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Abstract—The processing of massive amounts of data on
clusters with finite amount of memory has become an important
problem facing the parallel/distributed computing community.
While MapReduce-style technologies provide an effective means
for addressing various problems that fit within the MapReduce
paradigm, there are many classes of problems for which this
paradigm is ill-suited. In this paper we present a runtime system
for traditional MPI programs that enables the efficient and
transparent out-of-core execution of distributed-memory parallel
programs. This system, called BDMPI, leverages the semantics
of MPI’s API to orchestrate the execution of a large number
of MPI processes on much fewer compute nodes, so that the
running processes maximize the amount of computation that they
perform with the data fetched from the disk. BDMPI enables the
development of efficient out-of-core parallel distributed memory
codes without the high engineering and algorithmic complexities
associated with multiple levels of blocking. BDMPI achieves
significantly better performance than existing technologies on a
single node as well as on a small cluster, and performs within
30% of optimized out-of-core implementations.

I. INTRODUCTION

The dramatic increase in the size of the data being collected
and stored has generated a lot of interest in applying data-
driven analysis approaches, commonly referred to as Big-
Data, in order to gain scientific insights, increase situational
awareness, improve services, and generate economic value.
The amount of the data coupled with the complexity of the
analysis that often needs to be performed, necessitates the use
of analysis algorithms that do not load all the data in memory
and the use of distributed/parallel computing platforms. The
first requirement stems from the fact that the amount of DRAM
in most modern computers and moderate-size clusters is no
longer sufficient to store and analyze these large datasets,
whereas the second requirement is designed to address the
computational requirements of the analysis.

In recent years, there has been a burst of research activity
in developing frameworks for out-of-core distributed com-
puting applications (i.e., distributed computing applications
that primarily store their data on the disk). Some of the
most significant outcomes of this research have been the
functional programming model used by the MapReduce [1]
and associated frameworks (e.g., Hadoop [2], Spark [3])
and the vertex-centric model used by various graph-based
distributed processing frameworks (e.g., Pregel [4], Hama [5],
GraphLab [6], Giraph [7]). These frameworks use specific
computational models that enable the efficient expression and
execution of applications whose underlying computational

structure fit these models well. However, there is a large
number of applications whose computational structure does
not fit these existing frameworks well, which makes it diffi-
cult to express the computations and/or efficiently utilize the
underlying computational resources.

The objective of this work is to provide a message-passing
out-of-core distributed computing framework that can achieve
high performance while simultaneously is flexible to allow
the expression of computations required by a wide-range
of applications. The key insight underlying our approach
is the observation that scalable distributed-memory parallel
applications (e.g., those written in MPI [8]) tend to exhibit
two characteristics: (i) they are memory scalable in the sense
that the memory required by each process decreases as the
number of processes used to solve a given problem instance
increases, and (ii) they exploit coarse grain parallelism in the
sense that they structure their computations into a sequence of
local computation followed by communication phases in which
the local computations take a non-trivial amount of time and
often involve a non-trivial subset of the process’ memory.

Relying on these observations, we developed a framework
for out-of-core distributed computing that couples scalable
distributed memory parallel programs written in MPI with
a runtime system that facilitates out-of-core execution. In
this framework, which we implemented it in the form of an
MPI library and its associated runtime system, collectively
referred to as BigData MPI (BDMPI), the programmer needs
to only develop a memory-scalable parallel MPI program
by assuming that the underlying computational system has
enough computational nodes to allow for the in-memory
execution of the computations. This program is then executed
using a sufficiently large number of processes so that the per-
process memory fits within the physical memory available on
the underlying computational node(s). BDMPI maps one or
more of these processes to the computational nodes by relying
on the OS’s virtual memory management to accommodate
the aggregate amount of memory required by them. BDMPI
prevents memory thrashing by coordinating the execution of
these processes using node-level co-operative multi-tasking
that limits the number of processes that can be running at any
given time. This ensures that the currently running process(es)
can establish and retain memory residency and thus achieve ef-
ficient execution. BDMPI exploits the natural blocking points
that exist in MPI programs to transparently schedule the co-
operative execution of the different processes. In addition,



BDMPI'’s implementation of MPI’s communication operations
is done so that to maximize the time over which a process can
execute between successive blocking points. This allows it to
amortize the cost of loading data from disk over the maximal
amount of computations that can be performed.

We experimentally evaluated the performance of BDMPI on
three problems (K -means, PageRank, and stochastic gradient
descent). Our experiments show that BDMPI programs often
perform within 30% of optimized out-of-core codes, two to
five times faster than GraphChi, and up to a 100 times faster
than Hadoop. Furthermore, whereas as other attempts to solve
this problem propose new programming paradigms, we use the
well established MPI semantics and API, which over the past
twenty years have been shown to allow the efficient expression
of a wide variety of algorithms.

This paper is organized as follows. In Section II we review
related approaches. We examine the insights that led us to
develop BDMPI in Section III. In Section IV we present an
overview of BDMPI and its interface. In Section V we describe
the implementation of BDMPI. In Section VII we evaluate
the effectiveness of our proposed method on three different
computational kernels on a single node and a small cluster,
and compare the performance against current methods. Finally
in Section VIII we give an overview of our findings.

II. RELATED WORK

The problem of processing datasets that do not fit within the
system memory has received significant attention. The two ma-
jor issues are the engineering effort required to develop out-of-
core codes and the challenge of extracting performance from
such codes. The solutions proposed so far range from low-
level strategies for engineering high-performance solutions, to
high-level and often domain-specific frameworks that attempt
to minimize the engineering effort.

The best performance is achieved by directly engineering
problem specific out-of-core codes and taking advantage of
any available shortcuts the individual problems present. Vitter
provides a survey of explicit out-of-core algorithms in [9]. In
[10], Bordawekar and Choudhary present strategies for out-of-
core and distributed computing. A survey specifically for linear
algebra out-of-core algorithms is presented in [11]. Despite
these general strategies, the engineering cost is still extremely
high.

