Functional Linear Models

Functional Linear Models


cdi
Rectangle


Functional Linear Models

Statistical Models

So far we have focussed on exploratory data analysis

m Smoothing
m Functional covariance
m Functional PCA

Now we wish to examine predictive relationships — generalization
of linear models.
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Functional Linear Models

Functional Linear Regression

yi=a+xiB8+¢
Three different scenarios for y; x;

m Functional covariate, scalar response
m Scalar covariate, functional response

m Functional covariate, functional response

We will deal with each in turn.
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unctional Linear Models: Scalar Response Models

Scalar Response Models
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Functional Linear Models: Scalar Response Models

Generalization of multiple linear regression

yi=a+ Y Bxi(t)+e=a+xfB+e
becomes
yi =+ /ﬁ(t)x,-(t)dt + €

General trick: functional data model = multivariate model with
sums replaced by integrals.
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Functional Linear Models: Scalar Response Models

|dentification

Problem:

m In linear regression, we must have fewer covariates than
observations.

m If | have y;, x;(t), there are infinitely many covariates.

Yi= a+/ﬂ(t)x,-(t)dt+e,-

Estimate § by minimizing squared error:

B() = argmin (y,- —a- / ﬁ(t)x,-(t)dt>2

But | can always make the ¢; = 0.
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Functional Linear Models: Scalar Response Models

Smoothing

Additional constraints: we want to insist that 3(t) is smooth.

Add a smoothing penalty:

n

PENSSEA(3) = 3 <y,- Ca- /ﬁ(t)x;(t)dt)Q + A/[Lﬁ(t)]2 dt

i=1
Very much like smoothing

Still need to represent 3(t) — use a basis expansion:

B(t) = cigi(t).
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Functional Linear Models: Scalar Response Models

Calculation

m=a+/ﬁmMmm+a:a+{/womn@%+@

= o+ X;C+ €
for xj = [ ®(t)xi(t)dt. With Z; = [1x;],

@
=7
y [ c ] + €
and with smoothing penalty matrix R;:

-1
[a e’ = <ZTZ + )\RL) ZTy
Then

o O

9—/3mmmm—z[ }—&y
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Functional Linear Models: Scalar Response Models

Choosing Smoothing Parameters
Cross-Validation:
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Functional Linear Models: Scalar Response Models

Confidence Intervals
Assuming independent

ei ~ N(0, Ug)

We have that

o O

Var[ } = {(ZTZ—%)\R)_IZT} [021] [z (ZTZ+AR)_1]

Estimate

62 = SSE/(n — df), df = trace(S))

And (pointwise) confidence intervals for 3(t) are

()2 + 21/ (1) TVarle] (1)

10
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Functional Linear Models: Scalar Response Models

Confidence Intervals
R2 = 0.987
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Extension to multiple functional covariates follows same lines:

p
yi=Po+ Z/ﬁj(t)x,-j(t)dt—i— €
j=1

11
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Functional Linear Models: functional Principal Components Regression

functional Principal Components Regression

Alternative: principal components regression.

6(0) = Y digi(6) d= [ xlg(e)de

Consider the model:
yi = o + Zﬁjdij + €

m Reduces to a standard linear regression problem.

m Avoids the need for cross-validation (assuming number of PCs
is fixed).

12
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Functional Linear Models: functional Principal Components Regression

fPCA and Functional Regression Interpretation

Yi Zﬁo+2ﬁjdij+6i
Recall that djj = [ x;(t)&;(t)dt so

yi = o+ Z/ﬁjfj(t)x,'(t)dt + €

and we can interpret

£) =Y 8i&(t)

and write
yi = Po + /ﬁ(t)xi(t)dt + €
Confidence intervals derive from variance of the dj;.

13
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Functional Linear Models: functional Principal Components Regression

A Comparison

Medfly Data: fPCA on 4 components (R? = 0.988) vs Penalized

Smooth (R? = 0.987)

w
- --- fPCA
— penalized
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=

=

= w
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- L o~
= ==

time
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Advantages of FPCA-based approach

15

m Parsimonious description of functional data as it is the unique
linear representation which explains the highest fraction of
variance in the data with a given number of components.

m Main attraction is equivalence X() ~ (&1,&2,--+), so that
X(-) can be expressed in terms of mean function and the
sequence of eigenfunctions and uncorrelated FPC scores &'s.

m For modeling functional regression: Functions f{X(-)} have
an equivalent function g(&1,&2,---)

m But need to pay prices

m FPCs need to be estimated from data (finite sample)
m Need to choose the number of FPCs



Functional Linear Models: functional Principal Components Regression

Two Fundamental Approaches

(Almost) all methods reduce to one of

Perform fPCA and use PC scores in a multivariate method.

Turn sums into integrals and add a smoothing penalty.
Applied in functional versions of

m generalized linear models

m generalized additive models

m survival analysis

m mixture regression

.

Both methods also apply to functional response models.

