Chapter 3

Field Fundamentals

3.1 Field Extensions

If F is a field and F[X] is the set of all polynomials over F, that is, polynomials with
coefficients in F', we know that F[X] is a Euclidean domain, and therefore a principal ideal
domain and a unique factorization domain (see Sections 2.6 and 2.7). Thus any nonzero
polynomial f in F[X] can be factored uniquely as a product of irreducible polynomials.
Any root of f must be a root of one of the irreducible factors, but at this point we have
no concrete information about the existence of roots and how they might be found. For
example, X2+ 1 has no real roots, but if we consider the larger field of complex numbers,
we get two roots, +i and —i. It appears that the process of passing to a larger field may
help produce roots, and this turns out to be correct.

3.1.1 Definitions

If F and F are fields and F' C E, we say that F is an extension of F', and we write F < FE,
or sometimes E/F.

If F is an extension of F', then in particular E is an abelian group under addition, and
we may multiply the “vector” x € F by the “scalar” A\ € F, and the axioms of a vector
space are satisfied. Thus if ' < F, then F is a vector space over F. The dimension of this
vector space is called the degree of the extension, written [E : F|. If [E: F] =n < oo, we
say that E is a finite extension of F, or that the extension E/F is finite, or that E is of
degree n over F'.

If f is a nonconstant polynomial over the field F', and f has no roots in F, we can
always produce a root of f in an extension field of F. We do this after a preliminary
result.

3.1.2 Lemma

Let f: F — E be a homomorphism of fields, i.e., f(a+b) = f(a)+ f(b), f(ab) = f(a)f(b)
(all a,b € F), and f(1r) =1g. Then f is a monomorphism.
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Proof. First note that a field F has no ideals except {0} and F. For if a is a nonzero
member of the ideal I, then ab = 1 for some b € F, hence 1 € I, and therefore I = F.
Taking I to be the kernel of f, we see that I cannot be all of F' because f(1) # 0. Thus
I must be {0}, so that f is injective. &

3.1.3 Theorem

Let f be a nonconstant polynomial over the field F'. Then there is an extension F/F and
an element a € E such that f(«) =0.

Proof. Since f can be factored into irreducibles, we may assume without loss of generality
that f itself is irreducible. The ideal I = (f(X)) in F[X] is prime (see (2.6.1)), in fact
maximal (see (2.6.9)). Thus E = F[X]/I is a field by (2.4.3). We have a problem at this
point because F' need not be a subset of E, but we can place an isomorphic copy of F
inside F via the homomorphism h: a — a + I; by (3.1.2), h is a monomorphism, so we
may identify F with a subfield of E. Now let « = X +1; if f(X) = ag+ a1 X +---+a, X",
then

fla)=(ap+ D) +ar(X+I1)+ - 4a ,(X+ D"
=(ag+uX+-+a, X")+1
=f(X)+1

which is zeroin E. &

The extension F is sometimes said to be obtained from F' by adjoining a root « of f.
Here is a further connection between roots and extensions.

3.1.4 Proposition

Let f and g be polynomials over the field F. Then f and g are relatively prime if and
only if f and g have no common root in any extension of F.

Proof. If f and g are relatively prime, their greatest common divisor is 1, so there are
polynomials a(X) and b(X) over F such that a(X)f(X) + b(X)g(X) = 1. If a is a
common root of f and g, then the substitution of a for X yields 0 = 1, a contradiction.
Conversely, if the greatest common divisor d(X) of f(X) and g(X) is nonconstant, let E
be an extension of F' in which d(X) has a root a (E exists by (3.1.3)). Since d(X) divides
both f(X) and ¢g(X), a is a common root of f and g in E. &

3.1.5 Corollary

If f and g are distinct monic irreducible polynomials over F', then f and g have no common
roots in any extension of F.

Proof. If h is a nonconstant divisor of the irreducible polynomials f and ¢, then up
to multiplication by constants, h coincides with both f and g, so that f is a constant
multiple of g. This is impossible because f and g are monic and distinct. Thus f and g
are relatively prime, and the result follows from (3.1.4). &
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If F is an extension of F and « € F is a root of a polynomial f € F[X], it is often
of interest to examine the field F'(«) generated by F and «, in other words the smallest
subfield of E containing F' and « (more precisely, containing all elements of F along
with «). The field F(a) can be described abstractly as the intersection of all subfields of
F containing F' and «, and more concretely as the collection of all rational functions

ap+ a4+ -+ apa™
bo +bia+ -+ + ba™

with a;,b; € F,m,n =0,1,..., and by + byov + - - - + b,&™ # 0. In fact there is a much
less complicated description of F'(«), as we will see shortly.

3.1.6 Definitions and Comments

If F is an extension of F, the element o € F is said to be algebraic over F' is there is a
nonconstant polynomial f € F[X] such that f(«) = 0; if « is not algebraic over F, it is
said to be transcendental over F. If every element of E is algebraic over F', then F is said
to be an algebraic extension of F.

Suppose that a € E is algebraic over F', and let I be the set of all polynomials g
over F' such that g(a) = 0. If g; and g5 belong to I, so does g1 £ ¢o, and if g € T and
¢ € F[X], then cg € I. Thus I is an ideal of F[X], and since F[X] is a PID, I consists of
all multiples of some m(X) € F[X]. Any two such generators must be multiples of each
other, so if we require that m(X) be monic, then m(X) is unique. The polynomial m(X)
has the following properties:

(1) If g € F[X], then g(«) = 0 if and only if m(X) divides g(X).
(2) m(X) is the monic polynomial of least degree such that m(a) =

0.
(3) m(X) is the unique monic irreducible polynomial such that m(«) = 0.

Property (1) follows because g(a) = 0 iff g(X) € I, and I = (m(X)), the ideal generated
by m(X). Property (2) follows from (1). To prove (3), note that if m(X) = h(X)k(X)
with degh and degk less than degm, then either h(a) = 0 or k(a) = 0, so that by (1),
either h(X) or k(X) is a multiple of m(X), which is impossible. Thus m(X) is irreducible,
and uniqueness of m(X) follows from (3.1.5).

The polynomial m(X) is called the minimal polynomial of o over F', sometimes written
as min(q, F).

3.1.7 Theorem

If « € E is algebraic over F' and the minimal polynomial m(X) of « over F' has degree
n, then F(a) = F[a], the set of polynomials in « with coefficients in F. In fact, F|a]
is the set F,_1[a] of all polynomials of degree at most n — 1 with coefficients in F, and
1,a,...,a™ ! form a basis for the vector space F|a] over the field F. Consequently,
[F(a): F]=n.

