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Abstract: This article studies the bi-directional causal interactions between curiosity and 
learning, and discusses how understanding these interactions can be leveraged in educational 
technology applications. First, we review recent results showing how state curiosity, and 
more generally the experience of novelty and surprise, can enhance learning and memory 
retention. Then, we discuss how psychology and neuroscience have conceptualized curiosity 
and intrinsic motivation, studying how the brain can be intrinsically rewarded by novelty, 
complexity or other measures of information. We explain how the framework of 
computational reinforcement learning can be used to model such mechanisms of curiosity. 
Then, we discuss the learning progress (LP) hypothesis, which posits a positive feedback loop 
between curiosity and learning. We outline experiments with robots that show how LP-driven 
attention and exploration can self-organize a developmental learning curriculum scaffolding  
efficient acquisition of multiple skills/tasks.. Finally, we discuss recent work exploiting these 
conceptual and computational models in educational technologies, showing in particular how 
Intelligent Tutoring Systems can be designed to foster curiosity and learning. 

Keywords: curiosity; intrinsic motivation; learning; education; active learning; active 
teaching; neuroscience; computational modeling; artificial intelligence; educational 
technology. 

Curiosity fosters learning and memory retention 

Curiosity is a form of intrinsic motivation that is key in fostering active learning and 
spontaneous exploration. For this reason, curiosity-driven learning and intrinsic motivation 
have been argued to be fundamental ingredients for efficient education (Freeman et al., 2014). 
Thus, elaborating a fundamental understanding of the mechanisms of curiosity, and of which 
features of educational activities can make them “fun” and foster motivation, is of high-
importance with regards to the educational challenges of the 21st century. 

While there is not yet a scientific consensus on how to define curiosity operationally 
(Oudeyer and Kaplan, 2007; Gottlieb et al., 2013; Kidd and Hayden, 2015), states of curiosity 
are often associated with a psychological interest for activities or stimuli that are surprising, 
novel, of intermediate complexity, or characterized by a knowledge gap or by errors in 
prediction, which are features that can themselves be quantified mathematically 
(Schmidhuber, 1991; Oudeyer and Kaplan, 2007; Barto et al., 2013). Such informational 
features that attract the brain’s attention have been called “collative variables” by Berlyne 
(1965). 



Recent experimental studies in psychology and neuroscience have shown that experiencing 
these features improved memory retention and learning in human children and adults, in other 
animals and in a variety of tasks. In a famous series of experiments with monkeys, Waelti et 
al. (2001) showed that monkeys could learn the predictive association between a stimuli and a 
reward only in situations where prediction errors happened: if the reward was anticipated by 
other means, then learning was blocked. This experiment complied with formal models of 
reinforcement learning, and in particular TD learning (Sutton and Barto, 1981), predicting 
that “organisms only learn when events violate their expectations” (Rescorla and Wagner, 
1972, p. 75). In a study mixing behavioral analysis and brain imaging, Kang et al. (2009) 
showed that human adults show greater long-term memory retention for verbal material for 
which they had expressed high curiosity than for low-curiosity questions. They observed that 
before the presentation of answers to high-curiosity questions, curiosity states were correlated 
with higher activity in the striatum and inferior frontal cortex. When subjects observed 
answers that did not match their predictions (i.e. an error was experienced), then an increase 
in activation of putamen and left inferior frontal cortex was observed. The modulation of 
hippocampus-dependent learning by curiosity states was confirmed in (Gruber et al., 2014). 
Recently, Stahl and Feigenson (2015) showed that a similar phenomenon happens in infants, 
observing that the infants created stronger associations between sounds/words and visual 
objects in a context where object movements violated the expected laws of physics. 

Novelty, surprise, intermediate complexity and other related features that characterize 
informational properties of stimuli have not only been shown to enhance memory retention, 
but they have also been argued to be intrinsically rewarding, motivating organisms to actively 
search for them. Three strands of research developed arguments and experimental evidence in 
this direction. First, psychologists proposed that forms of intrinsic motivation motivate the 
organism to search for information and competence gain. Second, neuroscientists have shown 
that reward-related dopaminergic circuits can be activated by information independently of 
extrinsic reward, and behavioral preference for novelty can be observed in various animals (as 
along with the apparently inconsistent observation of neophobia). Third, theoretical 
computational models and their experimental tests in robots have shown how such 
mechanisms could function and how they can improve learning efficiency by self-organizing 
developmental learning trajectories.. In what follows, we discuss these advances in turn, and 
then study how this perspective on curiosity and learning opens new directionsin educational 
technologies.   

Curiosity and intrinsic-motivation in psychology1 
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2 In this instantiation of the LP hypothesis, an internal module metaM monitors how learning 
progresses to generate intrinsic rewards. However, the LP hypothesis in general does not 
require such an internal capacity for measuring learning progress : such information may also 
be provided by the environment, either directly by objects or games children play with, or by 
adults/social peers.  
3 Here, action selection is made within a simplified form of reinforcement learning: learning 
progress is maximized only on the short term, and the environment is configured so that it 
returns to a rest position after each sensorimotor experiment. This corresponds to what is 



In psychology, curiosity can be approached within the conceptual framework of intrinsic 
motivation (Ryan and Deci, 2000; Berlyne, 1960). Ryan and Deci (2000) proposed a 
distinction of intrinsic and extrinsic motivation based on the concept of instrumentalization 
(pp. 56): 

“Intrinsic motivation is defined as the doing of an activity for its inherent satisfaction rather 
than for some separable consequence. When intrinsically motivated, a person is moved to act 
for the fun or challenge entailed rather than because of external products, pressures or 
reward.” 

Intrinsic motivation is clearly visible in young infants, who consistently try to grasp, throw, 
bite, squash or shout at new objects they encounter, without any clear external pressure to do 
it. Although the importance of intrinsic motivation declines during development, human 
adults are still often intrinsically motivated to engage in activities such as crossword puzzles, 
painting, gardening, read novels or watch movies. Accordingly, Ryan and Deci define 
extrinsic motivation as:  

“Extrinsic motivation is a construct that pertains whenever an activity is done in order to 
attain some separable outcome. Extrinsic motivation thus contrasts with intrinsic motivation, 
which refers to doing an activity simply for the enjoyment of the activity itself, rather than its 
instrumental value.” (Ryan and Deci, 2000)  

Given this broad distinction between intrinsic and extrinsic motivation, psychologists have 
proposed theories about which properties of activities make them intrinsically motivating, and 
in particular foster curiosity as one particular form of intrinsically motivated exploration 
(Oudeyer and Kaplan, 2007).  

