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Abstract—In this paper we consider a mobile cooperative
network that is tasked with building a map of the received signal
strength to a fixed station. By using the recent results in thearea
of compressed sensing, we show how the nodes can exploit the
sparse representation of the channel’s spatial variationsto build a
map of the signal strength with minimal sensing. We furthermore
propose a successive interference cancellation method forsignal
reconstruction based on a considerably incomplete set of mea-
surements. The proposed method is an extension of the existing
signal reconstruction strategies but with a considerably better
performance. Finally, we present simulation results that show
the performance of the proposed framework.

Index Terms—channel spatial variations, compressed sensing,
mobile networks

I. I NTRODUCTION

Mobile intelligent networks can play a key role in emer-
gency response, surveillance and security, and battlefieldop-
erations. The vision of a multi-agent robotic network co-
operatively learning and adapting in harsh unknown envi-
ronments to achieve a common goal is closer than ever.
One emerging application of such networks is robotic routers
[1] in which mobile nodes are deployed not only to sense
a specific parameter of interest but to route the gathered
information through a multi-hop robust path to an outside
source. Therefore, constructing a map of the signal strength
can help the nodes position themselves accordingly. In such
networks, the objects in the environment will attenuate, reflect,
and refract the transmitted waves, degrading the quality of
wireless communication. As the nodes move around, they
can learn the signal strength at positions along their motion
trajectories. However, there is simply not enough time to sense
the channel at every location directly. Therefore, the channel
should be reconstructed based on a considerably incomplete
data set. One way to do this would be to interpolate the channel
at the locations that are not observed directly. However,
this approach does not necessarily result in an acceptable
reconstruction since it fails to capture the details of the signal.

The recent results in compressed sensing (also referred to
as compressed sampling) [3], [16] provide a new avenue for
high quality reconstruction of a signal from a considerably
incomplete observation set. By utilizing this new theory, we
propose an efficient way in which a spatial map of the signal
strength can be built based on minimal observations. Such a
map can be considerably useful as it allows a mobile network

to achieve its task while maintaining the connectivity to an
external node.

Our proposed framework can also be utilized for applica-
tions such as base station location planning in cellular systems.
It enables the service providers to get a good estimate of
the spatial variations of the channel based on very few direct
measurements. Another application that can benefit from the
proposed work is location-based services such as wireless
location signature engines [2]. Such an engine enables the
base station to estimate the location of the user by matching
a number of parameters (such as received Signal to Noise
Ratio) to a priori measurements. Our compressed channel
mapping framework enables such service providers to have
the necessary information with much less measurements.

The paper is organized as follows. In Section II we provide
a brief introduction to the theory of compressed sensing. In
Section III we introduce our proposed recovery scheme for
reconstruction based on sparse observations. In Section IVwe
discuss characterization of channel spatial variations and the
applicability of the compressed sensing framework. We then
show how the channel can be mapped with considerably small
number of measurements. We conclude in Section V. A list of
key variables used in the paper is provided in Table 1.

II. A REVIEW OF COMPRESSED SAMPLING THEORY

The new theory of sampling is based on the fact that real-
world signals typically have a sparse representation in a certain
transformed domain. Exploiting sparsity, in fact, has a rich
history in different fields. For instance, it can result in reduced
computational complexity (such as in matrix calculations)
or better compression techniques (such as in JPEG2000).
However, in such approaches, the signal of interest is first fully
sampled, after which a transformation is applied and only the
coefficients above a certain threshold are saved. This, however,
is not efficient as it puts a heavy burden on sampling the
entire signal while only a small percentage of the transformed
coefficients were needed to represent it. The new theory of
compressed sampling, on the other hand, allows us to sense
the signal in a compressed manner to begin with.

