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TRANSCENDENTAL SUMS RELATED TO THE ZEROS OF
ZETA FUNCTIONS

SANOLI GUN, M. RAM MURTY AND PURUSOTTAM RATH

Abstract. While the distribution of the non-trivial zeros of the Riemann zeta
function constitutes a central theme in Mathematics, nothing is known about the
algebraic nature of these non-trivial zeros. In this article, we study the transcendental
nature of sums of the form ∑

ρ

R(ρ)xρ,

where the sum is over the non-trivial zeros ρ of ζ(s), R(x) ∈ Q(x) is a rational
function over algebraic numbers and x > 0 is a real algebraic number. In particular,
we show that the function

f (x) =
∑
ρ

xρ

ρ

has infinitely many zeros in (1,∞), at most one of which is algebraic. The
transcendence tools required for studying f (x) in the range x < 1 seem to be
different from those in the range x > 1. For x < 1, we have the following non-
vanishing theorem: If for an integer d > 1, f (π

√
dx) has a rational zero in

(0, 1/π
√

d), then
L ′(1, χ−d) 6= 0,

where χ−d is the quadratic character associated with the imaginary quadratic field
K := Q(

√
−d). Finally, we consider analogous questions for elements in the Selberg

class. Our proofs rest on results from analytic as well as transcendental number
theory.

§1. Introduction. For s ∈ C with <(s) > 1, the Riemann zeta-function is
defined by

ζ(s) =
∞∑

n=1

1
ns .

It is well known that ζ(s) has an analytic continuation to the entire complex
plane except at s = 1, where it has a simple pole with residue 1. The functional
equation for ζ(s) is determined by the equation

ξ(s) = ξ(1− s),
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876 S. GUN et al

where ξ(s) is an entire function defined as

ξ(s) :=
s(s − 1)

2
π−s/20

(
s
2

)
ζ(s).

The values taken by the Riemann zeta function at positive integers and as well
as its location of zeros have been studied extensively since the time of Euler
and Riemann. However the nature of these special values continues to elude us
though there has been some success following the works of Apery, Beukers,
Rivoal and Zudilin among others.

On the other hand, the nature of the non-trivial zeros of the Riemann zeta
function is as mysterious as the special values. Let X denote the set of its
non-trivial zeros. Nothing is known about this set vis-a-vis transcendence. For
instance, consider the field F = Q(X). Then one can ask the following question:

Is the transcendence degree of F over Q at least one?

Also, consider the Q-vector space V (inside C) generated by the imaginary
parts of elements in X. Again, we can ask the seemingly easier question:

Is the dimension of V over Q at least two?

In fact, there is a folklore conjecture that the imaginary parts of the non-trivial
zeros in the upper half plane are linearly independent over Q (see, for example,
Theorem A of [9], see also [16]).

One believes that the answers to both these questions should be affirmative,
but it is not clear if the answers lie within the reach of the existing transcendence
tools or we need to discover new tools. One of the obstacles to answer such
basic questions is that the Riemann zeta function does not satisfy any differential
equation with algebraic parameters. More precisely, a classical result of Voronin
[21] asserts that ζ(s) does not satisfy any equation of the form

n∑
j=0

s j F j (ζ(s), . . . , ζ (n−1)(s)) = 0

for all s lying on a line <(s) = σ with σ ∈ (1/2, 1). Here the F j for j = 0,
. . . , n are continuous functions on Cn , not all identically zero. This functional
independence of Riemann zeta function renders effete the applicability of the
known general transcendental tools to the question of the nature of non-trivial
zeta zeros.

The goal of this note is to study the nature of certain general sums related to
the zeros of the ζ -function. More generally, we also consider sums related to the
zeros of functions in the Selberg class.

Let us now introduce the type of sums we are interested in. Throughout the
paper Q will denote the field of algebraic numbers in C. Let A, B ∈ Q[t] be
polynomials. We study the transcendental nature of sums of the form∑

ρ

A(ρ)
B(ρ)

xρ, (1)
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SPECIAL VALUES 877

where the sum is over the non-trivial zeros ρ of ζ(s). Here x > 0 is a real number.
In this paper, we study the situation where B(t) has only simple zeros.

As shall be evident, we need to consider the cases x > 1, x = 1 and 0 < x < 1
separately. It appears that the transcendence input in the study of the case x > 1
is different from that of x < 1. The case x = 1 is perhaps more mysterious.
For instance, if the rational function R(x) = A(x)/B(x) satisfies the functional
equation R(x) = −R(1− x), then∑

ρ

A(ρ)
B(ρ)

=
1
2

∑
ρ

(
A(ρ)
B(ρ)

+
A(1− ρ)
B(1− ρ)

)
= 0,

since the functional equation for ζ(s) implies that ρ is a zero if and only if 1− ρ
is a zero.

The study of sums involving zeros of the Riemann zeta function can have
deep arithmetic significance. For instance, in 1997, Li [12] obtained a simple
criterion (now known as Li’s criterion) linking positivity of certain sums to the
Riemann hypothesis. More precisely, let

λn :=
∑
ρ

(
1−

(
1−

1
ρ

)n)
.

