
15-780 – Numerical Optimization

J. Zico Kolter

January 29, 2014

1



Overview

• Introduction to mathematical programming problems

• Applications

• Classification of optimization problems

• (Linear algebra review)

• Convex optimization problems

• Nonconvex optimization problems

• Solving optimization problems

2



Overview

• Introduction to mathematical programming problems

• Applications

• Classification of optimization problems

• (Linear algebra review)

• Convex optimization problems

• Nonconvex optimization problems

• Solving optimization problems

2



Introduction to mathematical optimization

• Casting AI problems as optimization / mathematical
programming problems has been one of the primary trends of
the last 15 years

• A topic not highlighted in textbook (see website for additional
readings)

• A seemingly remarkable fact:

Search problems Mathematical programs
Variable type Discrete Continuous

# of possible solutions Finite Infinite
“Difficulty” of solving Exponential Polynomial (often)
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Formal definition

• Mathematical programs are problems of the form

minimize
x

f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

– x ∈ Rn is the optimization variable

– f : Rn → R is objective function

– gi : Rn → R are (inequality) constraint functions

• Feasible region: C = {x : gi(x) ≤ 0,∀i = 1, . . . ,m}

• x? ∈ Rn is an optimal solution if x? ∈ C, and
f(x?) ≤ f(x), ∀x ∈ C
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Note on naming

• Mathematical program (or mathematical optimization problem,
and sometimes just optimization problem) refer to the problem
of the form

minimize
x

f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

• Numerical optimization (or mathematical optimization, or just
optimization) refers to the general study of these problems, as
well as methods for solving them on a computer
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Least-squares fitting

b

a

h(a)

h(ai)− bi

• Given ai, bi, i = 1, . . . ,m, find h(a) = x1a+ x2 that optimizes

minimize
x

m∑
i=1

(x1ai + x2 − bi)2

(x1 is slope, x2 is intercept)
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Weber point

(ai, bi)

(x1, x2)

• Given m points in 2D space (ai, bi), i = 1, . . .m, find the point
that minimizes the sum of the Euclidean distances

minimize
x

m∑
i=1

√
(x1 − ai)2 + (x2 − bi)2

• Many modifications, e.g. keep x within range (al, bl), (au, bu)

minimize
x

m∑
i=1

√
(x1 − ai)2 + (x2 − bi)2

subject to al ≤ x1 ≤ au, bl ≤ x2 ≤ bu 8
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Notation

• A (column) vector with n real-valued entries

x ∈ Rn

xi denotes the ith entry

• A matrix with real-valued entries, m rows, and n columns

A ∈ Rm×n

Aij denotes the entry in the ith row and jth column

• The transpose operator AT switches rows and columns of a
matrix

Aij = (AT )ji
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Operations

• Addition: For A,B ∈ Rm×n,

(A+B)ij = Aij +Bij

• Multiplication: For A ∈ Rm×n, B ∈ Rn×p

(AB)ij =

n∑
k=1

AikBkj , AB ∈ Rm×p

associative: A(BC) = (AB)C = ABC
distributive: A(B + C) = AB +AC
not commutative: AB 6= BA
transpose of product: (AB)T = BTAT
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• Inner product: For x, y ∈ Rn

xT y = 〈x, y〉 =
n∑

i=1

xiyi

• Identity matrix: I ∈ Rn×n has ones on diagonal and zeros
elsewhere, has property that IA = A

• Matrix inverse: For A ∈ Rn×n, A−1 is unique matrix such that

AA−1 = I = A−1A

(may not exist for all square matrices)
inverse of product: (AB)−1 = B−1A−1 when A and B both
invertible
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Convex optimization problems

• An extremely powerful subset of all optimization problems

• Roughly speaking, allow for efficient (polynomial time) global
solutions

• Beautiful theory

• Lots of applications (but be careful, lots of problems we’d like to
solve are definitely not convex)

• At this point, a fairly mature technology (off-the-shelf libraries
for medium-sized problems)
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Formal definition

• A convex optimization problem is a specialization of a
mathematical programming problem

minimize
x

f(x)

subject to x ∈ C

where x ∈ Rn is optimization variable, f : Rn → R is a convex
function and feasible region C is a convex set
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Convex sets

• A set C is convex if, for a x, y ∈ C and θ ∈ [0, 1],

θx+ (1− θ)y ∈ C

Convex set Nonconvex set

• All of Rn: x, y ∈ Rn =⇒ θx+ (1− θ)y ∈ Rn

• Intervals: C = {x ∈ Rn : l ≤ x ≤ u} (elementwise inequality)
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• Linear inequalities: C = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rm

Proof:

x, y ∈ Rn ∈ C =⇒ Ax ≤ b, Ay ≤ b
=⇒ θAx ≤ θb, (1− θ)Ay ≤ (1− θ)b
=⇒ θAx+ (1− θ)Ay ≤ b
=⇒ A(θx+ (1− θ)y) ≤ b
=⇒ θx+ (1− θ)y ∈ C

