
Parallel Hardware and Parallel Software

von Neumann Architecture

• Describes a computer system as a CPU (or core) connected to the main memory through an interconnection network

• Executes only one instruction at a time, with each instruction operating on only a few pieces of data

• Main memory has a set of addresses where you can store both instructions and data

• CPU is divided into a control unit and an ALU

– Control unit decides which instructions in a program need to be executed

– ALU executes the instructions selected by control unit

– CPU stores temporary data and some other information in registers

– Special register PC in the control unit
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• Interconnect/bus used to transfer instructions and data between CPU and memory

– Data/instructions fetched/read from memory to CPU

– Data/results stored/written from CPU to memory

• Separation of memory and CPU known as von Neumann bottleneck

– Problem because CPUs can execute instructions more than a hundred time faster than they can fetch items from
main memory

Modifications to the von Neumann Model

• Achieved by caching, virtual memory, and low-level parallelism

Processes, multitasking, and threads
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• OS manages hardware and software resources; selects the processes to run and time to run them; allocates memory and
other resources

• Process as an abstraction of a running program; process control block

• Multitasking – Concurrent execution of multiple processes; possibly on a single core using time slices or quanta

• Threads – Lightweight processes

– Process may block on a multitasking OS

– Threading allows a programmer to divide the processes into parts that execute concurrently so that the blockage of
one part does not impede other parts

– Faster to switch between threads than processes

∗ They have their own activation record (program counter and call stack) to allow independent execution, but
share most of the other resources with other threads in the process

– Threads are forked off a process and join the process upon termination

Parallel Algorithm Design

• Parallelizing a serial program

– Divide the work among processes/threads

– Ensure load balancing

– Minimize communications and synchronization steps

• Importance of abstraction and modularity

• Task/channel model

– A simple model for parallel programming

– Facilitates the development of efficient parallel programs for distributed memory parallel computers

– Defines a computation as a set of tasks connected by channels

Task/channel model

• Represents parallel computation as a set of tasks that may interact with each other by sending messages through channels

• Parallel computation

– Two or more tasks executing concurrently

– Number of tasks may vary during program execution

• Task

– Sequential program and its local storage, along with a collection of I/O ports

∗ Effectively a virtual von Neumann machine

∗ A set of in-ports and out-ports define its interface to the environment

– Local storage contains instructions and data for the program

– Sends local values to other tasks via output ports

– May receive data values from other tasks via input ports

– A task can perform four basic operations in addition to reading/writing local memory
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1. Send a message

2. Receive a message

3. Create tasks

4. Terminate a task

– Task may be mapped to physical PE; mapping does not affect the program semantics

∗ Multiple tasks may be mapped to a single PE

• Channel

– Link between two tasks over which messages can be sent/received

– Connects the in-port of one task to the out-port of another

– May be created or deleted dynamically; references to channels (ports) can be included in messages to allow dynamic
variation in connectivity

– Implemented as a message queue

∗ Queue connects one task’s output port to the other task’s input port

∗ Queue preserves the order in which messages are sent/received

∗ A sender can place messages on the queue and a receiver can remove messages

∗ The queue is said to be blocking if there are no messages available for removal

– Blocked task

∗ If a task tries to receive a value and none is available, the receiving task is blocked (synchronous task)

∗ A sending task is never blocked (asynchronous task), even if the previous message sent by the same task has
not yet been received

· Send operation completes immediately

• Local access of private data are easily distinguished from nonlocal data access that occurs over channel

– Data in a task’s local memory are close; other data are remote

– Local data access is much faster than nonlocal data access

– Channel abstraction provides a mechanism to indicate that computation in one task requires data in another task to
proceed; termed data dependency

• Execution time of parallel algorithm

– Period during which any task is active

– Starting time is when all tasks simultaneously begin executing

– End time is when the last task has stopped executing

Foster’s design methodology

• Four step process for designing parallel algorithms

• Encourages development of scalable parallel algorithms by delaying machine-dependent considerations to later steps

• Example: Laplace equation in 1D [Michael Heath]

– Integral transform to represent and analyze linear systems using algebraic methods

