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Abstract We consider the task of tracing out target figures
hiddenin teeming figure pictures known as figure hunt games.
Figure hunt games are a popular genre of visual puzzles; a
timeless classic for children, artists and cognitive scientists.
We argue and experimentally demonstrate that diffusion is a
key to algorithmically search for a target figure in a binary
line drawing. Particularly suited to the considered task, we
propose a diffuse representation which diffuses the image
while retaining the contour information.

Keywords Screened Poisson PDE and variants - Level
sets - Non-linear diffusion - Figure hunt games - Teeming
figure pictures - Applications of variational and PDE
methods

1 Introduction

In 1986, the British illustrator Martin Handford created the
distinctive red-and-white dressed character Wally. Since that
day, Where’s Wally? became an extremely popular series of
children’s books consisting of diverse illustrations, depict-
ing dozens of people. Readers are challenged to find Wally
in illustrations where an abundant number of small figures
including Wally are brought together.
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Where’s Wally? is only a sample, though the most famous,
in a popular genre of visual puzzles called figure hunt games.
Figure hunt games have been a timeless classic for chil-
dren, artists and cognitive scientists. As early as 1926 Kurt
Gottschaldt experimented with intentionally designed hidden
figures—simple drawings where simple shapes such as poly-
gons are embedded within more complex organizations—
to study the influence of experience on perception and the
extent to which holes influence the perception of parts [10].
Gottschaldt type puzzles (Fig. 1 top row) together with the
Where’s Wally ? type ones (Fig. 1 bottom row) form the focus
of this paper. This sub-genre of the figure hunt can be gen-
eralized based on two factors as exemplified in Fig. 1. The
first factor is the co-dimension: The individual figures in the
top-row illustrations are one-dimensional objects drawn on
top of each other whereas the ones in the bottom-row illustra-
tions are two dimensional. The second factor is the number of
targets. In the first column, each illustration contains a single
target, whereas in the second column several targets (hangers
and bees, respectively) are placed among distractors.

In the course of this paper, we will discuss how a computer
program can trace out the contours of the hidden clover or
hangers and locate the desired animals. The question might
for example be: ’Can you trace out the hidden cloverleaf?”
or "How many hangers are there?”, "Where is the sea star?”
or "Are there other animals hidden among the bees?”’. We
shall adopt the most straightforward solution: searching the
entire illustration; hypothesize a pose and scale for the target
figure and measure how well it fits. Among other things, this
requires (1) a randomized search algorithm that will return
multiple answers; (2) a fitness function which distinguishes
a bad fit from a good fit. We will argue and experimentally
demonstrate that replacing illustrations and/or target figures
with diffuse forms significantly helps. Thus, the paper shows
the effect of diffusion for the particular considered task of
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Fig. 1 Samples of figure hunt games. Games with a single target (left
column) versus several targets (right column) and Gottschaldt type puz-
zles (top row) versus Where’s Wally? type ones (bottom row). a Hidden
cloverleaf. b Several hangers. ¢ Hidden elephant. d Multiple bees

figure hunt games. A secondary issue is how to speed up
the search process. To this end, we will experiment with a
coarse-to-fine strategy using diffuse forms.

A preliminary conference version examining only the
Gottschaldt type puzzles has appeared in SSVM 2013 [6]. In
this paper, we concentrated on a thorough evaluation includ-
ing detailed insights about the experiments in terms of para-
meters and applied methods.

Related Work Finding an object’s position in an image is
a commonly addressed problem. There are many methods.
For example, one may treat the output of an edge detector
as an illustration and try to fit the target shape’s boundary to
the correct position. Such a fitting can even be done using
the generalized form of the Hough Transform [4] provided
that the shape can be expressed in some parametric form.
Such methods, however, are not applicable when the illus-
tration contains embedded shapes (Fig. 1a, b), or when the
target figure is a complex form with embedded subfigures.
The closest contour matching technique to ours is chamfer
matching [5]. In chamfer matching, the template is corre-
lated with the distance transform of the illustration. In case
of clutter, chamfer matching requires additional improve-
ments, e.g., learning [13]. As one improvement, we propose
to replace the distance transform with a more informative
diffuse field which implicitly codes curvature. Moreover, our
experiments indicate that applying the transformation to the
target rather than the illustration may also offer benefits in

certain settings. We provide a complete evaluation. Distance
transforms have also been instrumental in level set methods.
Most typically, shape knowledge is coded via the signed dis-
tance transform, embedding the 1 — D shape boundary as the
zero-level set of a function defined on a connected bounded
open subset of R2 [16,17]. Level set methods, however, are
not applicable when there are embedded shapes.

It is possible to replace the sharp interface model in
level set based segmentation methods with diffuse ones.
For example, smooth distance fields that exhibit exponen-
tial decay rather than linear growth are obtained by solv-
ing a screened Poisson PDE. These kind of distance fields
are more informative in the sense that they implicitly code
curvature in addition to distance. The whole topic has a
recent revival with a wide range of applications and new
theoretical insights [2,3,11,19]. The earliest work by Tari et
al. [20] addresses the connection between screened Poisson
and image segmentation by the Ambrosio-Tortorelli approx-
imation [1] of the Mumford-Shah model [15]. This particular
work has recently been used in [12] to address a search prob-
lem where a small fragment of the illustration is searched in
order to reveal the underlying global repetition structure in
abstract ornaments. The curvature-coding field we propose
improves search and does not require solving a PDE.

In reconstructing frescos, Fornasier et al. [9] addressed
the problem of locating small fragments within a whole. For
each small piece of plaster that still showed an element of
the design of the fresco, the authors were able to find where
it belonged. This is quite an elegant method, but the non-
additive and non-linear nature of the binary illustrations that
we consider prevents its use.

