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Abstract

In this work we investigate the problem of automating the development of adaptive chosen
ciphertext attacks on systems that contain vulnerable format oracles. Unlike previous attempts,
which simply automate the execution of known attacks, we consider a more challenging problem:
to programmatically derive a novel attack strategy, given only a machine-readable description of
the plaintext verification function and the malleability characteristics of the encryption scheme.
We present a new set of algorithms that use SAT and SMT solvers to reason deeply over the
design of the system, producing an automated attack strategy that can entirely decrypt protected
messages. Developing our algorithms required us to adapt techniques from a diverse range of
research fields, as well as to explore and develop new ones. We implement our algorithms using
existing theory solvers. The result is a practical tool called Delphinium that succeeds against
real-world and contrived format oracles. To our knowledge, this is the first work to automatically
derive such complex chosen ciphertext attacks.

1 Introduction

The past decades have seen enormous improvement in our understanding of cryptographic protocol
design. Despite this progress, vulnerable protocols remain widely deployed. In many cases this
is a result of continued support for legacy protocols and ciphersuites, such as TLS’s CBC-mode
ciphers [Smil2,|AP13|, export-grade encryption [BBDLT15, ABD™ 15,/ ASST16|, and legacy email
encryption [PDM™18|. However, support for legacy protocols does not account for the presence of
vulnerabilities in more recent protocols and systems [W3C17,JS11, MRLG15, GGK™ 16}, VP17].

In this work we consider a specific vulnerability: the continued use of unauthenticated symmetric
encryption in many cryptographic systems. While the research community has long noted the
threat of adaptive-chosen ciphertext attacks on malleable encryption schemes [Bel96, N'Y90, BN0O],
these concerns first gained practical salience with the discovery of padding oracle attacks on a
number of standard encryption protocols [Vau02,[Hun10, BFK™12,|/AP13,|MDK14]. Despite repeated
warnings to industry, variants of these attacks continue to plague modern systems, including TLS
1.2’s CBC-mode ciphersuite [AP13,/AP15| and hardware key management tokens [BFK™12,/AF18|.
A generalized variant, the format oracle attack can be constructed when a decryption oracle leaks the
result of applying some (arbitrarily complex) format-checking predicate F to a decrypted plaintext.
Format oracles appear even in recent standards such as XML encryption |[JS11, KMSS15|, Apple’s
iMessage |[GGK™ 16| and modern OpenPGP implementations [MRLG15, PDM™"18|. These attacks
likely represent the “tip of the iceberg” many vulnerable systems likely remain undetected, due to
the difficulty of exploiting non-standard format oracles.



From a constructive viewpoint, format oracle vulnerabilities seem easy to mitigate: simply
mandate that protocols use authenticated encryption. Unfortunately, even this advice may be
insufficient: common authenticated encryption schemes can become insecure due to implementation
flaws such as nonce re-use |Jou06, MW16, BZD'16|. Setting aside implementation failures, the
continued deployment of unauthenticated encryption raises an obvious question: why do these
vulnerabilities continue to appear in modern protocols? The answer highlights a disconnect between
the theory and the practice of applied cryptography. In many cases, a vulnerable protocol is not
obviously an exploitable protocol. This is particularly true for non-standard format oracles which
require entirely new exploit strategies. As a concrete example, the authors of [GGK™16| report
that Apple did not repair a complex gzip compression format oracle in the iMessage protocol when
the lack of authentication was pointed out; but did mitigate the flaw when a concrete exploit was
demonstrated. Similar exploits in OpenPGP clients |GGK ™16, PDM™ 18| were closed only when
cryptographers developed proof-of-concept exploits. The unfortunate aspect of this strategy is that
cryptographers’ time is limited, which leads protocol designers to discount the exploitability of real
cryptographic flaws.

Removing the human element. In this work we investigate the feasibility of automating the
design and development of novel adaptive chosen ciphertext attacks on symmetric encryption schemes.
We stress that our goal is not simply to automate the execution of known attacks, as in previous
works [KMSS15|. Instead, we seek to develop a methodology and a set of tools to (1) evaluate if
a system is vulnerable to practical exploitation, and (2) programmatically derive a novel exploit
strategy, given only a description of the target. This removes the expensive human element from
attack development.

To emphasize the ambitious nature of our problem, we summarize our motivating research
question as follows:

Given a machine-readable description of a format checking function F along with a
description of the encryption scheme’s malleation properties, can we programatically
derive a chosen-ciphertext attack that allows us to efficiently decrypt arbitrary ciphertexts?

The key requirement of our approach is that the software responsible for developing this attack
should require no further assistance from human beings. Moreover, we require that the developed
attack be efficient: ideally it should not require substantially more work (as measured by number of
oracle queries and wall-clock execution time) than the equivalent attack developed through manual
human optimization.

To our knowledge, this work represents the first attempt to automate the discovery of novel
adaptive chosen ciphertext attacks against encryption protocols. While our techniques are designed
to be general, we stipulate that in practice they are unlikely to succeed against every possible format
checking function. Instead, in this work we initiate a broader investigation by exploring the limits of
our approach against various real-world and contrived format checking functions. Beyond presenting
our techniques, our practical contribution of this work is a toolset that we name Delphinium, which
produces highly-efficient attacks across a wide variety of such functions.

Relationship to previous automated attack work. Previous work [BRB18,|QSP17,|CSP16|
has looked at automatic discovery and exploitation of side channel attacks. In this setting, a program
combines a fixed secret input with many “low” inputs that are (adaptively) chosen by an attacker,
and produces a signal, e.g., modeling a timing result. This setting can be viewed as a special case of



our general mode]ﬂ The cited works perform symbolic execution to (adaptively) discover chosen
inputs that will reveal as much information as possible about the secret input. Like our techniques,
several of these works employ SAT solvers and model counting techniques. However, beyond these
superficial similarities, there are fundamental differences from our approach: (1) in our techniques,
we use the solver to explore the full format checking function, rather than analyzing a program
instruction-by-instruction, (2) perhaps because of this approach, our results operate over much larger
secret domains than the cited works. To illustrate the differences, our experimental results consider
hidden message spaces of size 2'2® and beyond, with malleation strings of equivalent sizes, while the
cited works appear limited to much smaller secret sizes that rarely even reach 224. Moreover, our
format functions are relatively complex. It is an open question to determine whether the more limited
experimental results in the cited works due to fundamental limitations of the symbolic execution
approach, or if the two approaches can be combined in some fruitful way.

Our contributions. In this work we make the following contributions:

e We propose new, and fully automated algorithms for developing format oracle attacks on
symmetric encryption (and hybrid encryption) schemes. Our algorithms are designed to work
with arbitrary format checking functions, using a machine-readable description of the function
and the scheme’s malleation features to develop the attack strategy.

e We show how to implement our technique practically with existing tools such as SAT and SMT
solvers; and propose a number of efficiency optimizations designed to improve performance for
specific encryption schemes and attack conditions.

e We develop a working implementation of our techniques using “off-the-shelf” SAT/SMT
packages, and provide the resulting software package (which we call Delphinium) as an open
source tool for use and further development by the research communityﬂ.

e We validate our tool experimentally, deriving several attacks using different format-checking
functions, including padding schemes such as PKCS #7, session ticket checking functions, and
contrived functions such as a Sudoku verifier. These experiments represent, to our knowledge,
the first evidence of a completely functioning end-to-end machine-developed format oracle
attack.

1.1 Overview of our Techniques

We now describe our problem setting and provide an overview of the techniques that we use in this
work.

Implementing a basic format oracle attack. In a typical format oracle attack, the attacker has
obtained some target ciphertext C* = Encrypty (M*) where K and M* are unknown. She has access

!To see this, imagine that we encrypt the secret input as a ciphertext. Let each malleation string produced by our
attack represent some “low” input. Now define a malleation function that appends the low input to the encrypted
secret; a decryption function Decrypt that decrypts the secret input and passes both the decrypted secret and the
(unmodified) “low” input to a format checking function; and a format checking function F that evaluates the two
inputs and produces a result in {0,1}. An equivalent transformation may exist in the opposite direction.

2We provide an anonymized source code repository containing our implementation at: https://github.com/
Pythia3431/Delphinium.
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Figure 1: Output of a format oracle attack that our algorithms developed against a bitwise padding check oracle Fpitpad
(see for a full description). The original ciphertext is a valid 128-bit (random) padded message encrypted using a
stream cipher. Each row of the bitmap represents a malleation string that was exclusive-ORed with the ciphertext
prior to making a decryption query.

to a decryption oracle that, on input any chosen ciphertext C, returns F(Decrypty (C)) € {0,1} for
some known predicate F. The attacker may have various goals, including plaintext recovery and
forgery of new ciphertexts. Here we will focus on the former goal.

Describing malleability. Our attacks exploit the malleability characteristics of certain symmetric
encryption schemes. Because encryption schemes can be quite complex, we do not wish to reason
over the scheme itself. Instead, for a given encryption scheme II, we require the user to develop two
efficiently-computable functions. The function Maulgph(C, S) — C' takes as input a valid ciphertext
and some opaque malleation instruction string S (henceforth “malleation string”), and produces a
new, mauled ciphertext C’. The function Maulgain(M ,S) = M’ computes the equivalent malleation
over some plaintext, producing a plaintext (or, in some cases, a set of possible plaintexts@. The
essential property we require from these functions is that the plaintext malleation function should
“predict” the effects of encrypting a plaintext M, mauling the resulting ciphertext, then subsequently
decrypting the result. For some typical encryption schemes, these functions can be simple: for
example, a basic stream cipher can be realized by defining both functions as bitwise exclusive-OR.
However, malleation functions may also implement features such as truncation or complex editing,

guided by instructions drawn from S.

Building block: theory solvers. As a key building block in our techniques, we will make use
of efficient theory solvers, such as SAT and Satisfiability Modulo Theories (SMT) [stp,/Mic]. SAT
solvers apply a variety of tactics to identify or rule out a satisfying assignment to a boolean constraint
formula, while SMT adds a broader range of theories and tactics such as integer arithmetic and
string logic. For simplicity of exposition, the remainder of this section will elide the specific details of

3In We will formalize and extend this definition to include schemes with non-unique (or key-dependent) malleation
effects, such as CBC-mode encryption.



these solvers: we will simply assume a “black-box solver” that can find a satisfying assignment using
quantifier-free operations over bitvectors (a theory that easily reduces to SAT). In later sections, we
will show how to realize these techniques efficiently using concrete SAT and SMT packages.

Anatomy of our attack algorithm. The essential idea in our approach is to model each phase of
a chosen ciphertext attack as a constraint satisfaction problem. At the highest level, we begin by
devising an initial constraint formula that defines the known constraints on (and hence, implicitly,
a set of candidates for) the unknown plaintext M*. At each phase of the attack, we will use our
current knowledge of these constraints to derive an experiment that, when executed against the
real decryption oracle, allows us to “rule out” some non-zero number of plaintext candidates. Given
the result of a concrete experiment, we can then update our constraint formula using the new
information, and continue the attack procedure until no further candidates can be eliminated.

