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Wavelengths of Gyrotactic Plumes in Bioconvection
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Bioconvection occurs as the result of the collective behaviour of many micro-
organisms swimming in a fluid and is realized as patterns similar to those of ther-
mal convection which occur when a layer of fluid is heated from below. We con-
sider the phenomenon of pattern formation due to gyrotaxis, an orientation mech-
anism which results from the balance of gravitational and viscous torques acting
on bottom-heavy micro-organisms. The continuum model ofPedleyet al. (1988,
J. Fluid. Mech. 195, 223–237) is used to describe the suspension. The system is
governed by the Navier–Stokes equations for an incompressible fluid coupled with
a micro-organism conservation equation. These equations are solved numerically
using a conservative finite-difference scheme. To examine the dependence of the
horizontal pattern wavelengths on the parameters, we consider two-dimensional so-
lutions in a wide chamber using rigid side walls. The wavelengths of the numerical
computations are in good agreement with the experimental observations and we
provide the first computational examples of the commonly seen ‘bottom-standing’
plumes.

c© 2000 Society for Mathematical Biology

1. INTRODUCTION

Bioconvection is the term used to describe the phenomenon of spontaneous pat-
tern formation in suspensions of micro-organisms such as bacteria and algae (Ped-
ley and Kessler, 1992). In all cases, the micro-organisms are 3% to 5% denser than
water and on average they swim upwards (although the reasons for up-swimming
may be different for different species). Micro-organisms respond to certain stim-
uli by swimming, on average, in particular directions. These responses are called
taxes, examples beinggravitaxis, phototaxis, chemotaxisandgyrotaxis. Gravitaxis
indicates swimming opposite to gravity,phototaxisdenotes swimming towards or
away from light andchemotaxiscorresponds to swimming up chemical gradients.
Gyrotaxisis swimming directed by the balance of torques due to gravity acting on
a bottom-heavy cell and shear flow.

Gravitaxis in small micro-organisms is a passive orientation mechanism unlike
active responses to external stimuli such as chemotaxis or phototaxis. In large cells

†Author to whom correspondence should be addressed.

0092-8240/00/030429 + 22 $35.00/0 c© 2000 Society for Mathematical Biology



430 S. Ghorai and N. A. Hill

or in multicellular organisms, the force of gravity can be ‘sensed’ dynamically by
cilia or statically by movable organelles such as statoliths and otoliths. However,
such mechanisms are not usually found in the smaller single cells, which are often
simply orientated by their own asymmetry. Cells swim randomly but, for example,
if a neutrally buoyant cell is bottom heavy (i.e. its centre of gravity is posterior to
its centre of buoyancy), the cell will tend to swim vertically upwards in the absence
of any other stimuli resulting in (negative) gravitaxis (Kessler, 1985a). Such cells
are also gyrotactic in that a local velocity gradient will produce viscous torques on
the cell’s body tending to tip it away from the vertical. If the cells do tend to swim
upwards, the top layer of the suspension becomes denser than the layer below.
When the governing parameters are above critical values, this leads to convective
instability and formation of convection patterns. This phenomenon is known as
‘bioconvection’; it has some similarity with Rayleigh–Bénard convection, but is
driven solely by the swimming of micro-organisms as the following observations
make clear. Direct thermal convection can occur in micro-organism suspensions if
the containing chamber is heated from below or from the sides, or if sufficient heat
is absorbed from the illumination. However, bioconvection continues in a layer that
is strongly cooled from below, so it is not a thermal effect (Platt, 1961). The radius,
a, of a typical gyrotactic cell is approximately 5×10−4 cm and the specific gravity
is approximately 0.05. The Stokes velocity, which is 2a21ρ/9µ ≈ 3× 10−4 cm
s−1, is 1% of the cells’ swimming speed and the patterns disappear when the cells
stop swimming.

Plesset and Winet (1974) made some measurements of the wavelengths of the
bioconvection patterns at the onset of instability in a suspension of the ciliate,
Tetrahymena pyriformis, which is negatively gravitactic (but not apparently gy-
rotactic) (Kessler, 1985a) and showed agreement with the linear stability theory
for a layer of dense fluid overlying a layer of light fluid.Kessler (1985a) demon-
strated that many swimming micro-organisms are gyrotactic and made observa-
tions (Kessler, 1985b) of both the almost regular patterns that occur in concentrated
algal suspensions in shallow layers a few millimetres deep, and of gyrotactic plume
formation in a tall narrow cylindrical tube. (Childresset al., 1975) analysed the bio-
convective instability of a suspension of gravitactic cells, andPedleyet al. (1988)
extended the theory ofChildresset al. (1975) to develop a continuum model for
a suspension ofgyrotacticmicro-organisms. Figure2(d) in the review byPedley
and Kessler (1992) shows bioconvection plumes in a tall vessel but no quantitative
measurements of such plumes in deep chambers have yet been made. The fluid
speed generated within bioconvection is typically of the order of 1 mm s−1.

