15-780 - Numerical Optimization

J. Zico Kolter

January 29, 2014

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

Introduction to mathematical optimization

- Casting AI problems as optimization / mathematical programming problems has been one of the primary trends of the last 15 years
- A topic not highlighted in textbook (see website for additional readings)
- A seemingly remarkable fact:

	Search problems	Mathematical programs
Variable type	Discrete	Continuous
# of possible solutions	Finite	Infinite
"Difficulty" of solving	Exponential	Polynomial (often)

Formal definition

Mathematical programs are problems of the form

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, ..., m$

- $-x \in \mathbb{R}^n$ is the optimization variable
- $-f:\mathbb{R}^n\to\mathbb{R}$ is objective function
- $g_i: \mathbb{R}^n \to \mathbb{R}$ are (inequality) constraint functions
- Feasible region: $C = \{x : g_i(x) \le 0, \forall i = 1, \dots, m\}$
- $x^* \in \mathbb{R}^n$ is an optimal solution if $x^* \in \mathcal{C}$, and $f(x^*) \leq f(x), \ \forall x \in \mathcal{C}$

Note on naming

 Mathematical program (or mathematical optimization problem, and sometimes just optimization problem) refer to the problem of the form

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, ..., m$

 Numerical optimization (or mathematical optimization, or just optimization) refers to the general study of these problems, as well as methods for solving them on a computer

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

Least-squares fitting

• Given $a_i, b_i, i = 1, \dots, m$, find $h(a) = x_1 a + x_2$ that optimizes

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{m} (x_1 a_i + x_2 - b_i)^2$$

 $(x_1 \text{ is slope}, x_2 \text{ is intercept})$

Weber point

• Given m points in 2D space (a_i, b_i) , i = 1, ... m, find the point that minimizes the sum of the Euclidean distances

minimize
$$\sum_{i=1}^{m} \sqrt{(x_1 - a_i)^2 + (x_2 - b_i)^2}$$

• Many modifications, e.g. keep x within range (a_l,b_l) , (a_u,b_u)

minimize
$$\sum_{i=1}^{m} \sqrt{(x_1 - a_i)^2 + (x_2 - b_i)^2}$$
subject to $a_l \le x_1 \le a_u, b_l \le x_2 \le b_u$

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

Notation

• A (column) vector with n real-valued entries

$$x \in \mathbb{R}^n$$

 x_i denotes the ith entry

ullet A matrix with real-valued entries, m rows, and n columns

$$A \in \mathbb{R}^{m \times n}$$

 A_{ij} denotes the entry in the *i*th row and *j*th column

 \bullet The transpose operator A^T switches rows and columns of a matrix

$$A_{ij} = (A^T)_{ji}$$

Operations

• Addition: For $A, B \in \mathbb{R}^{m \times n}$,

$$(A+B)_{ij} = A_{ij} + B_{ij}$$

• Multiplication: For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}, \quad AB \in \mathbb{R}^{m \times p}$$

associative: A(BC) = (AB)C = ABCdistributive: A(B+C) = AB + ACnot commutative: $AB \neq BA$ transpose of product: $(AB)^T = B^TA^T$ • Inner product: For $x, y \in \mathbb{R}^n$

$$x^T y = \langle x, y \rangle = \sum_{i=1}^n x_i y_i$$

- Identity matrix: $I \in \mathbb{R}^{n \times n}$ has ones on diagonal and zeros elsewhere, has property that IA = A
- Matrix inverse: For $A \in \mathbb{R}^{n \times n}$, A^{-1} is unique matrix such that

$$AA^{-1} = I = A^{-1}A$$

(may not exist for all square matrices) inverse of product: $(AB)^{-1}=B^{-1}A^{-1}$ when A and B both invertible

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

Convex optimization problems

- An extremely powerful subset of all optimization problems
- Roughly speaking, allow for efficient (polynomial time) global solutions
- Beautiful theory
- Lots of applications (but be careful, lots of problems we'd like to solve are definitely not convex)
- At this point, a fairly mature technology (off-the-shelf libraries for medium-sized problems)