Proof. Let f(X) be any nonzero polynomial over F' of degree n — 1 or less. Then since
m(X) is irreducible and deg f < degm, f(X) and m(X) are relatively prime, and there
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are polynomials a(X) and b(X) over F' such that a(X)f(X) + b(X)m(X) = 1. But
then a(a)f(a) = 1, so that any nonzero element of F,_1[a] has a multiplicative inverse.
It follows that F,_1[a] is a field. (This may not be obvious, since the product of two
polynomials of degree n—1 or less can have degree greater than n—1, but if degg > n—1,
then divide g by m to get g(X) = ¢(X)m(X) + r(X) where degr(X) < degm(X) = n.
Replace X by a to get g(a) = r(a) € F,_1[a]. Less abstractly, if m(a) = a®+a+1=0,
then o® = —a — 1, a* = —a? — «, and so on.)

Now any field containing F' and o must contain all polynomials in «, in particular
all polynomials of degree at most n — 1. Therefore F,,_1[a] C Fla] C F(a). But F(a)
is the smallest field containing F' and «, so F(a) C F,_i[a], and we conclude that
F(a) = Fla] = F,_1[a]. Finally, the elements 1,«,...,a" ! certainly span F,_1[a], and
they are linearly independent because if a nontrivial linear combination of these elements
were zero, we would have a nonzero polynomial of degree less than that of m(X) with «
as a root, contradicting (2) of (3.1.6). &

We now prove a basic multiplicativity result for extensions, after a preliminary dis-
cussion.

3.1.8 Lemma

Suppose that FF < K < FE, the elements «;,i7 € I, form a basis for F over K, and the
elements §;,j € J, form a basis for K over F. (I and J need not be finite.) Then the
products ;35,7 € I, j € J, form a basis for I over F'.

Proof. If v € E, then ~ is a linear combination of the a; with coefficients a; € K, and
each a; is a linear combination of the 3; with coefficients b;; € F. It follows that the «;/3;
span E over F. Now if Z” ANija;3; = 0, then >, \jja; = 0 for all j, and consequently
Aij =0 for all ¢, j, and the a;(3; are linearly independent. &

3.1.9 The Degree is Multiplicative

If F<K<E,then [E: F|=[F:K|[K : F]. In particular, [E : F] is finite if and only if
[E: K] and [K : F] are both finite.

Proof. In (3.1.8), we have [E: K| =|I|, [K : F] = |J|, and [E : F] = |I||J|. &
We close this section by proving that every finite extension is algebraic.
3.1.10 Theorem
If E is a finite extension of F', then E is an algebraic extension of F'.
Proof. Let « € E, and let n = [E : F]. Then 1,a,a?,...,a" are n + 1 vectors in an

n-dimensional vector space, so they must be linearly dependent. Thus « is a root of a
nonzero polynomial with coefficients in F', which means that « is algebraic over F. &
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Problems For Section 3.1

1. Let E be an extension of F, and let S be a subset of E. If F(S) is the subfield of E
generated by S over F', in other words, the smallest subfield of E containing F' and S,
describe F'(S) explicitly, and justify your characterization.

2. If for each i € I, K; is a subfield of the field E, the composite of the K; (notation
V, K;) is the smallest subfield of E' containing every K;. As in Problem 1, describe
the composite explicitly.

3. Assume that « is algebraic over F, with [Fla] : F] = n. If 8 € F[a], show that
[F[A] : F] < n,in fact [F[0] : F] divides n.

4. The minimal polynomial of v/2 over the rationals Q is X2 —2, by (3) of (3.1.6). Thus
Q[v/2] consists of all numbers of the form ag 4+ a1v/2, where ag and a; are rational.
By Problem 3, we know that —1 + v/2 has a minimal polynomial over Q of degree at
most 2. Find this minimal polynomial.

5. If « is algebraic over F' and 8 belongs to F|a], describe a systematic procedure for
finding the minimal polynomial of 3 over F'.

6. If E/F and the element « € E is transcendental over F', show that F'(«) is isomorphic
to F(X), the field of rational functions with coefficients in F'.

7. Theorem 3.1.3 gives one method of adjoining a root of a polynomial, and in fact there
is essentially only one way to do this. If ' is an extension of F' and a € F is algebraic
over F' with minimal polynomial m(X), let I be the ideal (m(X)) C F[X]. Show that
F(«) is isomorphic to F[X]/I. [Define ¢: F[X] — E by ¢o(f(X)) = f(«), and use
the first isomorphism theorem for rings.]

8. In the proof of (3.1.3), we showed that if f is irreducible in F[X], then I = (f) is a
maximal ideal. Show that conversely, if I is a maximal ideal, then f is irreducible.

9. Suppose that F' < F < L, with a € L. What is the relation between the minimal
polynomial of a over F' and the minimal polynomial of o over E?

10. If oy, ..., qa, are algebraic over F', we can successively adjoin the a; to F' to obtain
the field Flay, ..., a,] consisting of all polynomials over F in the «;. Show that

[Flag,...,an] : F) SH[F(%‘)ZF] < o0

3.2 Splitting Fields

If f is a polynomial over the field F', then by (3.1.3) we can find an extension F; of F
containing a root «; of f. If not all roots of f lie in Fy, we can find an extension Fs
of E7 containing another root as of f. If we continue the process, eventually we reach a
complete factorization of f. In this section we examine this idea in detail.

If E is an extension of F and «aq,...,ar € E, we will use the notation F(ayq,..., k)
for the subfield of E generated by F and the «;. Thus F(aq,...,qx) is the smallest
subfield of E containing all elements of F' along with the «;. ( “Smallest” means that
F(aq,...,qr) is the intersection of all such subfields.) Explicitly, F(aq,...,qx) is the
collection of all rational functions in the «; with nonzero denominators.
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3.2.1 Definitions and Comments

If E is an extension of F' and f € F[X], we say that f splits over E if f can be written
as A(X —ay) - (X — ay) for some ay,...,a € Eand A € F.

(There is a subtle point that should be mentioned. We would like to refer to the a;
as “the” roots of f, but in doing so we are implicitly assuming that if 3 is an element of
some extension E’ of E and f(3) = 0, then § must be one of the a;. This follows upon
substituting 3 into the equation f(X)=AX —aq)--- (X —ag) =0.)