In our setting, each experiment comprises a specific malleation string S that can be applied
to the target ciphertext C* using the ciphertext malleation function. The technical challenge is
therefore the need to programmatically derive a malleation string that (a) represents a meaningful
input to the malleation functions, and (b) ensures that the attack will make progress, i.e., eliminate
some messages at each iteration.

The process of deriving the malleation string represents the core of our technical work. It requires
our algorithms to reason deeply over both the plaintext malleation function and the format checking
function in combination. To realize this, we rely heavily on theory solvers, together with some novel
optimization techniques.

Attack intuition. We now explain the full attack in greater detail. To provide a clear exposition, we
will begin this discussion by discussing a simplified and inefficient precursor algorithm that we will
later optimize to produce our main result. Our discussion below will make a significant simplifying
assumption that we will later remove: namely, that Maul,,;, will output exactly one plaintext for
any given input. This assumption is compatible with common encryption schemes such as stream
ciphers, but may not be valid for other schemes where malleation can produce key-dependent effects
following decryption.

We now describe the basic steps of our first attack algorithm.

Step 0: Initialization. At the beginning of the attack, our attack algorithm receives as input a
target ciphertext C*, as well as a machine-readable description of the functions F and Maul,;,. We
require that these descriptions be provided in the form of a constraint formula that a theory solver
can reason over. To initialize the attack procedure, the user may also provide an initial constraint
predicate Gy : {0,1}" — {0, 1} that expresses all known constraints over the value of M*ﬂ (If we
do not have any a priori knowledge about the distribution of M*, we can set this initial formula G
to specify that M* is any plaintexlﬂ).

Beginning with ¢ = 1, the attack now proceeds to iterate over the following two steps:

Step 1: Identify an experiment. Let G;_1 be the current set of known constraints on M™*. In this
first step, we employ the solver to identify a malleation instruction string S as well as a pair of
distinct plaintexts My, M7 that each satisfy the constraints of G;_1. Our goal is to identify a concrete
assignment for S that induces specific properties on My, M. Specifically, we require that each

“Here n represents an upper bound on the length of the plaintexts.
°If the encryption scheme does not have a specific format for plaintexts, Go can be an empty constraint formula.
Alternatively, in the case where it is known that M™ satisfies the format check, the attacker can set Go < F.



message in the pair, when mauled using S and then evaluated using the format checking function,
results in a distinct output from F. Expressed more concretely, we require the solver to identify
an assignment for the three abstract bitvectors (Mo, Mi, S) that satisfies the following constraint
formula:

Gz’—l(MO) = Gi—l(Ml) =1 A (1)
Wb € {0,1} : F(Maul ;. (Mp, 5)) = b

If the solver is unable to derive a satisfying assignment to this formula, we conclude the attack and
proceed to Step (3). Otherwise we extract a concrete satisfying assignment for S, assign this value
to 5;, and proceed to the next step.

Step 2: Query the oracle; update the constraints. Given a concrete malleation string S;, we now
apply the ciphertext malleation function to compute an experiment ciphertext C' l\/IauICiph(C”"7 Si),
and submit C to the decryption oracle. When the oracle produces a result b € {0,1}, we compute
an updated constraint formula G; as follows:

Gi(X) « (Gi—1(X) A F(Mauly,in(X, S;)) = b)

If possible, we can now ask the solver to simplify the formula G; by eliminating redundant constraints
in the underlying representation. We now set ¢ < i + 1 and return to Step (1).

Step 3: Attack completion. The attack concludes when the solver is unable to identify a satisfying
assignment in Step (1). In the ideal case, this occurs because the constraint system G;_; admits
only one possible candidate plaintext: if this occurs, we can employ the solver to directly recover M*
from G;_1. However, the solver may also fail to find an assignment because no further productive
experiment can be generated, or simply because finding a solution proves intractable. When the
solver conclusively rules out a solution at iteration i = 1 (i.e., prior to issuing any decryption queries)
this can be taken as an indication that a viable attack is not practical using our techniques. (Indeed,
this feature of our work can be used to rule out the exploitability of certain systems, even without
access to a decryption oracle). In other cases, the format oracle may admit only partial recovery of
M*. If this occurs, we conclude the attack by applying the solver to the final constraint formula
G;_1 to extract a human-readable description of the remaining candidate space (e.g., the bits of M*
we are able to uniquely determine).

Remark on efficiency. A key feature of the attack described above is that it is guaranteed to make
progress at each round in which the solver is able to find a satisfying assignment to Equation (1).
This is a fundamental implication of the constraint system we construct: our approach forces the
solver to ensure that each malleation string .S implicitly partitions the cadidate message set into a
pair (Mp, M), such that malleation of messages in either subset by S will produce distinct outputs
from the format checking function F. As a consequence of this, for any possible result from the
real-world decryption oracle, the updated constraint formula G; must eliminate at least one plaintext
candidate that satisfied the previous constraints G;_1.

While this property ensures progress, it does not imply that the resulting attack will be efficient.
In some cases, the addition of a new constraint will fortuitously rule out a large number of candidate
plaintexts. In other cases, it might only eliminate a single candidate. As a result, there exist
worst-case attack scenarios where the algorithm requires as many queries as there are candidates
for M*  making the approach completely unworkable for practical message sizes. Addressing this
efficiency problem requires us to extend our approach.



Figure 2: Left: illustration of a plaintext candidate space defined by G;—1, highlighting the two subsets Mo, M
induced by a specific malleation string S;. Right: the candidate space defined by G;, in which many candidates have
been eliminated following an oracle response b = 1.

Improving query profitability. We can define the profitability ¥(G;-1,G;) of an experimental
query by the number of plaintext candidates that are “ruled out” once the experiment is executed and
the constraint formula is updated. (In other words, this value is defined as the number of plaintext
candidates that satisfy G;_1 but do not satisfy G;). The main limitation of our first attack strategy
is that it does not seek to optimize each experiment to maximize query profitability.

To address this concern, let us consider a more general description of our attack strategy, which
we illustrate in Figure [2| At the i iteration, we wish to identify a malleation string S; that defines
two disjoint subsets My, M; of the current candidate plaintext space, such that for b € {0,1}
and YM € M, it holds that F(Maul,,;, (M, S;)) = b. In this description, any concrete decryption
oracle result must “rule out” (at a minimum) every plaintext contained in the subset M; ;| from the
candidate plaintext space. It is easy to see that 1(G;_1,G;) is equal to the cardinality of M; ;.

To increase the profitability of a given query, it is therefore necessary to maximize the size of
M;_,. Of course, since we do not know the value b prior to issuing a decryption oracle query, the
obvious strategy is to find S; such that both Mg, M are as large as possible. (Put slightly differently,
we wish to find an experiment S; that maximizes the cardinality of the smaller subset in the pair).
The result of this optimization is a greedy algorithm that will seek to eliminate the largest number
of candidates with each query.

Technical challenge: model count optimization. While our new formulation is conceptually
simple, actually realizing it involves overcoming serious limitations in current theory solvers. This is
due to the fact that, while several production solvers provide optimization capabilities [Mic|, these
heuristics optimize for the value of specific variables. Our requirement is subtly different: we wish to
solve for a candidate S that maximizes the number of satisfying solutions for the variables My, My
in Equation (1)@

Unfortunately, this problem is both theoretically and practically challenging. Indeed, merely
counting the number of satisfying assignments to a constraint formula is known to be asymptotically
harder than SAT [Val79,/Tod91|, and practical counting algorithms solutions [BL.99, BJPO0O| tend
to perform poorly when the combinatorial space is large and the satisfying assignments are finely
distributed throughout the space, a condition that is likely in our setting.

Approximating the count. While exact model counting seems intractable for our application, a number
of works have explored approzimate solutions to the problem |[GSS06,/(CMV16,SM19|. One powerful

5Some experimental SMT implementations provide logic for reasoning about the cardinality of small sets, these
strategies scale poorly to the large sets we need to reason about in practical format oracle attacks.



technique, initially proposed by Valiant and Vazirani |[VV86|, based on work by Stockmeyer [Sto83]
and applied practically by Gomes et al. |GSS06|, uses a SAT oracle as follows: given a constraint
formula F' over some bitvector T, add to F' a series of s random parity constraints, each computed
over the bits of T. For j = 1 to s, the j*" parity constraint can be viewed as requiring that H (1) =1
where H; : {0,1}/Tl — {0,1} is a universal hash function. Intuitively, each additional constraint
reduces the number of satisfying assignments approximately by half, independently of the underlying
distribution of valid solutions. The implication is as follows: if a satisfying assigment to the enhanced
formula exists, we should be convinced (probabilistically) that the original formula is likely to possess
on the order of 29 satisfying assignments. This approach can further be formulated as an optimization
problem [FRS17].

To apply this technique to our attack, we extend the algorithm given in the previous section. At
the start of each iteration, we begin by conjecturing a candidate set size 2° for some non-negative
integer s, and then we query the solver for a solution to (S, My, M1) in which approximately 2°
solutions can be found for each of the abstract bitvectors My, My. This involves modifying the
equation of Step (1) by adding s random parity constraints to each of the abstract representations
of My and M;. We now repeatedly query the solver on variants of this query, with increasing (resp.
decreasing) values of s, until we have identified the maximum value of s that results in a satisfying
assignmentﬂ For a sufficiently high value of s, this approach effectively eliminates many “unprofitable”
malleation string candidates and thus significantly improves the efficiency of the attack.

The main weakness of this approach stems from the probabilistic nature of the approximation
algorithm. Even when 2° satisfying assignments exist for My, M7, the solver may deem the extended
formula unsatisfiable with relatively high probability. In our approach, this false-negative will
cause the algorithm to reduce the size of s, potentially resulting in the selection of a less-profitable
experiment S. Following Gomes et al. |[GSS06|, we are able to substantially improve our certainty
by conducting multiple trials t within each query. For example, rather than conducting the above
check one time and rejecting s if the solver fails to find a satisfying solution, we instead conduct ¢
separate instances of the check (each using new, randomized parity constraints) and accept iff at
least [(5 + 0)t] trials are satisfied, where 4 is an adjustable tolerance parameter. Unlike Gomes et
al. (who only consider model counting), our optimization approach does not allow us to perform
these trials over the course of several distinct solver queries, since each trial in our optimization must
be bound to the same abstract malleation string .S. Thus all trials must be contained within a single
extended constraint formula in order to ensure a specific optimal S is found. This added complexity
requires us to carefully tune the parameters of our attack, in order to trade query profitability against
solver runtime. We discuss these tradeoffs in more detail in §5]

Putting it all together. The presentation above is intended to provide the reader with a simplified
description of our techniques. However, this discussion does not convey most challenging aspect
of our work: namely, the difficulty of implementing our techniques and making them practical,
particularly within the limitations of existing theory solvers. Achieving the experimental results
we present in this work represents the result of months of software engineering effort and manual
algorithm optimization. We discuss these challenges more deeply in Section

Using our techniques we were able to re-discover both well known and entirely novel chosen
ciphertext attacks, all at a query efficiency nearly identical to the (optimal in expectation) human-
implemented attacks. Our experiments not only validate the techniques we describe in this work,

"Note that s = 0 represents the original constraint formula, and so a failure to find a satisfying assignment at this
size triggers the conclusion of the attack.



but they also illustrate several possible avenues for further optimization, both in our algorithms
and in the underlying SMT /SAT solver packages. Our hope is that these results will inspire further
advances in the theory solving community.

