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madrid institute for advanced studies in software development technologies



1 / 17

www.software.imdea.org

Introduction

• An aggregate function computes a single result from separate data items.
• Common aggregates include:

• min: the smallest value in a set. min({2,4,7}) = 2
• set: the set of answers returned to a query . set(x |p(x)) = {a,b,c}
• sum: the sum of a collection of numbers. sum(〈1,2,5〉) = 8

• A naı̈ve evaluation collects all the elements and computes the aggregate:
efficiency and termination challenged.

• Some aggregates can be computed incrementally:

• Increased efficiency (memory / speed).

• Termination in more cases (model with aggregates finite while original model
infinite).

• Moreover, standard LP semantics not well-suited to programs with aggregates.
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Aggregates in Logic Programming

• Use case: reachability + distance in a graph with cycles has an infinite model.

1 edge(a,b,4).

2 edge(a,b,2).

3 edge(b,a,3).

4 dist(X,Y,D) :- edge(X,Y,D).

5 dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

a b2
4

3

But reachability with shortest path has a finite model:

{ edge(a,b,4), edge(a,b,2), edge(b,a,3),

dist(a,a,5), dist(b,b,5), dist(a,b,2), dist(b,a,3) }

dist(X,Y,D) has been aggregated using minimum for D.
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Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).
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Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3), dist(a,b,4),

dist(a,b,2), dist(b,a,3) }

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3),

dist(a,b,2), dist(b,a,3) }

1st iteration: dist(a,b,4) is not added
because dist(a,b,2) is their minimum.
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Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3), dist(a,b,4),

dist(a,b,2), dist(b,a,3),

dist(a,a,7), dist(a,a,5),

dist(b,b,7), dist(b,b,5) }

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3),

dist(a,b,2), dist(b,a,3),

dist(a,a,5),

dist(b,b,5) }

2nd iteration:
• dist(a,a,7) is not derived since dist(a,b,4) is not in the model

• dist(b,b,7) is not added because dist(b,b,5) is their minimum.
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Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3), dist(a,b,4),

dist(a,b,2), dist(b,a,3),

dist(a,a,7), dist(a,a,5),

dist(b,b,7), dist(b,b,5),

dist(a,b,11), ... }

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3),

dist(a,b,2), dist(b,a,3),

dist(a,a,5),

dist(b,b,5) }

3rd iteration: incremental evaluation terminates.
Model wo. aggregates model will not, because it is infinite.
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Issues with the Meaning of Aggregates

• For the program below, the model without aggregates is {p(0), p(1)}.
1 p(1).

2 p(0) :- p(1).

• If we aggregate p(X) using minimum for X:

Intuitively, only the p(X) with the (single) smallest value for X should be in the model.
However, neither {p(0)} nor {p(1)} are consistent with the standard semantics.
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• For the program below, the model without aggregates is {p(0), p(1)}.
1 p(1).

2 p(0) :- p(1).

• If we aggregate p(X) using minimum for X:

Intuitively, only the p(X) with the (single) smallest value for X should be in the model.
However, neither {p(0)} nor {p(1)} are consistent with the standard semantics.

Standard least fixpoint semantics not well-suited for programs with
aggregates [Kemp and Stuckey 1991; Pelov et al. 2007; Vandenbroucke et al. 2016].
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A Solution Proposal within the LFP Framework

• Some relevant aggregates are consistent with the partial order of a lattice (v).

• In these cases, literals (e.g., p/1) can be associated to points in the lattice.

• E.g., minimum of numbers.
. . .

0

1

2

. . .

min(a,b) = a ←→ b ≥ a

b v a

p(1) v p(0)
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Entailment-Based Aggregates

• Simple but useful aggregates can be defined based on the v operation of the lattice.
The aggregate of a multiset S under v is the subset of more general values of S:

Aggv(S) = {x ∈ S | @y ∈ S,y , x · x v y}
. . .

0

1

2

. . .

Aggmin({0,1,2}) = {0}

Aggmin({0,5,7, . . .}) = {0}

Intended Semantics
Different initial models may have the same aggregate. After
aggregating, the link with the aggregate-less model is lost.

If Aggv(S) = p(k) then p(x)←→ x v k .
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A Consistent Semantics for Lattice-Based Aggregates

• For the program below, the expected model if we aggregate p/1 using minimum is {p(0)}.
1 p(1).

2 p(0) :- p(1).

• Under our semantics:
• the model {p(0)} means that p(X) s.t. X ≥ 0 is true.
• p(1) is true (1 ≥ 0).
• p(0):- p(1) can derive p(0) without contradictions.

p(1) can be used to support p(0).
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Join-Based Aggregates

• More complex aggregates are defined using the join operation t.

• They generate new elements based on previous elements.

• E.g., the union of sets of values.

. . .

0{a,b,c}

1 1 1{a,b} {a,c} {b,c}

2 2 2{a} {b} {c}

set(Sa,Sb) = Sc ←→ Sc = Sa∪Sb

SatSb = Sc ∧ Sa v Sc ∧ Sb v Sc

p([b]) v p([a,b])

Properties of t
Associativity, commutativity and idempotence.
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State of the Art

• Tabling engines compute specific aggregates incrementally by means of:

• Mode tabling [Guo and Gupta 2008; Zhou et al. 2010]. E.g., B-Prolog and Yap.
• Answer subsumption [Swift and Warren 2010]. E.g., XSB.

• However, their behavior is at odds with LFP semantics:

E.g., given the program1:

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

For the query ?-p(X)

1Example taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X
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• Tabling engines compute specific aggregates incrementally by means of:

• Mode tabling [Guo and Gupta 2008; Zhou et al. 2010]. E.g., B-Prolog and Yap.
• Answer subsumption [Swift and Warren 2010]. E.g., XSB.