If K is an extension of F and f € F[X], we say that K is a splitting field for f over
Fif f splits over K but not over any proper subfield of K containing F'.

Equivalently, K is a splitting field for f over I if f splits over K and K is generated
over F' by the roots aq,...,a, of f, in other words, F'(aq,...,a) = K. For if K is a
splitting field for f, then since f splits over K we have all a; € K, so F(a1,...,0) C K.
But f splits over F(ay,...,a), and it follows that F(ai,...,a;) cannot be a proper
subfield; it must coincide with K. Conversely, if f splits over K and F(a,...,a;) = K,
let L be a subfield of K containing F. If f splits over L then all a; belong to L, so
K=F(ay,...,ay) CLCK,so L=K.

If f € F[X] and f splits over the extension E of F', then E contains a unique splitting
field for f, namely F(aq,...,ag).

3.2.2 Proposition
If f € F[X] and deg f = n, then f has a splitting field K over F with [K : F| < nl.

Proof. We may assume that n > 1. (If f is constant, take K = F.) By (3.1.3), F has an
extension Fj containing a root oy of f, and the extension F'(«1)/F has degree at most
n. (Since f(a1) = 0, the minimal polynomial of oy divides f; see (3.1.6) and (3.1.7).) We
may then write f(X) = (X — a1)™¢(X), where 7 is not a root of g and degg < n — 1.
If g is nonconstant, we can find an extension of F'(«7) containing a root as of g, and the
extension F'(ay,az) will have degree at most n — 1 over F(ay). Continue inductively and
use (3.1.9) to reach an extension of degree at most n! containing all the roots of f. &

If f € F[X] and f splits over E, then we may pick any root « of f and adjoin it to F'
to obtain the extension F'(«). Roots of the same irreducible factor of f yield essentially
the same extension, as the next result shows.

3.2.3 Theorem

If & and f3 are roots of the irreducible polynomial f € F[X] in an extension E of F, then
F(«) is isomorphic to F(§) via an isomorphism that carries « into § and is the identity
on F.

Proof. Without loss of generality we may assume f monic (if not, divide f by its leading
coefficient). By (3.1.6), part (3), f is the minimal polynomial of both o and . By (3.1.7),
the elements of F'(a) can be expressed uniquely as ag + aja+ -« - + a, 10" !, where the
a; belong to F' and n is the degree of f. The desired isomorphism is given by

ap+ara+-+a, 10" —ag+aft-+an 1
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If f is a polynomial in F[X] and F is isomorphic to the field F’ via the isomorphism i,
we may regard f as a polynomial over F'. We simply use ¢ to transfer f. Thus if
f=a+arX+-a, X" then f' =i(f) =i(ap)+i(a1)X +---+i(ay,)X"™. There is only
a notational difference between f and f’, and we expect that splitting fields for f and f’
should also be essentially the same. We prove this after the following definition.

3.2.4 Definition

If £ and E’ are extensions of F' and 7 is an isomorphism of E and E’, we say that 7 is
an F-isomorphism if i fixes F', that is, if i(a) = a for every a € F. F-homomorphisms,
F-monomorphisms, etc., are defined similarly.

3.2.5 Isomorphism Extension Theorem

Suppose that F' and F’ are isomorphic, and the isomorphism ¢ carries the polynomial
f € F[X] to f' € F'[X]. If K is a splitting field for f over F and K’ is a splitting field
for f’ over F’, then i can be extended to an isomorphism of K and K’. In particular, if
F = F’ and i is the identity function, we conclude that any two splitting fields of f are
F-isomorphic.

Proof. Carry out the construction of a splitting field for f over F as in (3.2.2), and perform
exactly the same steps to construct a splitting field for f” over F’. At every stage, there is
only a notational difference between the fields obtained. Furthermore, we can do the first
construction inside K and the second inside K’. But the comment at the end of (3.2.1)
shows that the splitting fields that we have constructed coincide with K and K'. &

3.2.6 Example

We will find a splitting field for f(X) = X3 — 2 over the rationals Q.

If « is the positive cube root of 2, then the roots of f are a,a(—3% + i1v/3) and
(-3 — z%\/g) The polynomial f is irreducible, either by Eisenstein’s criterion or by the
observation that if f were factorable, it would have a linear factor, and there is no rational
number whose cube is 2. Thus f is the minimal polynomial of «, so [Q(«) : Q] = 3. Now
since o and iv/3 generate all the roots of f, the splitting field is K = Q(a,iv/3). (We
regard all fields in this example as subfields of the complex numbers C.) Since iv/3 ¢ Q(«)
(because Q() is a subfield of the reals), [Q(a,iv/3) : Q(a)] is at least 2. But iv/3 is a
root of X243 € Q(a)[X], so the degree of Q(a,i+/3) over Q(a) is a most 2, and therefore
is exactly 2. Thus

(K : Q] = [Q(e,iV3) : Q] = [Q(e, iV3) : Q()][Q(a) : Q] = 2 x 3 = 6.

Problems For Section 3.2

1. Find a splitting field for f(X) = X2 —4X + 4 over Q.

2. Find a splitting field K for f(X) = X2 — 2X + 4 over Q, and determine the degree of
K over Q.
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3. Find a splitting field K for f(X) = X* — 2 over Q, and determine [K : Q.

4. Let C be a family of polynomials over F, and let K be an extension of F'. Show that
the following two conditions are equivalent:

(a) Each f € C splits over K, but if FF < K’ < K, then it is not true that each f € C
splits over K.

(b) Each f € C splits over K, and K is generated over F' by the roots of all the
polynomials in C.

If one, and hence both, of these conditions are satisfied, we say that K is a splitting
field for C over F.

5. Suppose that K is a splitting field for the finite set of polynomials {f1,..., f.} over F.
Express K as a splitting field for a single polynomial f over F.

6. If m and n are distinct square-free positive integers greater than 1, show that the
splitting field Q(y/m, v/n) of (X2 —m)(X? — n) has degree 4 over Q.

3.3 Algebraic Closures

If f is a polynomial of degree n over the rationals or the reals, or more generally over
the complex numbers, then f need not have any rational roots, or even real roots, but we
know that f always has n complex roots, counting multiplicity. This favorable situation
can be duplicated for any field F, that is, we can construct an algebraic extension C' of F'
with the property that any polynomial in C[X] splits over C. There are many ways to
express this idea.