In an attempt to greatly reduce the effort needed for large
scale data processing, MapReduce [1] has come to represent
a class of software for processing BigData. The MapReduce
model is comprised of two phases: map and reduce. In the
map phase, a list of key-value pairs are generated/gathered
for a specific computational task. Then in the reduce phase, a
computation is performed on all of the key-value pairs from the
map phase, and the result is saved. This allows for task-parallel
execution, where compute nodes can pick up map and reduce
tasks to perform. A theoretical foundation for the MapReduce
model is provided in [12]. A popular and publicly available
implementation of MapReduce is that of Hadoop [2]. This
popularity has also led to the development of domain specific

libraries. The Mahout [13] library provides a set of machine
learning algorithms. The Pegasus framework [14] provides
several Hadoop versions of different graph mining algorithms
targeting massive graphs. The MapReduce paradigm’s ability
to efficiently express and execute iterative computations is
limited, as it results in unnecessary data movement.

To address this short-coming, a modification to the MapRe-
duce model was proposed by Bu et al., called Haloop [15].
Based on Hadoop, Haloop is specialized for handling iterative
problems with a modified task scheduler and the ability to
cache frequently used data. However, there are still sev-
eral classes of algorithms which do not fit the MapReduce
paradigm or its extensions.

Originally developed by Valiant [16], the Bulk Synchronous
Parallel model (BSP), aimed to provide a theoretical founda-
tion for parallel algorithms that accounts for communication
and synchronization costs. Algorithms following the BSP
model contain three steps per iteration: computation, commu-
nication, and synchronization. The Hama [5] project provides
a BSP framework that runs on top of the Hadoop Distributed
File System. Hama attempts to improve data locality for matrix
and graph based algorithms, as well as provide a framework
capable of expressing a wider range of problems.

Inspired by BSP style computations, Pregel [4] and
GraphLab [6] provide graph-specific frameworks for dis-
tributed graph processing. They work on a vertex-centric
model, where each computation takes the form of an operation
on a vertex and its connected edges. Both of these tech-
nologies currently can only run in-memory, requiring massive
amounts of DRAM to tackle large problems. Apache’s open
source framework Giraph [7] extends these by adding out-of-
core computation capabilities for processing extremely large
graphs. GraphChi [17], based on GraphLab’s computational
model, provides an efficient platform for out-of-core graph
processing but does not support distributed execution.

III. MOTIVATION OF THE APPROACH

The general approach used by algorithms that are de-
signed to operate on problems whose memory requirements
far exceed the amount of available physical memory is to
structure their computations into a sequence of steps such
that the working set of each step can fit within the available
physical memory and the data associated with each step can
be loaded/stored from/to the disk in a disk-friendly fashion
(e.g., via sequential accesses or via a small number of bulk
accesses) [9].

Scalable distributed memory parallel algorithms share a
common structure as well [18]. In these algorithms, the
computations are decomposed into different tasks and each
task along with its associated data is mapped on the available
compute nodes. This decomposition is optimized so that it
maximizes the computations that can be done with the local
data (i.e., maximize locality) and reduce the frequency as well
as the volume of the data that needs to be communicated
across the nodes (i.e., minimize communication overheads). In
addition, most of these algorithms structure their computations



into a sequence of phases involving a local computation step
followed by inter-process communication step. Moreover, if
M is the amount of memory required by a serial algorithm
for solving a given problem instance, the amount of memory
required by each process is O(M/p) + f(p), where p is the
number of processes involved and f() is often a sub-linear
function on p.

The key observation motivating our work is that a scalable
distributed memory parallel algorithm can be transformed
into an algorithm whose structure is similar to that used by
out-of-core algorithms. In particular, if p is the number of
processes required to ensure that the per-process memory
fits within the compute node’s available physical memory,
then the computations performed by each process in a single
phase will correspond to a distinct step of the out-of-core
algorithm. That is, one parallel phase will be executed as p
sequential steps. Since the working set of each of these steps
fits within the physical memory of a node, the computations
can be performed efficiently. Moreover, if the underlying
computational infrastructure has n available nodes, each node
will perform p/n of these steps in sequence, leading to a
distributed out-of-core execution.

BDMPI performs this transformation in a way that is
entirely transparent to the programmer. It uses the OS’s virtual
memory management (VMM) mechanisms to provide the
programmer with the illusion that the parallel program is
operating as if all the data could fit in memory and, when
appropriate, uses disk-based message buffering to ensure the
correct and efficient execution of the communication opera-
tions. Note that even though our discussion so far has focused
on BSP-style parallel programs, as the subsequent sections
will illustrate, BDMPI works for non-synchronous programs
as well.

IV. OVERVIEW OF BDMPI

BDMPI is implemented as a layer between an MPI program
and any of the existing implementations of MPI. From the
application’s perspective, BDMPI is just another implemen-
tation of a subset of the MPI 3 specification with its own
job execution command (bdmpiexec). Programmers familiar
with MPI can use it right away and any programs using the
subset of MPI functions that have been currently implemented
in BDMPI can be linked against it unmodified.

A BDMPI program is a standard MPI-based distributed
memory parallel program that is executed using the
bdmpiexec command as follows:

bdmpiexec —-nn nnodes
-ns nslaves
-nr nrunning

progname [argl] [arg2]

The nnodes parameter specifies the number of compute
nodes (e.g., machines in a cluster) to use for execution, the
nslaves parameter specifies the number of processes to
spawn on each of the nnodes nodes, and the nrunning
parameter specifies the maximum number of slave processes

that can be running at any given time on a node. The name of
the BDMPI program to be executed is progname, which can
have any number of optional command-line arguments. This
command will create an MPI execution environment consisting
of nnodes X nslaves processes, each process executing
progname. In this environment, these processes will make
up the MPI_COMM_WORLD communicator.

BDMPI uses two key elements in order to enable efficient
out-of-core execution. The first relates to how the MPI pro-
cesses are executed on each node and the second relates to
the memory requirements of the different MPI processes. We
will refer to the first as BDMPI’s execution model and to the
second as its memory model.

BDMPI’s execution model is based on node-level co-
operative multi-tasking. BDMPI allows only up to nrunning
processes to be executing concurrently with the rest of the
processes blocking. When a running process reaches an MPI
blocking operation (e.g., point-to-point communication, col-
lective operation, barrier, etc.), BDMPI blocks it and selects a
previously blocked and runnable process (i.e., whose blocking
condition has been satisfied) to resume execution.

