
VLSI Cell Placement Techniques

K. SHAHOOKAR AND P. MAZUMDER

Department of Electrical Engineering and Computer Sc~ence,

University of Michigan, Ann Arbor, Michigan 48109

VLSI cell placement problem is known to be NP complete. A wide repertoire of
heuristic algorithms exists in the literature for efficiently arranging the logic cells on
a VLSI chip. The objective of this paper is to present a comprehensive survey of the
various cell placement techniques, with emphasis on standard ce11and macro
placement. Five major algorithms for placement are discussed: simulated annealing,
force-directed placement, rein-cut placement, placement by numerical optimization,
and evolution-based placement. The first two classesof algorithms owe their origin to
physical laws, the third and fourth are analytical techniques, and the fifth class of
algorithms is derived from biological phenomena. In each category, the basic algorithm
is explained with appropriate examples. Also discussed are the different
implementations done by researchers.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design
Aids—placement and routing

General Terms: Design, Performance

Additional Key Words and Phrases: VLSI, placement, layout, physical design, floor
planning, simulated annealing, integrated circuits, genetic algorithm, force-directed
placement, rein-cut, gate array, standard cell

INTRODUCTION

Computer-aided design tools are now
making it possible to automate the entire
layout process that follows the circuit
design phase in VLSI design. This has
mainly been made possible by the use of
gate array and standard cell design
styles, coupled with efficient software

packages for automatic placement and
routing. Figure la shows a chip using
the standard cell layout style, which in-
c]udes some macro blocks. Standard cells
(Figure lb) are logic modules with a pre-
designed internal layout. They have a

fixed height but different widths, de-
pending on the functionality of the mod-
ules. They are laid out in rows, with
routing channels or spaces between rows
reserved for laying out the interconnects
between the chip components. Standard
cells are usually designed so the power
and ground interconnects run horizon-
tally through the top and bottom of the
cells. When the cells are placed adjacent
to each other, these interconnects form a
continuous track in each row. The logic
inputs and outputs of the module are
available at pins or terminals along the
top or bottom edge (or both). They are

This research was partially supported by the NSF Research Initiation Awards under the grant number
MIP-8808978, the University Research Initiative program of the U.S. Army under the grant number
DAAL 03-87-K-OO07,and the Digital Equipment Corporation Faculty Development Award. K, Shahookar
is supported by the Science and Technology Scholarship Program of the Government of Pakistan.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
@1991 ACM 0360-0300/91/0600-0143 $01.50

ACM Computing Surveys, Vol. 23, No. 2, June 1991

144 “ K. Shahoohar and P. Mazumder

CONTENTS

[INTRODUCTION
Classification of Placement Algorithms
Wire length Estimates
1 SIMULATED ANNEALING

11 Algorithm
12 Operation of Simulated Annealing
13 TlmberWolf 32
1.4 Recent Improvements m Simulated Anneahng

z FORCE.DIRECTED pLAfJEMENT
2 1 Force-DwectedPlacement Techniques
2.2 Algorithm
2,3 Example
24 Goto’sPlacement Algorithm
25 Analysls

3 PLACEMENT BY PARTITIONING
3 1 Breuer’s Algorithms
32 Dunlop’s Algorithm and Termmal Propagation
33 Quadrlsectlon
34 Other Techmques
35 Analysls

4, NUMERICAL OPTIMIZATION TECHNIQUES
41 Eigenvalue Method
42 Resu%lveNetwork Optlmlzatlon
43 PROUD: Placement by Block Gauss-Seldel

Optlmlzatlon
44 ATLAS: Techmque for Layout Using

Analytlc Shapes
45 Algorithm for Block Placement by Size

Optlmlzatlon
46 Other Work in This Field

5 PLACEMENT BY THE GENETIC ALGORITHM

5.1 Geme: Genetic Placement Algorlthm
5.2 ESP: Evolution-Based Placement Algorlthm
53 GASP Genetic Algorlthm for Standard

Cell Placement
6 CONCLUSION
ACKNOWLEDGMENTS
References

connected by running interconnects or
wires through the routing channels. Con-
nections from one row to another are
done either through vertical wiring
channels at the edges of the chip or by
using feed-through cells, which are stan-
dard height cells with a few intercon-
nects running through them vertically.
Macro blocks are logic modules not in the
standard cell format, usually larger than
standard cells, and placed at any
convenient location on the chip.

Figure 2 shows a chip using the gate
array design style. Here, the circuit con-
sists only of primitive logic gates, such as
NAND gates, not only predesigned but

ACM Computing Surveys, Vol 23, No 2, June 1991

prefabricated as a rectangular array,
with horizontal and vertical routing
channels between gates reserved for in-
terconnects. The design of a chip is then
reduced to designing the layout for the
interconnects according to the circuit di-
agram. Likewise, fabrication of a custom
chip requires only the masking steps for
interconnect layout.

Figure 3 shows a third chip layout
style, which uses only macro blocks.
These blocks may be of irregular shapes
and sizes and do not fit together in regu-
lar rows and columns. Once again, space
is left around the modules for wiring. For
a detailed description of the layout styles,
see Muroga [1982] and Ueda et al. [1986].

The placement problem can be defined
as follows. Given an electrical circuit
consisting of modules with predefined in-
put and output terminals and intercon-
nected in a predefined way, construct a
layout indicating the positions of the
modules so the estimated wire length and
layout area are minimized. The inputs to
the problem are the module description,
consisting of the shapes, sizes, and termi-
nal locations, and the netlist, describing
the interconnections between the termi -
nals of the modules. The output is a list
of x- and y-coordinates for all modules.
Figure 4 provides an example of place-
ment, where the circuit schematic of
Figure 4a is placed in the standard cell
layout style in Figure 4b. Figure 4C illus-
trates the Checkerboard model of the
placement in which all cells are assumed
to be square and of equal size and all
terminals are assumed to be at the cen-
ter of the cells. Thus, the length of the
interconnect from one cell to the next is
one unit.

The main objectives of a placement al-
gorithm are to minimize the total chip
area and the total estimated wire length
for all the nets. We need to optimize chip
area usage in order to fit more function-
ality into a given chip area. We need to
minimize wire length in order to reduce
the capacitive delays associated with
longer nets and speed up the operation of
the chip. These goals are closely related
to each other for standard cell and gate
array design styles, since the total chip

Iz E&l

lnlnEam

❑ on ❑ 0[1

❑❑

❑

❑
❑

❑

❑

❑

❑

ACM Computing Surveys, Vol, 23, No 2, June 1991

146 . K. Shahookar and P. Mazumder

EIUUEIEIEI
❑

clclcl Elncincl nncl Elclcicl ❑ ull
clclnnn unnclclcl Elunn Elncl
❑ izlclntl nclnclclnclaclcl Elcln

❑
tlclclclnlzclclclclnnnn 0000
❑ lclnnnclclnnclclclcincl ❑ 00

ATE~aaDtlaaaDa 1317CICICIEIDCI

In ❑ lnnclciclncltlnnclclncl ❑ 00
PAD

❑ lnnnnclclclnclnnclclcl ❑ un

HORIZONTAL .tlnnnnnnclclnclnan ❑ oon
CHANNEL ~

❑ lclnclnnnciclclnnnn ❑ non

❑

❑

•1

❑ nnnclcl13clnnnDlJnn ❑ un
❑ clcinElnElclnElclrJnclcl ❑ un
❑ lnnnclclnclclnncluclcl ❑ 00
clnnclcllJnnclnclclucln Elan
❑ nclnclclnclnElclclclclcl ❑ un
❑ lnclclnclnclnnclclclclcl ❑ on
❑ lclclclclclnclclnclnucicl ❑ clrl
❑ lclclclclclncl ❑ nnncloncln

EIEIEI ❑ on
vERTIciLCHANNEL

Figure 2. Gate array layout style

area is approximately equal to the area
of the modules plus the area occupiedby
the interconnect. Hence, minimizing the
wire length is approximately equivalent
to minimizing the chip area. Inthe macro
design style, the irregularly sized macros
donotalwaysfit together, and some space
is wasted. This plays a major role in
determining the total chip area, andwe
have atrade-off between minimizing area
andminimizingthe wire length. In some
cases, secondary performance measures,
such as the preferential minimization of
wire length of a few critical nets, may
alsobe needed, at the cost ofan increase
in total wire length.

cl

•1

❑

•1
•1
❑

Another criterion for an acceptable
placement is that it should be physically

possible; that is, (1) the modules should
not overlap, (2) they should lie within
the boundaries of the chip, (3) standard
cells shouldbe confined to rows inprede-
termined positions, and (4) gates in a

gate array should be confined to grid
points. It is common practiceto define a
cost function or an objective function,

which consists of the sum of the total
estimated wire length andvariouspenal-
ties for module overlap, total chip area,
and so on. The goal of the placement
algorithm is to determine a placement
with the minimum possible cost.

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques ● 147

HOR

❑ on nan

n L___.d WASI’EI)

mu-=

.$PACE

CHANNEL

❑

n

[n

!

C—3

[1

El

-1
❑ pnclncl

❑

•1

❑

❑

❑

•1

VERTICALCHANNEL
Figure 3. Macro block layout style

Some of the placement algorithms de- used synonymously to represent an as-

scribed in this paper are ‘suitable for
standard cells and gate arrays, some are
more suitable for macro blocks, and some
m-e suitable for both. In this paper, the
words module, cell, and element are used
to describe either a standard cell or a
gate (or a macro block, if the algorithm
can also be used for macros). The words
macro and block are used synonymously
in place of macro block. Their usage also
depends on the usage in the original pa-
pers. Similarly, net, wire, interconnect,
and signal line are used synonymously.
The terms configuration, placement, and
solution (to the placement problem) are

signment of modules to ‘physical loca-
tions on the chip. The terms pin and
terminal refer to terminals on the
modules. The terminals of the chip
are referred to as pads.

Module placement is an NP-complete
problem and, therefore, cannot be solved
exactly in polynomial time [Donath 1980;
Leighton 1983; Sahni 1980]. Trying to
get an exact solution by evaluating every
possible placement to determine the best
one would take time proportional to the
factorial of the number of modules. This
method is, therefore, impossible to use
for circuits with alny reasonable number

ACM Computing Surveys, Vol. 23, No 2, June 1991

148 ● K. Shahookar and P. Mazumder

A

B~

D

<
Nethst:

<t [A, 1,2, 3,4),
(B, 1,2,3,4, 11, 12),
(C, 6, 10, 11, 12, 13),
[1,8), (2,5),

() (3,7), (4, lo),
(11, 13], (12, 14),
(5, 6), {6,8),

co

1 >lb

(8,9), [7,9),
1? 13<* (9, 15), {lo, 15),

(13, 16), (14, 16),
[D, 15), (E, 16).

12

?

OE

[a)

T 1 I i 1 J i I
,

1 1
550— I I I

11: v ‘ I I I
)

dB 2 3 14 13

b

GND

400 — I I
I

I I
I

[
I ,

350—
I I I I

r I
I

I

❑ 5 7 10 16
!-Kl

E

d’“’”w~ :h150 —

c
6 8 9 15 D

(0, o;~ —_ —400

Placement
(cell, x, y):

(1, O,600)
(2, o,400)
(3, 100,400)
(4, 100,600)
(5, o, 200)
(6, O,O)
(7, 75, 2(Y3)
(8, 100, O)
(9, 200, o)
(lo, 150, 200)
(11, 300, 600)
(12, 200, 600)
(13, 300, 400)
(14, 2CH3,4fw)
(15, 300, o)
(16, 250, 200)

(b)

Figure 4. Cell placement: problem definition (a) Input: Nethst; (b) Output: module coordinates; (c)
checkboard model

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques “ 149

Q o 0 D o

A- - 1 0 4 12 11

0 0

?

6 0
“ +

B“ 0 6 0

2 3 14 13

0 0 0

0 0 0 .F

()
5 7 10 ?6—

T 7

0

0 .3

co
0

6 8 9 15

0 0 0 e 0- * —

[c)

Figure 4. Continued,

of modules. To search through
number of candidate dacement

a large
conficu -.

rations efficiently, a heuristic algorithm
must be used. The quality of the place-
ment obtained depends on the heuristic
used. At best, we can hope to find a good
placement with wire length quite close to
the minimum, with no guarantee of
achieving the absolute minimum. The
objective of this paper is to introduce the
reader to the various heuristic algo-
rithms developed for solving this comput -
ationally intractable problem and to
analyze their performance.

The placement process is followed by
routing, that is, determining the physical
layout of the interconnects through the
available space. Finding an optimal rout-
ing given a placement is also an NP-
complete problem. Many algorithms work
by iteratively improving the placement
and, at each step, estimating the wire
length of an intermediate configuration.
It is not feasible to route each interme-
diate configuration to determine how

good it is. Instead we estimate the wire
length as described in the Introduction,
“Wire Length Estimates. ”

Classification of Placement Algorithms

Placement algorithms can be divided into
two major classes: constructive placement
and iterative improvement. In construc-
tive placement, a method is used to build
up a placement from scratch; in iterative
improvement, algorithms start with an
initial placement and repeatedly modify
it in search of a cost reduction. If a modi-
fication results in a reduction in cost, the
modification is accepted; otherwise it is
rejected.

Early constructive placement algo-
rithms were generally based on primitive
connectivity rules. For example, see
Fukunaga et al. [1983], Hanan [1972a],
Kambe et al. [1982], Kang [1983], Kozawa
et al. [19831, Magnuson [19771, and Per-
sky et al. [1976]. Typically, a seed mod-
ule is selected and placed in the chip

ACM Computing Surveys, Vol. 23, No. 2, June 1991

150 “ K. Shahookar and P. Mazumder

layout area. Then other modules are se-
lected one at a time in order of their
connectivity to the placed modules (most
densely connected first) and are placed at
a vacant location close to the placed mod-
ules, such that the wire length is mini-
mized. Such algorithms are generally
very fast, but typically result in poor lay-
outs. These algorithms are now used for
generating an initial placement for itera-
tive improvement algorithms. The main
reason for their use is their speed. They
take a negligible amount of computation
time compared to iterative improvement
algorithms and provide a good starting
point for them. Palczewski [19841 dis-
cusses the complexity of such algorithms.
More recent constructive placement algo-
rithms, such as numerical optimization
techniques, placement by partitioning,
and a force-directed technique discussed
here, yield better layouts but require sig-
nificantly more CPU time.

Iterative improvement algorithms typ-
ically produce good placements but re-
quire enormous amounts of computation
time. The simplest iterative improve-
ment strategy interchanges randomly se-
lected pairs of modules and accepts the
interchange if it results in a reduction in
cost [Goto and Kuh 1976; Schweikert
1976]. The algorithm is terminated when
there is no further improvement during a
given large number of trials. An im-
provement over this algorithm is re-
peated iterative improvement in which the
iterative improvement process is re-
peated several times with different
initial configurations in the hope of
obtaining a good configuration in one of
the trials. Currently popular iterative
improvement algorithms include simu-
lated annealing, the genetic algorithm,
and some force-directed placement tech-
niques, which are discussed in detail in
the following sections.

Other possible classifications for place-
ment algorithms are deterministic algo-
rithms and probabilistic algorithms.
Algorithms that function on the basis of
fixed connectivity rules or formulas or
determine the placement by solving si-
multaneous equations are deterministic
and will always produce the same result

ACM Computmg Surveys, Vol 23, No 2, June 1991

for a particular placement problem.
Probabilistic algorithms, on the other
hand, work by randomly examining
configurations and may produce a dif-
ferent result each time they are run.
Constructive algorithms are usually
deterministic, whereas iterative im -
provement algorithms are usually proba-
bilistic.

Wire Length Estimates

To make a good estimate of the wire
length, we should consider the way in
which routing is actually done by routing
tools. Almost all automatic routing tools
use Manhattan geometry; that is, only
horizontal and vertical lines are used to
connect any two points. Further, two lay-
ers are used; only horizontal lines are
allowed in one layer and only vertical
lines in the other.

The shortest route for connecting a set
of pins together is a Steiner tree (Fig-
ure 5a). In this method, a wire can branch
at any point along its length. This
method is usually not used by routers,
because of the complexity of computing
both the optimum branching point, and
the resulting optimum route from the
branching point to the pins. Instead,
minimum spanning tree connections and
chain connections are the most com-
monly used connection techniques. For
algorithms that compute the Steiner tree:
see Chang [1972], Chen [1983], and
Hwang [1976, 19791.

Minimal spanning tree connections
(Figure 5b), allow branching only at the
pin locations. Hence the pins are con-
nected in the form of the minimal span-
ning tree of a graph. Algorithms exist for
generating a minimal spanning tree
given the netlist and cell coordinates. An
example of the minimal spanning tree
algorithm is Kruskal [1956].

Chain connections (Figure 5c) do not
allow any branching at all. Each pin is
simply connected to the next one in the
form of a chain. These connections are
even simpler to implement than span-
ning tree connections, but they result in
slightly longer interconnects.

VLSI Cell Placement Techniques “ 151

Figure 5.

/x[,,,:.
(a)

4
x

x Q
~~

(c)

Some wiring schemes. (a) Steiner tree-

)

t+
(d)

wire length = 10; (b) minimal spanning tree —wire
length = 11; (c) chain c~nnection–wire length = 12; (d) sour;e-to-sink connections–wire length = 19, 0:
source; X, sink

Source-to-sink connections (Figure 5d),

where the output of a module is con-
nected to all the inputs by separate wires,
are the simplest to implement. They,
however, result in excessive interconnect
length and significant wiring congestion.
Hence, this type of connection is seldom
used.

An efficient and commonly used
method to estimate the wire length is the
semiperimeter method. The wire length is
approximated by half the perimeter of
the smallest bounding rectangle enclos-
ing all the pins (Figure 6). For Manhat-
tan wiring, this method gives the exact
wire length for all two-terminal and
three-terminal nets, provided the routing
does not overshoot the bounding rectan-
gle. For four-terminal nets, in the worst
case the semiperimeter estimate predicts
a wire length 3370 less than both the
actual chain connection and spanning
tree wire lengths. For nets with more
pins and more zigzag connections, the
semiperimeter wire length will generally
be less than the actual wire length. Be-

sides, this method provides the best esti-
mate for the most efficient wiring scheme,
the Steiner tree. The error will be larger
for minimal spanning trees and still
larger for chain connections. In practical
circuits, however, two- and three-
terminal nets are most common. More-
over, among the more complex nets, not
all will be worst case, so the semiperime -
ter wire length is a good estimate.

Some of the algorithms described in
Section 4 use the euclidean wire length
or squared eucliclean wire length. The
squared wire length is used to save the
time required for computing a square root
and for floating point computations as
compared to integer processing. Opti-
mization of the sc[uared wire length will
ensure that the e uclidean wire length is
optimized.

1. SIMULATED ANNEALING

Simulated annealing [Kirkpatrick
et al. 1983] is probably the most

ACM Computing Surveys, Vol 23, No 2, June 1991

152 ● K. Shahookar and P. Mazumder

well-developed method available for mod-
ule placement today. It is very time con-
suming but yields excellent results. It is
an excellent heuristic for solving any
combinatorial optimization problem, such
as the Traveling Salesman Problem
[Randelman and Grest 19861 or VLSI-
CAD problems such as PLA folding
[Wong et al. 19861, partitioning [Chung
and Rao 19861, routing [Vecchi and
Kirkpatrick 19831, logic minimization
[Lam and Delosme 1986], floor planning
[Otten and van Ginnekin 1984], or place-
ment. It can be considered an improved
version of the simple random pairwise
interchange algorithm discussed above.
This latter algorithm has a tendency of
getting stuck at local minima. Suppose,
for example, during the execution of the
pairwise interchange algorithm, we en-
counter a configuration that has a much
higher cost than the optimum and no
pairwise interchange can reduce the cost.
Since the algorithm accepts an inter-
change only if there is a cost reduction
and since it examines only pairwise _in -

tima, we need an algorithm that periodi-
cally accepts moves that result in a cost
increase. Simulated annealing does just
that.

The basic procedure in simulated an-
nealing is to accept all moves that result
in a reduction in cost. Moves that result
in a cost increase are accepted with a
probability that decreases with the in-
crease in cost. A parameter T, called the
temperature, is used to control the accep-
tance probability of the cost increasing
moves. Higher values of T cause more
such moves to be accepted. In most im-
plementations of this algorithm, the ac-
ceptance probability is given by
exp (–AC/ T), where AC is the cost in-
crease. In the beginning, the tempera-
ture is set to a very high value so most of
the moves are accepted. Then the tem-
perature is gradually decreased so the
cost increasing moves have less chance of
being accepted. Ultimately, the tempera-
ture is reduced to a very low value so
that only moves causing a cost reduction
are accepted, and the algorithm con-
verges to a low cost configuration.

1.1 Algorithm

A typical simulated annealing algorithm
is as follows:

PROCEDURE Simulated_ Annealing;
initialize;
generate random configuration;
WHILE stopping. criterion (loop. count, temperature) = FALSE

WHILE inner.loop.criterion = FALSE
new_configuration + perturb(configuration);
AC + evaluate(new_con figuration, configuration);
IF AC <0 THEN new.configuration + configuration
ELSE IF accept(AC, temperature) > random(O, 1)

THEN new_configuration - configuration;
ENDIF

ENDIF
ENDWHILE
temperature + schedule(loop_count, temperature);
loop_ count + loop_ count + 1;

ENDWHILE
END.

terchanges, there is no way of progress- Perturb generates a random variation

ing further from such a configuration. of the current configuration. This may

The algorithm is trapped at a locally op- include displacing a module to a random

timum configuration, which may be quite location, an interchange of two modules,

poor. Experience shows that this hap- rotation and mirroring within the re -

pens quite often. To avoid such local op - strictions of the layout geometry, or any

ACM Computmg Surveys, Vol 23, No. 2, June 1991

VLSI Cell Placement Techniques g 153

TiI!+:
--------------------,~
v--t,----------..---------

Y

Figure6. Semiperimeter wire length =X+Y.

other move likely to change the wire
length. For standard cells, usually mir-
rorirw about the vertical axis is allowed.
whereas for macro blocks, rotation in
steps of 900 or mirroring about either
axis is allowed. A range-limiting func-
tion may be implemented, which may
first select the module to be moved, then
select a destination within a specified
range from the target location. This is
usually done to increase the acceptance
rate of the moves.

Evaluate evaluates the change in cost,
using the semiperimeter method. To save
CPU time, the change in wire length can
be calculated incrementally. That is, the
computation is done only for those nets
that are connected to the cells that were
moved.

Accept is the probabilistic acceptance
function that is called when the cost is
increased by a perturbation. It deter-
mines whether to acce~t a move or not.
depending on the cost increase and tem~
perature. Usually it is the exponential
function described above. but it can be
any other function.

Schedule is the temperature schedule,
which gives the next temperature as a
function of the number of iterations or
the previous temperature. For example,
the function T,+ ~ = 0.1 T, may be used
for exponential temperature decrease.

Inner_ loop_ criterion is the criterion
that decides the number of trials at
each temperature. Usually the num-
ber of moves attempted per cell at each
temperature is fixed.

Stopping_ criterion terminates the al-
gorithm when the temperature or the

number of iterations has reached a
threshold value.

There are no fixed rules about the ini-
tial temperature, the cooling schedule,
the probabilistic acceptance function, or
the stoplping criterion, nor are there any
restrictions on the types of moves to be
used— displacement, interchange, rota-
tion, and so on. The quality of placement
and the execution time depend on these
parameters. A good choice of parameters
can result in a good placement in a rela-
tively short run time. The greatest chal-
lenge in tuning a simulated annealing
algorithm lies in finding a single set of
parameters and functions that consis-
tently give very good solutions for a wide
variety of circuits, while using a mini-
mum of computation time. Initially, re-
searchers chose these parameters and
functions arbitrarily. Recently, however,
several researchers have done a rigorous
statistical analysis of the annealing pro-
cess in order to derive more appropriate
functions. Section 1,3 gives the parame-
ters and functions used in TimberWolf, a
well-known place and route package.
Section 1.4 discusses other alternatives
for these parameters and functions.

