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Abstract—In this paper we consider a mobile cooperative to achieve its task while maintaining the connectivity to an
network that is tasked with building a map of the received sigal external node.
strength to a fixed station. By using the recent results in tharea Our proposed framework can also be utilized for applica-

of compressed sensing, we show how the nodes can exploit th(?. hasb tation | Hi | oo lul
sparse representation of the channel’s spatial variationso build a lons such as base station location planning in cellulaesys.

map of the signal strength with minimal sensing. We furthernore It enables the service providers to get a good estimate of
propose a successive interference cancellation method feignal the spatial variations of the channel based on very few tirec

reconstruction based on a considerably incomplete set of ree  measurements. Another application that can benefit from the
surements. The proposed method is an extension of the exis§ ., n5ed work is location-based services such as wireless

signal reconstruction strategies but with a considerably btter | fi . t - 51 Such . bles th
performance. Finally, we present simulation results that kow ocation signature engines [2]. Such an engine enables the

the performance of the proposed framework. base station to estimate the location of the user by matching
Index Terms—channel spatial variations, compressed sensing, @ humber of parameters (such as received Signal to Noise
mobile networks Ratio) to a priori measurements. Our compressed channel
mapping framework enables such service providers to have

I. INTRODUCTION the necessary information with much less measurements.

The paper is organized as follows. In Section Il we provide

Mobile intelligent networks can play a key role in emera brief introduction to the theory of compressed sensing. In
gency response, surveillance and security, and battlefigld Section 11l we introduce our proposed recovery scheme for
erations. The vision of a multi-agent robotic network coreconstruction based on sparse observations. In SectiovelV
operatively learning and adapting in harsh unknown enwuiscuss characterization of channel spatial variatiords the
ronments to achieve a common goal is closer than evapplicability of the compressed sensing framework. We then
One emerging application of such networks is robotic rauteshow how the channel can be mapped with considerably small
[1] in which mobile nodes are deployed not only to senseumber of measurements. We conclude in Section V. A list of
a specific parameter of interest but to route the gatherggly variables used in the paper is provided in Table 1.
information through a multi-hop robust path to an outside
source. Therefore, constructing a map of the signal strengt !l- A REVIEW OF COMPRESSED SAMPLING THEORY
can help the nodes position themselves accordingly. In suchThe new theory of sampling is based on the fact that real-
networks, the objects in the environment will attenuatiect,  world signals typically have a sparse representation intaice
and refract the transmitted waves, degrading the quality wnsformed domain. Exploiting sparsity, in fact, has aric
wireless communication. As the nodes move around, thhjstory in different fields. For instance, it can result idueed
can learn the signal strength at positions along their motigomputational complexity (such as in matrix calculations)
trajectories. However, there is simply not enough time ttsee or better compression techniques (such as in JPEG2000).
the channel at every location directly. Therefore, the clein However, in such approaches, the signal of interest is fitlst f
should be reconstructed based on a considerably incompledgnpled, after which a transformation is applied and ondy th
data set. One way to do this would be to interpolate the cHangeefficients above a certain threshold are saved. This, Vewe
at the locations that are not observed directly. Howevés, not efficient as it puts a heavy burden on sampling the
this approach does not necessarily result in an acceptabfeire signal while only a small percentage of the transémtm
reconstruction since it fails to capture the details of igaal. coefficients were needed to represent it. The new theory of

The recent results in compressed sensing (also referrecctanpressed sampling, on the other hand, allows us to sense
as compressed sampling) [3], [16] provide a new avenue filve signal in a compressed manner to begin with.
high quality reconstruction of a signal from a considerably Consider a scenario where we are interested in recovering
incomplete observation set. By utilizing this new theorg wa vectorz € RY in the spatial domain. For 2D signals, vector
propose an efficient way in which a spatial map of the signalcan represent the columns of the matrix of interest stacked
strength can be built based on minimal observations. Suclugto form a vector. Lety € RX where K < N represents
map can be considerably useful as it allows a mobile netwathe incomplete linear measurement of vectoobtained by



N  size of the original signal in the spatial domain Theorem 2:(see [3], [18], [15], [16] for details and the

S size of the support of the signal in the transform domain proof) The¢; relaxation can exactly recovef from measure-

K number of measurements taken to estimate the signal menty if matrix ¥ satisfies the Restricted Isometry Condition

x signal to recover, atV x 1 vector in the spatial domair| ~ for (25,+/2 — 1), as described below.