BDMPI’s memory model is based on constrained memory
over-subscription. It allows the aggregate amount of memory
required by all the MPI processes spawned on a node to be
greater than the amount of physical memory on that node.
However, it requires that the sum of the memory required by
the nrunning processes to be smaller than the amount of
physical memory on that node. Within this model, an unmod-
ified MPI program will rely on the OS’s VMM mechanisms
to map in memory the data that each process needs during
its execution. Alternatively, the program can be explicitly
optimized for BDMPI’s memory and execution model. Two
ways of achieving this is for the program, at possible block-
ing/resumption points, to (i) use memory locking/unlocking
to prefetch from the swap file and subsequently release the
parts of the address space that it needs, or (ii) use file I/O to
explicitly load/store the data that it needs from the disk and
thus bypass most of the VMM mechanisms.

The coupling of constrained memory over-subscription with
node-level co-operative multi-tasking is the key that allows
BDMPI to efficiently execute an unmodified MPI program
whose aggregate memory requirements far exceeds the aggre-
gate amount of physical memory in the system. This is due to
the following two reasons. First, it allows the MPI processes to
amortize the cost of loading their data from the disk over the
longest possible uninterrupted execution that they can perform
until they need to block due to MPI’s semantics. Second, it
prevents memory thrashing (i.e., repeated and frequent page
faults), because each node has sufficient amount of physical
memory to accommodate all the processes that are allowed to
run.

The importance of the last part can be better understood
by considering what will happen if the nslaves processes
were allowed to execute in the standard pre-emptive multi-
tasking fashion. In such a scenario, each of the nslaves
processes will execute for a period of time corresponding to



TABLE I
THE MPI SUBSET IMPLEMENTED BY BDMPI.

BDMPI_Init, BDMPI_Finalize

BDMPI_Comm_size,
BDMPI_Comm_free,

BDMPI_Comm_rank,
BDMPI_Comm_split

BDMPI_Comm_dup,

BDMPI_Send, BDMPI_Isend, BDMPI_Recv,
BDMPI_Sendrecv

BDMPI_TIrecv,

BDMPI_Probe, BDMPI_Iprobe,
BDMPI_Get_count

BDMPI_Test, BDMPI_Wait,

BDMPI_Barrier

BDMPI_Bcast,
BDMPI_Scan,
BDMPI_Allgather([v],

BDMPI_Reduce, BDMPI_Allreduce,
BDMPI_Gather([v], BDMPI_Scatter([v],
BDMPI_Alltoall([v]

the OS’s time-slice and then relinquish the core that they were
mapped on so that another process can be scheduled. Due to
memory over-subscription, such an approach will provide no
guarantees that any of the process’ memory that was mapped
in physical memory in one time-slice will be there for the
next time-slice the process is scheduled, potentially resulting
in severe memory thrashing.

Given BDMPI'’s execution and memory model, we can see
that the optimal number for the nrunning parameter is
determined by the number of physical cores on the nodes, the
ability of its disk subsystem to service concurrent requests,
and the amount of memory required by each MPI process.
Among these parameters, the disk subsystem is often the rate
limiting component and its ability to allow for more running
processes depends on the number of spinning disks and/or the
use of SSDs.

BDMPI dramatically lowers the burden of developing out-
of-core distributed programs by allowing programmers to
focus on developing scalable parallel MPI programs and leave
the aspects related to out-of-core execution to BDMPI. This
also increases the portability of programs, because when the
memory in the system is sufficient, the program can be
executed as a regular MPI program.

V. IMPLEMENTATION OF BDMPI

From the developer’s view, BDMPI consists of two compo-
nents. The first is the bdmpiexec program used to execute
a BDMPI (MPI) program on either a single or a cluster of
workstations, and the second is the bdmpilib library that
provides the subset of the MPI 3 that BDMPI implements,
which needs to be linked with the application code. The subset
of the MPI that is currently implemented in BDMPI is shown
in Table I. This contains a reasonable set of MPI functions for
developing a wide-range of message passing programs. Note
that since BDMPI is built on top of MPI and itself uses MPI
for parallel execution, we have prefixed the MPI functions that
BDMPI supports with “BD” in order to make the description
of BDMPI’s implementation that follows unambiguous.

In the rest of this section we provide information on how
BDMPI’s node-level co-operative multi-tasking execution is

implemented and how the different classes of MPI functions
are implemented as to adhere to its memory model.

A. Master and Slave Processes

The execution of a BDMPI program creates two sets of
processes. The first are the MPI processes associated with
the program being executed, which within BDMPI, they are
referred to as the slave processes. The second is a set of
processes, one on each node, that are referred to as the master
processes. The master processes are at the heart of BDMPTI’s
execution as they spawn the slaves, coordinate their execution,
service communication requests, perform synchronization, and
manage communicators.

The master processes are implemented by a program called
bdmprun, which itself is a parallel program written in
MPI (not BDMPI). When a user program is invoked using
bdmpiexec, the bdmprun program is first loaded on the
nodes of the cluster and then proceeds to spawn the slave
processes.

The organization of these processes into the set of slave
processes for BDMPI’s node-level co-operative multi-tasking
execution model is done when each process calls its corre-
sponding BDMPI_TInit function. At this point, each slave
is associated with the master process that spawned it, cre-
ates/opens various structures for master-to-slave interprocess
communication, and receives from the master all the necessary
information in order to setup the MPI execution environment
(e.g., BDMPI_COMM_WORLD). Analogously, when a slave
calls the BDMPI_Finalize function, its master removes
it from the set of slave processes involved in co-operative
multitasking, and its execution resumes to follow the regular
pre-emptive multi-tasking.

All communication/synchronization operations between the
slaves go via their master processes. These operations are
facilitated using POSIX shared memory for master/slave bi-
directional data transfers, POSIX message-queues for slave-
to-master signaling, and MPI operations for intra-node com-
munication/synchronization. For example, if a message is
sent between two MPI processes p; and p; that are mapped
on nodes n, and n,, then the communication will involve
processes p; — m, — m, — p;j, where m, and m, are the
master processes running on nodes n; and n,, respectively.
Process p; will signal m; that it has a message for p; and
transfer data to m, via shared memory (assuming that the
message is sufficiently small), m, will send the data to m,
via an MPI_Send operation, and m, will send the data to p;
via shared memory.

The master processes service the various MPI operations
by spawning different POSIX threads for handling them. In
most cases, the lifetime of these threads is rather small, as
they often involve updating various master state variables and
moving small amounts of data from the slave’s address space
to the master’s address space and vice versa. The only time that
these threads can be alive for a long time is when they perform
blocking MPI operations with masters of other nodes. The
multi-threaded implementation of BDMPI’s master processes



improves the efficiency in handling requests from different
slaves and other master processes. It also ensures that col-
lective operations involving multiple disjoint subsets of slave
processes across different nodes can proceed concurrently with
no deadlocks.