Drives to manipulate, drives to explore. In the 1950s, psychologists attempted to give an 
account of intrinsic motivation and exploratory activities on the basis of the theory of drives 
(Hull, 1943), defined as specific tissue deficits that the organisms try to reduce, like hunger or 
pain. Montgomery, 1954 proposed a drive for exploration and Harlow, 1950 proposed that 
subjects have a drive to manipulate. This drive naming approach had shortcomings which 
were criticized by White in 1959 (1959): intrinsically motivated exploratory activities have a 
fundamentally different dynamics. Indeed, they are not homeostatic: the general tendency to 
explore is not a consummatory response to a stressful perturbation of the organism’s body.  

Reduction of cognitive dissonance. An alternative conceptualization was proposed by 
Festinger’s theory of cognitive dissonance (Festinger, 1957), which asserted that organisms 
are motivated to reduce dissonance, defined as an incompatibility between internal cognitive 
structures and the situations currently perceived. Fifteen years later, a related view was 
articulated by Kagan stating that a primary motivation for humans is the reduction of 
uncertainty in the sense of the “incompatibility between (two or more) cognitive structures, 
between cognitive structure and experience, or between structures and behavior” (Kagan, 
1972). More recently, the related concept of “knowledge gap” was argued to be a driver for 
curiosity-driven exploration (Lowenstein, 1994). However, these theories do not provide an 



account of certain spontaneous exploration behaviours which increase uncertainty (Gottlieb et 
al., 2013). Also, they do not specify whether the brain values differently or similarly different 
degrees of knowledge gaps.  

Optimal incongruity. People seem to look for situations  between completely uncertain and 
completely certain. In 1965, Hunt developed the idea that children and adults look for optimal 
incongruity (Hunt, 1965). He regarded children as information-processing systems and stated 
that interesting stimuli were those where there was a discrepancy between the perceived and 
standard levels of the stimuli. For Dember and Earl, the incongruity or discrepancy in 
intrinsically-motivated behaviors was between a person’s expectations and the properties of 
the stimulus (Dember and Earl, 1957). Berlyne developed similar notions as he observed that 
the most rewarding situations were those with an intermediate level of novelty, between 
already familiar and completely new situations (Berlyne, 1960). This perspective was recently 
echoed by Kidd et al. (2012) who showed an experiment where infants prefered stimuli of 
intermediate complexity. 

Motivation for competence. A last group of researchers preferred the concept of challenge to 
the notion of optimal incongruity. These researchers stated that what was driving human 
behavior was a motivation for “effectance” (White, 1959), personal causation (De Charms, 
1968), competence and self-determination (Deci and Ryan, 1985). Basically, these approaches 
argue that what motivates people is the degree of control they can have on other people, 
external objects and themselves. An analogous concept is that of optimal challenge as put 
forward in the theory of “Flow” (Csikszentmihalyi, 1991).  

Berlyne’s informational approach to curiosity and intrinsic motivation. These diverse 
theoretical approaches to intrinsic motivation and the properties that render certain activities 
intrinsically interesting/motivating have been proposed by diverse research communities 
within psychology, but so far there is no consensus on a unified view of intrinsic motivation. 
Even more, it could be argued that distinguishing intrinsic and extrinsic motivation based on 
instrumentalization can be circular (Oudeyer and Kaplan, 2007). Yet, a convincing integrated 
non-circular view has actually been proposed in the 60’s by Daniel Berlyne (Berlyne, 1965), 
and has been used as a fruitful theoretical reference for developing formal mathematical 
models of curiosity, as described below. The central concept of this integrated approach to 
intrinsic motivation is that of “collative variables”, as explained in the following quotations:  

“The probability and direction of specific exploratory responses can apparently be influenced 
by many properties of external stimulation, as well as by many intraorganism variables. They 
can, no doubt, be influenced by stimulus intensity, color, pitch, and association with 
biological gratification and punishment, ... [but] the paramount determinants of specific 
exploration are, however, a group of stimulus properties to which we commonly refer by such 
words as “novelty”, “change”, “surprisingness”, “incongruity”, “complexity”, “ambiguity”, 
and “indistinctiveness”. »  (Berlyne, 1965, pp. 245),  

« ... these properties possess close links with the concepts of information theory, and they can, 
in fact, all be discussed in information-theoretic terminology. In the case of “ambiguity” and 
“indistinctiveness”, there is uncertainty due to a gap in available information. In some forms 



of “novelty” and “complexity”, there is uncertainty about how a pattern should be 
categorized, that is, what labeling responses should be attached to it and what overt response 
is appropriate to it. When one portion of a “complex” pattern or of a sequence of “novel” 
stimuli is perceived, there is uncertainty about what will be perceived next. In the case of 
“surprisingness” and “incongruity”, there is discrepancy between information embodied in 
expectations and information embodied in what is perceived. For these reasons, the term 
“collative” is proposed as an epithet to denote all these stimulus properties collectively, since 
they all depend on collation or comparison of information from different stimulus elements, 
whether they be elements belonging to the present, past or elements that are simultaneously 
present in different parts of one stimulus field”.  

It should be pointed out that the uncertainty we are discussing here is “subjective 
uncertainty”, which is a function of subjective probabilities, analogous to the “objective” 
uncertainty (that is, the standard information-theoretic concept of uncertainty) that is a 
function of objective probabilities.” (Berlyne, 1965), pp. 245-246.  

As these psychological theories of curiosity and intrinsic motivation hypothesize that the 
brain could be intrinsically rewarded by experiencing information gain, novelty or complexity, 
a natural question that follows is whether one could identify actual neural circuitry linking the 
detection of novelty with the brain reward system.  We now review several strands of research 
that identified several dimensions of this connection. 

Information as a reward in neuroscience 

Dopaminergic systems that process primary rewards are activated by curiosity. To 
examine the motivational systems that are recruited by curiosity, Kang et al. used functional 
magnetic resonance imaging (fMRI) to monitor brain activity in human observers who 
pondered trivia questions (Kang et al., 2009). After reading a question subjects rated their 
curiosity and confidence regarding the question and, after a brief delay, were given the answer. 
The key analyses focused on activations during the anticipatory period – after the subjects 
had received the question but before they were given the answer.  

Areas that showed activity related to curiosity ratings during this epoch included the left 
caudate nucleus, bilateral inferior frontal gyrus (IFG), and loci in the putamen and globus 
pallidus. In an additional behavioral task, the authors showed that subjects were willing to pay 
a higher price to obtain the answers to questions that they were more curious about – i.e., 
could compare money and information on a common scale. They concluded that the value of 
the information, reported by subjects as a feeling of curiosity, is encoded in some of the same 
structures that evaluate material gains.  