Yy K x 1 “measured” vector of: in the spatial domain Restricted Isometry Condition (RIC) [12Matrix ¥ satis-

X N x 1 vector representing a linear transformof fies the RIC with parametersZ(e) for e € (0,1) if

P K x N observation matrix, s.ty = &z

T N x N inverse transform matrix, s.&t = I'’X (1= €)llell2 < [[¥ellz < (1 +€)llel]2 ©)

' Hermitian of T for all Z-sparse vectoe.

¥ K x N matrix (defined asl = & x I'), s.t.y = VX The RIC is mathematically related to the uncertainty prin-

TABLE | ciple of harmonic analysis [13]. However, it has a simple

KEY NOTATIONS USED IN THIS PAPER intuitive interpretation, i.e. it aims at making every sét0

columns of the matrix¥ as orthogonal as possible. Other
conditions and extensions of Theorem 2 have also been
developed [17]-[25]. While it is not possible to define aléth
the sensors. We will have classes of matriceg that satisfy RIC, it is shown that random
partial Fourier matrices [26] as well as random Gaussiail [27
y= oz, (@) 28] or Bernoulli matrices [29] satisfy RIC with the probityi
where we refer tab as the observation matrix. Clearly, solvingl — O(N ~) if
for z based on the observation geis an ill-posed problem as
the system is severely under-determinéd< N). However,
suppose that has a sparse representation in another doma\im,]erecM is a constant) is an accuracy parameter and O(.)
i.e. it can be represented as a linear combination of a SnT%‘"Big-O notation [3].
set of vectors:

K > CuS x log? VN, (7)

While the recovery ofsparsesignals (signals that could
z=TX, @ be represented with a small number of non-zero coefficients)
where I' is an invertible matrix andX is S-sparse with is important, in practice signals may rarely be sparse. Most
|supX)| = S < N. This means that the number of nonsignals, however, will beompressibleA compressible signal
zero elements i is considerably smaller thal. Then we is a signal that has a representation where most of its energy
will have is in a very few coefficients, making it possible to assume tha
y=UX, (3) therest are zero. In practice, the observation vegtaill also
be corrupted by noise. The relaxation and the corresponding
required RIC condition can be easily extended to the cases of
noisy observation with compressible signals [30].

whereV = & x I". If § < K and we know the positions of
the non-zero coefficients of , we can solve this problem with

trad(|jt|onalt tkechmquetsh_hke Iﬁastt-?r?uartes.tln g)g?era}\(d??r, The possibility presented by the new theory of sampling,
we do not know anything about the STUCIUrE/OIEXCEpL for j o recovering signals from a considerably incompleta dat

the fact that it is sparse (which we can validate by analyzu}%‘s sparked new research in different fields. A good example

similar data). The new theory of compressed sensing aIIO\glsa new resulting technology is the recent development of a

us to solve this problem. . compressive imaging camera that efficiently captures desing

an-l(;hli?(;irrns](esgﬁc[?:]o;(ziritg)er};[g"tshzrliié?c% dzr?ﬁg .sguﬁozio pixel image by producing & with Bernoulli distribution using

he followi pecitic con ’bl ) pseudorandom binary patterns [31]. Other applicationisidec

the following optimization problem: medical imaging [32] and DNA decoding [33] among others.
min||X||o, such thaty = ¥ X (4) In the field of communication, recent work has addressed

the applicability of compressed sensing for reconstrugctire

v)\éhere||X||0 = [supp.X)] represents the zero norm of VeCtOf:hannel delay spread [34]-[36]. However, the applicabilit

: of the compressed sensing for reconstructthgnnel spatial

Theorem 1 states that we only ne_@d< 5 measurements variations as it becomes relevant to mobile nodes, has not
to relcoverX.and thereforex fully. T_h|s theorem, howeygr, been studied before. In this paper, we not only address
re?uwest;ol\lnr']:ganon-cogvexdcomblrtlstonat[p.robler:n,\hh\gz compressed mapping of channel spatial variations, but also
not practical. For over a decade, mathematicians have oriﬁ?’opose a new way of recovering compressible/sparse signal
towards developing an almost perfect approximation to‘the

optimization problem of Theorem 1 [4]-[11]. Recently, sucf‘%vlth a cons@ergbly better performance.
. The ¢, optimization problem of Eq. 5 can be posed as a
efforts resulted in several breakthroughs.