Then the Riemann hypothesis is true if and only if λn > 0 for every natural
number n (see also work of Brown [2]). This result has led to a flurry of activity
and a plethora of interesting results have emerged from this. For example,
Bombieri and Lagarias [1] derived the following elegant arithmetic identity.
Define the Stieltjes constants γn by

ζ(s) =
1

s − 1
+

∞∑
n=0

(−1)n

n!
γn(s − 1)n.

It is not difficult to show that the γn are given by the limits

γn = lim
m→∞

( m∑
k=1

logn k
k
−

logn+1 m
n + 1

)
,

and these can be viewed as generalizations of the more familiar Euler constant
γ0 = γ . This allows us to define the related constants ηn via

−
ζ ′(s)
ζ(s)

=
1

s − 1
+

∞∑
n=0

ηn(s − 1)n.

By long division, it is now clear that the ηn can be expressed as polynomials in
the γn with rational coefficients. For instance,

η0 = −γ0, η1 = −γ1 +
1
2γ

2
0 , η3 = −γ2 + γ0γ1 −

1
3γ

3
0 .
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878 S. GUN et al

Then, it is shown in [1] that

λn = −

n∑
j=1

(
n
j

)
η j + 1− (log 4π + γ )

n
2
−

n∑
j=2

(−1) j−1
(

n
j

)
(1− 2− j )ζ( j).

For n = 1, this reduces to∑
ρ

1
ρ
= 1+

γ

2
−

log 4π
2
= 0.0230957 . . . (2)

In this context, one has the following curious equivalence:

Riemann hypothesis ⇐⇒
∑
ρ

1
|ρ|2
= 2+ γ − log 4π.

This is easy to show. Indeed,

2
∑
ρ

1
ρ
=

∑
ρ

(
1
ρ
+

1
ρ

)
=

∑
ρ

2<(ρ)
|ρ|2

(3)

from which we immediately see the result if the Riemann hypothesis is true. For
the converse, suppose ρ = x + iy, with x, y ∈ R is a zero such that x > 1/2.
Then, (1− x)2 + y2 < x2

+ y2 so that

(x − 1/2)
(

1
(1− x)2 + y2 −

1
x2 + y2

)
> 0.

In other words, for x > 1/2,

1
2

(
1

(1− x)2 + y2 +
1

x2 + y2

)
>

x
x2 + y2 +

1− x
(1− x)2 + y2 . (4)

Writing our sum as∑
ρ

1
|ρ|2
=

∑
ρ,<(ρ)=1/2

1
|ρ|2
+

∑
ρ,<(ρ)6=1/2

1
|ρ|2

and pairing the zero ρ with 1− ρ in the second sum, we deduce from (4) that∑
<(ρ)6=1/2

1
|ρ|2

> 2
∑

<(ρ)6=1/2

<(ρ)

|ρ|2
.

Since ∑
ρ,<(ρ)=1/2

1
|ρ|2
= 2

∑
<(ρ) 6=1/2

<(ρ)

|ρ|2
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we see that if the Riemann hypothesis is false, then using (3) and (2),∑
ρ

1
|ρ|2

>
∑
ρ

2<(ρ)
|ρ|2

= 2+ γ − log 4π

contrary to our hypothesis. This idea can be easily generalized to the Selberg
class (see [5] for details).

Related to this, we study the possible transcendental nature of sums of the
form ∑

ν>0

cos(ν log x)
1
4 + ν

2

for any algebraic x > 1, subject to Riemann hypothesis. Here, the sum is
over the positive imaginary parts of the non-trivial zeros of the zeta function.
Similar investigations are also carried out without the assumption of the Riemann
hypothesis.

The expression for λn has been studied by several authors from various
angles. Coffey [3] writes

λn = 1−
n
2
(γ + log 4π)+ S1(n)+ S2(n),

where

S1(n) =
n∑

j=2

(
n
j

)
(−1) j

(
1−

1
2 j

)
ζ( j)

and

S2(n) =
n∑

j=1

(
n
j

)
η j−1.

Coffey showed that for n > 2,

1
2 (n(log n + γ − 1)+ 1) 6 S1(n) 6 1

2 (n(log n + γ + 1)− 1).

In particular, S1(n) is non-negative for every n > 2. This theorem reduces the
study of λn to the study of S2(n) and sums involving the Stieltjes constants.

Bombieri and Lagarias [1] show that the condition of positivity can be
considerably weakened to deduce the Riemann hypothesis. In fact, they show
that if for any ε > 0, there is a constant c(ε) > 0 such that

λn > −c(ε)eεn

for every n > 1, then the Riemann hypothesis follows. Estimates for the Stieltjes
constants have been studied by several authors (see, for example, [4]), but these
estimates give super-exponential estimates for the sums in question.

Though the prototypical zeta function is the Riemann zeta function, it is
useful and interesting to consider the more general setting of the Selberg class S
which we carry out in this paper.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000293
Downloaded from https://www.cambridge.org/core. Queen's University Libraries (Canada), on 01 Aug 2018 at 17:06:09, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000293
https://www.cambridge.org/core


880 S. GUN et al

Before we proceed further, let us fix some notations. Throughout the paper,
we denote by ρF or sometimes by ρ (if the context is clear) the non-trivial zeros
of an element F(s) in the Selberg class. In this context, we examine sums of the
form (1) when ρ runs through zeros of a fixed element of the Selberg class. More
details of this theory can be found in §6 below.