– Resolves a function or signal into its moments

– Used for the analysis of linear time-invariant systems such as electrical circuits, harmonic oscillators, and optical
devices

– Often interpreted as a function from time domain into frequency domain
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– Given Laplace equation in 1D
u′′(t) = 0

on interval a < t < b with boundary conditions

u(a) = α, u(b) = β

– Seek approximate solution values ui ≈ u(ti) at mesh points ti = a + ih, i = 0, . . . , n + 1, where h = b−a
n+1

– Finite difference approximation

u′′(ti) ≈
ui+1 − 2ui + ui−1

h2

yields tridiagonal system of algebraic equations

ui+1 − 2ui + ui−1

h2
= 0, i = 1, . . . , n

for ui, i = 1, . . . , n, where u0 = α and un+1 = β

– Starting from initial guess u(0), compute Jacobi iterates

u
(k+1)
i =

u
(k)
i−1 + u

(k)
i+1

2
, i = 1, . . . , n

for k = 1, . . . until convergence

– Define n tasks, one for each ui, i = 1, . . . , n

– Task i stores initial value of ui and updates it at each iteration until convergence

– To update ui, necessary values of ui−1 and ui+1 are obtained from neghboring tasks i− 1 and i + 1

u1
→
← u2

→
← u3

→
← · · · →← un

– Tasks 1 and n determine u0 and un+1 from boundary conditions

– Program

initialize u[i]
for k = 1, ...

if ( i > 1 ) send u[i] to task i-1 // Send to left neighbor
if ( i < n ) send u[i] to task i+1 // Send to right neighbor
if ( i < n ) recv u[i+1] from task i+1 // Receive from right neighbor
if ( i > 1 ) recv u[i-1] from task i-1 // Receive from left neighbor
u[i] = ( u[i-1] + u[i+1] ) / 2 // Update my value

end

• Mapping tasks to processors

– Tasks must be assigned to physical processors for execution

– Tasks can be mapped to processors in various ways, including multiple tasks per processor

– Semantics of program should not depend on number of processors or particular mapping of tasks to processors

– Performance usually sensitive to assignment of tasks to processors due to concurrency, workload balance, and
communication patterns

– Computational model maps naturally onto distributed memory multicomputer using message passing

• Four-step design methodology: partition, communicate, agglomerate, map
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1. Partition

– Decompose problem into primitive tasks, maximizing number of tasks that can execute concurrently

∗ Use a data-centric approach or a computation-centric approach to decompose the problem

– Data-centric approach/Domain decompositon

∗ Divide data into pieces and then, determine how to associate communications with the data

∗ Focus on largest/most frequently accessed data structure in program

∗ Example: Consider a 3D matrix as the data structure targeted for decomposition

· Partition matrix into a collection of 2D slices, giving a 1D collection of primitive tasks

· Partition matrix into a collection of 1D slices, giving a 2D collection of primitive tasks

· Consider each matrix element individually, giving a 3D collection of primitive tasks

– Functional decomposition

∗ Divide the computation into pieces and associate data items with individual computations

∗ Image processing through pipelining

– Each decomposition piece is called a primitive task

∗ At least an order of magnitude more primitive tasks than number of processors in target parallel computer

∗ Redundant computations and redundant data structure storage are minimized

∗ Primitive tasks are roughly the same size

∗ The number of tasks is an increasing function of problem size

2. Communication

– Determine communication pattern among primitive tasks, yielding task graph with primitive tasks as nodes and
communication channels as edges

– Overhead in a parallel algorithm (not required in sequential task)

– Local communication

∗ Task needs values from a small number of other tasks

– Global communication

∗ Significant number of primitive tasks must contribute data

∗ Compute the sum of values held by primitive processes

– Foster’s checklist – minimizing overhead
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∗ Communication operations are balanced among tasks

∗ Each task communicates with only a small number of neighbors

∗ Tasks can perform communications concurrently

∗ Tasks can perform their computations concurrently

3. Agglomeration

– Combine groups of primitive tasks to form fewer but larger tasks, thereby reducing communication require-
ments (lower communication overhead)

∗ If number of tasks is several order of magnitudes larger than the number of PEs, the creation of those tasks
will create a significant overhead

