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A Completely Serious, No-Nonsense,
Startlingly-Accurate Autobiography

Terence John Parr was born in Los Angeles, California, USA in the year of the dragon on
August 17, 1964 during the week of the Tonkin Gulf Crisis, which eventually led usinto
the Vietnam Conflict; coincidence? Terence's main hobbies in California were drooling,
covering his body in mud, and screaming at the top of hislungs.

In 1970, Terence moved to Colorado Springs, Colorado with his family in search of

better mud and less smog. His formal education began in a Catholic grade school where

he became intimately familiar with penguins and other birds of prey. Terence eventually
escaped private school to attend public junior high only to return to the private sector—
attending Fountain Valley School for the "education" only a prep school can provide.
After being turned down by every college he applied to, Terence begged his way into
Purdue University's School of Humanities. Much to the surprise of his high school's
faculty and the general populace, Terence graduated in 1987 from Purdue with a
bachelor's degree in computer science.

After contemplating an existence where he had to get up and go to work, Terence quickly
applied to graduate school at Purdue University's School of Electrical Engineering. By
sheer tenacity, he was accepted and then promptly ran off to Paris, France after only one
semester of graduate work. Terence returned to Purdue in the Fall of 1988, eventually
finishing up his master's degree in May 1990 despite his best efforts. Hank Dietz served
as major professor and supervised Terence's master's thesis.

A short stint with the folks in blue suits during the summer of 1990, convinced Terence
to begin his Ph.D.; again, Hank Dietz was his advisor. He passed the Ph.D. qualifier
exam in January of 1991, stunning the local academic community. After three years of
course work, research, and general fooling around, Terence finished writing his doctoral
dissertation and defended it against a small horde of professors and students on July 1,
1993.

After completing a year of penance with Paul Woodward and Matt O’Keefe at the Army
High Performance Computing Research Center at the University of MN as a postdoctoral
slave, Terence formed Parr Research Corporation and leapt into the unknown on August
1, 1994.

The Java programming language started its inexorable climb to stardom in early 1995.
Terence entered the mad rush of Java startups in late 1995, forming MageLang Institute
(wwv. MageLang. com) with Tom Burns and Mel Berman, in order to provide
exceptional language training and further the cause of Java. Terence still maintains
PCCTS while working 26 hours a day at MageLang and is allegedly having a pretty good
time.
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Foreword

A few years ago, | implemented a programming language called NewtonScript(tm)l,

the application devel opment language for the Newton(R) operating system. Y ou may

not have heard of NewtonScript, but you've probably heard of the tool | used to
implement it: a crusty old thing called YACC.

YACC--like the C language, Huffman coding, and the QWERTY keyboard--is an
example of a standard engineering tool that is standard because it was the first "80%
solution". YACC opened up parsing to the average programmer. Writing a parser for
a "little language” using YACC was vastly simpler than writing one by hand, which
made YACC quite successful. In fact, it was so successful, progress on alternative
parsing tools just about stopped.

Not everybody adopted YACC, of course. There were those who needed something
better. A lot of serious compiler hackers stuck with hand-coded LL parsers, to get
maximum power and flexibility. In many cases, they had to, because languages got
more and more complicated--LALR just wasn’t good enough without lots of weird
hacks. Of course, these people had to forego the advantages of using a parser
generator.

So if your language is simple, you use YACC. If your language is too complex, or if
you want good error recovery, or if performance is critical, you write a parser from
scratch. This has been the status quo for about 20 years.

Terence Parr and PCCTS have the potential to jolt us out of this situation. First,
Terence pursued and formalized a new parsing strategy, called predicated LL(K), that
combines the robustness and intelligibility of LL with the generality of LALR.
Second, he implemented a parser generator, called ANTLR, that makes this power
easy to use. Even the dedicated hand-coders may change their minds after a close
look at this stuff. Finally, for those situations where you need to traverse a parse tree
(and who doesn't?), SORCERER applies the ANTLR philosophy to that problem.

1. NewtonScript is a trademark and Newton is a registered trademark of Apple
Computer, Inc.
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The result is a tool set that | think deserves to take over from YACC and LEX as the
default answer to any parsing problem. And as Terence and others point out, a lot of
problems are parsing problems.

Finally, let me mention that PCCTS is a tool with a face. Although it's in the public
domain, it's actively supported by the tireless Terence Parr, as well as the large and
helpful community of users who hang out on comp.compilers.tools.pccts. This book will
help the PCCTS community to grow and prosper, so that one day predicated LL(k) will
rule, YACC will be relegated to the history books, and Terence will finally achieve his
goal of world domination.

Just kidding about that last part.

Walter Smith
Palo Alto, California
January 1996
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Preface

| like tools—always have. This is primarily because I'm fundamentally lazy and would
much rather work on something that makes others productive rather than actually having
to do anything useful myself. For example, as a child, my parents forced me to cut the
lawns on our property. | spent hours trying to get the lawn mower to cut the lawn
automatically rather than simply firing up the mower and walking around the lawn. This
philosophy has followed me into adult life and eventually led to my guiding principle:

“Why program by hand in five days what you can spend
five years of your life automating?”

This is pretty much what has happened to me with regard to language recognition and
translation. Towards the end of my undergraduate studies at Purdue, | was working for a
robotics company for which | was developing an interpreter/compiler for a language
called KAREL. This project was fun the first time (I inadvertently erased the whole
thing); the second time, however, | kept thinking “I don’t understand YACC. Isn't there

a way to automate what | build by hand?” This thought kept rolling around in the back of
my head even after | had started EE graduate school to pursue neural net research (my
topic was going to be “Can | replace my lazy brain with a neural net possessing the
intelligence of a sea slug without anybody noticing?”). As an aside, | decided to take a
course on language tool building taught by Hank Dietz.

The parser generator ANTLR eventually arose from the ashes of my course project with
Hank and | dropped neural nets in favor of ANTLR as my thesis project. This initial
version of ANTLR was pretty slick because it was a shorthand for what I'd build by
hand, but at that time ANTLR could only generate LL(1) parsers. Unfortunately, there
were many such tools and unless a tool was developed with parsing strength equal to or
superior to YACC's, nothing would displace YACC as tlefacto standard for parser
generation; although, | was mainly concerned with making myself more efficient at the
time and had no World-domination aspirations.

ANTLR currently has three things that make it generate strong patserk>1
lookahead(ii) semantic predicates (the ability to have semantic information direct the
parse), andiii) syntactic predicates (selective backtracking). Using more than a single
symbol of lookahead has always been desirable, but is exponentially complex in time
and space; therefore, | decided to change the definition of k>1 lookaheaabikmnd

LL(k) became possible. (That's how | escaped Purdue with my Ph.D. before anyone got
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wise). The fundamentals of semantic and syntactic predicates are not my ideas, but,
together with Russell Quong at Purdue, we substantially augmented these predicates to

make them truly useful. These capabilities can be shown in theory and in practice to

make ANTLR parsers stronger than YACC'’s pure LALR(1) parsers (our tricks could
easily be added to an LALR(1) parser generator, however). ANTLR also happens to be a
flexible and easy-to-use tool and, consequently, ANTLR has become popular.

Near the end of my Ph.D., | started helping out some folks who wanted to build a
FORTRAN translator at the Army High Performance Computer Research center at the
University of Minnesota. | used ANTLR to recognize their FORTRAN subset and built
trees that | later traversed with a number of (extremely similar) tree-walking routines.
After building one too many of these tree walkers, | thought “OK, I'm bored. Why can’t

I make a tool that builds tree walkers?” Such a tool would parse trees instead of text, but
would be basically the same as ANTLR. SORCERER was born. Building language
translators became much easier because of the ANTLR/SORCERER combination.

The one weak part of these tools has always been their documentation. This book is an
attempt to rectify this appalling situation and replaces the series of disjointed release
notes for ANTLR, DLG (our scanner generator), and SORCERER—the tools of the
Purdue Compiler Construction Tool Set, PCCTS. I've also included Tom Moog's
wonderful notes for the newbie as an appendix.

Giving credit to everyone who has significantly aided this project would be impossible,
but here is a good guess: Will Cohen and Hank Dietz were coauthors of the original
PCCTS as a whole. Russell Quong has been my partner in research for many years and
is a coauthor of ANTLR. Gary Funck and Aaron Sawdey are coauthors of SORCERER.
Ariel Tamches spent a week of his Christmas vacation in the wilds of Minnesota helping
with the C++ output.

Sumana Srinivasan, Mike Monegan, and Steve Naroff of NeXT, Inc., provided extensive
help in the definition of the ANTLR C++ output; Sumana also developed the C++
grammar that became the basis for the C++ grammar available for PCCTS. Thom Wood
and Randy Helzerman both influenced the C++ output. Randy Helzerman has been a
relentless supporter of PCCTS since it was forced upon him. Steve Robenalt pushed
through the comp.compilers.tools.pccts newsgroup and wrote the initial FAQ. Peter
Dahl, then Ph.D. candidate, and Professor Matt O’Keefe (both at the University of
Minnesota) tested versions of ANTLR extensively. Dana Hoggatt (Micro Data Base
Systems, Inc.) and Ed Harfmann tested 1.00 heavily. Anthony Green at Visible
Decisions, John Hall at Worcester Polytechnic Institute, Devin Hooker at Ellery
Systems, Kenneth D. Weinert at Information Handling Services, Steve Hite, Roy
Levow at Florida Atlantic University, David Seidel, and Loring Craymer at JPL have
been faithful beta testers of PCCTS. Gary Frederick manages the mailing list and offers
many suggestions. Scott Haney at Lawrence Livermore National Laboratory developed
the Macintosh MPW port.
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| thank the planning group for the first annual PCCTS workshop sponsored by Parr
Research Corporation and held at NeXT July 25 and 26, 1994: Gary Funck, Steve
Robenalt, and Ivan Kissiov. The PCCTS ‘95 workshop group included Gary Funck,
Steve Robenalt, and John D. Mitchell. The following people provided reviews of the
initial release of this book (in the order their reviews arrived): Scott Stanchfield, Dan
FitzPatrick, Tuan Doan, Kris Kelley, Alistair G. Crooks, John Mitchell, Chiiwen Liou,
Jim Coker, Asgeir Olafsson, Glenn Lewis, and Michael Richter (who provided a HUGE
number of suggestions). A multitude of PCCTS users have helped refine ANTLR with
their suggestions; | apologize for not being able to mention everyone here who has
supported the PCCTS project. The following people are mentioned so they will buy a
copy of this book: Marjorie Kalman, Jennifer Wilson, Richard Raitt, Jeff Johnson, Cris
DuBord, Paul Stahura, Jim Beaver, Tom Burns, Brett Miller, Rick Guptill, Jim Schwarz,
Ephram Ajaji, Kurt Fickie, Tim Rohaly, Mike Beranek, Thierry Beauvilain, Mike
Hofflinger, Russell “Creature” Cattelan, Kevin “Pugsley” Edgar, Steve Anderson, Paul
Woodward, Gary Lutchansky, and Mark Gruenberg.

Bug reports and general words of encouragement are welcome. Please send mail to
parrt @arr-research. com

You may also wish to visit our newsgroup
conp. conpi |l ers. tool s. pccts

or the ftp site:
ftp://ftp.parr-research. com pub/pccts/

All of the tools in PCCTS are public domain. As such, there is no guarantee that the
software is useful, will do what you want, or will behave as you expect. There are most
certainly bugs still lurking in the code and there are probably errors in this book. | hope
the benefits of the tools will outweigh any inconvenience in using them.

Terence John Parr

parrt @wmgelLang. com (general chatting, social commentary)
parrt @arr-research. com (bug reports, PCCTS questions, etc...)
www. MagelLang. com (company website)

www. parr-research. coml ~parrt  (personal web site)

Irreverent in San Francisco, California
August 1996

Language Translation Using PCCTS and C++  xXi






Introduction

Computer language translation has become a common task. While compilers and tools for
traditional computer languages (such as C, C++, FORTRAN, SMALLTALK or Java) are
still being built, their number is dwarfed by the thousands of mini-languages for which
recognizers and translators are being devel oped. Programmers construct translators for
database formats, graphical datafiles (e.g., SGI Inventor, AutoCAD), text processing files
(e.g., HTML, SGML), and application command-interpreters (e.g., SQL, EMACS); even
physicists must write code to read in theinitial conditions for their finite-element
computations.

Many programmers build recognizers (i.e., parsers) and translators by hand. They write a
recursive-descent parser that recognizes the input and either generates output directly, if the
tranglation is simple enough to allow this, or builds an intermediate representation of the

input for later trandation, if the translation is complicated. Generally, some form of tree
data-structure is used as an intermediate representation in this case (e.g., the input "3+4"

can be conveniently represented by atree with "+" at theroot and "3" and "4" asleaves). In

order to manipulate or generate output from atree, the programmer is again confronted with

a recognition problem—that of matching tree templates against an input tree. As an input
tree is traversed, each subtree must be recognized in order to determine which translation
action to execute.

Many language tools aid in translator construction and can be broadly divided into either
parser generator or the translator generator.

e A parser generator is a program that accepts a grammatical language
description and generates a parser that recognizes sentences in that language.
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e Atrandator generator isatool that accepts agrammatical language description
along with some form of trand ation specification and generates a program to
recognize and translate sentences in that language.

Thisbook isareference guide for the parser generator ANTLR, ANother Tool for Language
Recognition, and the tree-parser generator SORCERER, which is suited to source-to-source
translation. SORCERER does not fit into the translator generator category perfectly because
it translates trees, whereas the typical translator generator can only be used to translate text
directly, thus hiding any intermediate steps or data structures from the programmer. The
ANTLR and SORCERER team more closely supports what programmers would build by
hand. Specifically, ANTLR recognizes textual input and generates an intermediate form
tree, which can be manipulated by a SORCERER-generated tree-walker; however, both
tools can be used independently.

While every tool hasits strengths and weaknesses, any evaluation must boil down to this:
Programmers want to use tools that employ mechanisms they understand, that are
sufficiently powerful to solve their problem, that are flexible, that automate tedious tasks,
and that generate output that is easily folded into their application. Most language tools fail
one or many of these criteria. Consequently, parsers and translators are still often written by
hand. ANTLR and SORCERER have become popular because they were written
specifically with these issuesin mind.

About this book

Thisbook isintended as areference manual not a textbook or how-to book on language
translation. Nonethel ess, this book is valuable to any scientist, engineer, or programmer who
has to translate, evaluate, interpret, manipulate or otherwise examine data or language
statements of any kind. ANTLR and SORCERER (the two main components of PCCTS)
were designed to be usable by people who are not language experts. Indeed, we are aware of
two biologists doing biochemical pattern recognition with PCCTS.

