takes in time-series
data and automatically generates 5–15 page reports describing the model
it has discovered (Fig. 4). This system is based on the idea that proba-
bilistic building blocks can be combined through a grammar to build

Figure 4 | The Automatic Statistician. A flow diagram describing the
Automatic Statistician. The input to the system is data, in this case
represented as time series (top left). The system searches over a grammar
of models to discover a good interpretation of the data (bottom left), using
Bayesian inference to score the models (Box 1). Components of the model

discovered are translated into English phrases (bottom right). The end
result is a report with text, figures and tables, describing in detail what has
been inferred about the data, including a section on model checking and
criticism (top right)99,100. Data and the report are for illustrative purposes
only.

No structure

SE LIN

LIN + PER LIN × SE

LIN × SE + SE ... LIN × (SE + PER)

...

...

... LIN × PER

PER

1955 1965 1975 1985 1995
0

50

100

150

200

250

1960 1970 1980 1990 2000 2010
−30

−20

−10

0

10

20

30

40

1650 1700 1750 1800 1850 1900 1950 2000 2050
1360

1360.5

1361

1361.5

1362

SE

approximately
× PER

periodic function

LIN

with linearly growing amplitude

ACF Periodogram QQ
min min loc max max loc max min
1 0.613 0.946 0.684 0.175 0.071 0.886
2 0.265 0.654 0.967 0.155 0.070 0.896
3 0.670 0.372 0.523 0.455 0.019 0.474
4 0.520 0.519 0.679 0.678 0.368 0.661

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6

Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
136.0

1360.5

136.1

1361.5

136.2

This component is approximately periodic with a period of 10.7 years. Across periods the shape
of this function varies smoothly with a typical length scale of 34.4 years. The shape of this
function within each period is very smooth and resembles a sinusoid. This component applies
until 1643 and from 1716 onwards. This component explains 72.4% of the residual variance;
this increases the total variance explained from 73.0% to 92.5%. The addition of this component
reduces the cross validated MAE by 16.67% from 0.18 to 0.15.

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

QQ uncertainty plot for component 2

–200 –150 –100 –50 0 50 100 150 200 250
–300

–200

–100

0

100

200

300

400

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 5 7

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

an open-ended language of models82. In contrast to work on equation
learning (see for example ref. 83), the models attempt to capture general
properties of functions (for example, smoothness, periodicity or trends)
rather than a precise equation. Handling uncertainty is at the core of the
Automatic Statistician; it makes use of Bayesian non-parametrics to give
it the flexibility to obtain state-of-the-art predictive performance, and
uses the metric marginal likelihood (Box 1) to search the space of models.

Important earlier work includes statistical expert systems84,85 and the
Robot Scientist, which integrates machine learning and scientific discov-
ery in a closed loop with an experimental platform in microbiology to
automate the design and execution of new experiments86. Auto-WEKA
is a recent project that automates learning classifiers, making heavy use of
the Bayesian optimization techniques already described71. Efforts to auto-
mate the application of machine-learning methods to data have recently
gained momentum, and may ultimately result in artificial intelligence
systems for data science.

Perspective
The information revolution has resulted in the availability of ever larger
collections of data. What is the role of uncertainty in modelling such big
data? Classic statistical results state that under certain regularity condi-
tions, in the limit of large data sets the posterior distribution of the param-
eters for Bayesian parametric models converges to a single point around
the maximum likelihood estimate. Does this mean that Bayesian proba-
bilistic modelling of uncertainty is unnecessary if you have a lot of data?

There are at least two reasons this is not the case87. First, as we have
seen, Bayesian non-parametric models have essentially infinitely many
parameters, so no matter how many data one has, their capacity to learn
should not saturate, and their predictions should continue to improve.

Second, many large data sets are in fact large collections of small data
sets. For example, in areas such as personalized medicine and recom-
mendation systems, there might be a large amount of data, but there is still
a relatively small amount of data for each patient or client, respectively.
To customize predictions for each person it becomes necessary to build a
model for each person — with its inherent uncertainties — and to couple
these models together in a hierarchy so that information can be borrowed
from other similar people. We call this the personalization of models, and
it is naturally implemented using hierarchical Bayesian approaches such
as hierarchical Dirichlet processes36, and Bayesian multitask learning88,89.