To the best of our knowledge, discovery of hidden
figures as we describe has not been studied within the
mathematical imaging community. Nevertheless, Saarbr-
cken group’s recent inpainting based steganography appli-
cation [14] addresses the opposite problem: to hide a secret
image by embedding it into arbitrary cover images. Both the
secret and the cover are dense images, and the recovery of
the secret is possible only via a password. That is, ordinary
observer cannot detect whether an image contains a secret or
not. Object camouflage is also a problem of interest in the
computer graphics community [8].

2 Formalization

We consider the task of figure hunt games: tracing out rarget
figures hidden in binary illustrations. Let @ C R? be the
image domain, and let 7, 7 : Q — {0, 1} be the target
figure and the illustration, respectively. The goal is to localize
a target figure, such as the butterfly Fig. 2a in an illustration,
such as the mandala Fig. 4a. Values 1 (white) correspond to
the background and 0 (black) to the foreground.
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Fig. 2 Erosion followed by averaging. When pure averaging—e.g.
mean filter—is applied to a binary line drawing, the contour loca-
tion vanishes. In contrast, when erosion with subsequent averaging is
applied, the contour location information is retained. a Input image. b
Averaging (mean filter). ¢ Erosion. d Erosion and averaging

We start by uniformly eroding the white space, or equiva-
lently, dilating the target figure (e.g. Fig. 2a and/or the illus-
tration. Hence, the drawing becomes thicker (see Fig. 2c).
Then, we diffuse by computing a local isotropic average. It
is sufficient to compute the local average only for the points
falling on the thickened figural loci or in a slightly wider
band surrounding it. This transforms the sketch-like binary
drawing to a gray-tone picture which may be referred as a dif-
fuse drawing F, (Fig. 2d). In the following, we use the term
diffusion to entitle the transformation of the binary drawing
to a gray-tone picture, although this transformation does not
necessarily describe a diffusion in the technical sense.

The key idea is to propagate information restricted to fig-
ural loci to neighboring areas. Thus, it becomes possible to
judge whether a background location is close to or far away
from a figural loci. If the averaging and the erosion radii are
identical, the highest value is attained on the figural loci; from
thereof values decrease as a function of distance in the normal
direction. Thus, diffusion produces iso-intensity contours,
each following the figural loci from a fixed distance. The
lower the intensity, the further away the iso-intensity curve
from the figural loci. The second column in Fig. 2 depicts
the result of local isotropic averaging applied to the original
thin drawing. There, one cannot observe the distance-coding
behavior, i.e. the initial thickening is a crucial step.

2.1 Matching Cost

Once the target figure F (Fig. 2a) is converted to a diffused
form F; (Fig. 2d), the best match is determined by the defor-
mation parameters (i.e. location, orientation and scale) yield-
ing the best matching cost. The matching cost is measured as
the sum of the gray-value differences between the illustration
7 and the placed target figure Fp (Fig. 3c). A visualization is
shown in Fig. 3. We introduce the matching cost by means of
the binary illustration (top row) as well as the diffused illus-
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Fig. 3 Matching cost. Visualized computation of the matching cost.
In the rop row, the diffuse target is searched in a binary illustration. In
the bottom row, the diffuse target is searched in a diffused illustration.
a Deformed target figure p. b Zoom of illustration Z. ¢ Placed target
figure Fp. d Matching cost E¢ogt

-
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Fig. 4 Optimal match. a Perfect hint of the target figure in the illus-
tration Z. b Set B defined by a band surrounding the figural loci

tration (bottom row). A discussion about the role of diffusion
follows in Sect. 3.

The placed target figure Fp is obtained by the combi-
nation of the deformed target figure Fp (Fig. 3a) and the
illustration Z (Fig. 3b). Depending on the application, Fp
can be computed by means of the binary illustration or the
diffused illustration. In Matlab coding language Fp can be
obtained as follows:

7 binary illustration 7 diffused illustration

Fp =Fp;
Fp@ #1)=1;

Fp =1,
Fp(Fp #1) =Fp;

Hereby, Fp is obtained by the deformation of the diffused
target figure F, with the respective deformation parameters:

Fp = Fp(Fy, deformation parameters) (1)

The visual matching cost in Fig. 3d is defined as the
absolute value of the pixel-wise difference between the illus-
tration Z (Fig. 3b) and the placed target figure Fp (Fig. 3c).
In general, E.qs can be obtained as follows:
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1
Ecost = 7 > 1Z(x) — Fp(x)l, )
|B| xeB

where 7 : Q — [0, 1] is the (binary/diffused) illustration,
Fp : Q — [0, 1] the placed target figure and B C €2 the set
indicating the band surrounding the figural loci.

The set 5 is illustrated in white in Fig. 4b. 15 is the collec-
tion of pixels which belong to gray values of the deformed
target figure (Fig. 3a). Hence, the sum is taken over those
locations that fall within the band surrounding the figural loci
within which the diffuse field has been constructed. More-
over, the cost is normalized by dividing it by the number of
locations that contributed to its computation.

Example Let the illustration be the mandala consisting of but-
terflies shown in Fig. 4a. As target figure we take the butterfly
in Fig. 2a. A perfect hint for the position of the butterfly is
indicated in blue right on the bottom of the mandala in Fig. 4a.
The components of the matching cost (2) for this figure hunt
are illustrated in Figs. 4b and 3. The resulting matching cost
is visualized in Fig. 3d.

To find a solution with minimal matching cost, we opti-
mize the set of deformation parameters leading to the
deformed target figure Fp. We determine these optimizing
parameters via a probabilistic algorithm which returns mul-
tiple solutions. We use genetic algorithm based optimization
which is readily available in the Matlab environment. It min-
imizes an energy functional by varying its input variables. A
detailed discussion follows in the next section.