• However, their behavior is at odds with LFP semantics:

E.g., given the program1:

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

For the query ?-p(X)

Intuitively expected answer:
X=0

XSB and B-Prolog return:
X=1

Yap returns:
X=3; X=2; X=1 for the first call.
X=1 for subsequent calls.

1Example taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X
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The ATCLP Framework

• ATCLP reformulates lattice-based aggregates inside a constraint system and computes
them using Modular TCLP [Arias and Carro 2016, 2018].

• The ATCLP interface allows the programmer to define aggregates using two operations:

• entails(Agg,A,B) for entailment-based aggregates. Succeeds iff AvAgg B.
• join(Agg,A,B,New) for join-based aggregates: New = AtAgg B.

1 :- use_package(tclp_aggregates).

2 :- table dist(_,_,min).

3

4 entails(min,A,B) :- A >= B.

5

6 edge(a,b,...). % Graph definition

7 dist(X,Y,D) :-

8 edge(X,Z,D1),

9 dist(Z,Y,D2),

10 D is D1 + D2.

11 dist(X,Y,D) :-

12 edge(X,Y,D).

Implementation of dist(_,_,min) under ATCLP
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Inside the Aggregate TCLP Interface
• User program transformed by substituting aggregated arguments with attributed variables.
• Generic TCLP interface handles aggregates by calling the user-defined entails/3 and join/4.

1 store_projection(V, (Agg,A)) :- get(V, (Agg,A)).

2 call_entail((_ ,_), (_ ,B)) :- var(B),!.

3 call_entail((Agg,A), (Agg,B)) :- entails(Agg,A,B).
4

5 answer_compare((Agg,A), (Agg,B),'=<') :- entails(Agg,A,B),!.
6 answer_compare((Agg,A), (Agg,B), '>') :- entails(Agg,B,A),!.
7 answer_compare((Agg,A), (Agg,B),'$new'((Agg,New))) :- join(Agg,A,B,New).
8

9 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), \+ ground(A), A=B,!.

10 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), entails(Agg,A,B).

Generic TCLP interface for aggregates.
(Automatically injected by the compiler to connect ATCLP and TCLP.)
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Non-lattice aggregates

• Some aggregates not consistent with the properties of v and / or t can still
be defined using ATCLP.

• Their execution may not conform to the intended semantics!

• E.g., sum can be defined as ...

1 entails(sum, _A, _B) :- fails.

2 join(sum, A, B, New) :- New is A + B.

However:

• It does not have a sound definition for entailment.
• The join operator is not idempotent.
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Example I: Performance

• Programming problem presented at the ICLP 2015 LP/CP contest.
• You have to play n games at least once. Some are more fun than others.
• You have to manage your money to extract the most fun from the games.

• ATCLP aggregates money and fun using max.

• It does not evaluate states worse than other already evaluated.

• Search space reduction!

Prolog Tabling ATCLP
game data 01 8062.49 14.66 2.89
game data 02 > 5 min. 37.59 4.87
game data 03 > 5 min. 1071.26 19.61
game data 04 > 5 min. 4883.00 23.21

Table: Run time (ms) comparison for Games with different scenarios.
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Example II: Expressiveness

1 :- use_module(library(sets)).

2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).

3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

• Computing the set of reachable nodes from a given node in a graph under
ATCLP.

1 :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).

3 path(X, Ys) :- edge(X,Z),

4 path(Z,Ys).

5 edge(a,b).

6 edge(b,c).

7 edge(b,a).

8 edge(c,d).

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions
?-path(X,[a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used
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2 path(X,[Y]) :- edge(X,Y).

3 path(X, Ys) :- edge(X,Z),

4 path(Z,Ys).

5 edge(a,b).

6 edge(b,c).

7 edge(b,a).

8 edge(c,d).

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions
?-path(X,[a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used

a b

c d
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Example III: Termination

• Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

• Edges within loops can be traversed an unlimited number of times.
• Pragmatic decision: discard hops whose contribution is below a certain threshold.
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• Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

• Edges within loops can be traversed an unlimited number of times.
• Pragmatic decision: discard hops whose contribution is below a certain threshold.

a
b

c d
.3

.7

.2

.8 P(b) = .3

P0(d) = .7 * .8 = .56

P1(d) = .7 * .2 * .8 = .112

P2(d) = .7 * .2 * .2 * .8 = .0224

...

Pn(d) = .7 * .2
n * .8 = ...

 P(d) = .7
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Example III: Termination

• Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

• Edges within loops can be traversed an unlimited number of times.
• Pragmatic decision: discard hops whose contribution is below a certain threshold.

1 :- table reach(_,sum).

2 :- table path(_,_,thr(0.001)).

3

4 entails(sum,_,_) :- fails.

5 join(sum, A, B, New) :-

6 New is A + B.

7 entails(thr(Epsilon), A, B):-

8 A < Epsilon * B.

9 reach(N,P) :- path(a,N,P).

10

11 path(X,Y,P) :-

12 edge(X,Y,P).

13 path(X,Y,P) :-

14 edge(X,Z,P1),

15 path(Z,Y,P2),

16 P is P1 * P2.

?- reach(d,P) returns P=0.699776.
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Conclusions
• ATCLP is a framework that implements Lattice-Based Aggregates under a

semantics consistent with the LFP semantics / tabling.

• We validate its flexibility and expressiveness through several examples.

• Its evaluation showed a positive balance between memory needs and speed.

Future Work
• Increase the performance and make the ATCLP interface more user-friendly.
• Include with ATCLP a library of commonly-used aggregate functions.

https://ciao-lang.orgOther Applications
• Abstract interpretation, the join operator is used to reach the fix point.
• Stream Data Reasonning [Arias 2016].
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Thanks for your attention
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