B. Node-level Cooperative Multi-Tasking

Node-level co-operative multi-tasking is achieved using
POSIX message-queues. Each master creates nslaves mes-
sage queues, one for each slave. We refer to these queues
as go-queues. A slave blocks by waiting for a message on
its go-queue and the master signals that a slave can resume
execution by sending a message to the go-queue of that slave.
Since Linux (and most other OSs that provide POSIX IPC
support) blocks a process when the message queue that it is
reading from is empty, this synchronization approach achieves
the desired effect without having to explicitly modify the OS’s
scheduling mechanism!.

The master maintains information about the state of the var-
ious slaves, which they can be in one of the following states:
running (a slave is currently running), rblocked (a slave is
blocked due to an MPI receive operation), cblocked (a slave is
blocked due to an MPI collective operation), runnable (a slave
can be scheduled for execution if resources are available), and
finalized (a slave has called BDMPI_Finalize).

The blocking/resumption of the slaves is done jointly by
the implementation of the MPI functions in bdmpilib and
the masters. If a slave calls an MPI function that leads to a
blocking condition (more on that later), it notifies its master
and then blocks by waiting for a message on its go-queue.
The master updates the state of the slave to rblocked/cblocked
and proceeds to select another runnable slave to resume its
execution by sending a message to its go-queue. When a slave
receives a message on its go-queue, it proceeds to complete
the MPI function that resulted in its blocking and returns
execution to the user’s program. If more than one slave is at a
runnable state, the master selects for resumption the slave that
has the highest fraction of its virtual memory already mapped
on the physical memory. This is done to minimize the cost of
establishing memory residency of the resumed slave.

Since all communication/synchronization paths between the
slaves go via their masters, each master knows when the
conditions that led to the blocking of one of its slaves may
have changed and modify their state from blocked to runnable.

C. Send and Receive Operations

The BDMPI_Send and BDMPI_Isend operations are per-
formed using a buffered send approach. This is done in order to
allow the sending process, once it has performed the necessary
operations associated with buffering, to proceed with the rest
of its computations. The advantage of this approach is that it

IThe OS still schedules the processes that are ready to run in a pre-emptive
multi-tasking fashion. However, because BDMPI controls the number of MPI
processes that are ready to run, its execution will be similar to that of co-
operative multi-tasking as long as it is the only program using the node.

maximizes the amount of time over which the running process
can amortize the time it spent to establish memory residency.

The buffering of a message depends on its size and on
whether the source and destination reside on the same node. If
the size of the message is small, then the message is buffered
in the memory of the destination’s node master process,
otherwise it is buffered on the destination’s node disk. What
constitutes a small message is controlled via a configuration
parameter, which is currently one memory page (4K bytes).
In case of disk-based buffering, the message is written to the
disk by the slave, and the name of the file used to store it
is communicated to the master. If the destination slave is
on a different node, then the master of the sender notifies
that master of the destination and sends the data to it via an
MPI_Send operation. The receiving master will then either
store the data in its memory or write them to a file on its disk.
In case of memory-based buffering, the data is copied to the
master via POSIX shared memory and stored locally or sent
to the remote slave’s master node. In any of these cases, the
master of the destination slave will also change the state of the
destination slave to runnable if its current state is rblocked.

The BDMPI_Recv operation is performed as follows. The
slave notifies its master about the required receive operation.
If a corresponding send operation has already been completed
(i.e., the data reside on the master’s memory or on the local
disk), then, depending on the size, the data is either copied
to the slave’s memory or the slave reads the data from the
local disk. Once this is done, the BDMPI_Recv operation
completes and control is returned to the program. If the
corresponding send operation has not been posted, then the
slave blocks by waiting on its go-queue. In that case, the
master also changes the state of that slave from running to
rblocked. When a slave resumes execution (because its master
received a message destined for it) it will then check again
if the corresponding send has been posted and it will either
receive the data or block again. Note that this protocol is
required because BDMPI’s masters do not maintain infor-
mation about the posted receive operations but instead only
maintain information about the send operations. In the future
we plan to investigate any performance benefits of maintaining
such information on the masters. For simplicity, BDMPI’s
implementation of the BDMPI_Irecv does nothing other
than setting the status information and uses an implementation
similar to that for BDMPI_Recv when the corresponding
BDMPI_Wait operation is invoked.

It can be shown that the above protocol ensures that as long
as the program is deadlock-free based on MPI’s point-to-point
communication semantics, its BDMPI execution will also be
deadlock-free. However, since BDMPI uses buffered sends, the
reverse is not true. That is, a deadlock-free BDMPI program
will not necessarily be a deadlock-free MPI program.

D. Collective Operations

Depending on the specific collective operation and whether
their associated communicator involves processes that span



more than one node, BDMPI uses different strategies for
implementing the various collective operations that it supports.

The BDMPI_Barrier operation is performed as follows.
Each calling slave notifies its master that it is entering a barrier
operation and then blocks by waiting for a message on its go-
queue. At the same time, the master changes the state of that
process to cblocked. Each master keeps track of the number of
its slaves that have entered the barrier, and when that number
is equal to the total number of its slaves in the communicator
involved, it then calls MPI_Barrier to synchronize with
the rest of the nodes involved in the communicator. Once the
masters return from that MPI_Barrier call, they change the
state of all their slaves associated with the communicator to
runnable. As discussed earlier, the handling of the interactions
between the slaves and their master is done by having the
master spawn a different thread for each one of them. Within
this framework, all but the last thread involved will exit as
soon as they change the state of the calling slave to cblocked.
It is the last thread (i.e., the one that will be spawned when
all but one slave has entered the barrier) that will execute the
MPI_Barrier. Thus, MPI_Barrier involves a commu-
nicator whose size is equal to the number of distinct nodes
containing slaves in the underlying BDMPI communicator.

