iMmdea

instituto madrilefio de estudios avanzados IS

www.imdea.org
Jan 14, 2019 [PADL-2019]

Incremental Evaluation of Lattice-Based Aggregates
in Logic Programming Using Modular TCLP

J. Arias'? M. Carro'?
"IMDEA Software Institute, 2Universidad Politécnica de Madrid

gi

all

software

| e

iﬁtﬂea www.software.imdea.org

software

Introduction

+ An aggregate function computes a single result from separate data items.
+ Common aggregates include:

min: the smallest value in a set. min({2,4,7}) =2
set: the set of answers returned to a query . set(x|p(x)) = {a,b,c}
sum: the sum of a collection of numbers. sum((1,2,5)) =8

+ A naive evaluation collects all the elements and computes the aggregate:
efficiency and termination challenged.

+ Some aggregates can be computed incrementally:

Increased efficiency (memory / speed).
Termination in more cases (model with aggregates finite while original model
infinite).

* Moreover, standard LP semantics not well-suited to programs with aggregates.

== -lnstltu

== H a www.software.imdea.org

software

Aggregates in Logic Programming

+ Use case: reachability + distance in a graph with cycles has an infinite model.

edge(a,b,4).
edge(a,b,2). A
edge(b,a,3). oa@

dist(X,Y,D) :- edge(X,Y,D).
dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

[T N S CE

minstitu

=3 IMHea www.software.imdea.org

software

Aggregates in Logic Programming

+ Use case: reachability + distance in a graph with cycles has an infinite model.

edge(a,b,4).
edge(a,b,2). A
edge(b,a,3). oa@

dist(X,Y,D) :- edge(X,Y,D).
dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

[T N S CE

But reachability with shortest path has a finite model:

{ edge(a,b,4), edge(a,b,2), edge(b,a,3),
dist(a,a,5), dist(b,b,5), dist(a,b,2), dist(b,a,3) }

=

. = minstitute .
=== IMdea www.software.imdea.org

software

Aggregates in Logic Programming

+ Use case: reachability + distance in a graph with cycles has an infinite model.

edge(a,b,4).
edge(a,b,2). A
edge(b,a,3). 60@

dist(X,Y,D) :- edge(X,Y,D).
dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

[T N S CE

But reachability with shortest path has a finite model:

{ edge(a,b,4), edge(a,b,2), edge(b,a,3),
dist(a,a,5), dist(b,b,5), dist(a,b,2), dist(b,a,3) }

dist(X,Y,D) has been aggregated using minimum for D.)

e iﬁ'ﬂea www.software.imdea.org

software

Naive vs. Incremental Evaluation

+ Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

minstitu

=3 IMHea www.software.imdea.org

software

Naive vs. Incremental Evaluation

+ Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2), { edge(a,b,4), edge(a,b,2),
edge(b,a,3), dist(a,b,4), edge(b,a,3),
dist(a,b,2), dist(b,a,3) } dist(a,b,2), dist(b,a,3) }

15! jteration: dist(a,b,4) is not added
because dist(a,b,2) is their minimum.

minstitu

=3 IMHea www.software.imdea.org

software

Naive vs. Incremental Evaluation

+ Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2), { edge(a,b,4), edge(a,b,2),
edge(b,a,3), dist(a,b,4), edge(b,a,3),
dist(a,b,2), dist(b,a,3), dist(a,b,2), dist(b,a,3),
dist(a,a,7), dist(a,a,5), dist(a,a,5),
dist(b,b,7), dist(b,b,5) } dist(b,b,5) }

29 jteration:
» dist(a,a,7) is not derived since dist(a,b,4) is not in the model

* dist(b,b,7) is not added because dist(b,b,5) is their minimum.