Observations of pattern formation have been recorded previously by such authors
asWager (1911), Loeffer and Mefferd (1952), Wille and Ehret (1968) andKessler
(1984) but the results have tended to be of a qualitative nature. A recent quantita-
tive study of bioconvection in algal suspensions was conducted byBees and Hill
(1997), who measured the wavelengths of the planforms of shallow bioconvec-
tion patterns as a function of the depth and concentration of the suspension.Hill
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Figure 1. An idealized algal cell.θ increases in the anti-clockwise sense andh denotes the
displacement of the centre of gravity from the centre of the cell,C, so thath = h(x̂ sinθ −
ŷcosθ) relative to Cartesian coordinates, Cxy. The horizontal,x, and the vertical,y,
directions are fixed relative to the laboratory.Wc is the swimming velocity of the micro-
organisms relative to the water.

and Ḧader (1997) measured the trajectories of individual swimming algal cells and
showed that their motion is well-characterized by the limit of a correlated, biased,
random walk in which the time step tends to zero. They were able to calculate the
statistical moments required for the coefficients of the Fokker–Planck equation for
the cells’ orientational probability density function. These coefficients are needed
in the new continuum model developed byPedley and Kessler (1990). Numerical
simulation of bioconvection in two dimensions has been carried out byChildress
and Peyret (1976) and byHarashimaet al. (1988). Both studies were for purely
up-swimming (negatively gravitactic) micro-organisms.

For simplicity, algal cells such asChlamydomonas(whose shapes closely ap-
proximate a spheroid) are idealized here as spheres of radiusa. Figure1 shows
such a cell placed in a shear flow. Since algal cells are small with typical body
diameters of 10–20µm, and swim at speeds of 100µm s−1, the Reynolds number
associated with swimming is very small and inertia can be neglected. Thus a typi-
cal cell swims in a directionp at an angleθ to the vertical determined by a balance
between the gravitational torque,Tg, due to its being bottom heavy, and a viscous
torque,Tµ, due to fluid-velocity gradients,∇u, across its body and rotation of the
cell, i.e.

Tg + Tµ = 0. (1)

This balance is known as gyrotaxis (Kessler, 1985b). For a sphere of radiusa,
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the viscous torque is

Tµ = 4πµa3(∇× u− 2�),

where� is the cell’s angular velocity andµ is the viscosity of the fluid. The
rate-of-strain tensor gives rise to an additional torque on aspherical bodies only
(Batchelor, 1970). Also, the gravitational torque can be written as

Tg = −h mp× g,

wherem is the mass of the cell andg is the acceleration due to gravity. For algal
cells,h is a few per cent of the cell radius. Simplifying equation (1), we obtain

dθ

dt
=

Bζ − sinθ

2B
, (2)

whereζ is the horizontal component of the vorticity.B = 4πµa3/mgh is the
time scale for the reorientation of the micro-organisms by the gravitational torque
against viscous resistance, and it is called the ‘gyrotactic orientation parameter’ by
Pedley and Kessler (1987).

Thus gravity and vorticity can orient individual cells and guide their trajectories.
Gyrotaxis can be demonstrated in an experiment in a slow Poiseuille flow down a
vertical tube of circular cross-section. The balance between gravitational and vis-
cous torques gives one stable equilibrium orientation with individual cells tipped
away from the upward vertical towards the axis of the pipe. The cells swim towards
the axis as they are carried along in the pipe flow, and focus into a narrow beam.
Conversely, if the direction of the flow is reversed, the cells are oriented away
from the axis toward the walls, confirming the role of gyrotaxis in cell orientation.
Gravity also enters in another, entirely different manner in producing co-operative
phenomena (Kessler, 1985b). The local average fluid density in a suspension is
modified by the presence of cells. If there is a small region with a greater than
average concentration of cells, the excess density is sufficient to produce a sub-
stantial sinking velocity. The sinking region produces a fluid velocity field which
guides further gyrotactic accumulation perpendicular to it. This positive feedback
generates and maintains the sharply focused descending plumes of cells that are
frequently observed in dense algal cultures. The focused beam of algae is often
observed to develop an instability in the form of regularly-spaced axisymmetric
‘blobs’ (Kessler, 1985b). The blobs are regions of increased cell concentration,
which are wider than the beam. They fall faster than the centreline velocity and
therefore have an internal vortex-ring structure.