§2. Some transcendental prerequisites. First we recall the following theorem
due to Alan Baker which will play a key role in our investigation.

THEOREM 2.1 (Baker). If α1, . . . , αm are non-zero algebraic numbers such
that logα1, . . . , logαm are linearly independent over Q, then

1, logα1, . . . , logαm

are linearly independent over Q.

Let L denote the Q-vector space generated by the logarithms of non-zero
algebraic numbers. We refer to this as the space of Baker periods. Baker’s
theorem asserts that every non-zero Baker period is transcendental.

We shall call the elements in the Q-vector space generated by the logarithms
of non-zero algebraic numbers and 1 as extended Baker periods.

We now recall the following far reaching conjecture in transcendence theory
due to Schanuel.

SCHANUEL’S CONJECTURE. Suppose that α1, . . . , αn are complex numbers
which are linearly independent over Q. Then the transcendence degree of the
field

Q(α1, . . . , αn, eα1, . . . , eαn )

over Q is at least n.

We shall need the following consequence of the above conjecture which is not
difficult to deduce. This was done in an earlier work of ours (see [8] for details).

PROPOSITION 2.2. Assume that Schanuel’s conjecture is true. If α1, . . . ,

αn are non-zero algebraic numbers such that logα1, . . . , logαn are linearly
independent over Q, then

logα1, . . . , logαn, logπ

are algebraically independent. In particular, logπ is a transcendental number
which is not an extended Baker period.

Finally, we shall need the following theorem of Nesterenko (see [17]
and [18]).

THEOREM 2.3. Let ℘(z) be a Weierstrass ℘-function with algebraic
invariants g2, g3 and with complex multiplication by an order of an imaginary
quadratic field K . Let ω be a non-zero period and η the corresponding quasi-
period. Then for any τ ∈ K with =(τ ) 6= 0, each of these sets

{π,ω, e2π iτ
} and {ω, η, e2π iτ

}

is algebraically independent over Q.
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§3. The case of the Riemann zeta function. We begin by considering the
following function

f : (0,∞)→ C

given by

f (x) =
∑
ρ

xρ

ρ
:= lim

T→∞

∑
|t |<T

xρ

ρ
,

where ρ = σ + it runs over the non-trivial zeros of the Riemann zeta function in
the critical strip 0 < <(s) < 1. Recall that

f (1) = 1
2γ + 1− 1

2 log 4π,

where γ is the Euler’s constant. It is not known whether f (1) is an irrational
number.

We are interested in studying the values taken by the function f at algebraic
points. We first have the following theorem.

THEOREM 3.1. The set X given by

X := { f (x) : x ∈ (1,∞) ∩Q}

has at most one algebraic element.

Proof. For x > 1, consider the function ψ0(x) given by

ψ0(x) =


∑
n6x

3(n) if x is not a prime power,∑
n6x

3(n)−
1
2
3(x) otherwise.

Observe that ψ0(x) is a Baker period. Here

3(n) =

{
log p if n is a power of a prime number p,
0 otherwise.

is the classical von Mangoldt function.
When x > 1, one has the following explicit formula of von Mangoldt (see

[10, p. 77], for instance)

f (x) = x − ψ0(x)− log 2π −
1
2

log
(

1−
1
x2

)
.

For x > 1, consider the function

g(x) = f (x)− x + log 2π = −ψ0(x)−
1
2

log
(

1−
1
x2

)
.
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Note that g(x) is a strictly decreasing function in (1,∞). Now suppose that f (x)
is algebraic at two distinct algebraic points, say α and β. Then

g(α)− g(β) = f (α)− α − f (β)+ β

is a non-zero algebraic number. But this is also a Baker period, a
contradiction. �

THEOREM 3.2. The function f has infinitely many zeros in (1,∞) of which
at most one is algebraic.

Proof. Note that for any algebraic x > 1, f (x)−x+log 2π is a Baker period.
Thus by Baker’s theorem, f is injective on the set of algebraic numbers greater
than 1. Hence f can have at most one algebraic zero.

We now show that f has infinitely many zeros in (1,∞). Let us write f as

f (x) = h(x)− ψ0(x),

where h(x) = x − 1
2 log(1− 1/x2)− log 2π.

Since ψ0(n) − n = �±(n1/2) (see [10, p. 91]), the sequence { f (n)}n∈N
changes sign infinitely often. In particular, there exists infinitely many N ∈ N
for which f (N ) < 0 while f (N + 1) > 0. Note that f is continuous in
(1,∞) except at prime powers where it is right continuous. Also h(x) is a strictly
increasing continuous function in (1,∞). Let N0 > 1 be a natural number such
that f (N0) < 0 while f (N0+1) > 0. If f (x) > 0 for some x ∈ (N0, N0+1), we
have a zero of f in (N0, N0+1). Assume otherwise. Sinceψ0(x) is non-negative
and constant in [N0, N0+1), N0+1 cannot be a prime power. Thus the function
f is continuous in [N0, N0 + 1] and hence must have a zero in this interval. �

We also have the following conditional result.

THEOREM 3.3. Assume Schanuel’s conjecture. Then X has no algebraic
element.