3.3.1 Proposition

If C is a field, the following conditions are equivalent:

1) Every nonconstant polynomial f € C[X] has at least one root in C'.
[

1)

(2) Every nonconstant polynomial f € C[X] splits over C.
(3) Every irreducible polynomial f € C[X] is linear.
(4)

4) C has no proper algebraic extensions.

If any (and hence all) of these conditions are satisfied, we say that C' is algebraically closed.

Proof. (1) implies (2): By (1) we may write f = (X — a1)g. Proceed inductively to show
that any nonconstant polynomial is a product of linear factors.

(2) implies (3): If f is an irreducible polynomial in C[X], then by (2.9.1), f is non-
constant. By (2), f is a product of linear factors. But f is irreducible, so there can be
only one such factor.

(3) implies (4): Let E be an algebraic extension of C. If o € F, let f be the minimal
polynomial of « over C. Then f is irreducible and by (3), f is of the form X — a. But
then a € C,s0 E=C.



3.3. ALGEBRAIC CLOSURES 9

(4) implies (1): Let f be a nonconstant polynomial in C[X], and adjoin a root « of f
to obtain C(«), as in (3.1.3). But then C(«) is an algebraic extension of C, so by (4),
acC. &

It will be useful to embed an arbitrary field F' in an algebraically closed field.

3.3.2 Definitions and Comments

An extension C' of F is an algebraic closure of F if C' is algebraic over F and C is
algebraically closed.

Note that C' is minimal among algebraically closed extensions of F'. Forif F < K < C
and a € C,a ¢ K, then since « is algebraic over F' it is algebraic over K. But since
a ¢ K, the minimal polynomial of o over K is a nonlinear irreducible polynomial in
K[X]. By (3) of (3.3.1), K cannot be algebraically closed.

If C is an algebraic extension of F', then in order for C' to be an algebraic closure of F'
it is sufficient that every polynomial in F[X] (rather than C[X]) splits over C. To prove
this, we will need the following result.

3.3.3 Proposition

If F is generated over F' by finitely many elements ag, ..., «, algebraic over F' (so that
E =F(ai,...,qa,)), then E is a finite extension of F.

Proof. Set Ey = F and Ey, = F(ag,...,a;), 1 <k <n (so E, = E). Then E; =
Ei_1(ag), where ay is algebraic over F and hence over Ej_1. But by (3.1.7), [Ej : Ex—1]
is the degree of the minimal polynomial of ay over Ei_1, which is finite. By (3.1.9),
[E:F) =1l [Ex: Ero1]) <oo. &

3.3.4 Corollary

If E is an extension of F' and A is the set of all elements in E that are algebraic over F’
(the algebraic closure of F' in E), then A is a subfield of E.

Proof. If a,, B € A, then the sum, difference, product and quotient (if 5 # 0) of « and /3
belong to F(«, 3), which is a finite extension of F' by (3.3.3), and therefore an algebraic
extension of F' by (3.1.10). But then o+ 3, — 8, af and a/f belong to A, proving that
Ais a field. &

3.3.5 Corollary (Transitivity of Algebraic Extensions)

If E is algebraic over K (in other words, every element of F is algebraic over K), and K
is algebraic over F, then FE is algebraic over F.

Proof. Let a € E, and let m(X) = by + b1 X + -+ + b,—1 X" ! + X" be the minimal
polynomial of o over K. The b; belong to K and are therefore algebraic over F. If
L = F(bo,b1,...,bn_1), then by (3.3.3), L is a finite extension of F'. Since the coefficients
of m(X) belong to L, « is algebraic over L, so by (3.1.7), L(«) is a finite extension of L.
By (3.1.9), L(«) is a finite extension of F. By (3.1.10), « is algebraic over F. &
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Now we can add another condition to (3.3.1).

3.3.6 Proposition

Let C be an algebraic extension of F'. Then C' is an algebraic closure of F' if and only if
every nonconstant polynomial in F[X] splits over C.

Proof. The “only if” part follows from (2) of (3.3.1), since F' C C. Thus assume that
every nonconstant polynomial in F[X] splits over C. If f is a nonconstant polynomial
in C[X], we will show that f has at least one root in C, and it will follow from (1) of
(3.3.1) that C is algebraically closed. Adjoin a root « of f to obtain the extension C'(«).
Then C(«) is algebraic over C' by (3.1.7), and C is algebraic over F' by hypothesis. By
(3.3.5), C(«) is algebraic over F, so « is algebraic over F'. But then « is a root of some
polynomial g € F[X], and by hypothesis, g splits over C. By definition of “splits” (see
(3.2.1)), all roots of ¢ lie in C, in particular « € C. Thus f has at least one root in C. &

To avoid a lengthy excursion into formal set theory, we argue intuitively to establish
the following three results. (For complete proofs, see the appendix to Chapter 3.)

3.3.7 Theorem

Every field F' has an algebraic closure.

Informal argument. Well-order F[X] and use transfinite induction, beginning with the
field Fy = F. At stage f we adjoin all roots of the polynomial f by constructing a
splitting field for f over the field F; that has been generated so far by the recursive
procedure. When we reach the end of the process, we will have a field C' such that every
polynomial f in F[X] splits over C. By (3.3.6), C is an algebraic closure of F. &

3.3.8 Theorem

Any two algebraic closures C and C’ of F are F-isomorphic.

Informal argument. Carry out the recursive procedure described in (3.3.7) in both C
and C’. At each stage we may use the fact that any two splitting fields of the same
polynomial are F-isomorphic; see (3.2.5). When we finish, we have F-isomorphic algebraic
closures of F', say D C C' and D’ C C'. But an algebraic closure is a minimal algebraically
closed extension by (3.3.2), and therefore D =C and D' =C’". &

3.3.9 Theorem

If F is an algebraic extension of F', C' is an algebraic closure of F', and 7 is an embedding
(that is, a monomorphism) of F into C, then 4 can be extended to an embedding of E
into C.
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Informal argument. Each « € E is a root of some polynomial in F[X], so if we allow « to
range over all of E, we get a collection S of polynomials in F[X]. Within C, carry out the
recursive procedure of (3.3.7) on the polynomials in S. The resulting field lies inside C
and contains an F-isomorphic copy of £. &

Problems For Section 3.3
1. Show that the converse of (3.3.3) holds, that is, if E is a finite extension of F, then F
is generated over F' by finitely many elements that are algebraic over F'.

2. An algebraic number is a complex number that is algebraic over the rational field Q.
A transcendental number is a complex number that is not algebraic over Q. Show that
there only countably many algebraic numbers, and consequently there are uncountably
many transcendental numbers.

