
Incremental Evaluation of Lattice-Based Aggregates
in Logic Programming Using Modular TCLP

Jan 14, 2019 [PADL-2019]

J. Arias1,2 M. Carro1,2

1IMDEA Software Institute, 2Universidad Politécnica de Madrid

madrid institute for advanced studies in software development technologies

1 / 17

www.software.imdea.org

Introduction

• An aggregate function computes a single result from separate data items.
• Common aggregates include:

• min: the smallest value in a set. min({2,4,7}) = 2
• set: the set of answers returned to a query . set(x |p(x)) = {a,b,c}
• sum: the sum of a collection of numbers. sum(〈1,2,5〉) = 8

• A naı̈ve evaluation collects all the elements and computes the aggregate:
efficiency and termination challenged.

• Some aggregates can be computed incrementally:

• Increased efficiency (memory / speed).

• Termination in more cases (model with aggregates finite while original model
infinite).

• Moreover, standard LP semantics not well-suited to programs with aggregates.

madrid institute for advanced studies in software development technologies

2 / 17

www.software.imdea.org

Aggregates in Logic Programming

• Use case: reachability + distance in a graph with cycles has an infinite model.

1 edge(a,b,4).

2 edge(a,b,2).

3 edge(b,a,3).

4 dist(X,Y,D) :- edge(X,Y,D).

5 dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

a b2
4

3

But reachability with shortest path has a finite model:

{ edge(a,b,4), edge(a,b,2), edge(b,a,3),

dist(a,a,5), dist(b,b,5), dist(a,b,2), dist(b,a,3) }

dist(X,Y,D) has been aggregated using minimum for D.

madrid institute for advanced studies in software development technologies

2 / 17

www.software.imdea.org

Aggregates in Logic Programming

• Use case: reachability + distance in a graph with cycles has an infinite model.

1 edge(a,b,4).

2 edge(a,b,2).

3 edge(b,a,3).

4 dist(X,Y,D) :- edge(X,Y,D).

5 dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

a b2
4

3

But reachability with shortest path has a finite model:

{ edge(a,b,4), edge(a,b,2), edge(b,a,3),

dist(a,a,5), dist(b,b,5), dist(a,b,2), dist(b,a,3) }

dist(X,Y,D) has been aggregated using minimum for D.

madrid institute for advanced studies in software development technologies

2 / 17

www.software.imdea.org

Aggregates in Logic Programming

• Use case: reachability + distance in a graph with cycles has an infinite model.

1 edge(a,b,4).

2 edge(a,b,2).

3 edge(b,a,3).

4 dist(X,Y,D) :- edge(X,Y,D).

5 dist(X,Y,D) :- edge(X,Z,D1), dist(Z,Y,D2), D is D1 + D2.

a b2
4

3

But reachability with shortest path has a finite model:

{ edge(a,b,4), edge(a,b,2), edge(b,a,3),

dist(a,a,5), dist(b,b,5), dist(a,b,2), dist(b,a,3) }

dist(X,Y,D) has been aggregated using minimum for D.

madrid institute for advanced studies in software development technologies

3 / 17

www.software.imdea.org

Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

madrid institute for advanced studies in software development technologies

3 / 17

www.software.imdea.org

Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3), dist(a,b,4),

dist(a,b,2), dist(b,a,3) }

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3),

dist(a,b,2), dist(b,a,3) }

1st iteration: dist(a,b,4) is not added
because dist(a,b,2) is their minimum.

madrid institute for advanced studies in software development technologies

3 / 17

www.software.imdea.org

Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3), dist(a,b,4),

dist(a,b,2), dist(b,a,3),

dist(a,a,7), dist(a,a,5),

dist(b,b,7), dist(b,b,5) }

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3),

dist(a,b,2), dist(b,a,3),

dist(a,a,5),

dist(b,b,5) }

2nd iteration:
• dist(a,a,7) is not derived since dist(a,b,4) is not in the model

• dist(b,b,7) is not added because dist(b,b,5) is their minimum.

madrid institute for advanced studies in software development technologies

3 / 17

www.software.imdea.org

Naı̈ve vs. Incremental Evaluation

• Compare: compute model and then aggregate results (left) with incrementally aggregating results (right).