Proof. Suppose that both f (x) and x are algebraic. Then logπ lies in the Q-
vector space generated by logarithms of non-zero algebraic numbers and 1. But
by Proposition 2.2, this is not possible if we assume Schanuel’s conjecture. �

We now consider the case for 0 < x < 1. When 0 < x < 1, one has the
following expression as indicated by (Ingham [10, p. 81]):∑′

n61/x

3(n)
n
= −log x − γ +

∑
ρ

xρ

ρ
+

1
2

log
1+ x
1− x

− x,

where γ denotes Euler’s constant. The dash in the sum means that there is a
correction factor of 1/2 in the last term of the sum involving the von Mangoldt
function when x is the reciprocal of some prime power.
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The above expression can be deduced by considering the following integral

1
2π i

∫ 3+i∞

3−i∞

x1−s

1− s
ζ ′

ζ
(s) ds.

By Perron’s formula, this integral is equal to the left-hand side of the above
expression. As with the explicit formula for x > 1, completing this integral into
a rectangular contour, we will have contributions exactly from the residues of the
poles of (x1−s/(1− s))(ζ ′/ζ )(s) in the complex plane. The double pole at s = 1
contributes the factor−log x−γ . The poles from non-trivial zeros contribute the
factor ∑

ρ

x1−ρ

1− ρ
=

∑
ρ

xρ

ρ
.

Finally, the trivial zeros of the zeta function contribute

∞∑
n=1

x2n+1

2n + 1
=

1
2

log
1+ x
1− x

− x .

Arguing as earlier, we can now deduce the following result.

THEOREM 3.4. The set Y given by

Y := { f (x)− x : x ∈ (0, 1) ∩Q}

has at most one algebraic element. In particular, f has at most one algebraic
zero in (0, 1).

Proof. For 0 < x < 1,

f (x)− x − γ =
∑′

n61/x

3(n)
n
+ log x −

1
2

log
1+ x
1− x

and hence a Baker period if x is algebraic. If there are two algebraic values in
the set, we argue as we did in our earlier theorem. �

Also, we immediately observe the following.

COROLLARY 3.5. If f (x) is algebraic for some algebraic x in (0, 1), then γ
is transcendental.

It seems that the existence of the (presumably) fictitious algebraic element
in the above theorem cannot be ruled out under Schanuel’s conjecture. Thus the
transcendence tools required for studying f (x) in the range x < 1 seem to be
different from those in the range x > 1. We however have the following curious
theorem.
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THEOREM 3.6. For an integer d > 1, suppose that f (π
√

dx) has a rational
zero in (0, 1/π

√
d). Then for the quadratic character χ−d associated with the

imaginary quadratic field K := Q(
√
−d), one has

L ′(1, χ−d) 6= 0.

Proof. As discussed above for 0 < x < 1,

f (x) =
∑′

n61/x

3(n)
n
+ log x + γ −

1
2

log
1+ x
1− x

+ x .

Suppose f (π
√

dr) = 0 for some rational r ∈ (0, 1/π
√

d). Write x = πr
√

d .
Then we have

γ = −
∑′

n61/x

3(n)
n
− log x +

1
2

log
1+ x
1− x

− x .

Therefore,
e2γ
= αe−2πr

√
d , (5)

where α ∈ Q(π).
Now let χ−d be the quadratic character associated to the imaginary quadratic

field K = Q(
√
−d) such that L ′(1, χ−d) = 0.

It is known (see [14, p. 848]) that (essentially by the Chowla–Selberg
formula)

exp
(

L ′(1, χ−d)

L(1, χ−d)
− γ

)
= (2D/A2)

D∏
a=1

0(a/D)−χ−d (a)w/2h

where A =
√

D/π , D is the absolute discriminant of K , h and w are the class
number and order of unit group of K respectively.

As observed by Gross [7], the number

D∏
a=1

0(a/D)χ−d (a)

is, up to an algebraic factor, equal to a product of a power of π and a power of
a non-zero period ω of the CM elliptic curve attached to the full ring of integers
of K .

Since L ′(1, χ−d) = 0, we see from above that eγ ∈ Q(π, ω). On the other
hand, from (5), we have e2γ

= αe−2πr
√

d with α ∈ Q(π). This contradicts
Nesterenko’s result (Theorem 2.3). �

As evident, while logπ is the mysterious number that shows up in the
evaluation of f (x) for x > 1, it is γ that enters the picture for x < 1. We
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would like to obtain transcendence results involving both logπ and γ . For x > 1,
replacing x by 1/x in Ingham’s formula, we obtain

L(x) :=
∑′

n6x

3(n)
n
= log x − γ +

∑
ρ

x−ρ

ρ
−

1
2

log
x + 1
x − 1

−
1
x
.

Recall that for such an x , we have

ψ0(x) = x −
∑
ρ

xρ

ρ
− log 2π −

1
2

log
(

1−
1
x2

)
.

