
Automatic Detection of Font Size Straight from
Run Length Compressed Text Documents

Mohammed Javed# , P. Nagabhushan# , B.B. Chaudhuri*

#Department of Studies in Computer Science

University of Mysore, Mysore-570006, India
*Computer Vision and Pattern Recognition Unit

 Indian Statistical Institute, Kolkata-700108, India

Abstract— Automatic detection of font size finds many
applications in the area of intelligent OCRing and document
image analysis, which has been traditionally practised over
uncompressed documents, although in real life the documents
exist in compressed form for efficient storage and
transmission. It would be novel and intelligent if the task of
font size detection could be carried out directly from the
compressed data of these documents without decompressing,
which would result in saving of considerable amount of
processing time and space. Therefore, in this paper we present
a novel idea of learning and detecting font size directly from
run-length compressed text documents at line level using
simple line height features, which paves the way for intelligent
OCRing and document analysis directly from compressed
documents. In the proposed model, the given mixed-case text
documents of different font size are segmented into
compressed text lines and the features extracted such as line
height and ascender height are used to capture the pattern of
font size in the form of a regression line, using which the
automatic detection of font size is done during the recognition
stage. The method is experimented with a dataset of 50
compressed documents consisting of 780 text lines of single
font size and 375 text lines of mixed font size resulting in an
overall accuracy of 99.67%.

Keywords— Compressed Document Segmentation, Text Line
Feature Extraction, Text Line Font Size Detection,
Compressed Document OCR, Compressed Data Processing

I. INTRODUCTION

 Automatic detection of font size in text documents is
an important and crucial pre-knowledge extraction stage in
applications of intelligent OCRing and document image
understanding [1, 2]. Further, in case of document structure
analysis, the pre-knowledge of font size is an added
advantage in understanding the title, section, subsection,
paragraph, etc from a document image[1]. Different
applications like phrase spotting[2], bold words
detection[1], forgery detection[3], line segmentation[2]
have been proposed in the literature that emphasize the
detection of font size as key stage in improving the
performance of the system. However, these techniques are
designed for documents in uncompressed form. On the
contrary, in reality most of the document processing
systems like fax machines[4], xerox machines, and digital
libraries use compressed form to provide better

transmission and storage efficiency. Although in real life
the documents are made available in compressed form, the
existing system has to decompress the compressed
document and then operate over it, which requires
additional computing resources. Therefore, working on
compressed data directly without decompressing has proven
to offer lot many advantages in terms of time and space[5,
6, 7] and hence has become a priority area of research.
 As our research goal is to make way towards
intelligent OCRing and document understanding by
automatically detecting font size from compressed text
documents, we limit our research to only binary documents.
The popular compression technique available for both
archival and transmission of text documents is CCITT
Group-3[8], which is widely used in the form of TIFF and
PDF documents. CCITT Group-3 is supported by wide
range of fax machines and hence direct operations on these
compressed documents will help in developing intelligent
and efficient applications such as word spotting[5],
duplicate document detection[9] and retrieval[10]. The
backbone of CCITT Group-3 compression algorithm is run
length encoding technique. In this backdrop, this research
study is specifically focused on direct processing of
document images in run length compressed domain.
 In the literature, some of the latest works related to run
length compressed document processing are feature
extraction[7], entropy computation[11], text document
segmentation[12] and block extraction[13]. Moreover, to
our best knowledge, we could not find any research attempt
in detecting font size in compressed documents which is
considered to be a foundation work for intelligent OCRing
and document analysis using compressed documents.
Therefore in this research work, we aim at developing an
automated system for learning and detecting of font size of
text lines straight from run length compressed TIFF
documents without undergoing through the stage of
decompression. Rest of the paper is organized as follows:
section-2 gives background details of the compressed
document from text line perspective, section-3 discusses the
proposed model for font size detection, section-4 shows the
experimental analysis with the proposed methods, section-5
concludes the paper with a brief summary.