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3), dist(a,b,4),

dist(a,b,2), dist(b,a,3),

dist(a,a,7), dist(a,a,5),

dist(b,b,7), dist(b,b,5),

dist(a,b,11), ... }

{ edge(a,b,4), edge(a,b,2),

edge(b,a,3),

dist(a,b,2), dist(b,a,3),

dist(a,a,5),

dist(b,b,5) }

3rd iteration: incremental evaluation terminates.
Model wo. aggregates model will not, because it is infinite.

madrid institute for advanced studies in software development technologies

4 / 17

www.software.imdea.org

Issues with the Meaning of Aggregates

• For the program below, the model without aggregates is {p(0), p(1)}.
1 p(1).

2 p(0) :- p(1).

• If we aggregate p(X) using minimum for X:

Intuitively, only the p(X) with the (single) smallest value for X should be in the model.
However, neither {p(0)} nor {p(1)} are consistent with the standard semantics.

madrid institute for advanced studies in software development technologies

4 / 17

www.software.imdea.org

Issues with the Meaning of Aggregates

• For the program below, the model without aggregates is {p(0), p(1)}.
1 p(1).

2 p(0) :- p(1).

• If we aggregate p(X) using minimum for X:

Intuitively, only the p(X) with the (single) smallest value for X should be in the model.
However, neither {p(0)} nor {p(1)} are consistent with the standard semantics.

Standard least fixpoint semantics not well-suited for programs with
aggregates [Kemp and Stuckey 1991; Pelov et al. 2007; Vandenbroucke et al. 2016].

madrid institute for advanced studies in software development technologies

5 / 17

www.software.imdea.org

A Solution Proposal within the LFP Framework

• Some relevant aggregates are consistent with the partial order of a lattice (v).

• In these cases, literals (e.g., p/1) can be associated to points in the lattice.

• E.g., minimum of numbers.
. . .

0

1

2

. . .

min(a,b) = a ←→ b ≥ a

b v a

p(1) v p(0)

madrid institute for advanced studies in software development technologies

5 / 17

www.software.imdea.org

A Solution Proposal within the LFP Framework

• Some relevant aggregates are consistent with the partial order of a lattice (v).

• In these cases, literals (e.g., p/1) can be associated to points in the lattice.

• E.g., minimum of numbers.
. . .

0

1

2

. . .

min(a,b) = a ←→ b ≥ a

b v a

p(1) v p(0)

madrid institute for advanced studies in software development technologies

6 / 17

www.software.imdea.org

Entailment-Based Aggregates

• Simple but useful aggregates can be defined based on the v operation of the lattice.
The aggregate of a multiset S under v is the subset of more general values of S:

Aggv(S) = {x ∈ S | @y ∈ S,y , x · x v y}
. . .

0

1

2

. . .

Aggmin({0,1,2}) = {0}

Aggmin({0,5,7, . . .}) = {0}

Intended Semantics
Different initial models may have the same aggregate. After
aggregating, the link with the aggregate-less model is lost.

If Aggv(S) = p(k) then p(x)←→ x v k .

madrid institute for advanced studies in software development technologies

6 / 17

www.software.imdea.org

Entailment-Based Aggregates

• Simple but useful aggregates can be defined based on the v operation of the lattice.
The aggregate of a multiset S under v is the subset of more general values of S:

Aggv(S) = {x ∈ S | @y ∈ S,y , x · x v y}
. . .

0

1

2

. . .

Aggmin({0,1,2}) = {0}
Aggmin({0,5,7, . . .}) = {0}

Intended Semantics
Different initial models may have the same aggregate. After
aggregating, the link with the aggregate-less model is lost.

If Aggv(S) = p(k) then p(x)←→ x v k .

madrid institute for advanced studies in software development technologies

6 / 17

www.software.imdea.org

Entailment-Based Aggregates

• Simple but useful aggregates can be defined based on the v operation of the lattice.
The aggregate of a multiset S under v is the subset of more general values of S:

Aggv(S) = {x ∈ S | @y ∈ S,y , x · x v y}
. . .

0

1

2

. . .

