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• March 2017: Cellular, PHS, WiMAX -> 187,661,100 

• March 2017: Japan population -> 126,760,000 

• Adoption rate: 148.0 %

Number of broadband wireless subscribers in Japan
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10 Gbps is the target 
of 5G mobile broadband

Demands for mobility and throughput 
in mobile communications
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Aggregation and Provisional Calculation of 
Internet Traffic in Japan

[1] The Ministry of Internal Affairs and Communications, “Aggregation and Provisional Calculation

of Internet Traffic in Japan,” Oct. 2015.
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Usage scenarios of 5G from socio-economic 
perspective

• 5G system will accommodate many use-cases.

[2] “ARIB 2020 and Beyond Ad Hoc Group, Mobile Communications Systems for 2020 and beyond,” White Paper,

[Online] http://www.arib.or.jp/ADWICS/20bah-wp-100.pdf, Oct. 2014.
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Required system capabilities of 5G radio access network

[2] ARIB 2020 and Beyond Ad Hoc Group, “Mobile Communications Systems for 2020 and beyond,” 

White Paper, [Online] http://www.arib.or.jp/ADWICS/20bah-wp-100.pdf, Oct. 2014.

• The maximum system capabilities such as the peak data rate, mobility, capacity, number of connected 

devices, air latency, and energy saving will be greatly improved compared to IMT-Advanced (4G) 

system. 

• In Japan, a part of 5G services (phase I) is planned to start in 2020 according to Tokyo 2020 Olympic 

and Paralympic games.

Maximum system capabilities of 

5G RAN （radio access network)

6



Three major usage scenarios and their requirements

[2] ARIB 2020 and Beyond Ad Hoc Group, “Mobile Communications 

Systems for 2020 and beyond,” White Paper, [Online] 

http://www.arib.or.jp/ADWICS/20bah-wp-100.pdf, Oct. 2014.

[3] 5GMF White Paper, “5G Mobile Communications Systems for 2020 and

beyond, ” ver. 1.0.1, July 2016. [Online]

http://5gmf.jp/wp/wp-content/uploads/2016/07/5GMF_WP101_All.pdf

massive machine type 

communications (mMTC)

ultra-reliable and low-latency

communications (URLLC)

Enhanced mobile broadband 

(eMBB)
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5G radio access network (RAN) technologies

[3] 5GMF White Paper, “5G Mobile Communications Systems for 2020 and beyond, ” ver. 1.0.1, July 2016.

[Online] http://5gmf.jp/wp/wp-content/uploads/2016/07/5GMF_WP101_All.pdf
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Challenges in beyond 5G systems

• Vanishing the wireless throughput selectivites in terms of time, 

space, and frequency.

• Providing a stable throughput anytime and anywhere. 

• Evolution from ‘best-effort service’ to ‘guaranteed service’ in 6G or 

beyond.
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Pros and Cons of satellite communications

 Pros:

• Cost-effective earth-scale coverage that enables new concept     

“out-of-range free”

• Cost-effective construction of cyber physical systems (outdoor)

• Stable connection

 Cons:

• Capacity limitation

• Relatively high latency

• User demands are based on terrestrial 5G
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Satellite communication systems

• Global broadband services including 

mountainous and oceanic areas

• Advantages and new services using satellite communications

uplink 5Mbps/ downlink 50 Mbps 

at maximum using Ka-band

Rolls Royce 

Autonomous Ship 

• Autonomous ship controlled by 

satellites

• Autonomous unmanned aerial vehicle 

(UAV) controlled by satellites

line-of-sight (LOS) transmission
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Satellite communication in 5G

• Relationship between user density and target user 
throughput in 5G mobile communication systems.
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[2] ARIB 2020 and Beyond Ad Hoc Group, “Mobile Communications Systems for 2020 and

beyond,” White Paper, [Online] http://www.arib.or.jp/ADWICS/20bah-wp-100.pdf, Oct. 2014.
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Satellite/terrestrial integrated mobile 
communication system (STICS)

[4] T. Minowa, M. Tanaka, N, Hamamoto, Y. Fujino, N. Nishinaga, R. 

Miura, and K. Suzuki, “Satellite/Terrestrial Integrated Mobile 

Communication System for Nation's Security and Safety,” IEICE Trans. 

Commun. vol. J91-B, no.12, pp.1629-1640, Dec. 2008.
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• In satellite/terrestrial integrated mobile communication system (STICS） [4]
– A mobile terminal can connect both the terrestrial cellular base station and the 

satellite station.
– Robust connectivity in emergency cases and wide-area connectivity in mountainous 

and oceanic areas with low population density are provided.
– “out-of-range free” cell-phone is realized.