2 Preliminaries

Notation. Let A be a security parameter. We will use A||B to denote string concatenation, and |A|
to indicate the length of a string A in bits. Given bitstrings A, B of unequal length, we will denote
A @ B to be the bitwise exclusive-or of A and B, where the shorter of the two strings is padded on
the right side to the length of the longer. We will define Truncate,,(M) as a truncation function
that outputs the first m bits of the bitstring M.

2.1 Encryption Schemes and Malleability

Our attacks operate assume that the target system is using a malleable symmetric encryption scheme.
We now provide definitions for these terms.

Definition 1 (Symmetric encryption) A symmetric encryption scheme II is a tuple of algo-
rithms (KeyGen, Encrypt, Decrypt), where KeyGen(1%) generates a key, the probabilistic algorithm
Encrypty (M) encrypts a plaintext M under key K, and the deterministic algorithm Decrypty (C) de-
crypts C' to produce a plaintext or the distinguished error symbol L. We require that the encryption
scheme is correct, in the sense that for all valid M, K it holds that Decrypt (Encrypty (M)) = M.
We use M to denote the set of valid plaintexts accepted by a scheme, and C to denote the set of
valid ciphertexts.

Our techniques exploit encryption schemes that are malleable, meaning that there exists an efficient
ciphertext transformation that induces a predictable effect upon decryption. To derive our attack,
we require the user to provide us with a machine-readable description of the malleation features of
the scheme. We now formalize this description.

Definition 2 (Malleation functions) The malleation functions for a symmetric encryption scheme
IT comprise a pair of efficiently-computable functions (Maulgph, Maulgain) with the following properties.
Let M, C be the plaintext (resp. ciphertext) space of II. The function Maulgph :Cx{0,1}* — CU{L}
takes as input a ciphertext and a malleation instruction string. It outputs a ciphertext or the dis-
tinguished error symbol L. The function I\/Iaullr}lain M x {0,1}* — M, on input a plaintext and a
malleation instruction string, outputs a set MCM U {L} of plaintexts, possibly including the
distinguished error symbol 1. The structure of the malleation string is entirely defined by these
functions; since our attack algorithms will reason over the functions themselves, we treat S as an

opaque value.

A malleation function pair must correctly represent the effect of mauling ciphertexts produced by
the encryption scheme. This is captured by the following notion:

We say that (Maulgph, Maulgain) describes the malleability features of II if malleation of a ciphertext

always induces the expected effect on a plaintext following encryption, malleation and decryption.



More formally, YK € KeyGen(1%),YC € C,VS € {0,1}* the following relation must hold whenever
Maulli, (C, 5) # L:

DecryptK(Maulgpi1 (C,9)) € Maulgain(DecryptK(C’), S)

Remarks. Note that the function Maulgph outputs a single ciphertext. By contrast, the plaintext

Elain outputs a set of possible plaintexts (and possibly the decryption error
symbol L). This captures the possibility that certain forms of malleation can induce unpredictable
key-dependent effects when ciphertexts are decryptedﬁ. Finally, we note that a description of these
functions is necessary, but not sufficient for our attacks to work. Malleation functions can “overfit”
an encryption scheme; for example, one can define a trivial Maulgain such that for every possible
input, Maulgain simply outputs the set M U {L}. Similarly, a plaintext malleation function can
be formulated even for schemes that are explicitly non-malleable, such as authenticated encryption
modes. The effectiveness of our attacks depends on both the malleability features of the scheme,

and the precision with which the malleation functions describe them.

malleation function Maul

2.1.1 Example Malleation Functions

We now briefly describe several concrete encryption schemes and their associated malleation functions.

Simple stream ciphers (no truncation). Stream ciphers employ a pseudorandom generator to
produce a keystream that is combined with the plaintext using bitwise exclusive-OR. We will consider
an abstract stream cipher Ilgyeam, With the caveat that our formulation omits many practical details
such as the generation and delivery of nonces/IVs/state (in this formulation we treat these details as
external to the ciphertext). We define the functions Maulgj;i'ﬁa’“ and Maulg;‘ﬁa"‘ to each be the bitwise
exclusive-OR function.

Stream ciphers with truncation. Many stream ciphers length truncation, in which bits of
ciphertext (resp. plaintext) are removed from the right side. We can define a malleation function
Maulg;ﬁeam (resp. Maulggsit;“’") that parses S as r||S’, where r > 0 is decoded as an integer indicat-
ing the desired length of the output string. The function(s) output Truncatec|_,(C) © S’ (resp.

Truncateo|_. (M) @ S').

CBC and CFB mode. In CBC mode, any bits altered in ciphertext block ¢ will display the
same pattern of changes in block i 4+ 1 following decryption, while block ¢ will be replaced with
pseudorandom output (excepting ¢ = 0). CFB is similar, except that changes to block i will emerge

in block 7, while block ¢ 4+ 1 will be replaced. To describe this scheme, the functions Maulggﬁf and

Maulggan each output a set of plaintexts comprising every possible Candidatﬂ In §4f we describe a
more efficient encoding of this output.

2.2 Format Checking Functions

Our attacks assume a decryption oracle that, on input a ciphertext C', computes and returns
F(Decrypty (C)). We refer to the function F: M U {L} — {0,1} as a format checking function. Our

8 A simple example of this phenomenon occurs with CBC-mode encrypted ciphertext, where a single-bit change in
the ciphertext can result in pseudorandom output within the corresponding block of plaintext.
9This set will contain a separate plaintext candidate for each possible string of size 2% in every such block.



techniques place two minimum requirements on this function: (1) the function F must be efficiently-
computable, and (2) the user must supply a machine-readable implementation of F, expressed as a
constraint formula that a theory solver can reason over.

Function descriptions. Our attacks employ SAT and SMT solvers (which we will discuss in more
detail below). Because our solver will ultimately need to reason over the implementation of F, we
require that its description be provided in a compatible form. For SAT solvers this typically implies
conjunctive normal form (CNF) or equivalent notation. SMT solvers allow a richer description
using a variety of first-order logic predicates, which may involve variable types such as integers,
real numbers and strings. Several industrial SMT solvers additionally provide an interface that
allows functions to be described in a high-level languages such as Python. Although our techniques
primarily rely on a SAT solver as the back-end for our system, we employ Microsoft’s Z3 SMT
solver [Mic] as our primary user-facing interface, in part because it provides a more flexible interface
with support for various input formats. As a result, the description of F provided to our tools can
be given as a Python script, SMT-LIB file [BET16|, or even as a boolean circuit description.

2.3 Theory Solvers and Model Counting

Solvers take as input a system of constraints over a set of variables, and attempt to derive (or
rule out the existence of) a satisfying solution. Modern SAT solvers generally rely on two main
families of theorem solver: DPLL [DP60, DLL62| and Stochastic Local Search [HS04]. Satisfiability
Modulo Theories (SMT) solvers expand the language of SAT to include predicates in first-order
logic, enabling the use of several theory solvers ranging from string logic to integer logic. ~Our
prototype implementation uses a quantifier-free bitvector (QFBV) theory solver. In practice, this
is implemented using SMT with a SAT solver as a back—endm. For the purposes of describing
our algorithms, we specify a query to the solver by the subroutine Solve{(Ay,..., Ax) : G} where
Aq, ..., Ay represent abstract bitvectors of some defined length, and G is a constraint formula over
these variables. The response from this call provides one of three possible results: (1) sat, as well
as a concrete satisfying solution (ai,...,ay), (2) the distinguished response unsat, or (3) the error
unknown, which indicates that the solver could not identify or rule out a satisfying assignment.

Model counting. While SAT determines the existence of a single satisfying assignment, a more gen-
eral variant of the problem, #SAT, determines the number of satisfying assignments for a given set of
constraints{ﬂ In the literature this problem is known as model counting [Val79,|GSS06,BL99, BJPOO|
[SBBT04,[WS05, BDP03,|CFMV15].

Very early work on this problem utilizes the David Putnam algorithm for finding satisfying
assignments. Modifications included seeing how many free variables remain after a satisfying
assignment was found only fixing values for a subset of variables, recursively finding the number
of solutions in connected components dynamically, and then caching results of these solutions to
subproblems so that a SAT solver would not need to solve the same problem twice. [SBBT04]. Later
on, more sophisticated techniques were proposed with better efficiency on complex formulas. These
techniques attempted to limit the number of queries to a SAT oracle to be only logarithmic and they

10Tn principle our attacks can be extended to other theories, with some additional work that we describe later in
this section.

A variant known as #SMT generalizes model counting to SMT |[CDM17]. Since in this work we focus primarily
on problems with discrete solutions (e.g., formulae over boolean and fixed-size integer variables) the #SMT problem
can easily be viewed as a slightly modified version of #SAT.



utilized uniform sampling of the solution space to do this, whether that be through random walks or
hashing constraints [GSS06, WSO05|. As discussed in our approach relies on approximate model
counting techniques in order to optimize attack progress.

The approach we use is an adaptation of the MBound algorithm developed by Gomes et al. [GSS06|.
This algorithm checks for the presence of 29 satisfying assignments for a bitvector T', by adding to
the formula a collection of s randomly-generated parity constraints: Pi(T) =1 A ... A Ps(T)=1.
To improve performance, Gomes et al. propose to perform up to t independent trials (each using
different randomized parity constraints), where at least [( + §)t] trials must be successful. We
employ the parameters t,§ as adjustable inputs to our algorithms.

From counting to an optimization metric. Our algorithms reformulate model counting as an
optimization problem. This problem was previously considered by Fremont et al. [FRS17] under
the term Max#SAT. In this setting, our goal is to identify an assignment to one variable (or set of
variables) that maximizes the number of satisfying assignments to a second variable. In our setting,
we wish to identify a malleation string S that induces an (approximately) optimal partitioning of
the plaintext space. Our algorithms do this by employing the model counting techniques described
above: repeatedly querying the solver at different set sizes until we find a malleation string that
maximizes the size of both sets.

This formulation leaves an open theoretical question. Recall that the solver is now solving for
some string S that induces a specific relation between a separate bitvector (Mg or M7) and the parity
constraints applied to it. This fundamentally changes the statistical argument that underpins the
model counting schemes from which we derive our inspiration. Rather than rely on these arguments,
we instead verified the effectiveness of the technique empirically.

More prosaically, this optimization technique induces a fundamental tradeoff between computa-
tional efficiency and query profitability. In previous work on model counting [SM19,/GSS06| improved
accuracy of a model count requires that the solver conduct multiple independent trials. Unlike the
counting techniques of |[GSS06|, these trials cannot be broken across multiple independent solver
queries. Instead, each trial must be conducted as part of a single solver query, since the same
abstract value S must be referenced by each trial. This increases the complexity of the formula fed
to the solver, and requires that we carefully balance the runtime of each attack against the query
profitability by adjusting the parameters ¢, d.

3 Our Constructions

In this section we present a high-level description of our main contribution: a complete algorithm
for programmatically conducting a format oracle attack. We first present pseudocode for the basic
algorithm itself. We then describe a number of optimizations and improvements that improve
performance and handle special cases.