Aggmin({0,1,2}) = {0}
Aggmin({0,5,7, . . .}) = {0}

Intended Semantics
Different initial models may have the same aggregate. After
aggregating, the link with the aggregate-less model is lost.

If Aggv(S) = p(k) then p(x)←→ x v k .

madrid institute for advanced studies in software development technologies

7 / 17

www.software.imdea.org

A Consistent Semantics for Lattice-Based Aggregates

• For the program below, the expected model if we aggregate p/1 using minimum is {p(0)}.
1 p(1).

2 p(0) :- p(1).

• Under our semantics:
• the model {p(0)} means that p(X) s.t. X ≥ 0 is true.
• p(1) is true (1 ≥ 0).
• p(0):- p(1) can derive p(0) without contradictions.

p(1) can be used to support p(0).

madrid institute for advanced studies in software development technologies

7 / 17

www.software.imdea.org

A Consistent Semantics for Lattice-Based Aggregates

• For the program below, the expected model if we aggregate p/1 using minimum is {p(0)}.
1 p(1).

2 p(0) :- p(1).

• Under our semantics:
• the model {p(0)} means that p(X) s.t. X ≥ 0 is true.
• p(1) is true (1 ≥ 0).
• p(0):- p(1) can derive p(0) without contradictions.

p(1) can be used to support p(0).

madrid institute for advanced studies in software development technologies

7 / 17

www.software.imdea.org

A Consistent Semantics for Lattice-Based Aggregates

• For the program below, the expected model if we aggregate p/1 using minimum is {p(0)}.
1 p(1).

2 p(0) :- p(1).

• Under our semantics:
• the model {p(0)} means that p(X) s.t. X ≥ 0 is true.
• p(1) is true (1 ≥ 0).
• p(0):- p(1) can derive p(0) without contradictions.

p(1) can be used to support p(0).

madrid institute for advanced studies in software development technologies

8 / 17

www.software.imdea.org

Join-Based Aggregates

• More complex aggregates are defined using the join operation t.

• They generate new elements based on previous elements.

• E.g., the union of sets of values.

. . .

0{a,b,c}

1 1 1{a,b} {a,c} {b,c}

2 2 2{a} {b} {c}

set(Sa,Sb) = Sc ←→ Sc = Sa∪Sb

SatSb = Sc ∧ Sa v Sc ∧ Sb v Sc

p([b]) v p([a,b])

Properties of t
Associativity, commutativity and idempotence.

madrid institute for advanced studies in software development technologies

8 / 17

www.software.imdea.org

Join-Based Aggregates

• More complex aggregates are defined using the join operation t.

• They generate new elements based on previous elements.

• E.g., the union of sets of values.

. . .

0{a,b,c}

1 1 1{a,b} {a,c} {b,c}

2 2 2{a} {b} {c}

set(Sa,Sb) = Sc ←→ Sc = Sa∪Sb

SatSb = Sc ∧ Sa v Sc ∧ Sb v Sc

p([b]) v p([a,b])

Properties of t
Associativity, commutativity and idempotence.

madrid institute for advanced studies in software development technologies

8 / 17

www.software.imdea.org

Join-Based Aggregates

• More complex aggregates are defined using the join operation t.

• They generate new elements based on previous elements.

• E.g., the union of sets of values.

. . .

0{a,b,c}

1 1 1{a,b} {a,c} {b,c}

2 2 2{a} {b} {c}

set(Sa,Sb) = Sc ←→ Sc = Sa∪Sb

SatSb = Sc ∧ Sa v Sc ∧ Sb v Sc

p([b]) v p([a,b])

Properties of t
Associativity, commutativity and idempotence.

madrid institute for advanced studies in software development technologies

9 / 17

www.software.imdea.org

State of the Art

• Tabling engines compute specific aggregates incrementally by means of:

• Mode tabling [Guo and Gupta 2008; Zhou et al. 2010]. E.g., B-Prolog and Yap.
• Answer subsumption [Swift and Warren 2010]. E.g., XSB.