Probabilistic approaches to machine learning and intelligence are a very
active area of research with wide-ranging impact beyond conventional
pattern-recognition problems. As I have outlined, these problems include
data compression, optimization, decision making, scientific model dis-
covery and interpretation, and personalization. The key distinction
between problems in which a probabilistic approach is important and
problems that can be solved using non-probabilistic machine-learning
approaches is whether uncertainty has a central role. Moreover, most
conventional optimization-based machine-learning approaches have
probabilistic analogues that handle uncertainty in a more principled
manner. For example, Bayesian neural networks represent the parameter
uncertainty in neural networks44, and mixture models are a probabilistic
analogue for clustering methods78. Although probabilistic machine learn-
ing often defines how to solve a problem in principle, the central chal-
lenge in the field is finding how to do so in practice in a computationally
efficient manner90,91. There are many approaches to the efficient approxi-
mation of computationally hard inference problems. Modern inference
methods have made it possible to scale to millions of data points, making
probabilistic methods computationally competitive with conventional
methods92–95. Ultimately, intelligence relies on understanding and acting
in an imperfectly sensed and uncertain world. Probabilistic modelling will
continue to play a central part in the development of ever more powerful
machine learning and artificial intelligence systems. ■
Received 12 February; accepted 21 April 2015.

1. Russell, S. & Norvig, P. Artificial Intelligence: a Modern Approach (Prentice–Hall,
1995).

2. Thrun, S., Burgard, W. & Fox, D. Probabilistic Robotics (MIT Press, 2006).

3. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).
4. Murphy, K. P. Machine Learning: A Probabilistic Perspective (MIT Press, 2012).
5. Hinton, G. et al. Deep neural networks for acoustic modeling in speech

recognition: the shared views of four research groups. IEEE Signal Process. Mag.
29, 82–97 (2012).

6. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with
deep convolutional neural networks. In Proc. Advances in Neural Information
Processing Systems 25 1097–1105 (2012).

7. Sermanet, P. et al. Overfeat: integrated recognition, localization and detection
using convolutional networks. In Proc. International Conference on Learning
Representations http://arxiv.org/abs/1312.6229 (2014).

8. Bengio, Y., Ducharme, R., Vincent, P. & Janvin, C. A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003).

9. Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to
modelling. Phil. Trans. R. Soc. A 371, 20110553 (2013).

 A review of Bayesian non-parametric modelling written for a general scientific
audience.

10. Jaynes, E. T. Probability Theory: the Logic of Science (Cambridge Univ. Press,
2003).

11. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and
Techniques (MIT Press, 2009).

 This is an encyclopaedic text on probabilistic graphical models spanning
many key topics.

12. Cox, R. T. The Algebra of Probable Inference (Johns Hopkins Univ. Press, 1961).
13. Van Horn, K. S. Constructing a logic of plausible inference: a guide to Cox’s

theorem. Int. J. Approx. Reason. 34, 3–24 (2003).
14. De Finetti, B. La prévision: ses lois logiques, ses sources subjectives. In Annales

de l’institut Henri Poincaré [in French] 7, 1–68 (1937).
15. Knill, D. & Richards, W. Perception as Bayesian inference (Cambridge Univ.

Press, 1996).
16. Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition.

Psychol. Sci. 17, 767–773 (2006).
17. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for

sensorimotor integration. Science 269, 1880–1882 (1995).
18. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a

mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).
19. Marcus, G. F. & Davis, E. How robust are probabilistic models of higher-level

cognition? Psychol. Sci. 24, 2351–2360 (2013).
20. Goodman, N. D. et al. Relevant and robust a response to Marcus and Davis

(2013). Psychol. Sci. 26, 539–541 (2015).
21. Doya, K., Ishii, S., Pouget, A. & Rao, R. P. N. Bayesian Brain: Probabilistic

Approaches to Neural Coding (MIT Press, 2007).
22. Deneve, S. Bayesian spiking neurons I: inference. Neural Comput. 20, 91–117

(2008).
23. Neal, R. M. Probabilistic Inference Using Markov Chain Monte Carlo Methods.

Report No. CRG-TR-93–1 http://www.cs.toronto.edu/~radford/review.abstract.
html (Univ. Toronto, 1993).

24. Jordan, M., Ghahramani, Z., Jaakkola, T. & Saul, L. An introduction to variational
methods in graphical models. Mach. Learn. 37, 183–233 (1999).

25. Doucet, A., de Freitas, J. F. G. & Gordon, N. J. Sequential Monte Carlo Methods in
Practice (Springer, 2000).

26. Minka, T. P. Expectation propagation for approximate Bayesian inference. In
Proc. Uncertainty in Artificial Intelligence 17 362–369 (2001).

