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Abstract 

Lightning is one of the most impactful weather phenomena but yet little precise and 

accurate information is known about how its frequency is impacted climatologically by changes 

in land use/land cover (LULC).  This is unfortunate because LULC changes occur ubiquitously 

as the human influence on the environment proceeds.  This research uses NOAA’s gridded 

annual lightning data from the National Lightning Detection Network (NLDN), and LULC 

classification data from the NOAA coastal change analysis program (C-CAP) to analyze 

frequency changes in lightning across a swath of Louisiana, coastal Mississippi, and coastal east 

Texas over the years 1995–2011.  Results suggest that urban areas have the highest frequency of 

CG lightning, but there is little variation in lightning over the course of the temporal period 

examined.  The implications of this work will provide planners and regional analysts more 

insight as to how some LULC categories attract more lightning than others, as well as how CG 

lightning is sporadic and complicated to model. Some limitations of this research are that the 

lightning data utilized in this study are not point data, complicating the measurement of spatial 

shifts in lightning occurrence since raster cells are fixed to a specific latitude and longitude. 

Therefore, continued work is needed to further understand the relationship between human 

influence on the landscape and the lightning risk.  Results presented here and in future work will 

be useful to environmental planners as they work to understand and mitigate the lightning 

hazard. 
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Chapter 1. Introduction 

Why Study Lightning? 

Lightning is a phenomenon that has perplexed, terrified, amazed, and devastated humans 

and other organisms. It is one of the world’s most dangerous, but often underestimated, severe 

weather phenomena and it continues to claim dozens of lives every year in the United States 

(Curran et al., 2000; NWS, 2016; Holle, 2016).  

Fulminologists—scientists who study atmospheric electricity—have generated substantial 

information regarding the development of lightning. Lightning is formed when small particles of 

ice – known as graupel (Figure 1.1) – form inside a cloud. The graupel is ionized through 

collisions with other particles in the cloud that are driven by powerful updrafts; this process is 

known as an electron avalanche (Cooray, 2015).  

 

Figure 1.1 Graupel, hail, sleet, and snow, respectively (NWS, 2016). 

 

Once enough electrically charged particles surpass the threshold of atmospheric 

insulation, a stepped leader (Figure 1.2)—a concentrated current of energy that is negatively or 

positively charged propagating toward the surface—will connect with a vertically-propagating 

stepped leader from the surface or object on Earth, and the resulting phenomena is the lightning 

flash (Cooray, 2015). Thunder is the acoustic aftermath of a lightning flash, caused by rapid  
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heating and expansion of the surrounding air, which has been recorded to reach temperatures of 

up to 6000 K (Rakov and Uman, 2003). 

Most people who are aware of the hazard of lightning often jest about the statistical 

probability of being struck, which is 1 in 1,042,000 (NWS, 2013). This fact likely causes many 

to neglect the safety methods disseminated by the National Oceanic and Atmospheric 

Association (NOAA) and the National Weather Service (NWS), and fatalities continue to occur. 

However, a brief analysis of lightning fatalities shows that the total has decreased over time for 

the country and Louisiana (Figure 1.3; Curran et al., 2000; Roeder et al., 2015; NWS, 2016).  

Louisiana is ranked ninth among the states in lightning-induced deaths per year (Holle, 

2016), despite having a population that ranks 25th. Louisiana often has the second highest rate of 

lightning frequency in the United States. Florida, Texas, Mississippi, and Alabama also have 

high flash frequencies (Holle, 2016). Florida’s high flash rate exists because of its proximity to 

the atmospheric features required to create a thunderstorm, such as convection, moisture, and 

heat (Zhu et al., 2015). Louisiana is also in a similar position; although it lacks the persistent 

convective enhancement of peninsular Florida, the state has a constant supply of warm, moist air 

from the Gulf of Mexico that fuels atmospheric  

Figure 1.2 The process of a stepped leader and how it creates a Cloud to ground lightning flash. 

Negative (positive) channels connect with positive (negative) channels propagating from the surface 

(NWS, 2016). 
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instability for a substantial number of days throughout the year. In addition to moisture (Lericos 

et al., 2002) and pollution (Smith et al., 2005).  

Instrumentation designed to detect lightning has improved in recent decades. This has 

allowed atmospheric scientists to create climatological averages of lightning over specific areas, 

and of course to research the spatio-temporal patterns of lightning. Although there have been 

many tools for examining lightning in past years (e.g. boys cameras, cloud chambers, lightning 

chimes), modern ground-based electromagnetic sensor and orbiting satellites in space keep a far 

more accurate and precise count of lightning totals on a near-real-time basis over far wider areas 

than ever before.  

Despite their many advantages, weaknesses of the modern lightning detection systems 

exist.  Specifically, ground-based measurement systems often detect electromagnetic 

Figure 1.3 Total lightning fatalities in the U.S., 1940 to 2015 (bars), compared with 

fatalities from other natural hazards (NWS, 2016).  
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perturbations only to a limited height of the atmosphere, whereas satellite instrumentation can 

only sense the perturbations down to a limited depth of the atmosphere and may confuse 

lightning with other distortions of light in the Earth-atmosphere system (Boccippio et al., 2000; 

Boccippio et al., 2002; Ushio et al., 2002; Mach et al., 2007; Beirle et al., 2014, Buechler et al., 

2014). Studies have consistently shown that ground-based detection systems are more precise, 

accurate, and reliable than their space-based counterparts (Idone et al., 1998; Biagi et al., 2007; 

Holle, 2014; Mallick et al., 2014). Rapid technological advancements continue to further 

lightning observation and study.   

Lightning detection systems consistently show that strikes are more frequent on tall, 

ellipsoid-shaped buildings and surfaces that can generate a large electrical field (Rakov and 

Uman, 2003). In natural environments, these land covers consist of open fields or bodies of 

water, tall trees, and high points on a mountain. Built-up environmental features such as parking 

lots, skyscrapers, communication towers, sports fields, farm plots, and other anthropogenic 

landscapes are also favored. Data are now available to assess the validity of the notion that land 

use / land cover (LULC) may modify the spatio-temporal patterns of lightning strikes.  

An improved understanding of the spatiotemporal patterns of lightning frequency is 

important for protecting life and property.  Additional understanding of the relationship between 

natural and anthropogenic landscapes and lightning can improve protection of life and property. 

The objectives of this thesis are to:  

1.) Analyze the spatio-temporal distribution of cloud-to-ground (CG) lightning over the 

northern Gulf Coast region. 

2.) Investigate the influence of land classes on lightning totals and patterns over the 

northern Gulf Coast region.  
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Results from this research will not only serve the people of the Louisiana Gulf Coast region, but 

will also be useful elsewhere for mitigating lightning damage. 

Chapter 2 will provide a more detailed literature review of lightning and LULC change 

detection research in recent decades.  Chapter 3 will explain the data and methods used to 

address the objectives listed above.  In Chapter 4, the results and their implications will be 

presented.  Finally, Chapter 5 will include a summary of the major findings, along with 

suggestions for future research.   
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Chapter 2. Literature Review 

“An investment in knowledge pays the best interest.” 

– Benjamin Franklin 

While a majority of recent lightning research is dedicated to understanding the physics of 

lightning, recent studies have focused on extracting spatio-temporal patterns from lightning data 

(Roeder et al., 2015; Cecil et al., 2015; Dowdy, 2016). In addition, LULC due to anthropogenic 

activity has also been explored through geographic research methods (Contiu & Gorza, 2016; 

Maclaurin and Leyk, 2016). This chapter will review the spatio-temporal and other 

geographically-focused studies. 

2.1 Diurnal Lightning Studies 

Diurnal patterns of lightning have been investigated thoroughly. Wallace (1975) found 

that thunderstorm activity depends upon diurnal kinematic and thermodynamic variables in the 

U.S., with most locations experiencing a peak in severe thunderstorms in the afternoon. 