Two recent studies extend this result, and report that midbrain dopaminergic (DA) cells and 
cells in the orbitofrontal cortex (OFC), a pre-frontal area that receives DA innervation, encode 
the anticipation of obtaining reliable information from visual cues  (Blanchard, Hayden, & 
Bromberg-Martin, 2015; Bromberg-Martin & Hikosaka, 2009).In that study on DA cells, 
monkeys were trained on so-called “observing paradigms”, where they had to choose between 
observing two cues that had equal physical rewards but differed in their offers of information 



(Bromberg-Martin & Hikosaka, 2009). Monkeys began each trial with a 50% probability of 
obtaining a large or a small reward and, before receiving the reward, had to choose to observe 
one of two visual items. If the monkeys chose the informative target, this target changed to 
one of two patterns that reliably predicted whether the trial will yield a large or small reward 
(“Info”). If the monkeys chose the uninformative item, this target also changed to produce one 
of two patterns, but the patterns had only a random relation to the reward size (“Rand”).  

After a relatively brief experience with the task, the monkeys developed a reliable and 
consistent preference for choosing the informative cue. Because the extrinsic rewards that the 
monkeys received were equal for the two options (both targets had a 50% probability of 
delivering a large or small reward), this showed that monkeys were motivated by some 
cognitive or emotional factor that assigned intrinsic value to the predictive/informational cue.  

Dopamine neurons encoded both reward prediction errors and the anticipation of reliable 
information. The neurons’ responses to reward prediction errors confirmed previous results 
and arose after the monkeys’ choice, when the selected target delivered its reward information. 
At this time, the neurons gave a burst of excitation if the cue signaled a large reward (a better 
than the average outcome) but were transiently inhibited if the cue signaled a small reward 
(an outcome that was worse than expected).  

Responses to anticipated information gains, by contrast, arose before the monkeys’ choice and 
thus could contribute to motivating that choice. Just before viewing the cue, the neurons 
emitted a slightly stronger excitatory response if the monkeys expected to view an 
informative cue and a weaker response if they expected only the random cue (red vs. blue 
traces). This early response was clearly independent of the final outcome and seemed to 
encode enhanced arousal or motivation associated with the informative option.   

A subsequent study of area OFC extended the behavioral results by showing that the monkeys 
will choose the informative option even if its payoff is slightly lower than that of the 
uninformative option – that is, monkeys are willing to sacrifice juice reward to view 
predictive cues (Blanchard et al., 2015). In addition, the study showed that responses to 
anticipated information gains in the OFC are carried by a neural population that is different 
from those that encode the value of primary rewards, suggesting differences in the underlying 
neural computations.  

Together, these investigations show that, in both humans and monkeys, the motivational 
systems that signal the value of primary rewards are also activated by the desire to obtain 
information. This conclusion is consistent with earlier reports that DA neurons respond to 
novel or surprising events that are critical for learning environmental contingencies 
(Bromberg-Martin ES, Matsumoto M, Hikosaka, 2010). The convergence of responses related 
to rewards and information gains is highly beneficial in allowing subjects to compare 
different types of currencies – e.g., knowledge and money – on a common value scale when 
selecting actions. At the same time, the separation between the neural representations of 
information value and biological value in OFC cells, highlights the fact these two types of 
values require distinct computations. While the value of a primary reward depends on its 
biological properties (e.g., its caloric content) the value of a source of information depends on 



semantic and epistemic factors that establish the meaning of the information.  

 

 
Seeking information for itself: liking and wanting novelty, surprise and intermediate 
complexity.  Many animal studies have shown phenomena of neophilia. Rats prefer novel 
environments and objects to familiar ones (Bardo and Bevins, 2000) and learn motor 
strategies that allow them to trigger the appearance of novel items (Myers and Miller, 1954). 
In certain contexts, rats have also been shown to prefer obtaining novel stimuli over obtaining 
food or drug or at the cost of crossing electrifying grids (see Hugues, 2007 for a review). 
Moreover, brain responses to novelty in rats have strong similarities with brain responses to 
drug rewards (Bevins, 2001). In human adults, studies by Itti and Baldi have shown that 
surprise, defined in the domain of visual features, attracts human saccades during free-
viewing exploration (Itti & Baldi, 2009).  Baranes et al extended this result to the epistemic 
domain, by showing that curiosity about trivia questions elicits faster anticipatory eye 
movements to the expected location of the answer, suggesting that eye movements are 
influenced by expected gains in semantic information (Baranes et al., 2015). Kidd et al. 
(2012) showed that human infants had a preference for looking at stimuli of intermediate 
complexity in the visual or auditory domain (Kidd et al., 2014).  

Another recent study suggests that novelty also recruits attentional resources through reward-
independent effects (Foley, Jangraw, Peck, & Gottlieb, 2014; Peck, Suzuki, Efem, & Gottlieb, 
2009). In this experiment, monkeys were trained on a task in which they had initial 
uncertainty about the trial’s outcome, and were given cues that resolved this uncertainty, by 
signaling whether the trial will end in a reward or a lack of reward. When the reward 
contingencies were signaled by novel visual cues (abstract patterns that the monkeys had 
never seen before), these cues evoked enhanced visual and orienting responses in the parietal 
lobe. If a novel cue signaled “bad news” (a lack of reward) the monkeys quickly learned this 
contingency and extinguished their anticipatory licking in response to the cues. Strikingly 
however, the newly-learnt cues continued to produce enhanced visual and saccadic responses 
for dozens of presentations after the extinction of the licking response. This suggests that 
novelty attracts attention through reward-independent mechanisms, allowing the brain to 
prioritize and learn about novel items for an extended period even if these items signal 
negative outcomes. 

The puzzle of neophobia. Gershman and Niv (2015) recently discussed a puzzling 
observation. Alongside a large experimental corpus showing neophilia in several animal 
species, an equally large corpus demonstrates neophobia - the avoidance of novelty (Hughes, 
2007). Neophobia has been observed in rats (Blanchard et al., 1974), in adult humans 
(Berlyne, 1960) in infants (Weizmann et al., 1971) and in non-human primates (Weiskrantz 
and Cowey, 1963). To explain the apparent contradiction between these results Gershman and 
Niv (2015) studied the hypothesis that certain kinds of novelty (characterized by their cues) 
can be selectively and aversively reinforced. That is, an individual may learn and generalize 
that, in different families of situations, novelty may be associated with positive or with 
negative outcomes, and thus learn to avoid novelty when their associated outcome is negative.  



However, another complementary hypothesis to explain this apparent contradiction is the 
“intermediate novelty” hypothesis proposed by Berlyne (1960). Following this hypothesis, 
approach or avoidance of novelty would depend on the degree of novelty, i.e. the degree of 
distance/similarity between the perceived stimuli and existing internal representations in the 
brain.   