Ghorai and Hill (1999, 2000) examined the structure and stability of asingle
plume in a chamber with either stress-free side walls or periodic side walls. The
horizontal wavelength of the plume was specified in advance. The plume exhibited
varicose and meandering instabilities, which were explained using a linear stabil-
ity analysis for an infinitely long plume. Here we choose a wide chamber so that
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there ismore than one plumein the chamber. We examine the spacings between
the plumes and their dependence on the parameters of the problem. The mathe-
matical formulation of the continuum model is outlined in Section2. In Section3,
a brief description of the computational method is given, and the results of the nu-
merical computations are presented in Section4. Finally, in Section5, we make
comparisons with the experimental observations and draw conclusions.

2. MATHEMATICAL FORMULATION

The geometry considered consists of a two-dimensional rectangular box of finite
width and finite height referred to Cartesian coordinates with they-axis pointing
upwards. The top wall of the chamber is open to the air and the fluid satisfies a
stress-free boundary condition. The bottom and the side walls are rigid.

2.1. Governing equations. As in Pedleyet al. (1988), we assume a monodis-
perse cell population which can be modelled by a continuous distribution. The
suspension is dilute so that the volume fraction of the cells is small and cell–cell
interactions are negligible. Each cell has a volumeϑ and densityρ +1ρ, whereρ
is the density of the water in which the cells swim and1ρ/ρ � 1. The velocityu
is solenoidal and the vorticity,ω = curl u = (0,0, ζ ); thus we introduce a stream
functionψ such that

u = (u, v,0) =
(
∂ψ

∂y
,−

∂ψ

∂x
,0

)
, ζ = −∇2ψ. (3)

Conservation of cells requires that the number of cells per unit volume,n, satisfies
the equation

∂n

∂t
= −∇ · J, (4)

where the flux of cells is

J = nu+ nWcp̄− D∇n. (5)

The third term on the right-hand side of equation (5) represents the random com-
ponent of cell locomotion. We assume that the diffusion coefficientD is homo-
geneous, isotropic and independent of the other parameters of the problem. The
second term in equation (5) arises due to the swimming of the cells:Wcp̄ is the
average swimming velocity relative to the fluid andWc is assumed to be constant.
p̄(x, t) represents the average orientation of the cells and is estimated from the
torque balance equation. The assumptions of constant isotropicD and determinis-
tic p̄ in equation (5) are ad hoc and modifications have been considered byPedley
and Kessler (1990) and byBeeset al. (1998). We retain the simpler form forJ in
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Table 1. Estimates of typical parameters for a suspension ofC. nivalis.

Mean concentration n̄ 106 cells cm−3

Specific gravity 1ρ/ρ 0.05
Average radius a 5× 10−4 cm
Centre of gravity offset h 10−5 cm
Volume per cell ϑ 5× 10−10 cm3

Swimming speed Wc 10−2 cm s−1

Diffusivity of cells D 2.5× 10−4 cm2 s−1

Kinematic viscosity ν 10−2 cm2 s−1

Gyrotactic reorientation parameter B 3.4 s

equation (5) because it contains the essential features that we wish to model and
because improvements appear to lead to quantitative adjustments rather than qual-
itative changes (Ghorai, 1997). Typical values for these parameters are given in
Table1, which is based on estimates given byKessler (1986) for a suspension of
Chlamydomonas nivalis.

The vorticity evolves according to the equation

∂ζ

∂t
+∇ · (ζu) = ν∇2ζ −

1ρgϑ

ρ

∂n

∂x
. (6)

Hereν is the kinematic viscosity and equation (6) is derived under the Boussinesq
approximation, neglecting all effects of the cells on the fluid except their negative
buoyancy, because the suspension is dilute.

