
The fda Package

Functional Statistics
Basic utilities:

mean.fd mean fd object

var.fd Variance or covariance (bifd object)

cor.fd Correlation (given as a matrix)

sd.fd Standard deviation (root diagonal of var.fd)

In addition, fPCA obtained through

temppca=pca.fd(tempfd$fd,nharm=4,fdParobj)

(Smoothing not strictly necessary). pca.fd output:

harmonics fd objects giving eigen-functions

values eigen values

scores PCA scores

varprop Proportion of variance explained

Diagnostics plots given by plot(temppca)
65 / 181

Functional Linear Models

Functional Linear Models

66 / 181

Functional Linear Models

Statistical Models

So far we have focussed on exploratory data analysis

Smoothing

Functional covariance

Functional PCA

Now we wish to examine predictive relationships → generalization
of linear models.

yi = α +
∑

βjxij + εi
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Functional Linear Models

Functional Linear Regression

yi = α + xiβ + εi

Three different scenarios for yi xi

Functional covariate, scalar response

Scalar covariate, functional response

Functional covariate, functional response

We will deal with each in turn.
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Functional Linear Models: Scalar Response Models

Scalar Response Models
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Functional Linear Models: Scalar Response Models

Scalar Response Models

We observe yi , xi (t), and want to model dependence of y on x .

Option 1: choose t1, . . . , tk and set

yi = α +
∑

βjxi (tj) + εi

= α + xiβ + ε

But how many t1, . . . , tk and which ones?

See McKeague 2010, for this approach.
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Functional Linear Models: Scalar Response Models

In the Limit

If we let t1, . . . get increasingly dense

yi = α +
∑

βjxi (tj) + εi = α + xiβ + εi

becomes

yi = α +

∫
β(t)xi (t)dt + εi

General trick: functional data model = multivariate model with
sums replaced by integrals.

Already seen in fPCA scores x
T

ui →

∫
x(t)ξi (t)dt.
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Functional Linear Models: Scalar Response Models

Identification

Problem:

In linear regression, we must have fewer covariates than
observations.

If I have yi , xi (t), there are infinitely many covariates.

yi = α +

∫
β(t)xi (t)dt + εi

Estimate β by minimizing squared error:

β(t) = argmin
∑ (

yi − α −

∫
β(t)xi (t)dt

)2

But I can always make the εi = 0.

72 / 181
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Functional Linear Models: Scalar Response Models

Smoothing

Additional constraints: we want to insist that β(t) is smooth.

Add a smoothing penalty:

PENSSEλ(β) =

n∑

i=1

(
yi − α −

∫
β(t)xi (t)dt

)2

+ λ

∫
[Lβ(t)]2 dt

Very much like smoothing (can be made mathematically precise).

Still need to represent β(t) – use a basis expansion:

β(t) =
∑

ciφi (t).

73 / 181

Functional Linear Models: Scalar Response Models

Calculation

yi = α +

∫
β(t)xi (t)dt + εi = α +

[∫
Φ(t)xi (t)dt

]
c + εi

= α + xic + εi

for xi =
∫

Φ(t)xi (t)dt. With Zi = [1xi ],

y = Z

[
α
c

]
+ ε

and with smoothing penalty matrix RL:

[α̂ ĉT ]T =
(
ZTZ + λRL

)−1

ZTy

Then

ŷ =

∫
β̂(t)xi (t)dt = Z

[
α̂
ĉ

]
= Sλy

74 / 181

Functional Linear Models: Scalar Response Models

Choosing Smoothing Parameters
Cross-Validation:

OCV(λ) =
∑ (

yi − ŷi

1− Sii

)2

λ = e−1 λ = e20

λ = e12 CV Error
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Functional Linear Models: Scalar Response Models

Confidence Intervals
Assuming independent

εi ∼ N(0, σ2

e )

We have that

Var

[
α̂
ĉ

]
=

[(
ZTZ + λR

)−1

ZT

] [
σ2

e I
] [

Z
(
ZTZ + λR

)−1
]

Estimate

σ̂2

e = SSE/(n − df ), df = trace(Sλ)