More specifically, consider the following, relaxation of Ilnear_ programming problem [3.7]' The Comp“’?S‘?d Sensing
the aforementioned, optimization problem: algonthms that reconstruct the S|gpal based_fpnptlmlzatmn
' are typically referred to as “matching pursuit” [16]. Thento
min||X||1, subject toy = TX. (5) putational complexity of such approaches, however, redult



in further attempts to reconstruct the signal through d#ffé largest energy that have “comparable” coefficients, suel th

approaches, as we will discuss in the next section. the energy of the smallest component is at least half of that o

the strongest component, is chosen at every time step. Other

variations of this work (some under different names) have

also appeared [41]-[45]. Whilé, relaxation of the previous
The Restricted Isometry Condition implies that the columrsection can solve the compressed sampling problem under the

of matrix ¥ should have a certain near-orthogonality propertgforementioned conditions, the computational complegity

Let U = [IT,... Uy], where U, represents the" column an iterative greedy solution such as OMP or ROMP can be

of matrix U. We will havey = Z;VZI U;X;, whereX; is the considerably less [40].

4™ component of vectoX . Consider recovering;:

IIl. RECONSTRUCTION USINGSUCCESSIVE
INTERFERENCECANCELLATION

A. Interpolated ROMP (I-ROMP)
N

Uy - X 4 Z ‘I’fl‘I/jX_ ®) In this paper we propose an extension of ROMP [41], which

vHy, A e uHy we refer to asInterpolated ROMP(I-ROMP). In order to
desied term =197 T motivate the need for I-ROMP, we first consider the existing
interference ROMP/OMP approaches. The following summarizes the main

If the columns of ¥ were orthogonal, then Eqg. 8 wouldsteps of ROMP/OMP:

have resulted in the recovery &f;. For an under-determined|nitialize: 3" = y

system, however, this will not be the case. Then there are twg while stop criteria not metio

factors affecting recovery quality based on Eq. 8. Firstyho »: Xproj = WHynew

orthogonal is thei™ column to the rest of the columns and 3. choose a subset of indices fralpro based on a

second how strong are the other components{ofin other utilized criteria for deciding the significant coefficients
words, it is desirable to first recover the strongest compbne 4.  update index selse

of X, subtract its effect fromy, recover the second strongests. X — argmin ||y — \I}X||2

component and continue the process. Adopting the terminol- X supp(X)=set

ogy of CDMA (Code Division Multiple Access), we referto 6: y"™W=y—¥X
such approaches &uccessive Interference Cancellatidn  7: end while

fact, if X; # 0, one can think off; coding X;. If the i code At the first step,Xpr; represents the projection of the mea-
is used as in Eq. 8, theX; for j # i can not be decoded syrementy to the columns of matrix¥. This projection
properly and onlyX; can be recovered. serves as the base for deciding the indices that correspond
Such successive cancellation methods have been usedpiithe significant coefficients of. Let Tproj TEPrEsent the
the context of CDMA systems for recovering the signals @fpatial variations of the signal that corresponds Xey;:
different users at the base station [38], [39]. While thetern Tproj = T Xproj- In applications whereX represents the Fourier
of the two problems may seem different, they share a vefansformation ofz, we havel'"! = I'!. Furthermore, the
core fundamental form. Recently, Tropp et al. indepenglentheasurement matrie will have exactly one 1 in every row
proposed using a version of successive interference danceind at most one 1 at every column, with the rest of the
tion in the context of compressive sampling and derived tRgements zero. Therefore, we will have
conditions under which it can result in almost perfect recgv
[40]. They refer to it as Orthogonal Matching Pursuit (OMP). proj = 1y, (9)
Similar to Successive Interference Cancellation, thechdsia |, 1 oo Zproj Will be the same ag at the measured points

of OMP is to iteratively multiply the measurement vectgr, but will be zero elsewhere. Althougir; does not exactly
by UH, recover the strongest component, subtract its eﬁe§érve as an estimate of it does seJrve as a base for
and continue again. Once the locations of theaonzero com- deciding the index set T'herefore it may not be a good

ponents ofX is found, we can solve directly faK' by USING  g4a1ting” point for several applications since it assumes th
a least squares soIv_eX = ag min ||y — \IJSX,HQ’ where the signal is zero at unmeasured pointsxIfepresents the
Vs refers to the matrix that is formed by 9hoosmg only the spatial variations of a channel, for instance, having zero i
columns of¥ that corresponds to the locations of the non'zeﬁgtween the acquired measurements is not a realisticlinitia
components andt’ denotes the reconstructed. However, eftimate. An improvement in the initial estimate could léad