1.2 Operation of Simulated Annealing

If simulated annealing is run for a suffi-
ciently 1ong time and with the appropri-
ate cooling schedule, it is guaranteed to
converge to the global minimum [Mitra
et al, 1985; van Laarhoven and Aarts
1987]. This section explains in intuitive
terms why this is so. Two analogies are
given to illustrate the operation of this
algorithm.

In the first analogy, from which the
algorithm gets its name, simulated an-
nealing is compared to the annealing
process in metals. If a metal is stressed
and has imperfect crystal structure, one
way to restore its atomic placement is to
heat it to a very high temperature, then
cool it very slowly. At high temperature,
the atoms have sufficient kinetic energy
to break loose from their current incor-
rect positions. As the material cools, the
atoms sl[owly start getting trapped at the
correct lattice locations. If the material

ACM Computing Surveys, Vol. 23, No. 2, June 1991

154 “ K. Shahookar and P. Mazumder

is cooled too rapidly, the atoms do not get
a chance to get to the correct lattice loca-
tions and defects are frozen into the crys-
tal structure. Similarly, in simulated
annealing at high temperature, there are
many random permutations in the initial
configuration. These give the cells at in-
correct locations a chance to get dis-
lodged from their initial position. As the
temperature is decreased, the cells slowly
start getting trapped at their optimum
locations.

In the second analogy, the action of
simulated annealing is compared to a
ball in a hilly terrain inside a box [Szu
1986]. Without any perturbation, the ball
would roll downhill until it encountered
a pit, where it would rest forever al-
though the pit may be high above the
minimum valley. To get the ball into the
global minimum valley, the box must be
shaken strongly enough so that the ball
can cross the highest peak in its way. At
the same time, it must be shaken gently
enough so that once the ball gets into the
global minimum valley it cannot get out.
It must also be shaken long enough so
that there is a high probability of visit-
ing the global minimum valley. These
characteristics translate directly into al-
gorithm parameters. The strength or
gentleness of the vibrations is deter-
mined by the probabilistic acceptance
function and the initial temperature, and
the duration of the vibrations depends on
the cooling schedule and the inner loop
criterion.

1.3 Tim berWolf 3.2

TimberWolf, developed by Carl Sechen

and Sangiovanni-Vincentelli is a widely
used and highly successful place and
route package based on simulated an-
nealing. Different versions of Timber-
Wolf have been developed for placing
standard cells [Sechen 1986, 1988b;
Sechen and Sangiovanni-Vincentelli
1986], macros [Cassoto et al. 1987], and
floor planning [Sechen 1988al. Version
3.2 for standard cells will be described
here.

TimberWolf does placement and rout-
ing in three stages. In the first stage, the

cells are placed so as to minimize the
estimated wire length using simulated
annealing. In the second stage, feed
through cells are inserted as required,
the wire length is minimized again, and
preliminary global routing is done. In
the third stage, local changes are made
in the placement wherever possible to
reduce the number of wiring tracks re -
quired. In the following discussion we
will primarily be concerned with stage 1
—placement. Details about the rest of
the algorithm are given in Sechen [1986,
1988b] and Sechen and Sangiovanni-
Vincentelli [19861.

The simulated annealing parameters
used by TimberWolf are as follows.

1.3.1 Move Generation Function

Two methods are used to generate new
configurations from the current configu-
ration. Either a cell is chosen randomly
and displaced to a random location on
the chip, or two cells are selected ran-
domly and interchanged. The perfor-
mance of the algorithm was observed
to depend upon r, the ratio of dis-
placements to interchanges. Exper-
imental results given in Sechen and
Sangiovanni-Vincentelli [1986] indicate
that the algorithm performs best with
3~r <8.

Cell mirroring about the horizontal
axis is also done but only when a dis-
placement is rejected and only in approx-
imately 1O$ZOof those cases selected at
random. In addition, a temperature-
dependent range limiter is used to limit
the distance over which a cell can move.
Initially, the span of the range limiter is
twice the span of the chip, so for a range
of high temperatures no limiting is done.
The span decreases logarithmically with
temperature:

log T
LWV(T) = LwV(TJ-———

log TI

LWH(T) = LwH(TJ~

where LWV(TI) and LWH(TI) are the de-
sired initial values of the vertical and

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques ● 155

horizontal window span Lw V(T) and

LW~(T), respectively.

1.3.2 Cost Funct/on

The cost function is the sum of three
components: the wire length cost, Cl, the
module overlap penalty, Cz, and the row
length control penalty, C3.

The wire length cost Cl is estimated
using the semiperirneter method, with
weighting of critical nets and indepen-
dent weighting of horizontal and vertical
wiring spans for each net:

L’l = ~ [x(i) WH(i) +y(i)WV(i)],
nets

where %(i) and y(i) are the vertical and
horizontal spans of the net bounding
rectangle, and W~(i) and WV(i) are the
weights of the horizontal and vertical
wiring spans. Critical nets are those that
need to be optimized more than the rest,
or that need to be limited to a certain
maximum length due to propagation de-
lay. If they are assigned a higher weight,
the annealing algorithm will preferen-
tially place the cells connected to the
critical nets close to each other in an
attempt to reduce the cost. If the nets
still exceed the maximum length in the
final placement, their weights can be in-
creased and the algorithm run again.

Independent horizontal and vertical
weights give the user the flexibility to
favor connections in one direction over
the other. Thus, in double metal technol-
ogy, where it is possib [e to stack feed
throughs on top of the cells and they do
not take any extra area, vertical spans
may be given preference (lower weight).
During the routing phase, these cells are
connected using feed throughs rather
than horizontal wiring spans through the
channels, and precious channel space is
conserved. On the other hand, in chips
where feed throughs are costly in terms
of area, horizontal wiring is preferred
and horizontal net spans are given a
lower weidt. This minimizes the num-
ber of fee~throughs required.

The module overlap penalty, Cz,
parabolic in the amount of overlap:

C, = W,~ [O(i, j)]2,
L#l

is

where 0(i, j) is the overlap between the
ith and jth cell, and W2 is the weight for
this penalty. It was observed that Cz
converges to O for Wa = 1. The parabolic
function causes large overlaps to be pe-
nalized and hence discouraszed more than
small ones. Although cell overlap is not
allowed in the final placement and has to
be removed by shifting the cells slightly,
it takes a large amount of computation
time to remove overlap for every pro-
posed move. Recall that wire length is
computed incrementally. If too many cells
are shifted in an attempt to remove over-
lap, it would take too much computation
to determine the change in wire length.
This is whv most al~orithms allow over-
lap during”the anne~ling process but pe-
nalize it. Overlap only causes a slight
error in the estimated wire lerw-th. As
long as the overlap is small, th~s error
will be small. In addition, small overlaps
tend to get neutralized over several iter-
ations. Thus, it is advantageous to ~enal-
ize large overlaps more heavily than
small overlaps by using a quadratic
function.

The row length control penalty C~ is a

function of the difference between the
actual row length and the desired row
length. It tends to equalize row lengths
by increasing the cost if the rows are of
unequal lengths. Unequal row lengths
result in wasted space, as shown in Fig-
ure la. ‘The penalty is given by

C3=W3~l Ln-iR\,
rows

where L,~ is the actual row length, L~ is
the desired row length, and Wa is the
weight for this penalty for which the de-
fault value of 5 is used. Experiments
show that the function used provides good
control, with final row lengths within
3-5% of the desired value. Results of two
experiments are given by Sechen and
Sangiovanni-Vincentelli [19861, showing
a reduction in wire length when the row
length control penalty was introduced.

1.3.3 Inner Loop Criterion

At each temperature, a fixed number of
moves per cell is attempted. This number

ACM Computing Surveys, Vol. 23, No. 2, June 1991

100 0.--
K. Shahookar and P. Ma.zumder

900000

800000-

700000-

600000 r , ,
0 100 200 300 400 500

Moves per cell

(a)

,.9

4b
,.8

No. of mnfigurations exammed
,.7

,.6

,.5

,.4

,.3
{1

,.2 Recommended no. of moves per cell

,.1.

,.O

0 1000 2000 3000
cells

(b)

Figure 7. (a) Quality versus CPU time tradeoff in TlmberWolf (b) Recommended number of moves per
cell

is a parameter specified by the user. The
final wire length decreases monotoni-
cally as the number of moves per cell is
increased. As the number of moves grows,
however, the reduction in the final wire
length diminishes, and large increases in
CPU time are incurred. The optimal
number of moves per cell depends on the
size of the circuit. For example, for a
200-cell circuit, 100 moves per cell are
recommended in Sechen [1986], which
calls for the evaluation of a total of 2.34

million configurations (in 117 tempera-
ture steps). For a 3000-cell circuit, 700
moves per cell are recommended, which
translates to a total of 245.7 million at-
tempts. Figure 7a shows the final wire
length as a function of the number of
moves per cell for a 1500-cell problem.
As the number of moves per cell is in-
creased beyond the recommended point,
the curve flattens out, thus causing little
further improvement with tremendous
increases in computation. Figure 7b

ACM Computmg Surveys, Vol 23. No 2, June 1991

VLSI Cell Placement Techniques ● 157

,.7

,.6

T
,.5

,.4

,.3

,.2

10’

,.O

]\

~:;Lr \~~
o 20 40 60 80 100 1

Heration No.

Figure 8. TimberWolf 3.2 cooling schedule.

shows the recommended number of moves
per cell as a function of the problem size.

1.3.4 Cooling Schedule and Stopping Criterion

The cooling schedule can be explained by
an analogy to the process of crystalliza-
tion. To achieve a perfect crystal struc-
ture, it is important tl-lat around the
melting point the temperature is reduced
very slowly. The annealing process is
started at a very high temperature, ~1 =
4,000,000, so most of the moves are
accepted. The cooling schedule is
represented by

T2+1= CY(T)~,>

where CY(T) is the cooling rate parame-
ter, which is determined experimentally.
At first, the temperature is reduced
rapidly [a(T) = 0.8]. Then, in the
medium temperature range, the temper-
ature is reduced slowly [a(T) = 0.95].
Most processing is done in this range. In
the low temperature range, the tempera-
ture is reduced rapidly again [Q(T) =
0.8]. The resulting cooling schedule is
shown in Figure 8. The algorithm is ter-
minated when T < 0.1. This consists of
117 temperature steps.

o

1.3.5 Per~ormance

Figure 9 shows a typical optimization
curve. In the first few iterations there is
so much random perturbation that the
cost increases. During the first half of
the run, there is al,most no improvement.
This perturbation is necessary to avoid
entrapment at local optima. When the
temperature is reduced, the cost begins
to decrease. The performance of Timber-
Wolf was compared to a commercially
developed placement program based
partly on the rein-cut algorithm. Timber-
Wolf achieved 1~-sy’%. smaller wire
length for industrial circuits ranging
from 469 to 2500 cells. The 2500-cell cir-
cuit required 15 hours of CPU time on an
IBM 3081K. Compared to manual layout
for an 800-cell circuit, TimberWolf
achieved a 24% reduction in wire length
using 4 h of CPU time on an IBM 3081K.

1.4 Recent Improvements in Simulated

Annealing

Recently researchers have begun to ana-
lyze the performance of the algorithm
and control its operating parameters us-
ing statistical techniques. A tenfold
speedup has been reported compared with
previous versions.

ACM Computmg Surveys, Vol 23, No 2, June 1991

158 “ K. Shahookar and P. Mazumder

1.4.1 Effect of Probab/1/stic Acceptance

Functions

Nahar, Sahni, and Shragowitz [1985]
experimented with the 20 different prob-
abilistic acceptance functions and tem-
perature schedules listed here. In the list,

&?k is the acceptance function, C, and CJ
are the previous and new costs, and Th is
the k th temperature step.

(1) Metropolis

(2) Six temperature Metropolis

(3) Constant

(See Nahar [19851 for the details of
implementation of this function.)

(4) Unit step

(5) Linear

(6) Quadratic

(7) Cubic

(8) Exponential

(9) Six temperature linear

(10) Six temperature quadratic

(11) Six temperature cubic

(12) Six temperature exponential

(13) Linear difference

(14) Quadratic difference

(15) Cubic difference

(16) Exponential difference

(17) Six temperature linear difference

(18) Six temperature quadratic difference

(19) Six temperature cubic difference

heuristics of Goto [1977] and Cohoon and
Sahni [1983]. The best performance was
exhibited by the six temperature anneal-
ing, constant, and cubic difference
functions.

1.4.2 Statistical Control of Annealing Parameters

If we have a method for deriving the
cooling schedule parameters by a

gl = exp[–(CJ – Cz)/Tll

gk = exl?–(c~ – 6’,)/ Tk]; 1< k <6

gl=l

exP(cL/Th)–l; ~<k<6
gk =

e–1

gl = T, /(cJ – c,)
g, = T1 I(C, – C,)2
gl = T1/(c, – C,)3

exP[~l/(c, – CL)] – 1gl =
e–1

L?k=Tk/(c, -c,); l=k=6

gk=Tk/(cJ–c,)2; l=k=6

L7k=T1/(cJ-c,)3; l=k=6

exp[Tk/(C, – CL)] – 1.
(20) Six temperature exponential difference gk =

e–1

For the unit step function and the six
temperature functions, equal computa-
tion time was given to each step.

These functions were tried on the Net
Optimal Linear Arrangement problem,
which is the one-dimensional equivalent
of the cell placement problem. All func-
tions were given equal computation time,
and the reduction in cost was compared.
The results are shown in Figure 10. The
figure also shows a comparison with the

statistical analysis of the problem itself,
then the cooling schedule, instead of be-
ing fixed, can be adapted for each prob-
lem to be solved, and the annealing can
proceed rapidly. Such approaches are
termed adaptiue simulated annealing al-
gorithms. Aarts et al. [1985, 1986] and
van Laarhoven and Aarts [1987] use the
theory of Markov chains to derive the

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques ● 159

3e+6

s
‘g
~

2e+6
a)
&.-

%

u
al
%
E.-
Z
a 1e+6

=
z
1-

Oe+O

Oe+O 2e+6 4e+6 6e+6

No. of configurations

Figure 9. Optimization curve for TimberWolf 3.2.

8e+6 1e+7

examined

800T———— I

34567 8 910111213141516171619202122

g function ussd

Figure 10. Comparison of various acceptance functions. ■ , 6 see; U, 9 see; ❑ 12 sec.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

160 ● K. Shahookar and P. Mazumder

cooling schedule. Similar expressions
were developed by Huang et al. [1986].

Notation

R = {rl, rz, . . . ,rl~l} is the configura-

tion space, the set of all possible place-
ments, where

i is a configuration label, which identi-
fies a configuration uniquely,

r, is the ith configuration vector, giv-
ing the coordinates of all modules in the
ith placement,

e, is the ith unit vector in [0, 1] IR I

lR={ilr, eR}={l,2, i...., IRI}

is the set of configuration labels,
C : R + R is the cost function, which as-

signs a real number C(rt) to each config-
uration i c lR such that the lower the
value of C, the better the corresponding
configuration.

The algorithm can be formulated as a
sequence of Markov chains, each chain
consisting of a sequence of configurations
for which the transition probability from
configuration i to configuration j is given
by

pwv’z, ifi+j

where P,J is the perturbation probabil-
ity, that M, the probability of generating
a configuration j from configuration i

(independent of T); A ,J(T) is the accep-
tance probability, that is, the probabil-
ity of accepting configuration j if the
system is in configuration i; and T is
the temperature.

The perturbation probability is chosen
as

if J”+ IRL,

where R, is the configuration subspace
for configuration i, which is defined as
the space of all configurations that can
be reached from configuration i by a sin-
gle perturbation. This is a uniform prob-
ability distribution for all configurations
in the subspace.

The acceptance probability is chosen as

{()–AC,~

A,,(T) = ‘Xp T
if AC,l > 0

1 if ACC~ s O,

where ACZ7 = C(r~) – C(r,). This ex-
pression is known as the Metropolis
criterion.

From the theory of Markov chains it
follows that there exists a uni ue

?equilibrium vector q(T) e [0, 1] R I
that satisfies

for all i e IR: lim e~@(T) = q~(T).
L~m

If we start from any configuration, i, and
perform L perturbations, with L + co,
then the probability of ending up in state
j is given by the component qJ(T) of the
equilibrium vector. Thus, the equilib-
rium vector q(T) gives the probability
distribution for the occurrence of each
state at equilibrium. For the values of
P,J and A ,J(T) given above,

()–AC,ti
qj(T) = qO(T)exp

T’

where i. is the label of an optimal con-
figuration and qo(T) is a normalization
factor given by

1
%(T) = IRI

()AClok “
~exp-y
k=l

Further,

lim (e,@(T))J
::om-

= J~~_qJ(T)

[

= IROI-’ ifjGIRO

o if J“~IRO,

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques ● 161

where R ~ is the set of optimal configura-
tions, that is, RO = {r, e R I C(rL) =
C(rJ}. Thus, for Markov chains of infi-
nite length, the system will achieve one
of the optimal configurations with a uni-
form probability distribution, and the
probability of achieving a suboptimal
configuration is zero.

Initial Temperature. A fixed initial
temperature TI is not used. Instead, the
initial temperature is set so as to achieve
a desired initial acceptance probability,
xo. If ml and mz are the number of
perturbations so far that result in cost
reduction and cost increase, respectively,
and if the m2 cost-increasing perturba-
tions are accepted according to the
Metropolis criterion, the total number of
configurations accepted is ml +
mz exp (–AC/T). This gives x. as

ml + mzexp(– AC/T)
X. =

ml + m2

This equation can be rewritten to calcu-
late the initial temperature from the
desired value of xo:

[()1

–1

TI = AC(+) in
vz,xo - ~- Xo)ml ‘

where AC(+) is the average value of all
increases in cost, ignoring cost reduc-
tions. The initial system is monitored
during a number of perturbations before
the actual optimization process begins.
Starting with TI = O, after each pertur-
bation a new value of TI is calculated
from the above expression.

According to Huang et al. [19861, the
system is considered hot enough when
T>> a, vvhere u is the standard devia-

tion of the cost function. Hence the start-
ing temperature is taken as TI = k u,
where k = – 3 /ln(P). This allows the
starting temperature T to be high enough
to accept with probability P a configura-
tion whose cost is 3U worse than the
present one. A typical value of k is 20 for
P = 0.9. First, the configuration space is
explored to determine the standard devi -

ation of the cost function; then the start-
ing temperature is calculated.

Temperature Decrement. Most other
implementations used predetermined
temperature decrements, which are not
optimal for all circuit configurations.
Such a cooling schedule leads to variable
length Markov chains. Aarts et al. [19861
recommend the use of fixed length
Markov chains. This can be achieved
using the foIlowing temperature
decrement:

()ln(l + 6)T, ‘1
Ti+l =T, l+ sg ,

z

where o, is the standard deviation of the
cost function up to the temperature T,,
and 6 is a small real number that is a
measure of how close the equilibrium

vectors q. of two successive iterations
are to each other:

Huang et al. [19861 use the average

cost versus log-temperature curve to
guide the temperature decrease so that
the cost decreases in a uniform manner.
Hence,

T,AC

()
Ti+l = T, exp —

U2 “

This equation has been derived by equat -
ing the slope of the annealing curve to
02/T2. To maintain quasiequilibrium,
the decrease in cost must be less than
the standard deviation of the cost. For
AC= –Ao, h<l,

T 2+1 ()=Tlexp –3 .
u

Typically, A = 0.7. The ratio T,+ ~ / T, is
not allowed to go below a certain lower
bound (typically 0.5) in order to

ACM Computing Surveys, Vol. 23, No. 2, June 1991

162 “ K. Shahookar and P. Mazumder

prevent a drastic reduction in tempera-
ture caused by the flat annealing curve
at high temperature.

Stopping Criterion. The stopping cri-
terion is given by Aarts et al. [19861 as

where e, is a small positivgnumber called
the stop parameter, and C(TI) is the av-

erage value of the cost function at T1.
This condition is based on extrapolating

the smoothed average cost C~(T,) ob-
tained during the optimization process.
This average is calculated over a number
of Markov chains in order to reduce the
fluctuations of ~(T,).

Run-Time Complexity and Experimen-
tal Results. The Aarts et al. [1986] algo-
rithm has a complexity 0(I R I In I R I),
where I R I originates from the length of
the Markov chains, and the term in I R I
is an upper bound for the number of
temperature steps. The perturbation
mechanism can be carefully selected so
that the size of configuration subspaces
is polynomial in the number of variables
of the problem. Consequently, the simu-
lated annealing algorithm can always be
designed to be of polynomial time com-
plexity in the number of variables.

The Huang et al. [19861 algorithm has
been tested on circuits of size 183-800
cells. It results in 16–57% saving in CPU
time compared to TimberWolf for approx-
imately the same placement quality.
CPU times reported are of the order of 9
h on a VAX 11/780 for an 800-cell cir-
cuit, whereas the same circuit requires
11 h with TimberWolf 3.2.

1.4.3 Improved Annealing Algorithm in

TimberWolfSC 4.2

Sechen and Lee [1987] implemented a
fast simulated annealing algorithm as
part of TimberWolfSC version 4.2, which
is 9–48 times faster than version 3.2, As
a consequence of this algorithm, place-

ment of up to 3000 cells can be done on a
Micro VAX II workstation in under 24 h
of CPU time. The parameters they use
are as follows.

Cost Function. The standard cost
function consisting of semiperimeter wire
length, with adjustable weights for verti-
cal and horizontal nets and penalty terms
for overlap and row length control has
been implemented. The coding, however,
is much more efficient. For example,
moves that cause a large penalty are
rejected without wasting CPU time on
extensive wire length calculation.

Overlap Penalty. Each row is divided

into nonoverlapping bins. The overlap
penalty Cz is equal to the sum of the
absolute differences between the bin
width, W(b), and total cell width inter-
secting the bin, WC(b). The overlap
penalty is given by C~ = W2 Po, where
the amount of overlap is given by

f’o= x Iw.(b) - w(b)].
bms

This function can be evaluated quickly
because the algorithm does not need to
search through all the cells in order to
determine the overlap. WC(b) is known
for all bins. Whenever a cell is moved,
WC(b) is updated for the bins affected.

The simulated annealing process is
strongly dependent on the weight, Wz,
given to this penalty in the overall cost
function. Hence a negative feedback
scheme has been incorporated to control
this parameter dynamically as the an-
nealing progresses:

(W2(i + 1) = max O, WJi) +
PO – P:

)LR ‘

where P. and P: are the actual and
~arget values of the overlap penalty, and
L~ is the desired row length. This in-
creases the penalty if the overlap is
greater than the target value; otherwise

ACM Computing Surveys, Vol 23, No, 2, June 1991

VLSI Cell Placement Techniques “ 163

reduces it. The ideal target value of over-
lap has been empirically determined:

[“1
P:= 1.4 – 1.15: LR,

i ~.X

where i is the current iteration, and i~ax

is the number of iterations (temperature
values) used. This gives a target value
1.4 L~ at high temperature, when i <<

i ~ax. As the temperature decreases, the
control is tightened and the target
overlap is reduced uanti 1 at the final
temperature it is 0.25 L~.

Row Length Control Penalty. A simi-
lar negative feedback dynamic control
has been used for the row length control
penalty function C3 = W3 P~, where PR
gives the difference between the actual
and desired row lengths. Industrial de-
signers recommend that the maximum
variation in row lengths from the desired
value should be within 3!Z0. The program
tries to achieve this limit by constantly
varying the weight W~. The negative
feedback control function is similar to
that for the overlap penalty:

(PR – P;

i

W~(i+ 1) = max 0, Wa(i) + p~ ,
R

where PR and P: are the actual and
target values of the penalty, and

p; .

where 1 is the
tion. Here the
P: are

[‘15–4~ (LR ,
i ~~,

average row length varia-
initial and final values of

Early Rejection of New Moves. While
evaluating mo~es, the penalty is com -
puted before the wire length. If a move
incurs too much penalty, it is likely the
move will be rejected. Hence there is no
point in calculating the wire length for

such moves. The calculation of the
penalty takes a fraction of the time re-
quired for wire length computation; hence

early rejection of such moves signifi-
cantly reduces co reputation time. For
early rejection, the change in penalty A P
is computed:

AP= ACZ +ACa = AC– ACI.