• Linear equalities C = {x ∈ Rn : Ax = b}, A ∈ Rm×n, b ∈ Rm

• Intersection of convex sets: C = ⋂m
i=1 Ci for convex sets Ci,

i = 1, . . . ,m
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Convex functions

• A function f : Rn → R is convex if, for any x, y ∈ Rn and
θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

(x, f(x))
(y, f(y))

• f is concave if −f is convex

• f is affine if f is convex and concave, must have form

f(x) = aTx+ b

for a ∈ Rn, b ∈ R.
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Testing for convexity

• Convex function must “curve upwards” everywhere

• For functions with scalar input f : R→ R, equivalent to
condition that f ′′(x) ≥ 0, ∀x

• For vector-input functions, corresponding condition is that

∇2
xf(x) � 0

where ∇2
xf(x) is the Hessian of f ,

(∇2
xf(x))ij =

∂2f(x)

∂xi∂xj

and � 0 denotes positive definiteness, the condition that for all
z ∈ Rn,

zT
(
∇2

xf(x)
)
z ≥ 0
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Examples

• Exponential: f(x) = exp(ax), [f ′′(x) = a2 exp(ax) ≥ 0∀x]

• Negative logarithm: f(x) = −log(x), [f ′′(x) = 1/x2 ≥ 0∀x]

• Squared Euclidean distance: f(x) = xTx [After some
derivations, you’ll find that ∇2

xf(x) = I, ∀x, which is positive
semidefinite since zT Iz = zT z ≥ 0]

• Euclidean distance: f(x) = ‖x‖2 =
√
xTx

• Non-negative weighted sum of convex functions:

f(x) =

m∑
i=1

wifi(x)

where wi ≥ 0 and fi convex, ∀i = 1, . . . ,m
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• Negative square root: f(x) = −√x convex for x ≥ 0

• Log-sum-exp: f(x) = log(ex1 + ex2 + . . .+ exn)

• Maximum of convex functions:

f(x) =
m

max
i=1

fi(x)

where fi convex, ∀i = 1, . . . ,m

• Composition of convex and affine function: if f(y) convex in y,
f(Ax− b) is convex in x

• Sublevel sets: for f convex, C = {x : f(x) ≤ c} is a convex set
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Convex optimization problems (again)

• Using sublevel sets property, it’s more common to write generic
convex optimization problems as

minimize
x

f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

where f (objective) is convex, gi’s (inequality constraints) are
convex, and hi’s (equality constraints) are affine

• Key property of convex optimization problems: all local
solutions are global solutions
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• Definition: a point x is globally optimal if x is feasible and
there is no feasible y such that f(y) < f(x)

• Definition: a point x is locally optimal if x is feasible and there
exists some R > 0 such that for all feasible y with that
‖x− y‖2 ≤ R, f(x) ≤ f(y)

• Theorem: for a convex optimization problem, all locally optimal
points are globally optimal

Proof (by contradiction): Suppose there exists feasible y such
that f(y) < f(x). Pick the point

z = θx+ (1− θ)y, θ = 1− R

2‖x− y‖2
.

We will show ‖x− z‖2 < R, z is feasible, and f(z) < f(x),
contradicting local optimality.
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Proof (cont)

‖x− z‖2 =
∥∥∥∥x− ((1− R

2‖x− y‖2

)
x+

R

2‖x− y‖2
y

)∥∥∥∥
2

=

∥∥∥∥ R

2‖x− y‖2
(x− y)

∥∥∥∥
2

= R/2 < R

Furthermore, by convexity of feasible set, z is feasible. This shows
all the points above, contradicting the supposition that there was a
non-local feasible y with f(y) < f(x).
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Example: least-squares

• General (potentially multi-variable) least-squares problems is
given by

minimize
x

‖Ax− b‖22

for optimization variable x ∈ Rn, data matrices A ∈ Rm×n,
b ∈ Rm, and where ‖y‖22 is the `2 norm of vector y ∈ Rn is

‖y‖22 = yT y =
m∑
i=1

y2i .

• A convex optimization problem (why?)
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Example: Weber point

• Weber point in n dimensions

minimize
x

m∑
i=1

‖x− ai‖2

where x ∈ Rn is optimization variable and a1, . . . , am are
problem data.

• A convex optimization problem (why?)
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Example: linear programming

• General form of a linear program

minimize
x

cTx

subject to Ax = b

Fx ≤ g

where x ∈ Rn is optimization variable, A ∈ Rm×n, b ∈ Rm,
F ∈ Rp×n, g ∈ Rp are problem data

• You may have also seen this with just the inequality constraint
x ≥ 0 (these are equivalent, why?)