The learning progress hypothesis 

Berlyne’s concept of intermediate novelty, as well as the related concept of intermediate 
challenge of Csikszentmihalyi, have the advantage of allowing intuitive explanations of many 
behavioral manifestations of curiosity and intrinsic motivation. However, recent 
developments in theories of curiosity, and in particular its computational theories, have 
questioned its applicability as an operant concept capable to generate an actual mechanism for 
curiosity. A first reason is that the concept of “intermediate” appears difficult to define 
precisely, as it implies the use of a relatively arbitrary frame of reference to assess levels of 
novelty/complexity. A second reason is that while novelty or complexity in themselves may 
be the basis of useful exploration heuristics for organisms in some particular contexts, there is 
in general no guarantee that observing a novel or intermediate complexity stimulus provides 
information that can improve the organism’s prediction and control in the world. Indeed, as 
computational theory of learning and exploration has shown, our environment is full of novel 
and complex stimuli of all levels, and among them only a few may convey useful or learnable 
patterns. As curiosity-driven spontaneous exploration may have evolved as a mean to acquire 
information and skills in rapidly changing environments (Barto, 2013), it appears that 
heuristics based on searching for novelty and complexity can be inefficient in large or non-
stationary environments (Schmidhuber, 2001; Oudeyer et al., 2007).  

For these reasons, computational learning theory has explored an alternative mechanism, in 
which learning progress generates intrinsic reward (Schmidhuber, 2001; Oudeyer et al., 
2007), and it was hypothesized that this mechanism could be at play in humans and animals 
(Kaplan and Oudeyer, 2007; Oudeyer and Smith, 2016). This hypothesis proposes that the 
brain, seen as a predictive machine constantly trying to anticipate what will happen next, is 
intrinsically motivated to pursue activities in which predictions are improving, i.e. where 
uncertainty is decreasing and learning is actually happening. This means that the organism 
loses interest in activities that are too easy or too difficult to predict (i.e. where uncertainty is 
low or where uncertainty is high but not reducible), and focuses specifically on learnable 
activities that are just beyond its current predictive capacities. So for example, an infant will 
be more interested in exploring how its arm motor commands can allow her to predict the 
movement of her hand in the visual field (initially difficult but learnable) rather than 
predicting the movement of walls (too easy) or the color of the next car passing through the 
window (novel but not learnable). As shown by the computational studies we discuss below, a 
practical consequence of behaviors driven by the search for learning progress is the targeted 
exploration of activities and stimuli of “intermediate complexity”. Yet, an explicit measure of 
intermediate complexity is not computed by this mechanism: it is an emergent property of 
selecting actions and stimuli that maximize the derivative of errors in prediction.  



 

 

The LP hypothesis posits a positive feedback loop between curiosity and learning 

The learning progress hypothesis posits a new causal link between learning and curiosity. As 
described in the first two sections of the article, previous work in neuroscience and 
psychology considered a unidirectional causal chain: the brain would be motivated to search 
for (intermediate) novelty or complexity, and then when finding it would be in a curiosity 
state that would foster learning and memory retention (see figure 1 (A)). In this view (Stahl 
and Feigenson, 2015; Kang et al., 2009), learning in itself does not have consequences on 
state curiosity and motivation. On the contrary, the learning progress hypothesis proposes that 
experiencing learning in a given activity (rather than just intermediate novelty) triggers an 
intrinsic reward, and thus that learning in itself causally influences state curiosity and intrinsic 
motivation (see figure 1 (B)). Thus, this hypothesis argues that there is a closed self-
reinforcing feedback loop between learning and curiosity-driven intrinsic motivation. 
Here the learner becomes fundamentally active, searching for niches of learning 
progress, in which in turn memory retention is facilitated. As shown by computational 
experiments outlined below, this feedback loop has important consequences on the 
organization of learning experiences on the long term: as learners actively seek for situations 
and activities which maximize learning progress, they will first focus on simple learnable 
activities before shifting to more complex ones (see figure 2), and the activities they select 
shape their knowledge and skills, which will in turn change the potential progress in other 
activities and thus shape their future exploratory trajectories. As a consequence, the learning 
progress hypothesis does not only introduce a causal link between learning and curiosity, but 
also introduces the idea that curiosity may be a key mechanism in shaping developmental 
organization.  Below, we will outline computational experiments that have shown that such an 
active learning mechanisms can self-organize a progression in learning, with automatically 
generated developmental phases that have strong similarities with infant developmental 
trajectories. 
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Figure	
   1	
  Many studies of curiosity and learning have considered a one directional causal 
relationship between state curiosity and learning (A). The Learning Progress hypothesis 
suggest that learning progress itself, measured as the improvement of prediction errors, can be 
intrinsically rewarding: this introduces a positive feedback loop between state curiosity and 
learning (B). This positive feedback loop in turn introduces a complex learning dynamics self-
organizing learning curriculum with phases of increasing complexity, such as in the 
Playground Experiment (Oudeyer et al., 2007;  see Figures 2 and 3).  	
  

 

The LP hypothesis unifies various qualitative theories of curiosity.  

The LP hypothesis is also associated to a mathematical formalism (outlined in the next 
section) that allows to bridge several hypotheses related to curiosity and intrinsic motivation, 
that had been so far conceptually separated (Oudeyer and Kaplan, 2007). Within the learning 
progress hypothesis, the central concept of prediction errors (and the associated measure of 
improvement) applies to multiple kinds of predictions. It applies to predicting the properties 
of external perceptual stimuli (and thus relates to the notion of perceptual curiosity (Berlyne, 
1960), as well as the conceptual relations among symbolic items of knowledge (and this 
relates to the notion of epistemic curiosity, and to the subjective notion of information gap 
proposed by Lowenstein (1994)). Here the maximization of learning progress leads to 
behaviors that were previously understood through Berlyne’s concept of intermediate 
novelty/complexity, and such mechanisms correspond to a class of intrinsic motivation that 
has been called “knowledge-based intrinsic motivation” (Oudeyer and Kaplan, 2007; Mirolli 



and Baldassarre, 2013). It also applies to predicting the consequences of one’s own actions in 
particular situations, or to predicting how well one’s current skills are capable to solve a given 
goal/problem: here the maximization of learning progress, measuring a form of progress in 
competences related to an activity or a goal, can be used to model Csikszentmihalyi’s concept 
of  intermediate challenge in the flow theory as well as related theories of intrinsic motivation 
based on self-measures of competences (White, 1959 ; Csikszentmihalyi, 1991). This second 
form of the LP hypothesis, where learning progress is measured in terms of how much 
competences improve with experience, correspond to a class of intrinsic motivation 
mechanisms that has been called “competence-based intrinsic motivation” (Oudeyer and 
Kaplan, 2007 ; Mirolli and Baldassarre, 2013).  
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Figure	
  2	
  The LP hypothesis proposes that active spontaneous exploration will favor exploring 
activities which are providing maximum improvement of prediction errors. If one imagines 
four activities with different learning rate profiles (A), then LP-driven exploration will avoid 
activities that are either too easy (4) or too difficult (1) as they do not provide learning 
progress, then first focus on an activity which initially provides maximal learning progress (3), 
before reaching a learning plateau in this activity and shifting to another one (2) which at this 
point in the curriculum provides maximum progress (potentially thanks to skills acquired in 
activity (3)). As a consequence, an ordering of exploration phases forms spontaneously, 
generating a structured developmental trajectory (adapted from Kaplan and Oudeyer, 2007).  