3.1 The Attack Algorithm

Algorithms present the core algorithms of our main attack generation procedure. The entry
routine of our attack is DeriveAttack, given in Figure[ll This routine takes as input a target ciphertext
C*, constraint formulae for the functions Mauly,,, F, as well as a solver-interpretable implementation
of the function Maulg,. It additionally takes in the maximum plaintext and malleation string
lengths n, m as well as the model counting parameters ¢, described in the previous section. The



algorithm repeatedly queries the decryption oracle Ogec, and terminates by outputting a (possibly
incomplete) description of M* € {0, 1, *}", where the wildcard * indicates an unknown bit.

Adjusting the conjectured set size. Our algorithms employ an abstract subroutine AdjustSize
that is responsible for updating the conjectured set size s in our optimization loop. We define this
routine to use the following pseudocode API:

(bcontinue7 S/a Z/) <

Adj UStSize(bSuCC6557 n,s, Z)

The input bit bsyccess indicates whether or not a solution was found for a conjectured size s, while
n provides a known upper-bound. The history string Z € {0,1}* allows the routine to record state
between consecutive calls. AdjustSize outputs a bit beontinue indicating whether the attack should
attempt to find a new solution, as well as an updated set size s’. By maximizing the conjectured set
sizes, the attack elicits a malleation string at each iteration which maximizes the number of messages
eliminated in expectation. As such, this algorithm is greedy, optimizing given the constraints at each
iteration to discover locally optimal malleation strings. Appendices[A] and [B]outline cases where this
greedy approach is and is not globally optimal, respectively. We discuss implementation strategies
for the AdjustSize routine in

Additional subroutines. The subroutine FindKnownBits uses the solver to find a unique solution
for M* given a constraint formula. If a unique solution cannot be found, it instead decides which
bit positions of M* can be uniquely determined, and outputs a string of the form {0, 1, x}". The
subroutine ParityConstraint constructs a randomized parity constraint of weight k over a bitvector
of size n. We omit these basic procedures for brevity.

3.2 Attacks with Knowledge of the Plaintext Distribution

The attack as presented in the previous section takes an initial constraint formula Gg that represents
the attacker’s initial knowledge of the structure of M*. This formula can be left empty, however in a
typical case where the ciphertext contains a known-valid message (i.e., F(M*) = 1), the user can
set Go < F. In some cases the user may know significantly more detailed information about the
distribution of M*: for example, that it uses a specific format such as e.g., UTF-7 or JSON. This
sort of auxiliary data can be encoded into Gy in order to improve the runtime of the attack.

Optimization: weighting the plaintext distribution. Our basic attack algorithm is designed
to identify the largest subset of messages to be eliminated at the i** query. From an optimization
perspective, this strategy assumes that every valid plaintext admitted by G; is equally likely, and
thus the most efficient path to finding M™* is to simply maximize the number of plaintext candidates
eliminated. This may not produce an optimal attack. In Appendix [E] we discuss a more nuanced
approach that allows the user to weight plaintexts by their probability of occurring in M™.

4 Prototype Implementation

We now describe the details of our prototype implementation, which we call Delphinium. We
designed Delphinium as an extensible toolkit that can ultimately be used by practitioners to evaluate
and exploit real format oracles.



Algorithm 1: DeriveAttack
Input: Description of (F, I\/Iaulplain); code for Maulg,; target ciphertext C*; max plaintext
and malleation string length n,m; initial constraints Gy over {0,1}"; ¢t € N;
9 €[0.0,0.5]
Output: M* € {0,1,%}"
Procedure:
Z + 1;
1 < 1, bsyccess ¢ TRUE, s < n;
while bsyccess = TRUE do
bcontinue < TRUE;
while beontinue do
(bsucce557 Sz) —
FindMalleation(G;_1,s,t,d,n, m,
F, I\/Iau|p|ain);
| (beontinue, 8, Z) < AdjustSize(bsuccess, s S5 Z);

if bsuccess = TRUE then
// Query the decryption oracle
b < Ogec(Maulg, (C*, Sy));
B Gz(X) — [Gz_l(X) AN (F(Mau|p|ain(X, 5’2» = b)},

141+ 1;

return FindKnownBits (G;_1);

4.1 Architecture Overview

Figure [3] illustrates the architecture of Delphinium. The software comprises several components:

Attack orchestrator. This central component is responsible for executing the core algorithms of
the attack, keeping state, and initiating queries to both the decryption oracle and SMT/SAT
solver. It takes the target ciphertext C* and a description of the functions F and Maul,,;, as
well as the attack parameters ¢, as input. It outputs the (partial) recovered plaintext.

SMT /SAT solver. Our implementation supports multiple SMT solver frameworks (STP |[stp|
and Z3 |[Mic|) via a custom compatibility layer that we developed for our tool. To improve
performance, the orchestrator may launch multiple parallel instances of this solver.

In addition to these core components, the system incorporates two user-supplied modules, which can
be customized for a specific target:

Ciphertext malleator. This module provides a working implementation of the malleation function
Maulgph. In practice, this module is provided as a Python file, although it can execute code
written in another language such as C.

Target interface (shim). This module is responsible for formatting and transmitting decryption
queries to the target system. It is designed as a user-supplied module in recognition of the fact
that this portion will need to be customized for specific target systems and communication
channels.



Algorithm 2: FindMalleation

Input: Constraint formula G; s € W, ¢t € N, § € [0.0,0.5]; max plaintext and malleation
string length n, m; F; Maul,;,

Output: bsyccess € {0,1}; S; € {0,1}™

Procedure:

// Construct parity constraints

k < [loga(n)];

for [+ 1totdo

for m < 1 to 2s do
| Hjm < ParityConstraint (n,k)

// Query the solver
(result, 5’1) — SO|V€{(M1’0, Ml,h ey Mno, Mt,l; S) :
[Vj e [1,t],b € {0,1}:
(G(Mjp) = G(Mj1) =1 A
F(MaU|plain(Mj7b7 S)) = b)] N
381 C [1,¢t],[S1| = [(0.5+ 0)t],Vj € S :
(Vk € [1, ] : (Hjp(Mo) = 1)) A
3Ss C [1,¢t], [S2| > [(0.5+ 0)t],Vj € Sy :
(Vk‘ € [1,8] : Hj,s—i—k(Ml) = 1)},
if result = sat then
L return (TRUE, S;);

else
L return (FALSE, 1);

As part of our prototype implementation, we provide working examples for each of these modules,
as well as a test harness to evaluate attacks locally.

4.2 Implementation Details

The discussion so far has allowed us to ignore many implementation and performance tradeoffs.
However, realizing our algorithms in a practical tool required us to solve a number of challenging
engineering problems. Many stem from the performance and capability limitations of existing SAT
and SMT solvers.

Selecting SAT and SMT solvers.. During the course of this work we evaluated several SMT and
SAT solvers, including Z3 [Mic], Boolectoi'?] [BNPB|, STP [stp| and CryptoMiniSAT [SNC09]. We
determined that each package offers significant performance and functionality tradeoffs. Our final
design uses Z3 as a front-end SMT solver, due to its robust feature set and strong performance in
simplifying complex constraint formulae. Unfortunately, while Z3 has many advantages, it has one
critical disadvantage: the default SAT solver (MiniSAT |min|) does not perform Gaussian elimination
of XOR gates. The conversion required to handle these gates produces an exponential increase
in formula complexity, which renders our model counting techniques intractable even at modest
parameters.

2Unfortunately we found Boolector (via the Python bindings) unusable due to software issues.
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Figure 3: Architecture of Delphinium.

Combining Z3 and CMS via a CNF bridge. To improve performance, we adopted CryptoMiniSAT
(henceforth CMS), which has been used extensively in the model counting literature [SNC09] due
to its ability to simplify XOR clauses. CMS is natively supported by the STP SMT solver, which
provides powerful constraint simplification routines. Unfortunately, our experiments with STP
exposed a number of constraint processing performance limitations, as well as intermittent bugs in
formulae with large (> 64 bit) bitvectors. As a compromise, we adopted a hybrid model that uses
73 to periodically simplify the constraint system and generate partial CNF files for CMS to reason
over; we subsequently edit these files directly to add exclusive-OR gates for model counting, and to
include new constraints derived from decryption oracle queries. The main limitation in this approach
is that Z3’s CNF generation tactic is time consuming and single-threaded. Thus we do not generate
fresh CNF with each query: instead, we employ Z3 to periodically generate a new, simplified CNF
formula. This approach represents a tradeoff that obtains many of the benefits of Z3’s simplification
tactics, while also avoiding a bottleneck on CNF generation. It is, however, still deeply suboptimal
from a performance perspective, and we note that there is a great deal of room for performance
improvemenﬁ Nonetheless, we found that it systematically outperformed all other alternatives.

Low-density parity constraints. Our implementation of model counting requires our tool to
incorporate 2st distinct parity functions into each solver query. Each full-weight parity constraint
comprises an average of § XOR gates (where n is the maximum length of M*), resulting in a
complexity increase of tens to hundreds of gates in our experiments. To address this, we adopted
an approach used by several previous model counting works [ZCSE16, EGSS14]: using low-density
parity functions. Each such function of these samples k random bits of the input string, with &
centered around loga(n). As a further optimization, we periodically evaluate the current constraint
formula G; to determine if any bit of the plaintext has been fixed. We omit fixed bits from the input
to the parity functions, and reduce both n and k accordingly.

Implementing AdjustSize. Because SAT/SMT queries are computationally expensive, our algo-
rithms can benefit from an optimization strategy that minimizes the number of sequential queries
required to maximize the value s.

One optimization is to use a logarithmic binary search procedure to increase (resp. decrease)
s. Unfortunately, our experiments show that the runtime efficiency gain from binary search is not

13 As future work, we are working to develop native Z3 integration for CMS, which will likely provide substantially
improved performance.



clearly logarithmic, due to the fact that queries which are closer to the “actual” set size require the
most solver time, and binary search spends many queries close to the target size. Moreover, this
search must be carefully tuned to deal with the possibility of false negatives that can occur as a
result of the probabilistic model counting procedure.

To avoid this runtime overhead, we employ a parallelization strategy to explore many close
values of s simultaneously. To do this, we create a distinct solver instance for each of a “window” of
sequential values (s1,...,sy) and execute each of these instances in parallel, selecting the largest
satisfied resulttd]

Describing Maul,,;, and F. In order for SMT solvers such as Z3 to reason about format checking
functions using a theory of quantifier-free bitvectors, the function must be encoded as operations
which are supported by this solver theory. We considered implementations comprising of bitwise
operations, boolean operations, and ternary conditionals. We use Z3’s interface, which allows our to
process tool function descriptions encoded as Python and SMT-LIB. We also developed experimental
tooling to support standard boolean circuit formats. We discuss malleation functions further in

Appendix

4.3 Test Harness

For our stream cipher experiments in Section [5] we developed a test harness to implement the
Ciphertext Malleator and Target Interface shim. This test harness simulates the effect of mauling
and decrypting M* using a given malleation string S;. At the start of the attack, this harness
samples a random plaintext M* from an appropriate distribution. To respond to decryption queries
it directly calculates F(Maul .. (M*,S;)).

plain

4.4 Software

Our prototype implementation of Delphinium comprises roughly 4.2 kLOC of Python. This includes
the attack orchestrator, example format check implementations, the test harness, and our generic
solver Python API which allows for modular swapping of backing SMT solvers, with implementations
for Z3 and STP provided.