• A convex problem (affine objective, convex constraints)
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Example: quadratic programming

• General form of quadratic program

minimize
x

xTQx+ rTx

subject to Ax = b

Fx ≤ g

where x ∈ Rn is optimization variable, A ∈ Rm×n, b ∈ Rm,
F ∈ Rp×n, g ∈ Rp are problem data

• A convex problem if Q is semidefinite
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Nonconvex problems

• Any optimization problem

minimize
x

f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

where f or any gi not convex, any hi not affine, is a nonconvex
problem

• Two classes of approaches for solving non-convex problems:
local and global

32



• Local methods: Given some initial point x0, repeatedly search
“nearby” points until finding a (feasible) solution x̂ that is
better than all it’s nearby points

– Typically, same approximate computational complexity as convex
methods (often just use convex methods directly)

– Can fail to find any feasible solution at all

• Global methods: Find actual optimal solution x? over the
entire domain of feasible solution

– Typically, exponential time complexity

• Both are used extremely frequently in practice, for different
types of problems
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Integer programming

• A class of nonconvex problems that we will look at in more
detail later:

minimize
x

cTx

subject to Ax = b

Fx ≤ g
x ∈ Z

with optimization variable x, problem data A, b, F, g as in linear
programming

• A nonconvex problem (why?)
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Solving optimization problems

• Starting with the unconstrained, one dimensional case

f(x)

x

• To find minimum point x?, we can look at the derivative of the
function f ′(x): any location where f ′(x) = 0 will be a “flat”
point in the function

• For convex problems, this is guaranteed to be a minimum
(instead of a maximum)
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• Generalization for multivariate function f : Rn → R: the
gradient of f must be zero

∇xf(x) = 0

• For f defined as above, gradient is a n-dimensional vector
containing partial derivatives with respect to each dimension

(∇xf(x))i =
∂f(x)

∂xi

• Important: only a sufficient condition for unconstrained
optimization
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How do we find ∇xf(x) = 0?

• Direct solution: Analytically compute ∇xf(x) and set resulting
equation to zero

– Example: quadratic function

f(x) = xTQx+rTx =⇒ ∇xf(x) = 2Qx+r =⇒ x? = −1

2
Q−1r

for Q ∈ Rn×n, r ∈ Rn

– Will be a minimum assuming Q is positive definite
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• Gradient descent: Take small steps in the direction of the
current (negative) gradient

– Intuition: negative gradient of a function always points
“downhill” (actually points downhill in the steepest possible
direction, for multivariate function)

f(x)

x

f ′(x0)

x0

– Repeat: x← x− α∇xf(x) where α ∈ R > 0 is a step size
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• Newton’s method: Use root-finding algorithm to find solution
to (nonlinear) equation ∇xf(x) = 0

– Newton’s method: given g : R→ R, find g(x) = 0 by iteration

x← x− f(x)

f ′(x)

– Multivariate generalization for finding ∇xf(x) = 0

x← x− (∇2
xf(x))

−1∇xf(x)

– Each iteration is more expensive than gradient descent, but can
converge to numerical precision much faster
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Constrained optimization

• Now consider problem with constraints

minimize
x

f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

• Projected gradient: if we can come up with an “easy”
projection operator P(x) such that for any x, P(x) returns
“closest” feasible point

x← P(x− α∇xf(x))

– Example C = x ≥ 0,

P(x) = max{x, 0} (elementwise)
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• Barrier method: Approximate problem via unconstrained
optimization

minimize
x

f(x)− t
m∑
i=1

log(−gi(x))

as t→ 0, this approaches original problem

– Can quickly lead to numerical instability, requires a lot of care to
get right

– Equality constraints need to be handled separately
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Practically solving optimization problems

• The good news: for many classes of optimization problems,
people have already done all the “hard work” of developing
numerical algorithms

• A wide range of tools that can take optimization problems in
“natural” forms and compute a solution

• Some well-known libraries: CVX (MATLAB), YALMIP
(MATLAB), AMPL (custom language), GAMS (custom
language)
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cvxpy

• We’ll be using a relative newcomer to the game: cvxpy
(http://github.com/cvxgrp/cvxpy)

• Python library for specifying and solving convex optimization
problems

• Very much “alpha” software, under active development
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• Constrained Weber point, given ai ∈ R2, i = 1, . . . ,m

minimize
x

m∑
i=1

‖x− ai‖2, subject to x1 + x2 = 0

• cvxpy code

import cvxpy as cp

import cvxopt

n = 2

m = 10

A = cvxopt.normal(n,m)

x = cp.Variable(n)

f = sum([cp.norm(x - A[:,i],2) for i in range(m)])

constraints = [sum(x) == 0]

result = cp.Problem(cp.Minimize(f), constraints).solve()

print x.value
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Take home points

• Optimization (and formulating AI tasks as optimization
problems) has been one of the primary themes in AI of the past
15 years

• Convex optimization problems are a useful (though restricted)
subset that can be solved efficiently and which still find a huge
number of applications

• Many algorithms for solving optimization problems, but a lot of
the “hard work” has been done by freely available libraries
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