 

 



Computational models: curiosity-driven reinforcement learning  

Computational and robotic models have recently thrived in order to conceptualize more 
precisely theories of curiosity-driven learning and intrinsic motivation, as well as to study the 
associated learning dynamics and make experimental predictions (Baldassarre and Mirolli, 
2013; Gottlieb et al., 2013). A general formal framework that has been used most often to 
model learning and motivational systems is computational reinforcement learning (Sutton and 
Barto, 1998). In reinforcement learning, one considers a set of states S (characterizing the 
state of the world as sensed by sensors as well as the state of internal memory); a set of 
actions A that the organism can make; a reward function R(s,a) that provides a number r(s,a) 
that depends on states and actions and that should be maximized; an action policy P(a|s) 
which determines which actions should be made in each state so as to maximize future 
expected reward; and finally a learning mechanism L that allows to update the action policy 
in order to improve rewards in the future. Many works in computational neuroscience and 
psychology have focused on the details of the learning mechanism, for example to explain 
differences in model-based versus model-free learning (Gershman, in press). However, the 
same framework can be used to model motivational mechanisms, through modeling the 
structure and semantics of the reward function. For example, extrinsic motivational 
mechanisms associated to food/energy search can be modeled through a reward function that 
measures the quantity of food gathered (Arkin, 2005). A motivation for mating can be 
modeled similarly, and as each motivational mechanism is modeled as a real number that 
should be maximized, such numbers can be used as a common motivational currency to make 
tradeoffs among competing motivations (Konidaris and Barto, 2006).  

Similarly, it is possible to use this framework to provide formal models of intrinsic motivation 
and curiosity as formulated by most theories mentioned above, in architecture called 
“intrinsically motivated reinforcement learning” (Singh et al., 2004) and as reviewed in 
(Baldassarre and Mirolli, 2013; Oudeyer and Kaplan, 2007). In this context, an intrinsic 
motivation system that pushes organisms to search for novelty can be formalized for example 
by considering a mechanism which counts how often each state of the environment has 
already been visited, and then using a reward function that is inversely proportional to these 
counts. This corresponds to the concept of exploration bonus studied by Dayan et al. (1996) 
and Sutton (1990). If one considers a model-based RL system that learns to predict which 
states will be observed upon a series of actions, as well as measures of uncertainty of these 
predictions, one can formalize surprise (and automatically derive an associated reward) as 
situations in which the subject makes an unexpected high error in predictions.   

To understand how the learning progress hypothesis can be formally modeled in this 
framework, let us consider the model used in the Playground Experiment (see figure 3 (A)). 
In this experiment, a quadruped “learning” robot (the learner) is placed on an infant play mat 
with a set of nearby objects and is joined by an “adult” robot (the teacher), see Figure 3 (A) 
(Oudeyer and Kaplan, 2006; Kaplan and Oudeyer, 2007b; Oudeyer et al., 2007). On the mat 
and near the learner are objects for discovery: an elephant (which can be bitten or “grasped” 
by the mouth), a hanging toy (which can be “bashed” or pushed with the leg).  The teacher is 
pre-programmed to imitate the sounds made by the learner when the learning robot looks to 



the teacher while vocalizing at the same time. 
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Figure	
   3	
   (A) The Playground Experiment: a robot explores and learns the contingencies 
between its movement and the effect they produce on surrounding objects. To drive its 
exploration, it uses the active learning architecture described in (B). In this architecture, a 
meta-learning module tracks the evolution of errors in predictions that the robot makes using 
various kinds of movements in various situations. Then, an action selection module selects 
probabilistically actions and situations which have recently provided high improvement of 
predictions (learning progress), using this measure to heuristically expect further learning 
progress in similar situations. Adapted from (Oudeyer et al., 2007).  

 

The learner is equipped with a repertoire of motor primitives parameterized by several 
continuous numbers that control movements of its legs, head and a simulated vocal 
production system. Each motor primitive is a dynamical system controlling various forms of 
actions: (a) turning the head in different directions; (b) opening and closing the mouth while 
crouching with varying strengths and timing; (c) rocking the leg with varying angles and 
speed; (d) vocalizing with varying pitches and lengths. These primitives are parameterized by 
real numbers and can be combined to form a large continuous space of possible actions. 
Similarly, sensory primitives allow the robot to detect visual movement, salient visual 
properties, proprioceptive touch in the mouth, and pitch and length of perceived sounds. For 
the robot, these motor and sensory primitives are initially black boxes and he has no 
knowledge about their semantics, effects or relations.  



The robot learns how to use and tune these primitives to produce various effects on its 
surrounding environment, and exploration is driven by the maximization of learning progress, 
by choosing physical experiences (“experiments”) that improve the quality of predictions of 
the consequences of its actions. As data is collected though this exploration process, the robot 
builds a model of the world dynamics that can be reused later on for new tasks that were not 
known at the time of exploration (for example using model-based reinforcement learning 
mechanisms).  

Figure 3 (B) outlines a computational architecture, called R-IAC (Oudeyer, Kaplan et al. 
2007; Moulin-Frier et al., 2014). A prediction machine (M) learns to predict the consequences 
of actions taken by the robot in given sensory contexts. For example, this module might learn 
to predict which visual movements or proprioceptive perceptions result from using a leg 
motor primitive with certain parameters (this model learning can be done with a neural 
network or any other statistical m`:ùxc nklninference algorithm). Another module (metaM) 
estimates the evolution of errors in prediction of M in various regions of the sensorimotor 
space2.  This module estimates how much errors decrease in predicting an action in certain 
situations, for example, in predicting the consequence of a leg movement when this action is 
applied towards a particular area of the environment. These estimates of error reduction are 
used to compute the intrinsic reward from progress in learning. This reward is an internal 
quantity that is proportional to the decrease of prediction errors, and the maximization of this 
quantity is the goal of action selection within a computational reinforcement-learning 
architecture (Kaplan and Oudeyer, 2003; Oudeyer and Kaplan, 2007; Oudeyer et al., 2007). 
Importantly, the action selection system chooses most often to explore activities where the 
estimated reward from learning progress is high. However, this choice is probabilistic, which 
leaves the system open to learning in new areas and open to discovering other activities that 
may also yield progress in learning3.  Since the sensorimotor flow does not come pre-
segmented into activities and tasks, a system that seeks to maximize differences in learnability 
is also used to progressively categorize the sensorimotor space into regions. This 
categorization thereby models the incremental creation and refining of cognitive categories 
differentiating activities/tasks.  