Easterling and Robinson (1985) divided the U.S. into nine regions based on diurnal thunderstorm 

tendencies and found that the central region’s thunderstorms occur mostly at night, while eastern 

and western thunderstorms display an afternoon preference, and those in the Northeast and the 

Pacific coast are rare. Lόpez and Holle (1998) showed that Colorado storms are more commonly 

characterized by a west to east shift in maximum frequency from early morning to late evening, 

while Florida has lightning patterns that tend to be maximized between Cape Canaveral and 

Orlando in the afternoon. Carey and Rutledge (2003) analyzed the diurnal characteristics of 

lightning over the Kansas/Colorado border to Minnesota; their results showed that the amperage 

of a lightning flash depends upon the strength, size, and location of the storm, but overall the 

most powerful flashes occur in the afternoon. Smith et al. (2005) found that over the Gulf of 
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Mexico from 1989 – 2002, warm-season lightning is most prevalent during the day over areas 

along the coast, and during the night the lightning occurs most frequently over the Gulf. 

More recent diurnal studies of lightning have utilized data from recently developed 

observation techniques such as the World-Wide Lightning Location Network (WWLLN; 

Jacobsen et al., 2006). Rudlosky & Shea (2013) compared results of the WWLLN to the 

Lightning Imaging Sensor (LIS) derived lightning counts and found strong similarities between 

the two data sets. Utilizing data from the LIS satellite to compile a spatial pattern analysis of 

lightning, Sen Roy and Balling (2013) showed that most lightning flashes occur over land during 

the day with very few occurring at night.  Blakeslee et al. (2014) utilized LIS/Optical Transient 

Detector (OTD) remotely-sensed data to determine that global lightning maxima tends to occur 

most frequently in late afternoon, with minima tending to occur in the late morning. Holle (2014) 

found evidence using data from the National Lightning Detection Network (NLDN) that, over 

the U.S., lightning tends to occur between 1200 and 1800 local time, but occurrences before 

noon are more common over areas along the Gulf Coast and portions of the East Coast than 

elsewhere. Virts et al. (2015) found summer frequencies of lightning strikes to be maximized 

during the late afternoon and early evening, in general across the contiguous U.S., with lightning 

tending to occur most frequently from sunrise to late morning in the northern Gulf of Mexico – 

showing evidence of strong regional influence on diurnal lightning patterns.  

2.2 Seasonal Lightning Studies 

Seasonal lightning studies have been conducted around the world. Collier et al. (2006) 

reported that in southern Africa the highest flash rate is in the summer over Madagascar and 

South Africa. In a global study of seasonal lightning variability Yang et al. (2009) determined 

that Africa and Asia contains higher rates of CG lightning than any other location on the globe. 
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Tinmaker et al. (2014) identified a bimodal pattern of frequency over the Indian Seas, with peaks 

in April and October, corresponding to the timing of the monsoon front.  Virts et al. (2015) 

showed that summer is the most active lightning season over the Gulf of Mexico and 

surrounding coastal areas and that most lightning activity is concentrated over the land. A 

lightning climatology for the U.S. Southwest in conjunction with the North American monsoon 

showed a drastic increase in lightning during the summer, when the monsoon period is at its 

strongest (Holle and Murphy 2015). Dowdy (2016) concluded that ENSO has the strongest 

influence on seasonal lightning variability around the globe.  

2.3 Lightning Frequency 

Climatological studies of lightning across the U.S. have been completed for various 

regions, with data for global tropical coverage (Figure 2.1) and global coverage (Figure 2.2) also 

having become recently available. Changnon (1988a, 1988b) showed that the peak frequency of  

Figure 2.1 A lightning climatology derived from the Lightning Imaging Sensor / Optical 

Transient Detector sensor, which is aboard the Tropical Rainfall Measuring Mission satellite 

(NASA, 2016). 



9 
 

Figure 2.2 A lightning climatology derived from the Worldwide Lightning Location Network showing the 

mean lightning flashes per hour per year (2008–2011) per km2 (Virts et al., 2013). 
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thunder events in the U.S. tends to occur the most over the Gulf Coast and the least over the 

West Coast. Watson and Holle (1996) found that in the southeastern U.S., the CG strike 

frequency is maximized along the shores of Florida and that urban areas often show enhanced 

frequency. Hodanish et al. (1997) found that for each season, synoptic and mesoscale 

mechanisms influence the location of lightning occurrence in Florida. Huffines and Orville 

(1999) found that Florida has the highest lightning strike density in the U.S. due to its unique 

geographic features that allow convection to promote thunderstorm development rapidly. Orville 

and Huffines (1999) suggested that Florida and Louisiana have the highest frequency of 

lightning activity—11 strikes km-2 per year— in the U.S., due to abundant moisture, heat, and 

forcing mechanisms. Zajac and Rutledge (2001) found that U.S. lightning flashes are most 

frequent over the coastal Southeast, but that high frequencies are also concentrated over the 

southern Rocky Mountains and the Great Plains. Schuhltz et al. (2011) found that CG lightning 

comprises of approximately 40% of total lightning in the United States. Villarini and Smith 

(2013) found that, within the U.S., extreme lightning activity is concentrated in the central U.S. 

and west of the Appalachian Mountains and increased in frequency from 1999 to 2011. 

Sources of lightning frequency variability have also been examined.  LaJoie and Laing 

(2008) showed that, over the Gulf of Mexico, lightning tends to have increased activity during 

warm El Nino/Southern Oscillation periods. In follow-up research, Laing et al. (2008) identified 

statistically significant correlations between winter ENSO and lightning activity in the Gulf of 

Mexico region, but only weak correlation values for the summer.
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Synoptic-scale spatial patterns have revealed previously unknown characteristics of 

thunderstorms. In analyzing summer thunderstorm features over the southeastern U.S., Murphy 

and Konrad (2005) found, not surprisingly, that larger thunderstorms tend to produce more 

lightning than more localized thunderstorms.  Williams (2005) determined that, while lightning 

is sensitive to temperature when analyzed under smaller temporal scales, under more extensive 

temporal analysis the connection diminishes for global lightning occurrences. 

Lightning climatologies focused elsewhere in the world have also been completed in 

recent years, in response to newly-available and detailed lightning data availability.  Burrows et 

al. (2002) reported that Canadian lightning flashes are concentrated most heavily in southern 

Alberta, southeast of Nova Scotia, and southern Ontario. Burrows and Kochtubajda (2010) 

concurred, concluding that Canadian lightning maxima tends to occur nearest to the U.S. border 

in areas where heat, moisture, and instability tend to be abundant. In a review of lightning in the 

tropical Western Hemisphere, Pinto et al. (2007) found that lightning flash densities vary from 

19 to 65 flashes km-2 year-1. Antonescu and Burecea (2010) showed that the highest density of 

lightning strikes in Romania are associated with the Romanian plain convergence zone. Makela 

et al. (2011) found that median values of lightning density per day are similar between the U.S. 

and Finland, but maximum values per day are much different between the two nations. Virts et 

al. (2013) showed that the highest lightning frequency globally occurs over tropical Africa. 

Dowdy and Kuleshov (2014) found maximum lightning frequency in/near Australia over the 

ocean off the coast during the cooler months. In a global lightning climatology from 1995–2010 

using LIS and OTD data, Cecil et al. (2014) showed that the maximum frequency of lightning 

activity is in central Africa, but the peak monthly average rate is during the summer (July) in 

Brahmaputra Valley, India. The global spatial patterns of frequencies identified by the above 
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studies are not static in time; Koshak et al. (2015) found an increase over the 2003–2012 period 

globally.  

2.4 Landsat-Based LULC Change Studies   

Because lightning data is to be correlated with land use, a review of recent Landsat-based 

LULC change is provided here.  Singh (1988) defined land change analysis as:  

“the process of identifying differences in the state of an object or phenomenon by 

observing it at different times. Essentially, it involves the ability to quantify temporal 

effects using multi-temporal data sets.” 