OMP has various significant dra_lwbacks_, most f?"tab'y lack 8 gorithms that converge with a smaller set of measurements
performance guarantee for partial Fourier matrices [48gR This is the main motivation behind I-ROMP, i.e. considering

ularized Orthogonal Matching Pursuit (ROMP), an extensiqp, progression of: as we reconstruck iteratively. In I-

of OMP, was g;en intr_oguced by Neecri]ell et ,al'd‘?‘; a Way,EQOMP, we take advantage of processing the signal in both the
overcome problems with OMP [41]. The main difference iR ina domain (domain of) as well as the sparse domain

ROMP as c_ompared t_o OMP is that n each |terat_|v_e Ste&]J{omain of X). At every iteration, we start by upsampling the
a set of indices (locations of vectot with non-negligible residual vector,™ through interpolation:
components) are recovered at the same time instead of orﬁy '

one at a time. More specifically, the set of indickswith the Ymern = F"Y), f:RY - RV, (10)



Algorithm 1 Interpolated ROMP (I-ROMP) algorithm

Input: measured vectoy € R¥, target sparsityS, and size

of full signal N

Output: set of indiceslset C {1, ..., N} of non-zero coeffi-

cients inX with |Ise < S, and X, the estimated¥ .
Initialize: Iset<= 0 andy™v < y
1: while norm(y"™%) > p and |Isef < S do

2: Il interpolate residualy™" to create sizeV vector

Yinterp < [ (y"") = interp(y"", N)

3: [/ multiply ¥¥ by upsampled residuafyidr, to approx.

larger coefficients ofX
. H , new
Xproj <= WHyRgll, max energy< 0

IV. MAPPING THE SPATIAL VARIATIONS OF THE CHANNEL

In this section, we apply the theory of compressed sampling
and our proposed reconstruction method to the application
of building a map of the spatial variations of a channel.
A fundamental parameter that characterizes the quality of a
reception is the received signal strength. In general,ether
are three time-scales associated with the spatial vamnmtd
the channel quality and therefore received SNR [46], [47].
The slowest dynamic is associated with the signal atteomiati
due to the distance-dependent power fall-off. Depending on
the environment, there could be a faster variation, referre
to asshadowing that is due to the blocking objects. Finally,

4. J « set of S indices that correspond to the largesinultiple replicas of the transmitted signal can arrive a th
magnitude coefficients ak o, receiver due to the reflection from the surrounding objects,

5. sort(J) according to the non-increasing order of theifesulting in even a faster variation in the received sigualer.
coefficients inXpr An example of a received SNR is shown in Fig. 1, where the

6. fori=1toSdo three dynamics involved are identified. The received SNR is

7 for all j > ¢, find the largestj s.t. Xpri(J(4)) > 2.9,
Xproj(J(i))/2 8 &
8: /I compute the energy of the selected element§ef £ §
corresponding to J(i), J(i+1), ..., J.(])' g = path loss
energy< ComputeEnergy(Xprj, J, ¢, 7) o=
9: Il replace old set if new energy is greater E 5 — multipath fading
10: if energy> max energythen ; i
11: max _energy< energy g2 / Shadow fading
12: Jo<=A{J@%),J(i+1),...J(4)} -
13 end if D e >
14: end for distance

15:  Iset<= IsetU Jo /I add new indices to overall set

16: /I find vector X of I coeffs that best matches mea-
surement then best represented by a stochastic non-stationary ggwoce

X <  argmin whose average is dictated by the dynamics of the dashed
X supp(X)=Iset line, which in itself is a non-stationary dynamical system