In all of the runs of the experiment, one observes the self-organization of structured 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 In this instantiation of the LP hypothesis, an internal module metaM monitors how learning 
progresses to generate intrinsic rewards. However, the LP hypothesis in general does not 
require such an internal capacity for measuring learning progress : such information may also 
be provided by the environment, either directly by objects or games children play with, or by 
adults/social peers.  
3 Here, action selection is made within a simplified form of reinforcement learning: learning 
progress is maximized only on the short term, and the environment is configured so that it 
returns to a rest position after each sensorimotor experiment. This corresponds to what is 
called episodic reinforcement learning, and action selection can be handled efficiently in this 
case using multi-armed bandit algorithms (Audibert et al., 2009). Other related computational 
models have considered maximizing forms of LP over the long term through RL planning 
techniques in environments which dynamics is state dependent (Schmidhuber, 1991; Kaplan 
and Oudeyer, 2003) and non-stationary (Lopes et al., 2012).).  



developmental trajectories, where the robot explores objects and actions in a progressively 
more complex stage-like manner while acquiring autonomously diverse affordances and skills 
that can be reused later on and that change the learning progress in more complicated tasks. 
Typically, after a phase of random body babbling, the robot focuses on performing various 
kinds of actions towards objects, and then focuses on some objects with particular actions that 
it discovers are relevant for the object. In the end, the robot is able to acquire sensorimotor 
skills such as how to push or grasp objects, as well as how to perform simple vocal 
interactions with another robot, as a side effect of its general drive to maximize learning 
progress. This typical trajectory can be explained as gradual exploration of new progress 
niches (zones of the sensorimotor space where it progresses in learning new skills), and those 
stages and their ordering can be viewed as a form of attractor in the space of developmental 
trajectories. Yet, one also observes diversity in the developmental trajectories observed in the 
experiment. With the same mechanism and same initial parameters, individual trajectories 
may generate qualitatively different behaviors  or even invert stages.. This is due to the 
stochasticity on the policy, to even small variability in the physical realities and to the fact 
that this developmental dynamic system has several attractors with more or less extended and 
strong domains of attraction (characterized by amplitude of learning progress).  This diversity 
can be seen as an interesting modeling outcome since individual development is not identical 
across different individuals but is always, for each individual, unique in its own ways. This 
kind of approach, then, offers a way to understand individual differences as emergent in 
developmental process itself and makes clear how developmental process might vary across 
contexts, even with an identical learning mechanism. 

How LP-driven curiosity generates developmental trajectories that reproduce infant 
development sequences and can act in synergy with social learning 

Focusing on vocal development, Moulin-Frier et al. conducted experiments where a robot 
explored the control of a realistic model of the vocal tract in interaction with vocal peers 
through a drive to maximize learning progress (Moulin-Frier et al., 2014). This model relied 
on a physical model of the vocal tract, its motor control and the auditory system. It also 
included an additional mechanism allowing the active learner to take into account social 
signals provided by peers. As a simulated caretaker would himself produce vocalizations 
organized around the systematic reuse of certain phonemes, the curiosity-driven learning 
system could decide whether it should try to reproduce these external speech sounds 
(imitation) using its current know-how, or whether it should self-explore other kinds of 
speech sounds. The choice was made hierarchically: first, it decided to imitate or self-explore 
based on how much each strategy provided learning progress in the past. Second, if self-
exploration was selected, it decided which part of the sensorimotor space to explore based on 
how much learning progress could be expected. The experiments showed how such a 
mechanism generated automatically the adaptive transition from vocal self-exploration with 
little influence from the speech environment, to a later stage where vocal exploration becomes 
influenced by vocalizations of peers. Within the initial self-exploration phase, a sequence of 
vocal production stages self-organizes, and shares properties with infant data: the vocal 
learner first discovers how to control phonation, then vocal variations of unarticulated sounds, 
and finally articulated proto-syllables. In this initial phase, imitation is rarely tryied by the 



learner as the sounds produced by caretakers are too complicated to make any progress. But 
as the vocal learner becomes more proficient at producing complex sounds through self-
exploration, the imitating vocalizations of the teacher begin to provide high learning progress, 
resulting in a shift from self-exploration to vocal imitation. This also illustrates how 
intrinsically motivated self-exploration can guide the system to efficiently and autonomously 
acquire basic sensorimotor skills that are instrumental to learn faster other more complicated 
skills.  

Intrinsically motivated exploration scaffolds efficient multitask learning 

Computational models in the literature have shown how various forms of intrinsically 
motivated exploration and learning could guide efficiently the autonomous acquisition of 
repertoires of skills in large and difficult spaces.  

A first reason is that intrinsically motivated exploration can be used as an active learning 
algorithm that learns efficient forward and inverse models of the world dynamics through 
efficient selection of experiences. Indeed, such models can be reused either directly (Baranes 
and Oudeyer, 2013; Oudeyer et al., 2007), or through model-based planning mechanisms 
(Schmidhuber, 1991; Singh and Barto, 2004; Lopes et al., 2012), to solve repertoires of tasks 
that were not specified during exploration (hence without the need for long re-experiencing of 
the world for each new task). For example, Baranes and Oudeyer (2013) have shown how 
intrinsically motivated goal exploration could allow robots to sample sensorimotor spaces by 
actively controlling the complexity of explored sensorimotor goals, and avoiding goals which 
were either too easy or unreachable. This allowed the robots to learn fast repertoires of high-
dimensional continuous action skills to solve distributions of sensorimotor problems such as 
omnidirectional legged locomotion or how to manipulate flexible objects. Lopes et al. (2012) 
showed how intrinsically motivated model-based reinforcement learning, driven by the 
maximization of empirical learning progress, allows efficient learning of world models when 
this dynamics is non-stationary, and how this accelerates the learning of a policy that targets 
to maximize an extrinsic reward (task predefined by experimenters).    

A second reason for the efficiency of intrinsic motivation is that by fostering spontaneous 
exploration of novel skills, and leveraging opportunistically potential synergies among skills, 
it can create learning pathways towards certain skills that would have remained difficult to 
reach if they had been the sole target of the learning system. Indeed, in many contexts, 
learning a single pre-defined skill can be difficult as it amounts to searching (the parameters 
of) a solution with very rare feedback until one is very close to the solution, or with deceptive 
feedback due to the phenomenon of local minima. A strategy to address these issues is to 
direct exploration with intrinsic rewards, leading the system to explore a diversity of skills 
and contingencies which often result in the discovery of new sub-spaces/areas in the problem 
space, or in mutual skill improvement when exploring one goal/skill provides data that can be 
used to improve other goals/skills, such as in goal babbling (Baranes and Oudeyer, 2013; 
Benureau and Oudeyer, 2016) or off-policy reinforcement learning (see the Horde 
architecture, Sutton et al., 2011). For example, Lehman and Stanley (2011) showed that 
searching for pure novelty in the behavioural space a robot to find a reward in a maze more 



efficiently than if it had been searching for behavioural parameters that optimized directly the 
reward. In another model, Forestier and Oudeyer (2016 REF) showed that intrinsically 
motivated exploration of a hierarchy of sensorimotor models allowed a simulated robot to 
scaffold the successive acquisition of object reaching, tool grasping and tool use (and where 
direct search for tool use behaviours was vastly less efficient).     