∗ Last two steps depend on target architecture (centralized multiprocessor or multicomputer)

– Increasing the locality of parallel algorithm; lower communications overhead

∗ Agglomerate primitive tasks that communicate with each other

∗ Eliminate communication because data values for primitive tasks are in memory of consolidated task

– Combine groups of sending and receiving tasks

∗ Reduce the number of messages being sent

∗ Send fewer longer messages to reduce per message overhead (message latency)

– Maintain the scalability of parallel design

– Reduce the software engineering costs

– Foster’s checklist

∗ Increase in locality of parallel algorithm

∗ Replicated computations take less time than the communications they replace

∗ Amount of replicated data is small enough to allow the algorithm to scale

∗ Agglomerated tasks have similar computational and communications costs

∗ Number of tasks is an increasing function of problem size

∗ Number of tasks is as small as possible, yet at least as great as the number of processors in likely target
computers

∗ Trade-off between the chosen agglomeration and the cost of modifications to existing sequential programs
is reasonable

4. Mapping

– Assign consolidated tasks to processors, subject to tradeoffs between communication costs (minimize) and
concurrency (maximize)

– Processor utilization

∗ Average percentage of time the processors are actively executing tasks necessary for solving the problem

∗ Maximized when computation is balanced evenly

– Interprocess communication

∗ Increases [Decreases] when two processes connected by a channel are mapped to different [same] proces-
sors

– Maximization of processor utilization and minimization of interprocess communication are conflicting goals

∗ Finding an optimal solution is NP-hard problem

– Static load-balancing algorithm

∗ Executed before the program begins running to determine mapping strategy

– Dynamic load-balancing algorithm

∗ Used when tasks are created and destroyed at run-time

∗ Communication or computational requirements vary widely between processes

∗ Algorithm invoked occassionally during the execution of parallel programs

– Centralized task scheduling algorithms

∗ Processors divide into one manager and many workers
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∗ Workers request tasks from manager

∗ Single manager becomes the bottleneck

– Distributed task scheduling algorithms

∗ Each processor maintains its own list of available tasks

∗ Push strategy – Processors with many available tasks send some to neighboring processors

∗ Pull strategy – Processors with no work ask neighboring processors for work

∗ Difficult to know when all sub-tasks have completed

– Foster’s checklist

∗ Designs based on one task per processor and multiple tasks per processor have been considered

∗ Both static and dynamic allocation of tasks to processors have been evaluated

∗ If a dynamic allocation of tasks to processors has been chosen, the task allocator is not a bottleneck to
performance

∗ If a static allocation of tasks to processors has been chosen, the ratio of tasks to processors is at least 10:1

– Decision tree to choose a mapping strategy

Agglomerate tasks to
minimize communication.
Create one task/processor.

Cyclically map tasks to
processors to balance
computational load.

Use a static
load balancing
algorithm.

Use a dynamic
load balancing
algorithm.

Use a run-time
task-scheduling
algorithm.

Roughly constant
computation time
per task.

Computation
time per task
varies by region.

Frequent
communications
between tasks.

Many short-lived
tasks. No intertask
communications.

Structured
communication
pattern.

Unstructured
communication
pattern.

Static number of tasks Dynamic number of tasks
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Boundary Value Problem

• Thin rod of length 1 unit made of uniform material surrounded by a blanket of insulation

• Temperature changes along the length of rod are result of heat transfer at the ends of rod and heat conduction along the
length of rod

• Both ends of rod are exposed to an ice bath at temperature 0◦C

• Initial temperature at distance x from end of rod is 100 sin(πx)

– The rod gradually cools over time

• Temperature at any point of rod at any point in time modeled by a differential equation

• Differential equation solved on computer by finite difference method to get an approximate solution as shown below
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• Finite difference method

– Stores temperatures in a 2D matrix

– Each row contains temperature distribution of the rod at some point

– Rod divided into n sections of length h, n + 1 elements in each row

– Time from 0 to T divided into m discrete entities of length k; m + 1 rows in the matrix

– Initial temperature distribution along the length of rod represented by points in bottom row (known values)

– Temperature at the ends of rod represented by left and right edges of grid (known values)