Assuming the Riemann hypothesis so that a typical zero ρ is of the form 1/2+iν,
and pairing the zeros 1/2+ iν with 1/2− iν, we obtain the following expression
for x > 1:∑
ν>0

2 cos(ν log x)
1/4+ ν2 =

∑
ν

x iν
+ x−iν

1/2+ iν

=
x − ψ0(x)
√

x
−

log 2π
√

x
−

1
2
√

x
log
(

1−
1
x2

)
+
√

x(L(x)− log x)+ γ
√

x −
√

x
2

log
x + 1
x − 1

+
1
√

x

and hence∑
ν>0

2 cos(ν log x)
1/4+ ν2 +

log 2π
√

x
− γ
√

x =
x − ψ0(x)
√

x
−

1
2
√

x
log
(

1−
1
x2

)
+
√

x(L(x)− log x)−
√

x
2

log
x + 1
x − 1

+
1
√

x
.

We now have the following.

THEOREM 3.7. Assume the Riemann hypothesis. For any algebraic x > 1,∑
ν>0

2 cos(ν log x)
1/4+ ν2 +

log 2π
√

x
− γ
√

x

is an extended Baker period. If Schanuel’s conjecture is true, then the following
set {∑

ν>0

cos(ν log x)
1/4+ ν2 : x > 1, x ∈ Q

}
has at most one algebraic number.

We now derive a related result without assuming the Riemann hypothesis. To
this end, we observe that we can write∑

ρ

x−ρ

ρ
=

∑
ρ

x−(1−ρ)

1− ρ
=

∑
ρ

xρ−1

1− ρ
,

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000293
Downloaded from https://www.cambridge.org/core. Queen's University Libraries (Canada), on 01 Aug 2018 at 17:06:09, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000293
https://www.cambridge.org/core


886 S. GUN et al

by virtue of the functional equation. Thus

L(x) = log x − γ −
∑
ρ

xρ−1

ρ
+

(∑
ρ

xρ−1

ρ
+

∑
ρ

xρ−1

1− ρ

)
+

1
2

log
x + 1
x − 1

−
1
x
.

The sum in brackets can be written as∑
ρ

xρ−1

ρ(1− ρ)

which is an absolutely convergent series and is thus equal to

∑
ρ

xρ−1

ρ(1− ρ)
= L(x)− log x + γ +

∑
ρ

xρ−1

ρ
−

1
2

log
x + 1
x − 1

+
1
x
.

The sum ∑
ρ

xρ−1

ρ

is equal to
x − ψ0(x)

x
−

log 2π
x
−

1
2x

log
(

1−
1
x2

)
and hence∑

ρ

xρ

ρ(1− ρ)
− γ x + log 2π = 1+ x(L(x)− log x)+ x − ψ0(x)

−
x
2

log
x + 1
x − 1

−
1
2

log
(

1−
1
x2

)
.

As the right-hand side is an extended Baker period for algebraic x , this proves
the following.

THEOREM 3.8. For x > 1,

S(x) :=
∑
ρ

xρ

ρ(1− ρ)
− γ x + log 2π

is an extended Baker period. In particular, assuming Schanuel’s conjecture, the
set {∑

ρ

xρ

ρ(1− ρ)
: x > 1, x ∈ Q

}
contains at most one algebraic number.

We remark that an expression similar to ours in the above theorem was
also obtained by Ramaré [19] (however, sign in the sum over the zeros in his
Lemma 2.2 should be negative).
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§4. Sums of general type involving the Riemann zeta function. We now
consider more general sums of the form

f (x) :=
∑
ρ

A(ρ)
B(ρ)

xρ,

where A(t) ∈ Q[t] while B(t) ∈ Q[t] be polynomials and x ∈ (0,∞). We
assume that B(t) has simple rational roots with degree greater than that of A(t).
As before, the sum is defined following the convention of §3.

We shall need the following elementary lemma whose proof we omit (see [6,
p. 137]).

LEMMA 4.1. For |z| < 1, let

fu(z) =
∞∑

n=1

zn

n + u
.

If u = p/q is a rational number, then

fu(z) = −z p/q
q−1∑
m=0

ζ
−pm
q log(1− ζm

q z1/q),

where ζq = e2π i/q .

We first consider the case when x > 1. For this, we shall further assume
that B(t) has simple rational roots lying in Q\{1,−2,−4,−6, . . .}. We have the
following theorem.

THEOREM 4.2. Let A(t) and B(t) be as described above and let α1, . . . , αd
be the roots of B(t). For an algebraic number x > 1,

g(x) :=
∑
ρ

A(ρ)
B(ρ)

xρ +
d∑

i=1

A(αi )

B ′(αi )

ζ ′

ζ
(αi )xαi

is an extended Baker period. Further for λi := A(αi )/B ′(αi ),
• if

∑d
i=1 (λi/(1− αi )) 6= 0, then g(x) has at most one algebraic zero in

(1,∞);
• if

∑d
i=1 (λi/(1− αi )) = 0 and g(x) 6= 0 for some algebraic x > 1, then at

least one of the two numbers

∑
ρ

A(ρ)
B(ρ)

xρ,
d∑

i=1

λi
ζ ′

ζ
(αi )xαi

is transcendental.
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Proof. For any x > 1, α ∈ R\{1,−2,−4,−6, . . .}, we have the following
expression

ψ0(x, α) =
x

1− α
− xα

ζ ′

ζ
(α)−

∑
ρ

xρ

ρ − α
+

∞∑
n=1

x−2n

2n + α
,

where

ψ0(x, α) :=


xα
∑
n6x

3(n)
nα

if x is not a prime power;

xα
∑
n<x

3(n)
nα
+

1
2
3(x) otherwise.