• However, their behavior is at odds with LFP semantics:

E.g., given the program1:

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

For the query ?-p(X)

1Example taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X
madrid institute for advanced studies in software development technologies

9 / 17

www.software.imdea.org

State of the Art

• Tabling engines compute specific aggregates incrementally by means of:

• Mode tabling [Guo and Gupta 2008; Zhou et al. 2010]. E.g., B-Prolog and Yap.
• Answer subsumption [Swift and Warren 2010]. E.g., XSB.

• However, their behavior is at odds with LFP semantics:

E.g., given the program1:

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

For the query ?-p(X)

1Example taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X
madrid institute for advanced studies in software development technologies

9 / 17

www.software.imdea.org

State of the Art

• Tabling engines compute specific aggregates incrementally by means of:

• Mode tabling [Guo and Gupta 2008; Zhou et al. 2010]. E.g., B-Prolog and Yap.
• Answer subsumption [Swift and Warren 2010]. E.g., XSB.

• However, their behavior is at odds with LFP semantics:

E.g., given the program1:

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

For the query ?-p(X)

Intuitively expected answer:
X=0

1Example taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X
madrid institute for advanced studies in software development technologies

9 / 17

www.software.imdea.org

State of the Art

• Tabling engines compute specific aggregates incrementally by means of:

• Mode tabling [Guo and Gupta 2008; Zhou et al. 2010]. E.g., B-Prolog and Yap.
• Answer subsumption [Swift and Warren 2010]. E.g., XSB.

• However, their behavior is at odds with LFP semantics:

E.g., given the program1:

1 :- table p(min).

2 p(3).

3 p(2).

4 p(1) :- p(2).

5 p(0) :- p(3).

For the query ?-p(X)

Intuitively expected answer:
X=0

XSB and B-Prolog return:
X=1

Yap returns:
X=3; X=2; X=1 for the first call.
X=1 for subsequent calls.

1Example taken from [Vandenbroucke et al. 2016], where :-table p(min) denotes that p(X) should be aggregated using min for X
madrid institute for advanced studies in software development technologies

10 / 17

www.software.imdea.org

The ATCLP Framework

• ATCLP reformulates lattice-based aggregates inside a constraint system and computes
them using Modular TCLP [Arias and Carro 2016, 2018].

• The ATCLP interface allows the programmer to define aggregates using two operations:

• entails(Agg,A,B) for entailment-based aggregates. Succeeds iff AvAgg B.
• join(Agg,A,B,New) for join-based aggregates: New = AtAgg B.

1 :- use_package(tclp_aggregates).

2 :- table dist(_,_,min).

3

4 entails(min,A,B) :- A >= B.

5

6 edge(a,b,...). % Graph definition

7 dist(X,Y,D) :-

8 edge(X,Z,D1),

9 dist(Z,Y,D2),

10 D is D1 + D2.

11 dist(X,Y,D) :-

12 edge(X,Y,D).

Implementation of dist(_,_,min) under ATCLP

madrid institute for advanced studies in software development technologies

10 / 17

www.software.imdea.org

The ATCLP Framework

• ATCLP reformulates lattice-based aggregates inside a constraint system and computes
them using Modular TCLP [Arias and Carro 2016, 2018].

• The ATCLP interface allows the programmer to define aggregates using two operations:

• entails(Agg,A,B) for entailment-based aggregates. Succeeds iff AvAgg B.
• join(Agg,A,B,New) for join-based aggregates: New = AtAgg B.

1 :- use_package(tclp_aggregates).

2 :- table dist(_,_,min).

3

4 entails(min,A,B) :- A >= B.

5

6 edge(a,b,...). % Graph definition

7 dist(X,Y,D) :-

8 edge(X,Z,D1),

9 dist(Z,Y,D2),

10 D is D1 + D2.

11 dist(X,Y,D) :-

12 edge(X,Y,D).

Implementation of dist(_,_,min) under ATCLP

madrid institute for advanced studies in software development technologies

11 / 17

www.software.imdea.org

Inside the Aggregate TCLP Interface
• User program transformed by substituting aggregated arguments with attributed variables.
• Generic TCLP interface handles aggregates by calling the user-defined entails/3 and join/4.

1 store_projection(V, (Agg,A)) :- get(V, (Agg,A)).

2 call_entail((_ ,_), (_ ,B)) :- var(B),!.