Also included are functions which allow instantiations of Gomes et al.’s |[GSS06] model counting
tests with configurable parameters, CNF generation using the Z3 Tactic API and strategies for
recovering solutions from CMS, CNFXOR generation for use in CMS, and translation from CMBC-
GC boolean circuit output (compilations of ANSI C programs to boolean circuits) to Python for use
with the Python solver API. Finally, in pursuing this prototype, we submitted various patches to the
underlying theory solvers. These patches have since been included in the upstream software projects.

4.5 Extensions

In general, arbitrary functions on fixed-size values can be converted into boolean circuits which
SMT solvers can reason over. Existing work in MPC develops compilers from DSLs or a subset
of C to boolean circuits which could be used to input arbitrary check format functions easily

1476 avoid the overhead of a fork system call, we arrived at a hybrid implementation in which a Z3 solver instance
in one process exports its representation of the constraints as CNF, which we replicate and pass to many parallel
instances of CMS after adding the appropriate parity constraints for each subset size s. The benefit of this approach
is that it avoids performance bottlenecks in CNF generation caused by XOR expansion.



IMGC™16,[FHK " 14]. Experimenting with these, we find that the circuit representations are very
large and thus have high runtime overhead when used as constraints. It is possible that circuit
synthesis algorithms designed to decrease circuit size (used for applications such as FPGA synthesis)
could reduce circuit complexity, but we leave exploring this to future work.

For complex format checking functions where only compiled implementations are available,
existing works in function approximation (used commonly in fuzzing) can be leveraged to extract
approximations of format check functions, against which possible candidate attacks could be evaluated.
Heuristically derived C function approximations are developed in the American Fuzzy Lop fuzzer
and in NeuEx, a machine-learning driven fuzzing system |Zal,SRST18]. We additionally provide a
translation tool from the output format of CMBC-GC |[FHK™14] to Python (entirely comprised of
circuit operations) to enable use of the Python front-end to Delphinium. We leave the empirical
evaluation of such heuristic approximation techniques to future work.

Finally, emerging techniques in symbolic execution such as those explored in [WBL™19| may
provide an additional avenue for format function constraint generation in future work.

5 Experiments

5.1 Experimental Setup

To evaluate the performance of Delphinium, we tested our implementation on several multi-core
servers using the most up-to-date builds of Z3 (4.8.4) and CryptoMiniSAT (5.6.8). The bulk of our
testing was conducted using Amazon EC2, using compute-optimized cbd.18xlarge instances with
72 virtual cores and 144GB of RAM] Several additional tests were run a 72-core Intel Xeon E5
CPU with 500GB of memory running on Ubuntu 16.04, and a 96-core Intel Xeon E7 CPU with 1TB
of memory running Ubuntu 18.04. We refer to these machines as AWS, E5 and E7 in the sections
below.

Data collection. For each experimental run, we collected statistics including the total number
of decryption oracle queries performed; the wall-clock time required to construct each query; the
number of plaintext bits recovered following each query; and the value of s used to construct a given
malleation string. We also recorded each malleation string S; produced by our attack, which allows
us to “replay” any transcript after the fact. To measure the algorithm’s performance in eliminating
plaintext candidates, we applied the ApproxMC approximate model counting tool |[SM19| to several
of these replayed attack transcripts: this tool provides us with an estimate for the total number of
remaining candidates for M* at every phase of a given attack.

5.2 Parameter Tuning

As a precursor to conducting complete attacks, we conducted a number of experiments to optimize our
software, and to identify practically effective values for the adjustable parameters in our algorithms.

Selecting attack parameters. The main adjustable parameters in our counting algorithms are
t, the number of counting trials, and §, which determines the fraction that must succeed. The
parameter ¢ has limited impact on solver runtime; we experientially found that O.EIE produces

15We mounted 900GB of ephemeral EC2 storage to each instance as a temporary filesystem to save CNF files during

operation.

16 e. requiring all trials to be satisfied.
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Figure 4: Number of remaining plaintext candidates satisfying G; (y-axis) vs. decryption oracle query number 1
(z-axis), counted using ApproxMC. Two attack runs are depicted on PKCS #7 with a 128-bit stream cipher. The
machine-developed attack uses t = 5,6 = 0.5. Our settings for ApproxMC permit a counting error factor of +.8z with a
certainty of 0.8. These error bars are difficult to see on a log scale, so we omit them for clarity.

reasonable performance (this is consistent with previous works [GSS06|). We determined that the key
parameter affecting attack runtime is ¢t. Empirical analysis confirmed that larger ¢ increases query
profitability by increasing the certainty of the underlying counting formula |GSS06|. However, larger
t significantly increases the complexity of each constraint formula, which results in an (approximately
linear) increase in CNF complexity and solver runtime.

To evaluate the impact of changing ¢ on our attacks, we conducted a series of “microbenchmarks”
of our attack’s experiment generation procedure, using the PKCS #7 format checking function
(described in the following section) as a concrete input. In each experiment, we asked the algorithm to
derive 10 malleation strings S; at some phase of a complete attack run, and then used the ApproxMC
model counting tool to measure and average the minimum profitability of the resulting malleation
Stringiﬂ We repeated each experiment for each ¢ € {1,...,6}, and measured the wall-clock execution
time of experiment generation. Our results indicate that t = 5 provides an effective tradeoff between
query efficiency and execution time, with higher values of ¢ producing diminishing returns. We use
this value to conduct our full attacks.

5.3 End-To-End Evaluation

PKCS7 Encryption Padding. The PKCS #7 encryption standard (RFC 2315) |Kal98| defines a
padding scheme for use with block cipher modes of operation. This padding is similar to the standard
TLS CBC-mode padding [AP13] considered by Vaudenay [Vau02]. We evaluate this function as a
benchmark both because it is reasonably complex, and because the human-developed attack is well
understood.

PKCS #7 operates by padding an octet-aligned message to a multiple of B bytes. The padding
string is of length 1 < P < B bytes, and each byte comprises an 8-bit encoding of the integer P. The
format checking function Fpkcs7 recovers P from the final byte of the padded message, verifies that
P e {1,..., B}, and checks that each of the trailing P bytes contains the same value. We present a
Z3-Python implementation in Appendix [F}

1"We did this by simulating each possible result from the decryption oracle, and using ApproxMC the number of
plaintext candidates eliminated by each.
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Figure 5: Malleation strings produced by attacks on PKCS #7 (128-bit) using a stream cipher. The it" row of each
bitmap depicts S;, with “1” bits in black (note that each diagram has been scaled to fill the column width, so pixels
are not square). The left rectangle presents the output of a human-developed attack completing in 1599 queries. The

right shows a machine-developed attack at (¢t = 5,6 = 0.5) completing in 1232 queries.
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Figure 6: Malleation strings for 128-bit bitwise padding (Fpitpad) using a stream cipher. Experiments consider several
different values of ¢, all with § = 0.5. Each uses a different random 128-bit message, which can account for some
variability in the attack progress. For ¢t = 1 the total number of queries is too large to show in this diagram, and we
only present approximately the first 10% of the full attack transcript.

Ezxperimental setup. We conducted an experimental evaluation of the PKCS #7 attack against a
128-bit stream cipher, using parameters t = 5, = 0.5. Our experiments begin by sampling a random
message M™ from the space of all possible PKCS #7 padded messages, and setting Gy <+ Fch57[T_gl
Due to the time requirements of the full attack, we ran one complete attack on E5, although we
ran many partial attacks and attacks at lower parameters. As a baseline comparison, we also
implemented the manually-developed “human” attack (based on Vaudenay’s approach [Vau02)).

Results. Our attack run completed in 1232 queries over 12.26 hours, averaging 35.82 seconds per
oracle query. While this runtime appears significantly better than the ~2000 query expectation we
calculated for the human attack (and even the 1599 queries in the human attack example we present),
the reader should not draw any conclusions from this single data point. A detailed analysis of query
profitability (see Figure |4)) shows that our attack has approximately the same typical profitability as
the human attack, and query count differences can be attributed to normal variability. This test was
run on Eb5.

Figure [5] presents a transcript of the malleation strings produced by our attack algorithm, along
with the malleations devised by the human attack. We optimized our attack to re-generate fresh
(simplified) CNF whenever the decryption oracle produced a TRUE result: this CNF generation
consumes much of the runtime. Appendix [2] shows the time required to generate CNF, as well as
the time CMS required in order to extract each query S;. To measure the query profitability of
our attack, we employed the ApproxMC model counting tool to measure the number of remaining
candidates for M* at each phase of the attack. This result, along with the conjectured set size s is
shown in Figure [4]

Bitwise Padding. In the course of testing our attacks, we constructed a simplified bit padding
scheme Fpitpaq. This contrived scheme encodes the bit length of the padding P into the rightmost

18Tn practice, this plaintext distribution tends to produce messages with short padding.



[loga(n)] bits of the plaintext string, and then places up to P padding bits directly to the left of
this length field, with each padding bit set to 1. A useful property of this padding format for our
experiments is that it possesses a high theoretical query profitability: a single decryption query
can obtain approximately one bit of the underlying message. We verified the effectiveness of our
attacks against this format, using a 128-bit stream cipher at ¢t = 5, 6 = 0.5 on Eb, obtaining a
complete attack run in 151 queries with an average query time of 28.88 seconds. Figure [1| shows one
attack transcript at t = 5,8 = 0.5, and Figure [6] shows multiple random attack runs at values of
te{l,...,5}
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Figure 7: Tool attack on 128-bit Bitwise Padding Format.

In order to further evaluate our attack algorithm, as well as to compare behavior over attack
parameters and to validate the logarithmically-sized hash functions described in Section [£.2] we
conducted a series of attacks against this bitwise padding format similar to those we provide for
PKCS?7. For each ¢ from {1,...,6} we execute a full attack, once each for logarithmically-sized and
full hash functions. We use ApproxMC to evaluate generated queries, however, unlike in the PKCS7
experiment, we model count the messages which are excluded by a given query. This value is tightly
related to the remaining valid candidate messages and as such the experiments are comparable.

Figure [7b| demonstrates the ApproxMC approximations of messages ruled out by each query using
short hash functions, and Figure [7a] demonstrates them for full hash functions. Figure [7d shows
results for t = 1, truncating the attack which required over 2000 querieﬂ Trend line averages are
provided in the referenced figures; full scatter plot graphs are provided in Appendix [C-3]

From these experiments we observe diminishing returns beyond ¢ = 2 for the bitwise format, and
similar behavior between short and long hash functions.

Sudoku. SAT solvers have been used many times to solve Sudoku puzzles, e.g., [RHFT17,|Ran18, ppm].
To evaluate our techniques against arbitrary formats, we instantiated a function Fg,qok, that interprets
a plaintext M as an encoded D x D board, and outputs 1 iff the puzzle is valid.

Because existing implementations e.g., [ppm| make use of algebraic theories (which are not easily
translated to our setting), we wrote a new constraint formula using quantifier-free bitvectors. Each
square of the puzzle is encoded using [loga(D + 1)] bits, with 0 corresponding to an unfilled square.
Because our constraint systems become very large for standard 9 x 9 puzzles, we tested our system
against 4 x 4 puzzles. In this format, each square is represented by a 3-bit substring, encoding the
values {0, ...,7}. This is a very simple format, since there are only 280 possible valid puzzles.