 

Although many LULC change studies have been conducted using satellite imagery and remote 

sensing techniques, this discussion includes only research analyzing LULC change using Landsat 

data and the influence of LULC change on meteorological or climatological variables. 

Landsat data consist of Earth imagery captured from various wavelength bands on the 

electromagnetic spectrum. Because these images are capable of capturing such a wide range of 

spectral signatures, they can be used to analyze a host of environmental issues, including LULC 

change.  

Several LULC change studies have focused on inventorying derived categories of LULC 

in the United States.  For example, an urban and regional LULC for Atlanta, Georgia, identified 

a slight increase in urban coverage from 1972 to 1974 (Todd, 1977). Vogelmann et al. (1998) 

used Landsat data to develop a LULC characterization for the Mid-Atlantic region; their results 

found that pesticide runoff could influence land cover change. A detailed analysis of Minnesota 

by Yuan et al. (2005) revealed that urban development had increased by up to 32% and natural 

environments had decreased by 69% from 1986 to 2002. Huang et al. (2009) found that 30 to 

40% of national forest lands in the eastern U.S. have been disturbed between 1990 and 2005.  
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Much Landsat-based research of this type has focused on development in China.  For 

example, Seto et al. (2002) used an image pixel change technique to illustrate the relationship 

between economic growth and LULC in the Pearl River Delta between 1988 and 1996. 

Similarly, Zhang et al. (2002) employed two images – one from 1984 and the other from 1997 – 

to determine LULC in Beijing by calculating spectral differences using three different methods, 

with results showing that changes in structural buildup are more noticeable using the image 

differencing technique.  Complementary work in China by Liu et al. (2005) revealed the rate of 

change from cropland to urban development from 1990 to 2000, with the newly-claimed 

cropland less productive than the former cropland.  This work was corroborated by Fan et al. 

(2007), who found a rapid decrease in cropland in Guangzhou from 1977 to 2007.   

LULC change studies abound for other parts of the world too.  For example, Lyon et al. 

(1998) showed using Landsat imagery for Chiapas, Mexico, that vegetation indices are affected 

by the type of statistical calculation used to ascertain the differences in land use, but the 

normalized difference vegetation index proved to be the most accurate. Cardille and Foley 

(2003) used integrated Landsat imagery along with census data to identify the rapid increase in 

agricultural land use in Brazil from 1980 to 1995. Shalaby and Tateishi (2007) showed that 

tourist-focused development caused vegetation degradation, water logging, and urban 

development in northeastern Egypt from 1987 to 2001. Dewan and Yamaguchi (2009) found that 

between 1975 and 2003 much of the green space and bodies of water in Greater Dhaka, 

Bangladesh, had been replaced with human-made structures. By using land surface temperature 

to calculate the total amount of land change in Malaysia from 1999–2007, Tan et al. (2010) 

found that urban area increased substantially, grassland area increased moderately, and barren 

and forest area decreased (Tan et al., 2010).  
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Environmental impacts of development have become a ubiquitous concern in recent 

decades, with a number of studies using Landsat data to highlight connections between land 

modification and the environmental change created by it. For example, Kalnay and Cai (2003) 

found that a drastic reduction in diurnal temperature range accompanied urbanization globally. 

Tang et al. (2005) found that an increase in urbanization would subsequently lead to an increase 

in runoff of harmful chemicals into the Muskegon River watershed in Michigan. Scanlon et al. 

(2005) suggested that urban development reduces the amount of moisture in the soil. Seneviratne 

et al. (2006) showed that an increase in climatic variability in Europe would place a greater stress 

on moisture availability in soil – which in turn would be increasingly limited should urban 

expansion continue. Chen et al. (2006) determined that urban heat island patterns were scattered 

among the land types in the Pearl River Delta of China, with developed areas (concrete) and bare 

land being the warmest.  Fortunately, even the long-problematic constraint of cloud cover in 

Landsat based studies was found to be of only minor concern in such LULC change studies, 

since these typically only require one cloud-free image per year (Ju and Roy, 2008).  

2.5 Land Change Influences on Lightning 

Despite the abundance of literature on lightning climatology and use of Landsat imagery 

for environmental change analysis, there remains a gap in the literature on the overlap of these 

two important topics. This section will focus on explaining how changes to atmospheric 

particulate flux, often derived from LULC, near developed areas may influence lightning, as well 

as how urban environments can perturb the typical lightning behaviors.  

Urban areas are well-known to increase the frequency and intensity of thunderstorms 

(Ashley et al., 2012; Harberlie et al., 2015).  Urban influences on lightning flash frequency could 

occur due to increases in atmospheric particulates, enhanced convection, or a greater availability 
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of attractive objects. In an analysis of lightning patterns around 16 major U.S. cities from 1989–

1992, Westcott (1995) found that areas downwind and over cities experienced a 40-80% increase 

in lightning activity over adjacent environs. Naccaroto et al. (2003) found a 60–100% 

enhancement in CG lightning over urban areas in Brazil, with this increase attributed to 

enhanced heat output from urban surfaces. Bentley and Stallins (2005) found that in Atlanta, 

Georgia, July is the most active lightning month, and that each season has its own predominant 

synoptic conditions for producing lightning when coupled with urban enhancement. In a follow-

up study by Stallins and Bentley (2006), the northeast quadrant of Atlanta was found to support 

the most lightning, with the enhancement attributed to increased urban-induced instability.  

While high-quality work on the relationship between LULC change and environmental 

factors has been conducted, more work is needed to for a more complete understanding. In the 

next chapter, data and methods of how this thesis will explore the relationship between LULC 

change and lightning flash patterns will be completed.  
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Chapter 3. Data and Methods 

“The goal is to turn data into information, and information into insight.” 

          – Carly Fiorina 

Data that will be used for addressing the research objectives described in Chapter 1 

consist of NOAA’s gridded lightning data from 1995 to 2011, and National Aeronautics and 

Space Administration’s (NASA’s) Geostationary Operational Environmental Satellite (GOES) 

Landsat 4–5 imagery from 1996 to 2010. Methods that are to be implemented on these data sets 

include a descriptive statistical analysis of lightning frequencies, One-way Analysis of Variance 

(ANOVA) and Scheffé’s 95% confidence interval (Scheffé, 1959) test to determine differences 

between lightning frequency for each LULC and annual lightning count dataset, linear regression 

with a categorical variable (James et al., 2013), and geographically weighted regression (GWR; 

Fotheringham, 2002). This chapter will describe how these data sets and procedures will be 

manipulated and how they work. In addition, handling of the data prior to analysis will also be 

explained.  

3.1 Landsat Imagery 

The United States Geological Survey (USGS) provides Landsat 4–5 (L4 and L5) data 

from 1982 to 2012 through its EarthExplorer portal. Landsat 4–5 images were captured using the 

Landsat 4 and 5 satellites, respectively. Aside from a communications update on the L5 satellite, 

there are no differences between L4 and L5 bands. The sensors aboard the two satellites are a 

multispectral scanner (MSS) and thematic mapper (TM). MSS Images from L4 and L5 comprise  

four spectral bands: Band 4 Visible (0.5 to 6 µm), Band 5 Visible (0.6 to 0.7 µm), Band 6 Near-

Infrared (0.7 to 0.8 µm), and Band 7 Near-Infrared (0.8 to 1.1 µm), all with pixel sizes of 57 x 79 

m. TM images from L4 and L5 include seven spectral bands: Band 1 Visible (0.45 to 0.52 µm), 



17 
 

Band 2 Visible (0.52 to 0.60 µm), Band 3 Visible (0.63 to 0.69 µm), Band 4 Near-Infrared (0.76 

to 0.90 µm), Band 5 Near-Infrared (1.55 to 1.75 µm), Band 6 Thermal (10.40 to 12.50 µm) and 

Band 7 Mid-Infrared (2.08 to 2.35 µm) – TM pixel sizes are 30 m x 30 m for all bands except for 

the thermal band, which has a 120 m x 120 m pixel size. Total scene size of images is 170 km x 

185 km.  