Formal definition

 A convex optimization problem is a specialization of a mathematical programming problem

$$\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & x \in \mathcal{C}
\end{array}$$

where $x \in \mathbb{R}^n$ is optimization variable, $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function and feasible region $\mathcal C$ is a convex set

Convex sets

 \bullet A set ${\mathcal C}$ is convex if, for a $x,y\in{\mathcal C}$ and $\theta\in[0,1]$,

- All of \mathbb{R}^n : $x, y \in \mathbb{R}^n \Longrightarrow \theta x + (1 \theta)y \in \mathbb{R}^n$
- Intervals: $C = \{x \in \mathbb{R}^n : l \le x \le u\}$ (elementwise inequality)

• Linear inequalities: $C = \{x \in \mathbb{R}^n : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ **Proof:**

$$x, y \in \mathbb{R}^n \in \mathcal{C} \Longrightarrow Ax \le b, \ Ay \le b$$

$$\Longrightarrow \theta Ax \le \theta b, (1 - \theta)Ay \le (1 - \theta)b$$

$$\Longrightarrow \theta Ax + (1 - \theta)Ay \le b$$

$$\Longrightarrow A(\theta x + (1 - \theta)y) \le b$$

$$\Longrightarrow \theta x + (1 - \theta)y \in \mathcal{C}$$

- Linear equalities $\mathcal{C} = \{x \in \mathbb{R}^n : Ax = b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- Intersection of convex sets: $C = \bigcap_{i=1}^m C_i$ for convex sets C_i , $i = 1, \dots, m$

Convex functions

• A function $f:\mathbb{R}^n \to \mathbb{R}$ is *convex* if, for any $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$,

- f is *concave* if -f is convex
- f is affine if f is convex and concave, must have form

$$f(x) = a^T x + b$$

for $a \in \mathbb{R}^n$, $b \in \mathbb{R}$.

Testing for convexity

- Convex function must "curve upwards" everywhere
- For functions with scalar input $f: \mathbb{R} \to \mathbb{R}$, equivalent to condition that $f''(x) \geq 0$, $\forall x$
- For vector-input functions, corresponding condition is that

$$\nabla_x^2 f(x) \succeq 0$$

where $\nabla_x^2 f(x)$ is the *Hessian* of f,

$$(\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

and $\succeq 0$ denotes *positive definiteness*, the condition that for all $z \in \mathbb{R}^n$.

$$z^T \left(\nabla_x^2 f(x) \right) z \ge 0$$

Examples

- Exponential: $f(x) = \exp(ax)$, $[f''(x) = a^2 \exp(ax) \ge 0 \forall x]$
- Negative logarithm: f(x) = -log(x), $[f''(x) = 1/x^2 \ge 0 \forall x]$
- Squared Euclidean distance: $f(x) = x^T x$ [After some derivations, you'll find that $\nabla_x^2 f(x) = I, \forall x$, which is positive semidefinite since $z^T I z = z^T z \geq 0$]
- Euclidean distance: $f(x) = ||x||_2 = \sqrt{x^T x}$
- Non-negative weighted sum of convex functions:

$$f(x) = \sum_{i=1}^{m} w_i f_i(x)$$

where $w_i \geq 0$ and f_i convex, $\forall i = 1, \dots, m$

- Negative square root: $f(x) = -\sqrt{x}$ convex for $x \ge 0$
- Log-sum-exp: $f(x) = \log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$
- Maximum of convex functions:

$$f(x) = \max_{i=1}^{m} f_i(x)$$

where f_i convex, $\forall i = 1, \dots, m$

- Composition of convex and affine function: if f(y) convex in y, f(Ax-b) is convex in x
- Sublevel sets: for f convex, $\mathcal{C} = \{x : f(x) \leq c\}$ is a convex set

Convex optimization problems (again)

 Using sublevel sets property, it's more common to write generic convex optimization problems as

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

where f (objective) is convex, g_i 's (inequality constraints) are convex, and h_i 's (equality constraints) are affine

 Key property of convex optimization problems: all local solutions are global solutions

- **Definition**: a point x is globally optimal if x is feasible and there is no feasible y such that f(y) < f(x)
- **Definition**: a point x is *locally optimal* if x is feasible and there exists some R>0 such that for all feasible y with that $\|x-y\|_2 \le R$, $f(x) \le f(y)$
- **Theorem**: for a convex optimization problem, all locally optimal points are globally optimal

Proof (by contradiction): Suppose there exists feasible y such that f(y) < f(x). Pick the point

$$z = \theta x + (1 - \theta)y, \ \theta = 1 - \frac{R}{2||x - y||_2}.$$

We will show $||x - z||_2 < R$, z is feasible, and f(z) < f(x), contradicting local optimality.