We tested this format using a simple stream cipher, beginning with 10 random (valid) Sudoku

19The t = 1 graphs are similar for the two hash function classes.



puzzles, and with Gg = Fsydoku, £ = 5 and § = 0.5. We found that our attack was able to derive the
correct plaintext Sudoku solution in an average of 20 queries, with the attacks running in an average
of 33 minutes. The variation in the attack statistics is large (min. 7, max. 32 queries; min. 10, max.
60 minutes). This occurs because the algorithm is able to derive many more constraints on its model
when the oracle returns a TRUE result, and this occurs only in the relatively rare case where the
chosen malleation induces a permutation on some subset of the entries, preserving the uniqueness of
values in rows, columns, and squares, and without changing values to anything outside of {1,...,4}.
Each attack completed after it found the second such malleation; the variation comes from invalid
guesses. A visualization of one attack can be found in Appendix

S2N Session Ticket Format. Although our experiments are incomplete at the time of submission,
we additionally developed a format checking function against the Amazon s2n [AWS15| TLS session
ticket format. s2n uses 60-byte tickets with a 12-byte header comprising a protocol version, ciphersuite
version, and format version, along with an 8-byte timestamp that is compared against the current
server clock. Although s2n uses authenticated encryption (AES-GCM), we consider a hypothetical
scenario where nonce re-use has allowed for authenticator forgery [Fer05, BZD'16].

We implemented the s2n ticket format verification routine as a function Fycket (using a best
guess for the server’s current time value at each query) and executed it against a truncated ticket
of length 16 bytes. Our attack is running successfully (and eliminating plaintext candidates) at
submission time; we will update this section when it completes.

6 Related Work

CCA-2 and format oracle attacks. The literature contains an abundance of works on chosen
ciphertext and format oracle attacks. Many works consider the problem of constructing and analyzing
authenticated encryption modes [BN0O,[Rog02, RS06|, or analyzing deployed protocols, e.g., [BKNO04].
Among many practical format oracle attacks [MRLG15, BFK™12,[PDM ™18, RD10, YPMO05,PY04]
[JS11, AF18, [ KMSS15, GGK 16|, the Lucky13 attacks [AP13,/AP15] are notable since they use a
noisy timing-based side channel.

Automated discovery of cryptographic attacks. Automated attack discovery on systems has
been considered in the past. One line of work |[CSP16|, [QSP17] has focused on generating public
input values that lead to maximum leakage of secret input in Java programs. The ultimate goal
of these tools is to learn the sequence of values that result in the most information gain of the
secret via channel capacity and shannon entropy measurements. While [CSP16| does not consider
an adversary that makes adaptive queries (i.e. those that are a result of information previously
learned) [QSP17] does account for this in their algorithm constructions. However, to reiterate, these
works focus on java programs and utilize symbolic execution to get all different paths that a program
can take and they are specifically interested in timing and memory usage side channels. While there
analysis of shannon entropy utilizes model counting methods, these methods are based on numerical
optimization methods and the solving of non linear maximal optimization problems. Their results are
valid for smaller input spaces with complex programs, but appear from the experimental section to
be untested on larger domain spaces, such as those with greater than 2'%° elements. We instead focus
on a slightly more specific problem of tasks done with encrypted data and the insecurities resulting
from performing computation with these values after decryption. Sequential works follow this model,
utilizing symbolic execution and numeric optimization methods to recover secret input [BRB18].



Using solvers for cryptographic tasks. A wide variety of cryptographic use cases for theory
solvers have been considered in the literature. Soos et al. [SNC09| developed CryptoMiniSAT
to recover state from weak stream ciphers, an application also considered in [COQO09|. Solvers
have also been used against hash functions [MZ06|, and to obtain cipher key schedules following
cold boot attacks [AKMY10|. A separate line of works uses solvers to generate cryptographic
protocols [JMKG14, HKM15, AGH13, AGH15|.

Approximate model counting. In this work we use model counting techniques pioneered by
Gomes et al. |GSS06]. However, many other techniques have been proposed in the literature. Several
works propose sophisticated multi-query approach with high accuracy [SM19,/CMV16|, resulting
in the ApproxMC tool we use in our experiments. Other works examine the complexity of parity
constraints [ZCSE16|, and optimize the number of variables that must be constrained [IMMV15].

7 Conclusion

In this work we developed novel techniques for automating the discovery of chosen ciphertext
attacks on symmetric encryption scheme. We presented experimental results from our software,
demonstrating that it generates successful attacks against both real-world and contrived format
oracles. We view these initial results primarily as a demonstration of feasibility: our work leaves
significant room for further optimization, which we intend to pursue as follow-up work.

Open questions and future work. Our work leaves a number of open problems. In particular,
we proposed several optimizations that we were not able to implement in our tool, due to time
and performance constraints. Additionally, while we demonstrated the viability of our model count
optimization techniques through empirical analysis, these techniques require theoretical attention.
Our ideas may also be extensible in many ways: for example, developing automated attacks on
protocols with side-channel leakage; on public-key encryption; and on “leaky” searchable encryption
schemes, e.g., [GLMP18|. Most critically, a key contribution of this work is that it poses new
challenges for the solver research community, which may result in improvements both to general
solver efficiency, as well as to the performance of these attack tools.
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A The Greedy Algorithm can be Optimal

In the following proof sketch, we justify our greedy algorithm by demonstrating existence of a simple
format and malleation function pair for which the greedy attack is optimal. The defined format
and malleation pair serves as an existence proof. The intuition behind this format is that each
possible query leaks one bit of information by diving the remaining candidate message space in half,
every query must be made to uniquely identify the plaintext, and repeat queries do not provide
any information whatsoever. As such, both the greedy and optimal attacks are clear, and as is
demonstrated, equivalent.
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Lemma A.1 For the format F and malleation Maul
18 optimal.

pair (Fparity, Truncation), the greedy attack

plain

A.1 Preliminaries

Consider the message distribution of uniform k-bit strings. The size of this message space is then
2% Consider the format check Fparity to be the bitwise parity function, which maps bitstrings of
positive length to {0,1}. A parity value of 1 corresponds to passing the format check, and parity 0
to faﬂingm

We will define a plaintext malleation function that performs simple truncation from the right side
(the least significant bits) of the plaintext. Such a function can be constructed for stream ciphers, by
simply performing the identical truncation on a ciphertext@ The malleation string S represents
the truncation instruction as a non-negative integer that indicates how many bits will be removed.
Truncation values that exceed the message length result in undefined output.

For a given malleation string S (truncation value), let My be the subset of plaintexts where
which, VM € My, it holds that Fparity(Mau|p|ain(M, S)) =0, and let M1 be the equivalent set where
the output of the check is 1. Recall profitability ¢(G;—1,G;) from the attack definition, the number
of messages “ruled out” at each iteration. In this proof sketch, we operate over a message distribution
rather than a single concrete message, and as such expected profitability is used for average-case
analysis. In this formulation, the most profitable malleation strings in expectation are those which
divide the candidate message evenly: where approximately as many messages are in My as in M.

Let M* be the a target plaintext message, with Fpayity(M*) = 1 and C* its bitwise stream cipher
encryption.

A.2 Observations

The 0-length truncation will always return 1 (parity check success), as the original message is defined
to be validly formatted and is left unchanged. So, we need only consider the other £ — 1 truncations,
those of non-zero length (as you cannot drop k or more bits from a k-bit message).

Assuming the underlying message is uniformly sampled from the k-bit message space, each
truncated bit will change the parity with % probability. The length-1 truncation then will result in
two message distributions of equal size: one where the truncated bit was 1 and the other where it
was 0. If the truncated bit was 1, necessarily the parity of the remaining bits is 0, thus the format
check over these will fail, and otherwise the parity of the remaining bits is 1 and the format check
will pass. The oracle query on this truncation then uniquely determines the truncated bit of M by
revealing the parity of the remaining bits.

These message distributions are of size 25~2 each (not k — 1: the un-truncated unknown bits
must have parity 0 or 1 as determined by the contents of the truncated bit), are disjoint, and under
union form the entire 2¥~! valid message space.

Truncating additional bits in the first query has a similar effect. Consider truncating two bits
in the first query: rather than two cases, there are four (the four values of two truncated bits):
two cases which leave the un-truncated bits valid (unchanged parity), and two which flip parity. A
partition is formed over messages ending in 01 or 10 and messages ending in 00 or 11, and these two

20Here we will consider the parity of strings of less than 1 bit in length to be undefined.
2'We only consider right-truncations because left-truncations cause a stream-cipher message to be misaligned with
the keystream, leading to unpredictable results from which the attack can extract no information.



message classes are of equal size 2F73: parity 1 messages of length k& — 2 and parity 0 messages of
length k — 2.

Based on the previous definition of profit, the one- and two- bit truncations are of equal
profitability. It’s clear that longer truncations follow the same pattern inductively, each creating a
partition where both sides consist of twice as many classes of messages where the classes themselves
are % the size. If all possible truncations are of the same profitability, it must be the case that any
choice of truncation is greedy (highest-profitability-first) for the first query in the attack.

A.3 The Optimal Attack

There are k — 1 possible truncations. Repeating a truncation provides information which the attack
already knows (the parity of the un-truncated bits) and therefore no optimal attack can repeat a
truncation.

Assume some optimal (in terms of query count) attack makes less than k& — 1 queries. Necessarily,
some truncation length must be left un-queried. Let that length be u. The attacker must then know
the parity of all subsets of bits of length 1 up to u — 1 from the left. If they know the parity of the
leftmost bit, they know the value of the bit. If they know the leftmost bit, and they know the parity
of the two leftmost bits, they know the two leftmost bits. Inductively, the attacker knows all bits
up to but not including u. The attacker has also made queries on truncations of length u + 1 up
to k — 1 (if there are any, u might equal k — 1). Thus, they know the parity of substrings starting
from bit u (e.g. u through u+ 1, u through v+ 2, ...). Incrementally inducting up to k, the attacker
knows all bits from u + 2 to k (if any). Importantly, the only information the attacker lacks is the
parity of the substring of bits from 1 to u, which prevents them from uniquely constraining bits u
and u 4+ 1. They know the parity of these two bits, and as such only two of the possible four two-bit
strings are valid candidates, but there is insufficient information to differentiate them.

The above analysis has edge cases at very small values of k. For example, at k=1 or k = 2, it’s
unclear where the un-queried index would be. However, fewer than k — 1 queries in those cases is
zero queries, from which no information can possibly be extracted. k = 1 is trivial as M must have
parity 1, and k = 2 clearly has two candidate messages before any queries are made. At k = 2, the
only valid query is to drop the first bit. The result of this query uniquely constrains the message.

Therefore, after any k — 2 optimal queries, the attack is left with two possible messages, and
thus has not uniquely constrained the message space. This attack then, is incomplete, and thus the
assumption that an optimal attack with fewer than & — 1 queries exists is faulty.