L4-5 data are utilized because of the generally high quality and because the access to 

imagery matches the temporal period of the project. While L7 and L8 both provide accurate data 

sets, their temporal periods are limited, in comparison with L4–5, because they were launched in 

1999 and 2013, respectively. While change analysis on the imagery available from these sensors 

would be possible, it would not match with the temporal period of the gridded lightning data set 

used in this study.  

NOAA Coastal Change Analysis Program (C-CAP) provides LULC change data for 

coastal locations using Landsat imagery, including data for 1996 (Figure 3.1), 2001 (Figure 3.2), 

2006 (Figure 3.3), and 2010 (Figure 3.4). These years of data were selected for use instead of a 

manual land classification due to the amount of quality control from a reputable source and the 

adequate spatial coverage of the data. Because land classification can be a monotonous process 

prone to error, utilizing data that are considered high quality by NOAA will minimize concern of 

erroneous pixel classification. Due to the extensive number of LULC types, the color 

corresponding to each in Figures 3.1–3.4 is shown in Table 3.1.  
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Figure 3.1 Raw image of 1996 NOAA Coastal Change Analysis Program (C-CAP) Louisiana LULC classification. 
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Figure 3.2 As in Figure 3.1, but for 2001. 
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Figure 3.3 As in Figure 3.1, but for 2006. 
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Figure 3.4 As in Figure 3.1, but for 2010. 

 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

Data handling complications for these images are minimal. Since NOAA’s team of 

remote sensing scientists has already completed classification as well as latitude and longitude 

adjustment, data correction required only a majority resampling interpolation technique. The 

purpose was to match the cell sizes and locations to the lightning dataset (Figures 3.5‒3.8). 

Majority resampling works by recalculating the average value of a 2 x 2 cell of the input raster 

based on the majority value within that cell (Esri, 2016). This type of transformation is preferred 

for transformations of LULC data because no new values are calculated, but the majority are 

maintained. Means of land classes per year are provided as well (Figure 3.9).  

Table 3.1 Colors representing each LULC type within the 

classification image maps. 
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Figure 3.5 Majority resampled 1996 Louisiana LULC map. 
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Figure 3.6 As in Figure 3.5, but for 2001. 
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Figure 3.7 As in Figure 3.5, but for 2006. 
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Figure 3.8 As in Figure 3.5, but for 2010. 
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Figure 3.9 LULC totals for the years 1996, 2001, 2006, and 2010. Each line represents a year of the total four periods studied. 
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After completion of the resampling, and after the data have been imported into the R 

programming language, the background and unclassified classes are removed to eliminate 

software error messages from calculation non-applicable values.  

3.2 NOAA/Vaisala NLDN Lightning Data 

NOAA provides CG lightning data from 1986 to 2013 through its National Centers for 

Environmental Information (NCEI) web portal. For this project, data from 1995 to 2011 are 

analyzed, so as to overlap with the temporal period of available data in the NOAA C-CAP data 

set. The data are provided to NOAA through a contract with Vaisala Inc.’s NLDN (Figure 3.10). 

These data come with their own coordinate reference system, which displays coordinates in 

meters instead of latitude/longitude. An adjustment of this projection was made, so that the 

lightning data projection matches the LULC classification data.  

Figure 3.10 A sample of the lightning data over the U.S. observed by the NLDN and distributed 

by NOAA for the year 1995. 
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Because raw data are not available for open distribution to the public, NOAA makes 

derived products that can be disseminated. These products include daily tile summaries, daily, 

county and state counts for the continental U.S., and 4 km x 4 km Albers Equal Area gridded 

summaries, which are distributed in frequency by hour per month, by hour per year, by day, by 

month, and by year. In addition, NOAA’s lightning products also consist of a positive polarity 

only database. Albers Equal Area was the map projection selected because of the importance of 

preserving area in any display of spatial density of lightning strikes. 

Frequency per month and per year data are utilized for addressing Research Objective 1 

(“Analyze the spatio-temporal distribution of cloud-to-ground lightning in the northern Gulf 

Coast region”). Data sets such as the satellite-based LIS/OTD have far too much noise for such 

an analysis, because it detects intra-cloud, cloud-to-cloud, and cloud-to-air lightning flashes. 

This would misconstrue the sample and introduce bias to the study, because non-CG flashes are 

presumably not as directly related to LULC. Therefore, only CG data are used. 

The cost of acquiring data from the NLDN directly has largely confined the examination 

of the accuracy of the NOAA database to Vaisala employees themselves. Vaisala associated 

scientist Kenneth Cummins confirmed that the NLDN was the most accurate of all lightning 

location systems in 2009 and would rapidly improve its accuracy in the coming years (Cummins 

and Murphy, 2009). Soon afterwards, scientists affiliated with Vaisala revealed accuracy ranges 

of their network between 90–95% in the U.S. and 86–92% for the entire globe, with little 

variation at night (Demetriades et al., 2010; Cramer and Cummins, 2014).  
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Data manipulation requirements are minimal. Becasue this database is a derived product, 

most errors have already been corrected. The first step was importing the netCDF into QGIS and 

implementing a projection change from Albers to the projection of the LULC change data used 

in this project, which is Albers Conformal Conic, which does not affect the frequency of the data 

at all. The second step was completing a “raster align” in QGIS, which is equivalent to the raster 

registration tool in ArcMap. This procedure allows the cells of the lightning data to be 

superimposed on the cells of the LULC classification data. The raster align function in QGIS 

also clips the portion of data from the entire file so that analysis of data can be restricted to the 

intended region. A sample of the extracted data is provided for the northern Gulf Coast (Figure 

3.11). Lastly, all files were exported as GRID files, which maintains their values in a geocoded 

format.  

Figure 3.11 Aligned lightning data from the NLDN/NOAA overlaid on the 1995 

resampled LULC map. 
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3.3 Lightning Climatology 

 Data for histograms are collected by importing the data into R statistical programming 

software. Once each NetCDF file of gridded lightning data has been imported, annual totals are 

compiled and reported as a bar graph, with an overlaying trend line. The presence of anomalies 

will inform further analysis.  

3.4 Linear Regression with a Categorical Variable 

 Linear regression (James et al., 2013) is a statistical test used to assess the relationship 

between two variables. The assumptions for linear regression are independence of the variables, 

homoscedasticity (variance around the regression line is the same for all values), no or little 

multicollinearity (independent variables are not related), and normality (variables are distributed 

in a bell shape over time). A linear regression with a categorical variable simply takes a 

dependent variable and tests it among factors – or LULC in this case.  

3.5 One-way Analysis of Variance and Scheffé’s 95% Simultaneous Confidence Interval 

Test 

One-way ANOVA is a statistical method that tests for a difference between means among 

sample sets of two or more variables. Specifically, it determines whether any differences 

amongst the means exist between two or more samples. Any significant difference of means 

between two or more variables are indicated by a small enough p-value for the ANOVA 

(generally > 0.05) that allows one to reject the null hypothesis of no significant differences of 

mean between any of the sampled variables. The assumptions for ANOVA are identical to that of 

a linear regression test. As such, ANOVA is an appropriate inferential statistical method for 

analyzing differences between data sets, and influences of extraneous variables on other various 
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variables within a data set. It offers the advantage over t-tests of providing comparisons of the 

mean from multiple variables, taken two at a time, simultaneously.  This minimizes the 

possibility of committing a type I error (Freund et al., 2010) as compared to conducting multiple 

t-tests.  The equation for ANOVA is as follows:  

                            𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 

where F is the ANOVA coefficient, MST is the mean sum of squares due to treatment, and MSE 

is the mean sum of squares due to error.  