The acceptance probability exp (- AC/T)
is less than a lower limit ~ when

where A Cl ~,. is the largest reduction of
wire length expected in the current itera-
tion. If the calculated penalty satisfies
this inequality, the evaluation is termi-
nated. It would be desirable to maximize
the number of early rejections in order to
save CPU time. This, however, also in-
creases the number of early rejection er-
rors—moves that were erroneously
terminated, although they should have
been accepted. For this purpose, a good
estimate of the expected reduction in wire
length ACI ~,. is required. If the largest
value of A Cl ~,. in the previous iteration
is used as the estimate, the error is quite
large, since ACI fluctuates substantially
from iteration to iteration. For

IAC1 ~,~(i)l

=lAC1(i - 1)1+ 1.3a(i - 1),

the early rejection error is less than 1%,

where ~Cl(i – 1) and u(i – 1) are the
mean and standard deviation of all nega-
tive values of AC before iteration i.
With this value of ACI ~,.(i) and with
6 = 1/3, we get the inequality for the
early rejection test

AP>lACl(i– Ill + 1.3a(i– 1) + T.

Move Generation. The previous
method of maintaining a constant ratio
of displacements to interchanges has been

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

164 * K. Shahookar and P. Mazumder

discontinued. The following procedure is
used for move generation.

A cell is selected randomly, and a ran-
dom location is selected as the destina-
tion. If the destination is vacant, a
displacement is performed; otherwise
an interchange is performed. A new
range-limiting function has been used,
which restricts the motion of a cell to its
neighborhood. This has caused a dra-
matic improvement in the move accep-
tance rate, thus saving the time being
wasted on evaluating moves that would
be rejected.

Temperature Profile. The tempera-
ture profile is the key feature of this
algorithm. The dramatic improvement in
the acceptance rate of new moves due to
the improved move generation function
has made it unnecessary to start the al-
gorithm at a very high temperature. The
temperature profile used is

T1 = 500

T2+1= 0.98TC, l<i <120

(Compare with TimberWolf 3.2, where
T1 = 4,000,000.) Thus, about the same
number of temperature steps are concen-
trated in a smaller range. The final
temperature is unchanged.

Acceptance Rate Control. Due to the
wide variety of the circuits to be placed,
a fixed temperature schedule does not
always produce an appropriate value of
the rate of acceptance of new configura-
tions. It was observed that the ideal ac-
ceptance rate was 5070 in the beginning
(i = O) and was reduced to zero at low
temperatures (i = i~,x). To achieve this
accept ante rate profile, negative feed-
back control has been provided. The ideal
acceptance rate profile is given by

P: (‘).501–=
i ~ax

This profile is achieved by scaling the
change in cost, AC:

AC’ = sAC,

where

where p, and p: are the actual and tar-
get values of the percentage acceptance
rate. This changes s by 2.5910 for l$ZO
deviation in p, and p:.

The algorithm was tested on six indus-
trial circuits and was found to be 9-48
times faster than TimberWolf 3,2, with a
slightly better placement. It was also
tested on the MCNC benchmarks, and
the wire length obtained was 10-20%
better than other algorithms. The time
required to achieve this improvement,
however, is not given.

Some other important contributions to
cell placement by simulated annealing
are Bannerjee and Jones [19861, Gidas

[19851, Greene and Supowit [1984],
Grover [1987], Hajek [1988], Lam and
Delosme [1988], Lundy and Mees [1984],
Mallela and Grover [1988], Romeo and
Sangiovanni-Vincentelli [1985], Romeo et
al. [1984], and White [1984].

2. FORCE-DIRECTED PLACEMENT

Force-directed placement algorithms are
rich in variety and differ greatly in
implementation details [Hanan and
Kurtzberg [1972a]. The common denomi-
nator in these algorithms is the method
of calculating the location where a mod-
ule should be placed in order to achieve
its ideal placement. This method is as
follows.

Consider any given initial placement.
Assume the modules that are connected
by nets exert an attractive force on each
other (Figure 11). The magnitude of the
force between any two modules is di-
rectly proportional to the distance be-
tween the modules. as in Hooke’s law for
the force exerted by stretched springs,
the constant of proportionality being the
sum of weights of all nets directly con-
necting them. If the modules in such a
system were allowed to move freely, they

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques * 165

‘T 7’
El=

I 1

1A t---m

Resultant force

Figure 11. Force-directed placement.

would move in the direction of the force
until the system achieved equilibrium in
a minimum energy state, that is, with
the springs in minimum tension (which
is equivalent to minimum wire length),
and a zero resultant force on each mod-
ule. Hence the force-directed placement
methods are based on moving the mod-
ules in the direction of the total force
exerted on them until this force is zero.

Suppose a module M, is connected to
the module MJ by a net n,J having
weight w,]. Let s,~ represent the dis-

tance from M, to MJ. Then the net force
on the module is given by

J

If the x- and y-components of the force
are equated to zero,

x%,(x, - x,) = 0,

h(m) =o.
J

Thus, tlhe coordinates for the zero force
target point for the module M, are given
by

ACM Computmg Sm veys, Vol. 23, No 2, June 1991

166 “ K. Shahookar and P. Mazumder

These equations resemble the center of
gravity equations; that is, if the modules
connected to M, are assumed to be masses
having weight w,,, then the zero force

target location of M, is the center of
gravity of these modules.

2.1 Force-Directed Placement Techniques

The early implementations of the force-
directed placement algorithm were in the
1960s [Fisk et al. 1967]. There are many
variations in existence today. Some are
constructive; some are based on iterative
improvement.

In constructive methods, no initial
placement exists; the coordinates of each
module are treated as variables, and the
net force exerted on each module by all
other modules is equated to zero. By si-
multaneously solving these equations, we
get the coordinates of all modules. In
such an implementation, care must be
taken to avoid the trivial solution x, = x~
and y, = y~ for all i, J“, which, consider-
ing the spring model, obviously satisfies
the zero force condition. Another prob-
lem in this approach is that the zero
force equations are nonlinear, because
the force depends on distance, and the
euclidean distance metric involves a
square root; while the Manhattan dis-
tance metric involves absolute values.
Antreich et al. [1982] give an example of
the equation-solving method.

In iterative methods, an initial solu-
tion is generated either randomly or by
some other constructive method. Then
one module is selected at a time, its zero
force target point is computed from the
above equations, and an attempt is made
to move the module to the target point or
interchange it with the module previ-
ously occupying the target point. Such
algorithms are also called force-directed
relaxation or force-directed pairwise
relaxation algorithms,

Here, one problem is to decide the or-
der in which to select the modules for
moving to the target location. In most
implementations, the module or seed
module with the strongest force vector
is selected. In other implementations,

the modules are selected randomly. In
still others, the modules are selected
on the basis of some estimate of their
connectivity.

Another problem is where to move the
selected module if the slot nearest to the
zero force target location is already occu-
pied, as it most probably will be. One
solution is to move it to the nearest
available free location. But the nearest
free location may be very far in some
cases. This is an approximate method
and, at best, will need more iterations to
achieve a good solution.

The second solution is to compute the
target location of a module selected as
described above, then evaluate the
change in wire length or cost when the
module is interchanged with the module
at the target location. If there is a reduc-
tion in the wire length, the interchange
is accepted; otherwise it is rejected. It is
necessary to evaluate the wire length
because it is possible that in an attempt
to interchange the selected module with
the module previously at the target point,
we are moving that other module far
away from its own target point; hence
the move can result in a loss instead of a
gain.

The third solution is to perform a rip-
ple move; that is, select the module pre-
viously occupying the target point for the
next move. This process is continued un-
til the target point of a module lies at an
empty slot. Then a new seed is selected.

The fourth solution is to compute the
target point of each module, then look for
pairs of modules such that the target
point of one module is very close to the
current location of the other. If such
modules are interchanged, both of them
will achieve their target locations with
mutual benefit.

The fifth solution uses repeated trial
interchanges. If an interchange reduces
the cost, it is accepted; otherwise it is
rejected. The cost function in this case is
the sum of the forces acting on the mod-
ules. An example of the use of two types
of force functions for pairwise inter-
change is given in Chyan and Breuer
[1983].

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques 0 167

Hanan et al. [1976a, 1976b, 1978] dis-
cuss and analyze seven placement algo-
rithms, including three force-directed
placement techniques. Experimental re-
sults are given in Hanan [1976a], and the
algorithms are discussed in Hanan
[1976bl. Johannes et al. [19831, Quinn
[19751, and Quinn and Breuer [1979]
are implementations of the force-directed
algorithm.

moved next. When a module has been
moved to its target point, it is necessary
to lock it for the rest of the current itera-
tion in order to avoid infinite loops. For
example, suppose two modules, A and B,
are competing for the same target loca-
tion and we move A to the target loca-
tion. Then we select B for the next move
and compute the same target point for it.
If we move B to the target location, it

2.2 Algorithm

Here is an algorithm for one version of
the force-directed placement technique
described above:

PROCEDURE (Force _directed_placement)
Generate the connectivity matrix from the netlist;
Calculate the total connectivity of each module;
WHILE (iteration_ count < iteration_ limit)

Select the next seed module, in order of total connectivity;
Declare the position of the seed vacant;
WHILE NOT (end_ ripple)

Compute the target point for selected module and round off to the nearest integer;
CASE target point:

LOCKED
Move selected module to nearest vacant location;
end_ripple + TRUE;
Increment abort count;
IF abort count > abort_ limit
THEN

Unlock all modules;
Increment iteration _count;

ENDIF;
OCCUPIED:

Select module at target point for next move;
Move previous selected module to target point and lock;
end.ripple + FALSE;
abort_ count * O;

SAME:
Do not move module;
end_ripple + TRUE;
abort _count + O;

VACANT:
Move selected module to target point and lock;
end_ripple + TRUE;
abort _count + O;

ENDCASE;
ENDWHILE;

END.

This implementation uses ripple moves will displace A and we will have to com-
in which a selected module is moved to pute the new target point for A, which
the computed target point; if the target will be the same again. Hence A and B

point was previously occupied, the mod- will keep displacing each other. When
ule displaced from there is selected to be the number of locked modules exceeds a

ACM Computing Surveys, Vol. 23, No 2, June 1991

168 “ K. Shahookar and P. Mazumder

limit (depending on the size of the
netlist), there will be too many aborts.
At that time all modules are unlocked
again, another seed is selected, and a
new iteration is started.

2.3 Example

Consider a circuit consisting of nine mod-
ules, with the following netlist:

netl= {13489}

net2= {156789}

net3= {245679}

net 4 = {3 7}

The lower bound on the wire length for
this example is 15, assuming each hop of
a net from one terminal to the next is 1
unit (e. g., net 1 must be at least 4 units
in order to connect five terminals). To
demonstrate how force-directed place-
ment works, we start with a random
placement with a wire length of 20, as
shown in Figure 12a. Table I gives the
connectivity matrix. Two iterations are
shown in detail in Table 2. In the first
iteration, module 9 is selected as the seed
module, since it has the largest connec-
tivity, 14. The target point is (1.1, 1),
using the center of gravity formula with
the entries in Table 1 as weights. Hence
module 9 is moved to location (1, 1), leav-
ing its original location (O, 1) vacant. The
last column of Table 2 gives the interme-
diate placement. Module 8, which was
previously located at (1, 1), is selected for
the next move. The target point is
(0.9, 0.9), but we cannot place it at (1,1)
since we already placed module 9 there.
Hence, it is placed in the nearest vacant
slot (0, 1). Then module 7 is selected as
the seed, and the process is repeated. The
final solution is shown in Figure 12b.
The result is an improvement in wire
length of 3 units.

2.4 Goto’s Placement Algorithm

Goto proposed a somewhat unique force-
directed placement algorithm [Goto 1981;
Goto and Matsuda 1986]. This algorithm
consists of an initial placement part and

(a)

I 1

(b)

Figure 12. Force-directed placement example. (a)
Random initial placement with wire length 20; (b)
final placement after two iterations with wwe
length 17.

an iterative improvement part. The ini-
tial placement part selects modules for
placement on the basis of connectivity.
When selected, a module is placed at the
location that yields the minimum wire
length. It is not moved during the rest of
the initial placement phase.

The iterative improvement part uses a
generalized force-directed relaxation
technique in which interchanges of two
or more modules in the ~-neighborhood of
the median of a module are explored.
The median of a module is defined as the
position at which the wire length for the
nets connected to the module is mini-
mum. The e-neighborhood of the median

ACM Computing Surveys, Vol 23, No. 2, June 1991

VLSI Cell Placement Techniques

Table 1. Connectwity Matrix for the Force-Directed Placement Example

e 169

Modules 1 2 3 4 5 6 7 8 9 X

1
2

3
4

5

6
7
8

9

0011111 22 9
0001111 01 5
1001001 11 5
1110111 12 9
1101022 1210
1101202 1210
1111220 1211
2011111 02 9
2112222 2014

Table 2. First Two Iterations for the Force-Directed Placement Example

Selected Target
Iteration Module Point Case Placed at Result

1 9 (Seed) (1.1, 1) Occupied (1, 1)

8 (0.9, 0.9) Locked (1, o)

7 (Seed) Locked (1.1, 1.2) Abort

6 (Seed) Locked (1.2,0.9) Abort

2 9 (Seed) (1.1, 0.9) Same Not moved

7 (Seed) (1.1, 1.2) Occupied (1, 1)

9 (0.9, 1) Locked (2, o)

6 (Seed) Locked (1.2, 0.9) Abort

5 (Seed) Locked (1.2, 0.7) Abort

323
496

1-7

325
496
187

325
496
187

325
496
187

325
496

187

325
476
18-

325
476
189

325

476
189

325

476
189

of a module is defined as the set of c neighborhood is separable in x and y,
positions for the module, where the wire and hence the x- and y-coordinates of the
length associated with it has the small- median can be calculated independently
est e values. Goto shows that the prob - of each other using the algorithm of
lem of finding the median and its e Johnson and Mizoguchi [19781.

ACM Computiug Surveys, Vol 23, No 2, June 1991

170 “ K. Shahookar and P. Mazumder

The ~-neighborhood of a given configu-
ration in the configuration space is de-
fined as the set of configurations that can
be obtained from the given configuration
by circularly interchanging not more
than X modules. A configuration is said
to be h-optimal (locally optimal) if it is
the best one in such a neighborhood. The
process of replacing the current configu-
ration with a better configuration from
its h-neighborhood is called local

transformation.
The complete placement algorithm is

as follows. An initial placement is gener-
ated. Generalized force-directed relax-
ation is performed to obtain a h-optimum
configuration. If the given amount of
computation time is not exhausted, this
procedure is repeated with another ini-
tial placement. The best result of all the
trials is accepted. The heuristic search
procedure used for finding h-optimum
configurations is now described.

The procedure consists of module inter-
change cycles, iterated until there is no
further improvement. At the beginning
of each interchange cycle, a seed module
(M) is selected and interchanged on a
trial basis with all modules M(i) in its
~-neighborhood (1 < i < ~). If there is a
reduction in wire length, the interchange
yielding the maximum reduction is ac-
cepted, and the interchange cycle is ter-
minated. If there is no reduction in wire
length, a triple interchange is tried be-
tween the seed module M, a module M(i)
in its c-neighborhood, and a module M(ij)
in the c-neighborhood of M(i) (1 < i, j <
e). This results in 62 trials in which the
modules are interchanged in the cyclic
order M + M(i) -+ M(ij) + M. If there is
a reduction in wire length, then the in-
terchange giving the minimum wire
length is accepted, and the interchange
cycle is terminated. Otherwise for each i,
the j = j, giving the minimum wire
length is chosen for further processing.
The next step is to try quadruple inter-
changes between M, M(i), M(zj,) and the
modules M(ij, k) in the e-neighborhood of
M(~,) (1 < i, k < e). This once again
results in 62 interchanges of the form
M+ M(i) ~ M(ij,) + M(ij, k) - M. We
choose the k that results in the mini-

ACM Computmg Surveys, Vol. 23, No 2, June 1991

mum wire length for further processing.
This process is repeated until inter-
changes of i elements have been consid-
ered. The possible interchanges are
shown as a tree in Figure 13a. The inter-
changes that result in the minimum wire
length at each step are represented by
the solid lines and are pursued further,
whereas those represented by the dotted
lines are abandoned. There is only one
solid line under any node, except the root
node M.

The parameter ~ represents the
breadth of the search tree, and A repre-
sents its depth. As e and A are increased,
the h-optimal configuration gets better,
but there is also a large increase in com-
putation time. Goto observed that e =
4-5 and h = 3-4 is the best compromise
between placement quality and computa-
tion time. These results were obtained
from experiments on a 151 module cir-
cuit. For satisfactory placement of larger
circuits, a higher value of ~ and h may be
necessary.

2.5 Analysis

It can be shown that the minimum en-
ergy state of the force model does not
always yield the optimum wire length
and vice versa. Consider the example in
Figure 14a, where a module is connected
by two nets to the left and by one net
toward the right. The zero force position
would be at a distance 10 units from the
left and 20 units from the right, yielding
a wire length of 40. For optimal wire
length, the module should be positioned
to the extreme left, yielding a wire length
of only 31. Similarly, consider a module
connected by one net each toward the left
and right (Figure 14b). Although the
module may be positioned anywhere and
its x-coordinate does not affect the wire
length, force-directed placement methods
will unnecessarily constrain it to the cen-

ter location, perhaps displacing some
other module that really ought to be at
that location.

Because of the inherent nature of the
center of gravity formula used, force-
directed methods tend to place all mod-
ules in the center of the circuit. The

VLSI Cell Placement Techniques “ 171

nM

—————————m
M(1) M(2)

,

“ f

M(3)

‘(”) ‘hub ti”iM!i13kl)Ah
E ‘::;‘FE‘(22’)f$!i’i d“ifl~”i

(a)

M M(222) M(311) M(31) M(32)

?~ ‘,

M(221) M(223) ,M(312) M(313) M(33)

M(12) M(21) M(2)

\
\

M(l~
/ ----% .~

M(22) %M(l) M(3)

M(13) M(23) M(lll) M(112) M(113)

(b)

M M(222) M(311) M(31) M(32)

xl \

\
M(221) M(223 (312) M(313) M(33)

\

M(12) M(21) M(2)

/~ +Y

M(n) M(22) M(1) M(3)

M(13) M(23) M(lll) M(112) M(113)

(c)

Figure 13. Force-directed relaxation. (a) Search tree; (b) exchange h = 3; (c) exchange k = 4,

result is too many ties and aborts, with into densely connected subcircuits such
all modules constantly displacing the
center modules.

On the whole, this is a moderately good
method of module placement. When fine
tuned properly and combined with other
strategies discussed above, it gives good
results. But it is inferl~or in solution
quality to simulated annealing.

3. PLACEMENT BY PARTITIONING

Placement by partitioning is an impor-
tant class of placement algorithms based
on repeated division of the given circuit

that the nu”mber of nets cut by the parti-
tion is minimized. Also, with each parti-
tioning of the circuit, the available chip
area is partitioned alternately in the hor-
izontal and vertical direction (Figure 15).
Each subcircuit is assigned to one
partition of the chip area. If this pro-
cess is carried on until each subcircuit
consists of only one module, then each
module will have been mapped to a un-
ique position on the chip. Most place-
ment by partitioning algorithms, or
Min-cut algorithms, use some modified
form of the Kernighan-Lin [1970] and

ACM Computing Surveys, Vol 23, No. 2, June 1991

172 - K. Shahookar and P. Mazumder

Mln]mum Force, wire length = 40

*1~29 b

0- —
0 0

& — (a)

Mlmmum Wire length = 31

0 ‘o 0 0

(b)

Figure 14. Problems with force-directed placement

11111--
I I

I

I I I I
I

1 I I
I

II I
Figure 15. Chip area partitioned alternately in
the vertical and horizontal direction,

Fiduccia-Matthey ses [1982] heuristics for
partitioning; see also Schweikert and
Kernighan [1972].

The Kernighan-Lin partitioning algo-

rithm is as follows. Start with a random
initial partition that divides the set of
modules into two disjoint sets A and B.
Evaluate the net cut (the number of nets

connecting modules in A to modules in
B and are therefore cut by the partition).
For all pairs (a, b), a cA, b e B, find the
reduction g in the net cut obtained by
interchanging a and b (moving a to set
B and b to A). g is called the gain of the
interchange. If g >0, then the inter-
change is beneficial. Select the module
pair (al, bl) with the highest gain gl.
Remove al and bl from A and B, and
find the new maximum gain gz for a
pairwise interchange (az, bJ. Continue
this process until A and B are empty.
Find a value k such that the total gain

G=~g,
L=l

is maximized, and interchange the cor-
responding module pairs (al, bl),

(a~, b~). Repeat this process until
G~Oandk>O.

Figure 16 shows an example of place-
ment by partitioning. Figure 4 shows the
circuit to be placed and the desired loca-
tions of pads. This circuit is repeatedly
partitioned as shown in Figure 16. At
each step, the number of nets intersected
by the cut line is minimized, and the
subcircuits are assigned to horizontally

ACM Computing Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques “ 173

4 1 6
------ -- ----- ---- ----- ----, - ----- ----- ---- ----- ----- I
I I i
I I I
1

~
1

1 1

T
Id 1

B:
I

8I - --- ---
I

[
t
I
1
1 2

.4

:4
--------.

I
I

I
I

I -- ---10 --

I

I
I

I

I 4
I
I
,
I I
1 I
I I
1 i
I

9
I

I - -. ,------- 1
I I
I
I
[
I
I
I
I
I
1

.----- ----- -

1

[

I
I
I
I
I
I
I
I
I

-1
I
I
I
1
I
1
1

I I
1

.~ !
11 I

I
1

I t
I
I

I
I I
I t
I I
I I

------- ---- --------------
1
I I

I
I

E

1
II

I

I ‘ -11--14--1-! -----15----i-----1 1-----;

I
1
1
I
I
I
I----- -----

I
I i
I !
I I
I I
I I

I
----- ----- ----- -- L-

5

Figure 16. Min-cut partitioning

or vertically partitioned chip areas. The
resulting placement (Figure 4c) yields a
total wire length of 43 (for chain connec-
tions).

3.1 Breuer’s Algorithms

Breuer’s algorithms [1977a, 1977bl are
among the early applications of parti-
tioning for placement. They minimize the
number of nets that are cut when the
circuit is repeatedly partitioned along a
given set of cut lines. Consider a set of
modules connected by a set of nets. Let c

i
I
I
I
I

----- ----- - 1------

7

of the circuit in Figure 4a.

I
I
1
I
1

t

------ --- I

be a line crossing the surface of the chip.
If one or more elements connected to a
net s are on one side of c and one or
more elements are on the other side, then,
while routing the net, at least one con-
nection must cross line c. The cut line c
is said to cut the net s. For a given
placement, the value of c, denoted by
U(c) is the total number of nets cut by c.

The following objective functions have
been developed for rein-cut placement:

(I) Total net-cut. This objective func-

tion considers the total number of
nets cut by all the cut lines

ACM Computing Surveys, Vol 23, No. 2, June 1991

174 “ K. Shahookar and P. Mazumder

partitioning the chip,

N,(u) = ~u(c),

where the sum is over all vertical
and horizontal cut lines. Consider a
canonical set of cut lines as the col-
lection of cut lines between each row
and each column of slots. Then, mini-
mizing the total number of nets cut
using this set of cut lines is equiva-
lent to minimizing the semiperimeter
wire length. For a formal proof, see
Breuer [1977a, 1977bl.

(2) Min-max cut value objective function.
In standard cell and gate array tech-
nologies, the channel width, and
therefore the chip area, depend on
the maximum number of nets being
routed through a channel at any point
or the maximum net-cut for any cut
line across the channel. The form of
this objective function is

NC(mM) = ~ maxv(c),
channels CCC,

where CL is a set of cut lines defined
across channel i. Note that for this
objective function, only the net-cut in
the congested region of the routing
channel is significant, and the algo-
rithm will try to minimize this maxi-
mum net-cut, even at the expense of
increasing the net-cut in other vacant
regions of the channel.