3. Give an example of an extension C'/F such that C is algebraically closed but C' is not
an algebraic extension of F.

4. Give an example of an extension E/F such that F is an algebraic but not a finite
extension of F.

In the proof of (3.3.7), why is C algebraic over F'?

Show that the set A of algebraic numbers is an algebraic closure of Q.

If E is an algebraic extension of the infinite field F, show that |E| = |F|.

Show that any set S of nonconstant polynomials in F[X] has a splitting field over F.

© ® N> o

Show that an algebraically closed field must be infinite.

3.4 Separability

If f is a polynomial in F[X], we can construct a splitting field K for f over F, and all
roots of f must lie in K. In this section we investigate the multiplicity of the roots.

3.4.1 Definitions and Comments

An irreducible polynomial f € F[X] is separable if f has no repeated roots in a splitting
field; otherwise f is inseparable. If f is an arbitrary polynomial, not necessarily irreducible,
then we call f separable if each of its irreducible factors is separable.

Thus if f(X) = (X —1)%(X — 3) over Q, then f is separable, because the irreducible
factors (X — 1) and (X — 3) do not have repeated roots. We will see shortly that over a
field of characteristic 0 (for example, the rationals), every polynomial is separable. Here
is a method for testing for multiple roots.

3.4.2 Proposition
If

fX)=a+a X+ - +a,X" € F[X],
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let f’ be the derivative of f, defined by
f(X)=a1 +2a2X + - +na, X" L.

[Note that the derivative is a purely formal expression; we completely ignore questions
about existence of limits. One can check by brute force that the usual rules for differen-
tiating a sum and product apply].

If g is the greatest common divisor of f and f’, then f has a repeated root in a splitting
field if and only if the degree of g is at least 1.

Proof. If f has a repeated root, we can write f(X) = (X —«a)"h(X) where r > 2. Applying
the product rule for derivatives, we see that (X — «) is a factor of both f and f’, and
consequently degg > 1. Conversely, if degg > 1, let a be a root of g in some splitting
field. Then (X — a) is a factor of both f and f’. We will show that « is a repeated root
of f. If not, we may write f(X) = (X — a)h(X) where h(a) # 0. Differentiate to obtain
f(X) = (X —a)h(X) 4+ h(X), hence f'(a) = h(c) # 0. This contradicts the fact that
(X — ) is a factor of f'. &

3.4.3 Corollary

(1) Over a field of characteristic zero, every polynomial is separable.

(2) Over a field F of prime characteristic p, the irreducible polynomial f is inseparable
if and only if f’ is the zero polynomial. Equivalently, f is a polynomial in X?; we
abbreviate this as f € F[XP].

Proof. (1) Without loss of generality, we can assume that we are testing an irreducible
polynomial f. The derivative of X™ is n.X"~!, and in a field of characteristic 0, n cannot
be 0. Thus f’ is a nonzero polynomial whose degree is less than that of f. Since f is
irreducible, the ged of f and f’ is either 1 or f, and the latter is excluded because f
cannot possibly divide f’. By (3.4.2), f is separable.

(2) If f/ # 0, the argument of (1) shows that f is separable. If f/ = 0, then
ged(f, f/) = f, so by (3.4.2), f is inseparable. In characteristic p, an integer n is zero if
and only if n is a multiple of p, and it follows that f' =0 iff f € F[X?]. &

By (3.4.3), part (1), every polynomial over the rationals (or the reals or the complex
numbers) is separable. This pleasant property is shared by finite fields as well. First
note that a finite field F' cannot have characteristic 0, since a field of characteristic 0
must contain a copy of the integers (and the rationals as well), and we cannot squeeze
infinitely many integers into a finite set. Now recall the binomial expansion modulo p,
which is simply (a + b)? = a? + b, since p divides (¥ ) for 1 < k < p — 1. [By induction,
(a+b)P" =aP" +bP" for every positive integer n.] Here is the key step in the analysis.

3.4.4 The Frobenius Automorphism

Let F be a finite field of characteristic p, and define f: F — F by f(a) = o?. Then f is
an automorphism. In particular, if o € F' then a = 8P for some 8 € F.
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Proof. We have f(1) =1 and

flatB) = (a+p)P =a”+ 5" = f(a) + [(B),
flap) = (aB)” = o?3? = f(a) f(B)

so f is a monomorphism. But an injective function from a finite set to itself is automati-
cally surjective, and the result follows. &

3.4.5 Proposition

Over a finite field, every polynomial is separable.

Proof. Suppose that f is an irreducible polynomial over the finite field F' with repeated
roots in a splitting field. By (3.4.3), part (2), f(X) has the form ag+ a1 X? +---+a, X"
with the a; € F. By (3.4.4), for each i there is an element b; € F such that b = a;. But
then

(bo+ 01 X 4+ -+ b, X")P =bb + 0] XP + .- +DEX"P = f(X)
which contradicts the irreducibility of f. &

Separability of an element can be defined in terms of its minimal polynomial.

3.4.6 Definitions and Comments

If F is an extension of F' and o € F, then « is separable over F' if « is algebraic over F
and min(a, F') is a separable polynomial. If every element of F is separable over F', we say
that E is a separable extension of F' or the extension E/F is separable or E is separable
over F. By (3.4.3) and (3.4.5), every algebraic extension of a field of characteristic zero
or a finite field is separable.

3.4.7 Lemma

If F < K < FE and F is separable over F', then K is separable over F' and F is separable
over K.

Proof. Since K is a subfield of E, K/F' is separable. If & € F, then since « is a root of
min(a, F), it follows from (1) of (3.1.6) that min(«, K') divides min(a, F'). By hypothesis,
min(«, F') has no repeated roots in a splitting field, so neither does min(a, K). Thus E/K
is separable. &

The converse of (3.4.7) is also true: If K/F and E/K are separable, then E/F is
separable. Thus we have transitivity of separable extensions. We will prove this (for finite
extensions) in the exercises.

In view of (3.4.6), we can produce many examples of separable extensions. Inseparable
extensions are less common, but here is one way to construct them.
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3.4.8 Example

Let F = TF,(t) be the set of rational functions (in the indeterminate t) with coefficients
in the field with p elements (the integers mod p). Thus an element of F' looks like
ap+art+---+apt™
bo + byt + -+ but™

with the a; and b; in F,. Adjoin ¥/#, that is, a root of X? — ¢, to create the extension E.
Note that X? — t is irreducible by Eisenstein, because ¢ is irreducible in F,[t]. (The
product of two nonconstant polynomials in t cannot possibly be t.) The extension E/F
is inseparable, since

X7 —t= X7 — (i) = (X = ¥y,

which has multiple roots.