For those already familiar with PCCTS, Chapters “ANTLR Reference” on page 81,
“SORCERER Reference” on page 161, and “Templates and Quick Reference Guide” on
page 217 will be the most useful. Those familiar with other language tools should skim
“Chapter 2 - A Tutorial” and then read the ANTLR and SORCERER reference chapters;
Chapter “Templates and Quick Reference Guide” on page 217, the Section on ANTLR on
page 30, and the Section on SORCERER on page 31 will also be of interest as they
summarize the behavior and flavor of the tools. Persons unfamiliar with languages, parsers,
and language tools should carefully read “Exactly 1800 Words On Languages and Parsing”
on page 25 and “A Tutorial” on page 41; they should finish up by reading the reference
chapters on ANTLR and SORCERER.
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Exactly 1800 Words On Languages and Parsing

We assume that you have a working knowledge of C++ or C. Any knowledge of grammars
or language tools is extremely helpful.

Exactly 1800 Words On Languages and Parsing

We give only ataste of language theory here and in avery loose fashion. However, it should
give you enough information and define enough terms to get you through the rest of the
book.

In the Spring of 1983, asfirst year computer science students at Purdue University, we were
assigned the problem of recognizing arithmetic expressions, which could include nested
parentheses. We were given a specification that described what the expressions looked like
and were asked to produce a Pascal program that recognized such expressions. The
specification looked something like

expr-> factor

factor-> term( "+" term)*
term> atom( "*" atom)*
atom> " (" expr ")"

atom > | NTEGER

at om > | DENTI FI ER

where | NTEGER and | DENTI FI ER were shorthands for strings of digits and strings of
letters, respectively;(“ "+" t er m ) *” indicated that zero or more" t er msequences
could be seendr did we get term and factor mixed up?]. The rules described the structure
of small pieces of the expression language. For example,

term> atom( "*" atom)*

was read by saying, teer mis anat omfollowed by zero or more™* " at oni sequences."
We remember thinking what a marvelously precise means of describing an infinitely large
set of input strings.

We decided that our program would have one function to recognize each rule in the
grammar to keep things nice and neat. In this manner, references to rules would become,
possibly recursive, procedure calls in our program. References to actual input strings such as
"(" andl NTEGER were all hard coded to eat white space and look for the particular string.
This got to be repetitive and so we decided to factor out the common operations among all
input string matching code. Further, it seemed easier to treat input strings as single "words"
when trying to match the grammatical structure of the expressions. We eventually came up
with a function calledjet wor d that returned an integer describing what input vocabulary
word was found. It also made sense to assume that some variable would always hold the
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next word to be matched; that is, after matching a word, the variable would be set to the
result of calling get wor d again.

With the benefit of our current knowledge, now we would say that we were provided with a
grammar consisting of a set of rulesthat specified the set of all possible sentencesin the
expression language; that is, the grammar specified the syntax of the language. Rules with
more than one alternative were considered to have multiple productions. Our program was a
parser that made callsto alexical analyzer or scanner (our get wor d function) that broke
up the input character stream into vocabulary symbols, or tokens. The program we built was
aclassic example of arecursive-descent parser. A generic term for thistype of parsing is
top-down because when you look at the parse tree, the parse starts at the top (the start
symbol) and works its way down the tree. Recursive-descent parsers are a set of mutually
recursive procedures that normally use a single symbol of lookahead to make parsing
decisions. For example, rule at omcould be encoded in C as

int atom()
{
/1 use | ookahead to decide which alternative applies
switch ( current_token ) {
case LPAREN :// -> "(" expr ")"
current _token = getword();

expr();

if ( current_token !'= RPAREN ) error-clause;
current _token = getword();

br eak;

case I NTEGER :// -> I NTEGER
current _token = getword();
br eak;
case IDENTIFIER :// -> I DENTIFIER
current _token = getword();
br eak;
def aul t
error-clause (nmissing LPAREN, | NTEGER, or |DENTI Fl ER)

}
wherethevariablecur r ent _t oken isthelookahead symbal.

Parsers that follow this simple formula can be classified asLL (1), whichisa
shorthand indicating that the input is matched from left-to-right (as opposed to
backwards) and that parsing decisions are made on the | eft edge of alternative
productionswith 1 symbol of lookahead. This amountsto saying that LL (1) parsers
must predict which alternative production will be successfully matched by
examining only the set of tokens that can be matched first by each production. We
loosely define this set of tokens that predicts alternatives to be the lookahead set.
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Normally, thisis set of tokens that can be matched first by aproduction p andis
called FIRST(p); e.g.,
FIRST("(" expr ")")

isthe singleton set {"( "}. Occasionally, the FOLLOW set is used to predict alternatives.
FOLLOW(r) isthe set of all tokens that can be matched following referencesto ruler. For
example, given the grammar

rul e -> optional _ID SEM COLON
optional _I D -> | DENTI FI ER
optional _ID ->

FOLLOW(opti onal _I D)is{ SEM COLON} because SEM COLON followsthe
referenceto opt i onal _| D. The lookahead set for the empty production is defined to be
the FOLLOW of the invoking rule. Therefore, SEM COLON predicts the empty production
of opti onal _ID.

When the lookahead sets from alternative productions are not disjoint, we say that the
parsing decision is nondeterministic or ambiguous. In other words, thereis at | east one token
that predicts more than one adternative. Most of the time, thisis abad thing.

LL(1) parsers may be generalized to LL (k) for k>1. For example, the following grammar is
ambiguous upon token A;

a->ABC
a->ADE

where A, B, C, D, and E are some vocabulary tokens. Because both productions have a
common prefix of A, an LL(1) parser could not determine which production was going to
successfully match. However, if the parser could see ahead to both the A and what followed
A on the input stream, the parser could determine which production was going to match. An
LL(2) parser is such acreature; hence, rule a isunambiguousin the LL(2) sense. A grammar
for which adeterministic LL (k) parser can be built isLL (k). A language for which an LL (k)
grammar existsis LL (k).

Because recursive-descent parsers are just piles of code, more sophisticated predictions can
be made than simple lookahead buffer comparisons. For example, what if two productions
are exactly alike syntactically, but are semantically different? What if the productions have
different meanings (usually depending upon context or other information)? Consider the
following grammar:

element -> ID "(" expression_list ")" /1 array reference
element -> ID"(" expression_list ")" /] procedure call

It is perfectly reasonable to separate these two cases because while they look the same, array
references and procedure calls are very different semantically. The definition of the | D must
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be consulted to determine which production to match. In a hand-built parser, you could do
this:

el enent ()
{
if ( current_token == 1D &% isarray(current_text) ) {
match an array reference;
}
else if ( current_token == ID & i sprocedure(current_text) ) {
match a procedure call;
}
el se error;

}

wherei sarray(current _text) issomefunctionyou have defined that returnstrue if
thel Dis previoudy defined asan array; i spr ocedur e would be defined similarly. We
call such aparser apredicated LL (k) parser, pred-LL(K), because at least one parsing
decision was predicated upon information not available to a pure LL (k) parser. The forms

i sarray(current _text) andi sprocedure(current_text) areconsidered
semantic predicates. We could modify the grammar as follows:

el ement -> <<isarray(current_text)>>? ID "(" expression_list ")"
el enent -> <<isprocedure(current_text)>>? ID "(" expression_|ist ")"

where <<. .. >>? isasemantic predicate in ANTLR notation.

Pred-LL (k) parsing covers another type of predicated parsing decision. Consider the
following grammar:

a->(A*B
a->(A*C

No matter how large we make the k of LL(k), asequence of k+1 A’ s could always be

presented to the parser, and the parser could not see past the A's to theB or C. This grammar

then is non-LL(k) for any fixed value of k. Because there are real grammars that might have
constructs requiring arbitrary lookahead, we introduced another type of predicate called
syntactic predicates. A syntactic predicate specifies a grammar fragment that uniquely
predicts the associated production. The grammar could be modified as follows:

a->( (A*B)? (A* B
a->(A* C

which indicates that, to predict the first production, zero or PArenust be seen followed

by aB. If this syntactic predicate fails, the second production will be attempted by default;
hence, no predicate is required at its left edge. Clearly, this ability to scan arbitrarily ahead,
renders the class of pred-LL(k) languages much larger than the class of LL(k) languages.
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Bottom-up Parsers

And now, for something completely different: a bit about the class of languages and parsers
called LR(K). LR(K) parsers are considered bottom-up parsers because they try to match the

leaves of the parse tree as they work their way up the parse tree towards the start symbol at

theroot. A simpleway toillustrate LR parsing is to consider a simple language as described
the following grammar.

a->ABC
a->ABD

Loosely speaking, an LR-based parser consumes input symbols until it finds aviable
complete production; for the purposes of this discussion, al productions are viable. Input
token A would be tested against both productions. Since A matches neither completely,
another input token would be consumed, and AB would be compared against the
productions. Again, a complete right-hand-side would not be matched. The next input
symbol would be consumed, say token D. At this point, ABD matches the second right-hand-
side and the parser would report that it had found input for rule a. The process of consuming
input is called shifting, and the process of matching complete right-hand-sidesiis called
reducing. (The right-hand-side is reduced to the left-hand-side.) In our example, no
lookahead is required to determine that a valid sentence was found because the entire
production can be seen before making adecision. Therefore, this grammar is LR(0).

LR(K) recognizers (and their variants such as LALR(K)) are stronger than LL (k) recognizers
because the LR strategy uses more context information. For an LR parser, the context

consists of all grammar productions consistent with the previously seen input. This context

often includes several “pending” grammar productions. Intuitively, an LR(k) parser
attempts to match multiple productions at the same time and postpones making a decision
until sufficient input has been seen. In contrast, the context for an LL parser is restricted to
the sequence of previously matched productions and the position within the current
grammar production being matched. An LL(k) parser must make decisions about which
production to match without having seen any portion of the pending productions—it has
access to less context information. Hence, LL(K) parsers rely heavily on lookahead. We
note that our LR(0) grammar is LL(3) as a case in point.

On the other hand, our pred-LL(k) parsers are stronger than LR(k) parsers for two reasons.
First, semantic predicates may be used to parse context sensitive languages. Second, pred-
LL(k) parsers have access to arbitrary lookahead. Further, embedding actions in an LR
grammar can introduce ambiguities, thus reducing the strength of LR.
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ANTLR

ANTLR constructs human-readabl e recursive-descent parsersin C or C++ from pred-LL (k)
grammars, namely LL (k) grammars, for k>1 that support predicates.

Predicates allow arbitrary semantic and syntactic context to direct the parse in a systematic
way. Asaresult, ANTLR can generate parsers for many context-sensitive languages and
many non-L L (K)/LR(k) context-free languages. Semantic predicates indicate the semantic
validity of applying a production; syntactic predicates are grammar fragments that describe
a syntactic context that must be satisfied before recognizing an associated production. In
practice, many ANTLR users report that developing a pred-LL (k) grammar is easier than
developing the corresponding LR(1) grammar.

In addition to a strong parsing strategy, ANTLR has many features that make it more
programmer-friendly than the majority of LR/LALR and LL parser generators.

* ANTLR integrates the specification of lexical and syntactic analysis. A
separate lexical specification is unnecessary because lexical regular
expressions (token descriptions) can be placed in double-quotes and used
as normal token referencesin an ANTLR grammar.

e ANTLR accepts grammar constructs in Extended Backus-Naur Form
(EBNF) notation.

* ANTLR providesfacilities for automatic abstract syntax tree construction.

e ANTLR generates recursive-descent parsers in C/C++ so that thereisa
clear correspondence between the grammar specification and the ANTLR
output. Consequently, it isrelatively easy for non-parsing expertsto design
and debug an ANTLR grammar.

e ANTLR has both automatic and manual facilities for error recovery and
reporting. The automatic mechanism is simple and effective for many
parsing situations; the manual mechanism called “parser exception
handling” simplifies development of high-quality error handling.

e ANTLR alows each grammar rule to have parameters and return values,
facilitating attribute passing during the parse. Because ANTLR converts
each rule to a C/C++ function in arecursive descent parser, arule
parameter is simply afunction parameter. Additionally, ANTLR rules can
have multiple return values.

*  ANTLR has numerous other features that make it a product rather than a
research project. ANTLR itself iswritten in highly portable C; its output
can be debugged with existing source-level debuggers and is easily inte-
grated into programmers’ applications.
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Ultimately, the true test of a language tool’s usefulness lies with the vast industrial
programmer community. ANTLR is widely used in the commercial and academic
communities. Thousands of people in virtually all industrialized nations have acquired the
software since the original 1.00 release in 1992. Several universities currently teach courses
with ANTLR. Many commercial programs use ANTLR.

For example NeXT, Inc. has completed and is testing a unified C/Objective-C/C++ compiler
using an ANTLR grammar that was derived directly from the June 1993 ANSI X3J16 C++
grammar. (Measurements show that this ANTLR parser is about 20% slower, in terms of
pure parsing speed, than a hand-built recursive-descent parser that parses only C/Objective-
C, but not C++. The C++ grammar available for ANTLR was developed using the NeXT
grammar as a guide.) C++ has been traditionally difficult for other LL(1) tools and LR(1)-
based tools such as YACC. YACC grammars for C++ are extremely fragile with regard to
action placement; i.e., the insertion of an action can introduce conflicts into the C++
grammar. In contrast, ANTLR grammars are insensitive to action placement because of their
LL(k) nature.

The reference guide for ANTLR begins on page 81.

SORCERER

Despite the sophistication of code-generator generators and source-to-source translator
generators (such as attribute grammar based tools), programmers often choose to build tree
parsers by hand to solve source translation problems. In many cases, a programmer has a
front-end that constructs intermediate form trees and simply wants to traverse the trees and
execute a few actions. In such cases, the optimal tree walks of code-generator generators
and the powerful attribute evaluation schemes of source-to-source translator systems are
overkill. Programmers would rather avoid the overhead and complexity.

A SORCERER description is essentially an unambiguous grammar (collection of rules) in
Extended BNF notation that describes the structure and content of a user's trees. The
programmer annotates the tree grammar with actions to effect a translation, manipulate a
user-defined data structure, or manipulate the tree itself. SORCERER generates a collection
of simple C or C++ functions, one for each tree-grammar rule that recognizes tree patterns
and performs the programmer's actions in the specified sequence.
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Tree pattern matching is done efficiently in atop-down manner with an LL (1)-based®

parsing strategy augmented with syntactic predicates to resolve non-LL (1) constructs (with
selective backtracking) and semantic predicates to specify any context-sensitive tree

patterns. Tree traversal speed islinear in the size of the tree unless anon-LL (1) construct is
specified—in which case backtracking can be used selectively to recognize the construct
while maintaining near-linear traversal speed.

SORCERER can be considered an extension to an existing language rather than a total
replacement as other tools aspire to be. Consequently, programmers can use SORCERER to
perform the well understood, tedious problem of parsing trees, without limiting themselves

to describing the intended translation problem purely as attribute manipulations.
SORCERER does not force you to use any particular parser generator or intermediate
representation. Its application interface is extremely simple and can be linked with almost
any application that constructs and manipulates trees.

SORCERER was designed to work with as many tree structures as possible because it
requires nor assumes no pre-existing application such as a parser generator. However, we
have made it particularly easy to integrate with trees built by ANTLR-generated parsers.
Using the SORCERER C interface, the programmer’s trees must havelbedsr i ght ,

andt oken (which can be redefined easily with the C preprocessor). The SORCERER C++
interface is much less restrictive. The programmer must only define a small set of functions
to allow the tree-parser to walk the programmer’s trees. (This set inclodeg ) ,

right(),andtype().)