(3) Sequential cut line objective function.
Although the above objective func-
tions better represent the placement
problem, it is computationally diffi-
cult to minimize them. A third objec-
tive function is therefore introduced,
which is easy to minimize but does
not give a globally optimal place-
ment. As the name implies, the objec-
tive is to make one cut and minimize
the net-cut, then to cut each group
again and minimize the net-cut with
respect to these cut lines and subject
to the constraints already imposed by
the previous cut, and so on. Note that
because of the sequential (greedy) na-
ture of this objective function, it does

not guarantee that the total number
of nets cut by all cut lines will be
minimized. Hence, minimizing this
objective function is not equivalent to
minimizing the semiperimeter wire
length.

3. 1.1 Algorithms

Breuer has explored two basic placement
algorithms. Each of these algorithms re-
quires a given sequence of cut lines that
partition the chip, so that each section
contains only one slot. To be consistent
with Breuer’s notation, in the following
discussion the subsections of the chip cre-
ated by the partitioning process are called
blocks. These should not be confused with
macro blocks.

Cut Oriented Min-Cut Placement Algo-
rithm. Start with the entire chip and a
given set of cut lines. Let the first cut
line partition the chip into two blocks.
Also partition the circuit into two subcir -
cuits such that the net-cut is minimized.
Now partition all the blocks intersected
by the second cut line, and partition the
circuit correspondingly. Repeat this pro-
cedure for all cut lines. This process is
shown in Figure 17a.

This algorithm realizes the sequential
objective function described above. In
practice, however, this algorithm does not
always give good results because of two
problems associated with it. Consider
Figure 17a. While processing cut line C2,
we must partition blocks A and B cre-
ated by c1 simultaneously. First, if there
is a way to partition them sequentially,
computation time would be saved as a
result of a reduction in the problem size.
Besides, a conflict can arise when we try
to bisect blocks A and B using the same
cut line. lf the modules of A to be placed
above C2 require a larger area than the
corresponding elements in B, then it is
impossible to bisect A and B with the
same cut line, and a less optimal parti-
tion has to be accepted. To avoid both of
these problems, another algorithm is pre-
sented in which each block is partitioned
using a separate cut line.

ACM Computmg Surveys, Vol 23, No. 2, June 1991

VLSI Cell Placement Techniques “ 175

C5

C2

c1 C3 C4

(a)

Bll

B21

B2—

—B1

B12
B22

- 1

Em
B2111 B2112

Bill
--B211 -

-- B212--

B2112 B2122
B112

B221 1 B2221

Figure 17. Breuer’s rein-cut algorithms.
placement.

(b)

(a) Cut-oriented rein-cut placemen~; (b) block-oriented rein-cut

Block-Oriented Min-Cut Placement Al-
gorithm. In this algorithm, we select a
cut line to partition the chip into two
regions. Then we select a separate cut
line for each region and partition the
regions further. !l%is process is repeated
until each block consists of one slot only.
Here, different regions cam have different
cut lines, as shown in Figure 17b. PJote
that we are no longer minimizing the
sequential objective ftmction, since we
are not making uniform cuts through the
entire chip.

The cut lines for partitioning the chip
may be selected in any sequence. 13reuer
has given three sequences (Figure 18),
which are most suitable for three differ-
ent types of layout. These are as follows:

(1) Quadrature Placement Procedure.
In this algorithm the partitioning

(2)

process is carried out breadth first,
with alternate vertical and horizon-
tal cuts. This process is illustrated in
Figure 18a. With each cut, a region
is subdivided into two equal subre -
gions. This method is suitable when
there is a high routing density in the
center. E3y first cutting through the
center and minimizing the net-cut,
the congestion in the center is re-
duced. This is currently the most
popular sequence of cut lines for
rein-cut algorithms.

Bisection Placement Procedure. In
this procedure, the chip is repeatedly
bisected (divided into two equal sub-
regions) by horizontal cut lines until
each subregion consists of one row.
This process assigns each element to
a row withotk fixing its position.

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

176 “ K. Shahookar and P. Mazumder

Figure

4a 2 4b

(a)

18. Cut sequences

3a

2a

3b

1

3C

2b

3d

6a 5a 6b 4 6C 5b 6d

(b)

1

2

3

4

5

6

7

10a 9a10b 8 10c 9b 10d

(c)

used in Breuer’s algorithms. (a) Quadrature placement;

ment; (c) slice/bisection placement.

Then each row is repeatedly bisected
until each resulting subregion con-
tains only one slot, and thus all
movable modules have been placed
(Figure 18b). This is a good method
for standard cell placement. It does
not, however, guarantee the mini-
mization of the maximum net-cut per
channel.

(3) Slice Bisection Procedure. Another
placement strategy is to partition a
suitable number of modules from the
rest of the circuit and to assign them
to a row (slicing) by horizontal cut

ACM Computing Surveys, Vol 23, No. 2, June 1991

(b) bisection place-

lines. This process is repeated until
each module has been assigned to a
row. Then the modules in each row
are assigned to columns by bisecting,
using vertical cut lines (Figure 18c).
This technique is most suitable when
there is a high interconnect density
at the periphery.

3.2 Dunlop’s Algorithm and Terminal

Propagation

When partitioning a circuit or a section
of the circuit into two parts, it is not

VLSI Cell Placement Techniques ● 177

(a)

(b)

A

x

c

(c) (d)

Figure 19. Terminal propagation. 0, real module; 0, dummy module.

sufficient to consider only the internal
nets of the circuit, which may intersect
the cut line. Nets connecting external
terminals or other modules in another
partition (at a higher level) must also be
considered. Dunlop and Kernighan [19851
do this by a method called terminal prop-
agation. Figure 19 illustrates the need
for terminal propagation. Figure 19a
shows the First division of the entire cir-
cuit into two sections. If a module is
connected to an external terminal on the
right side of the chip, it should be prefer-
entially assigned to the right side of the
chip, and vice versa. If this constraint

was not considerecl, then each half of the
circuit could have been assigned to either
side of the chip. Figure 19b shows the
result after several levels of partitioning.
A particular net has cells connected to it
in sections A, B, and C as shown. When
these sections are partitioned further, it
would be preferable to place these cells
in the bottom half of A but in the top
half of ~. The assignment in B does not
affect the wire length. Dunlop and
Kernighan [1985] implement terminal
propagation as follows.

Consider the situation when A is be-
ing partitioned vertically and the net

ACM Computing Surveys, Vol. 23, No. 2, June 1991

178 ● K. Shahookar and P. Mazumder

connecting cells 1, 2, and 3 in A also
connects other cells in B and C. Such
cells in other partitions are assumed to
be at the center of their partition areas
(points X and Y in Figure 19c) and are
replaced by dummy cells at the nearest
points on the boundary of A (e. g., at
X’, Y’). Now, during partitioning, the
net-cut would be minimized if the cells 1,
2, and 3 are placed in the bottom half of
A. A similar process for B does not yield
any preference (Figure 19d), as predicted
above.

To do terminal propagation, the parti-
tioning has to be done breadth first.
There is no point in partitioning one
group to finer and finer levels without
partitioning the other groups, since in
that case no information would be avail-
able about which group a module should
preferentially be assigned to.

The algorithm is in production use as
part of an automated design system. The
algorithm has been tested on a chip with
412 cells and 453 nets. It yields areas
within 10–20% and track densities
within 3% of careful hand layouts. CPU
time of the order of 1 h on a VAX 11/780
has been reported. The CPU time can be
significantly improved using the
Fiduccia-Mattheyses [1982] linear-time
partitioning heuristics.

3.3. Quadrisection

Suaris and Kedem [1987] have suggested
the use of quadrisection instead of bipar -
titioning to divide the chip vertically and
horizontally in a single partitioning step
(Figure 20a), resulting in a truly two-di-
mensional placement procedure, rather
than adapting a basically one-dimen-
sional partitioning procedure to solve the
two-dimensional placement problem. The
quadrisection algorithm used is an ex-
tension of the Kernighan-Lin [1970] and
Fiduccia-Matthey ses [1982] heuristics.

Unlike the Kernighan-Lin algorithm
described above, a module in one quad-
rant can be interchanged with modules
in any of the other three quadrants. This
gives 12 gain tables, each corresponding
to a pair of quadrants. At each step, the

pairwise interchange giving the highest
gain is selected.

The cost function is computed as fol-
lows. Let the cells connected to net n and
placed in quadrant K be denoted by
a~(n). Then the cell-distribution vector
for the net n is

a(n) = (al(n), az(n), a~(n), aq(n)).

Associated with each net is a resident
flag vector,

~(n) = (~l(n), ~,(n), ~,(n), ~,(n)),

such that

PK(n) =
{

1 ifa~(n) >0

0 otherwise.

Thus, the Kth component of B(n) indi-
cates whether any cells connected to net
n are in quadrant K.

The cost function is defined as

W= ~~N~n(B(n)),

where w.(/3(n)) is the cost of net n. If two
or more components of /3(n) are nonzero,
then there are cells connected to that net
in the corresponding quadrants, and the
net is being cut. The weights w~ and w,,
are associated with horizontal and verti-
cal net-cuts, respectively. The relative
values of these weights indicate the pref-
erence in wiring direction. According to
Suaris and Kedem [1987], in double- and
triple-metal technology, where almost the
entire space over the cells can be used for
wiring, we would prefer vertical (over
the cell) wiring. This would conserve
channel space, which would otherwise be
needed for horizontal wiring spans.
Hence, in such technologies, Wu is usu-
ally set much less than w~.

If all modules connected to a net are in
horizontally adjacent quadrants, then the
cost w.(P(n)) = wk. Similarly, if they are
in vertically adjacent quadrants, then
w.((3(n)) = Wu. If the modules are in di-
agonally opposite quadrants or if they
are distributed over any three quadrants,
then w~(/3(n)) = Wh + WU. If the rnodu]es
connected to a net n are distributed over

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques 9 179

B ?2 621

B*

’23 B 24

B3 z 631

—-r-——+,—j
E1332 ~

L
B 342 ~ B341

6331

-----A -----,34

---”B33----

~333 : 6334
6343 : B344

CHIP

—B1—

B
1:3 % 4

B
42 f341

_B4 ;I

!-t :

B
’432 / 0431 442: B441

----B44--

------ %5------

0433 / B434
E1443 ~B444

&B14m-!---lf---f+-=+FL
11

+ :l:;B:+q:ltB4;+T;r, ,

’331 ‘3: KB333B334B341 ‘342 B343B344B431 E432B433B434 B441E442B443F444

Figure 20a. Quadrisection.

all four quadrants, there are two possible
interconnection patterns— one with one
horizontal and two vertical cuts and the
other with one vertical and two horizon-
tal cuts. If WU< w~ as described above,
we choose the first pattern and w.((3(n))
=2WU+ w~.

If the cost function w~(~(n)) is such
that it can be computed from 6(n) in
linear time, it can be proved that the

quadrisection algorithm also runs in lin-
ear time. The rest of the partitioning
algorithm is the same as in Fiduccia and
Mattheyses [1982] and Kernighan and
Lin [1970].

The terminal propagation method in-
troduced by Dunlop and Kernighan [1985]
has bee n extended for quadrisection as
shown in Figure 20b. The figure shows
regions 5 and 6 about to be partitioned

ACM Computing Surveys, Vol. 23, No. 2, June 1991

180 . K. Shahookar and P. Mazumder

‘1 2 5 ,
,
1
1
t
,
1
1
#
1

3 4 L----------- ,------

B~
0

D
1

A x 1,
I

61 7
I
1
1
I D1 c1--- .--1---,111,I1
1

Figure 20b. Terminal propagation in quadrisection.

along the dotted lines and cells 1? and ~
in these regions connected to cells A and
C in other regions. In this example, it

would be beneficial to assign ~ to the
lower left quadrant of region 5, as shown,
and l) to the upper or lower right quad-
rant of region 6 (since the exact position
of C has not been determined yet). Ter-
minal propagation is done by inserting
two kinds of dummy cells—fixed and par-
tially fixed at appropriate locations.
Thus, in region 5, the influence of A is
represented by a dummy cell X fixed in
the lower left quadrant. The dummy cell
will bias 1? into the same quadrant in
order to reduce net-cut. In region 6, the
cell c is represented by a partially fixed
dummy cell Y, which is restricted to the
upper and lower right quadrants. This
will bias D into one of these quadrants.

Global routing information is also used
to improve the efficiency of terminal
propagation. For example, in Figure 20b,
cells connected to the same net are lo-
cated in all four quadrants and are to be
connected as shown. Here, A and B
should influence each other’s position
through terminal propagation, and so
should B and C’. Since there is no direct
connection between A and C, however,
there is no need for propagating them.
After each partitioning step, the cells in

different quadrants are connected in a
pattern that gives the minimum cost, as
discussed above. As the partitioning pro-
ceeds, these connection patterns give a
global routing tree for each net. In the
terminal propagation phase, only those
modules that are directly connected to
each other are propagated. The arrows
show the effect of terminal propagation.
For example, cell C will be biased to-
ward the upper left quadrant when re -
gion 7 is quadrisectioned.

The algorithm has been implemented
as part of the VPNR place and route
package. Preliminary experiments show
that this algorithm compares favorably
with TimberWolf 3.2. For various stan-
dard cell circuits, this algorithm yielded
an area within + 5~o of the area yielded
by TimberWolf. This algorithm, how-
ever, achieved this layout quality 50-200
times faster than TimberWolf. Run times
reported are of the order of 1.4 min for a
304-cell circuit and 1 h for a 2907-cell
circuit on a VAX 8600.

3.4 Other Techniques

Many variations of the rein-cut place-
ment algorithm have been suggested.
Lauther [19791 applies this method for
the placement of macro cells and uses

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 181

repeated partitioning to generate mutu-
ally dual placement graphs. His imple -
mentation also includes an improvement
phase in which module rotation, mirror-
ing, and other compression techniques
are used.

corrigan [19791 has developed another
implementation of placement based on
partitioning. Wipfler et al. [19821 dis-
cusses a combined force and cut algo-
rithm for placement. Shiraishi and
Herose [1980] have developed a rein-cut
based algorithm for master slice layout.

3.5. Analysis

The strength of rein-cut algorithms is
that they partition the problem into
semi-independent subproblems. The con-
cept of minimum net-cut implies a mini-
mum amount of interaction between the
parts that are placed independently. Di-
viding the problem into small parts
brings about a drastic reduction in the
factorial search space.

Partitioning can be thought of as a
successive approximation method for
placement. At each level of partitioning,
the modules are localized in the region of
the chip in which they ought to be finally
located, but their exact position is not
fixed. As the circuit is further parti-
tioned and the smaller groups of modules
are assigned to smaller chip areas, we
get a better approximation of their final
coordinates. This algorithm is less sus-
ceptible to local minima because the co-
ordinates of all modlules are being
approximated simultaneously, with
mutual benefit.

The problem with this technique is that
partitioning is itself an NP complete
problem and, therefore, is computation-
ally intensive. This method is used for
placement because heuristics developed
so far for partitioning are much better in
terms of speed and performance than
those for placement. Note, however, that
obtaining an optimal partitioning does
not guarantee an optimal placement, al-
though it would be close.

Overall, the results obtained from
placement by partitioning algorithms are

second only to simulated annealing. Be-
side, these algorithms take much less
CPU time.

4. NUMERICAL OPTIMIZATION TECHNIQUES

Grouped together in this section are some
computationally intensive deterministic
techniques based on equation solving and
eigenvalue calculations or on numerical
optimization, such as the Simplex
method. So far these techniques have
mainly been used for macro blocks. The
main problem encountered in using these
techniques is that the placement problem
is nonlinear. Two different approaches
are used to overcome this obstacle. One
method is to approximate the problem by
a linear problem, then use linear pro-
gramming. The other method is to use
the various nonlinear programming
methods [Walsh 19751. Examples of both
methods are give n in the following sec-
tions.

4.1 Eigenvalue Method

Quadratic Assignment Problem
[Gilmore 1962]. Given a cost matrix CZJ
representing the connection cost of ele -
ments i and J and a distance matrix dk 1
representing the distance between loca-
tions k and 1, find a permutation func-
tion, p, that maps elements i, j, . . . to
locations k = p(i), 1 = p(j), . . . such that
the sum

@ = x f% dP(2)P(J)
L,J

is minimized. Consider the placement
problem, where c,~ is the connectivity
between cell i and cell j and dkl is the
distance between slot k and slot 1. The
permutation funcbion p maps each cell to
a slot. The wire length is given by the
product of the connectivity and the dis-
tance between the slots to which the cells
have been mapped. Thus, @ gives the
total wire length for the circuit, which is
to be minimized. Hall [19701 has formu-
lated the cell placement problem as a
quadratic assignment problem and de-
vised a novel method to solve it by using
eigenvalues.

ACM Computing Surveys, Vol. 23, No 2, June 1991

182 - K. Shahookar and P. Mazumder

Let C be the connection matrix. Let c,
be the sum of all elements in the ith row
of C. Define a diagonal matrix D such
that

dZJ =
{

o, i # J“,
c ~> i =J”.

The matrix 1? is defined as

B= D–C.

Further, let XT = [xl, XZ, x.] and

YT=[yl, y2, ..., y.] be row vectors rep-

resenting the x- and y-coordinates of the
desired solution. Then it can be proved
[Hall 19701 that

@(X,Y) = X~BX+ Y~BY.

Thus the problem is reduced to minimiz-
ing *(X, Y) subject to the quadratic
constraints

XTX= 1 and YTY=l.

These constraints are required to avoid
the trivial solution x, = O for all i. The
minimization is done by introducing
the Lagrange Multipliers a and b and
forming the lagrangian

L = XTBX+ YTBY

— Q!(x~x- l)-o(Y~Y -1).

Equating the first partial derivatives of
L with respect to X and Y to zero, we
get

2BX–2a X=0 2BY–2~Y=0

or

(B-cYI)X=O (B-(31)Y=0.

These equations yield a nontrivial solu-
tion if and only if a and 6 are eigenval-
ues of the matrix B and X and Y are
the corresponding eigenvectors. Premul -
tiplying these equations by XT and Y ~,
respectively, and imposing the con-
straints X ‘X = 1 and Y T Y = 1, we get

@(X,Y) = XTBX+ YTBY= a +6.

Thus, in order to minimize the value of
the objective function @, we must choose
the smallest eigenvalues as a solution

for a and (3. The corresponding eigen-
vectors X and Y will give the x- and
y-coordinates of all the modules. If O = Al
< Az < Aa < “ “ “ < Am are the distinct
eigenvalues of B, then taking a = 6 = Al
will give the minimum value @ = O, xl
will be proportional to y,, all x, will be
equal, and all y, will be equal. If it is
desired that X not be proportional to Y
(i.e., we require a two-dimensional solu-
tion with all modules not placed along a
straight line), we must select different
eigenvalues for a and (3. Further, if it is
desired that not all x, or all Y, be equal,
we should ignore Al = O. Thus, a near
optimal nontrivial solution is a = Az, 6
= As. The components of the eigenvector
associated with the second-smallest
eigenvalue give the x-coordinates of all
the modules, and the components of the

eigenvector associated with the third-
smallest eigenvalue give the y-coordi-
nates of all modules.

4.1.1 Example

An example is given in Figure 21. The
netlist for the problem is

IVl = {1,3}; Nz= {1,4}; N~= {2,4};

NL= {2,3}; N~= {2,3},

The C, D, and B matrixes are

[1

0011
~=oo21

1200
1100

r20001

r20 -1-11

B= _~ 3 ‘2 ‘1
–2 3 0

1-1 -1 0 2j

The eigenvalues of B are O, 2, 2.586,
and 5.414. The eigenvectors correspon-
ding to the eigenvalues 2 and 2.586 are

[1 -1 -1 11 and [1 -0.414 0.414 -1]
(Table 3). These eigenvectors give the x-
and y-coordinates, respectively, for all
four modules.

ACM Computmg Surveys, Vol. 23, No, 2, June 1991

VLSI Cell Placement Techniques o 183

1

3 4

(a)

4

1 *1

3*

, I e
-1

1

2*

-1 *4

(b)

5(3’
12 ~-l 4 7

! I I

(c)

Figure 21. Placement by the eigenvalue method:
An example. (a) Example circuit; (b) placement in
the euclidean plane determined by the eigenvec-
tore; (c) assignment to regularly spaced slots.

Table 3. Eigenvectors of Matrix B, Giving
the Solution in Euclidean Space

Module x-Coordinates y-Coordinates

1 1
2 –1 – :.414
3 –1 0.414
4 1 –1

Eigenvalues 2 2.586

4. 1.2 Analysis

This is an 0(n2) algorithm. A weakness
of the algorithm is that it does not take
module size, shape, and routing channel
width into account. It assumes that the
modules are zero-area points. Therefore,
it does not correspond very well to the
module placement problem, where the
modules must be placed at grid points or
in rows. After this algorithm has deter-
mined the placement that minimizes the
total wire length, mapping the modules
form this placement to grid points can be
very difficult for large circuits, with many
ties requiring arbitrary decisions. The
wire length is often increased signifi-
cantly while converting the result of this
algorithm to a legal placement.

4.2 Resistive Network Optimization

Cheng and Kuh [19841 have devised a
novel technique folc placement. They have
transformed the placement problem into
the problem of minimizing the power dis-
sipation in a resistive network. The ob-
jective function (squared euclidean wire
length) is written in matrix form, which
yields a representation similar to the
matrix representation of resistive net-
works. The placement problem is solved
by manipulating the corresponding net-
work to minimize power dissipation us-
ing sparse matrix techniques.

4.2.1 Objective Function and Analogy to

Resistive Networks

The wire length is taken as the square of
the euclidean distance between con-
nected modules:

@(x, Y)

—— : f,+,- X,)2+(yL-yJ)’],

where c,~ is the connectivity between
modules i and j. This can be written as

@(X,Y) = XTBX+ Y~BY,

where B = D – C as defined in the
eigenvalue method described in Sec-
tion 4.1. If this equation is compared to

ACM Computing Surveys, Vol. 23, No. 2, June 1991

184 “ K. Shahookar and P. Mazumder

Tabla 4. Analogy Between the Placement Problem and Power Dissipation
m a Resistwe Network

Resistive network Placement problem

Power, P Wire length, @
Nodes Modules
Active voltage sources, U2 Fixed module coordinates, X2
Passive node voltages, UI Movable module coordinates, xl
Admittance, Y Connectivity, B

the equation for power dissipation in a
resistive network,

P= vTYnv,

we find that B is of the same form as the
indefinite admittance matrix Y. of an
n-terminal linear passive resistive net-
work. The coordinate x, is analogous to
the voltage at node i. The connectivity
c is analogous to the mutual conduc -
t~nce between nodes i and j, and d,, is
analogous to the self-admittance at node
i. If the given netlist contains some fixed
modules, such as pads located at the chip
boundary, then that will be equivalent to
having a fixed voltage at the correspond-
ing nodes in the resistive network. Thus,
fixed modules are equivalent to voltage
sources. This analogy is summarized in
Table 4, In a resistive network (Fig-
ure 22), the current always distributes
itself so as to minimize the power dissi
pation. Hence the problem reduces to
solving the network equations for cur-
rent. This current will then give the opti-
mal power dissipation and hence optimal
placement. If there are no pads or other
fixed modules, that case would be analo-
gous to a passive resistive network with
no voltage sources. All currents would be
zero, which would yield a placement with
all modules placed at the center of the
chip. Hence fixed modules, preferably at
the periphery, are required to spread the
other modules out. Even then, modules
are mostly clustered near the center. This
algorithm uses scaling and relaxation as
described below to spread them out over
the entire chip.

4.2.2 Slot Constraints

Slot constraints are required to guaran-
tee module placement at grid points or
legal values. A permutation vector p is

ACM Computing Surveys, Vol. 23, No 2, June 1991

1

2

m

m+l

~ Linear passive ~+~

resistive

network

=
(a)

—m+l

Linear passive
resistive m+2

n

W
+++———

v

(b)

Figure 22. Cell placement by resistive network
optimization. (a) n-terminal linear resistive net-
work with m terminals floating and n-m terminals
connected to voltage sources; (b) resistive network
with linear constraints.

defined such that the ith component p,
is the ith legal value or slot available for
a module to occupy:

P= [Plj P2, Pm]T.