Proof (cont)

$$||x - z||_2 = \left| \left| x - \left(\left(1 - \frac{R}{2||x - y||_2} \right) x + \frac{R}{2||x - y||_2} y \right) \right| \right|_2$$
$$= \left| \left| \frac{R}{2||x - y||_2} (x - y) \right| \right|_2 = R/2 < R$$

Furthermore, by convexity of feasible set, z is feasible. This shows all the points above, contradicting the supposition that there was a non-local feasible y with f(y) < f(x). \square

Example: least-squares

 General (potentially multi-variable) least-squares problems is given by

$$\underset{x}{\text{minimize}} \quad ||Ax - b||_2^2$$

for optimization variable $x \in \mathbb{R}^n$, data matrices $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and where $\|y\|_2^2$ is the ℓ_2 norm of vector $y \in \mathbb{R}^n$ is

$$||y||_2^2 = y^T y = \sum_{i=1}^m y_i^2.$$

A convex optimization problem (why?)

Example: Weber point

 \bullet Weber point in n dimensions

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{m} \|x - a_i\|_2$$

where $x \in \mathbb{R}^n$ is optimization variable and a_1, \ldots, a_m are problem data.

• A convex optimization problem (why?)

Example: linear programming

General form of a linear program

$$\begin{array}{ll}
\text{minimize} & c^T x\\
\text{subject to} & Ax = b\\
& Fx \le g
\end{array}$$

where $x \in \mathbb{R}^n$ is optimization variable, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $F \in \mathbb{R}^{p \times n}$, $g \in \mathbb{R}^p$ are problem data

- You may have also seen this with just the inequality constraint $x \ge 0$ (these are equivalent, why?)
- A convex problem (affine objective, convex constraints)

Example: quadratic programming

• General form of quadratic program

$$\begin{array}{ll}
\text{minimize} & x^T Q x + r^T x \\
\text{subject to} & A x = b \\
& F x \le g
\end{array}$$

where $x \in \mathbb{R}^n$ is optimization variable, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $F \in \mathbb{R}^{p \times n}$, $g \in \mathbb{R}^p$ are problem data

ullet A convex problem if Q is semidefinite

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

Nonconvex problems

• Any optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

where f or any g_i not convex, any h_i not affine, is a nonconvex problem

• Two classes of approaches for solving non-convex problems: *local* and *global*

- **Local methods**: Given some initial point x_0 , repeatedly search "nearby" points until finding a (feasible) solution \hat{x} that is better than all it's nearby points
 - Typically, same approximate computational complexity as convex methods (often just use convex methods directly)
 - Can fail to find any feasible solution at all
- **Global methods**: Find actual optimal solution x^* over the entire domain of feasible solution
 - Typically, exponential time complexity
- Both are used extremely frequently in practice, for different types of problems

Integer programming

 A class of nonconvex problems that we will look at in more detail later:

minimize
$$c^T x$$

subject to $Ax = b$
 $Fx \le g$
 $x \in \mathbb{Z}$

with optimization variable x, problem data A,b,F,g as in linear programming

• A nonconvex problem (why?)