The BDMPI_Bcast operation is performed using a two-
phase protocol. In the first phase, each calling slave notifies its
master that it is entering a broadcast operation and then blocks
by waiting for a message on its go-queue. If the calling slave
is the root of the broadcast, prior to blocking, it also copies
the data to the master process’ memory. When all local slaves
have called the broadcast, the data is broadcast to all the master
processors of the nodes involved using MPI_Bcast. Upon
completion of this operation, the masters change the state of
their local slaves to runnable. In the second phase, when a
slave resumes execution, it notifies its master that is ready to
receive the data, and gets them via the shared memory.

A similar protocol is used for implementing the
BDMPI_Reduce and BDMPI_Allreduce operations,
though in this case all slaves send their data to their
masters, which performs the reduction operation. Similarly,
when all local slaves have called the operation, the
reduction across the entire system is performed by calling
MPI_Reduce on a communicator associated with the nodes
involved. Finally, in the second phase of this operation, the
destination of the reduction operation (or all slaves in case of
BDMPI_Allreduce) receive the data from its master via
the shared memory.

Note that for the above three operations, the masters store
the data involved in memory as opposed to buffering them on
disk. The rationale for this is that since the amount of data
involved does not increase with the size of the communicator,
it does not create excessive memory requirements. Moreover,
in order to ensure that this data is not been swapped out,
BDMPI has an option of locking them in physical memory.

The implementation of the other collective communication
operations is different depending on the number of nodes
involved. If more than one node is involved, these operations

TABLE II
BDMPI EXTENSIONS.

BDMPI_Enter_critical, BDMP_Exit_critical
BDMPI_Comm_nsize,
BDMPI_Comm_lsize,
BDMPI_Comm_rrank

BDMPI_Comm_nrank,
BDMPI_Comm_lrank,

are implemented using BDMP_Send and BDMP_Recv oper-
ations or repeated calls to BDMPI_Bcast for the case of
BDMPI_Allgather. If the number of nodes is one (i.e.,
all slaves in the communicator belong to the same node),
the operations are performed using an analogous two-phase
protocol, with the appropriate slave-to-master and master-to-
slave data movement. The only difference is that based on the
size of the data, they are either buffered in the memory of
the master, or they are buffered on the disk of the node. This
is done for two reasons. First, the amount of data involved
is written and read only once, so there is little benefit for
storing them in memory. Second, the aggregate amount of data
can become very large (especially in the case of the all-to-all
operation), which can lead to excessive memory swapping.

BDMPI uses two different states to differentiate between
a slave blocked due to a receive operation or a collective
communication operation (i.e., rblocked and cblocked). This
is necessary for ensuring that a slave blocked on a collective
operation does not become runnable because it received a
message from another slave.

E. Communicator Operations

The majority of the information associated with a commu-
nicator is maintained by the masters, and the communicator-
related information maintained by the slaves is rather minimal
(id, rank, and size). The masters maintain information related
to the identity of the slave processes and their location across
the nodes. In addition, each BDMPI communicator has an
associated MPI communicator containing the set of masters
involved, which is used for the MPI operations that the masters
need to perform among them. Finally, BDMPI implements
the BDMPI_Comm_split MPI function, which provides a
flexible mechanism to subdivide an existing communicator.

F. BDMPI Extensions

BDMPI provides a small number of functions that are not
part of the MPI standard in order to enable multiple slaves to
be running concurrently in a contention-free fashion, facilitate
intra-node synchronization, and to allow the program to get
information about its execution environment as it relates on
how the processes are organized within each node. These
functions are shown in Table II.

The first two functions are used to indicate a section of the
program during which only a single slave can be executing
within each node. These critical sections are important for
operations involving disk access (e.g., performing an mlock
or file I/0), as it eliminated disk-access contention. Note that
these critical sections are only relevant when nrunning



is greater than one. These functions are implemented using
POSIX semaphores.

The remaining functions have to do with extracting informa-
tion from a communicator. The _nsize/_nrank functions
return the number of nodes (i.e., masters) in the communicator
and the rank of the slave’s master in that communicator, re-
spectively. The _1size/_lrank functions return the number
of other slaves residing on the same node as that of the calling
slave and its rank, respectively. Finally, the _rrank returns
the rank of the lowest ranked slave in the same node as that
of the calling slave.

In addition, BDMPI provides two additional built-
in communicators: BDMPI_COMM_CWORLD and
BDMPI_COMM_NODE. The first contains all the slaves
across all the nodes numbered in a cyclic fashion, whereas
the second contains all the slaves on the same node as that
process. The first communicator is provided for programs
that can achieve better load balance by splitting the ranks in
a cyclic fashion across the nodes. The second communicator
is provided so that the program can use it in order to
perform parallel I/O at the node level or to create additional
communicators that are aware of the two-level topology of
the processes involved.

VI. EXPERIMENTAL SETUP
A. Benchmark Applications

We evaluated the performance of BDMPI using three appli-
cations: (i) PageRank on an unweighted directed graph [19],
(i1) spherical K-means clustering of sparse high-dimensional
vectors [20], and (iii) matrix factorization using stochastic
gradient descent (SGD) for recommender systems [21].

Our MPI implementation of PageRank uses a one-
dimensional row-wise decomposition of the sparse adjacency
matrix. Each MPI process gets a consecutive set of rows such
that the number of non-zeros of the sets of rows assigned
to each process is balanced. Each iteration of PageRank
is performed in three steps using a push algorithm [19].
Our MPI implementation of K-means uses an identical one-
dimensional row-wise decomposition of the sparse matrix to
be clustered as the PageRank implementation. The rows of that
matrix correspond to the sparse vectors of the objects to be
clustered. The k-way clustering starts by randomly selecting
one of the processes p;, which proceeds to select k£ of its
rows as the centroids of the & clusters. Each iteration then
proceeds as follows. Process p; broadcasts the & centroids to
all other processes. Processes assign their rows to the closest
centroids, compute the new centroids for their local rows,
and then determine the new global centroids via a reduction
operation. This process terminates when no rows have been
reassigned. Our MPI implementation of SGD follows the
parallelization approach described in [21] and uses a \/p X /P
two-dimensional decomposition of the sparse rating matrix R
to be factored into the product of U and V. Each iteration is
broken down into /p steps and in the ith step, computation is
performed on the blocks along the ith diagonal. This ensures
that at any given step, no two processes update the same

entries of U and V. Note that in this formulation, at any
given time, only ,/p processes will be active performing
SGD computations. Even though this is not acceptable on
a p-processor dedicated parallel system, it is fine within the
context of BDMPI execution, since multiple MPI processes
are mapped on the same node.