Let the position vector be

ul=[xl,.x2,..., xm]T.

VLSI Cell Placement Techniques ● 185

The placement problem then consists of
mapping each module to one slot; that is,
associating each x, with a pj. The fol-
lowing slot constraints are necessary to
yield a legal solution:

,$1xi = ,$,p,
m m

i=l ~=1

. m

The proof is given in Cheng and Kuh

[19841. As a simple example, consider a
four module placement problem, with
four given slot coordinates, pl, Pb.
Then the assignment

xl=p~; x2=p4;

X3 =p~; X4= pl

is a legal placement. It is easy to see that
all the above constraints are satisfied. If
two modules overlap, however,

the above constraints will not be satis-
fied. Using all of the above constraints in
the optimization process is not easy com-
mutationally. If we use only the first few
constraints, we will get a solution that
satisfies the corresponding properties, but
the modules will not be located at the
exact slot locations. For example, the first
constraint helps align the center of grav-
ity of the modules with that of the slots.
Hence, using only this constraint will
cause the resulting placement to be
centered in the chip area.

4.2.3 Procedure

The overview of the placement procedure
is as follows. First, the given circuit is
mapped to a resistive network, where the
fixed modules and pads are represented
as fixed voltage sources. The power dissi -

pation in the network is minimized, us-
ing only the first slot constraint. This
causes al 1 the modules to cluster around
the center of the chip. The next step is
scaling, in which the second slot con-
straint ia used to spread the modules.
Then repeated partitioning and relax-
ation are ~erformed. This rn-ocess aligns
the

(1)

(2)

modul~s with the slot lhcations. -

Optimization. The power dissipa-
tion in the network is optimized us-
ing t:he linear slot constraint. The
optimization is done by applying the
Kuhn-Tucker formula,

u, = Y;/[-Y12U2+ i,],

where

The goal of the optimization method
is to reduce the euclidean wire length;
that goal is best achieved by cluster-
ing all the modules close to each
other. The use of the first constraint
only centers the module placement in
the chip area. If there are no fixed
coordinates around the periphery of
the chip, the optimization step will
yield a trivial solution with all mod-
ules located at the center. With some
modules at the periphery, a mini-
mum wire length solution like the
one shown in Figure 23a is obtained
(for the netlist of Figure 4a).

Scaling. In order to spread out the
modules, the higher order slot con-
straints are required. In the second
step, Cheng and Kuh [1984] repeat
the optimization procedure using the
second (parabo lie) constraint. This
will increase the power dissipation
compared to the optimal but imprac-
tical solution of the previous step.
The objective now is to find a config-
uration that results in a minimum
increase in power dissipation. Using
this objective, ~heng and Kuh [19841

ACM Computing Surveys, Vol. 23, No. 2, June 1991

186 “ K. Shahookar and P. Mazumder

(a)

(b)

(c)

Figure 23. The partitioning step in resistive net-
work optimization.

have derived the following equations,
which give module coordinates that
are more spread out:

x
01

— co
x T2L= a. + c~,

a.

where XO, denote the solution after
optimization, x~z denote the new so-

(3)

(4)

lution after scaling,

[

1/2

an= + ,~1 (PL - c.)’
1

co= ; :1XOL

L

[1

1/2

ao= ;-,(%-co)’ .
L

Relaxation. In this part of the algo-
rithm, optimization and scaling are
repeatedly done on subregions of size
(3 specified by the user. First, opti-
mization and scaling are done on one
end region of size ~, then on the other
end region, and finally on the middle
region. While doing optimization and
scaling on one subregion, the rest of
the modules are assumed to be fixed.
By this process, the module positions
are iteratively fine tuned.

Partitioning and assignment. After
the above steps, the modules are still
not located exactly at the given slot
locations. The next step is iterative
partitioning into smaller and smaller
regions. At each step, optimization
and seal ing are performed on the
subregions according to the above
equations. Every time, the linear slot
constraint aligns the center of grav-
ity of the group of modules with the
center of the region in which it is
being placed. At the last level of par-
titioning, when each section consists
of only one module, the module is
aligned to the center of the slot. This
process is illustrated in Figures 23b
and c.

4.2.4 Complexity and Results

Since linear network computations are
required and sparse matrix techniques
are used, the computation complexity is
0(ml 4)log2 m, where m is the number
of movable modules.

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 187

The algorithm has been tested on the
34 module example given by Steinberg
[1.9611, and Hall [19701 and its perfor-
mance compared against Steinberg’s
assignment algorithm and Hall’s
eigenvalue method. The wire length was
10% less compared to the eigenvalue
method and 30% less compared to the
Steinberg algorithm. A run time of 13.1
s was reported on a VAX 11/780. The
performance was also compared to the
algorithms of Stevens [1972] and Quinn
and Breuer [19791 for a 136 module prob-
lem. The improvement m wire length
was 9.5% over Stevens and 21 YO over
Quinn and Breuer, and the CPU time
WaS 104.2 S.

4.3 PROUD: Placement by Block Gauss-Seidel

Optimization

Tsay et al. [19881 recently proposed an
improved algorithm based on the resis-
tive network analogy. The method con-
sists of repeated solution of sparse linear
equations. The slot constraints described
above are bypassed, and the partitioning
scheme is simplified. Block Gauss-Seidel
(BGS) iteration is used to resolve the
placement interactions between the
blocks, The algorithm proceeds in two
phases. First, global placement is done
by the Successive Over Relaxation
Method (SOR). This results in an optimal
solution. The modules, however, are con-
sidered as zero-area points and are not
confined to the grid points, Then, module
shape and area are taken into considera-
tion, and the chip is partitioned alter-
nately in the vertical and horizontal
direction. At each step BGS iteration is
performed on each subregion in order to
remove module overlap and successively
approximate the module positions with
the grid points. This process is repeated
until each subregion consists of only one
module.

4.3.1 Global Placement

First, the equations given in Section 4.4.2
are solved using SOR, which is a gener-
alization of the BGS method. The method

is as follows. To solve the equation

Axl = b,

A= A(L+I+ U),

where A is a diagonal positive definite
matrix and L and U are lower and upper
triangular matrices, respectively. The
vector x ~ is solved iteratively by the
recursive formula

Xl(k + 1) = Mxl(k) + a,

where

M = (I+ ZUL)-l[(l - w) I - UJU]

and

a = ZU(I+ wL)-l A-lb.

The parameter w is in the range O to 2.
With w = 1, the SC)R method is reduced
to the BGS method.

This method gives the global optimum
solution because, in the absence of slot
constraints, the objective function (the
euclidean wire length) is convex and has
a unique global minimum, which can
be determined by solving the matrix
equations.

4.3,2 Partitioning and /3GS Iteration

The object of the partitioning and BGS
iteration step is to ensure that for each
subregion the total area of the modules
placed on one side of the center line is
equal to the total area of the modules
placed on the other side of the center
line. The partitioning is done as follows.
Each cut is placed so that the total area
of the modules on either side of the cut
(as given by the global placement) is
equal. If the cut line coincides with the
center of the layout area, then the parti-
tion process is continued to the next hier-
archy level; otherwise, the following
method is used to align the cut with the
center of the subregion.

Let the cut be to the right of the cen-
ter. Then all modules to the right of the
center line are projected to the center
line, only those modules that lie between
the cut line and the center line are con-
sidered as movable, and the global place-
ment phase is repeated in the left half

ACM Computing Surveys, Vol 23, No. 2, June 1991

188 “ K. Shahookar and P. Mazumder

plane. Then the modules in the left half
plane are projected on the center line as
fixed modules, and the global placement
problem is solved for the right half plane.
This procedure will align the cut line
with the center line of the subregion be-
ing divided. The partitioning is repeated
alternately in the horizontal and vertical
directions until each subregion contains
only one module.

In order to explain the intuitive con-
cepts behind this method, Tsay et al.
[19881 gave an analogy with rein-cut al-
gorithms. This algorithm can be consid-
ered as a form of rein-cut algorithm,
which uses quadratic assignment instead
of the Kernighan–Lin heuristics for par-
titioning. An optimal placement results
in a rein-cut partition at any cut line
through it. Thus, we can repeatedly de-
termine the optimum but irregular
placement of point modules in the eu-
clidean plane by solving the quadratic
assignment problem and subdivide the
plane to get a rein-cut partition. If this
process is repeated until each partition
consists of only one module, we get a
near-optimal placement with no over-
laps, and the modules constrained to grid
locations, just like in the rein-cut algo-
rithm. The quadratic assignment prob-
lem can be solved using powerful sparse
matrix techniques.

4.3.3 Complexity and Results

The algorithm has been implemented in
the Proud-2 placement system. It was
tested on nine circuits consisting of
1000-26,000-modules. In all cases, the
results were superior to those of Timber-
Wolf 3.2 and comparable to those of
TimberWolf 4.2. The time required to
achieve these results was about 50 times
less compared to TimberWolf 4.2. For
example, a 26,000-module circuit re -
quired a run time of about 50 min on a
VAX 8650. For a 1438 module example,
Proud-2 required 50 s, TimberWolf 3.2
required 7200 s, and TimberWolf 4.2 re-
quired 3260 s. Compared to the wire
length achieved by Proud-2, the results
of TimberWolf 3.2 were 7. l% worse, and

the results of TimberWolf 4.2 were 9.6%
better.

4.4 ATLAS: Technique for Layout Using

Analytic Shapes

Sha and Blank [19871 (and earlier Sha
and Dutton [19851) used the Penalty
Function Method (PFM), a nonlinear nu-
merical optimization method, for block
placement. They devised a modified ob-

jective function for macroblocks, which
allows computationally efficient rotation
and mirroring. They also made an excel-
lent comparison between simulated an-
nealing and numerical techniques.

4.4.1 Objective Function

The objective function used to estimate
the wire length is the same as that de-
scribed in Sha and Dutton [19851, with
modifications to accommodate block rota-
tion and mirroring. The original objec-
tive function is as follows:

Let Sk be a net connected to mk blocks,
with centers at Cl(xl, Y1), . . ., C2(X2,

Yz), ...> C~~ Xn,, y~,) and the center of

gravity of the net Sk be Gk (~h, ~h),
where

The squared wire length of the net Sk
(Figure 24a) is defined as

If m, is the total number of nets, the
objective function is defined as

m’.

w= E-wk

= ,:1,:1{(~t - %)2+ (Yz- z)’}.

In macro placement, block orientation
is important besides block position be-
cause of two reasons. In order to fit the
irregularly shaped blocks together while
minimizing the wasted space, all possible

ACM Computing Surveys, Vol 23, No 2, June 1991

(x,,

VLSI Cell Placement Techniques

Module pln

/ /,

A

— Net center of gravity

(a)

.

(X’p, y~)
(Xp, yp)

,----
-%;----- ‘--- -------------------:

:
I ‘.

‘.
I
It ‘. Iu ‘. 1I h! ‘“J3

‘.& (X12, Y17) \
Y ;-----------~----:’il

------ ------ ------. ---+

(X f,yj)

‘:----+- 1’

. 189

I
h,

?

(b)
‘w’

Figure 24. Squared euclidean wire length function, Wk = AG2 + BG2 + CC,2 + DG2; (b) pin position
after rotation in Atlas.

orientations should be allowed. Besides,
rotation and mirroring have a significant
effect on the wire length. If the pins on
one side (left, say) of a large block are
connected to other blocks placed on the
other side (right), then the nets are forced
to go around the block. Flipping the block
over reduces the wire length.

Block Rotation. If a block is rotated
through an angle 6’, the pin coordinates

(~~, y:) relative to the block center are
given by

x; = XPCOS6 –yPsin6,

y~=yPcos O+xPsin O,

where x and yP are the original coordi -
f“nates re atlve to the block center (Fig-

ure 24b). Let the block axis be defined by
the pair of coordinates (X,l, y,l) and

($,Z, Y,z) and the block center be denoted

ACM Computing Surveys, Vol 23, No 2, June 1991

190 “ K. Shahookar and P. Mazumder

by (+, Y,). Let

AY, =IY,l– Y,217

d, = ~-

Xp
al=—,

d,

Yp
()+—.

d,

Then, we get the absolute pin position
after rotation:

x jJL = XL + alAx, – azliy,,

The new parameters introduced in the
objective function are constants XP
and yp. Since no new variables are
introduced, there is little increase in
computation time.

Mirroring. The mirroring operation is
realized by introducing an extra vari -
able, u,, such that u, = 1 means normal
orientation and u, = – 1 means mirrored
orientation. The pin position is now given
by

x pL = x, + alAxZ – Uzcy2fiyL,

These pin coordinates are used along with
the block coordinates in order to calcu-
late the wire length more accurately.
During optimization, u, is treated as a
continuous variable that can vary with-
in the bounds I UZI = 1. A constraint

(u, – l)(uZ + 1) = O is imposed during
the optimization process. This constraint
makes u converge to either + 1 or – 1.

4.4.2 Constraint Conditions

In addition to the above objective func-
tion, some constraints are imposed dur-
ing the solution process in order to
ensure a legal placement. These
constraints are only summarized here.
For a detailed discussion, see Sha and
Dutton [1985].

Let the block width be w, and the block
height be h,, with 1, = w, – h,, and Ax,,
A y,, and d, be as defined above. The
constraint that prevents block overlap is
given by

gl(i,~) = r,+ r~ – d(i, ~) = 0;

r,, rJ are the block radii (half the block
height), and d(i, j) is the distance be-
tween the axes of the blocks i and j. For
the derivation, see Sha and Dutton
[19851.

Only two block orientations, vertical
and horizontal, are allowed. To ensure
this, the orientation constraint is used:

gz(i) = Ax, Ay, /lt=O

for i=l,2,m.

It is obvious that if the block is not verti-
cal or horizontal, both Ax, and A y, will
be nonzero, and the constraint will not be
satisfied.

The constraint for the desired block
size is given by

gs(i) = Z,– d, =0.

Let the desired chip aspect ratio be q,
with the vertical and horizontal dimen-
sions y~ and x~ = qyn, respectively.
Then, the boundary constraints are

g41z(i) = r, – Xtz~O,

g42z(i) = r, – YLz~O,

g43~(i) = x,z + r, – .r~=o,

g..l(i) = Y,, + T-c- ym~o,

forl=l,2; i=l,2,m.

4.4.3 Penalty Function Method

The penalty function method consists of
the following procedure:

(1) Select an increasing series Ck,

typically

co = 1; Ck+l = lock.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques “ 191

(b)

(a)

(c)

n
D

Figure 25. PFM optimization process: Intermediate results as Cfi is increased.

(a) Construct a new unconstrained objec- and a solution is obtained. Fimre 25a
tive function P(x, c~) such that -

P(x, y, Ch) = objective function

+ Ck~ constraints.

(3) Use an unconstrained optimization
technique such as Newton’s method
to minimize P(x, y, c~) for k =
0,1,2,. ... until the coordinates of
the modules satisfy the constraints
within the required accuracy.

Thus, in PFM during the first itera-
tion, the constraints are reemphasized

shows the result of the first iteration,
with c~ = 1. Then, in each iteration the
weight of the constraints is increased and
the objective function minimized. This
causes the constraints to be satisfied more
and more accurately, at the expense of
an increase in the value of the objective
function. An intermediate result is shown
in Figure 25b. As c~ is increased, the
modules attain the proper orientation and
overlap is reduced. The process is termi-
nated when the ccmstraints are satisfied
within the desired accuracy. Figure 25c
shows the final result, with all modules

ACM Computing Surveys, Vol. 23, No. 2, June 1991

192 ● K. Shahookar and P. Mazumder

in either vertical or horizontal orienta-
tion and no overlap.

4.4.4 Comparison with Simulated Annealing

PFM uses numerical techniques, whereas
simulated annealing uses a statistical
approach. Although the techniques of
nonlinear programming and simulated
annealing are very different, some simi -
larities exist. The parameter c~ in PFM
behaves like the reciprocal of tempera-
ture (1/ 7’) in simulated annealing. In
simulated annealing, moves are ran-
domly generated, whereas in PFM moves
are deterministic and are in the direction
that minimizes the penalty function
P(x, y, c~). The important feature of PFM
is that all blocks move simultaneously,
not one at a time as in simulated anneal-
ing.

PFM has been tested on two chips with
23 and 33 macro cells, and the results
have been compared to those of Timber-
Wolf and industrial placement. A 50%
improvement over industrial placement
and 23% improvement over TimberWolf
were reported. The CPU time reported is
of the order of 2 h on a VAX station II for
a 33-block circuit.

4.5 Algorithm for Block Placement by Size
Optimization

One example of linearization is provided
by Mogaki et al. [19871. They presented
an algorithm for the placement of macro
blocks to minimize chip area under con-
straints on block size, relative block posi-
tion, and the width of the available
interlock routing space. This algorithm
iteratively determines the optimum block
size and relative block placement in or-
der to reduce the wasted space and mini-
mize the total chip area. Channel widths
are also considered during the optimiza-
tion process. This is a quadratic integer
programming problem, which has been
reformulated as a linear programming
problem and solved by the Simplex
method. This algorithm is the extension
of the work of Kozawa et al. [1984], and
uses their Combined and Top Down

Placement (CTOP) algorithm for the ac-
tual block placement. This is coupled
with block resizing by linear program-
ming. This algorithm is suitable only
where block sizes are not yet fixed and
macro blocks can be generated with a
range of possible aspect ratios. Hence,
choosing the block aspect ratios to fit
together nicely in the placement, then
generating the macro blocks results in a
compact layout.

The first step is to generate an initial
placement by the CTOP algorithm. This
algorithm works by repeatedly combin-
ing two blocks to form a hyper-block
until the entire chip consists of one
hyper-block. At each step, blocks are
paired so as to minimize the wasted space
and maximize their connectivity to each
other. Repeated combining of blocks gen-
erates a combine tree with the entire
chip as the root node and the individual
blocks as leaves. This tree is then tra-
versed top down, such that for each hy -
per-block, a good placement is deter-
mined for its component blocks. This
gives the relative placement of the blocks.

The relative placement is converted to
a Block Neighboring Graph (BNG), as
shown in Figure 26. Each block is repre-
sented as a node in the BNG, and each
segment of a routing channel between
two blocks is represented by an edge con-
necting the nodes. Formally,

BNG = G(V, E)

such that

V= {u} U{ L, R, B, T};

EC VXVX{X, Y} X{6},

where u represents a block, L, R, B, T
are the simulated blocks corresponding
to left, right, top, and bottom edges of the
chip, X or Y represent whether the
channel is vertical or horizontal, and 8 >
0 represents the minimum channel
width.

The next step is the linear program-
ming formulation for block size optimi-
zation. This consists of the objective
function and the constraints.

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques . 193

7
-k

Y.

u F1
En El
t–– ‘“ --+j~uvy
x“ xv

Figure 26. Example macro-block layout and its block neighboring graph. ❑ , Block; o, simulated block;
+ , vertical edge; ---> , horizontal edge.

4.5.1 Objective Function aspect ratio. Let the minimum and maxi-
mum desirable values of the chip aspect

The primary objective is to minimize the ratio be ~.
chip area. Wire length is considered indi -

and r+:

rectly through its effect on the chip area. Y
There is a user-specified limit on the chip

r–~ — <r+.
x

ACM Computing Surveys, Vol. 23, No. 2, June 1991

194 “ K. Shahookar and P. Mazumder

4.25

3.25

2.25

1.25

0

:::::: :::

25 0.35 0.45 0.55 0.65

x

Figure 27. Linear programming: objective function,

If r- and r+ are sufficiently close, we
get

r=~=-.
x

The chip area is given by

Ar[rx+ y)’.A=xy=~

Since the function (rx + y)2 increases
monotonically with (rx + y) for x, y > 0,
the chip area function can be replaced by
rx + y, which is a linear function, be-
cause r is a constant. Thus, in order
to minimize chip area xy, the linear
programming problem is formulated to
minimize rx + y. The effect of this lin-
earization is shown in Figure 27. The
shaded region represents the allowed
values of chip width and height. This
region is bounded by the maximum and
minimum chip area constraints and the
maximum and minimum aspect ratio
constraints. Within a small aspect ratio
range, the linearized area is a good ap-
proximation to the actual area.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

4.5.2 Constraints

(1) Block size constraint. Each block
has a given range of candidate sizes
given by (wU(i), h“(i)), where i =
1,2,. ... Nu. Nu is the number of pos-
sible sizes for block u. The object of
the linear programming approach is
to choose the aspect ratio that results
in the minimum wastage of chip area.
Let AU(i) be the selection weight for
the ith candidate block size such that

~ Au(i) = 1, O<hU(i)S1.
1=1

Au(i) represents the probability dis-
tribution for selection of each candi-
date block size. The expected block
width and height are therefore given
as

w. = 5 Au(i) wlu(i)
&=l

hu = ~ AU(i) hU(i).
L=l

These are the block size constraints.

VLSI Cell Placement Techniques * 195

(2) Channel width constraints. ILet
XU, yU, x., yu be the coordinates of
blocks u and U, respectively, and WU
and h ~ be the width and height of
block u. If block u is to the right of
block u, with a channel of width 6UU
between them, we have

$“– (Xu+r.uu) ~~.u

for each edge

(u,u>x,~uu)=~,

as shown in Figure 26. Similarly, if
block u is below block U, we get the
corresponding constraint

Y“– (Yu + Wu) =6.”

for each edge

(u, u, Y,8Uu]e E.

These constraints make it possible to
determine an appropriate block
size when the channel widths are
specified.

Thus, the objective of the linear pro-
gramming formulation is to determine
XU, yU, WU, hU for all blocks u so that the
linearized area r-x + y is minimized, sub-
ject to the above constraints.

4.5.3 Procedure

The algorithm can be summarized as
follows:

(1)

(2)

Determine the relative block place-
ment by the CTCDP algorithm
[Kozawa et al. 1984].

Determine the absolute block place-
ment by the following repetitive
procedure:

(2.1)

(2.2)

Determine the channel width by
global routing.

Optimize block size using the
following optimization algo -
rithm:

(2.2.1)

(2.2.2)

Generate the BNG from
the relative block posi-
tions.

Eliminate redundant
constraints and convert
the rest into an LP con-
dition matrix.

(2.2.3) Solve the LP problem by
the Simplex method.

(2.2 .4) Select the block size

closest to the LP scdu-
tion.

(2.3) (]0 to 2.1

The algorithm has been tested on two
chips with up to 40 macro blocks. Experi-
mental results indicate that 690 saving of
area can result over manual designs and
5-10% over other algorithms. This sav-
ing is achieved, however, at the cost of
10-12 times the computation time com-
pared to other algorithms.

4.6 Other \(Vork in This Field

Blanks [1985a, 1985b] has exploited the
mathematical properties of the quadratic
(sum of squares) distance metric to de-
velop an extremely fast wire length eval -
uation scheme. He uses the eigenvalue
method to determine the lower bound on
the wire I ength in order to evaluate his
iterative improvement procedures. He
has also given a theoretical model to
explain the observed deviation from
optimality.

Markov et al. [1984] have used
Bender’s [1962] procedure for optimiza-
tion. Blanks [1984] and Jarmon [1987]
have used the least-squares technique.
Akers [1981] has used linear assignment.
He has given two versions-constructive
placement and iterative improvement.
Further work on the eigenvalue method
has been done by Hanan and Kurtzberg

[1972bl. Hillner et al. [19861 has pro-
posed a dynamic programming approach
for gate array p Iacement (see also
Karger and Malek [19841). Herrigel and
Fichtner 11989] have used the Penalty
Function Method for macro placement.
Kappen and de Bent [1990] have pre-
sented an improvement over Tsay et al.’s
algorithm discussed in Section 4.3.