Consider a scenario where we are interested in recovering
a vectorx ∈ R

N in the spatial domain. For 2D signals, vector
x can represent the columns of the matrix of interest stacked
up to form a vector. Lety ∈ R

K whereK � N represents
the incomplete linear measurement of vectorx obtained by



N size of the original signal in the spatial domain

S size of the support of the signal in the transform domain

K number of measurements taken to estimate the signal

x signal to recover, anN × 1 vector in the spatial domain

y K × 1 “measured” vector ofx in the spatial domain

X N × 1 vector representing a linear transform ofx

Φ K × N observation matrix, s.t.y = Φx

Γ N × N inverse transform matrix, s.t.x = ΓX

Γ
H Hermitian ofΓ

Ψ K × N matrix (defined asΨ = Φ × Γ), s.t.y = ΨX

TABLE I
KEY NOTATIONS USED IN THIS PAPER

the sensors. We will have

y = Φx, (1)

where we refer toΦ as the observation matrix. Clearly, solving
for x based on the observation sety is an ill-posed problem as
the system is severely under-determined (K � N ). However,
suppose thatx has a sparse representation in another domain,
i.e. it can be represented as a linear combination of a small
set of vectors:

x = ΓX, (2)

where Γ is an invertible matrix andX is S-sparse with
|supp(X)| = S � N . This means that the number of non-
zero elements inX is considerably smaller thanN . Then we
will have

y = ΨX, (3)

whereΨ = Φ × Γ. If S ≤ K and we know the positions of
the non-zero coefficients ofX , we can solve this problem with
traditional techniques like least-squares. In general, however,
we do not know anything about the structure ofX except for
the fact that it is sparse (which we can validate by analyzing
similar data). The new theory of compressed sensing allows
us to solve this problem.

Theorem 1(see [3] for details and the proof): IfK ≥ 2S
and under specific conditions, the desiredX is the solution to
the following optimization problem:

min||X ||0, such thaty = ΨX, (4)

where||X ||0 = |supp(X)| represents the zero norm of vector
X .

Theorem 1 states that we only need2 × S measurements
to recoverX and thereforex fully. This theorem, however,
requires solving a non-convex combinatorial problem, which is
not practical. For over a decade, mathematicians have worked
towards developing an almost perfect approximation to the`0

optimization problem of Theorem 1 [4]-[11]. Recently, such
efforts resulted in several breakthroughs.

More specifically, consider the following̀1 relaxation of
the aforementioned̀0 optimization problem:

min||X ||1, subject toy = ΨX. (5)

Theorem 2:(see [3], [18], [15], [16] for details and the
proof) The`1 relaxation can exactly recoverX from measure-
menty if matrix Ψ satisfies the Restricted Isometry Condition
for (2S,

√
2 − 1), as described below.

Restricted Isometry Condition (RIC) [12]:Matrix Ψ satis-
fies the RIC with parameters (Z, ε) for ε ∈ (0, 1) if

(1 − ε)||c||2 ≤ ||Ψc||2 ≤ (1 + ε)||c||2 (6)

for all Z-sparse vectorc.
The RIC is mathematically related to the uncertainty prin-

ciple of harmonic analysis [13]. However, it has a simple
intuitive interpretation, i.e. it aims at making every set of Z
columns of the matrixΨ as orthogonal as possible. Other
conditions and extensions of Theorem 2 have also been
developed [17]-[25]. While it is not possible to define all the
classes of matricesΨ that satisfy RIC, it is shown that random
partial Fourier matrices [26] as well as random Gaussian [27]-
[28] or Bernoulli matrices [29] satisfy RIC with the probability
1 − O(N−M ) if

K ≥ CMS × logO(1)N, (7)

whereCM is a constant,M is an accuracy parameter and O(.)
is Big-O notation [3].

While the recovery ofsparsesignals (signals that could
be represented with a small number of non-zero coefficients)
is important, in practice signals may rarely be sparse. Most
signals, however, will becompressible. A compressible signal
is a signal that has a representation where most of its energy
is in a very few coefficients, making it possible to assume that
the rest are zero. In practice, the observation vectory will also
be corrupted by noise. Thè1 relaxation and the corresponding
required RIC condition can be easily extended to the cases of
noisy observation with compressible signals [30].

The possibility presented by the new theory of sampling,
i.e. recovering signals from a considerably incomplete data set
has sparked new research in different fields. A good example
of a new resulting technology is the recent development of a
compressive imaging camera that efficiently captures a single-
pixel image by producing aΨ with Bernoulli distribution using
pseudorandom binary patterns [31]. Other applications include
medical imaging [32] and DNA decoding [33] among others.
In the field of communication, recent work has addressed
the applicability of compressed sensing for reconstructing the
channel delay spread [34]-[36]. However, the applicability
of the compressed sensing for reconstructingchannel spatial
variations, as it becomes relevant to mobile nodes, has not
been studied before. In this paper, we not only address
compressed mapping of channel spatial variations, but also
propose a new way of recovering compressible/sparse signals
with a considerably better performance.

