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We consider the incidence of a plane circularly polarized electromagnetic wave on a mirror at 

an angle ϕ  and its reflection from it. We have calculated the transfer of a momentum and a 

spin to the mirror and, accordingly, the pressure and density of a mechanical torque on the 

mirror. The given calculations show that spin occurs to be the same natural property of the 

plane electromagnetic wave, as momentum. Recognizing the existence of photons with 

momentum, energy and spin in a plane electromagnetic wave, it is strange to deny the 

presence of spin in such a wave, as is done in modern electrodynamics. 
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1. Introduction  

It was suggested as early as 1899 by Sadowsky [1] and as 1909 by Poynting [2] that any circularly 

polarized light has angular momentum density. That is the angular momentum is present in any 

point of the light. 

 According to the Lagrange formalism, this angular momentum density is spin density. The 

spin of electromagnetic waves is described by a spin tensor [3 -5]. 
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where L  is a Lagrangian and λA  is the magnetic vector potential of the electromagnetic field. So, 

any infinitesimal 3-volume νdV  contains spin 
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 Against this, an oppinion is spread that an electromagnetic plane wave of arbitrary extent 

has no angular momentum. 

Heitler W: "A plane wave travelling in z-direction and with infinite extension in the 

xy-directions can have no angular momentum about the z-axis, because Π  is in the z-

direction and 0)( =Π× zr " [6]  

Here Π  is the Poynting vector. 

Simmonds J. W., Guttmann M. J.: "The electric and magnetic fields can have a 

nonzero z -component only within the skin region of this wave. Having z -components 

within this region implies the possibility of a nonzero z -component of angular 

momentum within this region. So, the skin region (of a beam) is the only in which the z-

component of angular momentum does not vanish” [7, p. 227]  

Allen L., Padgett M. J.: "For a plane wave there is no (radial intensity) gradient and 

the spin density is zero" [8] 

 On the other hand, according to [9], this oppinion is a mistake. The Poynting's and Sadowsky's 

concept is true: spin angular momentum is present in any point of a circularly polarized 

electromagnetic beam and, accordingly, torque acts on any point of an absorber of such a beam. 

 In this paper, we confirm the Poynting's and Sadowsky's concept by our calculation.  

 Since 1905, when Einstein explained the photoelectric effect, it has become clear that an 

electromagnetic wave consists of photons. Photons have energy, momentum and spin (internal 

angular momentum), and if the wave is circularly polarized, spins of all the photons are directed in 

the same direction that is parallel to that of the momentum. Therefore, use is made of such notions 
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as volume density and flux density of momentum, energy, and spin as well as number of photons in 

an electromagnetic wave. Densities of the energy and momentum are quantitatively described by 

the Maxwell energy–momentum tensor. The density of a spin should be described by the spin 

tensor, and the number density of photons is obtained by dividing the energy density of a wave by 

the energy of a single photon, or by dividing the density of a spin wave by the spin of a single 

photon (with circular polarization).  

 In our previous papers, we have examined the implementation of the law of conservation of 

energy, momentum and spin angular momentum for normal incidence of an electromagnetic wave 

on a moving mirror [10], on the surface of a fixed insulator [11], on the surface of a moving 

symmetric absorber [12].  

 In this paper, we consider the incidence of a plane circularly polarized electromagnetic wave 

on a fixed mirror at an angle of incidence, ϕ . In this situation, the electromagnetic energy is not 

transferred to the mirror, and the momentum and the spin of the photons change their direction upon 

reflection. As a result, the mirror receives a doubled normal component of the wave momentum in 

the form of pressure and a doubled tangential component of the spin in the form of a distributed 

torque. The fact is that in the process of reflection, the wave helicity is reversed, i.e., the mutual 

orientation of the momentum and spin changes into the opposite one (see Fig. 1).  

 
Figure 1. (a) Momentum of incident and reflected photons and the momentum gained by the 

mirror, and (b) spin of incident and reflected photons and the spin gained by the mirror.  

 

 We will calculate the flux densities of the momentum and spin in incident and reflected 

waves, and make sure that the change in the momentum and the spin of the reflected wave 

correspond to the pressure and density of the torque experienced by the mirror. The conclusions of 

this paper have been published elsewhere [13].  

 

2. Electromagnetic waves in question  

To write the expression for a wave incident at an angle ϕ , we will make use of the expression for a 

right-hand circularly polarized electromagnetic wave incident normally on the xy-surface in the 

coordinates ',',' zyx :  
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 (for simplicity we put  100 =µ=ε===ω ck ). The coordinate transformations 

yyzxzzxx =ϕ+ϕ=ϕ−ϕ= ',cossin',sincos'                            (2.2) 

give expressions  

)cossinsin(cos),cossincos(cos 11 tzxBtzxE xx −ϕ+ϕϕ=−ϕ+ϕϕ= ,                       (2.3) 

)cossincos(),cossinsin( 11 tzxBtzxE yy −ϕ+ϕ=−ϕ+ϕ−= ,                               (2.4) 

)cossinsin(sin),cossincos(sin 11 tzxBtzxE zz −ϕ+ϕϕ−=−ϕ+ϕϕ−= .                     (2.5) 

for the right-hand circularly polarized wave incident at an angle ϕ .  