5. PLACEMENT BY THE GENETIC

ALGORITHM

The genetic algorithm is a very powerful
optimization algorithm, which works by
emulating the natural process of evolu-
tion as a means of progressing toward

ACM Computing Surveys, Vol. 23, No. 2, June 1991

196 * K. Shahookar and P. Mazumder

the optimum. Historically, it preceded
simulated annealing [Holland 1975], but
it has only recently been widely applied
for solving problems in diverse fields, in-
cluding VLSI placement [Grefenstette
1985, 1987]. The algorithm starts with
an initial set of random configurations,
called the population. Each individual in
the population is a string of symbols,
usually a binary bit string representing
a solution to the optimization problem.
During each iteration, called a genera-
tion, the individuals in the current popu-
lation are eualuated using some measure
of fitness. Based on this fitness value,
individuals are selected from the popula-
tion two at a time as parents. The fitter
individuals have a higher probability of
being selected. A number of genetic oper-
ators is applied to the parents to gener-
ate new individuals, called offspring, by
combining the features of both parents.
The three genetic operators commonly
used are crossover, mutation, and inver-
sion, which are derived by analogy from
the biological process of evolution. These
operators are described in detail below.
The offspring are next evaluated, and
a new generation is formed by sel-
ecting some of the parents and off-
spring, once again on the basis of
their fitness, so as to keep the
population size constant.

This section explains why genetic algo-
rithms are so successful in complex opti-
mization problems in terms of schemata
and the effect of genetic operators on
them. Informally, the symbols used in
the solution strings are known as genes.

They are the basic building blocks of a
solution and represent the properties that
make one solution different from the
other. For example, in the cell placement
problem, the ordered triples consisting of
the cells and their assigned coordinates
can be considered genes. A solution
string, which is made up of genes, is
called a chromosome. A schema is a set
of genes that make up a partial solution.
An example would be a subplacement,
consisting of any number of such triples,
with ‘don’t cares’ for the rest of the cells.
A schema with m defining elements and

‘don’t cares’ in the rest of the n – m
positions (such as an m-cell subplace -
ment in an n-cell placement problem)
can be considered as an (n – m)-
dimensional hyperplane in the solution
space. All points on that hyperplane (i. e.,
all configurations that contain the given
subplacement) are instances of the
schema. Note here that the subplace -
ment does not have to be physically con-
tiguous, such as a rectangular patch of
the chip area. For example, a good sub-
placement can consist of two densely con-
nected cells in neighboring locations.
Similarly, a good subplacement can also
consist of a cell at the input end of the
network and a cell at the output end that
are currently placed at opposite ends of
the chip. Both of these subplacements
will contribute to the high performance of
the individual that inherits them. Thus,
a schema is a logical rather than physi -
cal grouping of cell-coordinate triples that
have a particular relative placement.

As mentioned above, the genetic opera-
tors create a new generation of configu-
rations by combining the schemata (or
subplacements) of parents selected from
the current generation. Due to the
stochastic selection process, the fitter
parents, which are expected to contain
some good subplacements, are likely to
produce more offspring, and the bad
parents, which contain some bad sub-
placements, are likely to produce less off-
spring. Thus, in the next generation, the
number of good subplacements (or high-
fitness schemata) tends to increase, and
the number of bad subplacements (low-
fitness schemata) tends to decrease. Thus,
the fitness of the entire population im-
proves. This is the basic mechanism of
optimization by the genetic algorithm.

Each individual in the population is an
instance of 2‘ schemata, where n is the
length of each individual string. (This is
equivalent to saying that an n-cell place-
ment contains 2” subplacements of any
size.) Thus, there is a very large number
of schemata represented in a relatively
small population. By trying out one new
offspring, we get a rough estimate of the
fitness of all of its schemata or subplace -

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 197

FB:!:~J Cug1,1,,1,,

Chromosomal Rep. Physical Layout

Figure 28. Traditional method of crossover. A segment of cells is taken from each parent. The coordinate
array is taken from the first parent. With this method, cells B and F are repeated, and cells H and I are
left out.

ments. Thus, with each new configura-
tion examined, the number of each of its
2 n schemata present in the population is
adjusted according to its fitness. This ef-
fect is termed the intrinsic parallelism of
the genetic algorithm. As more configu-
rations are tried out, the relative propor-
tions of the various schemata in the pop-
ulation reflect their fitness more and
more accurately. When a fitter schema is
introduced in the population through one
offspring, it is inherited by others in the
succeeding generation; therefore its pro-
portion in the population increases. It
starts driving out the less fit schemata,
and the average fitness of the population
keeps improving.

The genetic operators and their signifi-
cance can now be explained.

Crossover. Crossover is the main ge-
netic operator. It operates on two in-
dividuals at a time and generates an
offspring by combining schemata from
both parents. A simple way to achieve
crossover would be to choose a random
cut point and generate the offspring by
combining the segment of one parent to
the left of the cut point with the segment
of the other parent to the right of the cut
point. This method works well with the
bit string representation. Figure 28 gives

an example of crossover. In some applica-
tions, where the symbols in the solution
string cannot be repeated, this method is
not applicable without modification.
Placement is a typical problem domain
where such conflicts can occur. For ex-
ample, as shown in Figure 28, cells B
and F are repeated, and cells H and I
are left out. Thus, we need either a new
crossover operator that works well for
these problem domains or a method to
resolve such conflicts without causing
significant degradation in the efficiency
of the search process. The performance of
the genetic algorithm depends to a great
extent on the performance of the
crossover operator used. Various
crossover operators that overcome these
problems are described in the following
sections.

When the algorithm has been running
for some time, the individuals in the pop-
ulation are expected to be moderately
good. Thus, when the schemata from two
such individuals come together, the re -
suiting offspring can be even better, in
which case they are accepted into the
population. Besides, the fitter parents
have a hligher probability of generating
offspring. This process allows the algo-
rithm to examine more configurations in
a region of greater average fitness so the

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

198 ● K. Shahookar and P. Mazumder

4 +
CELL ABC DE FGHIJ

x 020507590030507095
Y 00 00 05050505050

SERIALNO O , 23456709

J1
CELL AFCDEBGI+I,J

x 020507590030557095
Y 10 0 0 0 0 50 505050W umhan.ti

SERIALNO0 1 2 3456789 J

Chromosomal Rep.

Figure 29.

optimum may be determined and, at the
same time, examine a few configurations
in other regions of the configuration space
so other areas of high average perfor-
mance may be discovered.

The amount of crossover is controlled
by the crossover rate, which is defined as
the ratio of the number of offspring pro-
duced in each generation to the popula-
tion size. The crossover rate determines
the ratio of the number of searches in
regions of high average fitness to the
number of searches in other regions. A
higher crossover rate allows exploration
of more of the solution space and reduces
the chances of settling for a false opti-
mum; but if this rate is too high, it
results in a wastage of computation time
in exploring unpromising regions of the
solution space.

Mutation. Mutation is a background
operator, which is not directly responsi -
ble for producing new offspring. It pro-
duces incremental random changes in the
offspring generated by crossover. The
mechanism most commonly used is pair-
wise interchange as shown in Figure 29.
This is not a mechanism for randomly
examining new configurations as in other
iterative improvement algorithms. In
genetic algorithms, mutation serves the
crucial role of replacing the genes lost
from the population during the selection
process so that they can be tried in a new
context or of providing the genes that
were not present in the initial popula-

PmABCDE

F GHIJ

Mutation.

Physical Layout

tion. In terms of the placement problem,
a gene consisting of an ordered triple of a
cell and its associated ideal coordinates
may not be present in any of the individ-
uals in the population. (That is, that
particular cell may be associated with
nonideal coordinates in all the individu-
als.) In that case, crossover alone will not
help because it is only an inheritance
mechanism for existing genes. The muta-
tion operator generates new cell-coordi-
nate triples. If the new triples perform
well, the configurations containing them
are retained, and these triples spread
throughout the population.

The mutation rate is defined as the
percentage of the total number of genes
in the population, which are mutated in
each generation. Thus, for an n-cell
placement problem, with a population
size NP, the total number of genes is
nNP, and nNP R ~ /2 pairwise inter-
changes are performed for a mutation
rate R ~. The mutation rate controls the
rate at which new genes are introduced
into the population for trial. If it is too
low, many genes that would have been
useful are never tried out. If it is too
high, there will be too much random per-
turbation, the offspring will start losing
their resemblance to the parents, and the
algorithm will lose the ability to learn
from the history of the search.

Inversion. The inversion operator
takes a random segment in a solution
string and inverts it end for end

ACM Computmg Surveys, Vol 23, No 2, June 1991

VLSI Cell Placement Techniques “ 199

n
CELL A B C%- H I J

x 020507590030557095

‘i 0000050 Y35050EQ

SERIAL NO 0 1 23456789

c)
u Each mll c..rd!na!e

, wle unchanged >

/

IIIll
.,,, ABC GFEDHIJ

x 0205030 0 9075557095
‘t 000550005050S0

SERIAL NO, 0126543789

Chromosomal Rep.

Figure 30.

(Figure 30). This operation is performed
in such a way that it does not modify the
solution represented by the string; in-
stead, it only modifies the representation
of the solution. Thus, the symbols com-
posing the string must have an interpre-
tation independent of their position. This
can be achieved by associating a serial
number with each symbol in the string
and interpreting the string with respect
to these serial numbers instead of the
array index. When a symbol is moved in
the array, its serial number is moved
with it, so the interpretation of the sym-
bol remains unchanged. In the cell place-
ment problem, the x- and y-coordinates

stored with each cell perform this func-
tion. Thus, no matter where the cell-
coordinate triple is located in the pop-
ulation array, it will have the same
interpretation in terms of the physical
layout.

The advantage of’ the inversion opera-
tor is the following. There are some
groups of properties, or genes, that would
be advantageous for the offpsring to in-
herit together from one parent. Such
groups of genes, which interact to in-
crease the fitness of the offspring that
inherit them, are said to be coadapted.
For example, if cells A and B are densely
connected to each other and parent 1 has
the genes (A, xl, Yl) and (B, X2, Y2),
where (xl, yl) and (X2, Y2) are neighbor-
ing locations, it would be advantageous
for the offspring to inherit both these
genes from one parent so that after
crossover cells A and B remain in

EmABCDE

FGt+l J

‘ E!i%d>ABCDE

FGHIJ

Physical Layout

[nversion.

neighboring locations. If two genes are
close to each other in the solution string,
they have a lesser probability of being
split up when the crossover operator di-
vides the string into two segments. Thus,
by shuffling the cells around in the solu-
tion string, inversion allows triples of
cells that are already well placed relative
to each other to be located close to each
other in the string. This increases the
probability that when the crossover oper-
ator splits parent configurations into
segments to pass to the offspring, the
subplacements consisting of such groups
will be passed intact from one parent
(or another). This process allows for
the formation and survival of highly
optimized subplacements long before the
optimization of any complete placement
is finished. The inuersion rate is
the probability of performing inversion
on each individual during each gener-
ation. It controls the amount of
group formation. Too much inver-
sion will result in the perturbation
of the groups already formed.

Selection. After generating offspring,
we need a selection procedure in order to
choose the next generation from the com-
bined set of parenk and offspring. There
is a lot of diversity in the selection func-
tions used by various researchers. This
section briefly lists some of them. The
following sections give the specific func-
tions used in particular algorithms. The
three most com]monly used selection

ACM Computing Surveys, Vol. 23, No. 2, June 1991

200 “ K. Shahookar and P. Mazumder

methods are competitive, random, and
stochastic.

In competitive selection, all the parents
and offspring compete with each other,
and the P fittest individuals are se-
lected, where P is the population size.

In random selection, as the name im-
plies, P individuals are selected at ran-
dom, with uniform probability. Some-
times this is advantageous because that
way the population maintains its diver-
sity much longer and the search does not
converge to a local optimum. With purely
competitive selection, the whole popula-
tion can quickly converge to individuals
that are only slightly different from each
other, after which the algorithm will lose
its ability to optimize further. (This con-
dition is called premature convergence.
Once this occurs, the population will take
a very long time to recover its diversity
through the slow process of mutation.) A
variation of this method is the retention
of the best configuration and selection of
the rest of the population randomly, This
ensures that the fitness will always
increase monotonically and we will
never lose the best configuration
found, simply because it was not
selected by the random process.

Stochastic selection is similar to the
m-ocess described above for the selection
if parents for crossover. The probability
of selection of each individual is propor-
tional to its fitness. This method includes
both competition and randomness.

Comparison with Simulated Anneal-
ing. Both simulated annealing and the
genetic algorithm are computation inten-
sive. The genetic algorithm, however, has
some built-in features, which, if exploited
properly, can result in significant sav-
ings. One difference is that simulated
annealing operates on only one configu-
ration at a time, whereas the genetic
algorithm maintains a large population
of configurations that are optimized si-
multaneously. Thus, the genetic algo-
rithm takes advantage of the experience
gained in past exploration of the solution
space and can direct a more extensive
search to areas of lower average cost.

Since simulated annealing operates on
only one configuration at a time, it has
little history to use to learn from past
trials.

Both simulated annealing and the ge-
netic algorithm have mechanisms for
avoiding entrapment at local optima. In
simulated annealing, this is done by oc-
casionally discarding a superior con@-u-
ration and accepting an inferior one. The
genetic algorithm also relies on inferior
configurations as a means of avoiding
false optima, but since it has a whole
population of configurations, the genetic
algorithm can keep and process inferior
configurations without losing the best
ones. Besides, in the genetic algorithm
each new configuration is constructed
from two previous configurations, which
means that in a few iterations, all the
configurations in the population have a
chance of contributing their good fea-
tures to form one superconfiguration. In
simulated annealing, each new configu-
ration is formed from only one old con-
figuration, which means that the good
features of more than one radically dif-
ferent configurations never mix. A con-
figuration is either accepted or thrown
away as a whole, depending on its total
cost .

On the negative side, the genetic algo-
rithm requires more memory space com-
pared to simulated annealing. For
example, a 1000 cell placement problem
would require up to 400Kb to store a
population of 50 configurations. For mod-
erate sized layout problems, this memory
requirement may not pose a significant
problem because commercial worksta-
tions have 4Mb or more of primary mem-
ory. For circuits of the order of 10,000
cells, the genetic algorithm is expected to
have a small amount of extra paging
overhead compared to simulated anneal-
ing, but it is still expected to speed up
the optimization due to the efficiency of
the search process.

The genetic algorithm is a new and
powerful technique. This method de-
pends for its success on the proper choice
of the various parameters and functions
that control processes like mutation,

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques - 201

selection, and crossover. If the functions
are selected properly, a good placement
will be obtained. The major problem in
devising a genetic algorithm for module
placement is choosing the functions most
suitable for this problem, A great deal of
research is currently being conducted on
it. In this section, three algorithms due
to Cohoon and Paris [19861, Kling [19871,
and Shahookar and hkzumder [1990] are (z)
discussed. More work has been done in
this field by Chan and Mazumder [19891. —

chosen, and the process is repeated.
Experimental observations of Cohoon
and Paris show that the initial popu-
lation constructed by clustering is
fitter, but it rapidly converges to a
local optimum. Hence, in the final
algorithm, they have used a mixed
population, a part of which is con-
structed by each method.

Scoring function. The scoring func-
tion determines the fitness of a place-

5.1 Genie: Genetic Placement Algorithm

The Genie algorithm was developed by
Cohoon and Paris [1986]. The pseudocode
is given below:

PROCEDURE Genie:
Initialize;
NP F population size;
No+- & pi;

/* where P+ is the desired ratio of the number of offspring to the population size “/

Construct_ population(NP);
FOR i -1 TO NP score(population[i]);
ENDFOR;
FOR i + 1 TO Number_ of_ Generations

FORj-l TONo
(Z, y) e Choose _Parents;
offspring[j] - generate _Offspring(x, y);
Score(offspring[j]);

ENDFOR;
population e Select(population, offspring, NP);
FORj-l TONP

With probability PWNlutate(population[j]);
ENDFOR:

ENDFOR; ‘
Return highest scoring configuration in population;

END.

The following is a description of some
of the functions used in Cohoon and Paris

[19861 and their results.

(1) Initial population construction. Co-
hoon and Paris [1986] proposed two
methods for generating the initial
population. The first one is to con-
struct the population randomly. The
second is to use a greedy clustering
technique to place the cells. A net is
chosen at random, and the modules
connected to it are placed in netlist
order. Then, another net connected
to the most recently placed module is

ment. The scoring function u used in
Genie uses the conventional wire
length function based on the bound-
ing rectangle. [t does not account for
cell overlap or row lengths, owing to
the gate array layout style. It does,
however, acccmnt for nonuniform
channel usage. This is done as
follows: Let

L, be the perimeter of net i,

r and c be this number of rows and
columns, respectively,

ACM Computing Surveys, Vol 23, No. 2, June 1991

202 “ K. Shahookar and P. Mazumder

(3)

h, be the number of nets intersecting
the horizontal channel i,

U, be the number of nets intersecting
the vertical channel i,

.s~ be the standard deviation of h,,

SUbe the standard deviation of v,,

~ and U be the mean of h, and U,

respectively,

{

_ h,–~–s~ if ~+s~<h,.
0 otherwise

=Jv,-;-su if ~+sU<vZ

(0 otherwise

Then,

This scoring function penalizes all

channels th~t have a wiring density
more than one standard deviation
above the mean. Thus, it encourages
a more uniform distribution of the
wiring.

Parent choice function. The parent
choice function chooses the parent
pairs. Four alternatives were consid-
ered here. (1) Pair a random string
with the fittest string, (2) choose both
parents randomly, (3) select parents
stochastically, where the probability
of each individual being selected as
parent is proportional to its fitness,
and (4), which is the same as (3) but
allows only individuals with above-
average fitness to reproduce. The fit-
ness function used here is

w(s) = =,
u(s)

which is equivalent to taking the re -
ciprocal of the cost and normalizing
it so that the lowest fitness is 1. If
the best configuration is paired with
a random one, the population quickly
loses diversity and the algorithm
converges to a poor local minimum.
At the other extreme, if parents are

(4)

(5)

chosen randomly, there is little im-
provement after several generations
and hence no convergence to a good
placement. The stochastic functions
(3) and (4) produced the best results.

Crossover operator. The crossover
operator generates offspring from the
parents. Two crossover operators
have been described. The first selects
a random module es and brings its
four nearest neighbors in parent 1
into neighboring slots in parent 2
while minimally perturbing the other
modules. In order to do this, the mod-
ules occupying the neighboring loca-
tions of es in parent 2 are shifted
outward by one location at a time in
a chain move until a vacant location
is found (Figure 3 la). The result of
this is that a patch consisting of mod-
ule es and its four neighbors is copied
from parent 1 into parent 2, and the
other modules are shifted by one po-
sition in order to make room. The
second operator selects a square con-
sisting of k x k modules from parent
1, where k is a random number with
mean 3 and variance 1, and copies it
to parent 2. This method tends to
duplicate some modules and leave out
others. To avoid this conflict, the
modules that are in the square patch

of parent 2, but not in the patch of
parent 1, and that are going to be
overwritten are copied to the loca-
tions of modules that are in the patch
of parent 1 but not in the patch of
parent 2, which are thus prevented
from being duplicated (Figure 31b).
Experiments favor the second opera-
tor.
Selection function. The selection
function determines which configura-
tions will survive into the next gen-
eration. The three functions tried are
(1) select the best string and p -1
random strings for survival into the
next generation, where p is the pop-
ulation size; (2) select p random
strings; (3) select strings stochasti -
cally, with the probability of selec-
tion being proportional to the fitness.
The results are similar to those for

ACM Computing Surveys, Vol. 23, No, 2, June 1991

VLSI Cell Placement Techniques 8 203

B
Ae~C

D

Parent 1

IIABC

DEF
GHI

Parent 1

(a)

‘c

Parent 2

\

‘D

I

Parent 2

(b)

Figure 31. Crossover in Cenie. (a) Crossover operator 1. The modules surrounding c. in parent 1 are
inserted in locations around :,. in parent 2. The displaced modules are shifted one slot at a time so as to
cause a minimum disruption m the layout. Thus, parent 2 inherits the e, AECD patch from parent 1. (b)
Crossover operator 2. Copy the rectangular patch from parent 1 to parent 2. But this would cause the
modules M, N, P, W, X, which are in the segment of parent 2 but not in the segment of parent 1, to be
overwritten and lost. Hence, first copy these elements to the locations of A, C, D, E, F, which are in the
segment of parent 1 but not in the segment of parent 2. This would also prevent these modules from being
duplicated.

ACM Computing Surveys, Vol 23, No. 2, June 1991

204 e K. Shahookar and P. Mazumder

‘=0
,-es x

n---------.........,
c

p+B

n

L- o
et

Figure 32. The greedy mutation operator Select
the net et BCe~ (dotted line) and the target module
e,. Mutate by moving et to the location of X, that
is, adjacent to es, and sliding X one location. Con-
tinue sliding the displaced modules until a vacant
location is found. This operation reduces the
perimeter of the net bounding rectangle.

(6)

the parent choice function. If the best
configuration and p – 1 random ones
are chosen, the population quickly
loses diversity and converges to a
poor local minimum. The function
that chooses any p configurations at
random or the one that probabilisti -
cally favors the choice of the higher
scoring configurations perform much
better.

Mutation function. Two alterna-
tives are (1) perform a series of ran-
dom interchanges and (2) use a
greedy technique to improve the
placement cost. The greedy operator
chooses a module e, on a net Z and
searches for a module et on the same
net that is farthest from e,.
et is then brought close to es, and the
displaced modules are shifted one lo-
cation at a time until a vacant loca -
tion is found (Figure 32). Thus, the
perimeter of the bounding rectangle
of net Z is reduced while minimally
perturbing the rest of the placement.

Experimental Results. The compara-
tive performance of different variations
of the genetic operators has been de-
scribed above. The algorithm was tried
on five circuits with 36–81 cells. The
performance was compared against a

simulated annealing algorithm also de-
veloped by Cohoon and Paris. Genie ob-
tained the same placement quality in two
cases and up to 7~0 worse in the other
three cases. The number of configura-
tions examined, however, was only 28%
for one circuit, 50% for two circuits, and
75% for two circuits. The actual CPU
time was not given.

5.2 ESP: Evolution-Based Placement
Algorithm

Kling [1987] and Kling and Bannerjee

[19871 developed an evolution-based algo-
rithm that iteratively uses the sequence
mutation, evaluation, judgment, and
reallocation. The algorithm operates on
only one configuration at a time. The
modules in the configuration are treated
as the population. A mutation is a ran-
dom change in the placement. Evalua-
tion determines the goodness of place-
ment of each module, that is, the individ-
ual contribution of the module to the
cost. Kling used this measure of good-
ness instead of the traditional fitness
measure in genetic algorithms. The judg-
ment function probabilistically deter-
mines whether a module is to be removed
and reallocated or not on the basis of its
goodness value. In the reallocation phase,
all the modules removed during the judg-
ment phase are placed at new locations.
The algorithms used for performing these
functions are described in detail below.

Mutation. Mutation is done by ran-
domly interchanging a certain number of
module pairs without regard to their ef-
fect on the placement. The mutation pro-
cess is controlled by two user-supplied
parameters—the probability of occur-
rence of mutation and the percentage of
the total number of modules to be mu-
tated. These two parameters determine
the number of mutations performed
during each iteration.

Evaluation. Evaluation is a complex
process and is the critical step in this
algorithm. As mentioned above, it deter-
mines the goodness of placement of each
module so that the poorly placed modules
can be removed for allocation. Kling has

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques g 205

proposed several procedures for evaluat-
ing the goodness value.

For gate arrays, the goodness of each
module is computed as the ratio of the
current value to the precomputed ideal
value. The estimate of the current value
is based on the product of the connectiv-
ity to other modules and the reciprocal of
distance from them. An evaluation win-
dow consisting of the normalized recipro-
cal Manhattan distances from the center
(called weights) is precomputed as shown
in Figure 33a. To evaluate the current
value of a module i, the evaluation win-
dow is centered over it. For all modules j
to which it is connected, the sum

is calculated, where C,J is the connectiv-
ity of the module being evaluated to the
jth module and WJ is the weight corre-
sponding to their dwta~ce. Figure 33b
shows an example of the computation of
the current value for a module. The pre -
computed ideal value is obtained by a
similar computation process, but here all
the modules connected to the module be-
ing evaluated are assumed to be placed
in its immediate neighborhood such that
the modules with the largest connectiv-
ity are placed closest to it (Figure 33c).
This is the upper bound on the current
value, which would be achieved only by
the best-placed modules, which have all
connected modules in adjacent positions.