SORCERER operates in one of two modes: non-transform mode and transform mode. In
non-transform mode (the default case), SORCERER generates a simple tree parser that is
best suited to syntax-directed translation. (The tree is not rewritten—a set of actions
generates some form of output.) In transform mode, SORCERER generates a parser that
assumes a tree transformation will be done. Without programmer intervention, the parser
automatically copies the input tree to an output tree. Each rule has an implicit (automatically
defined) result tree; the result tree of the start symbol is a pointer to the transformed tree.
The various alternatives and grammar elements may be annotatetl 'Wihridicate that

they should not be automatically linked into the output tree. Portions of, or entire, subtrees
may be rewritten. A set of library functions is available to support tree manipulations.
Transform mode is specified with the SORCERER ansf or mcommand-line option.

1. We build top-down parsers with one symbol of lookahead because they are usually sufficient to
recognize intermediate form trees because they are often specifically designed to make translation
easy; moreover, recursive-descent parsers provide tremendous semantic flexibility.
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Intermediate Representations and Translation

We are often confronted with questions regarding the applicability of SORCERER. Some
people ask why intermediate representations are used for translation. Those who are already
familiar with the use of trees for trand ation ask why they should use SORCERER instead of
building atree walker by hand or building a C++ class hierarchy withwal k() or
action() virtual member functions. Compiler writers ask how SORCERER differs from
code-generator generators and ask what SORCERER is good at. This section and the next
address these issues to support our design choices regarding source trand ation and
SORCERER.

The construction of computer language translators and compilersis generally broken down
into separate phases such as lexical analysis, syntactic analysis, and translation where the
task of tranglation can be handled in one of two ways:

»  Actions can be executed during the parse of the input text stream to
generate output; when the parser has finished recognizing the input, the
trangd ation is complete. Thistype of translation is often called syntax-
directed translation.

e Actions can be executed during the parse of the input text stream to con-
struct an intermediate representation (IR) of the input, which will be re-
examined later to perform atranslation. These actions can be automatically
inserted into the text parser by ANTLR as we have shown in previous
chapters.

The advantages of constructing an intermediate representation are that multiple translators
can be built without modifying the text parser, multiple simple passes over an IR can be
used rather than a single complex pass, and, because large portions of an IR can be
examined quickly (i.e., without rewinding an input file), more complicated translations can
be performed. Syntax-directed translations are typically sufficient only for output languages
that closely resemble the input language or for languages that can be generated without
having to examine large amounts of the input stream, that is, with only local information.

For source to source translation, trees (normally called abstract syntax trees or ASTs) are the
most appropriate implementation of an IR because they encode the grammatical structure
used to recognize the input stream. For example, input string "3+4" isavalid phrasein an
expression language, but does not specify what language structure it satisfies. On the other

hand, the tree structure
+

/\

3 4
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has the same three input symbols, but additionally encodes the fact that the"+" isan
operator and that "3" and "4" are operands. There is no point to parsing the input if your
AST does not encode at |east some of the language structure used to parse the input. The
structure you encode in the AST should be specifically designed to make tree walking easy
during a subsequent translation phase.

An AST should be distinguished from a par se tree, which encodes not only the grammatical
structure of the input, but records which rules were applied during the parse. A parsetreefor
our plus-tree might look like:

expr
fact'or + factor
3 4

which isbulkier, contains information that is unnecessary for translation (namely the rule
names), and harder to manipulate than a tree with operators as subtree roots.

If al tree structures were binary (each node had only two children), then atree node could
be described with whatever information was needed for each node plus two child pointers.
Unfortunately, AST nodes often need more than two children and, worse till, the number of
child varies greatly; that is, the most appropriate tree structure for an i f -statement may be
an| f root nodewith three children: onefor the conditional, onefor the t hen statement lit,
and one for the el se clause statement list. In both ANTLR and SORCERER we have
adopted the child-sibling tree implementation structure where each node has afirst-child
and next-sibling pointer. The expression tree above would be structured and illustrated as

+

{

3—4

and ani f -statement would be structured as
| f
expr — dist —» dlist
Child-sibling trees can be conveniently described textually in a L1SP-like manner:
( parent childl ... childn)

So, our expression tree could be described as
(+34)

34 Language Translation Using PCCTS and C++



SORCERER

andour | f treeas
( 1f expr dist dist )

The contents of each AST node may contain a variety of things such as pointers into the
symbol table and information about the associated token object. The most important piece of
information is the token type associated with the input token from which the node was
constructed. It is used during atree walk to distinguish between trees of identical structure
but different contents. For example, the tree

*

{

a—b

is considered different than

wWe— +

— 4

because of the differencesin their token types (which we normally identify graphically via
node labels). Whether the token typeisavailableasaC st r uct field or a C++ member
functionisirrelevant.

Tree structures with homogeneous nodes as described here are easy to construct, whereas
trees consisting of avariety of node types are very difficult to construct or transform
automatically.

SORCERER Versus Hand-Coded Tree Walking

The question "Why is SORCERER useful when you can write atree parser by hand?' is
anal ogous to asking why you need a parser generator when you can write text parser by
hand. The answer is the same, although it is not a perfectly fair comparison because IRs are
generally designed to be easier to parse than the corresponding input text. Nonethel ess,
SORCERER grammars have the advantage over hand-coded tree parsers because grammars:

e Aremuch easier and faster to write

e Aresmaller than programs

*  Aremore readable as grammars directly specify the IR structure

e Aremore maintainable

* Automatically detect malformed input trees
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e Can possibly detect ambiguities/nondeterminisms in your tree description
(such as when two different patterns have the same root token) that might
be missed when writing a tree walker by hand

Further, parsing atree is the same as parsing a text stream except that the tree parser must
match atwo-dimensional stream rather than a one-dimensional stream.

Because a variety of techniques are available to perform tree walks and translations, it's
worth looking at some common C and C++ hand-coding techniques and understanding why
(or how?) SORCERER grammars often represent more elegant solutions.

In C, given homogeneous tree structures, there are two possible tree-walking strategies:

e A simplerecursive depth-first search function applies atranslation function
to each node in the tree indiscriminately. The translation function would
have to test the node to which it was applied in order to perform the
necessary task. Any translation function would have trouble dealing with
multiple-node subtrees such as those constructed for i f -statements. The
structure of the IR is not tested for deformities.

* A hand-built parser explicitly testsfor the IR structure such as "if root node
isal f node and thefirst child isan expression, ...." SORCERER isasim-
ply ashorthand for this strategy.

Alternatively, you can use C structures with fields that point to the required children rather
than alist of children nodes. In C++, given tree nodes with homogeneous behavior, you
could make each node in the tree an appropriate class that had awal k() member function.
Thewal k() function would do the appropriate thing depending on what type of tree node
it was. However, you would end up building a complete tree parser by hand. The class
member PLUSNode: : wal k() would be analogousto arulepl us_expr . For example,

cl ass PLUSNode : public AST {

wal k()
{
MATCH( PLUS) ; /1 match the root
t hi s->down() - >wal k() ; /1 walk |eft operand
t hi s->down()->ri ght ()->wal k(); /1 wal k right operand
}
}
versus
pl us_expr

#( PLUS expr expr )

where expr would nicely group all the expression templates in one rule. For example,
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expr
pl us_expr
| mult_expr

whereas in the hand-coded version, there could be no explicit specification for what an
expression tree looks like—there is just a collection C++ classes with similar names such as
PLUSNode, MULTNode, and so on:

class PLUSNode : public AST { walk(); ... };
class MLTNode : public AST { walk(); ... };

On the other hand, if we used a variety of tree node types, a set of class members could point
to the appropriate information rather than using a generic list of children. For example,

class EXPRNode : public AST {...};

class PLUSNode : public EXPRNode {
EXPR *| ef t _opnd;
EXPR *ri ght _opnd;
val k()

{
| eft _opnd->wal k() ;
ri ght _opnd- >wal k() ;

}s

However, anval k() function is still needed to specify what to do and in what order. A set

of member pointers is not nearly as powerful as a grammar because a grammar can specify
operand order and sequences of operands. The order of operands is important during
translation when you want to generate an appropriate sequence of output. (What if the field
names werdi | | andTed instead of eft _opnd andri ght _opnd? While these are

silly names, the point is made that you have to encode order in the names of the fields.) The
ability to specify sequences is analogous to allowing you to specify structures of varying
size. For example, the tree structure to describe a function call expression would have to be
encoded as follows:

class FUNCCal | Node : public EXPRNode {
char *id;
Li st <EXPRNode *> ar gunents;
wal k()
{
for ( each elenent of argunents |ist )
arg->wal k() ;
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Because the number of arguments is unknown at compile time, alist of arguments must be
maintained and walked by hand; whereas, using SORCERER, because everything is
represented as a generic list of nodes, you could easily describe such IR structures:

func_cal |
#( FUNCCall ID ( expr )* )

No matter how fancy you get using C or C++, you must still describe your IR structure at
least partialy with hand-written code rather than with a grammar.

The only remaining reason to have a variety of node class typesisto specify what
translation action to execute for each node. Action execution, too, is better handled
grammatically. Actions embedded within the SORCERER grammar dictate what to do and,
according to action position, when to do it. In this manner, it is very obvious what actions
are executed during the tree walk. With the hand-coded C++ approach, you would have to
peruse the class hierarchy to discover what would happen at each node. Further, there may
be cases where you have two identical nodesin an IR structure for which you want to
perform two different actions, depending on their context. With the grammatical approach,
you simply place a different action at each node reference. The hand-coded approach forces
you to make action member functions sensitive to their surrounding tree context, which is
difficult and cumbersome.

We have argued in this section that a grammar is more appropriate for describing the

structure of an IR than a hand-coded C function or C++ class hierarchy with a set of

wal k() member functions and that child-sibling trees are very convenient tree-structure
implementation. Different tree node types in C/C++ are required only when a grammar

cannot be used to describe the tree’s structure. Translations can also be performed more
easily by embedding actions within a grammar rather than scattering the actions around a
class hierarchy. On the other hand, we do not stop you from walking trees with a variety of
class types. SORCERER will pretend, however, that your tree consists only of nodes of a

single type.
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What Is SORCERER Good At and Bad At?

SORCERER is not the "silver bullet" of translation. It was designed specifically to support
source-to-source transl ations through a set of embedded actions that generate output directly
or viaa set of tree transformation actions.

SORCERER is good at

»  Describing tree structures (just as LISPis good at it)
e Syntax-directed trandlations

* Treetransformations either local such as constant folding and tree
normalizations or global such as adding declarations for implicitly defined
variables

e Interpreting trees such as for scripting languages
SORCERER is not good at or does not support

e Optimized assembly code generation

« Construction of “use-def” chains, data-flow dependency graphs, and other
common compiler data structures, although SORCERER can be used to
traverse statement lists to construct these data structures with user-supplied
actions

How Is SORCERER Different Than a Code-Generator Generator?

Compiler code-generator generators are designed to produce a stream of assembly langauge
instructions from an input tree representing the statements in a source program. Because
there may be multiple assembly instructions for a single tree pattern (e.g., integer addition
and increment), a code-generator generator must handle ambiguous grammars. An
ambiguous grammar is one for which an input sequence may be recognized in more than one
way by the resulting parser (i.e., there is more than one grammatical derivation). A "cost" is
provided for each tree pattern in the grammar to indicate how "expensive" the instruction
issued by the pattern would be in terms of execution speed or memory space. The code-
generator finds the optimal walk of the input tree, which results in the optimal assembly
instruction stream. SORCERER differs in the following ways:

1. Because code-generators must choose between competing grammar
alternatives, they must match the entire alternative before executing a
translation action. However, the ability to execute a translation action at
any point during the parse is indispensable for source-to-source translation.

2. Code-generator generators were not designed for and cannot perform tree
rewrites.

Language Translation Using PCCTS and C++ 39



Introduction

3. Code-generator generators normally do not allow EBNF grammar
constructs to specify lists of elements.

4. While code-generator generators handle unambiguous grammars such as
SORCERER'’s as well as ambiguous grammars, they may not handle
unambiguous grammars as efficiently as a tool specifically tuned for fast,
deterministic parsing.

It is ironic that most translator generators are code-generator generators, even though most
translation problems do not involve compilation. Unfortunately, few practical tools like
SORCERER exist for the larger scope of source-to-source translation.
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In this chapter we walk you through a series of progressively complex recognizers,
interpreters, and translators for polynomials using ANTLR and SORCERER. We assume a
passing familiarity with the syntax of ANTLR/SORCERER and a basic understanding of
scanners (regular expressions) and parsers (grammars).

Evaluating and Differentiating Polynomials

Thefirst application developed in this chapter accepts a sequence of polynomial equations of
the form:

r=axn+ by'\m+ ...

for some real numbers a, b, m, and n where the polynomial variables (here, x, y and r) may
be any single lowercase letter (which we call aregister or identifier) "a. . z". Each
polynomial is evaluated, and the result is stored into the variable on the | eft-hand-side of the
equation. (Here, the result is stored into r.) As output, we print the result after each
polynomial evaluation. For example,

| onewol f:/ projects/Book/tutorial/sinple$ poly

a = 5;

storing 5.000000 in a

b = 3a*2 + 2a + 7,

storing 92.000000 in b

where the bold characters are the polynomials to be entered.
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Thistask usestwo equivalent methods: (i) an ANTLR grammar to recognize theinput and to
compute the results, and (ii) an ANTLR grammar to recognize the input and to construct
ASTsthat will be evaluated with a SORCERER grammar.

The second application developed in thistutorial differentiates a polynomial to demonstrate
the tree transformation abilities of SORCERER. A polynomial of the form:

axrn + bx*m + ...

is differentiated by manipulating the associated AST and printing the polynomial back out.
(Those of you who slept through cal culus may need to be reminded that the derivative of
ax*bis (ab)x* (b-1), thederivative of axisa (evenif ais1) and the derivative of ais0 where
aisreal and bisan integer.) For example,

| onewol f:/projects/Book/tutorial/rewite$ ./poly
2X"5 + x"2 + 3x + 9
10x"M4+2x+3

where again the bold characters represent the input string.

Language Recognition and Syntax-Directed
Interpretation

We break up building our polynomial evaluator into three main tasks:

1. Describing the syntax
2. Describing the vocabulary (set of input symbols or tokens)
3. Inserting semantic actions to evaluate the polynomial

Tasks 1 and 2 result in aworking polynomial recognizer and task 3 resultsin aworking
evaluator. Testing a project at each such stage is recommended.