This follows by modifying the explicit formula suitably. We now re-write this as

∑
ρ

xρ

ρ − α
+ xα

ζ ′

ζ
(α) =

x
1− α

− ψ0(x, α)+
∞∑

n=1

x−2n

2n + α
. (6)

Note that by Lemma 4.1, when α is a rational number and x is algebraic,
the right-hand side of (6) is an extended Baker period. Now by using partial
fractions, we can write

A(t)
B(t)
=

d∑
i=1

λi

t − αi

with λi := A(αi )/B ′(αi ). Thus the function∑
ρ

A(ρ)
B(ρ)

xρ +
d∑

i=1

A(αi )

B ′(αi )

ζ ′

ζ
(αi )xαi

is equal to

x
d∑

i=1

λi

1− αi
−

d∑
i=1

λiψ0(x, αi )+

d∑
i=1

λi

∞∑
n=1

x−2n

2n + αi
.

which is an extended Baker period if x is algebraic. The second part of the
theorem is again a consequence of Baker’s theorem. �

Finally, when x ∈ (0, 1) and α ∈ R\{0, 1, 3, 5, 7, . . .}, we have

T (x, α) =
∑
ρ

xρ

ρ − α
+

1
α
− xα

ζ ′

ζ
(1− α)+

∞∑
n=1

x2n+1

2n + 1− α
,

where

T (x, α) :=


xα

∑
n61/x

3(n)
n1−α if 1/x is not a prime power,

xα
∑

n<1/x

3(n)
n1−α +

x
2
3(1/x) otherwise.
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Hence we have

∑
ρ

xρ

ρ − α
− xα

ζ ′

ζ
(1− α) = T (x, α)−

1
α
−

∞∑
n=1

x2n+1

2n + 1− α
,

where the right-hand side is an extended Baker period when x is algebraic and α
is rational. Thus we have the following theorem for x < 1.

THEOREM 4.3. Let A(t) and B(t) be as before and let α1, . . . , αd be the
roots of B(t) all of which lie in Q\{0, 1, 3, 5, 7, . . .}. For an algebraic x ∈ (0,
1), the number

h(x) :=
∑
ρ

A(ρ)
B(ρ)

xρ −
d∑

i=1

A(αi )

B ′(αi )

ζ ′

ζ
(1− αi )xαi

is an extended Baker period. Further, the set

{h(x) | x ∈ (0, 1) ∩Q}

can have at most one algebraic number.

Proof. As before, using partial fractions, we can deduce that

h(x) =
d∑

i=1

λi T (x, αi )−

d∑
i=1

λi

αi
−

d∑
i=1

λi

∞∑
n=1

x2n+1

2n + 1− αi
,

where λi := A(αi )/B ′(αi ). When x is algebraic, h(x) is an extended Baker
period. Finally the second part of the theorem follows by noting that for x, y
algebraic, h(x)− h(y) is a Baker period. �

§5. The Selberg class. Selberg [20] defined a large class S of Dirichlet series
admitting analytic continuation and functional equation. It is likely that this class
includes the universe of automorphic L-functions, though this has not yet been
proven. The class S is defined as follows.
(1) Each F ∈ S is a Dirichlet series

F(s) =
∞∑

n=1

aF (n)n−s,

absolutely convergent for <(s) > 1.
(2) There exists an integer m > 0 such that (s − 1)m F(s) is an entire function

of finite order. Let m F denote the least value of such m.
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(3) For each F ∈ S, there exist numbers QF > 0 and r > 0, and numbers
λ j > 0 and µ j with <(µ j ) > 0, such that

ξF (s) := Qs
F

r∏
j=1

0(λ j s + µ j )F(s)

satisfies the functional equation

ξF (s) = wξF (1− s),

with w a complex number of absolute value 1. Here ξF (s) = ξF (s) and an
empty product equals 1.

(4) The Dirichlet coefficients aF (n) satisfy aF (n)� nε for every ε > 0.
(5) log F(s) can be written as a Dirichlet series

∞∑
n=1

bF (n)n−s,

where bF (n) is zero unless n is a prime power and bF (n) � nθ for some
θ < 1/2.

There are several celebrated conjectures related to this class and we refer the
reader to [20] and [13] for further details. Because of the Legendre duplication
formula for the 0-function, it is easy to see that the functional equation is not
unique for an arbitrary element F in S. However, the invariants

dF = 2
r∑

j=1

λ j , qF = (2π)dF Q2
F

r∏
j=1

λ
2λ j
j , θF = 2=

( r∑
j=1

(µ j −1/2)
)
,

are well defined and called, the degree, the conductor and shift, respectively. One
conjectures that dF and qF are positive integers. Recently, some impressive work
[11] has appeared that shows that 0 < dF < 1 and 1 < dF < 2 are impossible.

We now derive a general formula for an element in the Selberg class. It is
convenient to write

−
F ′

F
(s) =

∞∑
n=1

3F (n)n−s, 3F (n) = bF (n) log n.