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 818

Fig. 1: Height features of a text line in uncompressed and compressed versions (’h’-Line height,’b’-Base height,’a’-Ascender height,’d’-Descender
height)


=

=∀+−+=
2

'

1

}'..1)},
2

'
,(max{)}1,({{min{)},1(),1({

n

j

mi
n

iwiwjbjwr (1)

II. LEARNING ABOUT A COMPRESSED DOCUMENT

 In this section, we discuss about the different
characteristic features associated with a compressed text
document specifically from its text line perspective. We
brief here various issues governing a compressed text line,
their related density parameters followed by a brief
introduction of regression based learning approach for font
size detection.
A. Text Line Parameters
 Any text document image can be described at different
resolution levels such as page, paragraph, line, word and
character. At all these levels it is possible to have text
consisting of various font size and font style. Also, we
know that most of the text in a document is usually
characterized in terms of font size, therefore there is a need
to develop a system that keeps track of the structural details
of the text during OCRing which may be called as
intelligent OCRing of texts for applications in editing and
reprinting of documents as emphasized by [1, 3]. This paper
is an attempt to support intelligent OCRing which aims at
developing an automated system for preserving the
structural details of compressed text lines through
automatic detection of font size directly from compressed
documents.
 Most of the time, text lines in digitally archived
documents such as articles, books, newspapers, magazines
come with single font style and multiple fonts size.
Therefore detecting the font size of the text lines for a given
font style is an important and intelligent task before
OCRing of these documents. In any font style, generally a
text line consists of three categories of text: uppercase,
lowercase and mixed-case. Among them, the mixed-case
types of text lines are more common in practical life.
Therefore, in this research we aim to demonstrate font size
detection with mixed-case text lines of Arial font. A text
line sample for a mixed-case text is shown in Fig-1 in both
compressed and uncompressed versions, where the text line
parameters such as line height(h), base height(b), ascender
height(a), descender height(d) are defined. These mixed-
case text lines can be further classified into three types:(i)
text line with both ascenders and descenders, (ii) with
ascenders or descenders and (iii) without ascenders and
descenders. However, one should be aware that, it is less

probable to get a long text line without any ascender
characters in them[2].
 The run length compressed data of the text line in case
of binary documents consists of alternate columns of white
runs (w(i,j)) and black runs (b(i,j)). Let this compressed
data of the text line be denoted in two column matrix
format as L(w(i,j),b(i,j)) where i = 1..mˈ and j = 1..nˈ/2 .
Here mˈ and nˈ respectively denote number of rows and
columns present in the compressed text line. The
representation L(w(i,j),b(i.j)) for the compressed text line
provides access to two columns at a time, therefore the
number of columns in the compressed text line becomes nˈ/2
.
 Another important parameter of the compressed text
line is its length, which is equal to number of columns in
the compressed data of the text line. Let this length be
denoted as ‘l’ and its value given as l = nˈ. From the
compressed text line it is also possible to compute the
length of the original text line in the uncompressed version
and let this length be denoted as ‘r’ which can be computed
with equation (1).
 In text lines of different font size, there is an
interesting pattern observed in the length of compressed
text lines. When the font size of the text line increases, the
length of the line in the compressed version decreases
gradually which can be seen clearly in Fig-2. Such a pattern
is observed because of increase in stroke width of the
characters with increase in font size, which naturally
reduces the total number of runs in a text line of fixed
length and the line length gets shortened with increase in
font size. The length pattern for different font size shown in
Fig-2 is observed for text lines of full length. However in
case text lines having their length less than full length, the
length pattern of the text line may overlap with the existing
length pattern of other font size. Therefore in order to use
this length as distinguishing feature for any application, we
recommend to normalize this length(l) with the original
length(r) of the text line which may be called as normalized
length ratio(R) and is mathematically expressed as

r

l
R = (2)

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 819

(a) Uncompressed Document (b) Compressed Document

Fig 2: Length pattern observed from a compressed text line of different font size

B. Density Estimation

 The number of pixels per unit area of the text line is
called as pixel density. Based on the density of pixels in
various regions of a compressed text line as described in
Fig-1, we classify the text lines into following types: (i)
ascender or descender rich (ii) both ascender and descender
rich and (iii) base rich. A text line is said to be ascender or
descender rich, if the descender or ascender density in the
corresponding text line is close to its base density. On the
other hand, the text line is base rich if both descender and
ascender densities are equal to the base density. The
different density parameters associated with a compressed
text line are given in equations (3),(4),(5) and (6), where
P(i) is the vertical projection profile[7] of the text line with
length mˈ as given in equation (8); ‘m1’ and ‘m2’ are
respective top and bottom profile of the base region; and ‘r’
is the length of text line in the uncompressed version.