Syntax

Begin the task of building arecognizer for alanguage by examining a representative set of
input strings and trying to identify the underlying grammatical structure. In our case,
equations are strings like:

3:

a ;
atba + 2a"2 + a"8 + 4;

b
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The best way to describe the input "at a coarse level” is as a series of assignments with an

identifier on theleft and apolynomial on theright, terminated with a semicolon. In grammar

notation, we write:

interp
: (ID"=" poly ";" )+

where anything inside double quotesis aregular expression describing an input symbol
(e.g., " =" matchesthe equal sign) and | Disalabel for aregular expression defined
elsewhere. The (... ) + construct indicates that the enclosed elements should be matched
one or moretimes. A polynomial looks like a series of terms added together; hence, we can
describe a polynomial as:

pol y
term( "\+" term)*

wherethe (.. .)* construct indicates that the enclosed elements can be matched zero or
more times; a polynomia may be composed of a single term; hence, we use a zero-or-more
rather than one-or-more subrule. Polynomial terms are simple numbers, simple variables,
variables with exponents, or variables with exponents and coefficients. This fact we encode
as.

term
: FLOAT

| reg

| reg "M exp

| coefficient reg """ exp

coefficient

: FLQAT
reg: ID
exp: reg

| FLQAT

where we createrulescoef fi ci ent , r eg and exp to make rulet er mmore clear.

Asit appears, rulet er mwould result in a parser that needed to see two symbols ahead (over
the common production |eft-prefix r eg), instead of the normal one symbol, to determine
which aternative would match. Specifically, upon input "a", the parser could not determine
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whether the second or third alternative of t er mapplied; that is, the parser could not seeif a
"a" followed the "a".

In order to demonstrate the principle of "left-factoring” and to make the resulting parser
behave more naturally, we left-factor rulet er mso that the resulting parser requires only a
single symbol of lookahead. (Note that in general, left-factoring is not always possible and
more than asingle symbol of lookahead is beneficial.) Left-factoring a rule means that you
combine common left-prefixes among the productions. In our case, it is necessary to merge
alternatives two and three, and one and four into two new, slightly more complicated,
aternatives:

term
ccoefficient { reg{ "~ exp} } // nerged alts 1 and 4
[reg { """ exp} /1 merged alts 2 and 3

wherethe{. .} subruleimpliesthat the enclosed elements are optional. In thisform, we
have preserved the grammatical structure, but have reduced the lookahead requirements. For
example, rulet er mattempts to match alternative one if the input is a number and attempts
alternative two if the input is aregister.

Vocabulary

Once the grammatical structure of alanguage is described, the set of vocabulary symbols
called tokens must be specified. Our polynomial language has only six tokens, which are
described in Table 1 on page 44. The grammar we have developed so far provides implicit

TABLE 1. Vocabulary Symbols for Polynomial Language

Regular Expression Description

"=t The equals sign
" The semicolon

"\ The plus sign where the "\ " escape character indicates

that the actual plus sign is required—an unescaged
is a reserved symbol (meaning one or more as it does at
the grammatical level)

" An The exponentiation operator or caret
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TABLE 1. (Continued) Vocabulary Symbolsfor Polynomial Language

Regular Expression Description

"[0-9]+ {.[0-9]+}" A floating point number. Match a series of one or more
digits (0 through 9) followed optionally by a decimal
point and more digits

"[a-Z]" An identifier. Our language restricts identifiers to sin-
gle lower-case letters called registers, which simplifies
associating a value with an identifier.

definitions (by simply referring to them) for all but numbers and registers, which can be
described as

#t oken 1D "la-z]"
#t oken FLOAT "[0-9]1+ { . [0-9]+ }"

where we have labeled them for grammar readability.

We must also specify that white spaceis to be ignored, which is conveniently done with a

regular expression. The scanner (the code that breaks up the input character stream into

vocabulary symbols) normally returns after matching aregular expression. However, we

don’t want to mention a white space vocabulary symbol everywhere within our grammar.
So, we attach an action to the regular expression, indicating that the matched input symbol
should be ignored:

#token "[\ \t]+" <<skip();>>
#t oken "\ n" <<skip(); newine();>>

where we have separated out the recognition of the newline character so that we can tell the
scanner to increment the line count (for error reporting).

The recognizer for our language is now complete. In order to test it, we must specify a
grammar class for ANTLR, inform ANTLR what the type of our token objects is, and
provide a main program. The following code section is a complete description that will
result in an executable parser:

<<
#i ncl ude "PBl ackBox. h" /1 Define a black box for nain()
#i ncl ude "DLG.exer. h" /I What's the scanner called?

typedef ANTLRCommonToken ANTLRToken; // Use a predefined token object

main()

{
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Par ser Bl ackBox<DLG.exer, Pol yParser, ANTLRToken> p(stdin);
p.parser()->interp();// start up the parser

}

>>

#token "[\ \t]+" <<ski p();>>

#t oken "\n" <<skip(); newine();>>

#token ID "[a-2z]"
#t oken FLOAT "“[0-9]+ { . [0-9]+ }"

cl ass Pol yParser {

interp

( |D II=II poly ll;ll )+
pol y

term( "\+" term)*
term

coefficient { reg { """ exp } }
| reg { """ exp}

coefficient

: FLOAT
reg: ID
exp: reg

| FLOAT

}
A makefile that constructs the executable is written automatically by the gennk tool as:
gennk -CC -cl ass Pol yParser -project poly poly.g > nakefile

The makefile then has to be modified so that makefile variables PCCTS and CCC (the C++
compiler) are set properly. For example,

PCCTS = /usr/local/src/pccts
CoC=g++

The executable called pol y can be used to check the syntax of our language, but nothing
else. For example,
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| onewol f:/projects/Book/tutorial/sinple$ poly
a=-a+t-=

line 1: syntax error at "=" mssing { |ID FLOAT }
line 2: syntax error at "" missing ;

Semantic Actions

To actually compute the values described by the polynomial's, we must embed actions within
the grammar.

Begin by making a basic assumption: every rule except i nt er p returns the value indicated
by its part of the computation. The result of pol y isthen the overall result of evaluating the
polynomial:

poly > [float r]
X <<float f;>>
ternp[$r] ( "\+" termp[f] <<$r += f;>> )*

Rule pol y isdefined to have areturn value called $r viathe"> [fl oat r]" notation; this
is similar to the output redirection character of UNI X shells. Setting the value of $r setsthe
return value of pol y.

Thefirst action after the™: " isan init-action (because it is the first action of arule or
subrule). Theinit-action defines alocal variable called f that will beused inthe(. .. )*
loop to hold the return value of the term.

The result of each polynomial is stored into the register specified on the left-hand side of the
equation.

interp
<<float r;>>
( Ihs: 1D "=" poly>[r] ";" <<store($l hs->getText(), r);>>
)+

The result of pol y isplaced into local variabler, and theregister (a. . z, inour case) is
accessed by labeling the token reference that matches the left-hand side. The label | hs
becomes an ANTLRTokenPt r in the output C++ code, and the standard method get Text ()
is used to obtain the text associated with atoken object. Our use of thest ore() functionis
postponed until after the remainder of the grammar is explained.

Therulesin the parse tree at the lowest level are easily augmented to return the value of the
specified polynomial portion.
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coefficient > [float r]
flt: FLOAT <<$r = atof ($flt->get Text());>>

Here, the at of () library function is used compute the floating point value of the text
matched for the FLOAT token. (That is, string " 3. 14" is converted to floating value 3. 14.)
Again, thereturn value is set by assigning avalueto $r.

To compute the value of avariable, we call afunction to return the value of the referenced
register; val ue() isexplained shortly.

reg > [float r]
id:ID <<$r

val ue( $i d- >get Text ()); >>

Ruleexp isjust assmple:

exp > [float r]
reg > [$r]
[ flt: FLOAT <<$r = atof ($flt->getText());>>

Rulet erm on the other hand, is abit more complicated. Given input "3x22", rulet er m
chooses alternative one and begins by using arule reference to coef f i ci ent to match "3".
The"x" is matched by choosing the first alternative of the outermost subrule. After having
matched rule referencer eg, the parser seesthe 22" and applies the first alternative of the
nested subrule. At that point, the parser has collected the coefficient value (variable c, the
value stored in the register (variable v), and the value of the exponent (variable e). The
result of theruleisc timesv to the power e.

Y ou may have noticed that what was previously an optional subrule in the grammar without
actionsis now asubrule with an empty alternative. The two are functionally equivalent from
alanguage recognition standpoint, but allow us to attach an action to the case when nothing
is matched for that subrule. For example, input "3x" follows the same path through rule term
as "3x"2" except that the exponent is missing. The empty path of the nested subruleis taken
instead. We have added an action "$r =c* v; " to the empty path to compute the correct value
when the exponent is missing. The other paths of t er mcan beinferred from this description.

term> [float r]
<<float f=0.0, e=0.0, c¢=0.0, v=0.0;>>
coefficient > [c]
( reg>[v]

("~ exple]  <<Sr = crpow(v,e);>>
| <<$r = c*v;>>
)
| <$r = ¢c;>
)
|  reg > [f]
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( At exp > [e] <<$r
| <<$r

powf,e);>>
f;>>

Trigger Functions. Thefunctions st or e() andval ue() isolate our implementation from
the grammar a bit and avoid placing actions within the grammar. Thisis agood principle to
follow because it allows the behavior or implementation details of atranslator to be changed
without having to actually go inside a possibly dark and scary grammar. Trigger functions
are defined easily by adding some virtual functions to the class definition:

cl ass Pol yParser {

<<

pr ot ect ed:
virtual void store(char *reg, float v) {;}
virtual float value(char *reg) {;}

>>

}

where we have defined only the two most basic operations needed by our parser. When
Pol yPar ser issubclassed, these parser triggers can be easily overridden:

class InterpretingPol yParser : public PolyParser {
pr ot ect ed:

float regs[’z' -'a +1];

virtual void store(char *reg, float v)

{
regs[reg[0]-"a'] = v;
printf("storing % in %\n", v, req);
}
virtual float value(char *reg) { return regs[reg[0]-"a']; }

publi c:
I nt er pretingPol yPar ser (ANTLRTokenBuf f er *i nput)
Pol yPar ser (i nput)
{

}

for (int i=a; i<="z"; i++) regs[i-"a] = 0.0;

}s

Note that we have used af | oat array indexed by theregistersa. . z to store and retrieve the
register values.

The main program is modified to use the subclassed parser:

mai n()

{
Par ser Bl ackBox<DL@_exer ,
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I nt er pretingPol yPar ser,
ANTLRToken> p(stdin);
p. parser()->interp();

We have now successfully augmented our grammar to compute and print out the values of
input polynomials. The entire grammar file looks like this:

<<
#i ncl ude <mat h. h>

class InterpretingPol yParser : public Pol yParser {
pr ot ect ed:
fl oat regs[’'z-a+1];
virtual void store(char *reg, float v)
{
regs[reg[0]-a’l = v;
printf("storing %f in %s\n", v, reg);
}
virtual float value(char *reg)
{return regs[reg[0]-a7; }

public:
InterpretingPolyParser(ANTLRTokenBuffer *input)
: PolyParser(input)
{
for (inti='a’; i<="z’; i++) regs[i-'a’] = 0.0;
}
%

#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

main()
{
ParserBlackBox<DLGLexer,
InterpretingPolyParser,
ANTLRToken> p(stdin);
p.parser()->interp();

>>

#token "\ \t]+"<<skip();>>
#token "\n"<<skip(); newline();>>
#token ID "[a-zZ]"

#token FLOAT'[0-9]+ { . [0-9]+ }"
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cl ass Pol yParser {

<<

pr ot ect ed:
vi rtual
vi rtual

>>

interp

pol y >

term >

voi d store(char *reg, float v) {;}
float val ue(char *reg) {;}

<<float r;>>

( I'hs:ID"=" poly>[r] ";" <<store($l hs->getText(),r);>>
)+
[float r]

<<float f;>>
termp[$r] ( "\+" ternp[f] <<$r += f;>> )*

[float r]
<<float f=0.0, e=0.0, c¢=0.0, v=0.0;>>
coefficient > [c]

( reg > [v]
( "AY exp>[e] <<$r = c*pow(v, e); >>
| <<$r = c*v;>>
)

| <«<$r = c;>>

)

reg > [f]

("™ oexp > [e]<<$r = pow(f e);>>

| <$r = f;>>

)

coefficient > [float r]

reg >

exp >

flt: FLOAT<<$r = atof ($flt->getText());>>

[float r]
id:ID <<$r = val ue($i d->get Text ());>>

[float r]
reg > [$r]
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[ flt: FLOAT<<$r = atof ($flt->getText());>>

The nakef i | e has not changed, and the executable can be generated by simply remaking.
Here is some sample input ouput.

| onewol f:/projects/Book/tutorial/sinple$ poly
a=3;

storing 3.000000 in a

b = 10a"2 + 4a + 3;

storing 105.000000 in b

Constructing and Walking ASTs

Another way to evaluate the polynomial equationsin the previous section isto have the

parser construct trees and then walk those trees to compute the results. In this section, we

remove the actions from the previous example’s grammar, annotate the grammar with a few
symbols and actions to construct trees, then build a SORCERER grammar to walk our trees
and compute the results.

AST Design

The structure of intermediate trees is important. The fundamental design goal is that an
intermediate form should contain not only the contents of the input stream, but should
represent the structure of the underlying language as well. For example, a linked list of the
input token objects has complete contents, but has no structure to indicate how the input was
parsed.

The top-level tree structure for our ASTs will represent the assignment operation as:

f

Ilhs —» rhs

wherelhs andrhs are left-hand side and right-hand side, respectively. For exarapt,
will be represented by:
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O ||

Polynomials are sums of terms:
+

terml—» term?2

for "terml + term2". For simplicity, we have exactly two children for "+" nodes; hence,
multiple additions are represented by using the result of one addition as the operand of
another addition. For example, "terml + term2 + term3" would be represented as:

+

|

+ term3

terml—» term2

With a depth-first walk of the tree, the order of operations is correct—left to right for
addition.

Terms themselves have the following template:
MULT
coeff —» EXP

X—» exponent

For example, 3x~ 2" is represented by:

MULT
3—» EXP
X—» 2
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Terms without exponents such as "3x" look like:

MULT

|

33— X
and terms without coefficients such as"x” 2" look like:

EXP

|

X—» 2

Notice that thereis no corresponding input token for the multiply operation becauseit is
implicit that the term variable is multiplied by its coefficient. This node must be created
manually with a grammar action.

Constructing ASTs

In this section, we define the appearance of AST node and modify the grammar to construct
ASTSs.

For simplicity, define an AST node to contain simply a pointer to the associated input token
object. The type of an AST must be called AST, and we have placed its definition in afile
called AST. h:

#i ncl ude " ASTBase. h"
#i ncl ude " AToken. h"

class AST : public ASTBase {
pr ot ect ed:

ANTLRTokenPtr token; // pointer to the token found in input
publi c:

[/ called when #[tokentype,string] is seen in an action
AST( ANTLRTokenType tok, char *s) { token = new ANTLRToken(tok,s); }

/1 constructor called by parser for token references in grammar
AST( ANTLRTokenPtr t) { token =t; }

/1 define what happens at a node when preorder() is called

voi d preorder_action() {
char *s = token->get Text ();
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printf(" %", s);
}
H

The main program and required definitions become:

<<

#i ncl ude "PBl ackBox. h"
#i ncl ude "DLG.exer. h"
t ypedef ANTLRCommonToken ANTLRToken;

#i ncl ude "AST. h"

mai n()

{
Par ser Bl ackBox<DL@.exer, Pol yParser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p. parser()->interp(& oot);

}

>>

ANTLR uses areturn parameter to return the AST constructed for each rule. As aresult, the
call to the starting rule must pass the address of atree pointer where the result will be stored;
this pointer must be initialized to NULL.