The `1 optimization problem of Eq. 5 can be posed as a
linear programming problem [37]. The compressed sensing
algorithms that reconstruct the signal based on`1 optimization
are typically referred to as “matching pursuit” [16]. The com-
putational complexity of such approaches, however, resulted



in further attempts to reconstruct the signal through different
approaches, as we will discuss in the next section.

III. R ECONSTRUCTION USINGSUCCESSIVE

INTERFERENCECANCELLATION

The Restricted Isometry Condition implies that the columns
of matrix Ψ should have a certain near-orthogonality property.
Let Ψ = [Ψ1Ψ2 . . . ΨN ], whereΨi represents theith column
of matrix Ψ. We will havey =

∑N

j=1 ΨjXj , whereXj is the
jth component of vectorX . Consider recoveringXi:

ΨH
i y

ΨH
i Ψi

= Xi
︸︷︷︸

desired term

+

N∑

j=1,j 6=i

ΨH
i Ψj

ΨH
i Ψi

Xj

︸ ︷︷ ︸

interference

. (8)

If the columns of Ψ were orthogonal, then Eq. 8 would
have resulted in the recovery ofXi. For an under-determined
system, however, this will not be the case. Then there are two
factors affecting recovery quality based on Eq. 8. First, how
orthogonal is theith column to the rest of the columns and
second how strong are the other components ofX . In other
words, it is desirable to first recover the strongest component
of X , subtract its effect fromy, recover the second strongest
component and continue the process. Adopting the terminol-
ogy of CDMA (Code Division Multiple Access), we refer to
such approaches asSuccessive Interference Cancellation. In
fact, if Xi 6= 0, one can think ofΨi codingXi. If the ith code
is used as in Eq. 8, thenXj for j 6= i can not be decoded
properly and onlyXi can be recovered.

Such successive cancellation methods have been used in
the context of CDMA systems for recovering the signals of
different users at the base station [38], [39]. While the context
of the two problems may seem different, they share a very
core fundamental form. Recently, Tropp et al. independently
proposed using a version of successive interference cancella-
tion in the context of compressive sampling and derived the
conditions under which it can result in almost perfect recovery
[40]. They refer to it as Orthogonal Matching Pursuit (OMP).
Similar to Successive Interference Cancellation, the basic idea
of OMP is to iteratively multiply the measurement vector,y,
by ΨH , recover the strongest component, subtract its effect
and continue again. Once the locations of theS nonzero com-
ponents ofX is found, we can solve directly forX by using
a least squares solver:̂X = arg minX ||y − ΨSX ||2, where
ΨS refers to the matrix that is formed by choosing only theS
columns ofΨ that corresponds to the locations of the non-zero
components andX̂ denotes the reconstructedX . However,
OMP has various significant drawbacks, most notably lack of
performance guarantee for partial Fourier matrices [41]. Reg-
ularized Orthogonal Matching Pursuit (ROMP), an extension
of OMP, was then introduced by Needell et al. as a way to
overcome problems with OMP [41]. The main difference in
ROMP as compared to OMP is that in each iterative step,
a set of indices (locations of vectorX with non-negligible
components) are recovered at the same time instead of only
one at a time. More specifically, the set of indicesJ0 with the

largest energy that have “comparable” coefficients, such that
the energy of the smallest component is at least half of that of
the strongest component, is chosen at every time step. Other
variations of this work (some under different names) have
also appeared [41]-[45]. Whilè1 relaxation of the previous
section can solve the compressed sampling problem under the
aforementioned conditions, the computational complexityof
an iterative greedy solution such as OMP or ROMP can be
considerably less [40].