 ANOVA will be employed with the LULC classification type being the treatment 

variable; gridded lightning frequencies represent the cases for which the mean is calculated and 

tested for difference against the mean of the other LULC types.  Because the study area is 

relatively small, differences in synoptic patterns conducive to lightning are assumed to be 

negligible.  This analysis will show whether differences exist between groups, and, with further 

information on how LULC changes have occurred over time, could give an improved 

explanation for changes in lightning totals over the total period of record. ANOVA is easily 

executed in R, QGIS, and ArcGIS through add-on modules and packages.  

 If ANOVA results suggest significant differences in lightning frequency by LULC type 

(i.e., a rejection of the null hypothesis), Scheffé’s 95% Simultaneous Confidence Interval Test 

(Scheffé, 1959) will be conducted to determine which LULC types differ statistically 

significantly from which others.   
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3.6 Geographically Weighted Regression 

 A GWR (Fotheringham, 2002) and one-way ANOVA test will be completed to address 

Research Objective 2 (“Investigate the influence of LULC types and land change on lightning 

frequency and patterns over the northern Gulf Coast region”) by determining the extent to which 

LULC is associated with lightning patterns over Louisiana. GWR is a geospatial method of 

determining the change in relationship across time and space between two spatially similar 

values. In contrast to linear regression, GWR considers spatial bounds as a means of weighting 

the relationship. GWR is represented by the following equation: 

 

where β(ui,vi) indicates the vector of the location-specific parameter estimates, (ui,vi) represents 

the geographic coordinates of location i in space, and is the error term with mean zero and 

common variance σ2 (GEOPOPSCI, 2016). The assumptions for GWR are the same as linear 

regression or ordinary least squares regression (Fotheringham, 2002). Specifically, the data must 

be normally distributed, have no multicollinearity, be homoscedastic, and have random variance 

for all independent and dependent variables (Fotheringham, 2002).  

 GWR will provide evidence regarding whether local LULC changes are associated with 

lightning frequency.  Potential pitfalls of GWR are location bias and the inability to detect 

anomalous LULC-related climatic patterns that could lead to a sudden shift in lightning patterns. 

GWR is easily executable in R, QGIS, and ArcGIS through add-on modules and packages. First, 

however, an amalgamated lightning raster and the classification rasters must be converted to 

point shapefiles in ArcMap. This is because GWR only accepts point data for analysis and must 

be given specified coordinate boundaries. Once this step is completed using the raster-to-point 
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tool in ArcMap, each LULC file and lightning file are conjoined to be analyzed by the GWR tool 

in ArcMap.   

 Chapter 4 will describe and interpret the results of these methods.  
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Chapter 4. Results 

“Insanity: doing the same thing over and over again and expecting different results.” 

– Albert Einstein 

4.1 Lightning Climatology   

 Figures 4.1–4.17 depict histograms showing the number of pixels experiencing various 

ranges of a lightning flash annually, in the region bounded by 32.76281ºN, –88.0726ºW, 

28.55081ºN, and –94.8024ºW, from 1995 to 2011. Figures 4.1 – 4.17 suggest that in most years 

most pixels report between 80 and 100 CG flashes, which means that most areas in the Gulf 

Coastal region experience a high frequency of CG lightning per year 5-6 km-2yr-1.  Relatively 

lower amounts of flashes occur in 2000, 2007, 2010, and 2011, when lightning was placed in 

lower count brackets within the histograms. The 2002 through 2005 period experienced the 

highest lightning frequencies of pixels with 31 flashes per km-2yr-1. In addition, these years also 

had pixels with more than 500 CG flashes for the year. Based on the maps provided with the 

histograms, it is apparent that the highest lightning frequencies tend to occur along the 

southeastern southcentral portion of the study area near the Louisiana and Mississippi coast.    
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Figure 4.1 Histogram showing number of pixels with 1995 CG lightning frequency ranges at the midpoint shown (i.e., 0–20, 

21–30, 31–40, etc.), across the northern Gulf Coast, with mapped frequencies shown in the inset. 
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Figure 4.2 As in Figure 4.1, but for 1996. 
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Figure 4.3 As in Figure 4.1, but for 1997. 
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Figure 4.4 As in Figure 4.1, but for 1998. 
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  Figure 4.5 As in Figure 4.1, but for 1999. 
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Figure 4.6 As in Figure 4.1, but for 2000. 
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Figure 4.7 As in Figure 4.1, but for 2001. 
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Figure 4.8 As in Figure 4.1, but for 2002. 
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Figure 4.9 As in Figure 4.1, but for 2003. 
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Figure 4.10 As in Figure 4.1, but for 2004. 
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Figure 4.11 As in Figure 4.1, but for 2005. 
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Figure 4.12 As in Figure 4.1, but for 2006. 
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Figure 4.13 As in Figure 4.1, but for 2007. 
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Figure 4.14 As in Figure 4.1, but for 2008. 
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Figure 4.15 As in Figure 4.1, but for 2009. 
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Figure 4.16 As in Figure 4.1, but for 2010. 
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Figure 4.17 As in Figure 4.1, but for 2011.
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Figure 4.18 shows the total number of CG lightning strikes in the entire study area by 

year, with a temporal trend line. A maximum occurred in 2003, with 2,420,859 CG flashes. The 

low value was observed in 2000, when only 1,216,910 CG flashes were recorded. A linear test 

for trend identifies no significant temporal trend in areal lightning frequency over the period 

(Table 4.1).  

Figure 4.18 Bar graph showing the total regional frequency of CG lightning flashes 

with a trend line fitted (top), and a map showing the spatial distribution of the 4 km x 4 

km pixels across the region for all years 1995–2011. 
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The low R-squared value could either be related to erratic annual frequencies in lightning 

occurrence or a small number of years in the data set. A sudden peak in CG lightning activity 

existed from 2003–2005, and a decrease in lightning activity after that year.  

 The 17-year climatology map shows that most of the area over land sees an abundance of 

CG lightning flashes per year. Interestingly, there are areas in southern Louisiana (eg. Lake 

Charles) on land that see less-frequent lightning than nearby surrounding areas. In addition, areas 

near Baton Rouge and the I-10/I-12 corridor heading to New Orleans and Biloxi, respectively, 

both show local maxima in lightning frequencies. This could be evidence of the sea breeze 

effect, but most likely it is due to the abundance of taller objects that attract lightning by 

weakening the electric field between the cloud and the ground. CG lightning over the Gulf of 

Mexico appears to be significantly less than CG lightning over land. Aside from the absence of 

built-up areas over water, ocean mixing due to winds in a storm make it difficult for an electric 

field with the appropriate charge to develop to attract a stepped leader.  

 Figures 4.19 and 4.20 show the distributions of lightning frequency by LULC. From the 

boxplots, it can be noted that developed land types tend to have higher means than the other land 

Intercept Slope P-value 
Adjusted R-

Sq 

2.00E+03 1.62E-07 0.992 0.02158 

Slope  0.9612  

Table 4.1 Shows resulting statistics for trend line fitted to 17-year lightning 

climatology. 
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classes. The largest minimum and maximum flashes are also observed in the developed tiles, this 

is strong evidence towards an urban-lightning relationship over the temporal period studied. 

Figure 4.19 Boxplots of each LULC type and their mean, interquartile range, and extremes 

of CG lightning, by 4 km x 4 km pixel, for 1996 (top) and 2001 (bottom). 
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Figure 4.20 As in Figure 4.19, but for 2006 (top) and 2010 (bottom). 
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4.2 Linear Regression 

 A Kolmogorov-Smirnoff test for normality was completed before proceeding with the 

linear regression test, and a p-value below 0.0001 was recorded (Massey, 1951). Figures 4.21 – 

4.22 show plots of the residuals between LULC types and the respective years (1996, 2001, 

2006, 2010) for the Louisiana portion of this study. Residuals are based on the observed and 

predicted values, and since the amount of lightning is so large, high residual values are found. 

The negative residuals represent areas of under estimation and the positive residuals represent 

over estimation. We observe the highest residuals in urban environments but also in south central 

Figure 4.21 Residuals from a linear regression test between 1996 (top) and 2001 

(bottom) LULC and lightning. 
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Louisiana. The lowest residuals occur in southwestern Louisiana, with some clustering of high 

residuals near the Texas border.  