Problems For Section 3.4

1. Give an example of a separable polynomial f whose derivative is zero. (In view of
(3.4.3), f cannot be irreducible.)

2. Let a € E, where E is an algebraic extension of a field F' of prime characteristic p.
Let m(X) be the minimal polynomial of « over the field F(a®). Show that m(X)
splits over F, and in fact « is the only root, so that m(X) is a power of (X — «).

3. Continuing Problem 2, if « is separable over the field F'(a?), show that a € F(aP).

4. A field F is said to be perfect if every polynomial over F' is separable. Equivalently,
every algebraic extension of F' is separable. Thus fields of characteristic zero and
finite fields are perfect. Show that if F' has prime characteristic p, then F' is perfect
if and only if every element of F is the p*™® power of some element of F. For short we
write F' = FP.

In Problems 5-8, we turn to transitivity of separable extensions.

5. Let E be a finite extension of a field F' of prime characteristic p, and let K = F(EP)
be the subfield of E obtained from F by adjoining the p'" powers of all elements of
E. Show that F(EP) consists of all finite linear combinations of elements in E? with
coefficients in F'.

6. Let E be a finite extension of the field F' of prime characteristic p, and assume that
E = F(EP). If the elements yi,...,y, € E are linearly independent over F', show
that y7,...,y? are linearly independent over F'.

7. Let E be a finite extension of the field F' of prime characteristic p. Show that the
extension is separable if and only if E = F(EP).

8. If F < K < E with [E : F] < oo, with F separable over K and K separable over F,
show that E' is separable over F'.

9. Let f be an irreducible polynomial in F[X], where F has characteristic p > 0. Express
f(X) as g(XP"), where the nonnegative integer m is a large as possible. (This makes
sense because XP' = X , so m = 0 always works, and f has finite degree, so m is
bounded above.) Show that g is irreducible and separable.
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10. Continuing Problem 9, if f has only one distinct root «, show that o™ € F.

11. If E/F, where char F' = p > 0, and the element « € F is algebraic over F', show that
the minimal polynomial of a over F has only one distinct root if and only if o?” € F
for some nonnegative integer n. (In this case we say that « is purely inseparable over

F)

3.5 Normal Extensions

Let E/F be a field extension. In preparation for Galois theory, we are going to look at
monomorphisms defined on FE, especially those which fix F. First we examine what an
F-monomorphism does to the roots of a polynomial in F[X].

3.5.1 Lemma

Let 0: E — E be an F-monomorphism, and assume that the polynomial f € F[X] splits
over E. If a is a root of f in E, then so is o(«). Thus o permutes the roots of f.

Proof. If by + bja+ - - - + bya™ =0, Wi_th the b; EF, apply ¢ and note that since ¢ is an
F-monomorphism, o(b;) = b; and o(a’) = (0(a))*. Thus

bo+bio(a)+ - +by(o(a)"=0. &

Now let C be an algebraic closure of E. It is convenient to have C' available because
it will contain all the roots of a polynomial f € E[X], even if f does not split over E. We
are going to count the number of embeddings of F in C' that fix I, that is, the number
of F-monomorphisms of E into C. Here is the key result.

3.5.2 Theorem

Let E/F be a finite separable extension of degree n, and let o be an embedding of F
in C. Then o extends to exactly n embeddings of E in C; in other words, there are
exactly n embeddings 7 of F in C such that the restriction 7|r of 7 to F coincides
with o. In particular, taking o to be the identity function on F', there are exactly n
F-monomorphisms of F into C.

Proof. An induction argument works well. If n = 1 then E = F' and there is nothing to
prove, so assume n > 1 and choose an element « that belongs to E but not to F. If f is
the minimal polynomial of a over F', let g = o(f). (This is a useful shorthand notation,
indicating that if a; is one of the coeflicients of f, the corresponding coefficient of g is
o(a;).) Any factorization of g can be translated via the inverse of o to a factorization
of f, so g is separable and irreducible over the field o(F). If 8 is any root of g, then there
is a unique isomorphism of F(«) and (o(F))(8) that carries « into 8 and coincides with
o on F. Explicitly,

bo +bia+ -+ b.a” — o(by) +o(br)B+---+0(b.)F".
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Now if degg = r, then [F(«) : F] = deg f = degg = r as well, so by (3.1.9), [E: F(«a)] =
n/r < n. By separability, g has exactly r distinct roots in C, so there are exactly r
possible choices of 3. In each case, by the induction hypothesis,the resulting embedding
of F(a) in C has exactly n/r extensions to embeddings of E in C. This produces n
distinct embeddings of F in C' extending o. But if 7 is any embedding of F' in C' that
extends o, then just as in (3.5.1), 7 must take « to a root of g, i.e., to one of the (’s.
If there were more than n possible 7’s, there would have to be more than n/r possible
extensions of at least one of the embeddings of F(«) in C. This would contradict the
induction hypothesis. &

3.5.3 Example

Adjoin the positive cube root of 2 to the rationals to get E = Q(3/2). The roots of the
irreducible polynomial f(X) = X? — 2 are /2, wv/2 and w?v/2, where w = €?2™/3 =
—% + %2\/5 and w? = ¥7/3 = —% — %Z\/g

Notice that the polynomial f has a root in E but does not split in E (because the
other two roots are complex and E consists entirely of real numbers). We give a special
name to extensions that do not have this annoying drawback.

3.5.4 Definition

The algebraic extension F/F is normal (we also say that E is normal over F) if every
irreducible polynomial over F' that has at least one root in E splits over E. In other
words, if @ € E, then all conjugates of o over F' (i.e., all roots of the minimal polynomial
of a over F) belong to E.

Here is an equivalent condition.

3.5.5 Theorem

The finite extension FE/F is normal if and only if every F-monomorphism of E into an
algebraic closure C' is actually an F-automorphism of E. (The hypothesis that E/F is
finite rather than simply algebraic can be removed, but we will not need the more general
result.)