It is clear that querying the un-queried truncation at w would finish the attack, uniquely
constraining the message bits in k£ — 1 queries by revealing the parity of the bit at u. Thus, any
optimal attack must use at least k — 1 queries, and an optimal attack exists using k — 1 queries.

A.4 The Greedy Attack

As was shown, the optimal attack makes a truncation query at each available length for a total
of k — 1 queries. Order is irrelevant as any k — 2 optimal queries allow the last query to uniquely
constrain the message. In the observations considered prior, initially, all truncations are of equal
profitability, and thus the greedy attack could select any of them.

In order to assert that the greedy attack is optimal then, it is sufficient to show that any query
made by the greedy attack leads to a state wherein the greedy attack will not make a redundant
query. Once k — 1 non-redundant queries are made, an optimal attack has necessarily been executed.



The profitability of a redundant query is zero at any stage of the attack. This is because, having
previously made a given query, the greedy attack excludes from consideration all messages which
differ from the oracle at that truncation length. It does so though iterative constraints which assert
that the candidate messages behave as the oracle did given a particular malleation. Thus, any
redundant query will reject all candidate messages if the oracle returned false on that malleation,
or will accept all candidate messages if the oracle returned true. Either way, no messages are
differentiated, and so no redundant query can be selected in the greedy attack. Therefore, the greedy
attack is optimal.

A.5 Discussion

In this simple scenario, the greedy attack is optimal. This can be clearly shown in that all available
malleations are either optimal or completely redundant. In real format checks, parity checks
sometimes occur, but often more complicated systems of constraints are expressed such as range
statements, conditionals, or regular expressions.

B The Greedy Algorithm can be Suboptimal

In the following proof sketch, we provide a counterexample to the optimality of the greedy algorithm
as both analysis of limitations of the attack algorithm and to highlight opportunity for future work.
Our greedy attack algorithm operates over a pair consisting of a format checking function and
a malleation function, and as such an existence proof outlining the possibility of non-optimality
requires definition of each element of such a pair. Here the format check F will be defined as a
conditional function given below, and the malleation Maul as the composition of truncation and

exclusive—ORP_zl

plain

Fy(M) = Pa?”ity(MO..L—(k+1)) if ML_(k+1)__L — cookie
’ Padding(M) otherwise

This format check is somewhat contrived to “lead astray” the greedy algorithm. Greedy algorithms
are non-optimal when a locally non-optimal choice enables higher-efficiency (optimality, or profitability
per query) choices later in execution. In order to realize this disparity, we define F\, conditionally,
where one case applies a parity format check if a cookie value is matched, and the other simply
applies a PKCST7-like padding check if the cookie value is not matched. Guessing the cookie value is
locally non-optimal, but then the enabled attack against parity is more efficient than the greedy
attack against the padding format on average.

Lemma B.1 For the format F and malleation Maul
greedy attack is not optimal.

plain Pair (Fv, Truncation o Exclusive-OR), the
B.1 Preliminaries

Consider the message distribution of uniform L-bit strings. The size of this message space is then
2L, Le@ kl = L and we require that 25 > [.

22The attack algorithm then can flip any subset of bits, and truncate the message down to any non-zero length.
23We will consider I chunks of size k when analyzing this distribution.



Let the encryption scheme be a stream cipher which uses @ (exclusive-OR) to mix the message
with the keystream, and assume it operates “left to right” (that is, we refer to the beginning of the
keystream and the message as the “left side”). Consider the malleation in question to be arbitrary
composition of truncation and exclusive-OR, allowing the attack algorithm to flip any subset of bits
of the message. This is a commonly available malleation for unauthenticated stream ciphers (or
those where authentication can be forged, as is the case in Galois-Counter Mode with nonce reuse).
Although truncated messages are potentially accepted by the format, the length of the message is
leaked by the known ciphertext and as such the initial candidate message space excludes shortened
messages.

Recall profitability ¥(G;—1,G;) from the attack definition, the number of messages “ruled out”
at each iteration. In this proof sketch, we operate over a message distribution rather than a single
concrete message, and as such expected profitability is used for average-case analysis.

Let M be the real plaintext message, and C' its bitwise stream cipher encryption. We allow M
to be any L-bit string, not just those which are valid under the predicate F.

When checking a message, F\ considers the leftmost k + 1 bits, comparing them to some per-
instance randomly sampled “cookie” Valu@ If the top k& + 1 bits match this cookie, the remaining
L — (k + 1) bits are checked using a bitwise parity check. Otherwise, the entire L-bit message is
checked with More intuitive descriptions of each branch of the conditional format check are provided:

B.1.1 Parity Check

This check evaluates the remaining bits after any truncations (at least 1 bit, per the format definition),
and returns the parity of those bits. Parity 1 is accepted by the format, parity 0 is rejected. As
noted in the greedy-optimal analysis, this format in combination with truncation can leak 1 bit of
information per query, allowing efficiency of message discovery linear in the number of bits.

B.1.2 Padding Check

This check evaluates L bits in k-bit chunks. As such, any truncation renders a message invalid. The
message must be padded with a number of k-bit chunks matching the value of the last chunk. This
is very similar to PKCS7, but chunks are not required to be 8 bits. Requiring 2* > [ ensures that the
padding can stretch over the entire L-bit message. Attacking this format involves malleating chunks
of the underlying message to become valid padding, thus creating an exclusive-OR equation with one
unknown (which thus can be immediately solved). This requires guessing the correct exclusive-OR
malleation string to flip bits in the message to become valid padding. As will become clear, guessing
a padding chunk will be more profitable than guessing the cookie value, but enable a less efficient
attack than that allowed once the cookie value is discovered in the optimal attack.

B.2 Observations

Note that we will primarily consider truncations off the right side of the known ciphertext as this
will allow the remaining bits to decrypt as expected. If the keystream is pseudorandom, truncation
off the left will misalign the key and ciphertext streams, causing unpredictable bits to arise in the
resulting plaintext. As such, the attack algorithm would be unable to differentiate oracle results on

24 Although the attack algorithm has a full description of the format check, extending the model of the oracle to
contain private randomness is in no way disparate from reality.



such queries from oracle results on random strings, and thus these queries yield trivial information
about the target plaintext.

B.3 The Optimal Attack

The cookie value is embedded in a conditional as part of the description of the format check provided
to the attack algorithm. This analysis still holds in the case that this value is initially unknown to
the attack algorithm and it has to guess a k + 1-bit exclusive-OR string to transform the plaintext
into the cookie value in a sequence of queries, but that assumption complicates the model of the
format oracle and as such is elided.

Thus, the optimal strategy is to truncate the known ciphertext to k + 2 bitﬂ and guess the
plaintext underlying the first k£ + 1 bits. As the cookie is known, and the exclusive-OR malleation
can be controlled, this requires at most 2F+1
format check, the cookie is discovered.

However, it may be the case that the parity of the un-truncated, non-cookie bit(s) is 0, which
would cause a false oracle query result for any guess of the cookie. By querying each guess twice, once
with the un-truncated bit(s) untouched, and once with a single un-truncated bit flipped (exclusive-OR
with 0 or 1, respectively), the cookie will be discovered in 2¥*! queries in expectation.

Then, the remaining L — (k + 1) bits can be discovered one query at a time by truncating to
incrementally increasing sizes, at which point each query result describes whether the included bit
did or did not change the parity of the string. This completely compromises the plaintext one bit at
a time.

Before the cookie is known, the profitability of making a guess is 22~ +2) ag each pair of queries
(flipping the un-truncated bits, and not) eliminates the entire class of messages that would have
become valid had the guess been correct (which is of size 26=(*+1)) . After the cookie is known (which
also includes uncovering the un-truncated bit) the profitability is half of the remaining messages at
each step, maximizing profitability in expectation. The optimal attack in expectation will take 2++1
queries to guess the cookie and the un-truncated bit, and then L — (k + 2) for the remaining bits.

queries, or 2% in expectation. Once a query passes the

exp. profitability = 2L~ (k+2)

exp. queries = 2FFH) L [ (k4 2)

B.4 The Greedy Attack

On the other hand, the greedy attack strategy simply seeks to maximize the profitability of the
malleation selections. By attempting to guess a k-bit exclusive-OR string which transforms the last
k bits into a valid padding chunk (the k-bit representation of 1, for example), and then proceeding
chunk-wise through the I chunks of the messages, the greedy attack will take in expectation 1(2¥~1)
queries. That is, each chunk requires 25~1 guesses in expectation, and the attack must guess all [
chunks in this way, malleating them via exclusive-OR into increasingly long valid paddings.

The greedy attack will follow this attack path because doing so differentiates a class of messages
which match the guess of the last k bits from the remaining which have some other last k bits. As

25 Any non-zero amount of truncation leaving at least one non-cookie bit is equally effective but complicates the
attack slightly.



the message is uniform, the number of eliminated messages will likely be the smaller class, of size
2Lk although with some probability (27%) it will be the larger class (if the guess was correct).
Thus the profitability in expectation is

exp. profitability = (27%)(2F — (2L7%)) + (1 — 27%)(2F7%)

The greedy expected profitability exceeds the optimal expected profitability for all L > 0, and
thus the greedy attack will attack the padding scheme as described. As the attack progresses, the
profitability is exponentially reduced as some number of bits have become known. However, the
greedy attack will not switch to attacking the cookie value, because the profitability of a query
guessing the cookie is also reduced by these known bits. They decrease at the same exponential rate
(each known bit halving the size of the candidate message space) and as such the padding attack
remains more profitable.

The greedy attack must guess each k-bit chunk and so:

exp. queries = (2¥71)I

The expected number of queries for the greedy attack strictly exceeds the expected number of
queries for the optimal attack for some choices of L and k. As such, there exists a configuration for
which the greedy attack is not optimal.

B.5 Discussion

Although this particular format may seem contrived, Conditionals in format checks are not rare.
Many formats contain headers which define how the remaining message will be processed; examples
include indicators used for compression algorithm selection or format version |png, Pfe03].

B.5.1 Edge Cases

There are numerous edge cases due to the conditional nature of the format check. However, as this
is an existence proof, many of them can be mitigated through selection of k, L, and [ (the selection
of any two fixes the third) to reduce the probability and/or impact of the edge case. These cases are
summarized below, regardless.

If the two formats overlap, i.e. the cookie bits are also part of a validly padded message, the
implication of an oracle result can be unclear. However, by truncating when attacking the cookie
bits, the complications of this for the optimal attack are mitigated. The only possible true result
from the oracle occurs when the cookie is correct and the un-truncated is 1. Additionally, this has
no effect on the greedy attack. The correct guess for malleating the leftmost bits will simply be to
exclusive-OR them with zeroes. Finally, this occurs when the cookie values is all zeros, which occurs
with probability 2=*+1) 5o its effect on average-case analysis is minimal.

Another possibility of overlap is that the message is already validly padded and the first k& 4+ 1
bits are not already the cookie value. This occurs with probability slightly greater than 27%. The
optimal attack is unaffected due to the truncation strategy. The greedy attack is somewhat affected
in that malleating the last k& bits will result in a valid padding in up to two ways: leaving the bits
unchanged, and whatever transforms the bits to a k-bit representation of 1. Thus, the greedy attack
in some cases gains less information when querying on an exclusive-OR, which leaves padding bits
unchanged. Not only does this mean that the greedy attack will de-prioritize such malleations, it



Table 1: Generated CNF file size for implemented format check functions
Note that number of trials linearly increases CNF size, t = 5.