 To write the expression for a wave reflected at an angle #, we will make use of the 

expression for a left-hand circularly polarized electromagnetic wave originating along the normal 

from the xy-surface in the coordinates ',',' zyx : 
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The coordinate transformations 

yyzxzzxx =ϕ+ϕ−=ϕ+ϕ= ',cossin',sincos'                            (2.7) 

give expressions 

)cossinsin(cos),cossincos(cos 22 tzxBtzxE xx +ϕ+ϕ−ϕ−=+ϕ+ϕ−ϕ−= ,            (2.8) 

)cossincos(),cossinsin( 22 tzxBtzxE yy +ϕ+ϕ−=+ϕ+ϕ−−= ,                   (2.9) 

)cossinsin(sin),cossincos(sin 22 tzxBtzxE zz +ϕ+ϕ−ϕ−=+ϕ+ϕ−ϕ−= .          (2.10) 

for the wave reflected at an angle ϕ .  

 One can easily see that the boundary conditions 
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are fulfilled on the surface of the mirror (an ideal conductor).  

 

3. Momentum flux density transferred to the mirror  

To calculate the momentum flux density, i.e. the pressure P ,  on the mirror, it is natural to use the 

component of the Maxwell stress tensor [14, (33.3)] 

2/])()()()()()([ 222222 yxzyxzzz BBBEEET ++−++−==P .              (3.1) 

 The incident and reflected waves do not interfere with each other. This can be verified by 

determining that the energy–momentum tensor of the total field is equal to the sum of the energy–

momentum tensors of the incident and reflected waves. Therefore, we can calculate the pressure by 

substituting expressions for the incident wave (2.3) – (2.5) into formula (3.1) and double the result. 

Thus, we obtain  

=P ϕ2cos2 .                                                     (3.2) 

 On the other hand, this result can be regarded as the action of the Lorentz force on charges 

and currents induced in the mirror. Indeed, we express the force Fd  acting on an infinitesimal area 

of the mirror surface zda  through the divergence of the component of the energy–momentum tensor 

(see Fig. 2)  
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Figure 2. (a) Area da  on the mirror and (b) area da  forming a closed surface which is the 

boundary of the mirror material volume dV .  
 

 Here we assume integration over the boundary of volume  dV , which is obtained by closing 

the area da inside the mirror material with changing the external orientation to the opposite one. 

Since [14, (33.7)] µν
λνµλµ

µ gFjT −=∂ , the divergence of the tensor component is expressed in 

terms of the Lorentz force density  
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The momentum density ztT   in the direction of the mirror, as well as the Poynting vector, are zero. 

Therefore, we obtain  
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4. Spin tensor  

To describe the spin density and spin flux density in electromagnetic waves, use is typically made 

of the canonical spin tensor, λµν

c
Υ , obtained by using the Lagrangian formalism from the canonical 

Lagrangian 4/µν
µν−= FF

c
L  [3 - 5]: 
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For example, Soper [4, p. 115] writes, referring to the component  xyt

c
Υ :  

“To describe a circularly polarized plane wave traveling in the z-direction, we can 

choose a potential  

)](sin[)],(cos[ tzaAtzaA yx −−=−= ωω . 

The corresponding electric field is  k

t

k
AE −∂= . Thus the spin density carried by this 

wave is  

zs ˆ2ωa= , 

where ẑ  is a unit vector pointing in the z-direction.”  

 We have successfully used the canonical spin tensor elsewhere [8–10]. However, for this 

paper, it is very important that the canonical spin tensor incorrectly describes the spin flux in the 

directions that do not coincide with the wave propagation direction. This was pointed out in paper 

[9]. We wrote:  

“The canonical spin tensor contradicts experiments. For example, consider a circularly 

polarized plane wave, 
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A calculation of components of the canonical spin tensor yields 
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This result is not adequate because it means that there are spin fluxes in the directions, 

which are transverse to the direction of the wave propagation.” 

 More adequate, than the canonical spin tensor, is the spin tensor derived by the Lagrangian 

formalism from the Lagrangian of the massless vector field 2/ν
µν

µ AA ∂−∂=L  [5]  
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Hereafter we will use this spin tensor.  

 

5. Spin angular momentum flux density transferred to the mirror  

In accordance with Fig. 1b, the yz
S  component of the spin is transferred to the mirror. The flux 

density of this spin component on the mirror is given by the component 
yzzzzyyzz

AAAA ∂−∂=Υ                                           (5.1) 

of the spin tensor, and, in the absence of interference, it is possible to calculate this component only 

for the incident wave and to double it. From the formula ∫−= dtEA  we obtain the magnetic vector 

potentials in the incident wave: 

)cossinsin(sin),cossincos( 11 tzxAtzxA zy −+−=−+= ϕϕϕϕϕ .               (5.2) 

Thus, given that z

z −∂=∂   due to the metrics signature )( −−−+ , the spin flux density on the mirror 

is equal to the expression  
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 On the other hand, this quantity is the result of the distributed torque on the currents induced 

in the mirror. Indeed, we can express the torque yz
dτ  acting on the area zda  of the mirror surface 

through the divergence of the spin tensor component (see Fig. 2)  
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Here we assume integration over the boundary of volume dV , which is obtained by closing the area 

zda  inside the mirror material with changing the external orientation to the opposite one. Since  
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and since the electromagnetic spin does not accumulate in the mirror, 0=Υ∂ yzt

t ,  the divergence of 

the spin tensor component is expressed in terms of the torque density  ][jA , which is an analogue of 

the Lorentz force density 

x

zyyzt

i Aj ][2 ][
jA==Υ∂− ,   dVd x

yz ][jA=τ .                             (5.6) 

 

6. Conclusions  

The given calculations show that spin occurs to be the same natural property of a plane 

electromagnetic wave, as energy and momentum. Recognizing the existence of photons with 

momentum, energy and spin in a plane electromagnetic wave, it is strange to deny the presence of 

spin in such a wave, as is done in modern electrodynamics. 
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