Proof. If E/F is normal, then as in (3.5.1), an F-monomorphism 7 of E into C' must map
each element of F to one of its conjugates. Thus by hypothesis, 7(F) C E. But 7(F) is
an isomorphic copy of E | so it must have the same degree as E over F'. Since the degree
is assumed finite, we have 7(E) = E. (All we are saying here is that an m-dimensional
subspace of an m-dimensional vector space is the entire space.) Conversely, let o € E, and
let 3 be any conjugate of « over F. As in the proof of (3.5.2), there is an F-monomorphism
of E into C that carries a to 8. If all such embeddings are F-automorphisms of E, we
must have 8 € E, and we conclude that E is normal over F'. &

3.5.6 Remarks

In (3.5.2) and (3.5.5), the algebraic closure can be replaced by any fixed normal extension
of F containing F; the proof is the same. Also, the implication 7(F) C F = 7(E) = E
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holds for any F-monomorphism 7 and any finite extension E/F'; normality is not involved.
The next result yields many explicit examples of normal extensions.

3.5.7 Theorem

The finite extension E/F is normal if and only if F is a splitting field for some polynomial
f € F[X].

Proof. Assume that FE is normal over F. Let «1,...,a, be a basis for E over F, and
let f; be the minimal polynomial of c; over F,¢ = 1,...,n. Since f; has a root «; in FE,
f; splits over F, hence so does f = f;--- f,. If f splits over a field K with FF C K C F,
then each «; belongs to K, and therefore K must coincide with E. Thus F is a splitting
field for f over F. Conversely, let E be a splitting field for f over F', where the roots of f
are a;, 1 = 1,...,n. Let 7 be an F-monomorphism of E into an algebraic closure. As in
(3.5.1), 7 takes each «; into another root of f, and therefore T takes a polynomial in the
a; to another polynomial in the «;. But F(ay,...,a,) = E, so 7(FE) C E. By (3.5.6), 7
is an automorphism of E, so by (3.5.5), E/F is normal. &

3.5.8 Corollary
Let FF < K < E, where FE is a finite extension of F. If E/F is normal, so is E/K.

Proof. By (3.5.7), E is a splitting field for some polynomial f € F[X], so that F is
generated over F' by the roots of f. But then f € K[X] and F is generated over K by
the roots of f. Again by (3.5.7), E/K is normal. &

3.5.9 Definitions and Comments

If E/F is normal and separable, it is said to be a Galois extension; we also say that F is
Galois over F. Tt follows from (3.5.2) and (3.5.5) that if F/F is a finite Galois extension,
then there are exactly [E : F] F-automorphisms of E. If E/F is finite and separable but
not normal, then at least one F-embedding of E into an algebraic closure must fail to be
an automorphism of E. Thus in this case, the number of F-automorphisms of F is less
than the degree of the extension.

If E/F is an arbitrary extension, the Galois group of the extension, denoted by
Gal(E/F), is the set of F-automorphisms of E. (The set is a group under composition of
functions.)

3.5.10 Example

Let E = Q(+/2), as in (3.5.3). The Galois group of the extension consists of the identity
automorphism alone. For any Q-monomorphism o of E must take /2 into a root of
X3 — 2. Since the other two roots are complex and do not belong to E, ¥/2 must map to
itself. But o is completely determined by its action on /2, and the result follows.

If E/F is not normal, we can always enlarge E to produce a normal extension of F'.
If C is an algebraic closure of F, then C' contains all the roots of every polynomial in
F[X], so C/F is normal. Let us try to look for a smaller normal extension.
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3.5.11 The Normal Closure

Let E be a finite extension of F', say F = F(ay,...,a,). If N D E is any normal extension
of F', then N must contain the «; along with all conjugates of the «a;, that is, all roots of
min(a;, F),i = 1,...,n. Thus if f is the product of these minimal polynomials, then N
must contain the splitting field K for f over F. But K/F is normal by (3.5.7), so K must
be the smallest normal extension of F' that contains E. It is called the normal closure of
FE over F.

We close the section with an important result on the structure of finite separable
extensions.

3.5.12 Theorem of the Primitive Element

If E/F is a finite separable extension, then E = F(«) for some o € E. We say that « is
a primitive element of E over F.

Proof. We will argue by induction on n = [E : F]. If n =1 then £ = F and we can take
a to be any member of F. If n > 1, choose @ € E\ F. By the induction hypothesis, there
is a primitive element 3 for E over F(a), so that E = F(«,3). We are going to show
that if ¢ € F is properly chosen, then F = F(a+c¢). Now by (3.5.2), there are exactly n
F-monomorphisms of E into an algebraic closure C, and each of these maps restricts to
an F-monomorphism of F'(a + ¢@) into C. If F(a+ ¢f) # E, then [F(a+ ¢f) : F] < n,
and it follows from (3.5.2) that at least two embeddings of F, say o and 7, must coincide
when restricted. Therefore

a(a) +co(f) = 7(a) + cr(B),

hence
c= )— (1)

(If 7(B8) = o(B) then by the previous equation, 7(a) = o(a). But an F-embedding
of FE is determined by what it does to a and §, hence o = 7, a contradiction.) Now
an F-monomorphism must map « to one of its conjugates over F', and similarly for (.
Thus there are only finitely many possible values for the ratio in (1). If we select ¢ to
be different from each of these values, we reach a contradiction of our assumption that
F(a+c¢B) # E. The proof is complete if F' is an infinite field. We must leave a gap here,
to be filled later (see (6.4.4)). If F is finite, then so is F (since E is a finite-dimensional
vector space over F'). We will show that the multiplicative group of nonzero elements of
a finite field F is cyclic, so if « is a generator of this group, then £ = F(«a). &

Problems For Section 3.5

1. Give an example of fields F' < K < F such that E/F is normal but K/F is not.

2. Let F = Q(y/a), where a is an integer that is not a perfect square. Show that F/Q is
normal.
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3. Give an example of fields F' < K < E such that E/K and K/F are normal, but E/F
is not. Thus transitivity fails for normal extensions.

4. Suppose that in (3.5.2), the hypothesis of separability is dropped. State and prove an
appropriate conclusion.

5. Show that F = Q(v/2,/3) is a Galois extension of Q.
6. In Problem 5, find the Galois group of E/Q.

7. Let E be a finite extension of F', and let K be a normal closure (= minimal normal
extension) of F over F, as in (3.5.11). Is K unique?

8. If F1 and E5 are normal extensions of F', show that F; N Ey is normal over F.

Appendix To Chapter 3

In this appendix, we give a precise development of the results on algebraic closure treated
informally in the text.

A3.1 Lemma

Let E be an algebraic extension of F', and let 0: E — E be an F-monomorphism. Then
o is surjective, hence ¢ is an automorphism of F.