From Fig.1, we have

p≡ (px, py) = (− sinθ, cosθ),

whereθ is the solution of equation (2). If the shear is sufficiently small so that
|Bζ | ≤ 1, then the steady-state orientation is obtained by setting the left-hand side
of equation (2) equal to zero. When|Bζ | ≤ 1, we find that

p̄= (−κ, (1− κ2)1/2), |κ| ≤ 1, (7)

whereκ = Bζ . If the vorticity is large (|Bζ | > 1), the cell tumbles but swims on
average in a fixed direction at an angle to the vertical (Kessler, 1985b). When the
vorticity is large, the average swimming directionp̄ is approximated by integrating
the swimming direction over the tumbling period (Ghorai and Hill, 1999).

If κ = Bζ > 1, then

p̄= (−κ + (κ2
− 1)1/2,0) (8)

and similarly, ifκ = Bζ < −1, then

p̄= (−κ − (κ2
− 1)1/2,0). (9)
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Equations (7), (8) and (9) determine the average swimming direction of the cells
for any value ofζ .

The equations are made dimensionless by scaling all lengths onH , the depth of
the chamber, time on the diffusive time scaleH2/D, and the bulk fluid velocity on
D/H , whereD is the constant diffusivity of the cells. The cell concentrationn is
scaled on̄n, the mean concentration. The resulting system of coupled equations is

u = (u, v,0) =
(
∂ψ

∂y
,−
∂ψ

∂x
,0

)
, ζ = −∇2ψ, (10)

∂ζ

∂t
+∇ · (ζu) = Sc∇

2ζ − ScR
∂n

∂x
, (11)

and
∂n

∂t
= −∇ · J, (12)

where the flux of cells is

J = nu+ nVcp̄−∇n. (13)

(For convenience, we use the same notation for the dimensional and dimensionless
variables.) Here,Sc = ν/D is the Schmidt number,Vc = WcH/D is the scaled
cell swimming speed andR is a Rayleigh number defined as

R=
n̄ϑ1ρgH3

ρνD
.

p̄ is defined by equations (7)–(9), whereκ = Gζ and G = B D/H2 is defined
as the gyrotaxis number. The Rayleigh numberR is based on the height of the
chamber unlike the non-standardR that was used byGhorai and Hill (1999, 2000)
to investigate the effects of varying the depth of a fixed-width chamber.

2.2. Initial and boundary conditions. We impose rigid, no-slip boundary con-
ditions at the bottom wall and assume that the top boundary is stress free, so that

u = v = 0 at y = 0, (14)

v = ζ = 0 at y = 1, (15)

J · ŷ= 0 at y = 0,1, (16)

whereŷ is the vertical unit vector. The boundary conditions at the rigid side walls
are

u = v = J · x̂ = 0 atx = 0, λ, (17)

whereλ = width/H is the aspect ratio parameter andx̂ is the horizontal unit vector.
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The initial conditions are that of zero flow together with a small perturbation to
a uniform concentration of cells. In one case, we consider a random perturbation
to a uniform concentration of cells, thus

ψ = 0, ζ = 0 and n = 1+ ε A(x, y), (18)

whereε = 10−5 andA(x, y) is a random number between−1
2 and 1

2 at (x, y). We
also consider sinusoidal perturbations to a uniform concentration of cells of the
following form:

ψ = 0, ζ = 0 and n = 1+ ε cos

(
ν0πx

λ

)
, (19)

whereε = ±10−5 andν0 is an integer.ν0 together with the sign ofε imposes a
specific number of plumes in the initial conditions.

3. NUMERICAL PROCEDURE

The governing equations (10)–(12) are discretized using a conservative finite-
difference scheme (Ghorai, 1997) on a staggered mesh with the stream function
and vorticity stored on one set of nodes and the concentration stored on another
set of nodes. The grid is chosen so that the concentration nodes lie in the inte-
rior only, whereas those of the stream function and vorticity lie in the interior and
also on the boundary of the domain. The advantage of the staggered mesh is that
the no-cell flux boundary condition can be satisfied immediately when discretized,
without further approximation. We know that there are boundary layers at the top
and bottom walls due to the large cell concentration and the presence of the rigid
wall, respectively. In order to resolve these gradients accurately, a non-uniform
coordinate mesh is used. We transform the non-uniform spatial increments1xi

and1y j in the finite-difference equations to a uniform grid using an orthogonal
transformationξk = ξk(xk) which also maps the problem to the computational do-
main−1 ≤ ξk ≤ 1, wherexk = (x, y) andξk = (ξ, η). An accurate transformed
finite-difference equation for the first-order derivative is given by

fi+1− fi−1

21ξ(dx/dξ)i
= f I

i

[
1+

(1ξ)2

6

(
d3x

dξ3

)
i

/(
dx

dξ

)
i

]
(20)