For all of the above parallel formulations, we implemented
three different variants. The first corresponds to their standard
MPI implementations as described above. The second extends
these implementations by inserting explicit function calls to
lock in physical memory the data that is needed by each
process in order to perform its computations and to unlock
them when it is done. As a result of the memory locking calls
(mlock), the OS maps from the swap file into the physical
memory pages all the data associated with the address space
been locked and any subsequent accesses to that data will
not incur any page faults. The third corresponds to an imple-
mentation in which the input data and selective intermediate
data are explicitly read from and written to the disk prior to
and after their use (in the spirit of out-of-core formulations).
This implementation was done in order to evaluate the OS
overheads associated with swap file handling and demand
loading. We will use the mlock and ooc suffixes to refer to
these two alternative versions.

In all of these benchmarks, the input data were replicated
to all the nodes of the cluster and the processes took turn
in reading their assigned data. As a result, the I/O was
parallelized at the node-level and was serialized at the within
node slave-level. The output data were sent to the zero rank
process, which wrote them to the disk.

We also developed serial out-of-core versions of these
algorithms in order to evaluate the performance that can be
achieved by programs that have been explicitly optimized
for out-of-core processing. We will denote these algorithms
by Serial-ooc. The out-of-core implementation of PageRank
keeps the page rank vectors (current and next) in memory.
During each iteration, the graph is processed in chunks, and a
push algorithm (as in our MPI implementation) is used to up-
date the next pagerank vector. The out-of-core implementation
of K-means keeps the centroids (current and next) in memory.
The matrix and the row cluster assignment vector are read
in chunks from the disk during each iteration. Once a chunk
of the matrix has been processed (i.e., the new cluster mem-
berships have been determined and the new centroids have
been partially updated), the chunk of the cluster assignment
vector is written back to disk. The out-of-core implementation
of SGD uses a two-dimensional decomposition of the input
matrix into chunks. During an iteration, each matrix chunk
and corresponding segments of U and V' are read from disk
and updates are made, before saving the segments of U and V'
back to disk. Note that we process the chunks in a row-major
order, as a result, the part of U corresponding to the current
set of rows is read only once (at the start of processing the
chunks of that row) and is written back to disk once (after all
chunks have been processed).

We used the PageRank and SGD implementations provided



by GraphChi 0.2 [17] for comparison on the single-node exper-
iments. For distributed PageRank we used the implementation
from Pegasus 2.0 [14]. For distributed K-means we used the
version provided with 0.7 of Mahout [13].

B. Datasets

For the PageRank experiments we used an undirected ver-
sion of the uk-2007-05 [22] web graph, with 105 million
vertices and 3.3 billion edges. To ensure that the performance
of the algorithms is not affected by a favorable ordering of the
vertices, we renumbered the vertices of the graph randomly.
For the K-means experiments we used a sparse document-
term matrix of newspaper articles with 30 million rows and
83 thousand columns containing 7.3 billion non-zeros. For
the SGD experiments, we used the dataset from the NetFlix
Prize [23], replicated 128 times to create an 8x16 block
matrix, with 3.8 million rows, 284 thousand columns, and 12.8
billion non-zeros.

C. System Configuration

These experiments were run on a dedicated cluster consist-
ing of four Dell Optilex 9010s. Each machine is equipped
with an Intel Core i7 @ 3.4GHz processor, 4GB of memory,
and a Seagate Barracuda 7200RPM 1.0TB hard drive. Because
of BDMPI's dependence on the swap-file for data storage,
the machines were set up with 300GB swap partitions. The
four machines run the Ubuntu 12.04.2 LTS distribution of the
GNU/Linux operating system. The C compiler used was GNU
GCC 4.6.3 and the MPI implementation was MPICH 3.0.4.
For the Hadoop [2] based algorithms, we used version 1.1.2
of Hadoop and OpenJDK IcedTea6 1.12.5.

VII. RESULTS

For the three benchmarks we gathered results by performing
ten iterations. The times that we report correspond to the
average time required to perform each iteration, which was
obtained by dividing the total time by the number of iterations.
As aresult, the reported times include the costs associated with
loading and storing the input and output data.

A. Performance of PageRank

Table III shows the performance achieved by the different
programs on the PageRank benchmark.

Comparing the performance achieved by the various
BDMPI versions, we see that BDMPI-ooc performs the best
whereas the BDMPI version (i.e., the version that corresponds
to the unmodified MPI implementation executed via BDMPTI’s
system) performs the worst. However, the performance differ-
ence between these two implementations is within a factor
of two. The performance achieved by BDMPI-mlock is in
between the other two versions. These results indicate that
there are benefits to be gained by optimizing an MPI code for
BDMPI’s runtime system and that bypassing the OS’s VMM
system does lead to performance improvements.

Comparing the results obtained on the four nodes over those
obtained on a single node, we can see that most versions of

TABLE III
PAGERANK PERFORMANCE.

Algorithm Num. of Nodes = 1 Num. of Nodes = 4
BDMPI 19.86 4.34
BDMPI-mlock 15.11 3.89
BDMPI-oo0c 9.98 2.35
MPI 14.84 10.25
Serial-ooc 5.43 N/A
GraphChi[8GB] 45.90 N/A
Pegasus (Hadoop) N/A 234.93

These results correspond to the number of minutes required to perform
a single iteration of PageRank on the uk-2007-05 graph. The single-
node BDMPI runs were performed using 12 slave processes and the four-
node runs were performed using 3 slave processes per node. All BDMPI
experiments were obtained by setting nrunning to one. The MPI results
were obtained by MPICH using -np 1 and —np 4. The GraphChi results
were obtained on a node with 8GB of DRAM, as it was unable to run on
a 4GB node without swapping.

BDMPI achieve super-linear speedups. This is due to the fact
that the aggregate amount of memory in the four nodes is
higher, which allows the slaves to retain more of their data in
memory between successive suspension/resumption steps.