Tree building. Eventually, each polynomial is passed to the tree walker for evaluation one

at atime; alist of all equations is not maintained. The previous starting rule

interp
© (ID"=" poly ";" )+

is therefore split into the following:

i nterp!
( assign )+
assign
ID"="~ poly ";"! <<#0->preorder(); printf("\n");>>

wherethe! onthei nt er p header indicatesthat ANTLRisnot to construct treesin that rule
(alist of assignmentsis not required). Had we | eft the rule as written and added the tree
construction grammar operators (as shown in the assi gn rule), the trees would not be
constructed correctly after the first polynomial. The second iteration of the (. . . ) + loop
would continue to add to the same tree because each rule constructs exactly one tree.
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The! onthe";" tokeninruleassi gn indicatesthat anodeis not to be constructed in the
AST for that token. The” suffix onthe"=" token indicates that the assignment isto be made

the root of the current subtree (whatever that happens to be at the time the assignment

operator is matched)—in this case, a lobaode. Any other token is assumed to be a leaf
node in the AST. All rule references withautsuffixes return subtrees whose roots are
made children of the current subtree root. For example, the tree returngebfrpns made

a child of the assignment node with the target of the assignment as the other child.

The call to preorder () forthe return tree0, in assi gn walks the tree and prints it out
in LISP form. For the moment, we print out the tree rather than invoke a SORCERER tree
walker so that this portion of the evaluator can be tested separately.

To collect the sum of terms is easy to do:

pol y
term( "\+"" term)*

The~ suffix on the \ +" tells ANTLR to create an addition node and place it as the root of
whatever subtree has been constructed up until that point fqralwe The subtrees
returned by thet er mreferences are collected as children of the addition nodes.

The simple terms of thete are constructed by the second alternative of term:

| reg { """ exp}

where we have converted thexp| ) back to the simpler optional subrule. THe*»”
may be a bit confusing. The input token is the up-arrow and the grammar operator for AST
root is also up-arrow. Hence, trees of the form

AN

|

reg— exp

are created (assuming an exponent is found on the input).

Constructing trees for terms with coefficients is complicated by the fact that a multiply node
must be created and placed in the tree for which there is no corresponding input symbol. We
will therefore have to turn oANTLR's default tree construction mechanism to build the

AST manually. Because the automatic AST mechanism can only be turned off at arule-level
granularity, we havet er mcall another rule which builds the appropriate tree manually, thus

leaving the automati c mechanism to work its magic for the other alternativesint er n

term
bi gterm
| reg { """ exp}
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bi gternm
c: coefficient
( r:reg
( "~ oerexp
<<#0 = #(#[ MULT, "MLT"], #c, #(H#[EXP,"EXP"'], #r, #e));>>
|  <<#0 = #(#[ MULT,"MLT"], #c, #r),;>>
)
[ <<#0 = #c; >>
)

where "#[ arglist] " is anode constructor translated to "new AST(arglist) " and
#(root, childl, ..., childn)

is converted to acall to the tree constructor

ASTBase: :tmake(root, childl, ..., childn, NULL);

Therulereferencesin bi gt er mare labeled so that the resulting ASTs can be referenced and
placed in thetree for bi gt er m The simplest path through the rule is to match

coef fi ci ent followed by nothing, in which case the <<#0=#c; >> action is executed to set
the return value (#0) of bi gt er m If acoefficient and aregister are found, but no exponent,
the

<<#0 = #(#[ MULT, "MLT"], #c, #r);>>

action is executed. It creates atree with aMULT node at the root and the coefficient and
register as children, wherethe#[ . . . ] node constructor istranslated to acall to AST(.. . .)
by ANTLR. The#(...) istrandated to acall to the tree constructor where the first
argument is the root node and all subsequent arguments are the children of that node. Trees
for full terms are constructed in a similar fashion.We define the MULT token type referenced
within the above actions with

#t oken MULT

even though no input symbol corresponds to this token type and, therefore, we do not
specify aregular expression. We al so need to access the token type of the exponent operator
so that the manual tree construction actions can build the appropriate nodes:

#t oken EXP A

Rules coefficient, reg,andexp automatically construct nodes for the single tokens
they match; nothing further must be specified.

The grammar does not yet pass anything to atree walker for evaluation, but may be tested to
see that the correct trees are being produced. In the complete ANTLR description,
(ASTBase: : preorder () iscaledtodump out the trees):
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<<

#i ncl ude "PBl ackBox. h"

#i ncl ude "DLG.exer. h"

t ypedef ANTLRCommonToken ANTLRToken;

#i ncl ude "AST. h"

mai n()

{
Par ser Bl ackBox<DLG_exer, Pol yParser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p. parser()->interp(& oot);

}

>>

#token "[\ \t]+" <<skip();>>

#t oken "\ n" <<skip(); newine();>>
#t oken 1D "[a-z]"

#t oken FLOAT "[0-9]+ { . [0-9]+ }"
#t oken EXP A

#t oken MULT

cl ass Pol yParser {

i nterp!
: ( arassign )+
assign
: ID"="" poly ";"! <<#0->preorder(); printf("\n");>>
pol'y
: term( "\+"" term)*
term
: bi gterm
I reg { """ exp }

bi gt erm
: c:coefficient
( r:.reg
( "~ oerexp
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<<#O = #(#[ MLT,"MLT"], #c, #(# EXP,"EXP'], #r,
#e)); >>
| <<#0 = #(#[ MLT,"MLT"], #c, #r),>>
| <<#0 = #c;>>

coefficient

FLQAT
reg : ID
exp : reg

| FLOAT

}
A makefile may be constructed by invoking
gennk -CC -class Pol yParser -project poly -trees poly.g

and placing the output in makef i | e. Do not forget to fill in appropriate values for the
PCCTS and CCC make variables. Here is some sample input/output:

| onewol f:/projects/Book/tutorial/testAST$ ./poly

X = 2;

(=x2)

y = 4x"7 + 3x + 1;

(=y(+(+(MLT4 (EXPx 7)) ( MLT3x) ) 1))

The corresponding ASTs look like

X4+ |

and

Language Translation Using PCCTS and C++ 59



A Tutorial

!
y—— o+
|
+ » 1
!
MILT—— MULT
|
4— EXP 3— X
!
X—» 7

Describing ASTs With SORCERER

Now that our parser constructs trees, we can evaluate the polynomials by walking them,
either with a hand-built tree walker or by having SORCERER generate a tree walker
automatically. SORCERER accepts a grammatical description of your AST structure and
generates arecursive-descent tree walker that looks very much like what you would build by
hand. However, tree grammars have the same advantages over hand built tree walkers that
ANTLR grammars has over hand-built conventional text parsers.

Asinour AST design, assignments are of the form

lhs — rhs
which can easily be described with arule in SORCERER:

assign
#( ASSIGN ID poly )

Where the ASSI GN token type will be attached to the" =" token in the ANTLR grammar
later.

Our AST design for polynomials can be described as:

poly: #( MLT poly poly )
| #( ADD poly poly )
| #( EXP poly poly )
[ ID
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| FLOAT

where the ADD token type is attached to the "\ +" token in the ANTLR grammar later. Rule
pol y lists al the possible subtrees and leaf nodes. Each subtree has a binary operator at the
root. We do not have to specify a priority in which these particular subtrees can be matched
against the input tree because the incoming tree has the precedence encoded in the structure
itself. For example, in the tree

MULT
3—» EXP
X—» 2

it isclear that the exponentiation is to be donefirst because it is farther down in the tree than
the multiplication operator. All children must be computed before the parent operation can
take place.

The experienced reader will note that our SORCERER grammar is a bit looser than
necessary. For example, the third alternative can describe the AST structure more precisely:

| #( EXP ID FLQAT )

becausex”e” is only allowed forx as identifiers and as floats. However, for simplicity, we
make all operands references to nubéy. Later, we will only need one action to compute
the value of &LOAT node (i.e., in the fourth alternative) rather than at each place in a
“tighter” grammar wher&LOAT is referenced.

To satisfy the SORCERER programmer’s interface, we must define what the input trees
look like by providing typeSORAST. We includeAST. h and then specify

typedef AST SCORAST;

The SORCERER programmer’s interface requires also that each node be able to identify its
token type. For convenience, we have added a function to retrieve the text associated with
the token object stored in each AST node. The augmastedefinition looks like this:

#i ncl ude "ASTBase. h"
#i ncl ude " AToken. h"
#i ncl ude "ATokPtr.h"
class AST : public ASTBase {
pr ot ect ed:
ANTLRTokenPtr token;// pointer to the token found on input
publi c:

/1 called when #[tokentype, string] is seen in an action
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AST( ANTLRTokenType tok, char *s) {token = new ANTLRToken(tok, s);}

/1 constructor called by parser for token references in grammar
AST( ANTLRTokenPtr t) { token =t; }

/1 define what happens at a node when preorder() is called
voi d preorder_action() {

char *s = token->get Text();

printf(" %", s);

}

/I every node must know it's token type
virtual int type() { return token->getType(); }

I/ convenient to get text of associated input token
char *getText() { return token->getText(); }

h

We also need to give aclass definition around the SORCERER grammar along with our two
trigger functions.

class EvalPoly {
<<
protected:
virtual float value(char *r) = 0;
virtual void store(char *r, float v) = O;
>>

}
We subclass EvalPoly and placeit in MyEvalPoly.h  to define these trigger functions.
#include "EvalPoly.h"
class MyEvalPoly : public EvalPoly {
protected:
float regs['z’-’a’+1];
virtual float value(char *r){ return regs[r[0]-'a’]; }
virtual void store(char *r, float v){ regs[r[0]-'a’] = v; }

public:
MyEvalPoly()
{

for (int i="a’; i<="z"; i++) regsli-'a’] = 0.0;

k

Wehave againused afloat  array indexed by theregistersa. . z to store and retrieve the
register values.
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Adding Actions to Compute Polynomial Values

To actually compute the value of a polynomial, we add actionsto the SORCERER grammar.
Aswiththe ANTLR only version, we use afew trigger functions to store and retrieve
register values. Assigning the result of evaluating a polynomial isdonein ruleassi gn as
follows:

assign
: <<float r;>>

#( ASSIGN id: 1D poly>[r] )

<<

store(id->getText(), r);

printf("storing % in %\n", r, id->getText());

>>

We definealocal variable, r , with the init-action (first action of arule or subrule) and place
the result of pol y into it. We call our trigger function st or e() with the register and the
result value and print it out. The position of this action isimportant: It must be done after the
referenceto pol y sothat pol y’'s valueiscomputed beforethe pri nt f triesto useit.

Computing the value of the polynomial treesis straightforward (one of the design goals of
our AST, remember?):

poly > [float r]
<<float pil,p2;>>

#( MULT pol y>[pl] poly>[p2] ) <<r = pl*p2;>>
| <<float pl,p2;>>
#( ADD pol y>[p1] pol y>[p2] ) <<r = pl+p2;>>

| <<float p1l,p2;>>

#( EXP pol y>[p1] poly>[p2] ) <<r = pow(pl, p2);>>
[ id:ID <<r = val ue(id->getText());>>
| f:FLQAT <<r = atof (f->getText());>>

Rule pol y returns the floating point result as a return value. Starting with the simplest
alternatives, you will note that for afloating point tree node, we simply compute the floating
point value (at of ()) of thetext found on the input stream for that token. For an identifier
(register) node, we call our trigger function val ue() with the register identifier and return
the result. The other alternatives of pol y take the results of the two operands and perform
the appropriate operation. Again, the actions must appear after the calls to the operands so
that both results are available before being used.
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Becauseruleassi gn will be called from the ANTLR grammar, no main program is required
or specified in the SORCERER description. The entire specification is

#header <<

#i ncl ude <nmat h. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude "tokens. h"

#i ncl ude "AToken. h"

typedef ANTLRCommonToken ANTLRToken;
#i ncl ude "AST. h"

typedef AST SCORAST;

>>

class Eval Poly {

<<
pr ot ect ed:
virtual float value(char *r) = 0;
virtual void store(char *r, float v) = 0;
>>
assign

<<float r;>>

#( ASSIGN id: 1D poly>[r] )

<<

store(id->getText(), r);

printf("storing % in %\n", r, id->getText());
>>

poly > [float r]
. <<float pl,p2;>>

#( MLT pol y>[ p1] poly>[p2] ) <<r = pl*p2; >>
| <<float pil,p2;>>
#( ADD pol y>[pl] poly>[p2] ) <<r = pl+p2; >>

| <<float pl,p2;>>
#( EXP pol y>[pl] poly>[p2] ) <<r

pow(pl, p2); >>
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| id:ID <<r
| f:FLQAT <<r

val ue(i d->get Text ()); >>
at of (f->get Text ()); >>

}

Now the question is, how do we link our SORCERER tree-walker into our AST-
constructing ANTLR grammar? First, we need to include the tree walker definition:

#header <<

/Il must be visible to all generated files; hence, nust
/] be in #header action

#i ncl ude " AToken. h"

typedef ANTLRConmonToken ANTLRToken;

#i ncl ude "MEval Poly. h"

>>

Second, we need to associate label s with the assignment and addition operator tokens so that
they may be referenced in our SORCERER description.

#t oken ASS| GN "=
#t oken ADD "\

Third, and finally, we need to place acall intheassi gn ANTLR ruleto invoke the
SORCERER assi gn rule (which will evaluate the polynomial):

assi gn
: ID"="~ poly ";"!
<<wal ker . assi gn( ( SORASTBase **) &#0) ; >>

where our tree walker is defined as a member variable of our parser:

cl ass Pol yParser {
<<
pr ot ect ed:
M/Eval Pol y wal ker;
>>

}

The action invokestheassi gn rule of the tree walker we have declared. The cast is required
because SORCERER generates tree-walking functions that take generic SORASTBase tree
pointers not ASTBase pointers (the type of #0).