3 call_entail((Agg,A), (Agg,B)) :- entails(Agg,A,B).
4

5 answer_compare((Agg,A), (Agg,B),'=<') :- entails(Agg,A,B),!.
6 answer_compare((Agg,A), (Agg,B), '>') :- entails(Agg,B,A),!.
7 answer_compare((Agg,A), (Agg,B),'$new'((Agg,New))) :- join(Agg,A,B,New).
8

9 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), \+ ground(A), A=B,!.

10 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), entails(Agg,A,B).

Generic TCLP interface for aggregates.
(Automatically injected by the compiler to connect ATCLP and TCLP.)

madrid institute for advanced studies in software development technologies

11 / 17

www.software.imdea.org

Inside the Aggregate TCLP Interface
• User program transformed by substituting aggregated arguments with attributed variables.
• Generic TCLP interface handles aggregates by calling the user-defined entails/3 and join/4.

1 store_projection(V, (Agg,A)) :- get(V, (Agg,A)).

2 call_entail((_ ,_), (_ ,B)) :- var(B),!.

3 call_entail((Agg,A), (Agg,B)) :- entails(Agg,A,B).
4

5 answer_compare((Agg,A), (Agg,B),'=<') :- entails(Agg,A,B),!.
6 answer_compare((Agg,A), (Agg,B), '>') :- entails(Agg,B,A),!.
7 answer_compare((Agg,A), (Agg,B),'$new'((Agg,New))) :- join(Agg,A,B,New).
8

9 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), \+ ground(A), A=B,!.

10 apply_answer(V, (Agg,B)) :- get(V,(Agg,A)), entails(Agg,A,B).

Generic TCLP interface for aggregates.
(Automatically injected by the compiler to connect ATCLP and TCLP.)

madrid institute for advanced studies in software development technologies

12 / 17

www.software.imdea.org

Non-lattice aggregates

• Some aggregates not consistent with the properties of v and / or t can still
be defined using ATCLP.

• Their execution may not conform to the intended semantics!

• E.g., sum can be defined as ...

1 entails(sum, _A, _B) :- fails.

2 join(sum, A, B, New) :- New is A + B.

However:

• It does not have a sound definition for entailment.
• The join operator is not idempotent.

madrid institute for advanced studies in software development technologies

12 / 17

www.software.imdea.org

Non-lattice aggregates

• Some aggregates not consistent with the properties of v and / or t can still
be defined using ATCLP.

• Their execution may not conform to the intended semantics!

• E.g., sum can be defined as ...

1 entails(sum, _A, _B) :- fails.

2 join(sum, A, B, New) :- New is A + B.

However:

• It does not have a sound definition for entailment.
• The join operator is not idempotent.

madrid institute for advanced studies in software development technologies

13 / 17

www.software.imdea.org

Example I: Performance

• Programming problem presented at the ICLP 2015 LP/CP contest.
• You have to play n games at least once. Some are more fun than others.
• You have to manage your money to extract the most fun from the games.

• ATCLP aggregates money and fun using max.

• It does not evaluate states worse than other already evaluated.

• Search space reduction!

Prolog Tabling ATCLP
game data 01 8062.49 14.66 2.89
game data 02 > 5 min. 37.59 4.87
game data 03 > 5 min. 1071.26 19.61
game data 04 > 5 min. 4883.00 23.21

Table: Run time (ms) comparison for Games with different scenarios.

madrid institute for advanced studies in software development technologies

13 / 17

www.software.imdea.org

Example I: Performance

• Programming problem presented at the ICLP 2015 LP/CP contest.
• You have to play n games at least once. Some are more fun than others.
• You have to manage your money to extract the most fun from the games.

• ATCLP aggregates money and fun using max.

• It does not evaluate states worse than other already evaluated.

• Search space reduction!

Prolog Tabling ATCLP
game data 01 8062.49 14.66 2.89
game data 02 > 5 min. 37.59 4.87
game data 03 > 5 min. 1071.26 19.61
game data 04 > 5 min. 4883.00 23.21

Table: Run time (ms) comparison for Games with different scenarios.

madrid institute for advanced studies in software development technologies

14 / 17

www.software.imdea.org

Example II: Expressiveness

1 :- use_module(library(sets)).