The performance achieved by the MPI version of the
benchmark on a single node is better than that of the first
two BDMPI versions, though its performance is worse than
that of the BDMPI-ooc version. This result is somewhat
surprising, since the single-node execution of the MPI version
is nothing more than running the serial algorithm on the
graph, and as such it relies entirely on the VMM system.
However, this good performance can be attributed to the
following two reasons. First, the BDMPI versions have to incur
the overhead associated with the all-to-all communication for
pushing the locally computed contributions of the pagerank
vector to the slaves that are responsible for the corresponding
vertices. Since the vertices of the input graph are ordered
randomly and the single-node BDMPI experiments distribute
the computations among twelve slaves, this step involves a
non-trivial amount of communication. On the other hand, the
single-node MPI experiment does not partition the graph and
as such it does not incur that overhead. Second, the number
of vertices in the graph is rather small and as a result, the
pagerank vector been computed fits in the physical memory. If
that vector cannot fit in the physical memory, the performance
will degrade substantially. To verify this, we performed an
experiment in which we simulated a graph that has four times
the number of vertices. For that graph, the first iteration of
the single-node MPI version did not finish after six hours,
whereas the time required by a single iteration of BDMPI-ooc
took about 47 minutes using 50 slaves. Also it is interesting
to note that the MPI version does not scale well on four
nodes, as it achieved a speedup of only 1.45. We believe
that the primary reason for that is that the MPI version
now has to incur the overhead associated with the all-to-all
communication discussed earlier (as it decomposes the graph
among four nodes), which significantly increases its overall
runtime and thus reduces the speedup.



TABLE IV
SPHERICAL K-MEANS PERFORMANCE.

Number of Nodes = 1

Number of Nodes = 4

Algorithm #R=1/#T=1 #R=4/#T=1 #R=1/4#T=4 #R=1/4#T=1 #R=4/4#T=1 #R=1/#T=4
BDMPI 39.20 31.14 38.11 10.38 7.25 8.95
BDMPI-mlock 36.62 22.60 25.11 8.48 5.73 5.56
BDMPI-ooc 26.18 9.97 14.43 6.62 3.15 3.67
MPI 70.06 N/A 102.85 18.13 N/A 21.98
Serial-ooc 25.82 N/A N/A

Mahout (Hadoop) N/A 1196.75

These results correspond to the number of minutes required to perform a single iteration of spherical K means on news dataset for
K = 100. “#R” is the maximum number of slave processes that can run concurrently on a single node. “#T” is the number of OpenMP
threads used to perform the computations within each slave process. All BDMPI runs using “#R=1" were performed using 20 slave
process, whereas the “#R=4" runs were performed using 80 slave processes. For the single node experiments, all these slave processes
were mapped on the same node, whereas for the four-node experiments, they were equally distributed among the nodes. The MPI results

were obtained by MPICH using -np 1 and -np 4.

The overall best single-node results were obtained by the
Serial-ooc version. This is not surprising as this implementa-
tion has been explicitly optimized for out-of-core execution.
Comparing the single-node performance of BDMPI against
that of Serial-ooc, we see that the performance penalty asso-
ciated with BDMPI’s more general approach for out-of-core
computations does incur some extra overheads. However, these
overheads are not very significant, as the best BDMPI version
is less than two times slower than the optimized serial out-of-
core implementation.

Finally, both the GraphChi and the Pegasus versions per-
formed significantly worse than any of the other versions.
Compared to BDMPI-ooc, on a single node, GraphChi is 4.6
times slower, whereas on four nodes, Pegasus is 100 times
slower. This is because these computational models do not
allow the same flexibility as the MPI API, and as a result
the implementations require substantially more operations and
memory movement.

B. Performance of Spherical K-means

Table IV shows the results achieved by the different pro-
grams on the K -means benchmark. This table, in addition to
the set of experiments in which the number of running slaves
was set to one (i.e., “#R=1") also reports two additional sets of
results. The first is for the case in which the maximum number
of running slaves was set to four (i.e., “#R=4") and the second
is for the case in which we used OpenMP to parallelize the
cluster assignment phase of the computations. These results
are reported under the “#T=4" columns and were obtained
using four threads.

The overall trends observed in these experiments are to a
large extent similar to those observed for the PageRank bench-
mark. In terms of single-node performance, Serial-ooc per-
formed the best, with BDMPI-ooc less than a minute behind.
BDMPI-mlock and BDMPI were 38% and 49% slower than
BDMPI-ooc, respectively. This pattern was mirrored across
the different configurations of running processes, threads, and
nodes. The close performance between the Serial-ooc version
and the various BDMPI versions is due to the fact that unlike
the PageRank benchmark, the K-means benchmark involves

significantly more computations, which reduces the relative
cost associated with data loading. Also similar to the PageRank
benchmark, the four-node experiments show that BDMPI can
achieve very good speedups, which in most cases range from
3.8 to 4.3. Finally, Mahout’s Hadoop implementation of K-
means was several orders of magnitude slower than the other
methods we tested.

A notable difference between the K-means results and
those of PageRank is that the performance achieved by the
MPI version was worse than that achieved by all BDMPI
versions on both a single and four nodes. We believe that
the reason for that is two-fold. First, there are no guarantees
that the centroid vectors will remain resident in memory (the
centroids are accessed in a read-only fashion which make them
equally likely to be swapped out as the resident portions of
the matrix). Second, the parallel version of K-means incurs
a lower communication overhead than that of the PageRank
algorithm (broadcast/reduction vs all-to-all), which reduces the
overhead associated with using the 20 slaves in the single-
node BDMPI versions. Also this lower parallel overhead is the
reason that the speedup achieved by the MPI version of K-
means on four nodes is higher than the corresponding speedup
achieved on the PageRank benchmark.

Comparing the two different approaches for utilizing multi-
ple cores, we see that the approach that increases the number
of running slaves does better than the approach that uses multi-
ple threads. For example, when “#R=4", BDMPI-ooc achieved
speedups of 2.62 and 2.10 on one and four-nodes, respectively.
The corresponding speedups achieved when “#T=4" were only
1.81 and 1.80. Moreover, in the case of the MPI version, the
multi-threaded version actually increased the overall runtime.
The reason for these differences depends on the specific
version of the K-means algorithm. In the case of the simple
BDMPI version and the MPI version, the poor performance
achieved when “#T=4" is due to the fact that the different
threads often incur their own page faults, which cause the
VMM system to concurrently fetch the corresponding pages
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Fig. 1.  Per-iteration time (minutes) of spherical K-means for different

number of clusters on a single node.

from the swap file, leading to some degree of thrashing”. In
the case of the BDMPI-mlock and BDMPI-ooc, since these
versions prefetch the data that they need, they do not suffer
from this type of thrashing. However, in these versions, the
approach that uses “#R=4" allows one slave to overlap its data
loading phase with the computation phase of the other slaves®.
The speedups are below the ideal 4x because a significant
portion of the runtime is spent saving/loading data to/from
disk, which is performed serially to eliminate thrashing and
unnecessary disk head movements. We believe that the use
of SSDs or separate spinning drives per process/thread would
result in speedup closer to the ideal.