The augmented ANTLR description is

#header <<
/1 must be visible to all generated files; hence, nust put in #header
#i ncl ude " AToken. h"
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typedef ANTLRCommonToken ANTLRToken;
#i ncl ude "M/Eval Pol y. h"
>>

<<
#i ncl ude "PBl ackBox. h"
#i ncl ude "DLG.exer. h"

mai n()

{
Par ser Bl ackBox<DLGLexer, Pol yParser, ANTLRToken> p(stdin);
ASTBase *root = NULL,;
p. parser()->interp(& oot);

>>

#token "[\ \t]+" <<skip();>>

#t oken "\ n" <<skip(); newine();>>
#token ID "[a-2z]"

#token FLOAT "[0-9]+ { . [0-9]+ }"

#t oken EXP A
#t oken ASSI GN "=
#t oken ADD "\
#t oken MULT

cl ass Pol yParser {

<<
pr ot ect ed:
M/Eval Pol y wal ker;
>>
i nterp!
( arassign )+
assign
: ID"="~ poly ";"!
<<wal ker . assi gn( ( SORASTBase **) &#0) ; >>
pol 'y

term( "\+"~ term)*
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termbigterm
| reg { """" exp }

bi gt erm
c:coefficient
( r:reg
( "~ erexp
<<#0 = #(#[ MULT, "MULT"], #c, #(#[EXP,"EXP'], #r, #e));>>
|  <<#0 = #(#[ MLT,"MLT"], #c, #r);>>
)
| <<HO = #c, >>
)

coefficient

FLQOAT
reg: ID
exp: reg

|  FLOAT

}
The previous makefile created with
gennk -CC -class Pol yParser -project poly -trees poly.g

for testing the AST construction can be modified for use with a SORCERER phase in the
following ways:

«  MAKE variables for SORCERER support code and binaries are added:

SOR H = $(PCCTS)/sorcerer/h
SOR LIB = $(PCCTS)/sorcerer/lib
SOR = $(PCCTS)/ sor cerer/ sor

e CFLAGS variableis changed to add the SORCERER directory:
OFLAGS = -1. -1$(ANTLR H) -13$(SOR H
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e  SRCvariableis changed to add the SORCERER phase and support file:
SRC = poly.cpp \

Pol yPar ser. cpp \
$(ANTLR_H) / APar ser. cpp $(ANTLR H)/ DLexer Base. cpp \
$(ANTLR_H) / ASTBase. cpp $( ANTLR_H) / POCTSAST. cpp \
$(ANTLR _H)/ ATokenBuffer. cpp $(SCAN) .cpp \
eval . cpp Eval Poly. cpp \
$(SOR_LI B)/ STr eePar ser . cpp

e 0BJ variableischanged in asimilar way.
e Target pol y. o ischanged to depend on the SORCERER phase include file:
poly.o : $(TOKENS) $(SCAN).h poly.cpp Eval Poly.h
$(CCO) -c¢ $(CFLAGS) -0 poly.o poly.cpp
e Finaly, we add targets for all the SORCERER output and support code:

Eval Poly. o : Eval Poly. cpp
$(CC0) -c $(CFLAGS) Eval Poly. cpp

eval .o : eval.cpp
$(CCO) -c¢ $(CFLAGS) eval.cpp

eval . cpp Eval Poly.cpp Eval Poly.h : eval.sor
$(SOR) - CPP eval . sor

STreeParser.o : $(SOR_LI B)/ STr eePar ser. cpp
$(CCC) -0 STreeParser.o -c $(CFLAGS) \
$( SOR_LI B)/ STr eePar ser . cpp

Tree Transformations and Multiple SORCERER Phases

The previous example used SORCERER to evaluate polynomia assignments. We now
consider how to use SORCERER to perform tree rewrites. We shall differentiate
polynomials of the form:

axrn + bx m + ...

for integers a, b, n and m; we assume a single free variable x. As before, we will construct
trees for the polynomials using an ANTLR grammar, but then manipulate the trees using
three SORCERER phases. For example, given input

X2 + 2x + 1
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the ANTLR grammar constructs the tree

+
d .
’L‘;» MULT
)L(—P 2 £—> X
The first SORCERER phase differentiates the polynomial, yielding:
+
: o
NL%LT;» 2
5 on
‘o
or
2x"1 + 2+ 0

The second phase normalizes the polynomial so that additions of zero are removed and
exponents of one are removed:

MILT— 2

2— X

or
2X + 2

The third and final phase prints the tree back out in polynomial form.

SORCERER will be used in transform mode where it makes the following assumptions:

e Thereisaninput tree from which an output tree is derived.

Language Translation Using PCCTS and C++ 69



A Tutorial

e If givennoinstructionsto the contrary, SORCERER automatically copiestheinput
tree to the output tree.

e Eachrule hasaresult tree, and the result tree of thefirst rule called is considered
the final, transformed tree. This added functionality does not affect the normal rule
argument and return value mechanism.

e Labesattached to grammar elements are generally referred to aslabel, where label
refersto the input tree subtree in nontransform mode.

The output tree in transform mode is referred to as label. The input node,

for token references only, can be obtained with label_i n. The input

subtree associated with rule references is unavailable after the rule has

been matched—the tree pointer points to where that rule left off parsing.
Input nodes in transform mode are not needed very often.

e A C++variableexists for any labeled token reference even if it is never set by
SORCERER.

»  Theoutput tree of arule can be set and/or referenced as#rule.

Tree Definition

To satisfy SORCERER in transform mode (in this situation), you must tell SORCERER how
to construct new trees with shal | owCopy() wheret - >shal | owCopy() returnsa
duplicate of nodet with all node pointers NULL. If youreferto#[...] inanaction, you
must also define a constructor with the appropriate arguments. The AST used in this
application differs from the previousin that we have added

e Anintegeri const field to make decrementing exponents easier

e Constructorsfor al #[ . . . ] node constructor references
e A deéfinition of shal | owCopy/()

The AST is defined as follows:

#i f ndef AST h
#define AST h

#i ncl ude "ASTBase. h"

#i ncl ude "AToken. h"

/'l use smart pointers ANTLRTokenPtr for garbage collection
#i ncl ude "ATokPtr.h"

class AST : public ASTBase {
prot ect ed:

ANTLRTokenPt r token;

int iconst;
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public:
/* These ctor are called when you ref node constructor #[tok,s] */
AST( ANTLRTokenType tok, char *s)

{
token = new ANTLRToken(tok, s);
if ( token->getType() == INT)
i const = atoi (token->getText());
}
AST( ANTLRTokenType tok, int i)
{
token = new ANTLRToken(tok, "");
iconst =1i;
}

/1 called by ANTLR granmmar during initial tree construction
AST(ANTLRTokenPtr t)

{
token = t;
if ( token->getType() == INT )
{
i const = atoi (token->getText());
}
}
AST(const AST &) /1 copy constructor
{
token = t.token;
iconst = t.iconst;
set Down( NULL) ;
set R ght (NULL) ;
}

voi d preorder_action() {
char *s = token->get Text();
if ( token->getType()==INT ) printf(" %", iconst);
else printf(" %", s);

}
virtual int type() { return token->getType(); }
char *get Text () { return token->getText(); }

voi d set Text(char *s) { token->setText(s); }
virtual PCCTS AST *shal | owCopy() { return new AST(*this); }
int getlConst() { return iconst; }

void setlConst(int i) { iconst =1i; }
voi d decl Const() { iconst--; }

b

#endi f
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Building Trees For Differentiation

The grammar needed to build the ASTsis adlightly modified version of pol y. g used in the
previous examples. The differences are that assignments are not recognized and coefficients
and exponents must be simple integers. (Support code differences are commented in the
grammar.)

<<
#include “PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"

#include "DiffPoly.h" /I include the .h files for 3 phases
#include "SimplifyPoly.h"

#include "PrintPoly.h"

main()

{
ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
ASTBase *root = NULL,;
p.parser()->poly(&root)

}

>>

#token "\ \t]+"<<skip();>>
#token "\n" <<skip(); newline();>>

#token EXP "
#token ADD "\+" /I def used by SORCERER phases
#token MULT /I used by SORCERER phases

class PolyParser {

poly
: <<

AST *result=NULL, *nresult=NULL;

DiffPoly dp; /I define the 3 phases
PrintPoly pp;

SimplifyPoly sp;

>>

term ("\+"" term )*

<<

Il execute the 3 phases, creating new tree after phase 1,2
dp.poly((SORASTBase **)&(#0), (SORASTBase **)&result);
sp.poly((SORASTBase **)&result, (SORASTBase **)&nresult);
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pp. pol y(( SORASTBase **)&nresult);
printf("\n");
>>

termbigterm
| reg { "AMINT )

bi gt ernm
c: coefficient
( r:reg
( "AM elexp
<<#O = #(#[ MLT, "MLT"], #c, #(#H EXP,"EXP'], #r, #e));>>
| <<#0 = #(#[MLT,"MLT"], #c, #r),>>
)
| <<#0 = #c;>>
)
coefficient
: I NT
reg: ID
exp: I NT
}
#t oken 1D "[a-z]"

#token I NT"[0-9] +"

Language Translation Using PCCTS and C++ 73



A Tutorial

Differentiation Phase

Differentiating our polynomial trees follows these rules:

TABLE 2. Differentiation of Polynomial Trees

Isolated integers Set the valueto 0.

Isolated identifiers Replace with an integer node whose valueis 1

Terms with exponents and no Make anew tree with amultiply at the root, the pre-

coefficient vious exponent as the first child, and the previous
term as the second child. Decrement the exponent of
the term.

Terms with no exponent, but Replace the term with the coefficient node.

with coefficient

Terms with coefficients and Multiply the exponent into the coefficient and decre-

exponents ment the exponent.

The complete SORCERER diffierentiation grammar looks like this:

#header <<
#i ncl ude <mat h. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude "t okens. h"

#i ncl ude " AToken. h"

typedef ANTLRCommonToken ANTLRToken;
#i ncl ude "AST. h"

typedef AST SORAST,;

>>

class DffPoly {

pol y: #( ADD poly poly )

| term
term: Qi:INT <<#term= #[INT,"0"];>>
| id:ID <<#tterm= #[INT,"1"];>>
| #( ex:EXP id: 1D e:INT)
<<
#term = #(#[ MLT, "MULT"], #[INT, e->getlConst()], #(ex,id,e));
e->decl Const () ; /1 decrenent exponent
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>>
[ #( m MLT ct:INT
( #( ex:EXP idt:IDet:INT)
<<
[/ just reset the integer val ues everywhere
ct->set| Const(ct->getl Const()*et->getl Const());
et - >decl Const () ;
#term= #(m ct, #(ex,idt,et));
>>
| ID
<<#term= ct;>>// just return the INT node
)
)
}
The action

#term= #[INT,"0"];

sets the output tree for rulet er mto be asingle node (using the #[ . . . ] node constructor).
The action

#term= #(# MLT, "MLT"], #[INT, e->getlConst()], #(ex,id, e));

creates atree with anew MULT node as the root, anew | NT node as the first child and the
previousterm, #(ex,id, e), becausethe second child where nodeslabeled by ex, id
and e areduplicates made automatically from the input nodes.

Simplification Phase

Differentiation can leave unusual terms such as additions of zero and exponents of one. A
SORCERER phase to simply polynomialsis useful. The following simple rules are used:

TABLE 3. Simplification of Polynomial Trees

Addition of 0+0 Return NULL.
Addition of integer with value 0 to any Returnt.

other term, t

Termst with exponents of value 1 Return just t.
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The following SORCERER transform mode phase implements these rules.

#header

<<

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude "tokens. h"
#i ncl ude "AToken. h"

t ypedef

ANTLRCommonToken ANTLRToken;

#i ncl ude "AST. h"

t ypedef
>>

class Si

pol y:
|!

AST SCORAST;

nplifyPoly {

#( MLT poly poly )

#( a: ADD p:poly q:poly )

<<

if ( p==NULL ) #poly = q;

else if ( g==NULL ) #poly = p;

el se {
int leftldentity=( p->type()==INTI && p->getl Const()==0 );
int rightldentity=( g->type()==INT & g->get| Const()==0);
if (leftldentity & !rightldentity ) #poly = q; //0+x
else if ( !leftldentity & rightldentity ) #poly = p; //x+0
elseif (!leftldentity&rightldentity) #poly = #(a,p,q);
el se #poly = NULL; //0+0

}

>>

#( e:EXP v:poly ex:INT)

<<

if ( ex->getlConst()==1) #poly = v;

el se #poly = #(e, v, ex);

>>

id:ID

i INT
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Printing Phase

After smplification, the only remaining task is to print the differentiated tree back out in
polynomia form, which is done in SORCERER nontransform mode:

#header <<

#i ncl ude <mat h. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude "tokens. h"

#i ncl ude " AToken. h"

typedef ANTLRConmonToken ANTLRToken;
#i ncl ude "AST. h"

typedef AST SCORAST;

>>

class PrintPoly {

pol y: #( MULT poly poly )
[ #( ADD poly <<printf("+");>> poly )
[ #( EXP poly <<printf("~");>> poly )
[ id:ID <<printf("9%",id->getText());>>
[ i:INT <<printf("%l",i->getlConst());>>

The order of action execution isimportant. Because we wish to print out polynomialsin
infix notation (as opposed to postfix, for example), we insert the
printf("+");

action in between the printing of the two operands of the ADD root node.

Makefile

The following makefile has targets for the parser and three tree-walking phases. This was
initially generated by the gennk program, but was modified by hand for the SORCERER
targets.

#

# PCCTS nekefile for: poly.g

#

# Oreated from gennk -CC -class Pol yParser -project poly -trees poly.g
#
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# PCCTS rel ease 1.32

# Project: poly

# C++ out put

# DLG scanner

# ANTLR-defined token types
#

TOKENS = tokens. h

#

# The followi ng filenanes nmust be consistent with ANTLR/ DLG fl ags
DLG FI LE = parser.dlg

ERR = err

HDR FI LE =

SCAN = DLGLexer

PCCTS = / projects/pccts
ANTLR_H = $(PCCTS)/ h

SOR H = $(PCCTS)/sorcerer/h
SOR LIB = $(PCCTS)/sorcerer/lib
BI N = $(PCCTS)/ bin

ANTLR = $(BIN)/antlr

DLG = $(BIN/dlg

SOR = $(PCCTS)/ sor cerer/ sor

CFLAGS = -I. -I1$(ANTLR H -g -1$(SCR H)
AFLAGS = -CC -gt

DFLAGS = -Q -i -CC

GRM = poly.g

SRC = poly.cpp \
Pol yPar ser. cpp \
$(ANTLR H) / APar ser. cpp $( ANTLR H)/ DLexer Base. cpp \
$(ANTLR H)/ ASTBase. cpp $( ANTLR H)/ PCCTSAST. cpp \
$(ANTLR _H)/ ATokenBuf fer. cpp $(SCAN). cpp \
diff.cpp DiffPoly.cpp print.cpp PrintPoly.cpp sinplify.cpp \
SinplifyPoly.cpp \
$(SOR_LI B)/ STreePar ser. cpp
BJ = poly.o \
Pol yPar ser. o \
APar ser. o DLexerBase.o \
ASTBase. 0 PCCTSAST. o \
ATokenBuffer.o $(SCAN). o \
diff.o DffPoly.o print.o PrintPoly.o sinplify.o SinplifyPoly.o \
STreeParser. o
ANTLR_SPAWN = pol y. cpp Pol yParser.cpp \
Pol yParser. h $(DLG FI LE) $( TOKENS)
DLG SPAWN = $(SCAN). cpp $(SCAN) . h
CCC=g++
CC=$( CCC)
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poly : $(0BJ) $(SRO
$(CCC) -0 poly $(CFLACS) $(0BI)

poly.o : $(TOKENS) $(SCAN).h poly.cpp PrintPoly.h DffPoly.h
SinplifyPoly.h
$(CCC) -c¢ $(CFLAGS) -0 poly.o poly.cpp