2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).

3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

• Computing the set of reachable nodes from a given node in a graph under
ATCLP.

1 :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).

3 path(X, Ys) :- edge(X,Z),

4 path(Z,Ys).

5 edge(a,b).

6 edge(b,c).

7 edge(b,a).

8 edge(c,d).

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions
?-path(X,[a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used

madrid institute for advanced studies in software development technologies

14 / 17

www.software.imdea.org

Example II: Expressiveness

1 :- use_module(library(sets)).

2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).

3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

• Computing the set of reachable nodes from a given node in a graph under
ATCLP.

1 :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).

3 path(X, Ys) :- edge(X,Z),

4 path(Z,Ys).

5 edge(a,b).

6 edge(b,c).

7 edge(b,a).

8 edge(c,d).

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions
?-path(X,[a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used

a b

c d

madrid institute for advanced studies in software development technologies

14 / 17

www.software.imdea.org

Example II: Expressiveness

1 :- use_module(library(sets)).

2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).

3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

• Computing the set of reachable nodes from a given node in a graph under
ATCLP.

1 :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).

3 path(X, Ys) :- edge(X,Z),

4 path(Z,Ys).

5 edge(a,b).

6 edge(b,c).

7 edge(b,a).

8 edge(c,d).

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions

?-path(X,[a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used

a b

c d

madrid institute for advanced studies in software development technologies

14 / 17

www.software.imdea.org

Example II: Expressiveness

1 :- use_module(library(sets)).

2 entails(set, SetA, SetB) :- ord_subset(SetA, SetB).

3 join(set, SetA, SetB, NewSet) :- ord_union(SetA, SetB, NewSet).

• Computing the set of reachable nodes from a given node in a graph under
ATCLP.

1 :- table path(_,set).

2 path(X,[Y]) :- edge(X,Y).

3 path(X, Ys) :- edge(X,Z),

4 path(Z,Ys).

5 edge(a,b).

6 edge(b,c).

7 edge(b,a).

8 edge(c,d).

?-path(a,Nodes) returns Nodes=[a,b,c,d]. an ordered list without repetitions
?-path(X,[a,d]) returns X=a and X=b. Prolog/tabling can’t if setof/3 is used

a b

c d

madrid institute for advanced studies in software development technologies

15 / 17

www.software.imdea.org

Example III: Termination

• Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

• Edges within loops can be traversed an unlimited number of times.
• Pragmatic decision: discard hops whose contribution is below a certain threshold.

madrid institute for advanced studies in software development technologies

15 / 17

www.software.imdea.org

Example III: Termination

• Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

• Edges within loops can be traversed an unlimited number of times.
• Pragmatic decision: discard hops whose contribution is below a certain threshold.

a
b

c d
.3

.7

.2

.8 P(b) = .3

P0(d) = .7 * .8 = .56

P1(d) = .7 * .2 * .8 = .112

P2(d) = .7 * .2 * .2 * .8 = .0224

...

Pn(d) = .7 * .2
n * .8 = ...

 P(d) = .7

madrid institute for advanced studies in software development technologies

15 / 17

www.software.imdea.org

Example III: Termination

• Probability of a path in a graph: the probability of reaching node N from node a is
the sum of the transition probabilities of all paths from a to N.

• Edges within loops can be traversed an unlimited number of times.
• Pragmatic decision: discard hops whose contribution is below a certain threshold.

1 :- table reach(_,sum).

2 :- table path(_,_,thr(0.001)).

3

4 entails(sum,_,_) :- fails.

5 join(sum, A, B, New) :-

6 New is A + B.

7 entails(thr(Epsilon), A, B):-

8 A < Epsilon * B.

9 reach(N,P) :- path(a,N,P).

10

11 path(X,Y,P) :-

12 edge(X,Y,P).

13 path(X,Y,P) :-

14 edge(X,Z,P1),

15 path(Z,Y,P2),

16 P is P1 * P2.

?- reach(d,P) returns P=0.699776.

madrid institute for advanced studies in software development technologies

16 / 17

www.software.imdea.org

Conclusions
• ATCLP is a framework that implements Lattice-Based Aggregates under a

semantics consistent with the LFP semantics / tabling.