A. Interpolated ROMP (I-ROMP)

In this paper we propose an extension of ROMP [41], which
we refer to asInterpolated ROMP(I-ROMP). In order to
motivate the need for I-ROMP, we first consider the existing
ROMP/OMP approaches. The following summarizes the main
steps of ROMP/OMP:

Initialize: ynew = y
1: while stop criteria not metdo
2: Xproj = ΨHynew

3: choose a subset of indices fromXproj based on a
utilized criteria for deciding the significant coefficients

4: update index setIset

5: X̂ = argmin
X̂ : supp(X̂)=Iset

||y − ΨX̂||2

6: ynew = y − ΨX̂
7: end while

At the first step,Xproj represents the projection of the mea-
surementy to the columns of matrixΨ. This projection
serves as the base for deciding the indices that correspond
to the significant coefficients ofX . Let xproj represent the
spatial variations of the signal that corresponds toXproj:
xproj = ΓXproj. In applications whereX represents the Fourier
transformation ofx, we haveΓ−1 = ΓH . Furthermore, the
measurement matrixΦ will have exactly one 1 in every row
and at most one 1 at every column, with the rest of the
elements zero. Therefore, we will have

xproj = ΦHy, (9)

where xproj will be the same asy at the measured points
but will be zero elsewhere. AlthoughXproj does not exactly
serve as an estimate ofX , it does serve as a base for
deciding the index set. Therefore, it may not be a good
starting point for several applications since it assumes that
the signal is zero at unmeasured points. Ifx represents the
spatial variations of a channel, for instance, having zero in
between the acquired measurements is not a realistic initial
estimate. An improvement in the initial estimate could leadto
algorithms that converge with a smaller set of measurements.
This is the main motivation behind I-ROMP, i.e. considering
the progression ofx as we reconstructX iteratively. In I-
ROMP, we take advantage of processing the signal in both the
primal domain (domain ofx) as well as the sparse domain
(domain ofX). At every iteration, we start by upsampling the
residual vectorynew through interpolation:

ynew
interp = f(ynew), f : R

K → R
N , (10)



Algorithm 1 Interpolated ROMP (I-ROMP) algorithm

Input: measured vectory ∈ R
K , target sparsityS, and size

of full signal N
Output: set of indicesIset ⊂ {1, ..., N} of non-zero coeffi-

cients inX with |Iset| ≤ S, andX̂, the estimatedX .
Initialize: Iset⇐ ∅ andynew ⇐ y

1: while norm(ynew) > ρ and |Iset| < S do
2: // interpolate residualynew to create sizeN vector

ynew
interp ⇐ f(ynew) = interp(ynew, N)

3: // multiply ΨH by upsampled residualynew
interp to approx.

larger coefficients ofX
Xproj ⇐ ΨHynew

interp, max energy⇐ 0
4: J ⇐ set of S indices that correspond to the largest

magnitude coefficients ofXproj

5: sort(J) according to the non-increasing order of their
coefficients inXproj

6: for i = 1 to S do
7: for all j ≥ i, find the largestj s.t. Xproj(J(j)) ≥

Xproj(J(i))/2
8: // compute the energy of the selected elements ofXproj

corresponding to J(i), J(i+1), . . . , J(j)
energy⇐ ComputeEnergy(Xproj, J, i, j)

9: // replace old set if new energy is greater
10: if energy> max energythen
11: max energy⇐ energy
12: J0 ⇐ {J(i), J(i + 1), ..., J(j)}
13: end if
14: end for
15: Iset⇐ Iset∪ J0 // add new indices to overall set
16: // find vectorX̂ of Iset coeffs that best matches mea-

surement
X̂ ⇐ argmin

X̂ : supp(X̂)=Iset

||y − ΨX̂||2

17: ynew ⇐ y − ΨX̂ // recompute residualynew

18: end while
19: return Iset andX̂

where functionf represents an interpolation function such as
a linear or spline interpolator. By usingynew

interp, we then proceed
to recover the set of indices ofX that has the maximum
energy under the condition that the energy of every component
in the set is at least half of the maximum energy (same as
ROMP). We then subtract the effect of these components
from y and updateynew. The process will continue until we
recover enough indices or norm(ynew) ≤ ρ for a predefined
thresholdρ. This is summarized in Algorithm 1. Our proposed
strategy works considerably better than both OMP and ROMP
in reconstructing the wireless signal strength map based on
a severely incomplete data set. It can also be used in sev-
eral other applications that utilize compressed sensing. While
mathematical characterization of the class of signals for which
I-ROMP outperforms the existing strategies is out of the scope
of this paper, we will show the superior performance of I-
ROMP through simulations in the next section.