Format File size
Sudoku 1931051 (1.9M)
128-bit Bitwise Padding | 4436905 (4.3M)
128-bit PKCS #7 606882 (593K)
TLS s2n Ticket 870549 (851K)

also means that in this somewhat rare case the greedy algorithm is at least as inefficient as in the
common case.

Alternatively, The first £ + 1 bits of the message may be equal to the cookie value. With a
uniform message and a k + 1-bit cookie, this occurs with probability 2-(**1)_ The optimal attack
will be unaffected; the correct guess will not malleate these bits. However, the greedy attack is
potentially affected. An oracle query on an incorrect guess attempting to malleate the last k bits
into may return true if the parity of the message bits is 1, even if the last k bits were not transformed
to correct padding. This case degrades the expected profitability of the greedy attack somewhat
(upper-bounded by (2L~(*+1))(2=(k+1))) the class of messages which cannot entirely be ruled out
times the probability of this edge case), but as k grows with some fixed [ this bound shrinks
proportionately to the overall profitability.

Finally, if a combination of these events occur, the complications are less clear. However, while
events are not entirely independent, the probability of coincidence is roughly 2~ (**1Dk) which does
not significantly affect average-case analysis for at least some k.

C Additional Experimental Results

C.1 Generated CNF for Format Checks

In Figure [T} generated CNF formula file sizes are provided. CNF complexity, and thus wall-clock
execution time in solvers, trends with file size, although other factors such as interconnectedness of
boolean operators (akin to Boolean Circuit depth) determine this overhead.

C.2 PKCS #7

Figure [2[ shows wall-clock time in seconds to generate CNF formulae (using Z3), and to extract
malleation strings from the resulting CNF formulae (using CMS) is recorded over the course of a
PKCS #7 attack. Note that CNF re-generation only occurs periodically. We optimize the attack to
perform such re-generation only occurs when additional bits of the candidate message model are
uniquely constrained. Between each CNF' re-generation, the time required to extract malleation
strings increases linearly by a factor dependent on ¢ and the complexity of the format check.

26Varies due to format check being stateful, s2n ticket validation involves steps such as a timestamp check



Query | Known bits | CNF time (sec) | S; time (sec)
0 0 22.17 18.70
79 16 219.75 10.34
88 24 253.72 9.68
320 32 814.51 9.78
324 40 849.16 8.96
418 48 1102.34 7.91
551 56 1363.24 8.13
559 64 1300.01 5.88
598 72 1433.81 2.79
732 80 1695.01 3.57
897 88 1921.50 3.45
975 96 2096.14 3.96
998 104 2061.03 3.82
1108 112 2143.65 3.91
1157 120 2222.60 1.59

Table 2: Time required to generate experiments in a 128-bit PKCS #7 attack run. Known bits indicates the number
of bits of * that have been uncovered; CNF time indicates the number of seconds required to extract a CNF formula
for the SAT solver; S; time indicates the number of seconds required to extract a malleation string. Note that query
extractions run in parallel as described in Section



C.3 Bitwise Padding Format Tests Over ¢
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Figure 8: Approximations of how many messages were removed in a 128-bit Bitwise Padding Format attack with long
parity constraints.
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Figure 9: Approximations of how many messages were removed in a 128-bit Bitwise Padding Format attack with
short parity constraints.

C.4 Sudoku

In Figure [I0] we show an attack against the Sudoku format check. This format maps a 48-bit
bitvector to entries into a 4x4 Sudoku board and checks the validity of the resulting solution. Values
are coded as 3 bits, allowing entries from 0 to 7 (where 0 is coded as an unfilled square). Initially,
the solver knows nothing about the real plaintext, which is a given Sudoku solution. The mauled
boards show the malleation chosen by the solver applied to the real plaintext. After 7 queries, the
solver has uniquely constrained its model for the real plaintext, which is correct. When the solver
chooses a malleation which causes the resulting Sudoku board to remain valid, it can derive many
additonal constraints on the values of its model for the real plaintext. Other attacks took up to 33



queries, but have a similar pattern (deriving notable information from True oracle resutls) and thus
are omitted for brevity.

D Implementing Malleation Functions

In this section we describe plaintext malleation functions for several common encryption schemes.
The simplest of these functions, Maulgzt{;am, can be realized using the bitvector XOR function
provided by Z3. However, support for the remaining functions requires some specific changes to our

implementation.

Supporting plaintext truncation. Support for plaintext truncation requires that we support
plaintexts of variable length, something that is not natively provided by the abstract bitvector
interface of the solver. This requires that we encode a notion of plaintext length into each bitvector
that represents a plaintext, and make corresponding changes to the interface for F. For plaintexts
of length ¢ < n we accomplish this simply by treating the first loga(n) bits of each bitvector as a
length field, and specifying that every implementation of F decode this value prior to evaluating the
plaintext.

CBC mode. Our general formulation of CBC malleation specifies that Maulggﬁf outputs a set of

plaintexts. Supporting this representation efficiently requires significant changes throughout our
system. First, we modify the interface of Maulggﬁf to output two abstract bitvectors (M, Mask).
This second bitvector represents a masking string: any bit position j where Mask[j] = 1 is viewed
as a wildcard in the message vector M: i.e., when Mask[j] = 0, the value of the output message is
equal to M[j] at that position, and when Mask[i] = 1 the value at position M [j] must be viewed as
unconstrained.

This formulation requires that we modify F to take (M, Mask) as input. The function must then
reason over both M and Mask. Finally, we modify the output of F to produce three possible output
values: 0,1,2. The new output value (2) indicates that the format check cannot assign a definite
true/false value on this input, due to the uncertainty created by the unconstrained bits.[T_TI Realizing
this formulation requires only minor implementation changes to our core algorithms.

E Realizing Plaintext Weight Functions

As discussed in our basic attack algorithm is designed to identify the largest subset of messages
to be eliminated at the i*" query. From an optimization perspective, this strategy embeds a critical
assumption: namely, that every valid plaintext admitted by G; is equally likely, and thus the most
efficient path to finding M™* is to simply eliminate as many messages as possible, without regard to
message “quality”.

This approach can produce counterintuitive results in practice. One example manifests in our
attacks on the PKCS #7 encryption padding scheme |Kal98|, which we discuss in In this format,
messages may be padded with up to P bytes of padding. If our target is a valid ciphertext C* in
which F(M*) = 1, then plaintext candidates with P = 1 bytes of padding will be 2 times as common
as candidates with P = 2 bytes of padding, and so on. Since our attack strategy is optimized to
eliminate the largest subset of messages first, experiments that eliminate longer messages will tend to

2TIn practice, we implement the output of F as a bitvector of length 2, and modify our algorithms to use 00, 01, in
place of 0, 1.



Mauled board Knowledge of board

Query # Query result
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Figure 10: An example of an attack against the Sudoku format check. When the solver has narrowed a square to
some candidate entries, multiple numbers are shown in a given square. Squares which are changed from their original
values by a malleation are colored in light red.



dominate over those that eliminate short messages. A practical result is that our attack algorithm
will “assume” that short padding is more likely than longer padding, and will focus on experiments
that make sense based on this assumption. Such a strategy makes sense if a typical M* is truly 212
times more likely to have P = 1 than to have P = 15. However, such a distribution may not reflect
the typical distribution of messages in a real system.

Approximations with plaintext weight. To address this assumption, our attack algorithm can be
updated to weight plaintext candidates according to some formula provided by the user. We discuss
techniques for evaluating this weighting function in Appendix [E]

Plaintext weight information can be encoded via an abstract plaintext weighting function W :
M — {0, ..., B} defined with respect to some constant B, where W (M) — A defines the fractional
weight % of a given plaintext M. A custom weighting function can be developed, for example, to
encode the assumption that all PKCS #7 padding lengths are equally likely.

To apply this weighting information to the attack, we can sample a fresh universal hash function
H:{0,1}"™ — {1,..., B} for each trial, and extend the solver query with the following additional
constraint term constructed over Mgy, M;:

H(Mo) < W(Mo) A H(My) < W (M)

This formulation allows the weighting function to arbitrarily reduce the number of satisfying solutions
for any possible class of messages. It is easy to see that our basic attack algorithm is equivalent to
using a trivial weighting function where VM € M it holds that W (M) = B.

F Format Check Implementations

We present a listing of several Python-Solver format check functions below.

F.1 PKCS #7 padding Fpkcs?

def checkFormatPKCST7(padded msg, solver):
" PKCS7 check format as solver constraints
# size of a byte
unit size = 8§
# number of units which make up a block
block size = 16
# base case of an OR iteratively constructed
is valid = solver.false ()
# for each possible padding size
for i in range(1l, block size+1):
# base case of an AND iteratively constructed
correct _pad = solver.true()
# for each byte of a pad of size i
for j in range(1i):
# extract from padded msg the bits
# which should make up a padding byte
pad byte = solver.extract(

nmnn



F.2

def

padded msg,
(j + 1)*unit size—1,
jxunit _size)

# pad is correct if this and all previous

# checked bytes match the bitvector
# representing the size
correct pad = solver. and(
correct pad,
solver. eq(

solver .bvconst (i, unit size),

pad byte))
# padding is valid if one size matched

# thus, return the OR of padding checks at each size
is valid = solver. or(is_ valid, correct pad)

return is_valid

AWS Session Ticket Fjcket

checkFormat AWSSessionTicket (full msg, time, state, mall=0, trunc=0):

# If value is changed for these fields , will
if grabByte(mall, 1) != 0:

return 2
if grabNBytes(mall, 2, 2) != 0:

return 2

fail

# message must be at least S2N_ STATE SIZE IN BYTES bytes long
if full msg & ((1 << length field size)—1) != test length:

return 0
msg = full msg >> length field size

4 first byte must match S2N SERIALIZED FORMAT VERSION
if grabByte(msg,0) != S2N SERIALIZED FORMAT VERSION:

return 0

# protocol version from earlier point in time
# this is stateful information

if grabByte(msg, 1) != state["proto version"]|:

return 0

# iana value of cipher suite negotiated, this
if grabNBytes(msg, 2, 2) != state["iana"]|:
return 0

# checking expiry of the session ticket , this
time on_ticket = grabNBytes(msg, 8, 4)

is

1s

also stateful

also stateful

# this is going to change every time it ’s called ...

if time on_ticket > time:

information



F.3

def

return 0
if (time — time on_ticket) > TICKET LIFETIME:

return 0

return 1

Bitwise padding Fyitpad

checkFormatBitwisePadding (padded msg, solver):
numBits = solver.extract (padded msg, paddingSizeBits —1, 0)
compound _expr = solver.true ()
numVal = 1
for 1 in range(1l, ciphertextBits—paddingSizeBits+1):
ones = solver.extract (padded msg, paddingSizeBits+i—1, paddingSizeBits)
compound expr = solver. if(solver. eq(numBits, i),
solver. eq(ones, solver.bvconst(numVal,i)),
compound _expr)
numVal = (numVal << 1) | 1
length check = solver. ule(numBits, ciphertextBits—paddingSizeBits)
return solver. and(length check, compound expr)
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