2.2 Optimization Via a Genetic Algorithm

A genetic algorithm is a search heuristic that mimics the
process of natural evolution. The evolution starts with a pop-
ulation of random generated initial solutions of the problem.
In every step new populations are created, such that a fitness
function is minimized. The populations are evolved towards
an optimal solution by selection, combination and modifica-
tion of the intermediate results:

e Selection identifies good solutions in a population and
discards the rest (e.g. by measuring against the fitness
function).

e Combination—also known as crossover—creates new
solutions from existing ones.

e Modification (or mutation) introduces new features into
the solution to maintain diversity in the population.

This process is repeated as long as either a satisfactory match-
ing cost has been reached, or a maximum number of gener-
ations has been produced.

In figure hunt games, the best matching of the target fig-
ure with the illustration can be described by the deformation

parameters leading to the best matching cost. Therefore, we
aim to solve the following optimization problem:

min E@, t, tc, hy, he) (3)
(0, tr,tc,hy,he) €D

where D C R’ is the domain of the deformation parameters:
* 0 being the rotation angle,
* 1, t. describing the translation in row/column direction,
* hy, h for scaling in direction of rows/columns.

The energy E to be minimized is defined as follows:

E@, te, te, hy, he) := Ecogt,
WlthF'D ='F'D(fd797 tratmhr,hc)- (4)

(compare Equation (2))

In order to find the optimal set of values in this five dimen-
sional search space, we make use of the genetic algorithm
built in Matlab:

ga(fitnessfcn, nparams, []1, []1, [1, [1,
1b, ub, [], IntCon)

The output of the algorithm includes the parameter set
0, tr, tc, by, he) corresponding to the best matching cost
E¢ost for a given figure hunt problem. The input variables
have the following meaning:

e fitnessfcn = { @energy_functional, illustration, target fig-
ure}, where the energy_functional is a function which
takes the parameter set as well as the illustration and
the target figure as input and returns the corresponding
matching cost Ecogt

e nparams: number of parameters to optimize (= 5)

e Ib/ub: lower/upper bound (e.g. 6 € [0, 360])

e IntCon: integer constraints on parameters (= [2, 3]: para-
meters #;, . should be integers)1

In every step of the genetic algorithm, new populations
are created. Hereby, the lower/upper bound constraint as
well as the integer constraints have to be fulfilled. The selec-
tion, combination and modification process is guided by the
values of the energy_functional, aiming to obtain a min-
imal matching cost E .. We are aware that the genetic
algorithm also has disadvantages. In particular, the algo-
rithm is non-deterministic and there is no proof of optimal-
ity known. While alternative algorithms are conceivable, we
chose the genetic algorithm because it provides a good trade-
off between speed and quality of computed solutions.

I The integer constraints on #,, . can also be omitted with the drawback
of higher computational costs. However, our experiments showed a
sufficient accuracy when restricting the translation to integers.
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3 The Role of Diffusion

In every step of the genetic algorithm, new populations are
created such that the matching cost is minimized. To propa-
gate information restricted to figural loci to neighboring areas
we use a diffused representation of the target figure (and the
illustration). Thus, it becomes possible to know whether a
location is close or far away from one of the desired loca-
tions.

Diffusion of the target figure (and the illustration) helps
in two different ways:

1. Uninformative pixels become informative.
Binary line drawings like the ones shown in Fig. 1 contain
large empty (white) regions without any information. By
diffusing the drawing, the information restricted to the
figural loci becomes visible within a neighborhood. This
allows the search for the cloverleaf in Fig. 1a and the
hangers in Fig. 1b.

2. Improved search process.
A strong diffusion may simplify and hence speed up the
search process (e.g. to get the rough positions of the bees
in Fig. 7). In addition, diffusion convexifies the energy
and thereby improves the localization.

3.1 Spreading the Edge-Information

In order to minimize the matching cost, a correlation between
the quality of the match and the cost is required. This corre-
lation is not given, if the binary representations of the target
figure and the illustration are used.

Figure 5 compares the matching costs of three different
matches: (1) wrong fit; (2) almost correct fit; (3) correct fit.
The first column indicates the position of the butterfly within
the mandala. The second column depicts the matching cost
obtained by means of the binary illustration and target fig-
ure. Columns three and four give the matching costs obtained
with the diffused target figure together with the binary and the
diffused illustration. Observe that the matching costs com-
puted with the non-diffused drawings (column b), are almost
equal. In particular, the visualized energies of a wrong fit
and an almost perfect fit are indiscernible. Hence, there is no
reliable optimization criterion. It is unclear whether an inter-
mediate match leads to a good fit. In contrast, the energy of
the wrong fit in column c, d is significantly higher (lighter)
than the energy of the (almost) correct fit. This means that
the cost becomes informative.

Figure 6 demonstrates the different matching costs visual-
ized in Fig. 5. To be able to make decisions about the good-
ness of a fit, the matching cost corresponding to a bad fit
should be substantially higher than the one corresponding to
a good fit. In particular, a graph indicating the matching cost
of awrong, an almost correct and a correct fit should first have
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Fig. 5 Expressive energy by diffusion. Observe the energy drop in the
last column. a Position of F. b Binary F, Z. ¢ Diffused F, binary Z. d
Diffused F, T
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Fig. 6 Comparison of matching costs. The decay of the energy repre-
sents the convergence towards a good fit. Compare the first graph to the
last. a Binary F, Z. b Diffused F, binary Z. ¢ Diffused F, Z

a strong decay followed by a weak decay. Figure 6 shows the
graphs corresponding to the three columns b—d of Fig. 5.
Whereas the two rightmost graphs show the expected decay,
the first graph does not imply the position of the target figure.
The reason is that the binary figures include lots of uninfor-
mative (white) pixels and therefore cannot decide whether
a fit is good. In contrast, the diffusion propagates informa-
tion about the figural loci from purely local to a neighborhood
(compare Fig. 2). Hence, the desired location can be observed
from some distance and leads to an informative energy.
With the diffused representations, the genetic algorithm
has a clear optimization criterion and thus returns the optimal
match of the chosen target figure in the given illustration.
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Fig. 7 How many bees are there in the image?