IV. M APPING THE SPATIAL VARIATIONS OF THE CHANNEL

In this section, we apply the theory of compressed sampling
and our proposed reconstruction method to the application
of building a map of the spatial variations of a channel.
A fundamental parameter that characterizes the quality of a
reception is the received signal strength. In general, there
are three time-scales associated with the spatial variations of
the channel quality and therefore received SNR [46], [47].
The slowest dynamic is associated with the signal attenuation
due to the distance-dependent power fall-off. Depending on
the environment, there could be a faster variation, referred
to asshadowing, that is due to the blocking objects. Finally,
multiple replicas of the transmitted signal can arrive at the
receiver due to the reflection from the surrounding objects,
resulting in even a faster variation in the received signal power.
An example of a received SNR is shown in Fig. 1, where the
three dynamics involved are identified. The received SNR is
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Fig. 1. Different scales of channel spatial variations

then best represented by a stochastic non-stationary process
whose average is dictated by the dynamics of the dashed
line, which in itself is a non-stationary dynamical system
with an average dictated by the dotted line. In this paper, we
mainly focus on the reconstruction of the spatial variations
of narrowband channels. Then vectorx of Eq. 1 represents
the spatial variations of the channel andy denotes the sparse
random measurements made. This means that matrixΦ has
only one 1 in each row and at most 1 one at every column, with
the rest of the elements being zero. Figure 2 (solid line) shows
an example of a real-world received signal strength measured
along a street in San Francisco [48]. The signal variations are
the result of fading and shadowing experienced by the signal.
In this paper we are interested in reconstructing such signals
based on a small set of observations.

Fourier analysis of the spatial variations of the channel
shows that it is considerably compressible. For instance, Fig.
2 shows the measurement of a channel along a street in San
Francisco (solid line) [48] along with its sparsified version
(dashed line). The real channel measurement of Fig. 2 has
more than 99.99% of its energy in 4.6% of its Fourier
coefficients. Then the dashed line shows the sparsified version
of the channel, where only the strongest 4.6% of the Fourier
coefficients are kept. Since the two curves are almost identical,
we can see that the spatial variations of the channel are
compressible, i.e. a small percentage of Fourier coefficients
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Fig. 2. Channel measurement along a street in San Francisco (courtesy of Mark
Smith [48]) and its sparsified version. The two curves are almost identical.

suffices for capturing the signal. Wavelet transforms could
also be used for the sparse recovery of the spatial variations
of the channel, in particular over larger distances where the
signal becomes more non-stationary and exhibits localized
behaviors. Our analysis, however, shows that sampling in
the spatial domain and reconstructing based on the wavelet
transformation results in poor quality due to the fact that
the RIC is not met for the resultingΨ matrix. Therefore,
in this part we focus on reconstruction based on Fourier
transformation.

A. Reconstruction of a Sparsified Channel

Eq. 7 shows that for a sparse signal, if the number of
measurements is above a certain level, the reconstruction
can be perfect. In order to see this and get more insight
into compressed sensing, we first consider reconstructing the
sparse version of the channel. Fig. 3 shows the result of
reconstructing the sparsified version of the signal of Fig. 2
based on a varying number of random observations,K. It
should be noted that the signal of Fig. 2 naturally contains
the measurement noise. The size of the signal of Fig. 2 is
N = 1024. Fig. 3 shows the average of the normalized MSE,
averaged over 1000 iterations with random sampling patterns,
as a function of the number of measurements (K). For
comparison, we have plotted the performance using I-ROMP,
OMP, and ROMP. For ROMP, we used the implementation
available through author’s web page [49], which behaved
similar to our own implementation. It can be seen that for all
the compressed sensing approaches, after a certain number of
measurements is collected, the construction becomes perfect
(or bounded by computational errors) as predicted by Eq. 7.
However, different algorithms have different minimum number
of samples required. It can, for instance, be seen that I-ROMP
performs considerably better than the other approaches. Infact,
by only sensing 23% of the signal, I-ROMP can reconstruct it
with perfect accuracy, as can be seen from the figure. While
the reconstruction quality of OMP is not considerably worse
than I-ROMP, I-ROMP also has the advantage of ROMP which

is fast recovery (it recovers far more coefficients than OMP in
every iteration) [41].