minstitu

=3 IMHea www.software.imdea.org

software

Naive vs. Incremental Evaluation

+ Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2), { edge(a,b,4), edge(a,b,2),
edge(b,a,3), dist(a,b,4), edge(b,a,3),
dist(a,b,2), dist(b,a,3), dist(a,b,2), dist(b,a,3),
dist(a,a,7), dist(a,a,5), dist(a,a,5),
dist(b,b,7), dist(b,b,5), dist(b,b,5) }
dist(a,b,11), ... }

3 jteration: incremental evaluation terminates.
Model wo. aggregates model will not, because it is infinite.

minstitu

= imMdea

www.software.imdea.org
software

Issues with the Meaning of Aggregates

- For the program below, the model without aggregates is {p(®), p(1)}.
1 p().
2 p(® :- p(D).

+ If we aggregate p(X) using minimum for X:

Intuitively, only the p(X) with the (single) smallest value for X should be in the model.
However, neither {p(0) } nor {p(1) } are consistent with the standard semantics.

y —

= imdea

www.software.imdea.org
software

Issues with the Meaning of Aggregates

- For the program below, the model without aggregates is {p(®), p(1)}.
1 p(l) .
2 p(® :- p(D).

+ If we aggregate p(X) using minimum for X:

Intuitively, only the p(X) with the (single) smallest value for X should be in the model.
However, neither {p(0) } nor {p(1) } are consistent with the standard semantics.

Standard least fixpoint semantics not well-suited for programs with
aggregates [Kemp and Stuckey 1991; Pelov et al. 2007; Vandenbroucke et al. 2016].

_—— iﬁtﬂea www.software.imdea.org

software

A Solution Proposal within the LFP Framework

+ Some relevant aggregates are consistent with the partial order of a lattice (C).
* In these cases, literals (e.g., p/1) can be associated to points in the lattice.

e iﬁtﬂ ea www.software.imdea.org

software

A Solution Proposal within the LFP Framework

+ Some relevant aggregates are consistent with the partial order of a lattice (C).
* In these cases, literals (e.g., p/1) can be associated to points in the lattice.
* E.g., minimum of numbers.

0 min(a,b) =a +— b>a

0 bC a
e p(1) Ep(®

— iﬁtﬂea www.software.imdea.org
o ' : ;

software

Entailment-Based Aggregates

+ Simple but useful aggregates can be defined based on the T operation of the lattice.
The aggregate of a multiset S under C is the subset of more general values of S:

Agg-(S) ={xcS|HyeSy# x - xCy}

Aggmin({0,1,2}) = {0}

— iﬁtﬂea www.software.imdea.org
o ' : ;

software

Entailment-Based Aggregates

+ Simple but useful aggregates can be defined based on the T operation of the lattice.
The aggregate of a multiset S under C is the subset of more general values of S:
Aggc(S)={xeS|AyecSy+ x - xCy}

Agamin({0,1,2}) = {0}
Aggmin({0,5,7,...}) = {0}

= iﬁﬂea www.software.imdea.org

software

Entailment-Based Aggregates

+ Simple but useful aggregates can be defined based on the T operation of the lattice.
The aggregate of a multiset S under C is the subset of more general values of S:
Aga-(S)={xeS|Aye S y+ x - xCy}

Agamin({0,1,2}) = {0}
Aggmin({0,5,7,...}) = {0}

Intended Semantics

Different initial models may have the same aggregate. After
aggregating, the link with the aggregate-less model is lost.

If Aggr (S) = p(k) then p(x) +— x C k.

o

L= iﬁﬂea www.software.imdea.org

software

A Consistent Semantics for Lattice-Based Aggregates

« For the program below, the expected model if we aggregate p/1 using minimum is {p(® }.

1 p().
2 p(® :- p(l).

| = -Instltute
== Imdea

www.software.imdea.org
software

A Consistent Semantics for Lattice-Based Aggregates

For the program below, the expected model if we aggregate p/1 using minimumis {p(®) }
1 p().

2 p(® :- p(l).

» Under our semantics:

the model {p(0) } means that p(X) s.t. X > 0 is true.
p(1) istrue (1 > 0).

p(0):- p(1) can derive p(0) without contradictions.