17 yP"™Wey-UX with an average dictated by the dotted line. In this paper, we
18: end while mainly focus on the reconstruction of the spatial variation
19: return  Isgrand X of narrowband channels. Then vectorof Eq. 1 represents
the spatial variations of the channel apdlenotes the sparse
random measurements made. This means that métidas
only one 1 in each row and at most 1 one at every column, with
where functionf represents an interpolation function such athe rest of the elements being zero. Figure 2 (solid linejvsho
a linear or spline interpolator. By usingdr,, we then proceed an example of a real-world received signal strength medsure
to recover the set of indices oX that has the maximum along a street in San Francisco [48]. The signal variatioas a
energy under the condition that the energy of every compiondine result of fading and shadowing experienced by the signal
in the set is at least half of the maximum energy (same Bsthis paper we are interested in reconstructing such Egna
ROMP). We then subtract the effect of these componertased on a small set of observations.
from y and update,"®". The process will continue until we Fourier analysis of the spatial variations of the channel
recover enough indices or nofgi®") < p for a predefined shows that it is considerably compressible. For instanie, F
thresholdp. This is summarized in Algorithm 1. Our propose® shows the measurement of a channel along a street in San
strategy works considerably better than both OMP and ROM#Pancisco (solid line) [48] along with its sparsified versio
in reconstructing the wireless signal strength map based @ashed line). The real channel measurement of Fig. 2 has
a severely incomplete data set. It can also be used in sewre than 99.99% of its energy in 4.6% of its Fourier
eral other applications that utilize compressed sensinglleN coefficients. Then the dashed line shows the sparsifiedorersi
mathematical characterization of the class of signals fuckw of the channel, where only the strongest 4.6% of the Fourier
I-ROMP outperforms the existing strategies is out of thgsco coefficients are kept. Since the two curves are almost icnti
of this paper, we will show the superior performance of we can see that the spatial variations of the channel are
ROMP through simulations in the next section. compressible, i.e. a small percentage of Fourier coeffisien

Fig. 1. Different scales of channel spatial variations

ly — UX||2

/I recompute residuaj""




is fast recovery (it recovers far more coefficients than ORIP i
ol : | every iteration) [41].

Fig. 4 shows another real-world channel measurement in
San Francisco over a longer distance. It also shows itsispars
ool ‘ 1 fied version. Due to the longer distance, this channel etchibi
more non-stationary behavior, as can be seen. The length of
the channel is 4096 in this case. Our Fourier analysis showed
b | that more than 99.995% of the energy of the measured signal
is in less than 2.5% of its Fourier coefficients. Then the
dashed line shows the sparsified version of the channel.evher

received signal strength (dBm)

P p— | only the strongest 2.5% of the Fourier coefficients are kept.
IR Compared to the channel of Fig. 2, it can be noted that as the
TS 0 s w0 s w B w0 & w0 length of the channel increases, the number of non-netgigib

distance along the street (ft)

coefficients does not scale accordingly (it grows at a slower
) , _ rate). Fig. 5 shows the performance of compressed sensing

Fig. 2. Channel measurement along a street in San Francisadésy of Mark . tructing th ified . f this ch lil&Vh

Smith [48]) and its sparsified version. The two curves areoatnidentical. In re(_:ons ruc 'ng. e ;parsn_ led version 0_ IS channell

the size of the signal is 4 times that of Fig. 2, the number of

i i , required observations (K) for perfect recovery of I-ROMP is
suffices for capturing the signal. Wavelet transforms coulgSS than 2 times that of Fig. 3. Similar to Fig. 3, it can be

also be used for_ the Sparse recovery of the spatial variaati%en that the compressed sensing approach can recons&ruct t
of the channel, in particular over larger distances whee o) yith a small number of measurements. Furthermore, ou

signal becomes more non-stationary and exhibits Iocalizs posed I-ROMP provides a considerably better performanc
behaviors. Our analysis, however, shows that sampling 'in

the spatial domain and reconstructing based on the wavelet
transformation results in poor quality due to the fact tha
the RIC is not met for the resulting matrix. Therefore,

in this part we focus on reconstruction based on Fourie
transformation.