(de Rivas, 1972). Here, fi is the value of the functionf (x) at thei th node and
f I
i is the first-order derivative at thei th node. The second term inside the bracket

on the right-hand side of equation (20) is important only when there is a large grid
variation. The second-order difference operator is obtained by recursion of equa-
tion (20). The above difference approximation has a truncation error ofO(1ξ2)
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for an arbitrary mesh transformation in problems of boundary layer character. The
stretching transformation is applied in the vertical direction only. Here we have
taken the transformations proposed byRoberts (1970).

An expression for the vorticity boundary condition can be obtained by expanding
the stream function near the rigid surface using a three-term Taylor series expan-
sion and by making use of the no-slip condition:

ζw = −
ζnw
2
− 3.0

ψnw
(1n)2

, (21)

whereζnw, ψnw are the values ofψ, ζ at the near-wall node (adjacent to the wall)
and1n is the non-dimensional distance of the near-wall node from the wall.

An implicit scheme with Euler backward differencing in time and central differ-
encing in space is used to obtain the transient solutions. A line-by-line tridiagonal
matrix algorithm with relaxation is used to solve the nonlinear discretized equa-
tions. To validate the code, written in terms of stretched coordinates, the code has
been run for the heat convection problem and the agreement with the benchmark
solution ofDe Vahl Davis (1983) (Ghorai, 1997) is good. The code has also been
used to compute the critical Rayleigh numbers against wavelengths (Ghorai and
Hill, 1999) and the agreement with the linear stability results ofHill et al. (1989)
is excellent.

4. RESULTS

We examine the effects of depth and cell concentration on the wavelengths of
the pattern. To this end, we take a wide chamber of 5.0 cm width to minimize
the effect of the side walls on the wavelengths of the patterns. Values of parame-
ters are calculated on the basis of the physical quantities given in Table1. Using
these parameters, we compute solutions for different values of the concentration
and depth of the suspension. The dimensional depth and the concentration val-
ues are chosen from the experimental data ofBees and Hill (1997). We compute
the fully developed pattern wavelengths and compare them with their experimental
estimates.

4.1. Evolution of the bioconvection patterns.We consider the first set of exper-
imental data fromBees and Hill (1997) for depthH = 0.333 cm and background
concentration̄n = 2.75× 106 cells cm−3. The evolution of the cell concentration
contours starting from a random perturbation is shown in Fig.2. The concentration
of cells at the top of the chamber increases with time due to the cells swimming
upwards and accumulating at the top, where the no-cell flux condition holds. The
key parameter describing the pattern wavelength is the number of plumes in the
box, but care has to be taken with plumes that are adjacent to the walls. At around
t = 40 s, plumes begin to develop at the top of the chamber. The number of plumes
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at t = 1 min is 14 and becomes 15 att = 1.2 min with two plumes very close to
each other. These two plumes merge to a single plume at aroundt = 1.7 min but
two of the plumes are located near the two side walls. Thus the mean wavelength
at t = 1.7 min is 5/13≈ 0.385 cm. Att = 8.0 min, the number of plumes remains
at 14 but all of them are located in the interior of the chamber and thus the mean
wavelength becomes 5/15≈ 0.333 cm. The solution almost reaches the final state,
which is steady, as can be seen from the solution att = 16 min. This solution is re-
ferred to as the 28+ solution. The classifications used are that 2m+meansm plumes
in the interior and none along the wall, 2m− indicates(m−1) plumes in the interior
and two plumes along the walls, whereas(2m+1)+(−) signifiesm plumes in the
interior with one plume along the right (left) wall (Lennieet al., 1988).

The above solution is not unique. As an example in the next run, we start with a
sinusoidal perturbation [see equation (19)] with ν0 = 16. The number of plumes
in the steady state is 9 with none lying along the wall (see Fig.3). The wavelength
of the plumes is 5/10≈ 0.5 cm. This solution is the 18+ solution.