Line Density
rm

iP
m

i

×
=


=

'

)(
'

1 (3)

Base Density
rb

iP
m

mi

×
=

=

2

1

)(
 (4)

Ascender Density
ra

iP
m

i

×
=


=

2

1

)(
 (5)

Descender Density
rd

iP
m

mi

×
=

=

'

1

)(
 (6)

 The ascender and descender density parameters
computed for a text line can be used to distinguish mixed
case text lines from upper case text lines. Generally, the

upper case text lines for a given font size have greater
ascender density when compared to mixed case text lines.
However, when text lines of different font size are
considered, the density parameter varies non-uniformly and
hence becomes difficult to generalize for font size
detection. Nevertheless, for upper case text lines, the
average density of profiles at P(h1) and P(h2) shown in Fig-
1, also called as top and bottom profile is always greater
when compared to the corresponding densities in case of
mixed case text lines and experimentally it is observed that
this density value is greater than 25% in upper case text
lines. This average density of P(h1) and P(h2) can be used
to distinguish and separate mixed case text lines from upper
case text lines. This is mathematically expressed as

MHD 100
2

)2()1(×
×
+=

r

hPhP
 (7)

 However, in this research we aim to demonstrate the
idea of font size detection with mixed case text lines.
Interestingly in case of mixed case text lines, the MHD
value can be used to differentiate ascender rich and both
ascender and descender rich text lines. The density of P(h2)
in case of ascender rich text lines is greater than density of
P(h1) which results in slightly higher density when
compared to ascender and descender rich text lines that
have low densities at both P(h1) and P(h2). The range of
MHD values obtained experimentally for different font size
text lines of Arial font during training is reported in Table-
1. In this research study we use MHD value to distinguish
ascender rich and both ascender and descender rich text
lines prior to font size recognition stage.

TABLE 1: MHD IN MIXED CASE FONT TEXT LINES

 Text Lines Average Density
(1) Ascender Rich 7% > MHD < 25%
(2) Ascender & Descender Rich MHD < 7%
(3) Upper Case MHD > 25%

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 820

Fig 3: Proposed Model for font size detection in run-length compressed domain

(a) Uncompressed Document (b) Compressed Document

Fig 4: A sample document when in uncompressed and compressed versions

C. Regression Based Learning

 In this work, we also introduce regression line based
learning of font size from the text line features extracted for
different font size directly from the compressed documents.
During training, the knowledge of font size from the
features of text lines of different font size are captured and
represented in the form of a regression line y = p x + q,
where p is slope of the line and q is intercept with y axis.
This regression line is used to predict the font size of the
text lines with the value of height features computed from
the text lines of documents during testing stage. The
different regression lines obtained for text line features such
as line height and ascender height are discussed in section-
4.

III. PROPOSED MODEL

 The proposed model shown in Fig-3 demonstrates the
overall idea of automatic detection of font size in
compressed documents. The model has two stages: first
stage called as learning stage where the different font size
are learnt from the text lines of the training set resulting in a
regression line and the second stage is recognition where
the unknown font size of the text lines are detected with the
knowledge of regression lines. The different components
involved in learning and detecting the font size from
compressed documents are text segmentation, feature
extraction, proper modelling of the features and font size
detection all carried out in compressed format of a
document. Here, the run-length compressed document is

fed as an input to the algorithm. The underlying data
structural aspects and challenges involved in handling run
length compressed documents can be obtained from [7].
However in order to understand the problem better, a
sample TIFF document in uncompressed and compressed
versions is shown in Fig-4, where the white region in Fig-
4b represents the run length compressed data of the text
line.

A. Text-Line Segmentation

 Text line segmentation in the context of a compressed
document means extracting the compressed data of every
text line from the compressed data of the document. The
computationally efficient Vertical Projection Profile(VPP)
technique proposed for compressed printed text documents
in [7] is used for text line segmentation. The vertical
projection profile for a compressed text line is expressed
mathematically as


=

=
2

'

1

),()(

n

j

jibiP (8)

 The time complexity for obtaining a vertical projection
profile of a compressed text line is O(m*nˈ/2). However in
general, the time complexity of obtaining a VPP from a run
length compressed document is very much lower than from
its uncompressed version which has been demonstrated by
[7].