For x > 1, let us introduce the notation

ψ0(x, F, α) :=


xα
∑
n6x

3F (n)
nα

if x is not a prime power,

xα
∑
n<x

3F (n)
nα

+
1
2
3F (x) otherwise.
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Let α be a complex number not equal to any of the poles and zeros of F(s).
Again the explicit formula for F (see formula (12) of [15], for instance) yields
that

ψ0(x, F, α) = −xα
F ′

F
(α)+

m F x
1− α

−

∑
ρ

xρ

ρ − α

+

r∑
j=1

∞∑
n=0

x−((n+µ j )/λ j )

(n + µ j )/λ j + α
−

m F

α
,

where ρ runs over the non-trivial zeros of F in the sector 06 <(s)6 1. Recalling
the following series introduced earlier,

fu(z) =
∞∑

n=1

zn

n + u
,

we have

∞∑
n=1

x−((n+µ j )/λ j )

(n + µ j )/λ j + α
= x−µ j/λ jλ j fµ j+αλ j (x

−1/λ j ),

and hence

xα
F ′(α)
F(α)

+

∑
ρ

xρ

ρ − α

is equal to

m F x
1− α

− ψ0(x, F, α)+
r∑

j=1

x−µ j/λ jλ j fµ j+αλ j (x
−1/λ j )

+

r∑
j=1

x−(µ j/λ j )

µ j/λ j + α
−

m F

α
.

Again let A(t) ∈ Q[t] and B(t) ∈ Q[t] be polynomials such that B(t) has simple
rational roots not equal to any of the poles and zeros of F(s) and degree of B(t)
is strictly greater than the degree of A(t). Then as before,

A(t)
B(t)
=

d∑
i=1

βi

t − αi

with βi := A(αi )/B ′(αi ), and hence we have

∑
ρ

A(ρ)
B(ρ)

xρ +
d∑

i=1

A(αi )

B ′(αi )

F ′

F
(αi )xαi
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is equal to

m F x
d∑

i=1

βi

1− αi
−

d∑
i=1

βiψ0(x, F, αi )

+

d∑
i=1

βi

{ r∑
j=1

x−µ j/λ jλ j fµ j+αiλ j (x
−1/λ j )

}

+

d∑
i=1

βi

{ r∑
j=1

x−(µ j/λ j )

µ j/λ j + αi
−

m F

αi

}
.

We will say two functions F,G ∈ S are of the same Hodge type if they admit
a functional equation with the same λ j and the µ j . In such a situation, we can
prove the following.

THEOREM 5.1. Consider the set of elements F ∈ S with a fixed Hodge type
such that

1F :=
∑
ρ

A(ρ)
B(ρ)

xρ +
d∑

i=1

A(αi )

B ′(αi )

F ′

F
(αi )xαi

is algebraic for algebraic x > 1. Further assume that βi = A(αi )/B ′(αi ) are
real with same sign for 1 6 i 6 d. If there are two elements F,G in this set, then
for any prime p with

√
x < p 6 x, we have

bF (p) = bG(p).

In particular, if 2 6 x < 3, then bF (2) = bG(2).

Proof. For any such elements F and G, the above discussion along with
Baker’s theorem would necessarily imply that

d∑
i=1

βiψ0(x, F, αi ) =

d∑
i=1

βiψ0(x,G, αi ).

The theorem then follows as logarithms of primes are linearly independent over
Q and hence over Q by Baker’s theorem. �

§6. The arithmetic Selberg class A. We now focus our attention on a subclass
A of S, which we call the arithmetic Selberg class. The class A is defined by the
following axioms.
(1) Each F ∈ A is a Dirichlet series

F(s) =
∞∑

n=1

aF (n)n−s,

absolutely convergent for <(s) > 1.
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(2) There exists an integer m > 0 such that (s − 1)m F(s) is an entire function
of finite order. As before, m F is the smallest such m.

(3) For each F ∈ A, there exist numbers QF and r , and rational numbers
λ j > 0 and µ j > 0 such that

ξF (s) := Qs
F

r∏
j=1

0(λ j s + µ j )F(s)

satisfies the functional equation

ξF (1− s) = wξF (1− s),

with w a complex number of absolute value 1. Moreover, the conductor qF
is assumed to be a natural number.

(4) log F(s) can be written as a Dirichlet series

∞∑
n=1

bF (n)n−s,

with bF (n) algebraic satisfying bF (n) = 0 if n is not a power of p, with p
prime.

Technically speaking, A is not a subclass of S since the reader will note that
the Ramanujan estimate for the coefficients aF (n)which appears in the definition
of the Selberg class S, is not assumed in the above definition since it is not
essential for the nature of the theorems we will derive. We also do not assume
any estimate for bF (n). It is also easy to see that the algebraicity of bF (n) implies
the algebraicity of aF (n).

Most of the zeta functions that arise in number theory (such as the Artin L-
functions and zeta functions attached to algebraic varieties) either belong to A

or are expected to belong to A.
As earlier, for F ∈ A and for x > 1,

xα
F ′

F
(α)+

∑
ρ

xρ

ρ − α

is equal to

m F x
1− α

+

r∑
j=1

x−(µ j/λ j )

µ j/λ j + α
−

m F

α
− ψ0(x, F, α)

+

r∑
j=1

x−µ j/λ jλ j fµ j+αλ j (x
−1/λ j ).