3.2 Improved Localization and Speed-Up

A diffused representation not only propagates edge informa-
tion to a neighborhood, it also simplifies the search process.
This behavior comes from the fact that diffusion improves
localization by convexifying the energy. Similar blurring
strategies are known by continuation approaches such as
graduated non-convexity [7].

A typical example is the swarm of bees in Fig. 7. To count
the number of bees, a strong diffusion can be applied, leading
to an accumulation of gray splotches. Taking one of them
as target figure, the genetic algorithm quickly detects the
splotches throughout the bee swarm. In a second step, a finer
search can be applied around the detected positions to obtain
a more precise hint of the bees. Extensive experiments will
be shown in Sect. 5.1.1. A crucial point is the preservation
of the original contour features. Despite diffusing the binary
drawings the contour location has to be preserved. This is
not given for all diffusion methods. Edges can be washed-out
without coding the original contour location or discretization
artifacts can be amplified.

To choose the best diffusion method for the particular con-
sidered task, we will discuss different diffusion methods in
the next section.

4 Diffusion Methods

We discussed that diffusion is an essential step for the algo-
rithmic solution of a figure hunt game. During our studies
we tested several diffusion approaches. In the course of this
section we will give a detailed discussion of the four most
interesting ones:

e Averaging
e Distance function

e v-transform [20]
e Erosion followed by averaging

In the following, let @ C R? denote the image domain
and I : Q — {0, 1} be the binary image.

4.1 Averaging

In order to spread the edge-information, the most intuitive
way is to apply a diffusion filter, e.g., the mean filter, where
each pixel value is replaced by the mean of the pixel values in
its neighborhood. Let o > 0 be a parameter. The averaging
is a basic convolution of 7, where each pixel (x,y) € Qis
assigned the average value of its neighborhood of size o x .
Hence, the diffused version can be obtained by:

(I*k)(x,y):/ /I(x—a,y—b)k(a,b)dadb, ®)

—00 —00

where (x, y) € Q and

.
k(a,b)y=1 1f|alfl%and|b|§%’
0 otherwise

(6)

is a standard kernel of the mean filter. For the boundary con-
dition, zero padding is used, i.e. the boundary of the image
is augmented by zeros.

The butterfly diffused by averaging is shown in Fig. 2b.
The parameter o was set to o = 3. In the zoomed part of the
figure (second row), one cannot identify the original loca-
tion of the contour. The contour is completely blurred, and it
merges with the background. One would rather like to spread
the edge information but at the same time keep the informa-
tion about the original edge location. Hence, we propose a
second method: erosion followed by averaging, which will
be described in Sect. 4.4.

4.2 Distance Function

Another option for spreading the edge information is the
usage of the distance function (sometimes referred to as the
distance transform). The distance function D of a binary
image I associates each pixel p of the domain 2 of I with
its distance to the nearest zero-valued pixel:

[D(D)] (p) =min{d(p.q) | 1(g) = 0}. )

The distance function of an image of a black line on a white
background is illustrated in Fig. 8.

Here, the metric d for a space E is a function associating a
nonnegative real number with any two points p and g of E and
satisfying the three conditions of a norm. E.g. the Euclidean
distance d:

A1, Y0, G2 )] = (2 =¥+ (G2 = y% (®)
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Fig. 8 Exemplary distance transform. a Input image /. b Distance
transform of /

(@) (b) (0 (d)

Fig. 9 Distance transform of the butterfly line drawing. By restrict-
ing the values to a band surrounding the figural loci, the desired dif-
fused target figure results. However, the zoom shows a strong effect
of discretization noise. a Input image. b Distance transform. ¢ Masked
distance transform. d Zoom of ¢

where p = (x1,y1) and g = (x2, y2).

The distance transform of the butterfly is shown in Fig. 9b.
Each pixel includes information about its distance to the
contour. The desired diffused version, however, requires the
information to be restricted to a band around the contour.
Thus, we omit the values beyond a band surrounding the
figural loci and stretch the remaining gray-values to fill the
whole range from 0 to 255. The resulting masked’ version
is shown in Fig. 9c with a closeup in (d). The closeup reveals
the effect of discretization noise which remained (even ampli-
fied) despite the diffusion.

4.3 v-Transform [20]

To obtain a gray-tone picture of a sketch-like binary drawing,
one other option is to use the v-transform. It is the minimizer
of the following functional

2
l//[puwu%u}dxdy )
2 P

Q

subject to v(x, y) = 0on {(x, y) : I (x,y) =0}
Numerically, we solve for v iteratively using the following
update step:

—1
vl = (1 + %) . (v’ + é + rvzvf) (10)

where T denotes the step size.
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k I
(b) (c)

Fig. 10 v-transform of the sketch-like binary butterfly. a Input image.
b v-transform. ¢ Masked b. d Zoom of ¢

o

(a)

For the butterfly drawing, the resulting gray-tone picture
computed with the parameters T = 0.5 and p = 3 is shown
in Fig. 10b. Again, diffused pixels are spread throughout the
whole image. Hence, we mask the image and omit values too
far away. The result is displayed in Fig. 10c with a closeup
in d.

Unlike the usual distance transform (Sect. 4.2), v is an
implicit coder of the curvature, a valuable geometric feature,
without explicit estimation of higher order derivatives. (One
of the original goals in proposing v was to bridge low level
and high level vision [18,20]).

In this paper, in the setting of our specific task, we advocate
a much simplistic way of obtaining an analogous behavior
in a band around the contour of the drawing. We present this
idea in the next section. Our computation does not require
the computation of the entire v function on the entire domain
Q by solving a PDE.

4.4 Erosion Followed by Averaging

To keep the edge information while blurring the contour,
we combine pure averaging presented in Sect. 4.1 with the
morphological operation ’erosion’. The intuitive idea is to:
(1) broaden the edge of the binary line drawing; (2) smooth
the thicker edge. If the averaging and the erosion radii are
identical, the highest value is attained on the figural loci;
from thereof values decrease as a function of distance in the
normal direction. Fig. 2c, d illustrate the broadened edge and
the diffused version for the butterfly drawing.