• Similar concepts are given as
– Ancillary terrestrial component (ATC) technology in US
– Complementary ground component (CGC) in Europe
– Enhanced Geostationary Air Link (EGAL) by Qualcomm
– Recommendation M.2047, “Detailed specifications of the satellite radio interfaces of 

International Mobile Telecommunications-Advanced (IMT-Advanced),” by ITU-R
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Throughput performance of STICS [5]

• Due to the long-distance propagation and large cell size, the user throughput in satellite cell is ten kbps range. 

• The performance of satellite links needs to be improved.
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[5] E. Okamoto, A. Tanaka, H. Tsuji, and A. Miura, “Throughput Performance Improvement by Dual-Directional Resource Allocation in 

Satellite/Terrestrial Integrated Mobile Communication System,” IEICE Trans. on Commun., vol. J97-B, no. 11, pp. 1009-1021, Nov. 2014.
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 Channel capacity of multiple-input multiple-output (MIMO) channel

 C is increased in proportion to number of antennas (rank of channel matrix).

Multi-satellite transmission (satellite MIMO)
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• It is assumed that the synchronization between geostationary (GEO) satellites is perfectly obtained in the

multi-satellite case, and that the distance between a user and a GEO satellite is the same at any positions

in the satellite cell.

Nt: no. of satellites 

(total transmit antennas)

Nr: no. of receive antennas at UE

: eigenvalue of channel matrix

: receive SNR

[6] D. Goto, F. Yamashita, T. Sugiyama, and K. Kobayashi,

“Broadband Multi-Satellite/Multi-Beam System with Single

Frequency Reuse,” Proc. IEEE Vehicular Technology

Conference (VTC-2015S), pp. 1-5, May 2015.
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Non-orthogonal multiple access with SIC (SIC-NOMA)

[7] K. Higuchi and A. Benjebbour, “Non-orthogonal Multiple

Access (NOMA) with Successive Interference Cancellation for

Future Radio Access,” IEICE Trans. on Commun., vol. E98-B,

no.3m pp. 403-414, Mar. 2015.

• System throughputs can be enhanced compared to OFDMA (4G).

• We proposed an satellite MIMO-NOMA scheme for satellite/terrestrial integrated mobile

communication system (STICS) [8].

• Different from orthogonal frequency division multiple access (OFDMA), in the figure, the

superposition allocation is conducted in subbands 1 and 3 for UE1 and UE4, and UE2 and UE3,

respectively.
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[8] E. Okamoto and H. Tsuji, "Application of non-orthogonal multiple access scheme for satellite

downlink in satellite/terrestrial integrated mobile communication system with dual satellites," IEICE

Trans. Commun., vol. E99-B, no. 10, pp. 2146-2155, Oct. 2016.
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User throughput Mbps
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Performance at Rice factor Kf = －6 dB

• The performances are improved in both figures compared to Kf = 6 dB, because of the space diversity effect of

MIMO channel, i.e., the second eigenvalue is increased.

• JFI is also improved because the channel variance is increased due to the blockage of direct wave, and the PF

allocation works well.

• The performance of JFI with Nt = 2 and ms = 2 is the best.

• The application of multi-satellite and NOMA is effective.

CDF of user capacity CDF of Jain’s fairness index
CDF: cumulative distribution function

75 Kbps 
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• User variance is relatively small and the CDF at minimum throughput is over 0.5 in all configurations, because 

the 64 subbands (subcarriers) are allocated to 64 users.

• 6 Kbps improvement is obtained at CDF of 90% regardless of ms when multi-satellites are used.

• The performances at lower throughput below 3 Kbps are improved by applying NOMA of ms = 2.

• The fairness is improved by applying NOMA, that is, 0.15 and 0.2 point of JFI at CDF of 50% are increased for

Nt = 1 and 2, respectively, by applying ms = 2.

CDF of user capacity CDF of Jain’s fairness index
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Problems and solutions of STICS

 Problems:

• Capacity limitation

• Narrow area of satellite MIMO synchronization

• Relatively high latency of GEO

 Solutions:

• Super-constellation using low-earth orbit (LEO) satellites

• High-throughput satellite (HTS)

• channel fluctuation of many non-line-of sight LEO satellites may be 

utilized for good MIMO transmission 

20



Control and user plane separation in satellite 
communication

21
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• System capacity enhancement is obtained.

• Low latency transmission

• Different from terrestrial 5G, the latency of C-Plane is a problem to be solved.



Summary

• 5G enables variety of scenarios for socio-economic

satisfaction.

• Satellite communications enhances 5G system.

• Satellite systems will enable “out-of-range free”

and “guaranteed service” in 5G or beyond.
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