Tables 4.2 – 4.3 show the output of a categorical linear regression between LULC class 

and the total CG lightning frequency by year. While few differences exist between years, the 

regression analysis identifies a statistically significant relationship between LULC type and 

lightning frequency. The level of significance is from 90% to 99%, and most classifications are 

significant at the 99% confidence interval. There are no background or unclassified classes 

Figure 4.22 As in Figure 4.21, except 2006 (top) and 2010 (bottom). 
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present because these were discarded during data handling to prevent error due to the presence of 

unavailable data and unnecessary zero values.  
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LULC Coefficients 
Std. 

Error 

t- 

value 
P-value 

(Intercept) 2815.2857 107.5224 26.18 <0.001 

 Medium Intensity 107.2857 152.0597 0.71 0.4805 

Low Intensity -250.9269 111.8622 -2.24 0.0249 

Open Space -506.0599 129.5461 -3.91 0.0001 

Cultivated Crops -742.999 108.5307 -6.85 <0.001 

Pasture/Hay -676.2394 109.5541 -6.17 <0.001 

Grassland -703.5466 112.8447 -6.23 <0.001 

Deciduous Forest -598.5152 119.2243 -5.02 <0.001 

Evergreen Forest -712.4158 108.8558 -6.54 <0.001 

Mixed Forest -828.7556 116.2374 -7.13 <0.001 

Scrub/Shrub -609.3413 110.2748 -5.53 <0.001 

Palustrine Forested 

Wetland 
-541.0222 108.2571 -5 <0.001 

Palustrine Scrub/Shrub 

Wetland 
-604.9388 121.919 -4.96 <0.001 

Palustrine Emergent 

Wetland 
-683.8335 109.8933 -6.22 <0.001 

Estuarine Scrub/Shrub 

Wetland 
-340.2857 416.4326 -0.82 0.4139 

Estuarine Emergent 

Wetland 
-681.173 109.0824 -6.24 <0.001 

Unconsolidated Shore -694.0752 141.7031 -4.9 <0.001 

Bare Land -779.0857 209.5998 -3.72 0.0002 

Open Water -877.4899 108.0818 -8.12 <0.001 

Palustrine Aquatic Bed -855.0635 171.8865 -4.97 <0.001 

Estuarine Aquatic Bed -889.619 255.9546 -3.48 0.0005 

LULC Coefficients 
Std. 

Error 

t- 

value 
P-value 

   (Intercept) 2815.2857 107.7868 26.12 <0.001 

 Medium Intensity 132.0476 158.6579 0.83 0.4053 

Low Intensity -257.6494 112.2665 -2.29 0.0218 

Open Space -432.6607 135.6288 -3.19 0.0014 

Cultivated Crops -744.3474 108.7936 -6.84 <0.001 

Pasture/Hay -678.639 109.818 -6.18 <0.001 

Grassland -718.3264 113.7558 -6.31 <0.001 

Deciduous Forest -586.3705 119.895 -4.89 <0.001 

Evergreen Forest -692.461 109.0392 -6.35 <0.001 

Mixed Forest -779.1244 115.6155 -6.74 <0.001 

Scrub/Shrub -635.9409 110.9914 -5.73 <0.001 

Palustrine Forested 

Wetland 
-540.7012 108.5051 -4.98 <0.001 

Palustrine Scrub/Shrub 

Wetland 
-663.2857 124.8404 -5.31 <0.001 

Palustrine Emergent 

Wetland 
-684.4011 110.1786 -6.21 <0.001 

Estuarine Scrub/Shrub 

Wetland 
-340.2857 417.4567 -0.82 0.415 

Estuarine Emergent 

Wetland 
-683.356 109.3346 -6.25 <0.001 

Unconsolidated Shore -673.9011 155.3374 -4.34 <0.001 

Bare Land -746.0357 228.6504 -3.26 0.0011 

Open Water -875.4381 108.3464 -8.08 <0.001 

Palustrine Aquatic Bed -884.1607 178.7443 -4.95 <0.001 

Estuarine Aquatic Bed -945.2857 228.6504 -4.13 <0.001 

Table 4.2 1996 (left) and 2001 (right) linear regression results between LULC classification and lightning.  

 

 

 



61 
 

 

LULC Coefficients 
Std. 

Error 

t-

value 
P-value 

(Intercept) 2734.2727 85.7421 31.89 <0.001 

 Medium Intensity 303.6096 129.8679 2.34 0.0194 

Low Intensity -196.7278 90.8864 -2.16 0.0305 

Open Space -391.697 110.6925 -3.54 0.0004 

Cultivated Crops -663.3561 87.0005 -7.62 <0.001 

Pasture/Hay -607.8638 88.5127 -6.87 <0.001 

Grassland -609.679 99.3924 -6.13 <0.001 

Deciduous Forest -561.7455 101.4514 -5.54 <0.001 

Evergreen Forest -626.8104 87.5934 -7.16 <0.001 

Mixed Forest -752.9848 99.0064 -7.61 <0.001 

Scrub/Shrub -573.289 87.9031 -6.52 <0.001 

Palustrine Forested 

Wetland 
-459.4595 86.6991 -5.3 <0.001 

Palustrine Scrub/Shrub 

Wetland 
-520.6547 95.7548 -5.44 <0.001 

Palustrine Emergent 

Wetland 
-600.6845 88.7708 -6.77 <0.001 

Estuarine Scrub/Shrub 

Wetland 
-259.2727 411.2045 -0.63 0.5284 

Estuarine Emergent 

Wetland 
-607.0944 87.8453 -6.91 <0.001 

Unconsolidated Shore -623.8182 121.2576 -5.14 <0.001 

Bare Land -727.0227 132.1374 -5.5 <0.001 

Open Water -788.9776 86.4283 -9.13 <0.001 

Palustrine Aquatic Bed -818.1394 134.6633 -6.08 <0.001 

Estuarine Aquatic Bed -210.5227 218.6002 -0.96 0.3356 

LULC Coefficients 
Std. 

Error 

t-

value 
P-value 

(Intercept) 2687.4118 97.3957 27.59 <0.001 

 Medium Intensity 379.2549 142.2555 2.67 0.0077 

Low Intensity -118.4345 101.9911 -1.16 0.2456 

Open Space -384.7451 121.9069 -3.16 0.0016 

Cultivated Crops -612.9124 98.4919 -6.22 <0.001 

Pasture/Hay -565.3884 99.7801 -5.67 <0.001 

Grassland -595.9732 104.4054 -5.71 <0.001 

Deciduous Forest -470.6413 110.1342 -4.27 <0.001 

Evergreen Forest -579.2632 98.96 -5.85 <0.001 

Mixed Forest -717.8384 107.8706 -6.65 <0.001 

Scrub/Shrub -504.1378 99.7069 -5.06 <0.001 

Palustrine Forested 

Wetland 
-410.1806 98.2136 -4.18 <0.001 

Palustrine Scrub/Shrub 

Wetland 
-538.7936 111.4358 -4.84 <0.001 

Palustrine Emergent 

Wetland 
-556.3359 100.0906 -5.56 <0.001 

Estuarine Scrub/Shrub 

Wetland 
-212.4118 413.215 -0.51 0.6072 

Estuarine Emergent 

Wetland 
-554.5172 99.1269 -5.59 <0.001 

Unconsolidated Shore -601.6618 132.4725 -4.54 <0.001 

Bare Land -625.4118 251.4746 -2.49 0.0129 

Open Water -746.6081 98.0048 -7.62 <0.001 

Palustrine Aquatic 

Bed 
-690.5229 165.5409 -4.17 <0.001 

Estuarine Aquatic Bed -690.8118 204.299 -3.38 0.0007 

Table 4.3 As in Table 4.6, but for 2006 (left) and 2010 (right). 
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In 1996, there is a relationship between every LULC class and lightning except for 

developed medium intensity and estuarine forested wetland (Table 4.2). P-values for both 

categories were just above the threshold required for significance (0.4053 and 0.4150). The 

results for 2001 (Table 4.6) are similar to those for 1996, which most likely suggests that there 

were no LULC changes significant enough to change the relationship, or that the climatology of 

lightning is too chaotic to detect a pattern. For 2006 (Table 4.3), high intensity urban is 

significantly related to lightning frequency, which could mean that enhanced development of this 

type of LULC allowed for an increase in relationship. In 2010 (Table 4.3), high intensity urban 

class is still significantly related to lightning frequency, but estuarine aquatic bed is no longer 

significantly related. The sudden change could be due to coastal erosion, as much of this type of 

classification diminished greatly from 1996 to 2010.  
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4.3 ANOVA & Scheffé’s Analysis 

