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Abstract A model of a bidisperse porous medium is extended to the case where quadratic
drag is significant. The extension may be significant in some geophysical situations as well
as when transition to turbulence in this medium is investigated.
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1 Introduction

A bidisperse porous medium (BDPM) is a medium composed of clusters of large particles
that are agglomerations of small particles (Chen et al. 2000). The voids between the clusters
are macropores and the voids within the clusters, which are typically much smaller in size, are
micropores. Applications of BDPM are found in bidisperse adsorbent or bidisperse capillary
wicks in a heat pipe. The bidisperse wick structure significantly increases the area available
for liquid film evaporation. For this reason, it has been proposed for use in the evaporator of
heat pipes. There are also biological structures, such as bone regeneration scaffolds, that are
characterized by bimodal pore distributions.

A BDPM thus may be regarded as a standard porous medium in which the solid phase is
replaced by another porous medium. We can then define the f~phase (the macropores) and
the p-phase (the remainder of the structure). An alternative way of looking at the BDPM
is to regard it as a porous medium in which fractures or tunnels have been introduced. The
Jf-phase can then be viewed as a “fracture phase” and the p-phase can be viewed as a “porous
phase”.
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Extending the Brinkman model for a monodisperse porous medium, Nield and Kuznetsov
(2005a) proposed to model the steady-state momentum transfer in a BDPM by the fol-
lowing pair of coupled equations for V’; and V;;, where the asterisks denote dimensional
variables,
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Here G is the negative of the applied pressure gradient, u is the fluid viscosity, Ky and
K, are the permeabilities of the two phases, and ¢ is the coefficient for momentum transfer
between the two phases. The quantities iy and i, are the respective effective viscosities.
In this pioneering paper, the effect of quadratic (Forchheimer) drag was neglected, and the
hydrodynamic interaction between the two phases was modeled by the simplest possible
expression.

This model has now been used in a number of papers on forced, natural and mixed con-
vection. Nield and Kuznetsov (2005a) treated forced convection in a parallel-plate channel
occupied by a BDPM, using a two-temperature model commonly used to model local thermal
non-equilibrium. Nield and Kuznetsov (2004) extended the analysis to the case of a conjugate
problem with plane solid slabs bounding the channel. They found that the effect of the finite
thermal resistance due to the slabs is to reduce both the heat transfer to the porous medium
and the degree of local thermal non-equilibrium. An increase in the value of the Péclet num-
ber leads to decrease in the rate of exponential decay in the downstream direction, but does
not affect the value of a suitably defined Nusselt number. The case of thermally developing
convection in a BDPM was treated by Kuznetsov and Nield (2006). The case of asymmetric
heating of a channel was studied by Kuznetsov and Nield (2010). A channel partly filled with
a porous medium was treated by Nield and Kuznetsov (2011). Heat transfer in a BDPM has
been reviewed by Nield and Kuznetsov (2005b). A three-velocity three-temperature model of
a tridisperse porous medium was applied by Kuznetsov and Nield (2011). The hydrodynamic
aspect of bidisperse porous media in the context of thermal management has been studied
by Narasimhan et al. (2012).

In the context of the Horton—Rogers—Lapwood problem (the onset of convection in a
horizontal layer uniformly heated from below), a BDPM was studied by Nield and Kuznet-
sov (2006, 2007) and Straughan (2009). Their results were extended to a tridisperse porous
medium by Kuznetsov and Nield (2011). Convection in a BDPM enclosure was studied
by Narasimhan and Reddy (2010, 2011b) and Revnic et al. (2009), while Narasimhan and
Reddy (2011a) investigated forced convection in a parallel-plate channel occupied by a heat
generating BDPM. Natural convection adjacent to a vertical plate was examined by Nield
and Kuznetsov (2008) and Rees et al. (2008). Mixed convection over a horizontal cylinder
was studied by Kumari and Pop (2009).

We are currently interested in the hydrodynamic stability of flow in a channel occupied by
a BDPM. It is well known that a simple linear instability analysis of shear flow in a channel
gives a poor estimate for the value of the critical Reynolds number for the onset of instability,
and hence a nonlinear stability analysis, taking into account terms quadratic in the velocity,
is required. Thus if a similar analysis for a BDPM is to be made then it is desirable for con-
sistency that a term quadratic in the velocity should be incorporated in the determination of
the basic flow. That means that the model for the BDPM needs to be extended to incorporate
the effect of quadratic drag.
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2 The Extended Model

Hence, we are proposing to extend Eqs. (1) and (2) by incorporating Forchheimer drag
terms while retaining the simplicity of the phase interaction term. Thus, we now consider the
equations
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Here p is the density of the fluid, and the Forchheimer coefficients ¢ s and ¢, are dimension-
less quantities that, like the permeabilities, depend on the volume fractions ¢ (volume fraction
of macropores) and ¢ (porosity of the p-phase). Estimates of the Forchheimer coefficients
(based on the well-known equations of Ergun and Kozeny applicable to beds of spherical
particles) are

1.75 1.75 sa)
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We believe that in general the Forchheimer term is required in each of Egs. (3) and (4).
Although the f-phase is a fluid phase, the momentum Eq. (3) is the result of averaging over a
representative elementary volume, and quadratic inertia terms in the Navier—Stokes equation
give rise to a quadratic drag. It is true that in many situations the velocity in the p-phase
will be small compared with that in the f-phase and in that case the quadratic drag term for
the p-phase may be negligible. One can also envision BDPMs of special structure in which
one or both of the Forchheimer terms would be negligible. For example, if the f-phase is
in the form of a set of parallel capillary tubes then the flow in that phase would be almost
unidirectional and so the contribution of inertial terms would be negligible.

3 Parallel-Plate Channel

As an example, we consider unidirectional flow in a parallel-plate channel of width 2H. We
take axes so that the flow is in the x-directions and the boundaries areaty = —H and y = H,
with

V}i = (u"j}(y*), 0, 0), V; = (u;(y*), 0,0), G=(G,0,0).

For simplicity, we assume that ji y = [i, = . We introduce dimensionless variables by
letting

y=Y"/H, up=upu/GH? up=uy,u/GH? ©)

and defining Darcy numbers Da s and Da,,, a velocity transfer parameter 7, and Forchheimer
parameters yy and y,, by
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Fig. 1 Velocity profiles for representative values of the parameters, n = 1, s = 1, ¥ = 1 and for various
Darcy numbers as shown

The momentum equations then take the form

2
Uy douy  vf o
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These equations can now be solved simultaneously subject to the no-slip boundary conditions
ur=up,=0aty=—landy=1. (10)

Once uy and u, have been found, the appropriate average velocity is obtained from the
expression for the weighted algebraic mean of the two quantities,

Uave = ¢“f + 1= ¢)up- (1)

Velocity profiles for some representative values of the parameters introduced in Eq. (7) are
displayed in Fig. 1. The degree of flatness of the profile for the average velocity is of interest,
because in general one would expect that the flatter the velocity profile for a shear flow then
the greater the stability of that flow. As one would expect, the figure shows that the profiles
are reduced in height and become flatter as the Darcy numbers decrease.
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