27. Neal, R. M. In Handbook of Markov Chain Monte Carlo (eds Brooks, S., Gelman, A.,
Jones, G. & Meng, X.-L.) (Chapman & Hall/CRC, 2010).

28. Girolami, M. & Calderhead, B. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. J. R. Stat. Soc. Series B Stat. Methodol. 73, 123–214
(2011).

29. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural
networks. In Proc. Advances in Neural Information Processing Systems 27,
3104–3112 (2014).

30. Neal, R. M. in Maximum Entropy and Bayesian Methods 197–211 (Springer,
1992).

31. Orbanz, P. & Teh, Y. W. in Encyclopedia of Machine Learning 81–89 (Springer,
2010).

32. Hjort, N., Holmes, C., Müller, P. & Walker, S. (eds). Bayesian Nonparametrics
(Cambridge Univ. Press, 2010).

33. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning
(MIT Press, 2006).

 This is a classic monograph on Gaussian processes, relating them to kernel
methods and other areas of machine learning.

34. Lu, C. & Tang, X. Surpassing human-level face verification performance on LFW
with GaussianFace. In Proc. 29th AAAI Conference on Artificial Intelligence http://
arxiv.org/abs/1404.3840 (2015).

35. Ferguson, T. S. A Bayesian analysis of some nonparametric problems. Ann. Stat.
1, 209–230 (1973).

36. Teh, Y. W., Jordan, M. I., Beal, M. J. & Blei, D. M. Hierarchical Dirichlet processes.
J. Am. Stat. Assoc. 101, 1566–1581 (2006).

37. Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T. & Ueda, N. Learning
systems of concepts with an infinite relational model. In Proc. 21st National
Conference on Artificial Intelligence 381–388 (2006).

38. Medvedovic, M. & Sivaganesan, S. Bayesian infinite mixture model based
clustering of gene expression profiles. Bioinformatics 18, 1194–1206 (2002).

39. Rasmussen, C. E., De la Cruz, B. J., Ghahramani, Z. & Wild, D. L. Modeling and
visualizing uncertainty in gene expression clusters using Dirichlet process
mixtures. Trans. Comput. Biol. Bioinform. 6, 615–628 (2009).

4 5 8 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

40. Griffiths, T. L. & Ghahramani, Z. The Indian buffet process: an introduction and
review. J. Mach. Learn. Res. 12, 1185–1224 (2011).

 This article introduced a new class of Bayesian non-parametric models for
latent feature modelling.

41. Adams, R. P., Wallach, H. & Ghahramani, Z. Learning the structure of deep
sparse graphical models. In Proc. 13th International Conference on Artificial
Intelligence and Statistics (eds Teh, Y. W. & Titterington, M.) 1–8 (2010).

42. Miller, K., Jordan, M. I. & Griffiths, T. L. Nonparametric latent feature models
for link prediction. In Proc. Advances in Neural Information Processing Systems
1276–1284 (2009).

43. Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition: Foundations 77–109
(MIT Press, 1986).

44. Neal, R. M. Bayesian Learning for Neural Networks (Springer, 1996).
 This text derived MCMC-based Bayesian inference in neural networks and

drew important links to Gaussian processes.
45. Koller, D., McAllester, D. & Pfeffer, A. Effective Bayesian inference for stochastic

programs. In Proc. 14th National Conference on Artificial Intelligence 740–747
(1997).

46. Goodman, N. D. & Stuhlmüller, A. The Design and Implementation of Probabilistic
Programming Languages. Available at http://dippl.org (2015).

47. Pfeffer, A. Practical Probabilistic Programming (Manning, 2015).
48. Freer, C., Roy, D. & Tenenbaum, J. B. in Turing’s Legacy (ed. Downey, R.)

195–252 (2014).
49. Marjoram, P., Molitor, J., Plagnol, V. & Tavaré, S. Markov chain Monte Carlo

without likelihoods. Proc. Natl Acad. Sci. USA 100, 15324–15328 (2003).
50. Mansinghka, V., Kulkarni, T. D., Perov, Y. N. & Tenenbaum, J. Approximate

Bayesian image interpretation using generative probabilistic graphics
programs. In Proc. Advances in Neural Information Processing Systems 26
1520–1528 (2013).