Harashimaet al. (1988) proposedminimum potential energyas a principle for the
determination of the steady-state roll size in a suspension of purely up-swimming
cells for a given value of Rayleigh number and a given box size. We have plotted
the evolution of the kinetic energy against potential energy in Fig.4. It is clear
that the final solution with random perturbation as the initial condition has a higher
potential energy than the solution with sinusoidal perturbation (ν0 = 16) as the ini-
tial condition. There exist several other solutions of different wavelengths that can
be found by starting with different values ofν0 as the initial condition. When the
value ofν0 (i.e. the number of sinusoidal modes) is increased, the wavelength of the
pattern approaches that of the random perturbation. The random perturbation most
closely models the initial conditions in real experiments, and so the wavelength of
the final state arising from the random perturbation is most likely to be realized in
Bees and Hill’s (1997) experiments. Thus pattern wavelengths for the gyrotactic
suspensions are clearlynotselected by theminimum potential energyprinciple.

Next we consider evolution of plumes in a relatively deep chamber. We choose
Bees and Hill’s (1997) sixth set of experimental data for a depthH = 0.729 cm
and a background concentrationn̄ = 1.02× 106 cells cm−3. The evolution of the
concentration starting from a random perturbation of cells is plotted in Fig.5. The
number of distinct plumes att = 2 min is 11 and thus the approximate wavelength
is 5/12≈ 0.417 cm. Att = 2.4 min, the number of plumes remains at 11 and some
of them have hit the bottom of the chamber. The number of plumes extending from
the top to the bottom of the chamber is only 6 at approximatelyt = 3.4 min but
there are some incomplete plumes that do not extend to the top. The solution at
t = 27.0 min shows only 7 plumes. The solution is unsteady and the number of
plumes varies between 7 and 9. Thus the mean wavelength of the pattern varies
between 0.555 cm to 0.714 cm. The unsteady nature of the solutions can be seen
from the phase diagram of the kinetic energy against potential energy (see Fig.6).
If we start with sinusoidal perturbations, the initial patterns depend on the modes
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Figure 2. Evolution of the concentration(n) of cells plotted at selected times(t) in a
0.333 cm deep and 5 cm wide chamber. The initial conditions consist of no flow and a
uniform concentration of cells subject to small random perturbations in concentration. The
concentrationn is scaled with background concentration(n̄ = 2.75× 106 cells cm−3).
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Figure 3. Plume solutions att = 12 min in a 0.333 cm deep and 5 cm wide chamber. The
background concentration is̄n = 2.75× 106 cells cm−3 and the initial conditions consist
of no flow and a uniform concentration of cells subject to small sinusoidal perturbations in
concentration.
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Figure 4. Phase diagram of the dimensionless potential energy vs kinetic energy for the
random (solid line) and sinusoidal (broken line) perturbations in concentration. The cham-
ber is 0.333 cm deep and 5.0 cm wide with a background concentration of 2.75×106 cells
cm−3.

of the perturbation but ultimately it approaches an unsteady state similar to that
just described. The energy phase diagram also approaches the phase diagram of
the random perturbation.

4.2. Effect of varying the depth. Here we consider the effect of the depth on
the wavelengths of the pattern keeping other parameters fixed. We choose three
sets of data given in experiments 15, 17 and 20 fromBees and Hill (1997). The
background concentration is kept fixed atn̄ = 1.89×106 cells cm−3 and the depths
are 0.318 cm, 0.469 cm and 0.723 cm, respectively. The same random perturbation
is applied to all three cases.

The solution att = 15 min for the three depths is shown in Fig.7. The solution
becomes steady rapidly for the 0.318 cm deep chamber and that for the 0.469 cm
deep chamber becomes almost steady after 15 min. However, the solution in the



Wavelengths of Gyrotactic Plumes 441

t = 2.0 min

t = 2.4 min

t = 3.4 min

t = 27.0 min

Key n

Key n

Key n

Key n
>6
3–6
1–3
<1

>6
3–6
1–3
<1

>6
3–6
1–3
<1

>6
3–6
1–3
<1

0.729

0

0.729

0

0.729

0

0.729

0

0 2.5 5.0

0 2.5 5.0

0 2.5 5.0

0 2.5 5.0

Figure 5. Evolution of the concentration(n) of cells plotted at selected times(t) in a
0.729 cm deep and 5 cm wide chamber. The initial conditions consist of no flow and a
uniform concentration of cells subject to small random perturbations in concentration. The
concentrationn is scaled with the background concentration (n̄ = 1.02×106 cells cm−3).
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Figure 6. Phase diagram of the dimensionless potential energy vs kinetic energy in a
0.729 cm deep and 5.0 cm wide chamber. The background concentration is 1.02×106 cells
cm−3 and the initial conditions consist of no flow and a uniform concentration of cells sub-
ject to small random perturbations in concentration.