– ui,j represents the temperature of rod at point i at time j

– ui,j+1 is computed by
ui,j+1 = rui−1,j + (1− 2r)ui,j + rui+1,j

where r = k/h2

• Partitioning

– One data item per grid point

– Associate one primitive task with each grid point, leading to 2D domain decomposition

• Communication

– Draw channels between tasks to show the dependence

– Task ui,j+1 requires values of ui−1,j , ui,j , and ui+1,j

– Each task has three incoming channels and three outgoing channels

• Agglomeration and mapping

– Later tasks depend on earlier tasks; vertical paths from bottom to top

– Agglomerate all tasks associated with each point in the rod

– Task/channel graph reduced to a single row; much simpler

∗ Linear array of tasks, each communicating solely with its neighbors

– The number of tasks is static and the communication pattern between them is regular; each task performs the same
computation

∗ Create one task per processor

∗ Agglomerate primitive tasks to balance computational workload and minimize communication
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• Analysis

– Rod divided into n pieces of size h

– Let χ represent the time needed to compute ui,j+1, given ui−1,j , ui,j , and ui+1,j

– Using single processor to update n− 1 interior values requires time (n− 1)χ

– m time steps in the algorithm give the total execution time of sequential algorithm as m(n− 1)χ

– Computation of parallel algorithm time

∗ p processors; each processor responsible for equal size portion of rod’s elements
∗ Computation time for each iteration: χd(n− 1)/pe
∗ Account for communication time as well

∗ Each processor sends two values and receives two values from neighbors
∗ Let λ be the time required to send/receive one value, giving communication time as 2λ

∗ Send and receive may overlap in time (proceed concurrently)
∗ Overall parallel algorithm execution time: χd(n− 1)/pe+ 2λ

∗ For m iterations, the time is: m(χd(n− 1)/pe+ 2λ)

Finding the maximum

• The above solution to compute the temperature distribution is approximate

• For each of the m points in the rod, difference between computed solution x and correct solution c is given by |(x− c)/c|

• Modify the parallel algorithm to find the maximum error

• Given a set of n values a0, a1, . . . , an−1 and an associative binary operator⊕, reduction is defined as

a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an−1

– Addition is an example of an associative binary operator

– Finding the sum a0 + a1 + a2 + · · ·+ an−1 is an example of a reduction

– Maximum and minimum of two numbers are also associative binary operators

• Reduction requires n− 1 operations giving a time complexity of Θ(n) on a sequential computer

– How quickly can we do it on a parallel machine?

• Partitioning

– n values in the list, divide into n pieces

– Associate one task per piece

– Goal is to find the sum of all n values

• Communication

– Set up communication channels between tasks

– Channel from task A to task B allows B to compute the maximum of values held by two tasks

– In one communication step, a task may send/receive one message

– The task holding the maximum at the end of communication is called root task

– Time λ to communicate a value to another task and time χ to find maximum of the two

– Overall time: (n− 1)(λ + χ) – worse than sequential

∗ Communication time is (n− 1)λ because root task must receive n− 1 messages
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– Create a tree-like topology; binary tree with 1, 2, 4, 8 nodes

– Depth of tree given by k = log n

– Overall time reduces to log n(λ + χ)

• Agglomeration and mapping

– Number of tasks is static, computation per task is trivial, communication pattern is regular

– Agglomerate tasks to minimize communication

∗ Assign n/p leaf tasks to each of the p processors

• Analysis

– χ: time needed to perform binary operation

– λ: time needed to communicate a value from one task to another via channel

– Divide n values evenly among p tasks; each task has at most dn/pe values

– All tasks perform concurrently, time needed to compute subtotals is (dn/pe − 1)χ

– Reduction of p values distributed among p tasks performed in dlog pe communication steps

– Receiving process waits and performs reduction requiring time λ + χ

– dlog pe communication steps yield overall time for parallel program as

(dn/pe − 1)χ + dlog pe(λ + χ)

The n-body problem

• Parallelize a sequential algorithm in which computation is performed on every pair of objects

• Simulate the motion of n particles of varying mass in two dimensions due to gravitational pull

• During each iteration, compute new position and velocity vector of each particle, given the position of all other particles