A third related reason for the efficiency of intrinsically motivated exploration is that it can 
drive the acquisition of macro-actions, or sensorimotor primitives, which can be 
combinatorially reused as building block to accelerate the search for complex solutions in 
structured reinforcement learning problems. For example, Singh et al. (2004) showed how 
intrinsic rewards based on measures of saliency could guide a reinforcement learner to 
progressively learn “options” , which are temporally extended macro-actions, reshaping the 
structure of the search space and finally learning action policies that solve an extrinsic 
(abstract) task that is very difficult to solve through standard RL exploration. Related uses of 
intrinsic motivation with a hierarchical reinforcement learning framework were demonstrated 
in (Bakker and Schmidhuber, 2004; Kulkarni et al., 2016).  

In a related line of research studying the function and origins of intrinsic motivation, Singh et 
al. (2010) have shown through evolutionary computational modelling that given a distribution 
of changing environments and an extrinsic reward that organisms need to maximize, it could 
be more robust for RL agents to represent and use a surrogate reward function that does not 
directly correspond to this extrinsic reward, but rather includes a component of intrinsic 
motivation that pushes the system to explore its environment beyond the direct search for the 
extrinsic reward.  

Applications in educational technologies and video games 

Given the strong causal interactions between curiosity-driven exploration and learning that we 
just reviewed, these topics have attracted the attention of theorists and experimenters on the 
application domain of education. Long before recent controlled experimental results showing 
how intrinsic motivation and curiosity could enhance learning, educational experimenters like 
Montessori (1948) and Froebel (1885) have studied how open-ended learning environments 
could foster individual child development, where learners are active and where the tutor’s role 
is to scaffold challenges of increasing complexity and provide feedback (rather than 
instruction). Such experimental approaches have more recently influenced the development of 
hands on educational practices, such as the pioneering LOGO experiments of Papert (1980), 
where children learn advanced concepts of mathematics, computer science and robotics, and 
now disseminating at large scales in several countries (Resnick et al., 2009; Roy et al., 2015).  

In parallel, philosophers and psychologists like Dewey, Vygotski, Piaget and Bruner 
developed theories of constructivist learning which directly pointed towards the importance of 
fostering curiosity and free play and exploration in the classroom. Recently, the large body of 
research in educational psychology has began to study systematically how states of intrinsic 
motivation can be fostered, or on the contrary weakened, in the classroom, for example when 
the educational context provides strong extrinsic rewards (Deci et al., 2001).  



As educational technologies are now thriving, in particular with the wide spreading of 
Massive Open Online Courses (MOOCs) and educational applications on tablets and 
smartphones, it has become natural to enquire how fundamental understanding of curiosity, 
intrinsic motivation and learning could be leveraged and incorporated in these educational 
tools to increase their efficiency.   

A first line of investigation has been to embed educational training within motivating and 
playful video games. In a pioneer study, Malone (1980) used and refined theories of intrinsic 
motivation as proposed by Berlyne, White and psychologists of the 50-70’s period, to 
evaluate which properties of video games could make them intrinsically motivating, and to 
study how such contexts could be used to distill elements of scholarly knowledge to children. 
In particular, he showed that video games were more intrinsically motivating when including 
clear goals of progressively increasing complexity, when the system provided clear feedback 
on the performance of users, and when outcomes where uncertain to entertain curiosity. For 
example, he showed how arithmetic concepts could be taught in an intrinsically motivating 
scenarized dart video game. As an outcome of their studies, they could generate a set of 
guidelines for the design of education-oriented video games.  

In a similar study, studying the impact of several of the factors identified by Malone, Cordova 
et al. (1996) presented a study of a population of elementary school children using a game 
targeting the acquisition of arithmetic order-of-operation rules, scenarized in a “space quest” 
story.  In this specific experimental context, they showed that embedding personalization in 
the math exercises (based on preferences expressed through a pre-questionnaire) significantly 
improved intrinsic motivation, task engagement and learning efficiency, and that this effect 
was heightened if in addition the software offered personalization of visual displays and a 
variety of exercise levels children could choose from. 

Beyond explicitly including educational elements in video games, it was also shown that 
“pure” entertainment games such as certain types of action games can enhance attentional 
control, cognitive flexibility and learning capabilities by exercising them in an intrinsically 
motivating playful context (Cardoso-Leite and Bavelier, 2014). Within this perspective, 
Merrick and Mahler (2009) suggested that implementing artificial curiosity in non-player 
characters in video games could enhance the interestingness of video games.  

A second line of investigation has considered how formal and computational models of 
curiosity and intrinsic motivation could be applied to Intelligent Tutoring Systems (ITS) 
(Nkambou et al., 2010), as well as Massive Open Online Courses (MOOCS) 
(Liyanagunawardena et al., 2013). ITS, and more recently MOOCs, have targeted the design 
of software systems that could help students acquire new knowledge and skills, using artificial 
intelligence techniques to personalize teaching sequences, or the way teaching material is 
presented, and in particular proposing exercises that match the particular difficulties or talents 
of each individual learner. In this context, several approaches were designed and 
experimented so as to promote intrinsic motivation and learning.  

Clement et al. (2015) have presented and evaluated and ITS system that directly reused 
computational models of curiosity-driven learning based on the learning progress hypothesis 