0.723 cm deep chamber is always unsteady and the number of plumes varies be-
tween 11 and 12. Some of the plumes do not extend to the top of the chamber.
Similar ‘bottom-standing’ plumes were observed in experiments (Kessler, 1985b,
1986). The occurrence of bottom-standing plumes transports most of the cells to-
wards the bottom causing wider spacing at the top layer, which was also observed
in experiments. In general we find that regularly placed well-defined plumes are
not realizable in a deep chamber. The wavelengths of the patterns for the 0.318 cm
and 0.469 cm deep chambers are approximately 0.357 cm and 0.417 cm, respec-
tively. Although the plumes are not well defined for the 0.723 cm deep chamber,
the wavelength is still calculated by dividing the total width (5 cm) by the number
of plumes (12) in the chamber. From Fig.7, we see that the wavelength of the
plumes is approximately 0.417 cm for the 0.723 cm deep chamber. Thus the wave-
length of the pattern increases slightly with the depth of the chamber for the given
perturbation.

The solution for the 0.318 cm deep chamber (see Fig.7) shows that none of the
plumes are located along the walls for the given perturbation but it is possible to
obtain such solutions from a different set of random perturbations. To minimize
the computing time, we performed four sets of numerical simulations with differ-
ent random perturbations. The range of wavelengths based on these four simula-
tions together with the experimental values ofBees and Hill (1997) are shown in
Table2. The wavelengths in the 0.723 cm deep chamber are not constant due to the
unsteady nature of the solutions. On average, the wavelengths of the patterns in-
crease slightly with the depth of the chamber in the numerical results, but decrease
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Figure 7. Concentration(n) of cells are plotted att = 15 min in chambers of 5 cm width but
of different depths. The initial conditions consist of no flow and a uniform concentration of
cells subject to small random perturbations in concentration. The concentration is scaled
with the background concentration (n̄ = 1.89× 106 cells cm−3).
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Table 2. Comparisons between experimental wavelengths and the numerical results. The
background concentration is̄n = 1.89× 106 cells cm−3 and the initial conditions consist
of no flow and a uniform concentration of cells subject to small random perturbations in
concentration. The numbers in the second column refer to the experiment numbers inBees
and Hill (1997).

Suspension Expt. Wavelength Wavelength (numerical)
depth no. (experimental) (cm)
(cm) (cm) (1) (2) (3) (4)

0.318 15 0.489 0.357 0.385 0.333 0.357
0.469 17 0.303 0.417 0.417 0.417 0.357

18 0.352
19 0.333

0.723 20 0.344 0.417 0.454 0.417 0.417

Table 3. Comparisons between experimental wavelengths and the numerical results. The
background concentration is̄n = 4.19× 106 cells cm−3 and the initial conditions consist
of no flow and a uniform concentration of cells subject to small random perturbations in
concentration. The numbers in the left column refer to the experiment numbers inBees
and Hill (1997).

Expt. Suspension Wavelength Wavelength (numerical)
no. depth (experimental) (cm)

(cm) (cm) (1) (2) (3) (4)

25 0.186 0.297 0.294 0.278 0.294 0.278
24 0.291 0.252 0.278 0.294 0.294 0.312
23 0.468 0.234 0.357 0.333 0.357 0.357

slightly in the experimental results. However, the trends are not very marked in the
experiments as can be seen from experiments 17, 19 and 20 where the wavelengths
increased slightly with the depth of the chamber.

The concentration values chosen in the above experiments are moderate. Next
we choose three sets of data given in experiments 23, 24 and 25 fromBees and Hill
(1997) with a higher background concentrationn̄ = 4.19× 106 cells cm−3 and the
depths are 0.186 cm, 0.291 cm and 0.468 cm, respectively. The well-developed
concentration patterns are shown in Fig.8. The wavelengths of the patterns are
approximately 0.294 cm, 0.278 cm and 0.357 cm, respectively, for a given set of
random perturbation. The range of wavelengths based on four simulations together
with the experimental values ofBees and Hill (1997) are shown in Table3. The
wavelength decreases slightly with the depth of the chamber in the experiments. As
in the previous case, the wavelengths increase slightly with depth in the numerical
results.