Overview

- Introduction to mathematical programming problems
- Applications
- Classification of optimization problems
- (Linear algebra review)
- Convex optimization problems
- Nonconvex optimization problems
- Solving optimization problems

Solving optimization problems

Starting with the unconstrained, one dimensional case

- To find minimum point x^* , we can look at the derivative of the function f'(x): any location where f'(x)=0 will be a "flat" point in the function
- For convex problems, this is guaranteed to be a minimum (instead of a maximum)

• Generalization for multivariate function $f: \mathbb{R}^n \to \mathbb{R}$: the gradient of f must be zero

$$\nabla_x f(x) = 0$$

 For f defined as above, gradient is a n-dimensional vector containing partial derivatives with respect to each dimension

$$(\nabla_x f(x))_i = \frac{\partial f(x)}{\partial x_i}$$

Important: only a sufficient condition for unconstrained optimization

How do we find $\nabla_x f(x) = 0$?

- **Direct solution**: Analytically compute $\nabla_x f(x)$ and set resulting equation to zero
 - Example: quadratic function

$$f(x) = x^T Q x + r^T x \implies \nabla_x f(x) = 2Q x + r \implies x^* = -\frac{1}{2} Q^{-1} r$$

for $Q \in \mathbb{R}^{n \times n}$, $r \in \mathbb{R}^n$

- Will be a minimum assuming Q is positive definite

- Gradient descent: Take small steps in the direction of the current (negative) gradient
 - Intuition: negative gradient of a function always points "downhill" (actually points downhill in the steepest possible direction, for multivariate function)

- Repeat: $x \leftarrow x - \alpha \nabla_x f(x)$ where $\alpha \in \mathbb{R} > 0$ is a step size

- Newton's method: Use root-finding algorithm to find solution to (nonlinear) equation $\nabla_x f(x) = 0$
 - Newton's method: given $g: \mathbb{R} \to \mathbb{R}$, find g(x) = 0 by iteration

$$x \leftarrow x - \frac{f(x)}{f'(x)}$$

- Multivariate generalization for finding $\nabla_x f(x) = 0$

$$x \leftarrow x - (\nabla_x^2 f(x))^{-1} \nabla_x f(x)$$

 Each iteration is more expensive than gradient descent, but can converge to numerical precision much faster

Constrained optimization

Now consider problem with constraints

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, ..., m$

• **Projected gradient**: if we can come up with an "easy" projection operator $\mathcal{P}(x)$ such that for any x, $\mathcal{P}(x)$ returns "closest" feasible point

$$x \leftarrow \mathcal{P}(x - \alpha \nabla_x f(x))$$

- Example
$$C = x \ge 0$$
,

$$\mathcal{P}(x) = \max\{x, 0\}$$
 (elementwise)

Barrier method: Approximate problem via unconstrained optimization

minimize
$$f(x) - t \sum_{i=1}^{m} \log(-g_i(x))$$

as $t \to 0$, this approaches original problem

- Can quickly lead to numerical instability, requires a lot of care to get right
- Equality constraints need to be handled separately

Practically solving optimization problems

- The good news: for many classes of optimization problems, people have already done all the "hard work" of developing numerical algorithms
- A wide range of tools that can take optimization problems in "natural" forms and compute a solution
- Some well-known libraries: CVX (MATLAB), YALMIP (MATLAB), AMPL (custom language), GAMS (custom language)

cvxpy

- We'll be using a relative newcomer to the game: cvxpy (http://github.com/cvxgrp/cvxpy)
- Python library for specifying and solving convex optimization problems
- Very much "alpha" software, under active development

• Constrained Weber point, given $a_i \in \mathbb{R}^2$, $i = 1, \dots, m$

minimize
$$\sum_{i=1}^{m} ||x - a_i||_2$$
, subject to $x_1 + x_2 = 0$

cvxpy code

```
import cvxpy as cp
import cvxopt

n = 2
m = 10
A = cvxopt.normal(n,m)

x = cp.Variable(n)
f = sum([cp.norm(x - A[:,i],2) for i in range(m)])
constraints = [sum(x) == 0]
result = cp.Problem(cp.Minimize(f), constraints).solve()
print x.value
```

Take home points

- Optimization (and formulating AI tasks as optimization problems) has been one of the primary themes in AI of the past 15 years
- Convex optimization problems are a useful (though restricted) subset that can be solved efficiently and which still find a huge number of applications
- Many algorithms for solving optimization problems, but a lot of the "hard work" has been done by freely available libraries