 ANOVA results for 1996, 2001, 2006, and 2010 show a statistically significant difference 

of means in lightning by LULC type, for all four years studied (Table 4.4). To ascertain which 

LULC types differed significantly from which others, a Scheffé’s 95% Simultaneous Confidence 

Interval test (Scheffé, 1959) was implemented to test significant differences between groups. 

Table 4.4  

Results of ANOVA test to test for difference of mean lightning strikes by LULC type, 

1996, 2001, 2006, and 2010.  

Year Df Sum Sq Mean Sq F value P-Value 

1996 20 121865538 6093276.9 37.46 <0.001 
 5673 922725155.7 162652.06     

            

2001 20 126387289.9 6319364.49 39.04 <0.001 
 5673 918203403.9 161855     

            

2006 20 129758712.4 6487935.62 40.23 <0.001 
 5673 914831981.4 161260.71     

            

2010 20 127054334.2 6352716.71 39.28 <0.001 
 5673 917536359.6 161737.42     

 

 The results from Scheffé’s analysis show that certain LULC types consistently hold 

higher mean frequencies of CG lightning than certain other land types (Table 4.5 – 4.8). LULC 

categories denoted by “a” in tables 4.5 - 4.8 are in the group of LULCs with the highest means 

(while not differing significantly from each other), those denoted by “b” in the tables are in the 

group of LULCs with the second-highest means (while not differing significantly from each 

other), those denoted by “c” are in the group with the lowest means and are not significantly 

different from  
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Degrees of Freedom Number of Treatments F Scheffe alpha 

5673 21 1.572378 5.607813 0.05 

     

Rankings Land Class Means Groupings  

1 Developed, Medium Intensity 2947.333 a  

2 Developed, High Intensity 2815.286 ab  

3 Developed, Low Intensity 2557.636 ab  

4 

Estuarine Scrub/Shrub 

Wetland 2475 abc  

5 Developed, Open Space 2382.625 abc  

6 Palustrine Forested Wetland 2274.585 bc  

7 Deciduous Forest 2228.915 bc  

8 Scrub/Shrub 2179.345 c  

9 

Palustrine Scrub/Shrub 

Wetland 2152 c  

10 Unconsolidated Shore 2141.385 c  

11 Pasture/Hay 2136.647 c  

12 Estuarine Emergent Wetland 2131.93 c  

13 Palustrine Emergent Wetland 2130.885 c  

14 Evergreen Forest 2122.825 c  

15 Grassland/Herbaceous 2096.959 c  

16 Cultivated Crops 2070.938 c  

17 Bare Land 2069.25 c  

18 Mixed Forest 2036.161 c  

19 Open Water 1939.848 c  

20 Palustrine Aquatic Bed 1931.125 c  

21 Estuarine Aquatic Bed 1870 c  

Table 4.5 Output of Scheffé’s comparison test for 1996 and all years of lightning. 
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Degrees of Freedom Number of Treatments F Scheffé alpha 

5673 21 1.572378 5.607813 0.05 

     

Rankings Land Class Means Groupings  

1 Developed, Medium Intensity 2922.571 a  

2 Developed, High Intensity 2815.286 ab  

3 Developed, Low Intensity 2564.359 ab  

4 

Estuarine Scrub/Shrub 

Wetland 2475 abc  

5 Developed, Open Space 2309.226 abc  

6 Palustrine Forested Wetland 2274.263 bc  

7 Deciduous Forest 2216.77 bc  

8 

Palustrine Scrub/Shrub 

Wetland 2210.347 bc  

9 Scrub/Shrub 2205.944 bc  

10 Pasture/Hay 2139.046 c  

11 Estuarine Emergent Wetland 2134.113 c  

12 Grassland/Herbaceous 2131.452 c  

13 Unconsolidated Shore 2121.211 c  

14 Grassland/Herbaceous 2111.739 c  

15 Evergreen Forest 2102.87 c  

16 Cultivated Crops 2072.287 c  

17 Bare Land 2036.2 c  

18 Mixed Forest 1986.53 c  

19 Palustrine Aquatic Bed 1960.222 c  

20 Open Water 1937.796 c  

21 Estuarine Aquatic Bed 1925.667 c  

Table 4.6 As in Table 4.5, but for 2001. 
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Degrees of Freedom Number of Treatments F Scheffé alpha 

5673 21 1.572378 5.607813 0.05 

     

Rankings Land Class Means Groupings  

1 Developed, Medium Intensity 3066.667 a  

2 Developed, High Intensity 2687.412 ab  

3 Developed, Low Intensity 2568.977 ab  

4 

Estuarine Scrub/Shrub 

Wetland 2475 abc  

5 Developed, Open Space 2302.667 bc  

6 Palustrine Forested Wetland 2277.231 bc  

7 Deciduous Forest 2216.77 bc  

8 Scrub/Shrub 2183.274 bc  

9 

Palustrine Scrub/Shrub 

Wetland 2148.618 bc  

10 Estuarine Emergent Wetland 2132.895 bc  

11 Palustrine Emergent Wetland 2131.076 bc  

12 Pasture/Hay 2122.023 c  

13 Evergreen Forest 2108.149 c  

14 Grassland/Herbaceous 2091.439 c  

15 Unconsolidated Shore 2085.75 c  

16 Cultivated Crops 2074.499 c  

17 Bare Land 2062 c  

18 Palustrine Aquatic Bed 1996.889 c  

19 Estuarine Aquatic Bed 1996.6 c  

20 Mixed Forest 1969.573 c  

21 Open Water 1940.804 c  

Table 4.7 As in Table 4.5, but for 2006. 
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Degrees of Freedom Number of Treatments F Scheffé alpha 

5673 21 1.572378 5.607813 0.05 

     

Rankings Land Class Means Groupings  

1 Developed, Medium Intensity 3037.882 a  

2 Developed, High Intensity 2734.273 ab  

3 Developed, Low Intensity 2537.545 ab  

4 Estuarine Aquatic Bed 2523.75 abc  

5 

Estuarine Scrub/Shrub 

Wetland 2475 abc  

6 Developed, Open Space 2342.576 bc  

7 Palustrine Forested Wetland 2274.813 bc  

8 Evergreen Forest 2213.618 bc  

9 Deciduous Forest 2172.527 bc  

10 Scrub/Shrub 2160.984 c  

11 Palustrine Emergent Wetland 2133.588 c  

12 Estuarine Emergent Wetland 2127.178 c  

13 Pasture/Hay 2126.409 c  

14 Grassland/Herbaceous 2124.594 c  

15 Unconsolidated Shore 2110.455 c  

16 Evergreen Forest 2107.462 c  

17 Cultivated Crops 2070.917 c  

18 Bare Land 2007.25 c  

19 Mixed Forest 1981.288 c  

20 Open Water 1945.295 c  

21 Palustrine Aquatic Bed 1916.133 c  

Table 4.8 As in Table 4.5, but for 2010. 
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each other. LULCs with multiple tags, such as “ab” or “abc”, have means that do not differ 

significantly from the means of any of the groups in their tags.   