Pol yParser.o : $(TOKENS) $(SCAN).h Pol yParser.cpp Pol yParser. h
$(CCC) -c $(CFLAGS) -0 Pol yParser.o Pol yParser. cpp

$(SCAN) .0 : $(SCAN).cpp $(TOKENS)
$(OCO) -c¢ $(CFLAGS) -0 $(SCAN). 0 $(SCAN).cpp

$(ANTLR SPAWY) : $(GRV)
$(ANTLR) $(AFLAGS) $(GRV)

$(DLG SPAWN) : $(DLG FILE)
$(DLG $(DFLAGS) $(DLG FILE)

AParser.o : $(ANTLR_H)/ AParser. cpp
$(CCO) -c¢ $(CFLAGS) -0 AParser.o $(ANTLR H)/ AParser. cpp

ATokenBuffer.o : $(ANTLR_H)/ ATokenBuf f er. cpp
$(C0C0) -c $(CFLAGS) -o ATokenBuffer.o $(ANTLR H)/ ATokenBuffer. cpp

DLexer Base. 0 : $(ANTLR_H)/ DLexer Base. cpp
$(CCC) -c $(CFLAGS) -0 DLexerBase.o $(ANTLR H)/ DLexer Base. cpp

ASTBase. 0 : $(ANTLR H)/ ASTBase. cpp
$(OCC) -c¢ $(CFLAGS) -0 ASTBase. o $(ANTLR H)/ ASTBase. cpp

PCCTSAST. 0 : $(ANTLR_H)/ PCCTSAST. cpp
$(CCC) -c $(CFLAGS) -0 PCCTSAST. 0 $(ANTLR_H)/ PCCTSAST. cpp

#
# SORCERER crud
#
PrintPoly.o : PrintPoly.cpp
$(CCO) -c¢ $(CFLAGS) PrintPoly. cpp

print.o : print.cpp
$(CCC) -c¢ $(CFLAGS) print.cpp

print.cpp PrintPoly.cpp PrintPoly.h : print.sor
$(SOR) -CPP print.sor
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DiffPoly.o : DiffPoly.cpp
$(CCO) -c $(CFLAGS) DiffPoly.cpp

diff.o: diff.cpp
$(CC) -c¢ $(CFLAGS) diff.cpp

diff.cpp DiffPoly.cpp DiffPoly.h : diff.sor
$(SOR) -transform-CPP diff. sor

SinplifyPoly.o : SinplifyPoly.cpp
$(COO) -c¢ $(CFLAGS) SinplifyPoly. cpp

sinplify.o : sinplify.cpp
$(CCO) -c¢ $(CFLAGS) sinplify.cpp

sinplify.cpp SinplifyPoly.cpp SinplifyPoly.h : sinplify.sor
$(SOR) -transform-CPP sinplify.sor

STreeParser.o : $(SOR LI B)/ STreePar ser. cpp
$(CCC) -0 STreeParser.o -c¢ $(CFLAGS) $(SCOR_LI B)/ STreeParser. cpp

cl ean:
rm-f *.0 core poly

scrub:
rm-f *.0 core poly $(ANTLR_SPAWN) $(DLG_SPAWW)
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3 ANTLR Reference

This chapter tells you what you need to know so you can construct parsersviaANTLR
grammars, how to interface a parser to your application, and how to insert actions to
generate output. Unless otherwise specified, actions and other source code is C++.

[Professors Russell Quong, Hank Dietz, and Will Cohen all have contributed greatly to the
overall development of PCCTSin general. In particular, much of the intellectual property of
ANTLR was conceived with Russell Quong.]

ANTLR Descriptions

Generally speaking, an ANTLR description consists of a collection of lexical and syntactic
rules describing the language to be recognized and a collection of user-defined semantic
actions describing what to do with the input sentences as they are recognized. A single
grammar may be broken up into multiple files and multiple grammars may be specified
within asingle file, but the basic sequence follows something like:

header action
actions

t oken definitions
rul es

actions

t oken definitions
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For example, the following isacomplete ANTL R description that recogni zes the vocabulary
of B. Simpson:

<<

t ypedef ANTLRCommonToken ANTLRToken;
#i ncl ude "DLG.exer. h"

#i ncl ude " PBI ackBox. h"

mai n() {
Par ser Bl ackBox<DLG.exer , /|l create a parser
BSi npsonPar ser,
ANTLRToken> bart (stdin);
bart. parser()->a(); /1 invoke parser
}
>>
#t oken "I\ \t\n]+" <<skip();>> /] ignore whitespace

#t oken MAN " man"

cl ass BSi npsonParser {
a "no" "way" MAN
| "don’t" "have" "a" "cow' "man"
}
More precisely, ANTLR descriptions conform to the following grammar:

gr ammar
( "#header" ACTION
| "#parser" STRI NG
| "#tokdefs" STRI NG
)*
{ "class" ID"\{" }
( ACTION | lexaction | directive | global _exception_handler )*
(rule | directive )+
( ACTION | directive )*
{ "\t }
( ACTION | directive )*

directive
| excl ass | token_def | errclass_def | tokclass_def

where the lexical itemsin Table 4 on page 83 apply:

Thereis no start rule specification per se because any rule can be invoked first.
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TABLE 4. Lexica Itemsinan ANTLR Description

Token Name | Form Example
ACTION <.L.>> <<int i;:>>
<<define(id->getText());>>
STRING “[a-z]+" “begin”
“includefile.h” “test”
TOKEN [A-Z][a-zA-Z0-9_]* ID KeyBegin Int_Form1
RULE [a-7[a-zA-Z0-9 ]* expr statement func_def
ARGBLOCK [...] [34] [int i, float j]
I D [a-zA-Z][a-20-9_]* CPar ser | abel
SEMPRED <<, L >>7? <<i sType(id->getText()) >>?
Comments

Both C and C++ style comments are allowed within the grammar (outside of actions)
regardless of the language used within actions. For example,

/* hereis arule */
args : ID( "," ID)* ; // match a list of ID’s

The comments used within your actions is determined by your language.

#header Directive

Any C or C++ code that must be visible to files generated by ANTLR must placed in an
action at the start of your description preceded by the #header directive. Thisdirectiveis
necessary when using the C interface and is optional with the C++ interface. Turn on
ANTLR command line option - gh when using the C interface if the function that invokes
the parser isin anon-ANTLR-generated file.

#par ser Directive

Because C does not have the notion of a package or module, linking ANTLR-generated
parser causes multiply defined symbol errors (because of the global variables defined in
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each parser). The solution to the problem isto prefix all global ANTLR symbolswith auser-
defined string in order to make the symbols unique to the C linker. The #par ser isused to
specify this prefix. A filecalled r emap. h is generated that contains a sequence of
redefinitions for the global symbols. For example,

#par ser foo

generatesar emap. h file similar to:

#define your _rule foo_your rule
#define zzt okenLA xyz_zzt okenLA

#define AST xyz_AST

Parser Classes

When using the C++ interface, you must specify the name of the parser class by enclosing
al rulesin

cl ass Parser {

}

A parser class resultsin asubclass of ANTLRPar ser inthe parser. A parser object issimply
aset of actions and routines for recognizing and performing operations on sentences of a
language. Conseguently, itis natural to have many separate parser objects; for example, one
for recognizing include files.

Exactly one parser class may be defined. For the defined class, ANTLR generates aderived
class of ANTLRpar ser .

Actions may be placed within the parser class scope and may contain any C++ code that is
valid within a C++ class definition. Any variable or function declarations will become
members of the class in the resulting C++ output. For example,

cl ass Parser {
<<public: int i;>>
<<int f() { blah; }>>

rule : AB<<f();> ; <<fail-action for rule;>>

<<final action;>>

}

Here, variablei and functionf are members of class Par ser that become a subclass of
ANTLRPar ser in theresulting C++ code.
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The actions at the head of the parser class are collected and placed near the head of the
resulting C++ class; the actions at the end of the parser class are similarly collected and
placed near the end of the resulting parser class definition.

ThePar ser . h file generated by ANTLR for this parser class would look something like
this:

class Parser : public ANTLRParser {
pr ot ect ed:
static ANTLRChar *_token_tbl[];
public: int i;
int f() { blah; }
static SetWrdType setwdl[4];

publi c:
Par ser (ANTLRTokenBuf fer *i nput);
Par ser (ANTLRTokenBuf fer *i nput, ANTLRTokenType eof);
void rul e(void);
final action
|
Rules

An ANTLR rule describes a portion of the input language and consists of alist of
alternatives; rules also contain code for error handling and argument or return val ue passing.
A rulelooks like:

rule : alternative,
| alternative,

| alternative,

where each alternative production is composed of alist of elements that can be referencesto
rules, references to tokens, actions, predicates, and subrules. Argument and return value
definitions looks like the following where there are n arguments and m return values:

rulefargy, ..., arg,] > [retvalq ..., retval ]
The syntax for using arule mirrorsits definition:

a ... rulefargq, ..., argy > [vq, ..., 7

Here, the various v; receive the return values from theruler ul e, each v; must be an |-value.
For example,

start
<int r;>> /! init-action declares local var r
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expr[3,4] > [r] <<printf("result %\ n"),;>>

expr[int a, int b] >[int result]
i :INT <<$result = $a+$b+atoi ($i->get Text());>>

Thereferencetoruleexpr inrulest art passestwo arguments, 3 and 4, which correspond
toa andb inruleexpr just likeanormal programming language. Thereturn value of expr is
aninteger caledr esul t, whichis set in the action. The integer value of the text for the
incoming integer is added to the two arguments to compute the resullt.

We make special note of thefirst action of rulest ar t : if the first element of the ruleisan
action, that action isan init-action and is executed once before recognition of the rule begins
and is the place to define local variables.

The exact syntax of aruleisthe following:

rule
: RULE { "!" } { ARGBLOX }
{ ">" AR&BLOX }
{ STRING} Il error string to print instead of rule nanme
bl ock ";"
{ ACTION } /1l fail action
( exception_group )*

bl ock
: alt ( exception_group )* ( "\|" alt ( exception_group )* )*

alt: {"\@ } ({ "\~ } elenment )*

token: TOKEN | STRI NG

el enent

: {ID":"}
( token { ".." token } { "A" | "1" } { "\@ }
| A ey
| RUWE{ "!" } { ARGBLOCK } { ">" ARGBLOX }
)

[ ACTI ON [] <<...>>

| SEMPRED 1] <<...>>?

| "\(" block "\)" { "\*" | "\+" | "?"}
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| "\{" block "\}"

Subrules (EBNF Descriptions)

A subruleisthe same as arule without alabel and, hence, has no arguments or return values.
The four subrules to choose from are listed in Table 5 on page 87.

TABLE 5. ANTLR Subrule Format

Name Form Example

plain subrule (...) (ID| INT)
zero-or-more (...)* ID (% ID)*
one-or-more (...)+ ( declaration )+
optional {...} { “else” statement }

If the first element of the whole subruleis an action, that action is an init-action and is
executed once before recognition of the subrule begins—even if the subrule is a looping
construct. Further, the action is always executed even if the subrule matches nothing.

Rule Elements

In this section, we summarize the elements that can appear in rules. Most elements (i.e.,
predicates, actions, tree operators, and exceptions) are described in more detail later.

Actions

Actions are of the form<. . . >> and contain user-supplied C or C++ code that must be
executed during the parse. Init-actions are actions that are the very first element of a rule or
subrule; they are executed before the rule or subrule recognizes anything and can be used to
define local variables. Fail-actions are placed after;thia ‘a rule definition and are

executed if an error occurred while parsing the rule (unless exception handlers are used).
Any other action is executed immediately after the preceding rule element and before any
following elements.
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Semantic Predicate
A semantic predicate has two forms:

e <<...>>? Thisform represents aC or C++ expression that must evaluate to true
before recognition of elements beyond it in the rule are authorized for recognition.
* ( lookahead-context )? => <<...>>? Thisformissimply a more specific
form asit indicates that the predicate is only valid under a particular lookahead
context; e.g., the following predicate indicates that thei sTypeNane() testisonly
valid if the first symbol of lookahead is an identifier:
( ID)? => <<isTypeNanme(LT(1)->get Text())>>?
Typically, semantic predicates are used to specify the semantic validity of a particular
production and, therefore, most often are placed at the extreme left edge of productions.

Y ou should normally allow ANTLR to compute the lookahead context (ANTLR command
line option “ prc on”). See “Predicates” on page 127.

Syntactic Predicate

Syntactic predicates are of the fofm . ) ? specify the syntactic context under which a
production will successfully match. They are useful in situations where normal LL(k)
parsing is inadequate. For example,

a ( list "=" )2 list "=" list
| list

Tokens, Token Classes and Token Operators

Token references indicate the token that must be matched on the input stream and are either
identifiers beginning with an upper case letter or are regular expressions enclosed in double
quotes. A token class looks just like a token reference, but has an assttakieicass

definition and indicates the set of tokens that can be matched on the input stream.

Therange operator has the forify . . T, and specifies a token class containing the set of
token type values from; up toT,, inclusively. Any token found on the input stream that is
contained in this set is considered a valid match.

Thenot operator has the forml and specifies the set of all tokens defined in the grammar
except forT.
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Rule References

Rule references indicate that another rule must be invoked to recognize part of the input
stream. The rule may be passed to some arguments and may return some values. Rules are
indentifiers that begin with alower case |etter. For example,

a <<int i;>> b[34] >[i]
b[int j] > [int K]
: AB<<$k = 3§ + 1;>> //return argunent + 1

Labels

All rules, token, and token class references may be labeled with an identifier. Identifiers are
generally used to access the attribute (C interface) or token object (C++ interface) of tokens.
Rule labels are used primarily by the exception handling mechanism to make a group of
handlers specific to arule invocation.

Labels may begin with either an upper or lower case letter; e.g.,i d: | D ER expr.

Actionsin an ANTLR grammar may access attributes by using labels of theform $/ abel
attached to token rather than the conventional $i for someinteger i. By using symbols
instead of integer identifiers, grammars are more readable and action parameters are not
sensitive to changes in rule element positions. The form of alabel is:

| abel : el enent

where el enent iseither atoken reference or arulereference. To refer to the attribute (C
interface) or token pointer (C++ interface) of that element in an action, use

$| abel
within an action or rule argument list. For example,

a: t:ID<<printf("%\n", $t->getText());>>

using the C++ interface. To reference the tree variable associated with el enent , use
#l abel

When using parser exception handling, simply reference | abel to attach ahandler to a
particular rule reference. For example,
a: t:b
exception[t]
default : <<trap any error found during call to 'b'>>
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Labels must be unique for each rule as they have rule scope. Labels may be accessed from
parser exception handlers.