. =

== iMdea

www.software.imdea.org
software

A Consistent Semantics for Lattice-Based Aggregates

« For the program below, the expected model if we aggregate p/1 using minimum is {p(® }.
1 p().

2 p(® :- p(l).

» Under our semantics:

the model {p(0) } means that p(X) s.t. X > 0 is true.
p(1) istrue (1 > 0).

p(0):- p(1) can derive p(0) without contradictions.

p(1) can be used to support p(0).

e iﬁ'ﬂea www.software.imdea.org

software

Join-Based Aggregates

+ More complex aggregates are defined using the join operation L.
» They generate new elements based on previous elements.

L -== iﬁtﬂea www.software.imdea.org

software

Join-Based Aggregates

+ More complex aggregates are defined using the join operation L.
* They generate new elements based on previous elements.
+ E.g., the union of sets of values.
set(8a,Sp) =S; «— S;=SUSp
=
VA SaUSp=8: N SaCS; A ST S,
{a,b,c}

T\ p([bD) Ep(la,b])
{ab} {ac} {bc}

1 X1
SRR

L -== iﬁtﬂea www.software.imdea.org

software

Join-Based Aggregates

+ More complex aggregates are defined using the join operation L.
* They generate new elements based on previous elements.
+ E.g., the union of sets of values.
set(8a,Sp) =S; «— S;=SUSp
=
VA SaUSp=8: N SaCS; A ST S,
{a,b,c}

T\ p([bD) Ep(la,b])
{ab} {ac} {bc}

T >< ><T Properties of L
{a} - {o} e} Associativity, commutativity and idempotence.

minstitute .
: d a www.software.imdea.org

software
State of the Art

+ Tabling engines compute specific aggregates incrementally by means of:

Mode tabling [Guo and Gupta 2008; Zhou et al. 2010].

E.g., B-Prolog and Yap.
Answer subsumption [Swift and Warren 2010].

E.g., XSB.
* However, their behavior is at odds with LFP semantics:

E.g., given the program’:

1+ :- table p(min).
2 p(3).

3 p(2).

« p(l) :- p(2).

s p(® :- p(3).

TExample taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X

minstitute .
: d a www.software.imdea.org

software
State of the Art

+ Tabling engines compute specific aggregates incrementally by means of:

Mode tabling [Guo and Gupta 2008; Zhou et al. 2010].

E.g., B-Prolog and Yap.
Answer subsumption [Swift and Warren 2010].

E.g., XSB.
* However, their behavior is at odds with LFP semantics:

E.g., given the program’:

1+ :- table p(min).
2 p(3).

3 p(2).

« p(l) :- p(2).

s p(® :- p(3).

For the query ?-p(X)

TExample taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X

minstitute .
: d a www.software.imdea.org

software
State of the Art

+ Tabling engines compute specific aggregates incrementally by means of:

Mode tabling [Guo and Gupta 2008; Zhou et al. 2010].

E.g., B-Prolog and Yap.
Answer subsumption [Swift and Warren 2010].

E.g., XSB.
* However, their behavior is at odds with LFP semantics:

E.g., given the program': Intuitively expected answer:

1+ :- table p(min). X=0

2 p(3) .

3 p(2) .

« p(l) :- p(2).
5 p(® :- p(3).

For the query 7-p(X)

TExample taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X

minstitute .
: d a www.software.imdea.org

software
State of the Art

+ Tabling engines compute specific aggregates incrementally by means of:

Mode tabling [Guo and Gupta 2008; Zhou et al. 2010].

E.g., B-Prolog and Yap.
Answer subsumption [Swift and Warren 2010].

E.g., XSB.
» However, their behavior is at odds with LFP semantics:

E.g., given the program’: Intuitively expected answer:

1+ :- table p(min). X=0

2 p(3). XSB and B-Prolog return:

3 p(2) . X=1

+ p() - p(2). Yap returns:

s PO - p(). X=3; X=2; X=1 for the first call.