Fig. 4 shows another real-world channel measurement in
San Francisco over a longer distance. It also shows its sparsi-
fied version. Due to the longer distance, this channel exhibits
more non-stationary behavior, as can be seen. The length of
the channel is 4096 in this case. Our Fourier analysis showed
that more than 99.995% of the energy of the measured signal
is in less than 2.5% of its Fourier coefficients. Then the
dashed line shows the sparsified version of the channel, where
only the strongest 2.5% of the Fourier coefficients are kept.
Compared to the channel of Fig. 2, it can be noted that as the
length of the channel increases, the number of non-negligible
coefficients does not scale accordingly (it grows at a slower
rate). Fig. 5 shows the performance of compressed sensing
in reconstructing the sparsified version of this channel. While
the size of the signal is 4 times that of Fig. 2, the number of
required observations (K) for perfect recovery of I-ROMP is
less than 2 times that of Fig. 3. Similar to Fig. 3, it can be
seen that the compressed sensing approach can reconstruct the
signal with a small number of measurements. Furthermore, our
proposed I-ROMP provides a considerably better performance.

100 150 200 250 300 350 400 450 500
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

number of random measurements (K)a
v
e

ra
g

e
 n

o
rm

a
liz

e
d

 m
e

a
n

 s
q

u
a

re
 e

rr
o

r 
o

f 
re

c
o

n
s
tr

u
c
ti
o

n

 

 

proposed I−ROMP
OMP
ROMP

Fig. 3. Reconstruction of the sparsified signal of Fig. 2 based on an incomplete
observation set using compressed sensing (length ofX is N = 1024).

B. Reconstruction of Non-Sparsified Channels

The previous section showed the strength of compressed
sensing in reconstructing the spatial variations of the channel
based on a considerably small measurement set. However, we
showed the results for the sparsified version of the channel
where it was possible to represent the signal with only a
small number of Fourier coefficients. In this section, we show
the performance of compressed sensing in reconstructing the
true channel measurements of Fig. 2 and 4. Since the true
channel signal is not sparse, the reconstruction error, using
a considerably small observation set, can never be zero. It,
however, can be considerably small. Since completely random
sampling is unfeasible for real scenarios, we employ a more
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Fig. 4. Another channel measurement along a street in San Francisco (courtesy
of Mark Smith [48]) and its sparsified version. The two curvesare almost
identical.
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Fig. 5. Reconstruction of the sparsified signal of Fig. 4 based on an incomplete
observation set using compressed sensing (length ofX is N = 4096).

realistic form of random sampling for these results. Specifi-
cally, we start off with uniformly-spaced samples which are
then randomly jittered by a small amount to simulate blue-
noise properties in the frequency domain. This can be thought
of as a 1-D version of Poisson-disk sampling [50]. This kind
of random sampling is more suitable for representing realistic
scenarios. For instance, it is a better candidate for representing
the sampling pattern of a robotic network where the nodes
try to maintain a minimum distance from each other when
sampling.

Fig. 6 and 7 show the reconstruction performance for the
measured channel of Fig. 2 and 4 respectively. In these cases,
the performance of ROMP is considerably worse than both
OMP and I-ROMP and is therefore excluded from the figures.
It can be seen that I-ROMP outperforms OMP considerably
for both channels. Overall, our results show the potentialsof
compressed sensing for mapping the spatial variations of the
channel based on a considerably incomplete observation set.
They furthermore indicate that through processing the signal
in both the spatial and sparse domains, I-ROMP can have a

considerably better performance than OMP and ROMP. While
we considered 1D channels in this paper, extension of the
framework to 2D channels is straightforward.
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Fig. 6. Reconstruction of the measured channel of Fig. 2 based on an incom-
plete observation set using compressed sensing (length ofX is N = 1024).
The ROMP result is excluded as its error is significantly higher than the rest.
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Fig. 7. Reconstruction of the measured channel of Fig. 4 based on an incom-
plete observation set using compressed sensing (length ofX is N = 4096).
The ROMP result is excluded as its error is significantly higher than the rest.

V. CONCLUSIONS

In this paper we considered building a map of the spatial
variations of the channel based on a considerably incomplete
measurement set. By using the recent results in compressed
sampling, we showed how the sparse representation of channel
spatial variations can be utilized to build a map of the signal
strength with minimal sensing. We furthermore proposed I-
ROMP, a successive interference cancellation method for sig-
nal reconstruction based on minimal sensing. The proposed
algorithm takes advantage of processing the signal in both
the spatial and sparse domains and is an extension of the
Regularized Orthogonal Matching Pursuit method. Finally,our
simulation results showed the superior performance of the
proposed framework.
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