Figure 1 shows the effect of varying the number of clusters
in the K -means benchmark. BDMPI-mlock, BDMPI-ooc, and
Serial-ooc all have significant differences in their runtime. All
three of these codes wait for the data to become resident in
memory before beginning computation. Because of this, we
can determine the amount of time spent paging by comparing
the K = 10 and K = 100 runtimes. The amount of time
spent loading/saving data was 9.52 minutes in the Serial-ooc
version, 10.3 minutes for the BDMPI-ooc version, and 20.7
minutes for the BDMPI-mlock version. For BDMPI and MPI,
the difference in runtime as K varies is much smaller. This
is because these codes do not wait for the data to become
resident in memory, and instead page the data in on-demand.
This on-demand paging, although more costly than paging the
data all at once, is overlapped with computations, and the
computations required by the increased values of K (50 and
100) are mostly masked by the cost of paging.

C. Performance of Stochastic Gradient Descent

Table V shows the performance of the SGD benchmark.
Results from two versions of SGD are presented. The first
one randomly traverses the elements of the matrix, and the
second randomly traverses the rows. The row-wise traversal
has better data locality and is faster.

2We tried to remove this behavior by using different ways of splitting the
iterations of the main loop across the threads; however, we were not able to
obtain any significant improvements.

3When more than one slave is allowed to run, the corresponding BDMPI
versions use the functions described in Section V-F to ensure that only one
slave is accessing the disk.

Comparing the runtimes of the different BDMPI versions
we see that the relative ranking of the three versions remains
the same. The BDMPI-ooc performs the best, whereas the
simple BDMPI version performs the worst. However unlike
the other two benchmarks, the performance of the simple
BDMPI version is substantially worst than the other two
versions. This is due to the randomized traversal of the non-
zero elements of the matrix and associated factors, which lead
to an essentially random access over the swap file. This poor
performance is even worse for both the single and four-node
MPI versions, neither of which manage to finish a single
iteration in 50 hours.

The relatively good performance achieved by BDMPI-
mlock and BDMPI-ooc is due to their loading of data into
memory before processing, which greatly reduces the latency
of the first access to each page of memory. In fact, their
single-node performance relative to the Serial-ooc is very
competitive, with BDMPI-mlock and BDMPI-ooc requiring
at most 66% and 7% more time, respectively.

The speedups achieved by the different BDMPI versions on
four nodes are super-linear, which is consistent with similar
trends observed on the other benchmarks. As it was the case
with the earlier results, we believe this is attributed to the
increase in the aggregate amount of physical memory.

The results for the experiments in which the number of
running slaves was set to four (“#R=4") are also consistent
with the earlier observations. Because multiple slave processes
incur page faults concurrently, the performance of the simple
BDMPI version degrades. However, the performance of the
other two versions improves, with BDMPI-ooc gaining the
most over the BDMPI-mlock version. This is because BDMPI-
mlock’s cost of prefetching the data is higher than that of
BDMPI-ooc, and since this step is serialized across the running
slaves, it limits the overall speedup that it can obtain.

Finally, the last row of Table V shows the performance
achieved by GraphChi’s SGD implementation. GraphChi’s im-
plementation keeps both the user and item factors in memory
and also visits the rows of the entire matrix in a random order.
This row-wise traversal has a much better locality than the
row-wise traversal used by BDMPI and Serial-ooc versions,
as the latter perform the row-wise traversal within each block
of the 16x 16 decomposition of the matrix (traversing 1/16 of
each row at a time). Despite these, BDMPI-mlock was 1.3%
faster and BDMPI-ooc was 100% faster on a single node. Also
note that GraphChi’s results were obtained on a node with
twice the amount of memory (8GB), as it could not run without
swapping on the 4GB nodes used in all other experiments.

VIII. CONCLUSION

The current options for developers today looking to process
BigData on commodity clusters or workstations forces them
to choose between undertaking a heroic engineering effort and
sacrificing portability, or attempting to fit a new computational
paradigm to their problem which in many cases can mean
sacrificing performance and using a non-intuitive formulation.



TABLE V
STOCHASTIC GRADIENT DESCENT PERFORMANCE.

Element-wise Random Traversal

Num. of Nodes = 4

Num. of Nodes = 1

Row-wise Random Traversal

Num. of Nodes = 1 Num. of Nodes = 4

Algorithm #R=1 #R=4 #R=1 #R=4 #R=1 #R=4 #R=1 #R=4
BDMPI 756.13 2251.67 196.31 562.13 663.24 2078.83 168.16 545.17
BDMPI-mlock 103.31 68.68 24.40 11.03 58.99 54.18 14.25 10.03
BDMPI-ooc 66.77 30.70 16.55 8.93 29.83 15.44 7.36 4.03
MPI >3000

Serial-ooc 62.16 N/A N/A 28.29 N/A N/A
GraphChi[8GB] N/A N/A 59.78 N/A N/A

These results correspond to the number of minutes required to perform a single iteration of stochastic gradient descent on the 128 copies
of the NetFlix for 20 latent factors. In the MPI runs, none of the iterations finished within the allotted time. “#R” is the maximum
number of slave processes that can run concurrently on a single node. All BDMPI runs were performed using 256 slave processes in
a 16x 16 configuration. For the single node experiments, all these slave processes were mapped on the same node, whereas for the
four-node experiments, they were equally distributed among the nodes. The GraphChi results were obtained on a node with 8GB of

DRAM, as it was unable to run on a 4GB node without swapping.

Our solution to this problem, BDMPI, fills this gap by pro-
viding developers seeking performance from their BigData
applications an extremely flexible framework. By using the
existing MPI API, we ensure not only that the wide range of
problems MPI has been used to express can also be expressed
in BDMPI, but we also leverage the existing knowledge and
experience that has been gained over the past twenty years
since its introduction. Moreover, our experiments showed that
BDMPI offers performance close to that of direct out-of-core
implementations and provides significant performance gains
over existing technologies such as Hadoop and GraphChi.
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