16
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nctional Linear Models: Functional Response Models

17

Functional Response Models
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Functional Linear Models: Functional Response Models

Functional Response Models

Case 1: Scalar Covariates: (y;(t),x;), most general linear model is

yi(t) = Bo(t) + > Bi(t)x.

j=1

Conduct a linear regression at each time t

But we might like to smooth; penalize integrated squared error

PENSISE=) / (1) = 9i(0) dt + / [Li3i(0)* dt
i=1 j=0

Usually keep A;, L; all the same.

18
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Functional Linear Models: Functional Response Models

Concurrent Linear Model
Case 2: functional covariates

Extension of scalar covariate model: response only depends on x(t)
at the current time

yi(t) = Bo(t) + Bu(t)xi(t) + €i(t)

m y;(t), x;(t) must be measured on same time domain.

m Must be appropriate to compare observations time-point by
time-point

m Especially useful if y;(t) is a derivative of x;(t)

19
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Functional Linear Models: Functional Response Models

Functional Response, Functional Covariate

General case: y;(t), xi(s) - a functional linear regression at each
time t:

Vi) = Bolt) + /ﬁl(s, £)xi(5)ds + €:(¢)

m Same identification issues as scalar response models.

m Usually penalize 31 in each direction separately

A / (L (s, )] dsdt + e / [Lefh (s, £)]2 dsdt

m Confidence Intervals etc. follow from same principles.

20
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Functional Linear Models: Functional Response Models

Summary

Three models

Scalar Response Models ~ m Functional covariate implies a
functional parameter.
m Use smoothness of (31(t) to obtain identifiability.

Concurrent Linear Model  m y;(t) only depends on x;(t) at the
current time.
m Scalar covariates = constant functions.

Functional Covariate/Functional Response ~ m Most general
functional linear model.

21
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Other Topics and Recent Developments

Inference for functional regression models

Dependent functional data
— Multilevel /longitudinal /multivariate designs

Registratoin
Dynamics

FDA for sparse longitudinal data

More general /flexible regression models

22



Inference for functional regression models

Testing Hp : f(t) = 0 under model
Y:= o+ /ﬂ(t)X,-(t) dt + ¢;

m Penalized spline approach
m B(t) = Sy mkB(t)
m FPCA-based approach

m data reduction: (§1,---,&ix)
m multivariate regression: Y; ~ 51&i1 + -+ - + Bréix

m Difficulty in inference arising from

m regularization (smoothing)
m choices of tuning parameters
m accounting for uncertainly in two-step procedures

23



Penalized spline approach

Ho:mo=m="-=nm
Use roughness penalty A [ 5(t) 2 dt to avoid overfitting

Mixed model equivalence representation

M
Yi=Bo+ Y 1imVim + €

m=1

(771’ T 777/\//) ~ N(O’U2Z)

Testing Hy : 02 =0
Restricted LRT proposed in the literature.

Swihart, Goldsmith and Crainiceanu (2014). Restricted likelihood ratio tests for

functional effects in the functional linear model. Technometrics, 56:483-493.

24



FPCA-based approach

Yi~ Biéin + -+ Bréik
The number of PCs are chosen by

m Percent of variance explained (PVE): e.g., 95% or 99%
m Cross Validation
m AIC, BIC

Wald test

K N
B 1

[~
<
o
>
A
<

o~ Xk
N A ~D N
ovar(Bk)  nodi Ak

m But is it a good idea to rank based on X(t) only?
And how sensitive is the power to the choice of K?

25



FPCA-based approach

m Under alternative H, : 8k = Bk, where B # 0 for some k,
it can be shown that T ~ x%(n), where

K
n

= N )\ pB?

n 025 kB

€ k=1
m The power contribution of the k" component depends on

both Ax and S

m We propose a new association-variation index (AVI):
AVl = M\ B2

m Propose to rank and choose PCs based on AVI

m Asymptotics involves order statistics of x3 random variables

Su, Di and Hsu (2014). Hypothesis testing for functional linear models.
Sgbmitted.



FPCA-based approach

An example

Results with FA in RCST
RCST p-values npc
plajve AVI V AVI V
0.50 0.1007 2
0.85 0.0637 5
(.99 0.0035 10

m Standard FPCA approach sensitive to tuning parameter
m The new AVI-based approach is more robust

27



Dependent Functional Data

Yi(t) = Xi(t) + €;(t)

i: subject; j: visit
Y;i(t) is recorded on Q;; = {tjs: s =1,2,---, T;}

Functions from the same subject are correlated

Vi) = n(t) + Zi(e) + W(e) + e5(t)

Zi(t)'s and W;(t)'s are centered random functions
AssumeZ;(t) and W;(t) are uncorrelated

28



Multilevel FPCA

KL expansion on both levels
N1 N2
1 2
Zi(t) = Y ewosM(1), wy(t) = Y o)
k=1 =1

u ¢E<1)(t),¢>§2)(t): eigenfunctions
dominating directions of variation at both levels

® &k, Gjji: principal component scores
magnitude of variation for each subject/visit

= )‘S}) = var(§ik), )\52) = var((jy): eigenvalues
the amount of variation explained