For the query ?-p(X) X=1

for subsequent calls.

TExample taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X

iﬁtﬂea www.software.imdea.org

software

The ATCLP Framework

« ATCLP reformulates lattice-based aggregates inside a constraint system and computes
them using Modular TCLP [Arias and Carro 2016, 2018].

» The ATCLP interface allows the programmer to define aggregates using two operations:

entails(Agg,A,B) for entailment-based aggregates. Succeeds iff A Cagg B.
join(Agg,A,B,New) for join-based aggregates: New = Allagq B.

» = iﬁﬂea www.software.imdea.org

software

The ATCLP Framework

« ATCLP reformulates lattice-based aggregates inside a constraint system and computes
them using Modular TCLP [Arias and Carro 2016, 2018].

» The ATCLP interface allows the programmer to define aggregates using two operations:

entails(Agg,A,B) for entailment-based aggregates. Succeeds iff A Cagg B.
join(Agg,A,B,New) for join-based aggregates: New = Allagq B.

1 :- use_package(tclp_aggregates). 7 dist(X,Y,D) :-

2 :- table dist(_,_,min). 8 edge(X,Z,D1),
3 9 dist(Z,Y,D2),
+ entails(min,A,B) :- A >= B. 10 D is D1 + D2.
5 11 dist(X,Y,D) :-

¢ edge(a,b,...). % Graph definition 12 edge(X,Y,D).

Implementation of dist(_,_,min) under ATCLP

e iﬁ'ﬂea www.software.imdea.org

software

Inside the Aggregate TCLP Interface

+ User program transformed by substituting aggregated arguments with attributed variables.
+ Generic TCLP interface handles aggregates by calling the user-defined entails/3 and join/4.

minstitu

=3 IMHea www.software.imdea.org

software

Inside the Aggregate TCLP Interface

+ User program transformed by substituting aggregated arguments with attributed variables.
+ Generic TCLP interface handles aggregates by calling the user-defined entails/3 and join/4.

1 store_projection(V, (Agg,A)) :- get(V, (Agg,A)).

2 call_entail(C ,.), (_ ,B)) ;- var(B),!.

s call_entail((Agg,A), (Agg,B)) - (Agg,A,B).

4

s answer_compare((Agg,A), (Agg,B),'=<") - (Agg,A,B),!.
s answer_compare((Agg,A), (Agg,B), '>") - (Agg,B,A),!.
7 answer_compare((Agg,A), (Agg,B), '$new' ((Agg,New))) - (Agg,A,B,New).
8

9 apply_answer(V, (Agg,B)) :- get(V, (Agg,A)), \+ ground(A), A=B,!.

10 apply_answer(V, (Agg,B)) :- get(V, (Agg,A)), (Agg,A,B).

Generic TCLP interface for aggregates.
(Automatically injected by the compiler to connect ATCLP and TCLP)

minstitu

=3 IMHea www.software.imdea.org

software

Non-lattice aggregates

+ Some aggregates not consistent with the properties of C and / or U can still
be defined using ATCLP.

+ Their execution may not conform to the intended semantics!

. = minstitute
== iMdea

www.software.imdea.org

software

Non-lattice aggregates

+ Some aggregates not consistent with the properties of C and / or U can still
be defined using ATCLP.

+ Their execution may not conform to the intended semantics!

+ E.g., sum can be defined as ...

1+ entails(sum, _A, _B) :- fails.
2 join(sum, A, B, New) :- New is A + B.
However:

It does not have a sound definition for entailment.
The join operator is not idempotent.

iﬁtﬂea www.software.imdea.org

software

Example |: Performance

+ Programming problem presented at the ICLP 2015 LP/CP contest.

You have to play n games at least once. Some are more fun than others.
You have to manage your money to extract the most fun from the games.