• We validate its flexibility and expressiveness through several examples.

• Its evaluation showed a positive balance between memory needs and speed.

Future Work
• Increase the performance and make the ATCLP interface more user-friendly.
• Include with ATCLP a library of commonly-used aggregate functions.

https://ciao-lang.orgOther Applications
• Abstract interpretation, the join operator is used to reach the fix point.
• Stream Data Reasonning [Arias 2016].

madrid institute for advanced studies in software development technologies

https://ciao-lang.org

16 / 17

www.software.imdea.org

Conclusions
• ATCLP is a framework that implements Lattice-Based Aggregates under a

semantics consistent with the LFP semantics / tabling.

• We validate its flexibility and expressiveness through several examples.

• Its evaluation showed a positive balance between memory needs and speed.

Future Work
• Increase the performance and make the ATCLP interface more user-friendly.
• Include with ATCLP a library of commonly-used aggregate functions.

https://ciao-lang.org

Other Applications
• Abstract interpretation, the join operator is used to reach the fix point.
• Stream Data Reasonning [Arias 2016].

madrid institute for advanced studies in software development technologies

https://ciao-lang.org

16 / 17

www.software.imdea.org

Conclusions
• ATCLP is a framework that implements Lattice-Based Aggregates under a

semantics consistent with the LFP semantics / tabling.

• We validate its flexibility and expressiveness through several examples.

• Its evaluation showed a positive balance between memory needs and speed.

Future Work
• Increase the performance and make the ATCLP interface more user-friendly.
• Include with ATCLP a library of commonly-used aggregate functions.

https://ciao-lang.orgOther Applications
• Abstract interpretation, the join operator is used to reach the fix point.
• Stream Data Reasonning [Arias 2016].

madrid institute for advanced studies in software development technologies

https://ciao-lang.org

17 / 17

www.software.imdea.org

Thanks for your attention

madrid institute for advanced studies in software development technologies

18 / 17

www.software.imdea.org

Bibliography I

Arias, J. (2016). Tabled CLP for Reasoning over Stream Data. In Technical Communications of the 32nd Int’l
Conference on Logic Programming (ICLP’16), volume 52, pages 1–8. OASIcs. Doctoral Consortium.

Arias, J. and Carro, M. (2016). Description and Evaluation of a Generic Design to Integrate CLP and Tabled Execution.
In Int’l. Symposium on Principles and Practice of Declarative Programming, pages 10–23. ACM.

Arias, J. and Carro, M. (2018). Description, Implementation, and Evaluation of a Generic Design for Tabled CLP.
Theory and Practice of Logic Programming (to appear).

Guo, H.-F. and Gupta, G. (2008). Simplifying Dynamic Programming via Mode-directed Tabling. Software: Practice and
Experience, (1):75–94.

Kemp, D. B. and Stuckey, P. J. (1991). Semantics of Logic Programs with Aggregates. In Int’l. Simposium on Logic
Programming, pages 387–401. Citeseer.

Pelov, N., Denecker, M., and Bruynooghe, M. (2007). Well-Founded and Stable Semantics of Logic Programs with
Aggregates. Theory and Practice of Logic Programming, (3):301–353.

madrid institute for advanced studies in software development technologies

19 / 17

www.software.imdea.org

Bibliography II
Swift, T. and Warren, D. S. (2010). Tabling with answer subsumption: Implementation, applications and performance.

In Logics in Artificial Intelligence, volume 6341, pages 300–312.

Vandenbroucke, A., Pirog, M., Desouter, B., and Schrijvers, T. (2016). Tabling with Sound Answer Subsumption.
Theory and Practice of Logic Programming, 32nd Int’l. Conference on Logic Programming, (5-6):933–949.

Zhou, N.-F., Kameya, Y., and Sato, T. (2010). Mode-Directed Tabling for Dynamic Programming, Machine Learning,
and Constraint Solving. In Int’l. Conference on Tools with Artificial Intelligence, number 2, pages 213–218. IEEE.

madrid institute for advanced studies in software development technologies

	Appendix