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 821

B. Feature Extraction

 After text line segmentation, using the vertical
projection profile of the compressed line, a differential
projection profile curve[2] which is the difference of pixel
sums between adjacent scan line sums of P(i), is obtained
and is used further to compute the text line features defined
in Fig-1. It is mathematically expressed as

'..1),()1()(' miiPiPiP =∀−+= (9)

 In case mixed case text lines, the differential projection
profile produces two peaks called as positive maxima and
negative minima. Let the points at which the peaks occur be
denoted as m1 and m2 respectively. They can be recognized
as follows

,1 im = for max)}('{ iP & im =2 , for min)}('{ iP

(10)

1'..1 −=∀ mi

he distance between these two peaks give the base height(b)
of the text line and the remaining features of the text line
can be computed easily from this differential profile as
shown in Table-2.

TABLE 2: TEXT LINE FEATURE EXTRACTION

 Features Formula
(1) Line height h = mˈ
(2) Base height b = m2 – m1
(3) Ascender height a = m2
(4) Descender height d = mˈ - m1

 The differential projection profile for text line 13 of
Fig-2b demonstrates the extraction of these text line
features as given in Fig-5. Also the vertical projection
profile and differential projection profile obtained for the
text lines of the entire document of Fig-2a are shown in
Fig-6. More details regarding differential projection profile
in the context of uncompressed text lines is available in [2].
In this research, the line height and ascender height
computed from compressed text line are used for font size
detection from compressed documents.

Fig 5: A differential projection profile showing extraction of text line

features

(a) VPP curve

(b) Differential VPP curve

Fig 6: Vertical projection profile and its differential profile curve from a
compressed document in Fig-2a

 The length mˈ of the vertical projection profile P(i), is
taken as the height of the text line. Because the font size of
a text line largely depends on the height of the text line, we
use height feature for font size detection. Moreover the line
height feature is simple and computationally efficient which
can be straight away used for font size detection. Another
advantage offered by line height feature in font size
detection is that it avoids computation of differential
projection profile. However the line height feature in case
of ascender rich text lines for a given font size is equal to
ascender height of the text lines of the same font size.
Therefore such text lines have to be detected using the
MHD value before font size recognition and the line height
computed should be resolved with regression line of
ascender height feature obtained from the training
document samples. Further details are discussed in section-
4. The four text lines shown in Fig-7 are examples for
ascender rich text lines.

Figure 7: Special case of extracted text lines demonstrating absence of

descenders

 The different text line features extracted using the
training samples of 7 compressed documents of 7 different
font sizes each containing text lines of different font size
are tabulated in Table-3. In this research to detect font size
of text lines, we use only line height and ascender height
features. The feature values for these features in Table-3
show a variation of one pixel. Therefore while training we
take the average value of these features to learn the font size
of the text lines.

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 822

TABLE 3: FEATURES COMPUTED FROM THE TRAINING SET OF 7
COMPRESSED DOCUMENTS FOR 7 STANDARD FONT SIZE

Font Size height base ascender descender
8 [32,33] [19,20] [26,27] [26,27]

10 [42,42] [22,23] [32,33] [32,33]
12 [48,49] [29,30] [38,39] [38,39]
14 [57,58] [32,33] [44,45] [44,45]
16 [60,61] [35,36] [48,49] [48,49]
18 [69,71] [41,42] [54,55] [57,58]
20 [79,80] [48,48] [63,64] [63,64]

 During training, a regression line is used to learn the
different font size of the text lines using the features
extracted in Table-3. The line height and ascender height
features are observed to vary linearly to the font size and
therefore, we fit a linear regression and capture the pattern
of font size variation. The regression lines obtained for line
height and ascender height features are plotted in Fig-8. The
knowledge of font size is captured in equations of
regression lines in Fig-8a and Fig-8b as y = 3.7321 x +
3.5357, where the norm of residuals is 3.8591 and y =
2.9464 x + 2.8214, where norm of residuals is 2.719
respectively. During the testing stage, the height feature
extracted for the segmented text lines are used to predict the
font size of the text lines based on the knowledge of
regression line. For detecting the font size of ascender and
descender rich text lines, the regression line of height
feature is used, while for ascender rich text lines the
regression line of ascender height is used. During the
detection stage, the font size that is nearest to the predicted
font size value by the regression line is taken as font size of
the text line.