– Complexity of Θ(n2) for every iteration for n objects

• Partitioning

– One task per particle

– To compute the location of the particle, the task must know the location of all other particles

• Communication

– gather operation

∗ Global communication that takes a dataset distributed among a group of tasks and collects the items on a single
task

∗ Concatenation of data items b, c, and d into the process containing a

mb mc md

#
"

 
!

ma mb mc md
6 6 6

– all-gather operation

∗ Similar to gather, except that at the end of communication, every task has a copy of the entire dataset
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∗ Useful in current context to update the location of every particle

– Can be accomplished by putting a channel between every pair of tasks

∗ During each communication step, each task sends its vector element to one other task
∗ After n− 1 communication steps, each task has the positions of all other particles

– Possible to improve communication performance to achieve above in logarithmic number of steps

∗ Exchange one particle between every pair of processors
∗ Exchange two particles between odd numbered processors and two between even numbered processors
∗ Continue till all processors have all particles, with increasing number of particles at every step
∗ Achieved by hypercube topology

• Agglomeration and mapping

– Generally, n� p

– Assume that n is a multiple of p

– Agglomerate n/p particles per task

– all-gather communication requires log p steps

∗ In the first step, length of messages is n/p

∗ In the second step, length of messages is 2n/p

• Analysis

– Derive an expression for execution time of the algorithm

– λ is the latency to initiate communication

– Bandwidth β represents the number of data items sent over a channel in one unit of time

– Sending a message with n items now requires λ + n/β units of time

– Communication time for each iteration

log p
∑

i=1

(

λ +
2i−1n

βp

)

= λ log p +
n(p− 1)

βp

– Each task responsible for performing gravitational force computation for n/p list elements

∗ Time needed for computation denoted by χ

∗ Computation time for parallel algorithm is χ(n/p)

– From above, expected parallel execution time per iteration is

λ log p +
n(p− 1)

βp
+ χ

n

p

Adding data input

• Parallel program inputs the original positions and velocity vectors for n particles

– Assume that a single task responsible for all I/O (I/O task)

– Open data file and read the position and velocities of n particles

– Time needed to input or output n data elements: λio + n/βio

– Time to read the position (2 data items as x and y coordinates) and velocities of all n particles: λio + 4n/βio

• Communication

– Break up input data into pieces to assign n/p elements to each task
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– scatter operation – reverse of gather

– Send the correct n/p particles to each task in turn

∗ p− 1 messages, each of length 4n/p

∗ Time used: (p− 1)(λ + 4n/(pβ))

∗ Not efficient because communication is not balanced among processors

– Derive a scatter operation requiring log p communication steps

∗ Send half the list to another task
∗ Next, each process sends quarter list to previously inactive tasks
∗ And keep on going by sending half of previous step
∗ Time required for this is

log p
∑

i=1

(

λ +
4n

2ipβ

)

= λ log p +
4n(p− 1)

βp

– Data transmission time is identical for both algorithms

∗ Task/channel model supports the concurrent transmission of messages from multiple tasks, as long as they use
different channels, and no two active channels have the same source or destination task

• Analysis

– Derive an expression for the total expected execution time of the parallel n-body algorithm

– I/O of positions and velocities of n particles is a completely sequential operation requiring time

2(λio + 4n/βio)

– Scattering at the beginning and gathering particles at the end of the computation requires time

2

(

λ log p +
4n(p− 1)

βp

)

– Each iteration of parallel algorithm requires an all-gather communication of particles’ position, requiring time

λ log p +
2n(p− 1)

βp

– Each processor performs its share of computation, requiring time

χ

⌈

n

p

⌉

(n− 1)

– If algorithm executes for m iterations, overall execution time of parallel computation is about

2

(

λio +
4n

βio

)

+ 2

(

λ log p +
4n(p− 1)

βp

)

+ m

(

λ log p +
2n(p− 1)

βp
+ χ

⌈

n

p

⌉

(n− 1)

)

Sieve of Eratosthenes

Sequential algorithm

Create a Boolean array from 1 to n
Mark all values as true
k = 2
while kˆ2 < n

Change all multiples of k between kˆ2 and n to false
Find smallest index p > k that contains true
k = p