In the first step, an erosion is applied to broaden the con-
tour line of the binary line drawing. In principle, one is used
to the term ’dilation’ for enlarging. To stick with the stan-
dard terminology referring to the white space, we use the
term ’erosion’ (instead of ’dilation’ of the black space). In
the following, we show a detailed explanation of the applied
erosion.

Let S be the structuring element. We denote the erosion
of the image I by S via es(1):

es(D = N\ I, (11)
seS

the minimum of the translations of / by the vectors —s of
S. In other words, the eroded value at a given pixel x is the
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minimum value of the image in the window defined by the
structuring element S when its origin is at x:

[es(D)](x) =minl (x +s). (12)
seS
The butterfly eroded by the set

s = {wnez el =s) (3)

with § = 1 is shown in Fig. 2c.
In the next step, the eroded image is smoothed (as in
Sect. 4.1):

(es(I) * k)(x) Z/[Ss(l)](x —a) k(a) da, (14)
R2

where x € Q and k is a standard kernel of the mean filter
as defined in Eq. (6) with 0 = 25 + 1. Again, zero padding
is used to augment the boundary. The butterfly obtained by
erosion with § = 1 (in Eq. (13)) and subsequent averaging
with o = 3 is shown in Fig. 2d.

4.4.1 Advantages

Within a band surrounding the figural loci, our diffuse draw-
ing (obtained by erosion of the white space followed by aver-
aging) mimics a curvature coding distance field similar to the
v-transform, the solution of a screened Poisson PDE [20].
We avoid solving Poisson PDEs or variants for two reasons.
Firstly, our approximation is both easier and faster to com-
pute. But more importantly, a Poisson based distance field,
being the steady state solution to a biased diffusion equation
is too much influenced by long-range interactions among
opposing boundaries. This may be detrimental if several fig-
ural loci overlap as in Fig. 1 top row.

4.5 Overview

InFig. 11, we compare our diffuse drawing to the alternatives:
pure averaging, usual distance image and the v-transform.
All diffuse drawings are restricted to a band surrounding
the figural loci. Whereas the pure averaging (b) returns a
blurred image where the contour location vanished, the other
diffusion approaches keep the edge information while blur-
ring. However, the effects of discretization noise remain
(even amplified) in the usual distance image (c), whereas
the iso-intensity contours in our diffuse model (e) smoothly
follow the boundary. Additionally, our diffuse model (e) is
obtained by a simplistic approach. In contrast, the approach
(d) requires solving a PDE.

() (b) (c) (d) (e)

Fig. 11 Comparison of introduced diffusion approaches. The proposed
erosion followed by averaging e gives the most informative diffused
image whilst being much simpler than ¢ or d. a Input image. b Pure
averaging. ¢ Distance transform. d v-transform. e Erosion and averaging

5 Experimental Results

In this section, we show extensive validations and demon-
strate the performance of the proposed concept for solving
figure hunt games.

The parameters used for the experiments are summarized
in Table 1. Unless specified otherwise, diffusion is computed
by erosion followed by averaging with Egs. (12)—(14) where
S =1(and o = 3).

5.1 Propagation of the Contour Information

Depending on the application, one has to specify (a) the inten-
sity of the diffusion and (b) if the placed target figure Fp
should be computed by means of the binary or the diffuse
illustration. Therefore, we categorize the figure hunt games
as follows:

— Where’s Wally? type images (Fig. 1 bottom row)
— Gottschaldt type puzzles (Fig. 1 top row)

5.1.1 Where’s Wally? Type Images

Where’s Wally? type illustrations consist of several objects
being placed next to each other like Figs. 7 and 15. Different
questions can arise here, like e.g.: "How many bees are in
the bee swarm?”, ”Can you find the objects not belonging to
the scene?” or "How many cars of the same type are there?”.
These questions can be allocated to two general problem
settings:

1. Get a rough idea about the drawing (Fig. 33d).
2. Find the exact position of a given target figure (Fig. 33c¢).

Both problems can be approached in a first step by localiz-
ing the approximate positions of the objects using a strong
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Table 1 Parameters of the optimization function and the average runtime per experiment. The diffusion is computed by means of Eq. (14)

Results Input Diff. Prop. Param. Ranges
Fig. Time |Illustration 7 Fig. |Z| = Zc X Z; | Targ. fig. F Fig. | of F of Z| 6 tr te hy he
12 24s |Multiple bees 7 766 X 556 |Bee 7 S=5 [0,360] [~Z:,Z:] [~Zc,Zc] [0.7,1.5] hy
16  21s |Collection of Cars 15a) 483 x 254 |Car 15b) S=4 ~Z.,Z.] [~Zc,Z.] [0.7,1.3] hy
15a) 64s |Collection of Cars 15a) 483 x 254 |Car 15b) S=1 Eq. (15) Eq. (16) [0.7,1.3] he
23a) 38s |Hidden cloverleaf 18 1. 188 x 188 |Cloverleaf 18r.|S=1 - I, Z,] [~Zc,Zc] 1 1
31" 45s |Hidden pi 181, 188 x 188 |Pi () 30a) [S=1 - 07,1.3]  he
23b) 205s |Several hangers 21 304 x 321 |Hanger 22a)|S =1 - [0.8,1.2] [0.8,1.2]
25 176s |Butterfly mandala 24 250 x 250 |Butterfly 24r.| S=1 1 1
32 210s |Butterfly mandala 24 250 x 250 |Segment 24 1. S=1 1 1
33c) 97s |Hidden elephant 1c) 273 x 205 |Elephant  33c) S=1 |[[o,360] 1 1
27 209s |Mandala circles  26a) 550 x 550 |Circle 26b)| S=1 0 [0.13,2.9] A,
28 811s |Triangles 26a) 1706 x 640 |Triangle 26b)|S=4 - |[0,360] [-Z:,Z:] [~Zc,Zc] [0.3,1.1] [0.3,3.2]

diffusion (see e.g. Figs. 12 and 16). If additionally, the exact
locations of the objects are desired, the resulting approximate
positions can be used to constrain the search space for the
search on the fine scale.