And (pointwise) confidence intervals for β(t) are

Φ(t)ĉ ± 2
√

Φ(t)TVar[ĉ]Φ(t)

76 / 181
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1− Sii

)2

λ = e−1 λ = e20

λ = e12 CV Error

75 / 181

Functional Linear Models: Scalar Response Models

Confidence Intervals
Assuming independent

εi ∼ N(0, σ2

e )

We have that

Var

[
α̂
ĉ
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Functional Linear Models: Scalar Response Models

Confidence Intervals

R2 = 0.987 σ2 = 349, df = 5.04

Extension to multiple functional covariates follows same lines:

yi = β0 +

p∑

j=1

∫
βj(t)xij(t)dt + εi

77 / 181

Functional Linear Models: functional Principal Components Regression

functional Principal
Components Regression

78 / 181

Functional Linear Models: functional Principal Components Regression

functional Principal Components Regression

Alternative: principal components regression.

xi (t) =
∑

dijξj(t) dij =

∫
xi (t)ξj(t)dt

Consider the model:

yi = β0 +
∑

βjdij + εi

Reduces to a standard linear regression problem.

Avoids the need for cross-validation (assuming number of PCs
is fixed).

By far the most theoretically studied method.

79 / 181

Functional Linear Models: functional Principal Components Regression

fPCA and Functional Regression Interpretation

yi = β0 +
∑

βjdij + εi

Recall that dij =
∫

xi (t)ξj(t)dt so

yi = β0 +
∑ ∫

βjξj(t)xi (t)dt + εi

and we can interpret

β(t) =
∑

βjξj(t)

and write

yi = β0 +

∫
β(t)xi (t)dt + εi

Confidence intervals derive from variance of the dij .

80 / 181
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Functional Linear Models: functional Principal Components Regression

A Comparison
Medfly Data: fPCA on 4 components (R2 = 0.988) vs Penalized
Smooth (R2 = 0.987)

81 / 181

Functional Linear Models: functional Principal Components Regression

Two Fundamental Approaches

(Almost) all methods reduce to one of

1 Perform fPCA and use PC scores in a multivariate method.

2 Turn sums into integrals and add a smoothing penalty.

Applied in functional versions of

generalized linear models

generalized additive models

survival analysis

mixture regression

...

Both methods also apply to functional response models.

82 / 181
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Functional Linear Models: Functional Response Models

Functional Response Models

Case 1: Scalar Covariates: (yi (t), xi ), most general linear model is

yi (t) = β0(t) +

p∑

j=1

βi (t)xij .

Conduct a linear regression at each time t (also works for ANOVA
effects).

But we might like to smooth; penalize integrated squared error

PENSISE =
n∑

i=1

∫
(yi (t) − ŷi (t))

2 dt +

p∑

j=0

λj

∫
[Ljβj(t)]

2 dt

Usually keep λj , Lj all the same.

84 / 181
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Advantages of FPCA-based approach

Parsimonious description of functional data as it is the unique
linear representation which explains the highest fraction of
variance in the data with a given number of components.

Main attraction is equivalence X (·) ∼ (ξ1, ξ2, · · · ), so that
X (·) can be expressed in terms of mean function and the
sequence of eigenfunctions and uncorrelated FPC scores ξk ’s.

For modeling functional regression: Functions f {X (·)} have
an equivalent function g(ξ1, ξ2, · · · )
But need to pay prices

FPCs need to be estimated from data (finite sample)
Need to choose the number of FPCs
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Functional Linear Models: Functional Response Models

Concurrent Linear Model

Extension of scalar covariate model: response only depends on x(t)
at the current time

yi (t) = β0(t) + β1(t)xi (t) + εi (t)

yi (t), xi (t) must be measured on same time domain.

Must be appropriate to compare observations time-point by
time-point (see registration section).

Especially useful if yi (t) is a derivative of xi (t) (see dynamics
section).
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Functional Linear Models: Functional Response Models

Confidence Intervals

We assume that
Var(εi ) = σ(s, t)

then
Cov(β(t), β(s)) = (XTX )−1σ(s, t).

Estimate σ(s, t) from ei (t) = yi (t) − ŷi (t).