4.3. Effect of varying the background concentration.We consider the effect
of varying the background cell concentration on the wavelengths of the patterns
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Figure 8. Concentration(n) of cells are plotted at selected times in chambers of 5 cm width
but of different depths. The initial conditions consist of no flow and a uniform concentra-
tion of cells subject to small random perturbations in concentration. The concentration is
scaled with the background concentration (n̄ = 4.19× 106 cells cm−3).
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Figure 9. Concentration(n) of cells are plotted att = 25 min in a 5.0 cm wide and 0.3 cm
deep chamber. The background concentrations aren̄ = 106 cells cm−3, 2× 106 cells
cm−3 and 4× 106 cells cm−3, respectively. The initial conditions consist of no flow and a
uniform concentration of cells subject to small random perturbations in concentration. The
concentration is scaled with the background concentration.

whilst keeping other parameters fixed. We use a moderate depth of 0.3 cm and
take three sets of concentration values;n̄ = 106 cells cm−3, 2×106 cells cm−3 and
4× 106 cells cm−3, which represent the range covered in the experiments ofBees
and Hill (1997).

The solutions for the 0.3 cm deep chamber are shown in Fig.9. The numbers
of plumes are 10, 14 and 15, respectively, and the corresponding wavelengths are
approximately 0.5 cm, 0.357 cm and 0.313 cm. The wavelengths of the pattern
clearly decrease with an increase in the background concentration of the suspen-
sions, which was also observed byBees and Hill (1997).

Next we consider solutions in a 0.5 cm deep chamber with the same background
concentrations as in the previous numerical solutions. These are shown in Fig.10,
where the solutions for the 106 cells cm−3 and 2×106 cells cm−3 background con-
centration values have reached the steady state. The solution for the highest back-
ground concentration is unsteady but the plumes are well defined and the number
of plumes remains the same at all times. The numbers of plumes are 10, 11 and
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Figure 10. Concentration(n) of cells are plotted att = 40 min in a 5.0 cm wide and 0.5 cm
deep chamber. The background concentrations aren̄ = 106 cells cm−3, 2× 106 cells
cm−3 and 4× 106 cells cm−3, respectively. The initial conditions consist of no flow and a
uniform concentration of cells subject to small random perturbations in concentration. The
concentration is scaled with the background concentration.
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15, respectively, and the corresponding wavelengths are approximately 0.454 cm,
0.416 cm and 0.357 cm. Again the wavelengths clearly decrease with an increase
in the background concentration, in agreement with the experiments.

5. CONCLUSIONS

We have examined the dependence of the wavelengths on the depth of the cham-
ber and the background concentration of the cells and the following conclusions
are based on the numerical experiments reported in the previous sections. The
two-dimensional well-developed wavelengths increase slightly with the depth of
the chamber according to the numerical results given in Tables2 and3. The wave-
lengths estimated byBees and Hill (1997) decreased slightly with an increase in
the depth of the chamber but the trend is not clearly marked. In contrast, the well-
developed wavelengths clearly decrease with an increase in the background con-
centration, in agreement with the experimental results. Bottom-standing plumes
have been simulated for the first time. They have two main characteristics. First,
they are observed in deep chambers only with a high background concentration of
cells and, secondly, bottom-standing plumes are always unsteady. When they oc-
cur, most of the cells are transported to the bottom of the chamber and some of the
plumes do not extend to the top of the chamber causing wider spacing at the top
of the chamber. Previous attempts at modelling bottom-standing plumes (Pedley,
1988) were probably unsuccessful due to the unsteady nature of the plumes.

The differences between the experimental and numerical results might be due
to the following reasons. The numerical experiments are two-dimensional whereas
the experiments ofBees and Hill (1997) were performed in three dimensions. Also,
although we chose a wide chamber to minimize the effect of the side walls, still the
side walls select whole numbers of plumes. Thus, a discrete change in wavelength
occurs as a plume is added or removed from the pattern. The physical parameters
required for the numerical experiments are the best estimates currently available
but many are not accurately known. In particular, the solution is most sensitive to
the value of the diffusion parameter which is especially hard to estimate. Addition-
ally, our model with isotropic diffusivity and directed swimming is inconsistent,
assuming weak randomness to specifyWc and strong randomness to specify dif-
fusivity. The new model proposed byPedley and Kessler (1990) removes these
discrepancies and might give better agreement with the experimental results. For
simplicity, we have considered spherical cells only, whereas a typical algal cell
closely resembles a spheroid. Also, the effects of the flagella are ignored. De-
spite these discrepancies, the numerical results agree well, both qualitatively and
quantitatively, with the experimental observations.
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