The LULC types with the five highest lightning frequencies generally remain consistent 

over the course of the 15-year study period. The LULCs that have the highest three means are 

“developed” (medium-, high-, and low-intensity, respectively). Outside of the top three, the 

significance in differences and changes in means fluctuate across the years. Between 1996 and 

2001, changes occurred among the eight highest means, but with no significant changes of the 

groups. Between 2001 and 2006, although there are small fluctuations in lightning means, there 

are few significant changes in CG lightning groups. Between 2006 and 2010, there are a couple 

of significant changes in groupings. Estuarine aquatic bed is ranked 4th in 2010, but it was only 

ranked 19th in 2006. In addition, estuarine and palustrine emergent wetland, as well as 

scrub/shrub, fell to the third category (c) by 2010. Major changes from 1996 to 2010 are 

estuarine aquatic bed increasing in lightning frequency from among the lowest LULC types to 

among the highest.  This could be due to a change in the amount of estuarine aquatic bed over 

time, but figure 3.9 states there was no change. Since it is known that Louisiana is experiencing 

coastal erosion (Williams et al., 2012; Visser et al., 2013), aquatic environments are changing 

constantly, and could result in changing land-air interactions as well.  

4.4 Geographically Weighted Regression 

 Results from the GWR show static values between all four years of LULC classification 

data studied. Total lightning frequencies from 1995 to 2011 were utilized as the dependent 

variable, and the LULC classes for each year were the independent variable. Based on the weight 

placed on spatial coordinates by the GWR and the derivation of coordinates from raster data that 

were affixed to each 4 km x 4 km cell across the study region, few spatial differences in 
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coordinates occurred between years. Residual maps with associated R2 and adjusted R2 values 

for southern Louisiana (Figures 4.23–4.26) show little change in residuals for each LULC 

classification year studied. Results are only shown for southern Louisiana because of the extent 

of the data. This result corroborates the residual maps provided by the linear regression test, 

which showed little inter-annual variation in residuals, but only differences in p-values between 

lightning relationships and LULC classes. The Akaike Information Criterion (AIC; 

Fotherignham, 2002) determines the extent of the kernel used for calculating GWR. Conditional 

number determines if local collinearity is present. Any value above 30 represents collinearity 

(Fotheringham, 2002), which we do not see for any year examined. Local R2 evaluates the fit of a 

local regression model fits, and the standard residuals and predicted values are used to measure 

over and under-prediction as well as accuracy of the model.  Lastly, areas along the coast, and 

the Baton Rouge metropolitan area have high R2 values compared to their surrounding locations. 

This is most likely due to a cluster of higher values and urban environments as seen in the 

lightning climatology and Scheffé’s analysis. 
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Variable Value 

Bandwidth 49591.10953 

Residual Squares 205761685.4 

Effective Number 43.33715219 

Sigma 190.8238073 

AICc 75981.34628 

R2 0.274347414 

R2 Adjusted 0.268910519 

Figure 4.23 Resulting conditional number, local R2, standard residuals, and predicted values 

from GWR output between total lightning frequency between 1996 land classes and total 

lightning.  
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Variable Value 

Bandwidth 49591.10953 

Residual Squares 205761737.9 

Effective Number 43.35031189 

Sigma 190.8240538 

AICc 75981.36291 

R2 0.274347229 

R2 Adjusted 0.26890863 

Figure 4.24 As in Figure 4.23 but for 2001. 
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Variable Value 

Bandwidth 49819.57837 

Residual Squares 205814280.6 

Effective Number 43.13758223 

Sigma 190.8448241 

AICc 75982.53375 

R2 0.274161929 

R2 Adjusted 0.26874947 

Figure 4.24 As in Figure 4.23 but for 2001. 

 

Figure 4.25 As in Figure 4.23 but for 2006. 
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Variable Value 

Bandwidth 49819.57837 

Residual Squares 205886943.3 

Effective Number 43.26697396 

Sigma 190.8806953 

AICc 75984.71472 

R2 0.273905672 

R2 Adjusted 0.268474552 

Figure 4.26 As in Figure 4.23 but for 2010.  
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Chapter 5. Summary/Conclusions 

“I am turned into a sort of machine for observing facts and grinding out conclusions.” 

– Charles Darwin 

 Lightning is one of the most dangerous hazards. Because the population of the central 

Gulf of Mexico coast region is growing, LULC is continually changing to satisfy the needs of 

residents, as well as enhance the area by providing new services to the public. On the other hand, 

human interaction and change of environments are impacting typical processes and patterns, 

including lightning, indirectly altering conditions across the region. While lightning deaths have 

decreased nationally (Curran et al., 2000; NWS, 2016), it is important to maintain an accurate 

assessment of all severe weather impacts in the U.S. to mitigate further damage.  

The results of this study yielded insightful observations regarding the patterns and 

placement of CG lightning in southern Louisiana and its peripheral areas. The lightning 

climatology revealed inter-annual frequency and spatial fluctuations for the study area. One 

interesting feature is that CG lightning always appears to have its strongest values over land, 

which coincide with the results of previous research (Orville et al., 2001; LaJoie & Laing, 2008; 

Rose et al., 2008). Another interesting observation from the lightning climatology is the sudden 

increase in lightning totals leading up to 2005 when the Gulf Coast experienced an extreme 

hurricane season. While this study does not necessarily suggest there is a relationship between 

hurricanes and lightning, the environment around that time should be investigated further for any 

possible connection. After 2005, there was a sharp decrease in the frequency of CG lightning in 

the area. While the trend analysis was not statistically significant, an anomalous period of 

increased total lightning between 2003 and 2005 could generate questions about whether changes 

in temperature or meteorological forcing mechanisms influenced CG lightning in the region. 
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The results of the linear regression analysis showed strong relationships between all 

LULC classes and lightning frequency except for developed medium-intensity and estuarine 

forested wetland. Results from Scheffé’s test showed that lightning frequencies in developed 

medium-intensity cells were the highest for all four years of LULC classification analyzed. 

Results from GWR showed very little change in relationship between LULC and lightning 

frequencies for the 1996–2010 period. However, this result could be influenced by the spatial 

constraint of the point data. Further analysis with point data would need to be completed to 

ascertain the true characteristics of the spatio-temporal patterns of lightning.  

Among the other LULC categories, results were mostly consistent between years. This 

result is likely due to prevailing climatic patterns, which determine where electrified storms 

occur and how much lightning is experienced within that region, and/or the small number of 

years analyzed. While the highest means of lightning are in urbanized LULC types, there is some 

possibility that the result occurs not because of increased lightning rates over these types but 

instead because of increased frequency of thunderstorm tracks over urban areas (Maier et al., 

1981; Nastos et al., 2014). It is in this regard that a higher-resolution data set could provide more 

insight into the location of CG lightning flashes over time.  

The sudden increase in lightning frequency of the estuarine aquatic bed LULC type to the 

top three could again be due to a change in climate forcing mechanisms, or (more likely) due to 

the observed local changes in that LULC category (eg. Lightning rod installation or industrial 

equipment), thereby enhancing the amount of lightning observed over that class. On land, a 

temporal decrease in lightning frequency over deciduous forests occurred, along with an increase 

in evergreen forests. Again, these results could be due to changes in LULC, as shown in Figure 

3.9.  
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Overall, the results of this thesis provided an abundance of information regarding LULC 

relationship to lightning frequency. While urbanized areas tend to have the highest mean 

lightning frequencies on a per-pixel basis, variation in other LULC means could lead to greater 

shifts in lightning amounts between LULC categories besides the urban types. In addition, with 

several ocean, coastal, and land modifications being undertaken in the area now, future trends 

could see an increase in urban lightning totals due to more development spurred by population 

growth. Ultimately, it is hoped that the results of this thesis will help inhabitants of the Gulf, 

particularly in Louisiana, to better prepare for severe thunderstorms and provide industrial 

management teams and environmental planners the information needed to establish greater 

safety measures to prevent or mitigate damages.  
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