Swarm of Bees In order to analyze the swarm of bees, we
searched for a strongly diffused version of the target figure
marked by the blue circle in Fig. 7 in the diffused illustra-
tion shown in the background of Fig. 12. For the diffusion
we use Eq. (14) and set S = 5. The ranges of the para-
meters (0, t,, tc, hy, he) are set as follows: 6 € [0, 360],
Iy € [_Irs Il‘]v Ic € [—IC,IC], hr € [0.7, 1.5] and /’lc = hr-

Due to the strong diffusion, we are able to quickly detect
the rough locations of the bees—marked by green circles in
Fig. 12—in this large illustration (766 x 556 pixels). The
number of circles around each bee is an evidence that good
fits are found more often than bad ones. In the next step,
we omit the duplicates and mark each location by exactly
one circle. We obtain 84 distinct circles corresponding to 84
objects in the bee swarm.

By analyzing the matching costs corresponding to the 84
hypotheses we obtain the plot in Fig. 13. For the first 74
hypotheses the energy increases steadily. In contrast, the
energy ascends steeply for the last 10 hypotheses. Hence,
we declare the worst 10 fits as objects not belonging to the
bee swarm and indicate their position in orange. Figure 14
shows the 84 determined locations, whereof the worst 10
fits are indicated in orange. Observe that all orange marked
objects are no bees.

In a second step, the approximate locations could be used
to obtain a more exact location and orientation of the bees.
Such a search on a fine scale will be explained in the next
paragraph by means of the collection of cars.

Collection of Cars To find all cars of the same type as the
target car (Fig. 15b) we use a strong diffusion for the tar-
get figure and the illustration, which is exemplary shown in
Fig. 15c. Therefore, we use Eq. (14) and set S = 4. On the
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Fig. 12 All hypotheses of 1,000 independent runs of the algorithm on
a coarse scale
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Fig. 13 Matching cost corresponding to the 84 distinct locations. The
matching cost is plotted against the hypotheses, ordered by increasing
cost

coarse scale, the algorithm returns the locations illustrated in
Fig. 16. In a second step we use these locations to initialize
the algorithm for the search on a fine scale. For each posi-
tion obtained by the search on the coarse scale, an additional
search with a slightly diffused target figure and illustration is
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Fig. 14 Several dissimilar objects found. The number of bees in the
bee swarm can easily be counted by using our search algorithm together
with a strong diffusion. We detected 84 objects, including 10 objects
which do not belong to the bee swarm

2 60 T & 6
0P e ©
B Ee s @9

Fig. 15 Three cars of the same type are detected with the search on the
fine scale. The search was initialized by the positions obtained by the
search on the coarse scale (Fig. 16). Additionally, the search space was
constrained to a small area around these positions. a Illustration with
best three results. b Target figure. ¢ Coarse scale

carried out (S = 1). Thereby, we constrain the search space
to a small area around these positions.

Let (T;, T¢) be a position obtained by the search on the
coarse scale and let | F| = F. x F; be the size of the target
figure F. For the search on the fine scale, we restrict the
parameter ranges of #, and 7. as follows:

el e
(i I

The matching costs corresponding to the resulting hypothe-
ses are plotted in Fig. 17. A distinctive jump of the cost can
be observed at the fourth hypothesis.

The three hypotheses with the best energy are thresholded
and the binary shapes are depicted in blue in Fig. 15a. Three
cars of the given type occur in the image.

This two-step approach allows to get a rough analysis of
the illustration followed by a precise definition of the defor-
mation parameters in the second step. For the search on the

Fig. 16 Coarse-to-fine approach. The search for a single target in a col-
lection of multiple individual objects is performed in two steps: Search
on (1) coarse scale; (2) fine scale. The search on the coarse scale returns
the approximate positions of objects similar to the target figure

0.1p

0.08F

0.06

0.04 1

0.02F

0 2 4 6 8 10 12 14

Fig. 17 Distinctive jump in the energy. The graph of the matching
costs corresponding to the hypotheses resulting from the search on the
fine scale has a distinctive jump at the fourth hypothesis

coarse scale, a strong diffusion of both the illustration and the
target figure is helpful to have as much information as possi-
ble throughout the image. For the subsequent search on the
fine scale slightly diffused versions are used. The parameters
used for both steps are summarized in Table 1.

5.1.2 Gottschaldt Type Puzzles

Gottschaldt type puzzles are line drawings where several
lines overlap, like in Figs. 18 and 21. A figure hunt game
might for example challenge to find the cloverleaf hidden in
the line drawing in Fig. 18. Another task might be to find
one of the target figures drawn in Fig. 22 in the collection of
hangers, Fig. 21. Two different problem settings can appear:

1. The target figure F is a cutout of the illustration Z (com-
pare Fig. 22c). Le. it reflects a complete segment of the
illustration.
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Fig. 18 Hidden cloverleaf. Can you trace out the hidden cloverleaf?

2. The target figure F does not reflect a complete segment of
the illustration 7 (e.g. Fig. 22a. Le. at a perfect position
of F in the illustration, 7 has additional crossing lines
(compare Fig. 23).

The first type of problems where F is a cutout of 7 is
mentioned in Sect. 5.3 and an example is shown in Fig. 32.