From this formula, we see that for x algebraic, the right-hand side is an
extended Baker period provided α, the µ j and the λ j are all rational numbers.
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THEOREM 6.1. Let F ∈ A. Let A(t), B(t) be polynomials as before and B(t)
of degree d with simple rational roots α1, . . . , αd not equal to the zeros and poles
of F. For x > 1 and algebraic, we have that

g(x) :=
∑
ρ

A(ρ)
B(ρ)

xρ +
d∑

i=1

βi
F ′

F
(αi )xαi ,

where βi := A(αi )/B ′(αi ), is an extended Baker period. Further suppose that
µ j = 0 for all j . Then:
• if m F

∑d
i=1 (βi/(1− αi )) 6= 0, then g(x) has at most one algebraic zero in

(1,∞);
• if m F

∑d
i=1 (βi/(1− αi )) = 0, then the set

{g(x) | x ∈ (1,∞) ∩Q}

has at most one algebraic number.

Proof. The proof follows from the preceding discussion and appealing to
Baker’s theorem. �

§7. The case 0 < x < 1 for the Selberg class. When 0 < x < 1, recall that
one has the following expression as indicated by Ingham:

∑′

n61/x

3(n)
n
= −logx − γ +

∑
ρ

xρ

ρ
+

1
2

log
1+ x
1− x

− x,

where γ denotes the Euler’s constant. As noted earlier, this is deduced by
considering the following integral

1
2π i

∫ 3+i∞

3−i∞

x1−s

1− s
ζ ′

ζ
(s) ds.

A similar argument can be applied to an arbitrary element F in the Selberg
class. Let us write

−
F ′

F
(s) =

m F

s − 1
− γF + O(s − 1).

Then, for x ∈ (0, 1) such that 1/x is not a prime power, we have∑
n61/x

3F (n)
n
= −m F log x − γF +

∑
ρ

xρ

ρ

+

r∑
j=1

{
λ j x1+µ j/λ j fλ j+µ j (x

1/λ j )+
λ j x1+µ j/λ j

λ j + µ j

}
,
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where ρ runs over the non-trivial zeros of F(s). Finally, when x ∈ (0, 1) and
α 6= 0 and also not equal to poles and zeros of F , we have

T (x, F, α) =
∑
ρ

xρ

ρ − α
+

m F

α
+

m F x
1− α

− xα
F ′

F
(1− α)

+

r∑
j=1

λ j
x1+(µ j/λ j )

µ j + λ j − αλ j
+

r∑
j=1

λ j x1+µ j/λ j fµ j+λ j−αλ j (x
1/λ j ),

where ρ runs over the non-trivial zeros of F(s). Here

T (x, F, α) :=


xα

∑
n61/x

3F (n)
n1−α if 1/x is not a prime power,

xα
∑

n<1/x

3F (n)
n1−α +

x
2
3F (1/x) otherwise.

Hence we have∑
ρ

xρ

ρ − α
− xα

F ′

F
(1− α) = T (x, F, α)−

m F

α
−

m F x
1− α

−

r∑
j=1

λ j x1+(µ j/λ j )

µ j + λ j − αλ j

−

r∑
j=1

λ j x1+µ j/λ j fµ j+λ j−αλ j (x
1/λ j ).

Recalling that two functions F,G ∈ S are of the same Hodge type if they
admit a functional equation with the same λ j and the µ j , we have the following
theorem.

THEOREM 7.1. Let A(t), B(t) be as in Theorem 7.2. Consider the set of
elements F ∈ S with a fixed Hodge type such that

h(x) :=
∑
ρ

A(ρ)
B(ρ)

xρ −
d∑

i=1

A(αi )

B ′(αi )

F ′

F
(1− αi )xαi

is algebraic for algebraic x < 1. Further assume that βi = A(αi )/B ′(αi ) are
real with same sign for 1 6 i 6 d. If there are two elements F,G in this set, then
for any prime p with 1/

√
x < p 6 1/x, we have

bF (p) = bG(p).

Proof. The proof follows by arguing along the line of the proof of
Theorem 5.1. �
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Finally, when F is in the arithmetic Selberg class, we have the following
theorem whose proof is analogous to that of Theorem 6.1.

THEOREM 7.2. Let F ∈ A. Let A(t) and B(t) be as before and let α1, . . . , αd
be the roots of B(t) which are all rational, non-zero, simple and not equal to the
zeros and poles of F. Then for an algebraic x ∈ (0, 1), the number

h(x) :=
∑
ρ

A(ρ)
B(ρ)

xρ −
d∑

i=1

A(αi )

B ′(αi )

F ′

F
(1− αi )xαi

is an extended Baker period. Here ρ runs over the non-trivial zeros of F(s).
Further suppose that µ j = 0 for all j . Then:
• if m F

∑d
i=1 (βi/(1− αi )) 6= 0, then h(x) has at most one algebraic zero in

(0, 1);
• if m F

∑d
i=1 (βi/(1− αi )) = 0, then the set

{h(x) | x ∈ (0, 1) ∩Q}

has at most one algebraic number.

§8. Concluding remarks. It is yet unclear what role (if any) transcendental
number theory plays in our journey towards the grand Riemann hypothesis. The
generalized Li criterion as well as many of the theorems of this paper suggest
that there may be a link. If so, this paper represents a humble beginning towards
our lofty goal.

Acknowledgements. We thank the referee for helpful corrections.
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