The indices that are true represent prime numbers
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• Not practical to find large primes

• Complexity of algorithm is Θ(n ln ln n); n is exponential in number of digits

Source of parallelism

• Domain decomposition

– Algorithm involves marking the elements of the array representing integers

– Break the array into n− 1 elements

– Associate a primitive task with each of these elements

• Key parallel task

– Change all multiples of k between k2 and n to false

for ( j = k * k; j <= n; j += k )
p[j] = ( j % k ) != 0;

• Two communications needed to change the value of k in the main loop

– Reduction to find the value of k (smallest k that is true)

– Broadcast to convey new k to all tasks

– Problem: Too many reduction/broadcast operations

• Agglomeration goals

– Consolidate tasks to utilize reasonable number of processors

– Reduce communication costs

– Balance computations among processes

Data decomposition options

• Final grouping of data elements – the result of partitioning, agglomeration, and mapping

• Interleaved data decomposition

– Process i responsible for indices i, i + p, i + 2p, . . .

– Given an index i, it is easy to determine the owner of that index (process i%p)

– May lead to significant load imbalance among processes

∗ Two processes marking multiples of 2
∗ Process 0 marks d(n− 1)/2e elements; process 1 marks none

– Finding the next prime number may still require some sort of reduction/broadcast

• Block data decomposition

– Balanced loads

– More complicated to determine owner if n is not a multiple of p

– Divide the array into p contiguous blocks of roughly equal size

∗ Problem if n is not a multiple of p

∗ Let n = 1024 and p = 10; n/p = 102.

· If we give every process 102 elements, there will be 4 left over
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· We cannot give every process 103 elements because the array is not that large
∗ Give first p− 1 processes dn/pe processes and give the leftover to process p

· There may be no elements left for process p

· Complicates logic of programs if processes exchange values
· Leads to less efficient utilization of communication network

– Balance workload by assigning either dn/pe or bn/pc elements to each process

– Questions

1. What is the range of elements controlled by a given process?
2. Which process controls a given element?

– Method 1

∗ Compute r = n%p

∗ If r == 0 every process gets a block of size n/p

∗ Otherwise
· First r blocks have size dn/pe
· Remaining p− r blocks have size bn/pc

∗ First element controlled by process i: ibn/pc+ min(i, r)

∗ Last element controlled by process i: (i + 1)bn/pc+ min(i, r)− 1

∗ Process controlling element j:

max

(⌊

j

bn/pc+ 1

⌋

,

⌊

j − r

bn/pc

⌋)

∗ The expressions for the first and last element are easy to compute and can be saved for each process at the
beginning of algorithm

∗ The expression to find the controlling process for element j is more complex and needs to be computed on the
fly (not good)

– Method 2

∗ Scatter larger blocks among processes
∗ First element controlled by process i: bin/pc
∗ Last element controlled by process i: b(i + 1)n/pc − 1

∗ Process controlling an element j
⌊

p(j + 1)− 1

n

⌋

– Distributing 14 elements among four tasks

Task 0 Task 1 Task 2 Task 3
Grouped

Distributed

– Method 2 is superior because it requires fewer operations to perform the three common block management opera-
tions

∗ Even better as integer division automatically gives floor

• Block decomposition macros

– Applicable to any parallel program
– Define three C macros to be used for block limits and ownership

#define BLOCK_LOW(id,p,n) ((id)*(n)/(p))
#define BLOCK_HIGH(id,p,n) (BLOCK_LOW((id)+1,(p),(n)) - 1 )
#define BLOCK_SIZE(id,p,n) (BLOCK_HIGH((id),(p),(n)) - BLOCK_LOW((id),(p),(n)) + 1)
#define BLOCK_OWNER(index,p,n) (((p)*((index)+1)-1)/(n))

– BLOCK_LOW gives the first index controlled by the process
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– BLOCK_HIGH gives the last index controlled by the process

– BLOCK_SIZE gives the number of elements controlled by the process

– BLOCK_OWNER evaluates to the rank of the process controlling the element of the array

• Local index vs global index

– Limit (localize) the indices within overall (global) array

Task 0 Task 1 Task 2
Global index 0 1 2 3 4 5 6 7 8 9 10

Local index 0 1 2 0 1 2 3 0 1 2 3

∗ Local index varies from 0 to 2 or 3, depending on process

∗ Global index varies from 0 to 10
∗ Sequential code uses global index; we need to substitute to local index when working with parallel code

– Sequential program
for ( i = 0; i < n; i++ )
{

...
}

– Parallel program
size = BLOCK_SIZE(id,p,n);
for ( i = 0; i < size; i++ )
{

gi = i + BLOCK_LOW(id,p,n); // Global index; replaces i
...