(a) Line height feature

(b) Ascender height feature

Fig 8: Regression line obtained for text line height and ascender height

features

IV. EXPERIMENTAL ANALYSIS

 In order to test the proposed method, two sets of data
is collected consisting of totally 50 noise and skew free
compressed documents (Size 2375 x 3200 at 300dpi) of 7
standard font size (8, 10, 12, 14, 16, 18 and 20) of Arial
font for experimentation. The dataset-I has 35 documents
which are of single font size text lines consisting of 5
documents each from every font size and the dataset-II
consists of 15 documents of multiple or mixed font size text
lines. The ground truth for both the data set is manually
fixed and the related statistics is given in Table-4.
 For training purpose 7 compressed documents are
randomly chosen, one document from each font size of
dataset-I. Each document is segmented into text lines, the
line height and ascender height features are extracted and
the knowledge of the font size is captured and preserved in
the form of a regression lines. Now in order to check the
performance of line height feature alone in detecting font
size, we experiment with the regression line of font height
with all the documents from dataset-I and dataset-II. The
accuracy of font size detection obtained using the
regression line of line height feature for both the data sets is
tabulated in Table-5.

TABLE 4: GROUND TRUTH DETAILS OF DATASET-I & DATASET-II

Font size
Number of text lines

Dataset-I
(35 documents)

Dataset-II
(15 documents)

8 67 17

10 83 73

12 99 66

14 114 43

16 132 79

18 144 35

20 141 62

Total 780 375

TABLE 5: ACCURACY OF FONT SIZE DETECTION USING LINE

HEIGHT FEATURE

Document Font Size Accuracy (%)

Dataset-I

8 98.50

10 95.18

12 95.96

14 96.49

16 93.18

18 88.89

20 88.65

Dataset-II

8 100

10 98.63

12 96.97

14 95.35

16 93.67

18 82.86

20 93.55

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 823

Fig 9: Text lines demonstrating the presence of numbers, special symbols,

italic words and numbers

 With the above experiment it is proved that line height
can be potentially a good feature for font size detection of
text lines in compressed documents. Moreover at line level,
this feature can also handle italics fonts, numbers and
special symbols embedded in the text line, which is shown
Fig-9. However, the performance obtained with the feature
is not satisfactory but could be improved using an
additional ascender height feature in the recognition stage.
In case of line height feature, the decrease in performance
for most of the time is observed due to ascender rich text
lines which do not include any descender character in them.
In such text lines the ascender height is wrongly taken as
line height, and hence the predicted font size is incorrect. In
order to improve the performance of font size detection
with line height feature, the ascender rich text lines need to
be distinguished and recognized separately with its
ascender height feature. Therefore, we use MHD value to
classify the ascender rich text lines from ascender and
descender rich text lines. For ascender rich text lines, the
font size is predicted with the knowledge of regression line
obtained from ascender height features during the training
stage. The accuracy of font size recognition using line
height and ascender height as an additional feature on
dataset-I & dataset-II is given in Table-6.

TABLE 6: ACCURACY OF FONT SIZE DETECTION USING LINE
HEIGHT AND ASCENDER HEIGHT FEATURES

Document Font Size Accuracy (%)

Dataset-I

8 100
10 98.79
12 100
14 100
16 99.24
18 100
20 100

Dataset-II

8 100
10 98.63
12 100
14 100
16 98.70
18 100
20 100

Overall 99.67
 Text line font size detection with ascender height as an
additional feature produces commendable results. However,
during the experiment we observe some small error which
may appear in the last line of a paragraph. Such error occurs
in a text line containing few words which may belong to a
category of base rich text line. The height feature computed
in these text lines are less than the actual height of ascender
rich text lines and hence leads to recognition error. In case
such text line occurs, it is possible to detect their font size

with MHD value and base height regression line.
Nevertheless, occurrence of such error in text lines of
sufficient length is an unlikely event[2]. Therefore, this
issue has not been addressed in this research work. Two test
documents, one each from dataset-I & dataset-II showing
the detection of font size from compressed documents are
given in Fig-10.
 Finally, we also extrapolate the knowledge of font size
in the form regression line to predict the font size of text
lines (9, 11, 13, 15, 17 and 19) which were not the part of
training set. In the similar manner, the line height and
ascender height are computed from the segmented text lines
and their font size is predicted with the regression line. The
result of font size detection obtained for the test documents
considered which are decompressed and shown in Fig-11.
We observe that font size 12 & 13, 15 & 16 and 17 & 18
have line height in the same range and hence results have
been wrongly predicted as highlighted and shown in Fig-11.
Other than these fonts, the prediction of font size with the
proposed model works satisfactorily.