29



Multilevel FPCA

Yij(t) = p(t) + Zi(t) + Wi(t) + €(t)

m Between subject level (level 1):

Ke(s. t) := cov{Zi(s), Zi(£)} = T, Ao () 00 (1)
m Within subject level (level 2):

Kw(s, 1) = cov{ Wy(s), Wy(2)} = S22 AP0 (s) (1)
m Total: K7(s,t) := Kg(s,t) + Kw(s,t) + o2 I(t = s)

Note that

m cov{Yj(s), Yi(t)} = Kg(s,t) + a? I(t = s5)
[ COV{Y,'J'(S), Y,J(t)} = KB(S, t) + Kw(s, t) +0° /(t = S)

30



MFPCA Algorithm

m Estimate x(t) and 7;(t) by univariate smoothing; estimate
Kt(s,t) and Kg(s, t) via bivariate smoothing

m Set Ky (s, t) = Kr(s, t) — Ka(s, t)

m Eigen-analysis of Kp(s,t) and Ky (s, t) to obtain 3\5(1),
~ 2(2) 22
3. A7 87()

m Estimate principal component scores

Note: we use penalized splines with REML for smoothing
R package "SemiPar”

31



Principal Component Scores

N1 N2
Yi(t) = u(6) + > €a ol (6) + > G ol (t) + e5(t)
k=1 =1

m Estimate scores, é,-k,f,-j,, using BLUP
m Dimension reduction

Subject level: {Y1(t), -, Yu(t)} = (&1, - . &im)
= Predict individual curve Yj;(t) with confidence bands

m Predict subject level curve Z-(t) with confidence bands

Other extensions
m Multilevel Functional Regression (Crainiceanu et al. 2009)

m Longitudinal/multivariate FPCA (more flexible correlations)

32



Registration

The Registration Problem
Most analyzes only account for variation in amplitude.

Frequently, observed data exhibit features that vary in time.

Berkeley Growth Acceleration

Observed Aligned
S« S
g g
H 5 -
2 2
£ £ o
2 g
f= i=
S - [<I
& g
[*] 153
< <,
g g
2 2+

m Mean of unregistered curves has smaller peaks than any
individual curve.
33 ® Aligning the curves reduces variation by 25%
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Registration

Defining a Warping Function

Requires a transformation of time.

Seek

Si = W,'(t)

so that

%i(t) = xi(si)
are well aligned.

w;(t) are time-warping (also called registration) functions.

34
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Registration

Landmark registration

For each curve x;(t) we choose points

tit, ..., tik

We need a reference (usually one of the curves)

to1, .- -, tok

so these define constraints

w;(tj) = to;

Now we define a smooth function to go between these.

35
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Registration

|dentifying Landmarks

Major landmarks of interest:

m where x;(t) crosses some
value

D value

m location of peaks or valleys

m location of inflections

36
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Registration

Results of Warping

Registered Acceleration Warping Functions

D value

37
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Dynamics

Dynamics: Relationships between derivatives

38

Access to derivatives of functional data allows new models.

Variant on the concurrent linear model: e.g.

Dy;(t) = Bo(t) + Bu(t)yi(t) + B2(t)xi(t) + €i(t)

Can be estimated like concurrent linear model.

But how do we understand these systems?
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Dynamics: Second Order Systems

Principle Differential Analysis

Translate autonomous dynamic model into linear differential
operator:

Lx = D?x + B1(t)Dx(t) + Bo(t)x(t) = 0
Potential use in improving smooths (theory under development).

We can ask what is smooth? How does the data deviate from
smoothness?

Solutions of Lx(t) =0 Observed Lx(t)

000 005 010 015 020 025 030 035 000 005 010 015 020 025 030 035
time(seconds) time(seconds)

39
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FDA for sparse longitudinal data

Yij = Xi(ty) + €ij

m Data is recorded on sparse and irregular grid points
Q; = {ti, tio,- -+ , tin;}, nj is small (bounded)

But grid points are dense collectively, Q = U;Q;

Difficulty of applying FDA techniques (e.g., FPCA)

m Cannot pre-smooth trajectory for each subject
m Estimation of FPC needs numerical integration

di = [{xi(t) — p(t)}ou(t) dt
Solution: Yao et al. (2005)

m Pool all data, use (bivariate) smoothing
m Estimate FPC by conditional expectations (BLUPs)

40



FDA for sparse longitudinal data

41

08

04

subject 2 visit1: N =3

subject 2 visit2: N=3

subject 2 specific: N =3

08

subject 2 visit1: N=6

subject 2 visit2: N=6

subject 2 specific: N =6

subject 2 visit 1: N =12

subject 2 visit 2: N =12

subject 2 specific: N =12

subject 2 visit 1: N =24

subject 2 visit 2: N =24

subject 2 specific: N =24




More general regression models

m Functional additive models (Muller et al., 2008; McLean et
al., 2014)

Partially functional linear regression (Kong et al., 2015)

Functional mixture regression (Yao et al. 2011)
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