}

• Ramifications of block decomposition

– Largest prime used to sieve integers up to n is
√

n

– First process has bn/pc elements

∗ It has all sieving primes if p <
√

n

∗ Reasonable assumption since n is expected to be in millions

– Fast marking

∗ Block decomposition allows same marking as sequential algorithm

j, j + k, j + 2k, j + 3k, . . .

instead of
for all j in block

p[j] = ( j % k ) != 0;

∗ This gives about (n/p)/k assignment statements

– Effectively, block decomposition results in fewer computational steps and fewer communications steps

Developing the parallel algorithm

• Translate each step in sequential algorithm to its equivalent in parallel

1. Create a Boolean array from 1 to n
Mark all values as true

– Each process can create and initialize its own share of the array

– The size of the array is either dn/pe or bn/pc
2. k = 2

– Each process does this as a trivial assignment
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3. In the while loop, each process marks its share of the array

(a) Change all multiples of k between kˆ2 and n to false

– Each process marks the multiples of k within its block between k2 and n

– We need to determine the location of first multiple of k within the block
(b) Find smallest index p > k that contains true

– Always done by process 0
(c) Broadcast the value of k to all processes

• Function MPI_Bcast

– Broadcast a message from the process with rank root to all other processes of the communicator

int MPI_Bcast ( void * buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm );

buffer Starting address of the array of data items to broadcast
count Number of data items in the array
datatype Data type of each item (uniform since it is an array); defined by an MPI constant
root Rank of broadcast root – the process that initiates the broadcast
comm Communicator; group of processes participating in this communication function

– In parallel sieve, process 0 needs to broadcast a single integer k to all other processes

MPI_Bcast ( &k, 1, MPI_INT, 0, MPI_COMM_WORLD );

– Processes can trivially determine the number of prime numbers found within their own arrays at the end of the
while loop

∗ The values can be accumulated into a grand total by using MPI_Reduce

Analysis of parallel sieve algorithm

• Time to mark each cell as multiple of prime is given by χ

– Includes the time to

∗ Change the value to false
∗ Increment loop index
∗ Testing for termination

• Sequential algorithm execution time: Θ(n ln ln n) or with known χ, χn ln ln n

• Cost of each broadcast: λdlog pe

– λ is message latency

– Only a single value is broadcast per iteration

• Number of broadcasts:
√

n
ln

√
n

– Based on number of primes between 2 and n given by n
ln

√
n

• Expected execution time
χ(n ln ln n)

p
+

√
n

ln
√

n
λdlog pe

The code

Benchmarking
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• Determine the value of χ by running a sequential implementation on a single processor of the cluster

• Determine λ by performing a series of broadcasts on 2, . . . , 10 processors

• Plug in the values and find performance gain

Improvements

• Delete even integers

– Change sieve algorithm to represent only odd integers

∗ Half the storage

∗ Double the speed

• Eliminate broadcast

– Broadcast step to give starting value of k is repeated
√

n
ln

√
n

times

– Replicate computation of primes up to
√

n

– Useful if √
n

ln
√

n
λdlog pe > χ

√
n ln ln

√
n

⇒ λdlog pe
ln

√
n

> χ ln ln
√

n

⇒ λ > χ ln(ln
√

n+
√

n)
dlog pe

– Expected time complexity now is

χ

(

n ln ln n

2p
+
√

n ln ln
√

n

)

+ λdlog pe

• Reorganize loops

– Each process marking widely dispersed elements of a very large array leads to poor cache hit rate

– Improve cache hit rate by exchanging inner and outer loops

• Benchmarking