+ ATCLP aggregates money and fun using max.
+ It does not evaluate states worse than other already evaluated.
+ Search space reduction!

==

. minstitute www.software.imdea.org
P~ === I . .
== imdea

software

Example |: Performance

+ Programming problem presented at the ICLP 2015 LP/CP contest.

You have to play n games at least once. Some are more fun than others.
You have to manage your money to extract the most fun from the games.

+ ATCLP aggregates money and fun using max.
+ It does not evaluate states worse than other already evaluated.
+ Search space reduction!

Prolog Tabling ATCLP
game_data_01 8062.49 14.66 2.89
game_data_02 > 5 min. 37.59 4.87
game_data_03 > 5 min. 1071.26 19.61
game_data_-04 > 5 min. 4883.00 23.21

Run time (ms) comparison for Games with different scenarios.

== iﬁﬂea www.software.imdea.org

software

Example Il: Expressiveness

1 :- use_module(library(sets)).
> entails(set, SetA, SetB) :- ord_subset(SetA, SetB).
3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

o
==

- iﬁﬁea www.software.imdea.org

software

Example Il: Expressiveness

1 :- use_module(library(sets)).
> entails(set, SetA, SetB) :- ord_subset(SetA, SetB).
3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

+ Computing the set of reachable nodes from a given node in a graph under

ATCLP.
edge(a,b). o‘a

edge(b,c).

edge(b,a).
edge(c,d). G a

;- table path(_,set).

path(X, [Y]) :- edge(X,Y).

path(X, Ys) :- edge(X,Z),
path(Z,Ys).

N
® N o o

o
==

- iﬁﬁea www.software.imdea.org

software

Example Il: Expressiveness

1 :- use_module(library(sets)).
> entails(set, SetA, SetB) :- ord_subset(SetA, SetB).
3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

+ Computing the set of reachable nodes from a given node in a graph under

ATCLP.
edge(a,b). o‘a

edge(b,c).
edge(b,a).
edge(c,d). G a

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions

1+ :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).
3 path(X, Ys) :- edge(X,Z),
4 path(Z,Ys).

® N o o

o
==

- iﬁﬁea www.software.imdea.org

software

Example Il: Expressiveness

1 :- use_module(library(sets)).
> entails(set, SetA, SetB) :- ord_subset(SetA, SetB).
3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

+ Computing the set of reachable nodes from a given node in a graph under

ATCLP.
1+ :- table path(_,set). s edge(a,b). o‘a
2 path(X,[Y]) :- edge(X,Y). ¢ edge(b,c).
3 path(X, Ys) :- edge(X,Z), 7 edge(b,a).
4 path(Z,Ys). s edge(c,d). G a
?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions

?-path(X, [a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used

iﬁtﬂea www.software.imdea.org

software

Example Ill: Termination

* Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

Edges within loops can be traversed an unlimited number of times.
Pragmatic decision: discard hops whose contribution is below a certain threshold.

iﬁtﬂea www.software.imdea.org

software

Example Ill: Termination

* Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

Edges within loops can be traversed an unlimited number of times.
Pragmatic decision: discard hops whose contribution is below a certain threshold.

P(b) = .3
Po(d) = .7 * .8 = .56
Pi(d) = .7 % .2 % .8 = 112
Po(d) = .7 % .2 % .2 % .8 = .0224 Ped) = .7
Pp(d) = .7 * .27 * .8 =

== iﬁﬂea www.software.imdea.org

software

Example Ill: Termination

* Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

Edges within loops can be traversed an unlimited number of times.
Pragmatic decision: discard hops whose contribution is below a certain threshold.