51. Bishop, C. M. Model-based machine learning. Phil. Trans. R. Soc. A 371,
20120222 (2013).

 This article is a very clear tutorial exposition of probabilistic modelling.
52. Lunn, D. J., Thomas, A., Best, N. & Spiegelhalter, D. WinBUGS — a Bayesian

modelling framework: concepts, structure, and extensibility. Stat. Comput. 10,
325–337 (2000).

 This reports an early probabilistic programming framework widely used in
statistics.

53. Stan Development Team. Stan Modeling Language Users Guide and Reference
Manual, Version 2.5.0. http://mc-stan.org/ (2014).

54. Fischer, B. & Schumann, J. AutoBayes: a system for generating data analysis
programs from statistical models. J. Funct. Program. 13, 483–508 (2003).

55. Minka, T. P., Winn, J. M., Guiver, J. P. & Knowles, D. A. Infer.NET 2.4. http://
research.microsoft.com/infernet (Microsoft Research, 2010).

56. Wingate, D., Stuhlmüller, A. & Goodman, N. D. Lightweight implementations of
probabilistic programming languages via transformational compilation. In Proc.
International Conference on Artificial Intelligence and Statistics 770–778 (2011).

57. Pfeffer, A. IBAL: a probabilistic rational programming language. In Proc.
International Joint Conference on Artificial Intelligence 733–740 (2001).

58. Milch, B. et al. BLOG: probabilistic models with unknown objects. In Proc. 19th
International Joint Conference on Artificial Intelligence 1352–1359 (2005).

59. Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K. & Tenenbaum, J. Church: a
language for generative models. In Proc. Uncertainty in Artificial Intelligence 22
23 (2008).

 This is an influential paper introducing the Turing-complete probabilistic
programming language Church.

60. Pfeffer, A. Figaro: An Object-Oriented Probabilistic Programming Language. Tech.
Rep. (Charles River Analytics, 2009).

61. Mansinghka, V., Selsam, D. & Perov, Y. Venture: a higher-order probabilistic
programming platform with programmable inference. Preprint at http://arxiv.
org/abs/1404.0099 (2014).

62. Wood, F., van de Meent, J. W. & Mansinghka, V. A new approach to probabilistic
programming inference. In Proc. 17th International Conference on Artificial
Intelligence and Statistics 1024–1032 (2014).

63. Li, L., Wu, Y. & Russell, S. J. SWIFT: Compiled Inference for Probabilistic Programs.
Report No. UCB/EECS-2015–12 (Univ. California, Berkeley, 2015).

64. Bergstra, J. et al. Theano: a CPU and GPU math expression compiler. In Proc.
9th Python in Science Conference http://conference.scipy.org/proceedings/
scipy2010/ (2010).

65. Kushner, H. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. J. Basic Eng. 86, 97–106 (1964).

66. Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of
expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998).

67. Brochu, E., Cora, V. M. & de Freitas, N. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. Preprint at http://arXiv.org/
abs/1012.2599 (2010).

68. Hennig, P. & Schuler, C. J. Entropy search for information-efficient global
optimization. J. Mach. Learn. Res. 13, 1809–1837 (2012).

69. Hernández-Lobato, J. M., Hoffman, M. W. & Ghahramani, Z. Predictive entropy
search for efficient global optimization of black-box functions. In Proc. Advances
in Neural Information Processing Systems 918–926 (2014).

70. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of
machine learning algorithms. In Proc. Advances in Neural Information Processing
Systems 2960–2968 (2012).

71. Thornton, C., Hutter, F., Hoos, H. H. & Leyton-Brown, K. Auto-WEKA: combined

selection and hyperparameter optimization of classification algorithms. In Proc.
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining 847–855 (2013).

72. Robbins, H. Some aspects of the sequential design of experiments. Bull. Amer.
Math. Soc. 55, 527–535 (1952).

73. Deisenroth, M. P. & Rasmussen, C. E. PILCO: a model-based and data-efficient
approach to policy search. In Proc. 28th International Conference on Machine
Learning 465–472 (2011).

74. Poupart, P. in Encyclopedia of Machine Learning 90–93 (Springer, 2010).
75. Diaconis, P. in Statistical Decision Theory and Related Topics IV 163–175

(Springer, 1988).
76. O’Hagan, A. Bayes-Hermite quadrature. J. Statist. Plann. Inference 29, 245–260

(1991).
77. Shannon, C. & Weaver, W. The Mathematical Theory of Communication (Univ.

