# Role and expectations of satellite communication in 5G

Eiji Okamoto Nagoya Institute of Technology, Japan

#### Number of broadband wireless subscribers in Japan

Progress of broadband wireless subscribers in Japan



Fiscal Year

- March 2017: Cellular, PHS, WiMAX -> 187,661,100
- March 2017: Japan population -> 126,760,000
- Adoption rate: 148.0 %

# Demands for mobility and throughput in mobile communications



Aggregation and Provisional Calculation of Internet Traffic in Japan



# Usage scenarios of 5G from socio-economic perspective



• 5G system will accommodate many use-cases.

### Required system capabilities of 5G radio access network

• The maximum system capabilities such as the peak data rate, mobility, capacity, number of connected devices, air latency, and energy saving will be greatly improved compared to IMT-Advanced (4G) system.

• In Japan, a part of 5G services (phase I) is planned to start in 2020 according to Tokyo 2020 Olympic

and Paralympic games.



## Three major usage scenarios and their requirements

# Enhanced mobile broadband (eMBB)



massive machine type communications (mMTC)

ultra-reliable and low-latency communications (URLLC)

[3] 5GMF White Paper, "5G Mobile Communications Systems for 2020 and beyond, "ver. 1.0.1, July 2016. [Online] http://5gmf.jp/wp/wp-content/uploads/2016/07/5GMF\_WP101\_All.pdf

[2] ARIB 2020 and Beyond Ad Hoc Group, "Mobile Communications Systems for 2020 and beyond," White Paper, [Online] http://www.arib.or.jp/ADWICS/20bah-wp-100.pdf, Oct. 2014.

## 5G radio access network (RAN) technologies



# Challenges in beyond 5G systems

- Vanishing the wireless throughput selectivites in terms of time, space, and frequency.
- Providing a stable throughput anytime and anywhere.
- Evolution from 'best-effort service' to 'guaranteed service' in 6G or beyond.

### Pros and Cons of satellite communications

#### ■ Pros:

- Cost-effective earth-scale coverage that enables new concept "out-of-range free"
- Cost-effective construction of cyber physical systems (outdoor)
- Stable connection

#### ■ Cons:

- Capacity limitation
- Relatively high latency



• User demands are based on terrestrial 5G

# Satellite communication systems

• Advantages and new services using satellite communications



inmarsat Global Xpress uplink 5Mbps/ downlink 50 Mbps at maximum using Ka-band



- Global Positioning System (GPS)
- Global broadband services including mountainous and oceanic areas



Autonomous ship controlled by satellites

Rolls Royce Autonomous Ship



Autonomous unmanned aerial vehicle (UAV) controlled by satellites

### Satellite communication in 5G



• Relationship between user density and target user throughput in 5G mobile communication systems.

# Satellite/terrestrial integrated mobile communication system (STICS)



- In satellite/terrestrial integrated mobile communication system (STICS) [4]
  - A mobile terminal can connect both the terrestrial cellular base station and the satellite station.
  - Robust connectivity in emergency cases and wide-area connectivity in mountainous and oceanic areas with low population density are provided.
  - "out-of-range free" cell-phone is realized.
- Similar concepts are given as
  - Ancillary terrestrial component (ATC) technology in US
  - Complementary ground component (CGC) in Europe
  - Enhanced Geostationary Air Link (EGAL) by Qualcomm
  - Recommendation M.2047, "Detailed specifications of the satellite radio interfaces of International Mobile Telecommunications-Advanced (IMT-Advanced)," by ITU-R



# Throughput performance of STICS [5]



- Due to the long-distance propagation and large cell size, the user throughput in satellite cell is ten kbps range.
- The performance of satellite links needs to be improved.

## Multi-satellite transmission (satellite MIMO)



[6] D. Goto, F. Yamashita, T. Sugiyama, and K. Kobayashi, "Broadband Multi-Satellite/Multi-Beam System with Single Frequency Reuse," Proc. IEEE Vehicular Technology Conference (VTC-2015S), pp. 1-5, May 2015.

 $N_t$ : no. of satellites (total transmit antennas)

 $N_r$ : no. of receive antennas at UE

Channel capacity of multiple-input multiple-output (MIMO) channel

$$N_{\min} = \min(N_t, N_r)$$

$$C = \sum_{k=1}^{N_{\min}} \log_2(1 + \lambda_k \gamma) \quad \text{bit/sec/Hz} \quad \begin{cases} \lambda_k : \text{ eigenvalue of channel matrix} \\ \gamma : \text{ receive SNR} \end{cases}$$

- C is increased in proportion to number of antennas (rank of channel matrix).
- It is assumed that the synchronization between geostationary (GEO) satellites is perfectly obtained in the multi-satellite case, and that the distance between a user and a GEO satellite is the same at any positions in the satellite cell.

### Non-orthogonal multiple access with SIC (SIC-NOMA)



• Different from orthogonal frequency division multiple access (OFDMA), in the figure, the superposition allocation is conducted in subbands 1 and 3 for UE1 and UE4, and UE2 and UE3, respectively.

• System throughputs can be enhanced compared to OFDMA (4G).



• We proposed an satellite MIMO-NOMA scheme for satellite/terrestrial integrated mobile communication system (STICS) [8].



[8] E. Okamoto and H. Tsuji, "Application of non-orthogonal multiple access scheme for satellite downlink in satellite/terrestrial integrated mobile communication system with dual satellites," IEICE Trans. Commun., vol. E99-B, no. 10, pp. 2146-2155, Oct. 2016.

Performance at Rice factor  $K_f = -6 \text{ dB}$ 



- The performances are improved in both figures compared to  $K_f = 6$  dB, because of the space diversity effect of
- MIMO channel, i.e., the second eigenvalue is increased.JFI is also improved because the channel variance is increased due to the blockage of direct wave, and the PF
- The performance of JFI with  $N_t = 2$  and  $m_s = 2$  is the best.

allocation works well.

The application of multi-satellite and NOMA is effective.

CDF: cumulative distribution function

# Performance at Rice factor $K_f = 6 \text{ dB}$



CDF: cumulative distribution function

- User variance is relatively small and the CDF at minimum throughput is over 0.5 in all configurations, because the 64 subbands (subcarriers) are allocated to 64 users.
- 6 Kbps improvement is obtained at CDF of 90% regardless of  $m_s$  when multi-satellites are used.
- The performances at lower throughput below 3 Kbps are improved by applying NOMA of  $m_s = 2$ .
- The fairness is improved by applying NOMA, that is, 0.15 and 0.2 point of JFI at CDF of 50% are increased for  $N_t = 1$  and 2, respectively, by applying  $m_s = 2$ .

# MIMO synchronization in satellite cell





### Problems and solutions of STICS

- Problems:
- Capacity limitation
- Narrow area of satellite MIMO synchronization
- Relatively high latency of GEO
- Solutions:
- Super-constellation using low-earth orbit (LEO) satellites
- High-throughput satellite (HTS)



• channel fluctuation of many non-line-of sight LEO satellites may be utilized for good MIMO transmission

# Control and user plane separation in satellite communication



- System capacity enhancement is obtained.
- Low latency transmission
- Different from terrestrial 5G, the latency of C-Plane is a problem to be solved.

# Summary

- 5G enables variety of scenarios for socio-economic satisfaction.
- Satellite communications enhances 5G system.
- Satellite systems will enable "out-of-range free" and "guaranteed service" in 5G or beyond.