For the second type of problems, a diffusion of both,
the target figure and the illustration may lead to unwanted
effects: Due to several overlaps of the lines within the draw-
ing, dark black patches appear at the intersections. However,
the diffused target figure does not reflect a complete seg-
ment of the illustration and hence does not have such black
patches along the contour line. See Fig. 19 for an exem-
plary illustration. Hence, the matching cost of a perfect fit
in a Gottschaldt type puzzle is considerably higher than the
matching cost of a perfect fit in a Where’s Wally? type image.
For these cases, we recommend the computation of the
matching cost by means of the binary illustration (compare
Fig. 3 top row). By only diffusing the target figure, informa-
tion restricted to figural loci can be propagated to neighbor-
ing areas and at the same time the black-spot-problem can be
preserved.

In Fig. 20 and Table 2 we demonstrate the results of the
different combinations of a binary and a diffused target fig-
ure and illustration by means of the cloverleaf line drawing
(Fig. 18). Strong green colors indicate a position which leads
to a lower energy compared to the other hypotheses. The
orange box indicates the overall size of the spread, i.e. the
area where hypotheses are placed. The area spread percental
to the size of the illustration 7 and the average deviation from
the optimal position are summarized in Table 2. All hypothe-
ses obtained with the binary target figure together with the
binary illustration (a) are misplaced and have approximately
the same matching cost. In contrast, for the remaining cases,
the hypotheses belonging to the correct position have a sig-
nificantly lower energy than the misplaced hypotheses. Due
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(b) (c) (d)

Fig. 19 Black spots at intersections. The diffused illustration shows
black patches at the intersection of the /ines. However, the diffused target
figure does not include those dark spots. Hence, the visual matching cost
d of a perfect fit includes white spots. a Diffused illustration. b Diffused
target figure. ¢ Cutout of illustration. d Difference b—c

(c) (d)

Fig. 20 Diffusion of target figure and/or illustration computed by
means of Eq. (14) with § = 1. Hypotheses resulting from 10 individual
runs of the algorithm. Strong green color indicates low matching cost.
Observe that the best hypotheses are obtained by only diffusing the tar-
get figure. a Binary target figure and illustration. b Diffused target figure
and illustration. ¢ Binary target figure, diffused illustration. d Diffused
target figure, binary illustration (Color figure online)

to the diffusion in (b—d) the contour information is prop-
agated to the neighborhood making uninformative (white)
pixels informative. Due to the black-spot-problem, the output
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(@) (b) (c) (d)

Fig. 22 Possible target figures to search for: two types of hangers, a
segment or a pentagon. a, b Different hangers. ¢ Segment. d Pentagon

(b)

Fig. 23 Hypotheses obtained by spreading the edge information via
diffusion. In b strong green colors indicate a position which leads to a
lower energy compared to the other hypotheses. a Best hypothesis. b
32 best hypotheses (Color figure online)

in (b) has the largest average deviation and area spread. The
best matches are obtained in (d) for the usage of the diffused
target figure together with the binary illustration (Fig. 21).

Hidden Cloverleaf To find the hidden cloverleaf, we use
the approach in Fig. 20d and compute the matching cost by
means of the binary illustration (Fig. 3 top row). The best
hypothesis is depicted in Fig. 23a. The average runtime is
38.3 seconds.

Collection of Hangers The same combination of the diffused
target figure and the binary illustration is used for the com-
putation of the matching cost in the search for the hangers.
The search for the hanger leftmost in Fig. 22a leads to the
hypotheses shown in Fig. 23b. Strong green colors indicate a
position which leads to a lower energy compared to the other
hypotheses.

5.2 Proof of Concept

In this section, we will demonstrate that our approach can
handle the similarity transformations translation, rotation and
scaling. Furthermore, based on our results we will show that
the genetic algorithm together with the defined cost is reliable
for the particular problem.

5.2.1 Robustness to Pose Variations

To observe the robustness with respect to pose, we consider
a simple mandala pattern (Fig. 24). Possible target figures
are indicated by the blue boxes and arrows. For the first
experiment the butterfly is chosen as target figure. We dif-
fuse the target figure as well as the illustration by erosion
Jollowed by averaging (Sect. 4.4) with S = 1. Figure 25
shows the hypotheses of 100 individual runs of the genetic
algorithm described in Sect. 2.2. To enhance the visibility, the
hypotheses are thresholded and the binary shapes are drawn
in shades of green. The different shades of green show the
energy weighted by the number of detections. Strong green
colors indicate: (a) a position which leads to a lower energy
compared to the other hypotheses; and (b) a match which
has been returned more often in comparison to the other
ones. Independent of the position and orientation, all but-

Table 2 Average results by means of the binary/diffused target figure and illustration. Average deviation of the placed target figure from the optimal

position, area spread percental to the size of Z and average runtime per run

Average deviation

Area spread perc. to |Z| Average runtime

(a) Binary F, 7T 12.464
(b) Diffused F,Z 23.588
(c) Binary F, diffused 7 14.809
(d) Diffused F, binary 7 7.344

0.327 38.428
0.471 38.395
0.289 39.961
0.271 38.297

The best results are given in bold
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Fig. 24 Several target figures taken from a mandala consisting of but-
terflies
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Fig. 25 Robustness to pose variations. Independent of their location
and rotation, all butterflies are found. Correct fits appear more often and
have a lower energy

terflies in the mandala are successfully detected. Figure 25
provides experimental evidence that our method is robust to
pose variations in the translational and rotational sense.

5.2.2 Robustness to Scale Variations

To evaluate the robustness to scaling we consider a com-
position of circles/triangles of varying size. One of the cir-
cles/triangles is selected as the target figure, see Fig. 26.
The goal is to find all occurrences irrespective of their
scaling.