Illinois Press, 1949).
78. MacKay, D. J. C. Information Theory, Inference, and Learning Algorithms

(Cambridge Univ. Press, 2003).
79. Wood, F., Gasthaus, J., Archambeau, C., James, L. & Teh, Y. W. The sequence

memoizer. Commun. ACM 54, 91–98 (2011).
 This article derives a state-of-the-art data compression scheme based on

Bayesian nonparametric models.
80. Steinruecken, C., Ghahramani, Z. & MacKay, D. J. C. Improving PPM with

dynamic parameter updates. In Proc. Data Compression Conference (in the
press).

81. Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B. & Ghahramani, Z.
Automatic construction and natural-language description of nonparametric
regression models. In Proc. 28th AAAI Conference on Artificial Intelligence
Preprint at: http://arxiv.org/abs/1402.4304 (2014).

 Introduces the Automatic Statistician, translating learned probabilistic
models into reports about data.

82. Grosse, R. B., Salakhutdinov, R. & Tenenbaum, J. B. Exploiting compositionality
to explore a large space of model structures. In Proc. Conference on Uncertainty
in Artificial Intelligence 306–315 (2012).

83. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental
data. Science 324, 81–85 (2009).

84. Wolstenholme, D. E., O’Brien, C. M. & Nelder, J. A. GLIMPSE: a knowledge-based
front end for statistical analysis. Knowl. Base. Syst. 1, 173–178 (1988).

85. Hand, D. J. Patterns in statistical strategy. In Artificial Intelligence and Statistics
(ed Gale, W. A.) (Addison-Wesley Longman, 1986).

86. King, R. D. et al. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature 427, 247–252 (2004).

87. Welling, M. et al. Bayesian inference with big data: a snapshot from a workshop.
ISBA Bulletin 21, https://bayesian.org/sites/default/files/fm/bulletins/1412.
pdf (2014).

88. Bakker, B. & Heskes, T. Task clustering and gating for Bayesian multitask
learning. J. Mach. Learn. Res. 4, 83–99 (2003).

89. Houlsby, N., Hernández-Lobato, J. M., Huszár, F. & Ghahramani, Z. Collaborative
Gaussian processes for preference learning. In Proc. Advances in Neural
Information Processing Systems 26 2096–2104 (2012).

90. Russell, S. J. & Wefald, E. Do the Right Thing: Studies in Limited Rationality (MIT
Press, 1991).

91. Jordan, M. I. On statistics, computation and scalability. Bernoulli 19, 1378–1390
(2013).

92. Hoffman, M., Blei, D., Paisley, J. & Wang, C. Stochastic variational inference.
J. Mach. Learn. Res. 14, 1303–1347 (2013).

93. Hensman, J., Fusi, N. & Lawrence, N. D. Gaussian processes for big data. In Proc.
Conference on Uncertainty in Artificial Intelligence 244 (UAI, 2013).

94. Korattikara, A., Chen, Y. & Welling, M. Austerity in MCMC land: cutting the
Metropolis-Hastings budget. In Proc. 31th International Conference on Machine
Learning 181–189 (2014).

95. Paige, B., Wood, F., Doucet, A. & Teh, Y. W. Asynchronous anytime sequential
Monte Carlo. In Proc. Advances in Neural Information Processing Systems 27
3410–3418 (2014).

96. Jefferys, W. H. & Berger, J. O. Ockham’s Razor and Bayesian Analysis. Am. Sci.
80, 64–72 (1992).

97. Rasmussen, C. E. & Ghahramani, Z. Occam’s Razor. In Neural Information
Processing Systems 13 (eds Leen, T. K., Dietterich, T. G., & Tresp, V.) 294–300
(2001).

98. Rabiner, L. R. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77, 257–286 (1989).

99. Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman & Hall/CRC, 2013).
100. Lloyd, J. R. & Ghahramani, Z. Statistical model criticism using kernel two

sample tests (2015).

Acknowledgements I acknowledge an EPSRC grant EP/I036575/1, the DARPA
PPAML programme, a Google Focused Research Award for the Automatic
Statistician and support from Microsoft Research. I am also grateful for valuable
input from D. Duvenaud, H. Ge, M. W. Hoffman, J. R. Lloyd, A. Ścibior, M. Welling and
D. Wolpert.

Author Information Reprints and permissions information is available at www.
nature.com/reprints. The author declares competing financial interests: see
go.nature.com/hyx7hh for details. Readers are welcome to comment on the
online version of this paper at go.nature.com/hyx7hh. Correspondence should be
addressed to Z.G. (zoubin@eng.cam.ac.uk).

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 5 9

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