Pointwise confidence intervals ignore covariance; just use

Var(β(t)) = (XTX )−1σ(t, t).

Effect of smoothing penalties (both for yi and βj) can be
incorporated.
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Functional Linear Models: Functional Response Models

Gait Data

Gait data - records of the angle of hip and knee of 39 subjects
taking a step.

Interest in kinetics of walking.
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Functional Linear Models: Functional Response Models

Gait Model

knee(t) = β0(t) + β1(t)hip(t) + ε(t)

β0(t) indicates a
well-defined autonomous
knee cycle.

β1(t) modulation of cycle
with respect to hip

More hip bend also
indicates more knee bend;
by a fairly constant amount
throughout cycle.
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Functional Linear Models: Functional Response Models

Gait Residuals: Covariance and Diagnostics

Residuals Residual Correlation

Examine residual functions for outliers, skewness etc (can be
challenging).

Residual correlation may be of independent interest.
89 / 181

Functional Linear Models: Functional Response Models

Functional Response, Functional Covariate

General case: yi (t), xi (s) - a functional linear regression at each
time t:

yi (t) = β0(t) +

∫
β1(s, t)xi (s)ds + εi (t)

Same identification issues as scalar response models.

Usually penalize β1 in each direction separately

λs

∫
[Lsβ1(s, t)]

2 dsdt + λt

∫
[Ltβ1(s, t)]

2 dsdt

Confidence Intervals etc. follow from same principles.
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Functional Linear Models: Functional Response Models

Summary

Three models

Scalar Response Models Functional covariate implies a
functional parameter.
Use smoothness of β1(t) to obtain identifiability.
Variance estimates come from sandwich
estimators.

Concurrent Linear Model yi (t) only depends on xi (t) at the
current time.
Scalar covariates = constant functions.
Will be used in dynamics.

Functional Covariate/Functional Response Most general
functional linear model.
See special topics for more + examples.
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Functional Linear Models in R

Functional Linear Models in R
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Functional Linear Models in R
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Other Topics and Recent Developments

Inference for functional regression models

Dependent functional data
– Multilevel/longitudinal/multivariate designs

Registratoin

Dynamics

FDA for sparse longitudinal data

More general/flexible regression models
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Inference for functional regression models

Testing H0 : β(t) = 0 under model

Yi = β0 +

∫
β(t)Xi (t) dt + εi

Penalized spline approach

β(t) =
∑M

m=1 ηkBk(t)

FPCA-based approach

data reduction: (ξi1, · · · , ξiK )
multivariate regression: Yi ∼ β1ξi1 + · · ·+ βK ξiK

Difficulty in inference arising from

regularization (smoothing)
choices of tuning parameters
accounting for uncertainly in two-step procedures
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Penalized spline approach

H0 : η0 = η1 = · · · = ηM

Use roughness penalty λ
∫
β(t) 2 dt to avoid overfitting

Mixed model equivalence representation

Yi = β0 +
M∑

m=1

ηmVim + εi

(η1, · · · , ηM) ∼ N(0, σ2Σ)

Testing H0 : σ2 = 0

Restricted LRT proposed in the literature.

Swihart, Goldsmith and Crainiceanu (2014). Restricted likelihood ratio tests for

functional effects in the functional linear model. Technometrics, 56:483–493.
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FPCA-based approach

Yi ∼ β1ξi1 + · · ·+ βK ξiK

Testing H0 : β1 = · · · = βK = 0

The number of PCs are chosen by

Percent of variance explained (PVE): e.g., 95% or 99%
Cross Validation
AIC, BIC

Wald test

T =
K∑

k=1

β̂2k
v̂ar(β̂k)

=
1

nσ̂2ε

K∑
k=1

Y T ξ̂k ξ̂
T
k Y

λ̂k
∼ χ2

K

But is it a good idea to rank based on X (t) only?
And how sensitive is the power to the choice of K?
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FPCA-based approach

Under alternative Ha : βk = βk , where βk 6= 0 for some k,
it can be shown that T ∼ χ2