For standard cells, three methods have
been proposed. In the first, the concentric
circle method (Figure 34), the area of the
modules connected to module i is com-
puted. Concentric circles are then de-
fined such that the nth circle covers n

times that area. Weights are assigned to
the circles from 1007o for the innermost
circle to O?iofor the area outside the out-
ermost circle. The current value of a cell
i is determined by the sum

r, = ~ c,lw~,

where ciJ is the connectivity with the jth
cell and WJ is the weight of the circular

region in which the pin of the jth cell is
located.

The second evaluation method for
standard cells is based on the minimum
possible bounding rectangle for a net.
The minimum pounding rectangle for
each net is computed by placing all mod-
ules connected to that net in nearest
neighbor locations. To calculate the

goodness value of a placed module, its
distance from the center of gravity of the
net is computed. If it lies within the
minimum bounding rectangle, its good-
ness value is 1009c. Otherwise, it is the
ratio of the boundalry of the net’s optimal
rectangle to the cell’s coordinate closest
to the net center.

The third method for standard cells is
based on the raticl of the current wire
length of the nets connected to a cell to
the corresponding optimal wire lengths.
The goodness is computed by averaging
this ratio for all the nets connected to the
cell being evaluated. The result is then
normalized in the O– 100% range. This
procedure gives the best results for stan-
dard cells.

Judgment. In the judgment phase,
ill-placed modules are removed for reallo-
cation. The probability of removal of a
module increases as its goodness de-
creases. The goodness of each module is
compared to a random number. If
the goodness is less than the random
number, it is removed.

Reallocation. Reallocation is a criti-
cal part of the al~orithm. The removed
modules should be reallocated at the freed
locations so as to improve the placement.
Modules to be reallocated are sorted ac-
cording to their connectivity and placed
one at a time. The goodness of each mod-
ule in all free locations is evaluated. The
module is placed [at the location giving
the best goodness value. Thus, the most
densely connected modules get the best
choice of location cluring reallocation.

Preliminary experimental results show
this algorithm to be an order of magni-
tude faster than simulated annealing,
with comparable placement quality.

ACM Computing Survsys, Vol. 23, No. 2, June 1991

206 e K. Shahookar and P. Mazumder

25

33

50

33

25

33

50

100

50

33

50 33

100 50

100

100 50

50 33

(a)

25

33

50

33

25

r . .. ____ ____ ------ ----1 r 1 r 1 r ___7_-__ r---
I

I
1---

I
I
I
~--.

I
I
I
L ---

I
I

C=2

w=25

I
L___
I
I +
I I

I I
I I
I I

GC=4

W=50

C=l

W=loo

c=6

W=32

1
I I I
I 1 I
I I I

--- -l ____ L----l
I I I
I I I
I I I
I I I_______ ---1 r 1
1 I I
I I I
I I

__- J_- __ L_--;
I I
I I I
I I I

I I
_--7 ---or___+

I I I
I I I

--1- 1 I i
-l L------- --- -1

,—-0 I

w=251 ! I I

r‘ ---+++++-+ --:----; ---4
I I I I

1
I I I I 1 I

I I I
L __-J--_-k-__i____l.

i

I I
_________________ L___A

i I I I I
I

I
I I I

I
I I I I

I I I
I

I I I
/

1 / I
I~--- ~----~----;--------- ;--__;___;_-__;__-;
I I I I I I I
I I I

I I
I I I

I
1 I 1

I I I I i
L

i i
-1 L J

i
-- - - - - - -- - - --- !L---L__--L___J____ L__-J

(b)

Figure 33. Evaluation of goodness value in Kling’s algorithm. (a) Evaluation window showing weights of
neighboring locations; (b) calculation of current value r; r = X Czu, = 2*25 + 4*5O + 1*1OO + 6*33 +
5*5O + 2*25 = 848; (c) calculation of ideal value t, t = ZC, W, = 1*5O + 2*1OO + 2*5O + 5*1OO + 6*1OO +
4*1OO = 1850. Goodness value: r/t*100 = 848/1850*100 = 45.83%.

ACM Computing Surveys,Vol. 23,N0. 2, June 1991

VLSI Cell Placement Techniques “ 207

(c]

Figure 33. Continued

Figure 34. Concentric circle function for the evaluation of goodness of placsment of standard cells in
Kling’s algorithm.

ACM Computing Surveys, Vol. 23, No, 2, June 1991

208 “ K. Shahookar and P. Mazumder

5.3 GASP: Genetic Algorithm for Standard
Cell Placement

The authors of this paper have recently
implemented a genetic algorithm for cell
placement (GASP) [Shahookar and
Mazumder 1990] as follows.

5.3.1 Algorithm

The flow chart for GASP is given in Fig-
ure 35. First, an initial population of
configurations is constructed randomly.
Each individual in the population is rep-
resented by a set of four integer arrays
containing the cell number, the x- and
y-coordinates, and a serial number. The
coordinates of the cells are determined
by placing them end to end in rows. The
serial number is used to keep track of the
approximate slot in the physical layout
area to which each cell is assigned. The
population size is provided by the user
and determines the tradeoff between pro-
cessing time and result quality. From
experimental observation, it was found
that a small population of 24 configura-
tions gave the best performance. Each
individual is evaluated to determine its
fitness. The fitness is the reciprocal of
the wire length. Penalty terms for row
length control and cell overlap are not
used. Instead, after generating a new
configuration, cells are realigned
to remove overlap. This is done because
removing the overlap takes no more
computation time than determining the
overlap penalty, Since on average half
the cells are moved simultaneously, a
majority of the nets are affected. Thus,
the wire length has to be computed ex-
haustively, and no saving is achieved by
allowing overlap.

At the beginning of each generation,
inversion is performed on each individ-
ual, with a probability equal to the inuer-
sion rate. For this purpose, two cut points
are determined randomly, and the seg-
ment between them in the cell array is
flipped, along with the coordinates and
the serial numbers (Figure 31). Then
crossover takes place. Two individuals
are selected from the population at ran-
dom, with a probability proportional to

their fitness. Before crossover, the serial
numbers of the second parent are aligned
in the same sequence as those of the fh-st
parent, so cells in the same array loca-
tions correspond to approximately the
same locations on the chip. Then seg-
ments are exchanged between parents so
that for each location on the chip, the
child inherits a cell from one parent or
another. This process is repeated until
the desired number of offspring has been
generated, The number of offspring per
generation, N. is determined by the
crossover rate:

N, = NPRC

where NP is the population size and R ~
is the crossover rate. Since the number of
configurations examined is kept con-
stant, the actual number of generations
is increased as the crossover rate is re -
duced:

Ngo N,
Ng=—

N. ‘

where NP is the population size and NgO
is the number of generations specified by
the user.

Each offspring is mutated with a prob-
ability equal to the mutation rate. Muta-
tion consists of pairwise interchange.
Cells in two randomly picked array loca-
tions are exchanged, leaving the coordi-
nate arrays unchanged (Figure 30).

After crossover and mutation, the fit -
ness of each offspring is evaluated, and
the population for the next generation is
selected from the combined set of parents
and offspring. Three selection methods
have been tried: competitive selection, in
which the best of the parents and off-
spring are selected, random selection, and
random selection with the retention of
the best individual.

5.3.2 Crossover Operators

Crossover is the primary method of opti-
mization in the genetic algorithm and, in
the case of placement, works by combin-
ing good subplacements from two differ-
ent parent placements to generate a new

ACM Computmg Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques ● 209

r#&%?o%N8:%:%Ns; I
Read netllst and cell library files;

Read parameter values, crossover rate = Rc, mutation rate = Rm,

mverwon rate = Ri, population size = Np, no. of generations = Ng.

+

I Generate initial population randomly.

I
3

I Evaluate configuration j; I

FORi:=l TO NgDO

FOiRj:-l TO NpDO

Invert config. j with probability = Ni;

Make two random triafe and select two perant8 from
the population, with probability of selstctiort of eacl!

individual proportional to ite fiineew
Align serial Noa. of parent 2 with thoaa of parent I;

Perform specified type of croeeover operation,
store ruult in offspring array;

FOflk:. tTOn NpFfntr%?OO

Seloot a random Oortfiguretiofl and
make a random pair intemhange;

+
r From combined set of puente and offefning, chooee I

I the population for the next generetiono accordhg to
fho qmdfied selection criterion, end copy tlw poimere I

I to eeleoted indlviduab into the population array; I

FIrrd ths mdiitiuel wrth the highnst fimem
m the final population.

3

Figure 35. GASP flowchart.

ACM Computing Surveys,VO1.23, No 2, June 1991

210 “ K. Shahookar and P. Mazumder

placement. In order to deal with the con-

flicts that can occur in traditional
crossover, one must either find a way to
combine two different placements with-
out conflicts or use some method to
resolve the conflicts that arise. The per-
formance of three powerful crossover
operators have been compared experi-
mentally. Two of them, Order and PMX,
differ in their conflict resolution meth-
ods, whereas Cycle crossover is a conflict-
less operator.

Order Crossouer. The Order crossover
algorithm is as follows. Choose a cut
point at random. Copy the array segment
to the left of the cut point from one par-
ent to the offspring. Fill the remaining
(right) portion of the offspring array by
going through the second parent, from
the beginning to the end and taking those
modules that were left out, in order. An
example is shown in Figure 36a. This
operator conveys a subplacement from
the first parent without any changes,
then, to resolve conflicts, compresses the
second parent by eliminating the cells
conveyed by the first parent and shifting
the rest of the cells to the left, without
changing their order [Davis 19851. It then
copies this compressed second parent into
the remaining part of the offspring ar-
ray.

PMX. PMX [Goldberg and Lingle
1985] stands for Partially Mapped
Crossover. It is implemented as follows.
Choose a random cut point and consider
the segments following the cut point in
both parents as a partial mapping of the
cells to be exchanged in the first parent
to generate the offspring. Take corre-
sponding cells from the segments of both

parents, locate both these cells in the
first parent, and exchange them. Repeat
this process for all cells in the segment.
Thus, a cell in the segment of the first
parent and a cell in the same location in
the second parent will define which cells
in the first parent have to be exchanged
to generate the offspring. An example is
shown in Figure 36b.

cycle Crossover. Cycle crossover
[Oliver et al. 1987] is an attempt to elim-

ACM Computing Surveys, Vol. 23, No 2, June 1991

inate the cell conflicts that normally arise
in crossover operators. In the offspring
generated by cycle crossover, every cell is
in the same location as in one parent or
the other. For Cycle crossover, we start
with the cell in location 1 of parent 1 (or
any other reference point) and copy it to
location 1 of the offspring. Now consider
what will happen to the cell in location 1
of parent 2. The offspring cannot inherit
this cell from parent 2, since location 1 in
the offspring has been filled. So this cell
must be searched in parent 1 and passed
on to the offspring from there. Supposing
this cell is located in parent 1 at location
x. Then it is passed to the offspring at
location x. But then the cell at location
x in parent 2 cannot be passed to the
offspring, so that cell is also passed from
parent 1. This process continues until we
complete a cycle and reach a cell that has
already been passed. Then we choose a
cell from parent 2 to pass to the offspring
and go through another cycle, passing
cells from parent 2 to the offspring. Thus,
in alternate cycles, the offspring inherits
cells from alternate parents, and the cells
are placed in the same locations as they
were in the parents from which they were
inherited. An example is given in Figure
36c.

5.3.3 Experimental Results

In most cases, either PMX or Cycle
crossover performed best, whereas Order
crossover performed worst. Cycle
crossover was found to be slightly better
than PMX. The best compromise of pa-
rameters was crossover rate 3370, inver-
sion rate 15Y0, and mutation rate O.5$Z0.
These values were used in all subsequent
experiments.

In all cases, competitive selection of
the best of the parents and offspring to
be included in the next generation proved
to be better than all other strategies.
Figures 37a-c show the plots of the low-
est and average wiring cost in each gen-
eration as the optimization proceeds. The
reason for the poor performance of the
random selection methods can be clearly
seen. Just as it is possible to combine the
good features of two parents to form a

VLSI Cell Placement Techniques “ 211

.“
,’,

/’
1’
I
I
1
\

t

\
\

\
\

.

~ Alli31ClDlEl~ IIHIJIG[
(a) (b)

Crossover point ,

(c)

Figure 36. Crossover operators in GASP. (a) Order crossover. Pass the Left segpent from parent 1.
Construct the right segment by taking the remaining cells from parent 2 in the same order. (b) PMX
crossover. The right segments of both parents act as a partial mapping of pairwise exchanges to be
performed on parent 1. Since the pairs (G, J), (H, B), and (Z, F) are situated at the same locations in both
parents, exchange these cells in parent 1 to generate the offspring. (c) Cycle crossover. Start by passing A
from parent 1 to the offspring. Since E is located at the same position in parent 2, it cannot be passed from
there. Therefore, pass E also from parent 1. D is located in the same position in parent 2 as E in parent 1.
Therefore, proceed similarly with D. Now A is in the same location, but it has already been processed.
This completes a cycle. Start another cycle from parent 2 by passing C to the offspring, and continue by
passing 1?, H, F, and Z from parent 2. The third cycle will again be from parent 1 and will pass G and J.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

212 “ K. Shahookar and P. Ma.zumder

better offspring, it is also possible to com-
bine the bad features to form a far worse
offspring. If these offspring are accepted
on a random basis, the best and average
cost in the population will oscillate, as
seen in Figure 37c. The losses involved
in the random process far outweigh any
advantage gained, and the algorithm
takes a much longer time to converge.
When we allow for the retention of the
best solution along with random selec-
tion, the cost of the best solution is seen
to decrease monotonically. The average
cost of the population still oscillates,
however, and the convergence is much
slower than for competitive selection.

Comparison with TimberWolfi The
performance of the algorithm was com-
pared against TimberWolf 3.3 for five
circuits ranging from 100 to 800 cells. It
achieved the same quality of placement
in about the same amount of CPU time.
There are two interesting differences,
however.

GASP achieves a very rapid improve-
ment in the beginning, then levels off, as
illustrated in Figure 38. On the other
hand, for TimberWolf the cost increases
for the first few high temperature itera-
tions, and little improvement is achieved
during the first half of the run. This
means that if a very high-quality place-
ment is not required, GASP will be
several times faster.

Another difference is that although the
CPU times were comparable, GASP ex-
amined 20– 50 times fewer configurations
for the same quality of placement. This
advantage was offset by the excessive
evaluation time, which is the bottleneck
of the algorithm. In simulated anneal-
ing, only two cells are moved at a time,
so only a few nets need to be evaluated to
determine the change in wire length. In
GASP, nearly half the cells are moved
simultaneously, and the wire length has
to be computed exhaustively. This takes
62-67% of the CPU time, whereas
crossover takes only 17’%0of the time.

6. CONCLUSION

This paper discussed five classes of VLSI
module placement algorithms. Simulated

ACM Computing Surveys, Vol. 23, No 2, June 1991

annealing is currently the most popular
among researchers and is the best algo-
rithm available in terms of the place-
ment quality, but it takes an excessive
amount of computation time. It is de-
rived by analogy from the process of an-
nealing, or the attainment of ordered
placement of atoms in a metal during
slow cooling from a high temperature.
We discussed the TimberWolf 3.2 algo-
rithm by Sechen, improvements made in
TimberWolf 4.2, and other recent devel-
opments such as the experiments on the
cooling schedule by Nahar et al. [1985]
and the Markov chain analysis by Aarts
et al.

Min-cut algorithms would rank second
in terms of placement quality but would
probably be the best in terms of cost/per-
formance ratio, since they are much
faster than simulated annealing. These
algorithms are based on a simple princi-
ple—the groups of cells that are densely
connected to each other ought to be placed
close together. Thus, by repeated parti-
tioning of the given network to minimize
the net cut and each time constraining
the subgroups to be placed in different
areas in the layout, the wire length is
minimized. The algorithms of Breuer
have been discussed in this paper, along
with improvements such as terminal
propagation by Dunlop and Kernighan

[19851, and quadrisection by Suaris and
Kedem [1987].

Force-directed algorithms operate on
the physical analogy of masses connected
by springs, where the system would tend
to come to rest in the minimum energy
state, with minimum tension in the
springs, or in terms of the placement
problem, the wire length minimized.
Force-directed algorithms have been
around since the 1960s and were among
the first algorithms to be used for place-
ment — mainly printed circuit board
placement in those days. A rich variety
of implementations have been developed
over the years, including constructive
(equation solving) methods for determin-
ing a minimum-energy configuration
from scratch and two types of iterative
techniques, one consisting of selecting
modules one at a time and determining

VLSI Cell Placement Techniques * 213

: l.4xlo5–
c I

~ I 2x Io5_ ;

: 1 OX105Q
m
~
QJ O 8X105>
m
~
m O 6X105

G

; o 4X105 [Ll
2 ——

0 100 200 300 400 500

CPU-see

(a)

cpu-s~~

(b)

~ I,2x I05
c
-~

\

al

:
a
~ 08x105_
aJ \ l\
,% / ,$ /,, II

/ \/_\=)\
: 0.6x105_ .

.m
;

o 4X105
3 i

o 100 200 300 400 500

CPU-see

(c)

Figure 37. Comparison of selection methods in GASP. (a) Cycle crossover, competitive selection; (b) cycle
crossover, random selection, (c) cycle crossover, random + best selection. —, lowest Wire length;
. . ., average wire length.

ACM Computing Surreys, Vol. 23, No. 2, June 1991

214 ● K. Shahookar and P. Mazumder

Iterations (T[mberWoif)

=H=

240003- ;>‘#f
Y , -240000

‘,!,
2COOIXI- . -200000

,
12QOQI- “1 -160000

12uow -
_ :

120000

SOCa 80000
0 1000 2000 3000

CPUSW(GASP)

Optimization characteristics of GASP compared to TimberWolf.

an ideal location for them from force con-
siderations and the other consisting of
random/exhaustive pairwise inter -

change, with acceptance of the good
moves and rejection of the bad moves,
once again on the basis of force consider-
ations. An overview of the various tech-
niques used has been given, along with a
sample algorithm and a network exam-
ple to illustrate the operation of the algo-
rithm. Goto’s GFDR algorithm has also
been discussed.

Placement is an optimization problem,
and methods such as Simplex, Quadratic
Programming, and the Penalty Function
Method have traditionally been used for
various linear and nonlinear optimiza-
tion problems. Further, the placement
problem can also be formulated in terms
of the quadratic assignment problem,
which can be solved by the eigenvalue
method. Accordingly, several papers that
use these techmques have been discussed
under the category of numerical opti-
mization techniques. The common fea-
ture of all these techniques is that they
do not constrain the modules to grid
points or rows, hence they are more ap-
plicable to macroblocks than to standard
cells or gate arrays, although the solu-
tion generated by numerical techniques
can be further processed to map the mod-
ules to the nearest grid points.

The final class of algorithms discussed
here are genetic algorithms, which, al-
though invented in the 1960s, were not
used for placement until 1986. The ge-
netic algorithm is an extremely efficient
search and optimization technique for
problems with a large and varied search
space, as well as problems where more
than one physical feature needs to be
optimized simultaneously. The genetic
algorithm processes a set of alternative
placements together and creates a new
placement for trial by combining sub-
placements from two parent placements.
This causes the inheritance and accumu-
lation of good subplacements from one
generation to the next. It also causes the
mixing of the good features of several
different placements that are being opti-
mized simultaneously for mutual benefit.
Thus, the search through the solution
space is inherently parallel. The place-
ment problem is represented in the form
of a genetic code, and the genetic opera-
tors operate on this code, not directly on
the physical layout. This is a major devi-
ation from the conventional placement
algorithms that directly apply transfor-
mations to the physical layout. This
intrinsic parallelism of the genetic
algorithm can, however, be a potential
problem, and unless a clever representa-
tion scheme is devised to represent the

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 215

Table 5. Comparison of Placement Algorithms

Algorithm Result quality Speed

Simulated annealing Near optimal Ver,f slow
Genetic algorithm Near optimal Very slow

Force directed Medium. good Slow medium
Numerical optimization Medium. . . good Slow. medium

Min-cut Good Medium
Clustering and other

constructive placement Poor Fast

Table 6. Comparison of the Run Times of Placement Algorithms

No. of CPU Computer
Implementation algorithm cells hours hardware Performance Reference

Huang et al. Simulated 469 1.42 VAX 11/780 Wire lengths [Huang et al. 19861
TimberWolf 3.2 Annealing 469 3 within k 4~o
Huang 800 10.42
TimberWolf 3.2 800 10.7

Dunlop and
llernighan

Min-cut 412

Quadrisection
TimberWolf 3.2
Quadrisection

TimberWolf 3.2
Proud-2

Min-cut 173
173
796
796

Gauss- 1438

1 VAX 11/780

0.01 VAX 8600
0.53
0.135
17.8
0.014 VAX 8650

Proud-4 Seidel
TimberWolf 3.2
TimberWolf 4.2
Proud-2
Proud-4
TimberWolf 3,2
TimberWolf 4.2
Proud-2
Proud-4
ESP Evolution

1438 0.027
1438 2

1438 0.9

3816 0.09

3816 0.18
3816 –

3816 6.69
26277 0.85
26277 1,56
183 0.43 Sun 3/75

Comparable to [Dunlop and
manual layout Kernighan 19851

Chip area = 1.11 [Suaris and Kedem 19871
Chip area = 1.0
Chip area = 0.91
Chip area = 1.0
Wire length = 0.93 [Tsay et al. 19881

Wire length = 0.9
Wire length = 1.0
Wire length = 0.84
Wire length = 0.90
Wire length = 0.91
Wire length = 1.0
Wire length = 0.83
Wire length = 1.0
Wire length = 0.962
Wire length = 1.0 [Kling 19871

TimberWolf 3.2 183 2,7 Wire length = 1.0

GASP Genetic 469 11.0 Apollo- Wire length = 1.0 [Shahookar and
TimberWolf 3.2 469 11.3 DN4000 Wire length = 1.02 Mazumder 19901
GASP 800 12.5 Wire length = 1.0
TimberWolf 3.2 800 13.7 Wire length = 0.87

physical placement as a genetic code, the
algorithm may prove ineffective. In this
paper, three implementations of the
genetic algorithm that overcome these
problems in different ways were
described.

Table 5 is an approximate comparison
of the performance of the algorithms dis -
cussed here. Table 6 gives the run time
and performance of some of the algo-
rithms. The wire length or chip area in
the performance column has been nor-

malized. This data can only give partial
comparisons, since different papers have
reported results on different circuits and
have used different computer hardware.
An attempt has been made to group the
data according to the computer hardware
used.

Despite the bewildering variety of al-
gorithms available, efficient module
placement has so far remained an elusive
goal. Most of the heuristics that have
been tried take excessive amounts of CPU

ACM Computing Surveys, Vol. 23, No 2, June 1991

216 0 K. Shahookar and P. Mazumder

time and produce suboptimal results.
Until recently excessive computation
times had prohibited the processing of
circuits with more than a few thousand
modules. As fast simulated annealing
and rein-cut algorithms discussed above
are cast into fully developed place and
route packages, however, this situation
is expected to change. Preliminary re -
suits show that these algorithms have
the capability to produce near-optimal
placements in reasonable computation
time.

The following is a list of other surveys
and tutorials on cell placement in
chronological order: Hanan and
Kurtzberg [1972 al, Press [19791, Soukup

[19811, Chew [19841, Hu and Kuh [19851,
Hildebrandt [1985], Goto and Matsuda

[19861, Press and Karger [19861, Sangio-
vanni-Vincentelli [19871, Wong et al.

[19881, and Press and Lorenzetti [19881.
Robson [19841 and VLSI [1987, 19881

list exhaustive surveys on commercially
available automatic layout software.
These surveys indicate that force-
directed placement was the algorithm of
choice in systems available in 1984 [Rob-
son 1984]. In 1987 and 1988, we see an
even mix of force-directed algorithms,
rein-cut, and simulated annealing [VLSI
1987, 1988]. According to the 1988 sur-
vey, a few of these systems can be used to
place and route sea-of-gates arrays with
more than 100,000 gates, in triple metal,
using up to 8090 of the available gates

[VLSI 19881. Another trend immediately
obvious from these surveys is that almost
all the systems can be run on desktop
workstations—Sun, Apollo, or Micro-
VAX. Thus automated layout systems are
very widely available. They have made it
possible to transfer the task of designing
and laying out custom ICk from the IC
manufacturer to the client.