1+ :- table reach(_,sum). s reach(N,P) :- path(a,N,P).
2 :- table path(_,_,thr(0.001)). 10

3 1 pathX,Y,P) :-

4+ entails(sum,_,_) :- fails. 12 edge(X,Y,P).

s join(sum, A, B, New) :- 13 pathX,Y,P) :-

6 New is A + B. 14 edge(X,Z,P1),

7 entails(thr(Epsilon), A, B):- 15 path(Z,Y,P2),

8 A < Epsilon * B. 16 P is P1 * P2.

?- reach(d,P) returns P=0.699776.

iﬁtﬂea www.software.imdea.org

software

Conclusions
+ ATCLP is a framework that implements Lattice-Based Aggregates under a
semantics consistent with the LFP semantics / tabling.
+ We validate its flexibility and expressiveness through several examples.
+ Its evaluation showed a positive balance between memory needs and speed.

https://ciao-lang.org

= minstitute q
B d www.software.imdea.org

software

Conclusions
+ ATCLP is a framework that implements Lattice-Based Aggregates under a
semantics consistent with the LFP semantics / tabling.
+ We validate its flexibility and expressiveness through several examples.
+ Its evaluation showed a positive balance between memory needs and speed.

Future Work

* Increase the performance and make the ATCLP interface more user-friendly.
* Include with ATCLP a library of commonly-used aggregate functions.

]
https://ciao-1lang.org Q

https://ciao-lang.org

www.software.imdea.org

-i"stl(utedea

software

Conclusions
+ ATCLP is a framework that implements Lattice-Based Aggregates under a
semantics consistent with the LFP semantics / tabling.
+ We validate its flexibility and expressiveness through several examples.
+ Its evaluation showed a positive balance between memory needs and speed.

Future Work
* Increase the performance and make the ATCLP interface more user-friendly.

* Include with ATCLP a library of commonly-used aggregate functions.

[
Other Applications https://ciao-1lang.org q

+ Abstract interpretation, the join operator is used to reach the fix point.
+ Stream Data Reasonning [Arias 2016].

https://ciao-lang.org

www.software.imdea.org

software

Thanks for your attention

=

. minstitute www.software.imdea.org
P~ === I . .
== imdea

software
Bibliography |

Arias, J. (2016). Tabled CLP for Reasoning over Stream Data. In Technical Communications of the 32nd Int’|
Conference on Logic Programming (ICLP’16), volume 52, pages 1-8. OASlIcs. Doctoral Consortium.

Arias, J. and Carro, M. (2016). Description and Evaluation of a Generic Design to Integrate CLP and Tabled Execution.
In Int’l. Symposium on Principles and Practice of Declarative Programming, pages 10-23. ACM.

Arias, J. and Carro, M. (2018). Description, Implementation, and Evaluation of a Generic Design for Tabled CLP.
Theory and Practice of Logic Programming (to appear).

Guo, H.-F. and Gupta, G. (2008). Simplifying Dynamic Programming via Mode-directed Tabling. Software: Practice and
Experience, (1):75-94.

Kemp, D. B. and Stuckey, P. J. (1991). Semantics of Logic Programs with Aggregates. In Int'l. Simposium on Logic
Programming, pages 387—-401. Citeseer.

Pelov, N., Denecker, M., and Bruynooghe, M. (2007). Well-Founded and Stable Semantics of Logic Programs with
Aggregates. Theory and Practice of Logic Programming, (3):301-353.

iﬁtﬂea www.software.imdea.org

software

Bibliography Il
Swift, T. and Warren, D. S. (2010). Tabling with answer subsumption: Implementation, applications and performance.
In Logics in Artificial Intelligence, volume 6341, pages 300-312.
Vandenbroucke, A., Pirog, M., Desouter, B., and Schrijvers, T. (2016). Tabling with Sound Answer Subsumption.
Theory and Practice of Logic Programming, 32nd Int’l. Conference on Logic Programming, (5-6):933-949.
Zhou, N.-F,, Kameya, Y., and Sato, T. (2010). Mode-Directed Tabling for Dynamic Programming, Machine Learning,
and Constraint Solving. In Int’l. Conference on Tools with Atrtificial Intelligence, number 2, pages 213-218. IEEE.

	Appendix