described above (Oudeyer et al., 2007). This study considered teaching arithmetic 
decomposition of integer and decimal numbers, in a scenarized context of money handling, to 
a population of 7-8 years old children (see figure 4). To design the ITS system, a human 
teacher first provided pedagogical material in the form of exercises grouped along coarsely 
defined levels and coarsely defined types. Then, an algorithm called ZPDES was used to 
automatically personalize the sequence of exercises for each student, and this personalization 
was made incrementally during the course of interaction with each student. This 
personalization was achieved by probabilistically proposing to students exercises that 
maximized learning progress at their current level, i.e. the exercises where their errors 
decrease fastest. In order to identify dynamically these exercises, and shift automatically to 
new ones when learning progress becomes low, the system used a multi-armed bandit 
algorithm that balanced exploring new exercises to assess their potential for learning progress, 
and exploiting exercises that recently lead the student to learning progress. During this 
process, the coarse structure organizing exercises that was provided by a human teacher is 
used to guide the algorithm towards finding fast which exercises provide maximal learning 
progress: the system starts with exercise types that are at the bottom of the difficulty hierarchy, 
and when some of them show a plateau in the learning curve, they are deactivated and new 
exercises upper in the hierarchy are made available to the student (see figure 5). The use of 
learning progress as a measure to drive the selection of exercises had two interacting purposes, 
relying on the bidirectional interaction described above. First, it targeted to propose exercises 
that could stimulate the intrinsic motivation of students by dynamically and continuously 
proposing them challenges that were neither too difficult nor too easy. Second, by doing this 
using learning progress, it targeted to generate exercise sequences that are highly efficient for 
maximizing the average scores over all types of exercises at the end of the training session. 
Indeed, Lopes and Oudeyer (2012) showed in a theoretical study that when faced with the 
problem of strategically choosing which topic/exercise type to work on, selecting 
topics/exercises that maximize learning progress is quasi-optimal for important classes of 
learner models. Experiments with 400 children from 11 schools were performed, and the 
impact of this algorithm selecting exercises that maximize learning progress was compared to 
the impact of a sequence of exercises hand-defined by an expert teacher (that included 
sophisticated branching structures based on the errors-repair strategies the teacher could 
imagine). Results showed that the ZPDES algorithm, maximizing learning progress, allowed 
students of all levels to reach higher levels of exercises. Also, an analysis of the degree of 
personalization showed that ZPDES proposed a higher diversity of exercises earlier in the 
training sessions. Finally, a pre- and post- test comparison showed that students who were 
trained by ZPDES progressed better than students who used a hand-defined teaching sequence.  
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Figure	
  4	
  Educational game used in (Clement et al., 2015): a scenario where elementary school 
children have to learn to manipulate money is used to teach them the decomposition of integer 
and decimal numbers. Four principal regions are defined in the graphical interface. The first is 
the wallet location where users can pick and drag the money items and drop them on the 
repository location to compose the correct price. The object and the price are present in the 
object location. Four different types of exercises exist: M (customer/one object), R 
(merchant/one object), MM (customer/two objects), RM (merchant/two objects). The ITS 
system then dynamically proposes to students the exercises in which they are currently 
making maximal learning progress, targeting to maximize intrinsic motivation and learning 
efficiency.  
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Figure	
  5	
  Example of the evolution of the zone-of-proximal development based on the empirical 
results of the student. The ZPD is the set of all activities that can be selected by the algorithm. 
The expert defines a set of pre-conditions between some of the activities (A1 → A2 → 
A3 . . .), and activities that are qualitatively equal (A == B). Upon successfully solving A1 the 
ZPD is increased to include A3. When A2 does not achieve any progress, the ZPD is enlarged 
to include another exercise type C, not necessarily of higher or lower difficulty, e.g. using a 
different modality, and A3 is temporarily removed from the ZPD. (Adapted from Clement et 
al., 2015).  

 

Several related ITS systems were developed and experimented. For example, Beuls (2013) 
described a system targeting the acquisition of Spanish verb conjugation, where the ITS 
attempts to propose exercises that are just above the current capabilities of the learner. 
Recently, a variation of this system was designed to foster the learning of musical 
counterpoint (Beuls and Loekx, 2015). In another earlier study, Pachet (2004) presented a 
computer system targeting to help children discover and learn how to play musical 
instruments, but also capable to support creativity in experienced musicians, through fostering 
the experience of Flow (Csikszenthmihalyi, 1991). This system, called the Continuator 
(Pachet, 2004), continuously learnt the style of the player (be it a child beginner or expert) 
and used automatic improvisation algorithm to respond to the user’s musical phrases with 
musical phrases of the same style and complexity, but different from those actually played by 
users. Pachet observed that both children and expert musicians most often experience an 
“Eureka moment”. Their interest and attention appeared to be strongly attracted by playing 



with the system, leading children to try and discover different modes of play and to increase 
the complexity of what they could do. Expert musicians also reported that the system allowed 
them to discover novel musical ideas and to support creation interactively. 

Discussion: convergences, open questions and educational design 

Converging research strands in psychology, neuroscience and computational learning theory 
indicate that curiosity and learning are strongly connected along several dimensions, and that 
these connections have wide implications for education.  

As often informally observed by many education practioners, recently developed 
experimental protocols showed that experiencing situations with novelty, complexity and 
prediction errors fostered memory retention. Furthermore, several lines of evidence showed 
that the brain is equipped with neural circuits which consider information as an intrinsic 
reward, and thus actively searches for these situations featuring novelty and/or prediction 
errors.  

At the same time, there are several open scientific questions. One of them is to characterize 
precisely which informational features are intrinsically rewarding. As mathematical 
formalization shows, novelty, complexity and prediction errors can be computed in many 
different ways, and then used potentially in equally different ways to determine intrinsic 
reward in curiosity-driven exploration. For example, some hypotheses approach curiosity as a 
mechanism maximizing surprise (Itti and Baldi, 2009), or intermediate complexity (Kidd et 
al., 2012), or learning progress (Oudeyer et al., 2007). While on some situations these formal 
variations may be equivalent, they can also generate vastly different learning dynamics. For 
example, the LP hypothesis introduces a positive feedback loop between learning and state 
curiosity, and in turn this involves deep consequences on the long-term formation of learning 
and developmental trajectories (Oudeyer and Smith, 2016). A related question is whether the 
brain includes a unified mechanism for spontaneous exploration, or whether it combines 
several of these heuristics (and how this combination happens). Designing experimental 
protocols to disentangle these various hypotheses is the subject of active current research 
(Baranes et al., 2014; Medder and Nelson, 2012; Taffoni et al., 2014; Markant et al., 2015).   

However, even if these questions are still unresolved, existing results suggest several 
guidelines for educational practice and the design of educational technologies. First, they 
highlight the importance of providing students with learning materials that are informationally 
engaging (surprising or with the right level of complexity/learnability) in order to foster 
memory retention. Second, they suggest the importance of personalization, active learning 
and active teaching. Indeed, features like (intermediate) novelty or learning progress are 
fundamentally subjective in the sense that they are a measure of the relation between a 
particular educational material and the state of knowledge of each particular student at a given 
time of its learning trajectory. As a consequence, what triggers curiosity and learning will be 
different for different students. Human or computational teachers can address this issue by 
tracking the errors and behaviors of each student in order to present sequences of items that 
are personalized to maximize their experience of features associated to states of curiosity and 
motivation. Learners have also a fundamental capability that should be leveraged: as their 



brain is intrinsically rewarded by features like novelty or learning progress, they will 
spontaneously and actively search for these features and select adequate learning materials if 
the environment/teacher provides sufficient choices. While most existing studies have focused 
on either active learning or active teaching, the study of the dynamic interaction between 
active learners and teachers is still a largely open question that should be addressed to 
understand how this dynamics could scaffold mutual guidance towards efficient curiosity-
driven learning.  
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