In Fig. 27, we depict the energetically best 99 percent of
circles detected after 1,200 runs of the genetic algorithm. The
same color coding as in Fig. 25 was used. Observe that the
method can handle scale variations. In particular, an unex-
pected and a very interesting solution is obtained: the inner-
most circle defined by the twelve smallest circles. This emer-
gent circle may not be immediately perceivable.
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(a) (b)

Fig. 26 Illustrations including figures of different scales. The goal is to
find all circles/triangles of arbitrary scale. a Illustration. b Target figure

Fig. 27 Robustness to scale variations. Circles of various scales are
detected

Fig. 28 Robustness to scale variations. Triangles of arbitrary scale are
detected. Due to clarity, only part of the best hypotheses are depicted
in different colors (Color figure online)

In Fig. 28, we depict selected triangles obtained by
several runs of the algorithm. Observe that triangles with
diverse edge length have been detected, e.g. the red tri-
angle was elongated twice in x-direction and contracted
in y-direction. The parameters used for these experiments
together with the obtained average runtimes are summarized
in Table 1.
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5.2.3 Tendency to Return Good Fits

We evaluated whether the good fits (those of lower match-
ing cost) are obtained more often than the bad fits. This is
important as the algorithm is not a deterministic one.

We performed independent runs of the genetic algorithm,
each run producing several hypotheses. We then computed
the average of the batches of independent runs. As the results
shown in Figs. 25 and 27 compellingly demonstrate, the algo-
rithm has a tendency to return good fits more often than the
bad ones. Furthermore, none of the bad fits has a nice green
color. Hence, we can conclude:

1. The genetic algorithm has a tendency to return good fits:

(a) Good fits appear more often than bad fits.
(b) The same wrong fit is not detected several times.

2. The matching cost is an indicator for the goodness of the
match:

(a) A low matching cost indicates a good fit.
(b) A large matching cost indicates a bad fit.

5.2.4 The Most Descriptive Diffusion Approach

In Sect. 3 we discussed the role of diffusion as key-ingredient
of algorithmic search for target figures in a drawing. In this
section we will compare the experimental results obtained
with the introduced diffusion methods by means of the
cloverleaf line drawing (Fig. 18). For the diffusions the para-
meters are set as given in Sect. 3.

The hypotheses of 60 individual runs of the genetic algo-
rithm obtained by using the different diffusion approaches
introduced in Sect. 3 are depicted in Fig. 29. Strong green
colors indicate a match which has been returned more often
in comparison to the other ones. In contrast to the figures
shown above, the color-coding does not include the energy
of the single hypotheses. The orange box again indicates the
overall size of the spread. The area spread percental to the
size of the illustration Z and the average deviation from the
optimal position are summarized in Table 3.

The hypotheses in Fig. 29a—c have all about the same
color, i.e., none of the hypotheses was found more often
than the others. In contrast, the hypotheses obtained with our
proposed diffusion approach (d) accumulate at the correct
position. This fact reflects in the average deviation and the
area spread indicated by the orange boxes and summarized in
Table 3. Compared to the other diffusion approaches, the pro-
posed erosion and averaging leads to a significantly smaller
average deviation from the optimal fit and to the smallest area
spread. The average runtimes are about the same for the dif-
ferent diffusion approaches, however, using the v-transform

) (d)

Fig. 29 Results of 60 runs with different diffusion approaches. Strong
green colors indicate a match which has been returned more often in
comparison to the other ones. The color-coding does not include the
energy of the single hypotheses. Hence, with the proposed diffusion
approach erosion and averaging, it is more likely that the target figure
is placed at the correct position. a No diffusion. b Distance transform.
¢ v-transform. d Erosion and averaging (Color figure online)

Table3 Smallest deviation with erosion and averaging. Average results
of 60 runs with the different diffusion approaches shown in Fig. 29

Average Area spread
deviation perc. to |Z|
(a) No diffusion 16.481 0.354
(b) Distance transform 12.432 0.277
(c) v-transform (t = 0.5, p = 4) 12.732 0.324
(d) Erosion and averaging 7.632 0.258

The best results are given in bold

the runtime increases due to the required solution of the PDE
by a factor of twenty.

The resulting numbers point to the fact that our proposed
diffusion approach erosion and averaging gives the best
results.

5.3 Diverse Target Figures

Up to now, we focused on well-known shapes being included
in the illustration. Of course our algorithm can also handle
segments cut out of the illustration or target figures which
are actually not contained in the drawing.
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(a) (b) ()

Fig. 30 Closest match. A very good match is found. Indeed, the letter
’pi’ is hidden in the line drawing. a Target figure. b Zoom of the drawing.
¢ Located target figure

Fig. 31 Hypotheses for pi weighted by their matching costs

Fig. 32 A yet hidden symmetry appears when using the target figure
at the top left in Fig. 24

Figure 30a shows the target figure, pi, detected in the
line drawing Fig. 18. The algorithm determined the loca-
tion where pi obtained the best matching cost. Hypotheses of
15 runs, weighted by the matching cost, are shown in Fig. 31.
The hypothesis leading to the best cost is thresholded and the
binary shape is depicted in blue on the illustration and shown
as a closeup in Fig. 30c. Indeed, the letter *pi’ is hidden in
the line drawing.

Another option is to search for a cutout of the drawing, like
e.g., the segment shown top left in Fig. 24. The results of 100
independent runs searching for this segment are illustrated

@ Springer

Fig. 33 Desired results. The proposed algorithm is able to localize
the target figures. a Hidden cloverleaf. b Several hangers. ¢ Hidden
elephant. d Multiple bees

in Fig. 32. The collection of butterfly locations in Fig. 25
already revealed the outer circular structure of the pattern.
The collection of these results leads to an emergence of a
diamond scepter (as common in a mandala) together with
a weak inner circular arrangement. A yet hidden symmetry
appears.

6 Summary and Conclusion

We addressed the task of tracing out target figures in sketch-
like binary teeming figure pictures. Some results of our algo-
rithm are summarized in Fig. 33. We can search for the unique
occurrence of a target figure (left column) as well as for
various similar objects (right column). Particularly suited to
the task, we propose a simple heuristic for generating dif-
fuse drawings that imitate curvature coding distance images
which are typically computed as solutions to elliptic PDEs.
Our work extends the applications of diffusion based ideas
to an interesting problem.
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