(a) Test document-22

(b) Test document-50

Figure 10: Results for automatic font size in documents of similar font size
and mixed font size text lines

 The overall goal of this research work was to
demonstrate the idea of font size detection directly in
compressed documents. Therefore, the focus of font size

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 824

detection was limited to line level and single font style
(Arial). However, the same idea of font size detection could
also be extended to word level and with different font styles
which could be taken as an extension work to this research
study.

V. CONCLUSION

In this research work, a novel method for automatic
detection of font size directly from the run length
compressed documents at line level is proposed. The simple
text line features such as line height and ascender height
are computed from the compressed text line of different
font size and this knowledge is preserved in the form a
regression line which is used to predict the font size during
the testing stage. Further, the regression line is also
experimented to predict the font size of text lines which
were not considered for training. Overall, the idea presented
for font size detection in run length compressed domain is
validated with sufficient data set and the performance
results obtained are commendable enough to motivate to
extend the current idea to word level and also with other
font styles.

(a) Test document-51

(b) Test document-52

 Figure 11: Results for automatic font size prediction for untrained text
line fonts

REFERENCES
[1] P. Saikrishna and A. G. Ramakrishnan, “Script independent

detection of bold words in multi font-size documents,” In
proceeding of National Conference on Computer Vision, Pattern
Recognition, Image Processing and Graphics (NCVPRIPG-2013),
India, 2013.

[2] F. R. Chen, D. S. Bloomberg, and L. D.Wilcox, “Detection and
location of multicharacter sequences in lines of imaged text,”
Journal of Electonic Imaging, vol. 5, pp. 37–49, January 1996.

[3] J. V. Beusekom, F. Shafait, and T. M. Breuel, “Text-line
examination for document forgery detection,” International Journal
on Document Analysis and Recognition (IJDAR), vol. 16, pp. 189–
207, June 2013.

[4] K. R. McConnell, D. Bodson, and R. Schaphorst, FAX: Digital
Facsimile Technology and Applications. Artech House, 1989.

[5] Y. Lu and C. L. Tan, “Word searching in ccitt group 4 compressed
document images,” Proceedings of Seventh International
Conference on Document Analysis and Recognition (ICDAR’03),
pp. 467–471, 2003.

[6] J. Lu and D. Jiang, “Survey on the technology of image processing
based on dct compressed domain,” International Conference on
Multimedia Technology (ICMT), pp. 786–789, 2011.

[7] M. Javed, P. Nagabhushan, and B. B. Chaudhuri, “Extraction of
projection profile, run-histogram and entropy features straight from
run-length compressed documents,” Proceedings of Second IAPR
Asian Conference on Pattern Recognition (ACPR’13), Okinawa,
Japan, pp. 813–817, November 2013.

[8] CCITT-Recommedation(T.4), “Standardization of group 3 facsimile
apparatus for document transmission, terminal equipments and
protocols for telematic services, vol. vii, fascicle, vii.3, geneva,”
tech. rep., 1985.

[9] R. S. Caprari, “Duplicate document detection by template
matching,” Image and Vision Computing, vol. 18, pp. 633–643,
2000.

[10] Y. Lu and C. L. Tan, “Document retrieval from compressed
images,” Pattern Recognition, vol. 36, pp. 987–996, 2003.

[11] P. Nagabhushan, M. Javed, and B.B.Chaudhuri, “Entropy
computation of document images in run-length compressed
domain,” International Conference on Signal and Image Processing
(ICSIP14), Bangalore, India, pp. 287–291, January 2014.

[12] M. Javed, P. Nagabhushan, and B. B. Chaudhuri, “Extraction of
line-word-character segments directly from runlength compressed
printed text-documents,” National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics
(NCVPRIPG’13), Jodhpur, India, December 2013.

[13] M. Javed, P. Nagabhushan, and B. B. Chaudhuri, “Direct processing
of run-length compressed document image for segmentation and
characterization of a specified block,” International Journal of
Computer Applications, Published by Foundation of Computer
Science, New York, USA, vol. 83(15), pp. 1–6, December 2013.

Mohammed Javed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 818-825

www.ijcsit.com 825