ACKNOWLEDGMENTS

This research was partially supported by the NSF
Research Initiation Awards under the grant num-
ber MIP-8808978, the University Research Initia-
tive program of the U.S. Army under the grant
number DAAL 03-87-K-0007, and the Digital

Equipment Corporation Faculty Development
Award. K. Shahookar is supported by the Science

and Technology Scholarship Program of the Gov-
ernment of Pakistan.

REFERENCES

AARTS, E. H. L , DEBONT, F. M. J., AND HABERS,
E. H. A. 1985. Statistical cooling: A general
approach to combinatorial optimization prob -
lems. PhilLps J. Res. 40, 4, 193-226.

AARTS, E. H. L., DEBONT, F. M. J., AND HABERS,
E. H. A. 1986. Parallel implementations of
the statistical cooling algorithm. Integration,
VLSI J. 4, 3 (Sept.) 209-238.

AKERS, S. B. 1981. On the use of the linear as-
signment algorithm in module placement. In
Proceedings of the 18th Des~gn Automation

Conference. pp. 137-144.

ANTREICH, K. J., JOHANNES, F. M., AND KIRSCH,
F H. 1982. A new approach for solving the
placement problem using force models. In Pro-

ceedings of the IEEE International Symposmm
on C%-cuits and Systems. pp. 481-486.

BANNERJEE, P., AND JONES, M. 1986. A parallel
simulated annealing algorithm for standard
cell placement on a hypercube computer. In
Proceedings of the IEEE International Confer-
ence on Computer Design. p. 34.

BENDERS, J. F. 1962. Partitioning procedures for
solving mixed variable problems. Numer,
Math. 4, 238-252.

BLANKS, J. P. 1984. Initial placement of gate ar-
rays using least squares methods. In Proceed-
ings of the 21st Design A utomatzon Conference.
pp. 670-671.

BLANKS, J, P. 1985a. Near-optimal placement
using a quadratic objective function. In Pro.
ceedmgs of the 22nd Deszgn Automation Con-
ference. pp. 609-615,

BLANKS, J. P. 19S5b. Use of a quadratic objective
function for the placement problem in VLSI
design. Ph.D. dissertation, Univ. of Texas at
Austin.

BREUER, M. A. 1977a. Min-cut placement, J. De-

sign Automation and Fault- Tolerant Comput-

ing 1, 4 (Oct.) 343-382.

BREUER,M. A. 1977b. A class of mm-cut place-
ment algorithms. In Proceedings of the 14th
Design Automation Conference. pp. 284-290

CASSOTO, A., ROMEO, F., AND SANGIOVANNI-
VINCENTELLI, A. 1987. A parallel simulated
annealing algorithm for the placement of stan-
dard cells. IEEE Trans. Comput.-Aided Design
CAD-6, 5 (May), 838.

CHAN, H. M., AND MAZUMDER, P. 1989. A genetic
algorithm for macro cell placement. Tech. Rep.
Computing Research Laboratory, Dept. of Elec-
trical Engineering and Computer Science, Uni-
versity of Michigan, Ann Arbor, Mich.

ACM Computing Surveys, Vol. 23, No. 2, June 1991

VLSI Cell Placement Techniques ● 21’7

CHANG, S. 1972. The generation of minimal trees
with a steiner topology. J. ACM 19, 4 (Oct.),
699-711.

CHEN, N. P. 1983. New algorithms for steiner tree
on graphs. In Proceedings of the International
Symposium on Circuits and Systems. pp.
1217-1219.

CHENG, C. 1984. Placement algorithms and appli-
cations to VLSI design. Ph.D. dissertation
Dept. of Electrical Engineering, Univ. of Cali-
fornia, Berkeley.

CHENG, C., AND KUH, E. 1984. Module placement
based on resistive network optimization. IEEE
Trans. Comput.-Aided Design CAD-3, 7 (July),
218-225.

CHUNG, M. J., AND RAO, K. K. 1986. Parallel
simulated annealing for partitioning and rout-
ing. In Proceedings of the IEEE International

Conference on Computer Design. pp. 238-242.

CHYAN, D., AND 13REUER,M. A. 1983. A placement
algorithm for array processors. In Proceedings
of the 20th Design Automation Conference. pp.
182-188.

COHOON, J. P., AND SAHNI, S. 1983. Heuristics for
the board permutation problem. In Proceed-
ings of the 20th Design Automation Conference.

COHOON, J. P., AND PARIS, W. D. 1986. Genetic
placement. In Proceedings of the IEEE Interna-
tional Conference on Computer-Aided Design.

pp. 422-425.

CORRIGAN, L. I. 1979. A placement capability
based on partitioning. In Proceedings of the

16th Design Automation Conference. pp.
406-413.

DAVIS, L. 1985. Applying adaptive algorithms to
epistatic domains. In Proceedings of the Inter-

national Joint Conference on Artificial Intelli-
gence.

DONATH, W. E. 1980. Complexity theory and de-
sign automation. In Proceedings of the 17th

Design Automation Conference. pp. 412-419.

DUNLOP, A. E., AND KERNIGHAN, B. W. 1985. A
procedure for placement of standard cell VLSI
circuits. IEEE Trans. Comput. -Aided Design

CAD-4, 1 (Jan.), 92-98.

FIDUCCIA, C. M., AND MATTHEYSES, R. M. 1982. A
linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design

Automation Conference. pp. 175-181.

FISK, C. J., CASKEY, D. L., m~ WEST, L. E. 1967.
Accel: Automated circuit card etching layout.
Proc. IEEE 55, 11 (Nov.) 1971-1982.

FUKUNAGA, K., YAMADA, S., STONE, H., AND KASAI,
T. 1983. Placement of circuit modules using a
graph space approach. In Proceedings of the
20th Design Automation Conference. 465-473.

GIDAS, B. 1985. Non-stationary Markov chains
and convergence of the annealing algorithm.
J. Stat. Phys. 39, 73-131.

GILMORE, P. C. 1962. Optimum and suboptimum

algorithms for the o~uadratic assignment prob.
lem. J. SIAM 10, 2 (June), 305-313.

GOLDBERG, D. E., AND LINGLE, R. 1985. Alleles,
loci and the traveling salesman problem. In
Proceedings of the International Conference on

Genetic Algorithms and them Appl~catlons.

GOTO, S. 1981. An efficient algorithm for the
two-dimensional placement problem in electri-
cal circuit layout. IEEE Trans. Circuits Syst.,
CAS-28 (Jan.), 12-18.

GOTO, S., AND KUH, E. S. 1976. An approach to
the two-dimensional placement problem in cir-
cuit layout. IEEE Trans. Circuits Syst. CAS-
25, 4, 208-214.

GOTO, S., CEDERBAUM, I., AND TING, B.S. 1977.
Suboptimal solution of the backboard ordering
with channel capacity constraint. IEEE Trans.

Circuits Syst. (Nov. 1977), 645-652.

GOTO, S., AND MATSUDA, T. 1986. Partitioning,
assignment and placement. In Layout Design

And Verification, ‘T. Ohtsuki, Ed. Elsevier
North-Holland, New York, Chap. 2, pp. 55-97.

GREENE, J. W., AND SUPOWIT, K. J. 1984. Simu-
lated annealing without rejected moves. In
Proceedings of the IEEE International Confer-
ence on Computer Design. pp. 658-663.

GREFENSTETTE,J. J., Ed. 1985. In Proceedings of
an International Conference on Genetic Algo-
rithms and their Applications. Pittsburgh,
Penn.

GREFENSTETTE,J. J., Ed. 1987. In Proceedings of
the 2nd International Conference on Genetic Al-
gorithms and their Applications. Cambridge,
Mass.

GROVER, L. K. 1987. Standard cell placement us-
ing simulated sinte ring, In Proceedings of the
24th Design Automation Conference. pp. 56-59.

HAJEK, B. 1988. Cooling schedules for optimal
annealing. Oper. Res. 13, 2 (May), 311-329.

HALL, K. M. 1970. An r-dimensional quadratic
placement algorithm. Manage. Sci. 17, 3

(Nov.), 219-229.

HANAN, M., AND KURTZ~ERG, J. M. 1972a. Place-
ment techniques. In Design Automation of Dig-

ital Systems, 1, M A. Breuer, Ed. Prentice
Hall, Englewood Cliffs, N. J., Chap. 5, pp.
213-282.

HANAN, M., AND KURTZBERG, J. M. 1972b. A re-
view of placement and quadratic assignment
problems. SIAM Reu. 14, 2 (Apr.), 324-342.

HANAN, M., AND WOLFF, P. K., AND AGULE, B. J.
1976a. Some experimental results on place-
ment techniques. In Proceedings of the 13th
Design Automation Conference. pp. 214-224.

HANAN, M., AND WOLFF, P. K., AND AGULE, B. J.
1976b. A study of placement techniques. J.
Design Automation and Fault-Tolerant Com-
puting 1, 1 (Oct.), 28-61.

HANAN, M., WOLFF, P. IK., AND AGULE, B. J. 1978.
Some experimental results on placement

ACM Computing Surveys, Vol. 23, No. 2, June 1991

218 “ K. Shahookar and P. Mazumder

techniques. J. Deszgn Automation and Fault-
Tolerant Computing 2 (May), 145-168.

HERRIGEL, A., AND FICHTNER, W. 1989. An ana-
lytic optimization technique for placement of
macrocells. In Proceedings of the 26th Design
Automation Conference. pp. 376-381.

HILDEBRANDT, T. 1985. An annotated placement
bibliography. ACM SIGDA Newsletter 15, 4
(Dec.), 12-21.

HILLNER, H., WEIS, B. X., AND MLYNSKI, D. A.
1986. The discrete placement problem: A dy-
namic programming approach. In Proceedings
of the Internat~onal Symposuim on Circuits and

Systems. pp. 315-318.

HOLLAND, J. H. 1975. Adaptation m Natural and
Artificial Systems. University of Michigan
Press, Ann Arbor, Mich.

Hu, T. C., AND KUH, E. S. 1985. VLSI Cwcuit

Layout. IEEE Press, New York.

HUANG, M. D., ROMEO, F., AND SANGIOVANNI-
VINCENTELLI, A. 1986. An efficient general
cooling schedule for simulated annealing. In
Proceedings of the IEEE International Confer-
ence on Computer-Aided Design. pp. 381–384.

HWANG, F. K 1976. “On Steiner Minimal Trees
with Rectilinear Distance,” SIAM J. Appl.
Math. Vol. 30, PP.104-114, 1976

HWANG, F. K. 1979. An O(n log n) algorithm for
suboptimal rectilinear steiner trees. IEEE
Trans. Cwcuits Syst. CAS-26, 1, 75-77.

JARMON, D. 1987. An automatic placer for arbi-
trary sized rectangular blocks based on a
cellular model. In Proceedings of the IEEE
International Conference on Computers and Ap-
plicat~ons. pp. 842-845.

JOHANNES, F. M., JUST, K. M., AND ANTREICH, K. J.
1983. On the force placement of logic arrays.
In Proceedings of the 6th European Conference

on Cmcuit Theory and Design. pp. 203-206.

JOHNSON, D. B., AND MIZOGUCHI, T. 1978. Select-
ing the kth element in X + Y and Xl + X2
+ . . . + Xm. SIAM J. Comput. 7, 2 (May),
141-143

KAMBE, T., CHIBA, T., KIMURA, S., INUFUSHI, T ,
OKUDA, N., AND NISHIOKA, I. 1982. A place-
ment algorithm for polycell LSI and its evalua-
tion. In Proceedings of the 19th De.wgn Au-
tomation Conference. PP 655-662

KANG, S. 1983. Linear ordering and application to
placement. In Proceedings of the 20th Deszgn
Automation Conference. pp. 457-464.

KAPPEN, H. J., AND DE BONT, F. M. J. 1990. An
efficient placement method for large standard-
cell and sea-of-gates designs. In Proceedings of
the IEEE European Design Automation
Conference. pp. 312-316.

KARGER, P. G., AND MALEK, M. 1984. Formula-
tion of component placement as a constrained
optimization problem. In Proceedings of the
International Conference on Computer Design.
pp. 814-819.

KERNIGHAN,B. W., ANDLIN, S. 1970. An efficient
heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49, 2, 291-308.

KIRKPATRICK, S., GELATT, C D , AND VECCHI, M P.
1983. Optimization by simulated annealing.
Sczence 220.4598 (May), 671-680.

KLING, R. M, 1987. Placement by simulated evo-
lution. Master’s thesis, Coordinated Science
Lab, College of Engr., Univ. of Illinois at
Urbana-Champaign.

KLING, R., AND BANNERJEE, P. 1987. ESP: A new
standard cell placement package using simu-
lated evolution. In Proceedings of the 24th De-

sign Automation Conference. pp. 60-66.

KOZAWA, T., MIURA, T., AND TERAI, H. 1984. Com-
bine and top down block placement algorithm
for hierarchical logic VLSI layout. In Proceed-
ings of the 21st Design Automation Conference.

pp. 535-542.

KOZAWA, T , TERAI, H., ISHII, T., HAYASE, M., MIURA,
C., OGAWA, Y , KISHIDA, K., YAMADA, N., AND
OHNO, Y. 1983. Automatic placement algo-
rithms for high packing density VLSI. In
Proceedings of the 20th Design Automation
Conference. pp. 175-181

KRUSKAL, J. 1956. On the shortest spanning sub-
tree of a graph and the traveling salesman
problem. In proceedings of the American Math-

ematical Soczety, Vol. 7, No. 1, pp. 48-50.

VAN LAARHOVEN, P. J. M., AND AARTS, E. H. L.
1987. Simulated Annealing: Theory and Ap-

plications. D. Riedel, Dordrecht-Holland.

LAM, J., AND DELOSME, J. 1986. Logic minimiza-
tion using simulated annealing. In Proceed-
ings of the IEEE International Conference on
Computer-Aided Design. p. 378.

LAM, J., AND DELOSME, J. 1988. Performance of a
new annealing schedule. In Proceedings of the

25th Design Automation Conference. pp.
306-311.

LAUTHER, U, 1979. A rein-cut placement algo-
rithm for general cell assemblies based on a
graph representation. In Proceedings of the
16th Des~gn Automation Conference. pp. 1-10.

LEIGHTON, F. T. 1983. Complexity Issues m VLSI.
MIT Press, Cambridge, Mass.

LUNDY, M., AND MEES, A. 1984 Convergence of
the annealing algorithm. In proceedings of the
Szmulated Annealing Workshop.

MAGNUSON, W. G. 1977. A comparison of con-
structive placement algorithms. IEEE Region
6 Conf, Rec. 28-32.

MALLELA, S., AND GROVER, L. K. 1988. Clustering
based simulated annealing for standard cell
placement. In Proceedings of the 25th Design
Automation Conference. pp. 312-317.

MARKOV, L. A., Fox, J. R., AND BLANK, J. H. 1984.
Optimization technique for two-dimensional
placement. In Proceedings of the 21st Design
Automation Conference. pp. 652-654.

ACM Computing Surveys, Vol. 23, No 2, June 1991

VLSI Cell Placement Techniques “ 219

MITRA, D., RONIEO, F., AND SANGIOVANN1-VINCEN-
TELLI, A. 1985. Convergence and finite-time
behavior of simulated annealing. In Proceed-

ings of the 24th Conference on Deciston and
Control. pp. 761-767.

MOGAKI, M., MWRA, C., AND TERAI, H. 1987. Al-
gorithm for block placement with size opti-
mization technique by the linear programming

approach. In Proceedings IEEE International
Conference on Computer-Aided Design. pp.
80-83.

MUROGA, S. 1982. VLSI System Design. John Wi-
ley, New York, Chap. 9, pp. 365-395.

NAHAR, S., SAHNI, S., AND SHRAGOWITZ, E. 1985,
Experiments with simulated annealing. In
Proceedings of the 22th Destgn Automation

Conference. pp. 748-752.

OLIVER, I. M., SMITH, D. J., AND HOLLAND, J. R. C.
1985. A study ofpermutation crossover oper-
ators on the traveling salesman problem. In
Proceedings of the International Conference on

Genetic Algorithms and their Applications. pp.
224-230.

OmEN, R., ANDVANGINNEKIN,L. 1984. Floorplan
design using simulatecl annealing. In Proceed-
ings of the IEEE International Conference on
Computer-Aided Design. pp. 96-98,

F’ALCZEWSKI, 1984. Performance of algorithms for
initial placement. In Proceedings of the 21st
Design Automation Conference, pp. 399-404.

PERSKY, G., DEUTSCH, D. N., AND SCHWEIKERT,
D. J., 1976. LTX: A system for the directed
automatic design of LSI circuits. In Proceed-
ings of the 13th Design Automation Conference.

pp. 399-407.

PREAS, B. T. 1979. Placement and routing algo-
rithms for hierarchical integrated circuit lay-
out Ph.D. dissertation, Dept. of Electrical
Engr., Stanford Univ. Also Tech. Rep. 180,
Computer Systems Lab, Stanford Univ.

PREAS, B. T., AND KARGER, P. G. 1986. Automatic
placement: A review of current techniques. In
Proceedings of the 23rd Destgn Automation

Conference. pp. 622-629.

PREAS, B., AND LORENZETTI, M. 1988. Placement,
assignment and floorplanning. In 20Physical

Design Automation of VLSI Systems. The Ben-
jamin Cummings Publishing Co., Menlo Park,
Calif., Chap. 4, pp. 87-156.

QUINN, N. R. 1975. The placement problem as
viewed from the physics of classical mechanics.
In Proceedings of the 12th Design Automation
Conference. pp. 173-178.

QUINN, N. R., AND BREUER, M. A. 1979. A force
directed component placement procedure for
printed circuit boards. IEEE Trans. Circuzts
Syst. CAS-26 (June), 377-388.

RANDELMAN, R. E., AND GREST, G. S. 1986. N-city
traveling salesman problem: Optimization by
simulated annealing. J. Stat. Phys. 45,
885-890.

ROBSON, G. 1984. Automatic placement and rout-
ing of gate arrays. VLSI Design 5, 4, 35-43.

ROMEO, F., ANDSANGIOVANNI-VINCENTELLI, A. 1985.
Convergence and finite time behavior of simu-
lated annealing. In Proceedings of the 24th
Con ference on Decmlon and Control. pp.
761-767.

ROMEO, F., SANGIOVANNI-VINCENTELLI,A., AND
SECHEN, C. 1984. Research on simulated an-
nealing at Berkeley. In Proceedings of the IEEE
International Conference on Computer Des~gn.
pp. 652-657.

SAHNI, S., AND BHATT, A 1980. The complexity of
design automation problems, In Proceedmgsof
the 17th Design Automation Conference. pp.
402-411.

SANGIOVANM-VINCENTELM, A. 1987. Automatic
layout of integrated circuits. In Design Sys-

tems for VLSI Circuzts, G. De Micheli, A.
Sangiovanni-Vincenf,elli, and P. Antognetti,
Eds. Kluwer Academic Publishers, Hingham,
Mass., pp. 113-195.

SCHWEIKERT, D. G. 1976 “A 2-dimensional place-
ment algorithm for the layout of electrical cir-
cuits. In Proceedings of the Design Automat~on
Conference. pp. 408-416.

SCHWEIKERT, D. G., AND KERNIGHAN, B. W. 1972.
A proper model for the partitioning of electri-
cal circuits, In Proceedings of the 9th Design

Automation Workshop. pp. 57-62.

SEC~~N, C. 1986. The T~mberWol/3.2 Standard

Cell Placement and Global Routing Program.
User’s Guide for Version 3.2, Release 2,

SECHEN, C. 1988a. Chip-planning, placement, and
global routing of macro/custom cell integrated
circuits using simulated annealing. In Pro-
ceedings of the Desq~n A utomatzon Con ference.
pp. 73-80.

SECHEN, C. 1988b. VLSI Placement and Global
Routing Using Simulated Annealing. Kluwer,
B. V., Deventer, The Netherlands.

SECHEN, C. AND LEE, E .-W. 1987. An improved
simulated annealing algorithm for row-based
placement. In proceedings of the IEEE Interna-
tional Conference on Computer-Aided Design.

pp. 478-481.

SECHEN, C., AND SANGIOVANNI-VINCENTELLI, A.
1986. TimberWolt3.2: A new standard cell
placement and global routing package, In Pro-
ceedings of the 23rd Deszgn Au tomatzon Con fer-
ence. pp. 432-439.

SHA, L. AND BLANK, T. 1987. ATLAS: A technique
for layout using analytic shapes. In Proceed-
ings of the IEEE International Conference on
Compuler-Aided Des~gn. pp. 84-87.

SHA, L , AND DUTTON, R. 1985. An analytical al -
gorithm for placement of arbitrarily sized rec-
tangular blocks. In Proceedings of the 22nd
Design Automation Conference. pp. 602-607.

SHAHOOKAR,K., AND MAZUMDER,P. 1990. A ge-
netic approach to standard cell placement

ACM Computing Surveys, Vol. 23, No. 2, June 1991

220 “ K. Shahookar and P. Mazumder

using meta-genetic parameter optimization.
IEEE Trans. Comput.-Atded Design 9, 5 (May),
500-511.

SHIRAISHI, H , AND HmOSE, F. 1980 Efficient
placement and routing techniques for master-
slice LSI In Proceedings of the 17th Design
Automation Conference. pp. 458-464.

SOUKUP, J, 1981, Circuit layout. Proc. IEEE 69,
10(Oct,), 1281-1304.

STEINBERG, L 1961 The backboard wiring prob-
lem: A placement algorithm. SZAMReu. 3, 1
(Jan.), 37-50.

STEVENS, J. E. 1972. Fast heuristic techniques for
placing and wiring printed circuit boards.
Ph.D. dissertation, Comp. Sci. Dept., Univ. of
Illinois,

SUARIS, P , AND KEDEM, G. 1987. Quadrisection: A
new approach to standard cell layout In Pro-
ceedl ngs of the IEEE International Conference
on Computer-Aided Deszgn. pp. 474-477

Szu, H. 1986. Fast simulated annealing. In Pro-
ceedings of the AIT Conference. Neural Net-
works for Computmg, pp. 420-425.

TSAY, R., KUH, E. AND Hsu, C. 1988. Module
placement for large chips based on sparse lin-
ear equations. Znt. J Circuit Theory Appl. 16,
411-423.

UEDA, K., KASAI, R., AND SUDO, T. 1986 Layout
strategy, standardization, and CAD tools. In
Layout Destgn And Ver~ficatton, T, Ohtsukl,
Ed, Elsevier Science Pub. Co., New York,
Chap. 1.

VECCHI, M. P., AND KIRKPATRICK, S. 1983. Global
wiring by simulated annealing IEEE Trans,

Comput.-Atded Design CAD-2, 215-222.

VLSI SYSTEMSDESIGN STAFF. 1987. Survey of au-
tomatic layout software. VLSI Syst. De.mgn 8,
4, 78-89.

VLSI SYSTEMS DESIGN STAFF. 1988. Survey of au-
tomatic IC layout software. VLSZ Syst. Design
9, 4, 40-49

WALSH, G. R. 1975. Methods of OpttmLzatLon

John Wiley and Sons, New York.

WHITE, S. R. 1984. Concepts of scale in simulated
annealing In Proceedings of the IEEE Znterna-

honal Conference on Computer Design. pp.
646-651

WIPFLER, G. J., WIESEL, M.j AND MLYNSKI, D. A.
1982 A combined force and cut algorithm for
hierarchical VLSI layout. In Proceedings of the
19th De.!ngn Automat~on Conference. pp.
671-677.

WONG, D F., LEONG, H. W , AND LIU, C. L 1986.
Multiple PLA folding by the method of simu-
lated annealing In proceedings of the Custom
ZC Conference. pp. 351-355.

WONG, D. F,, LEONG, H. W., AND LIU, C, L. 1988.
Placement. In Szmulated Anneahng for VLSI

Design, Kluwer B. V., Deventer, The Nether-
lands, Chap. 2.

Recewed July 1988, final rewslon accepted April 1990

ACM Computmg Surveys, Vol 23, No 2, June 1991