) —proposed I-ROMP
0 - --OMP M
ROMP

00 F -

N

A. Reconstruction of a Sparsified Channel

-10{

10

Eq. 7 shows that for a sparse signal, if the number ¢
measurements is above a certain level, the reconstructi
can be perfect. In order to see this and get more insigl
into compressed sensing, we first consider reconstrudtiag t
sparse version of the channel. Fig. 3 shows the result «
reconstructing the sparsified version of the signal of Fig.
based on a varying number of random observatidis, It
should be noted that the signal of Fig. 2 naturally contain
the measurement noise. The size of the signal of Fig. 2 is
N = 1024. Fig. 3 shows the average of the normalized MSEEig. 3. Reconstruction of the sparsified signal of Fig. 2 Hasean incomplete
averaged over 1000 iterations with random sampling paterﬂbservat'on set using compressed sensing (length & IV = 1024).
as a function of the number of measurementis).( For
comparison, we have plotted the performance using I-ROI\/E’,
OMP, and ROMP. For ROMP, we used the implementation
available through author's web page [49], which behaved The previous section showed the strength of compressed
similar to our own implementation. It can be seen that for adensing in reconstructing the spatial variations of thenok
the compressed sensing approaches, after a certain nufbdrased on a considerably small measurement set. However, we
measurements is collected, the construction becomescperfhowed the results for the sparsified version of the channel
(or bounded by computational errors) as predicted by Eq. where it was possible to represent the signal with only a
However, different algorithms have different minimum nwmb small number of Fourier coefficients. In this section, wevsho
of samples required. It can, for instance, be seen that I-RONhe performance of compressed sensing in reconstructing th
performs considerably better than the other approachéascin true channel measurements of Fig. 2 and 4. Since the true
by only sensing 23% of the signal, I-ROMP can reconstructéhannel signal is not sparse, the reconstruction errongusi
with perfect accuracy, as can be seen from the figure. Wheconsiderably small observation set, can never be zero. lt,
the reconstruction quality of OMP is not considerably wordgowever, can be considerably small. Since completely nando
than I-ROMP, I-ROMP also has the advantage of ROMP whicampling is unfeasible for real scenarios, we employ a more
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— Chanmel measurement considerably better performance than OMP and ROMP. While
-8af o y - - -sparsified version | we considered 1D channels in this paper, extension of the
framework to 2D channels is straightforward.
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Fig. 4. Another channel measurement along a street in Saitica (courtesy
of Mark Smith [48]) and its sparsified version. The two cunas almost
identical.
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Fig. 6. Reconstruction of the measured channel of Fig. 2cbasean incom-
plete observation set using compressed sensing (lengh isf N = 1024).
The ROMP result is excluded as its error is significantly kigthan the rest.
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Fig. 5. Reconstruction of the sparsified signal of Fig. 4 Hasean incomplete
observation set using compressed sensing (lengthl @ N = 4096).
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realistic form of random sampling for these results. Specifi number of random measurements (K)

cally, we start off with uniformly-spaced samples which are

then randomly jittered by a small amount to simulate blu%ig. 7. Reconstruction of the measured channel of Fig. 4cbasean incom-

noise properties in the frequency domain. This can be thiouglete observation set using compressed sensing (lengt isf N = 4096).

of as a 1-D version of Poisson-disk sampling [50]. This kindhe ROMP result is excluded as its error is significantly bigthan the rest.

of random sampling is more suitable for representing reelis

scenarios. For instance, it is a better candidate for reptig V. CONCLUSIONS

the sampling pattern of a robotic network where the nodesin this paper we considered building a map of the spatial

try to maintain a minimum distance from each other wheyariations of the channel based on a considerably incomplet

sampling. measurement set. By using the recent results in compressed
Fig. 6 and 7 show the reconstruction performance for tlsampling, we showed how the sparse representation of channe

measured channel of Fig. 2 and 4 respectively. In these casgmtial variations can be utilized to build a map of the signa

the performance of ROMP is considerably worse than bostrength with minimal sensing. We furthermore proposed I-

OMP and I-ROMP and is therefore excluded from the figureROMP, a successive interference cancellation method fpr si

It can be seen that I-ROMP outperforms OMP considerahial reconstruction based on minimal sensing. The proposed

for both channels. Overall, our results show the potentéls algorithm takes advantage of processing the signal in both

compressed sensing for mapping the spatial variationseof tihe spatial and sparse domains and is an extension of the

channel based on a considerably incomplete observation s&gularized Orthogonal Matching Pursuit method. Finaily,

They furthermore indicate that through processing theadigrsimulation results showed the superior performance of the

in both the spatial and sparse domains, I-ROMP can havemposed framework.
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