Proof. Let a € E, and let f(X) be the minimal polynomial of a over F. We consider the
subfield L of F generated over F' by the roots of f that lie in . Then L is an extension
of F that is finitely generated by algebraic elements, so by (3.3.3), L/F is finite. As in
(3.5.1), o takes a root of f to a root of f, so o(L) C L. But [L: F] = [o(L) : F] < o
(o maps a basis to a basis), and consequently (L) = L. But o € L,soa € o(L). &

The following result, due to Artin, is crucial.

A3.2 Theorem
If F' is any field, there is an algebraically closed field E containing F'.

Proof. For each nonconstant polynomial f in F[X], we create a variable X (f). If T is the
collection of all such variables, we can form the ring F[T] of all polynomials in all possible
finite sets of variables in T, with coefficients in F. Let I be the ideal of F[T] generated
by the polynomials f(X(f)), f € F[X]. We claim that I is a proper ideal. If not,
then 1 € I, so there are finitely many polynomials fi,..., f, in F[X] and polynomials
hi,...,hy, in F[T] such that Y1 h;f;(X(f;)) = 1. Now only finitely many variables
X; = X(fi),i =1,...,m, can possibly appear in the h;, so we have an equation of the
form

Zhi(Xl,...,Xm)fi(X,») =1 (1)
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where m > n. Let L be the extension of F' formed by successively adjoining the roots of
fi,--+-, fn. Then each f; has a root a; € L. If we set a; = 0 for n < i < m and then set
X; = a; for each 7 in (1), we get 0 = 1, a contradiction.

Thus the ideal I is proper, and is therefore contained in a maximal ideal M. Let E;
be the field F[T]/M. Then E; contains an isomorphic copy of F', via the map taking
a € Ftoa+ M € E;. (Note that if a € M,a # 0, then 1 = a~'a € M, a contradiction.)
Consequently, we can assume that F < E;. If f is any nonconstant polynomial in F[X],
then X (f)+M € Ey and f(X(f)+M) = f(X(f)) + M =0 because f(X(f)) € I C M.

Iterating the above procedure, we construct a chain of fields F' < F; < FEy < --- such
that every polynomial of degree at least 1 in E, [X] has a root in E, 1. The union F of
all the E,, is a field, and every nonconstant polynomial f in E[X] has all its coefficients
in some E,,. Therefore f hasarootin E,,.1 CFE. &

A3.3 Theorem

Every field F' has an algebraic closure.

Proof. By (A3.2), F has an algebraically closed extension L. If E is the algebraic closure
of Fin L (see 3.3.4), then E/F is algebraic. Let f be a nonconstant polynomial in E[X].
Then f has a root « in L (because L is algebraically closed). We now have « algebraic
over E (because f € E[X]), and FE algebraic over F. As in (3.3.5), « is algebraic over F,
hence a € E. By (3.3.1), E is algebraically closed. &

A3.4 Problem

Suppose that ¢ is a monomorphism of F' into the algebraically closed field L. Let E be
an algebraic extension of F', and a an element of E with minimal polynomial f over F.
We wish to extend o to a monomorphism from F(«) to L. In how many ways can this
be done?

Let o f be the polynomial in (¢ F)[X] obtained from f by applying o to the coefficients
of f. Any extension of f is determined by what it does to «, and as in (3.5.1), the image
of a is a root of o f. Now the number of distinct roots of f in an algebraic closure of F,
call it ¢, is the same as the number of distinct roots of o f in L; this follows from the
isomorphism extension theorem (3.2.5). Thus the number of extensions is at most ¢.
But if § is any root of o f, we can construct an extension of ¢ by mapping the element
h(a) € F(a) to (oh)(B); in particular, « is mapped to 3. To show that the definition
makes sense, suppose that hi(«) = ha(a). Then (hy — hs)(@) = 0, so f divides hy — ho
in F[X]. Consequently, of divides chy — chs in (¢ F)[X], so (ch1)(B) = (ch)(5).

We conclude that the number of extensions of ¢ is the number of distinct roots of f
in an algebraic closure of F'.

Rather than extend o one element at a time, we now attempt an extension to all of E.

A3.5 Theorem

Let 0: F — L be a monomorphism, with L algebraically closed. If E is an algebraic
extension of F', then ¢ has an extension to a monomorphism 7: £ — L.
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Proof. Let G be the collection of all pairs (K, 1) where K is an intermediate field between
F and FE and p is an extension of ¢ to a monomorphism from K to L. We partially
order G by (K1, pu) < (Ka,p) iff K1 C Ks and p restricted to K coincides with u. Since
(F,0) € G, we have G # (. If the pairs (K, p;),t € I, form a chain, there is an upper
bound (K, u) for the chain, where K is the union of the K; and p coincides with u; on
each K;. By Zorn’s lemma, G has a maximal element (Ko, 7). If Ko C E, let a € E'\ Kj.
By (A3.4), T has an extension to Ky(a), contradicting maximality of (Ko, 7). &

A3.6 Corollary

In (A3.5), if F is algebraically closed and L is algebraic over o(F'), then 7 is an isomor-
phism.

Proof. Since E is algebraically closed, so is 7(F). Since L is algebraic over o(F), it is
algebraic over the larger field 7(F). By (1) <= (4) in (3.3.1), L=7(E). &
A3.7 Theorem

Any two algebraic closures L and E of a field F' are F-isomorphic.

Proof. We can assume that F' is a subfield of L and o: F — L is the inclusion map. By
(A3.6), o extends to an isomorphism 7 of F and L, and since 7 is an extension of o, it is
an F-monomorphism. &

A3.8 Theorem (=Theorem 3.3.9)

If F is an algebraic extension of F' and C'is an algebraic closure of F', then any embedding
of F'into C can be extended to an embedding of E into C.

Proof. This is a special case of (A3.5). &

A3.9 Remark

The argument just given assumes that F is a subfield of C. This can be assumed without
loss of generality, by (A3.2), (A3.3) and (A3.7). In other words, we can assume that an
algebraic closure of F' contains a specified algebraic extension of F.

A3.10 Theorem

Let E be an algebraic extension of F', and let L be the algebraic closure of F' containing F
[see (A3.9)]. If o is an F-monomorphism from F to L, then o can be extended to an
automorphism of L.

Proof. We have L algebraically closed and L/E algebraic, so by (A3.5) with E replaced
by L and F by F, o extends to a monomorphism from L to L, an F-monomorphism by
hypothesis. The result follows from (A3.1). &