K (η), where

η =
n

σ2ε

K∑
k=1

λkβ
2
k

The power contribution of the kth component depends on
both λk and βk

We propose a new association-variation index (AVI):
AVIk = λkβ

2
k

Propose to rank and choose PCs based on AVI

Asymptotics involves order statistics of χ2
1 random variables

Su, Di and Hsu (2014). Hypothesis testing for functional linear models.
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FPCA-based approach

An example

Standard FPCA approach sensitive to tuning parameter

The new AVI-based approach is more robust
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Dependent Functional Data

Yij(t) = Xij(t) + εij(t)

i : subject; j : visit

Yij(t) is recorded on Ωij = {tijs : s = 1, 2, · · · ,Tij}
Functions from the same subject are correlated

Yij(t) = µ(t) + Zi (t) + Wij(t) + εij(t)

Zi (t)’s and Wij(t)’s are centered random functions

AssumeZi (t) and Wij(t) are uncorrelated

28



Multilevel FPCA

KL expansion on both levels

Zi (t) =

N1∑
k=1

ξik φ
(1)
k (t) , Wij(t) =

N2∑
l=1

ζijl φ
(2)
l (t)

φ
(1)
k (t), φ

(2)
l (t): eigenfunctions

dominating directions of variation at both levels

ξik , ζijl : principal component scores
magnitude of variation for each subject/visit

λ
(1)
k = var(ξik), λ

(2)
l = var(ζijl): eigenvalues

the amount of variation explained
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Multilevel FPCA

Yij(t) = µ(t) + Zi (t) + Wij(t) + εij(t)

Between subject level (level 1):

KB(s, t) := cov{Zi (s),Zi (t)} =
∑∞

k=1 λ
(1)
k φ

(1)
k (s)φ

(1)
k (t)

Within subject level (level 2):

KW (s, t) := cov{Wij(s),Wij(t)} =
∑∞

l=1 λ
(2)
l φ

(2)
l (s)φ

(2)
l (t)

Total: KT (s, t) := KB(s, t) + KW (s, t) + σ2 I (t = s)

Note that

cov{Yij(s),Yik(t)} = KB(s, t) + σ2 I (t = s)

cov{Yij(s),Yij(t)} = KB(s, t) + KW (s, t) + σ2 I (t = s)
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MFPCA Algorithm

Estimate µ(t) and ηj(t) by univariate smoothing; estimate
KT (s, t) and KB(s, t) via bivariate smoothing

Set K̂W (s, t) = K̂T (s, t)− K̂B(s, t)

Eigen-analysis of K̂B(s, t) and K̂W (s, t) to obtain λ̂
(1)
k ,

φ̂
(1)
k (t), λ̂

(2)
l , φ̂

(2)
l (t)

Estimate principal component scores

Note: we use penalized splines with REML for smoothing

R package “SemiPar”
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Principal Component Scores

Yij(t) = µ(t) +

N1∑
k=1

ξik φ
(1)
k (t) +

N2∑
l=1

ζijl φ
(2)
l (t) + εij(t)

Estimate scores, ξ̂ik , ζ̂ijl , using BLUP

Dimension reduction
Subject level: {Yi1(t), · · · ,YiJ(t)} → (ξ̂i1, · · · , ξ̂iN1)

Predict individual curve Ŷij(t) with confidence bands

Predict subject level curve Ẑi (t) with confidence bands

Other extensions

Multilevel Functional Regression (Crainiceanu et al. 2009)

Longitudinal/multivariate FPCA (more flexible correlations)
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Registration

Berkeley Growth Data

Heights of 20 girls taken from ages 0 through 18.

Growth process easier to visualize in terms of acceleration.

Peaks in acceleration = start of growth spurts.

97 / 181

Registration

The Registration Problem
Most analyzes only account for variation in amplitude.

Frequently, observed data exhibit features that vary in time.

Berkeley Growth Acceleration
Observed Aligned

Mean of unregistered curves has smaller peaks than any
individual curve.
Aligning the curves reduces variation by 25% 98 / 181

Registration

Defining a Warping Function

Requires a transformation of time.

Seek

si = wi (t)

so that

x̃i (t) = xi (si )

are well aligned.

wi (t) are time-warping (also called registration) functions.

99 / 181

Registration

Landmark registration

For each curve xi (t) we choose points

ti1, . . . , tiK

We need a reference (usually one of the curves)

t01, . . . , t0K

so these define constraints

wi (tij) = t0j

Now we define a smooth function to go between these.

100 / 181
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Registration

Identifying Landmarks

Major landmarks of interest:

where xi (t) crosses some
value

location of peaks or valleys

location of inflections

Almost all are points at which some derivative of xi (t) crosses zero.

In practise, zero-crossings can be found automatically, but usually
still require manual checking.

101 / 181

Registration

Results of Warping

Registered Acceleration Warping Functions

102 / 181

Registration

Interpretation

Warping Functions Result

Warping function below diagonal pushes registered function later in
time.

103 / 181

Registration

Constraints on Warping Functions

Let t ∈ [0 T ], the wi (t) should follow a number of constraints:

Initial conditions

wi (0) = 0, wi (T ) = T

landmarks

wi (tij) = t0j

Monotonicity: if t1 < t2,

wi (t1) < wi (t2)

104 / 181
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Registration

Comparison Of Registration Results

First 10 subjects:

Landmark Automatic

Note: minimum-eigenvalue condition can have local minima and
yield poor results.

113 / 181

Registration

Summary

Registration – important tool for analyzing non-amplitude
variation.

Easiest: landmark registration, requires manual supervision.

Continuous registration: numerically difficult alternative.

Usually a preprocessing step; unaccounted for in inference.

Warning: interaction with derivatives

D [x (w(t))] = D[w ](t)D[x ] [w(t)]

Registration and D do not commute; this can affect dynamics.

R functions: landmarkreg and register.fd.
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Dynamics

Dynamics

115 / 181

Dynamics

Relationships Between Derivatives

Access to derivatives of functional data allows new models.

Variant on the concurrent linear model: e.g.

Dyi (t) = β0(t) + β1(t)yi (t) + β2(t)xi (t) + εi (t)

Higher order derivatives could also be used.

Can be estimated like concurrent linear model.

But how do we understand these systems?

Focus: physical analogies and behavior of first and second order
systems.

116 / 181
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Dynamics: Second Order Systems

On a Bifurcation Diagram

Plot (−β1(t),−β0(t)) from pda.fd and add the discriminant
boundary.

133 / 181

Dynamics: Second Order Systems

Principle Differential Analysis
Translate autonomous dynamic model into linear differential
operator:

Lx = D2x + β1(t)Dx(t) + β0(t)x(t) = 0

Potential use in improving smooths (theory under development).

We can ask what is smooth? How does the data deviate from
smoothness?

Solutions of Lx(t) = 0 Observed Lx(t)

134 / 181

Dynamics: Second Order Systems

Summary

FDA provides access to models of rates of change.

Dynamics = models of relationships among derivatives.

Interpretation of dynamics relies on physical
intuition/analogies.

First order systems – derivative responds to input; most often
control systems.
Second order systems – Newton’s laws; springs and pendulums.
Higher-dimensional models also feasible (see special topics).

Many problems remain:

Relationship to SDE models.
Appropriate measures of confidence.
Which orders of derivative to model.

135 / 181

Future Problems

Future Problems
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FDA for sparse longitudinal data

Yi j = Xi (tij) + εij

Data is recorded on sparse and irregular grid points
Ωi = {ti1, ti2, · · · , tini}, ni is small (bounded)

But grid points are dense collectively, Ω = ∪iΩi

Difficulty of applying FDA techniques (e.g., FPCA)

Cannot pre-smooth trajectory for each subject
Estimation of FPC needs numerical integration
dik =

∫
{xi (t)− µ(t)}φk(t) dt

Solution: Yao et al. (2005)

Pool all data, use (bivariate) smoothing
Estimate FPC by conditional expectations (BLUPs)
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FDA for sparse longitudinal data
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More general regression models

Functional additive models (Muller et al., 2008; McLean et
al., 2014)

Partially functional linear regression (Kong et al., 2015)

Functional mixture regression (Yao et al. 2011)

· · ·
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