AST Operators

When constructing ASTs, ANTLR assumes that any nonsuffixed token is aleaf node in the
resulting tree. To inform ANTLR that a particular token should not be included in the output
AST, suffix the token with "! ." Rules may & so be suffixed with "! * to indicate that the tree
constructed by theinvoked rule should not be linked into the tree constructed for the current
rule. Any token suffixed with the "~" operator is considered aroot token. A tree node is

constructed for that token and is made the root of whatever portion of the tree has been built;

e.g,
a: AprC

resultsin the following tree:

D> WO

First Ais matched and made alonely child, followed by B which is made the parent of the
current tree, A. Finally, Cis matched and made the parent of the current tree—making it the
parent of theB node. Note that the same rule without any operators results in:

A—B—C

Exception Operator

When parser exception handlers are being used in a grammar, token references suffixed with
the @operator do not throm smat chedToken upon a token mismatch. The error is
handled within mat ch_wdf I tsig().

Multiple ANTLR Description Files

ANTLR descriptions may be broken up into many different files, but the sequence
mentioned above in the grammatical structure of ANTLR descriptions must be maintained.

For example, if fil&f 1. g contained

#header <<#include "int.h">>
<< main() { ANTLR(start(), stdin); } >>
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and filef 2. g contained
start : "begin" VAR "=" NUM";" "end" "." "@ ;
andfilef 3. g contained

#t oken VAR "[a-z] +"
#t oken NUM "[ 0- 9] +"

the correct ANTLR invocation would be
antlr f1.9g f2.g f3.g

Note that the order of filesf 2. g and f 3. g could be switched. In this case, to comply with
ANTLR's description meta-language, the only restriction isthat filef 1. g must be
mentioned first on the command line.

Other filesmay be included into the parser files generated by ANTLR viaactions containing
a#i ncl ude directive. For example,

<<#include “support_code.h">>

If afile (or anything else) must be included in all parser files generated by ANTLR, the
#include directive must be placed in the #header action. In other words,

#header <<#include “necessary_type_defs_for_all_files.h">>

Note that #include  can be used to define any ANTLR object (Attrib  , AST, etc...) by
placing it in the #header action.

Lexical Directives

Token Definitions

Tokens are defined either explicitly with #token or implicitly by using them asrule
elements. Implicitly defined tokens can be either regular expressions (non-identified tokens)
or token names (identified). Token names begin with an upper case |etter (rules begin with a
lower case letter). More than one occurrence of the same regular expression in a grammar
description produces a single regular expression in lexical description passed to DLG
(parser.dlg ) and is assigned one token type number. Regular expressions and token
identifiers that refer to the same lexical object (input pattern) may be used interchangesbly.
Token identifiers that are referenced, but not attached to aregular expression are simply
assigned atoken type and result in a #define  definition only. It is not necessary to label
regular expressions with an identifier in ANTLR. However, all token types that you wish to
explicitly refer to in an action must be declared with a#token instruction.
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Y ou may introduce tokens, lexical actions, and token identifiers with the #t oken directive.
Specifically,

Simply declare atoken for usein a user action:
#t oken VAR

Thisisuseful for defining a token type that has no associated regular
expression. For example, an abstract syntax tree may need a"dummy" node
with atoken type that does not class with an input token.

Associate atoken with aregular expression and, optionally, an action:;
#token 1D "[a-zA-Z][a-zA-Z0-9] *"

#token Eof "@ << printf("Eof Found\n"); >>

Specify what must occur upon aregular expression:;

#token "[0-9]+" <<printf("Found an int\n");>>

Important; All token identifiersresult in either #def i ne definitions or enum elementsin the
resulting parser. Be careful not to use C++ keywords as token identifierslikei f .

Lexical actionstied to atoken definition may access the variables, functions, and macrosin
Table 6 on page 92:

TABLE 6. C++ Interface Symbols Available to Lexical Actions

Symbol Description

repl char (DLGchar c) Replace the text of the most recently matched

lexical object with c. Y ou can erase the current
expression text by sending in a“\0’

repl str(DLGchar *s) Replace the text of the most recently matched
lexical object withs.

int line() The current line number being scanned by DLG.

new i ne() Maintain DLGLexer::_line by calling this
function when a newline character is seen; just
increments _line

nor e() Set aflag that tells DLG to continue looking for
another token; future characters are appended to
the current token text.

ski p() Set aflag that tells DL G to continue looking for

another token; future characters are not appended
to the current token text.
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TABLE 6. (Continued) C++ Interface Symbols Available to Lexical Actions

Symbol Description

advance() Instruct DLG to consume another input charac-
ter. ch will be set to this next character.

int ch The most recently scanned character.

DLGchar *| extext() Theentire lexical buffer containing all characters

matched thus far since the last token type was
returned. Seenor e() and ski p() .

DLGchar *begexpr () Beginning of last token matched.

DLGchar *endexpr () Pointer to the last character of last token
matched.

trackCol umms() Call thisfunction to get DL G to track the column
numbers.

i nt begcol () The column number starting from 1 of the first

character of the most recently matched token.

i nt endcol () The column number starting from 1 of the last
character of the most recently matched token.
Reset the column to 0 when a newline character
is encountered. Also adjust the columnin the lex-
ical action when a character is not one print posi-
tion wide (e.g., tabs or non-printing characters).
The column information is not immediately
updated if atoken’s action callsnor e() .

set _begcol (int a) Set the current token column number for the
beginning of the token.

set _endcol (i nt a) Set the current token column number for the
beginning of the token.

DLCGchar The type name of acharacter read by DLG. This

islinked by t ypedef tochar by default, but it
could be a class or another atomic type.

errstd(char *) Called automatically by DLG to print an error
message indicating that the input text matches no
defined lexical expressions. Override in a sub-
classto redefine.
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TABLE 6. (Continued) C++ Interface Symbols Available to Lexical Actions

Symbol

Description

node(int m

Set the lexical mode (i.e., lexical class or autom-
aton) corresponding to a lex class defined in a
ANTLR grammar with thel excl ass directive.

>

set | nput St reamn(
DLA nput Stream *)

Specify that the scanner should read characters
from the indicated input stream (e.qg., file, string,
function).

saveSt ate(DLGState *)

Save the current state of the scanner. You need
this function for include files and so on; i.e., save
the state of DLG, reset the file pointer, proces
the other file, and then restore the state.

o

restoreState(
DLGState *)

Restore the state of the scanner from a state
buffer.

Regular Expressions

Theinput character stream is broken up into vocabulary symbols (tokens) via regular

expressions—a meta-language similar to the ANTLR EBNF description language. ANTLR
collects all of the regular expressions found within your grammar (both those defined
implicitly within the grammar and those defined explicitly via#heken directive) and

places them in a file that is converted to a scanner by DLG. Table 7 on page 94 describes the
set of regular expressions.

TABLE 7. Regular Expression Syntax

Expression Description

alb Matches either the patteanor the patterrb.

(a) Matches the pattera. Patterma is kept as an indivisible unit.

{a} Matchesa or nothing, i.e., the same @s| ).

[ a] Matches any single character in characte@djs.g.,[ abc] matches
either am, b orc and is equivalent tpa| b| c) .

[a-b] Matches any of the single characters whose ASCII codes are between
a andb inclusively, i.e., the same é&| ... | b).
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TABLE 7. (Continued) Regular Expression Syntax

Expression Description

~[a] Matches any single character except for those in character list a.

~1 Matches any single character; literally “not nothing.”

ax Matches zero or more occurrences of pat&ern

a+ Matches one or more occurrences of patefire., the same aga*.

@ Matches end-of-file.

\t Tab character.

\'n Newline character.

\r Carriage return character.

\'b Backspace character.

\a Matches the single charactereven ifa by itself would have a dif;
ferent meaning, e.g\.;+ would match the character.

\onnn Matches character that has octal vatume.

\0xnn Matches character that has hexadecimal vahre

\ mn Matches character with decimal valoen, 1<nx9.

Token Order and Lexical Ambiguities

The order in which regular expressions are found in the grammar description file(s) is
significant. When the input stream contains a sequence of characters that match more than
one regular expression, (i.e., one regular expression is a subset of another) the scanner is
confronted with a dilemma. The scanner does not know which regular expression to match,
so it does not know which action should be performed. To resolve the ambiguity, DLG (the
scanner generator) assumes that the regular expression defined earliest in the grammar
should take precedence over later definitions. Therefore, tokens that are special cases of
other regular expressions should be defined before the more general regular expressions. For
example, akeyword is a special case of avariable and thus needs to occur before the
variable definition.

#t oken Keywor dBegi n "begi n"

#token ID "[a-zA-Z][a-zA-Z0-9] *"
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Token Definition Files (#t okdef s)

Y ou will probably beinterested in specifying the token types rather than having ANTLR
generateits own; typically, this situation arises when you want to link an ANTL R-generated
parser with a non-DL G-based scanner (perhaps an existing scanner). To get ANTLR to use
pre-assigned token types, specify

#t okdef s "nyt okens. h"

before any token definitions, where nyt okens. h isafilewith only alist of #def i nesor an
enumdefinition with optional comments.

When this directiveis used, new token identifier definitions are not allowed (either explicit
definitions like #t oken A" or implicit definitions such as a reference to a token label in a
rule). However, you may attach regular expressions and lexical actions to the token labels
defined inmyt okens. h. For example, ifryt okens. h contained:

#define A 2
andt . g contained:

#t okdef s "nyt okens. h"
#t oken A "bl ah"
a:.: AB

ANTLR would report the following error message:

Antlr parser generator Version 1.32  1989- 1995
t.g, line 3: error: inplicit token definition not allowed with #tokdefs

This refers to the fact that token identifiewas not defined inyt okens. h and ANTLR
has no idea how to assign the token identifier a token type number.

Only one token definition file is allowed.

As is common in C and C++ programming, "gates" are used to prevent multiple inclusions
of include files. ANTLR knows to ignore the following two lines at the head of a token
definition file:

#i fndef id;
#define id,

No check is made to ensure thal andi d, are the same or that they conform to any
particular naming convention (such as the name of the file suffixed wth.

The following items are ignored inside your token definition file: white space, C style
comments, C++ style comment$ f def , #i f, #el se, #endi f , #undef , #i nport.
Anything other than these ignored symbétsef i ne, #i f ndef , or a validenumstatement
yield lexical errors.
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Token Classes

A token classis set of tokens that can be referenced as one entity; token classes are
equivalent to subrules consisting of the member tokens separated by | "'s. The basic syntax
is.

#tokclass Tclass { T; ... Ty}

where Tcl ass isavalid token identifier (begins with an upper case |etter) and T; is a token
reference (either atoken identifier or aregular expression in double-quotes) or atoken class
reference; token classes may have overlapping tokens. Referencing Tc/ ass isthe same as
referencing arule of the form

tclass : Ty | ... | Ty

To reference the bitset created for token class Tcl ass in agrammar action is done as
Tcl ass_set; eg.,

#t okcl ass stop { ";" "end" }
st at enent

exception

default: <<consuneUntil (stop_set);>>

The difference between atoken class and aruleliesin efficiency. A reference to atoken
classis asimple set membership test during parser execution rather than alinear search of
thetokensin arule (or subrule). Furthermore, the set membership will be much smaller than
aseries of if-statementsin arecursive-descent parser. Note that automaton-based parsers
(both LL and LALR) automatically perform this type of set membership (specifically, a

table lookup), but lack the flexibility of recursive-descent parsers such as those constructed
by ANTLR.

A predefined wildcard token class, identified by adot, is available to represent the set of all
defined tokens. For example,

ig : "ignore_next_token" . ;

Thewildcard is sometimes useful for ignoring portions of the input stream; however, lexical
classes are often more efficient at ignoring input. A wildcard can also be used for error
handling as an "else-alternative”.

if "if" expr "then" stat
[ . <<fprintf(stderr, "nalformed if-statenment");>>

Be careful not to do thingslike this:
ig "begi n"
(.
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"end"

because the loop generated for the (. ) *" block will never terminate because " end" isaso
matched by the wildcard. Rather than using the wildcard to match large token classes, itis
often best to use the not operator. For example,
ig "begi n"

( ~"end" )*

"end"

where "~" is the not operator and implies a token class containing all tokens defined in the
grammar except the token (or tokens in atoken class) modified by the operator. Thei f
exampl e could be rewritten as:

if "if" expr "then" stat
| ~"if" <<fprintf(stderr, "nalforned if-statenent");>>

The not operator may be applied to token class references and token references only. It may
not be applied to subrules, for example. The wildcard operator and the not operator never
result in a set containing the end-of -file token type.

Token classes can also be created viathe range operator of theform 7, .. T,. Thetoken
type of T; must belessthan T, and the values between T; and T,, must be valid token types.
In general, thisfeature should be used in conjunction with #t okdef s so that you control the
token type values. An example range operator is:

#t okdef s "nyt okens. h"
a : operand pStart .. QpEnd operand ;

where nyt okens. h contains

#defi ne Add 1
#defi ne Sub 2
#defi ne Ml 3
#define pStart 1

#define OpEnd 3
This feature might not be needed because of the more powerful token class directive:

#tokclass Op { Add Sub Ml }
a : operand O operand ;
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Lexical Classes

ANTLR parsers use DFAs (Deterministic Finite Automata) created by DL G to match tokens
found on the character input stream. More than one automaton (lexical class) may be
defined in PCCTS. Multiple scanners are useful intwo ways. First, more than one grammar
can be described within the same PCCTS input file(s). Second, multiple automatons can be
used to recognize tokens that seriously conflict with other regular expressions within the
same lexical analyzer (e.g., comments, quoted-strings, etc...).

Actions attached to regular expressions (which are executed when that expression has been
matched on the input stream) may switch from one lexical analyzer to another. Each
analyzer (lex class) has alabel used to enter that automaton. A predefined lexical class
called START isin effect from the beginning of the PCCTS description until the user issuesa
#l excl ass directive or the end of the description is found.

When more than one lexical classis defined, it is possible to have the same regular
expression and the same token label defined in multiple automatons. Regular expressions
found in more than one automaton are given different token type numbers, but token labels
are unique across lexical class boundaries. For instance,

#l excl ass A
#t oken LABEL "expr1"

#l excl ass B
#t oken LABEL "expr2"

In this case, LABEL is the same token type number (#def i ne in C or enumin C++) for both
expr 1 and expr 2. A referenceto LABEL within arule can be matched by two different
regular expressions depending on which automaton is currently active.

Hence, the #l excl ass directive marks the start of a new set of lexical definitions. Rules

found after a#l excl ass can only use tokens defined within that class—i.e., all tokens
defined until the nextl excl ass or the end of the PCCTS description, whichever comes
first. Any regular expressions used explicity in these rules are placed into the current lexical
class. Since the default automat8hART, is active upon parser startup, the start rule must
be defined within the boundaries of tBBART automaton. Typically, a multiple-automaton
grammar will begin with

#1 excl ass START

immediately before the rule definitions to ensure that the rules use the token definitions in
the "main" automaton.

Tokens are given sequential token numbers across all lexical classes so that no conflicts
arise. This also allows you to refererd&LRPar ser : : t oken_t bl [ t oken_nun} (which

Language Translation Using PCCTS and C++ 99



ANTLR Reference

isastring representing the label or regular expression defined in the grammar) regardless of
which class t oken_numis defined in.

Multiple grammars, multiple lexical analyzers

Different grammars generally require separate lexical analyzersto bresk up theinput stream
into tokens. What may be a keyword in one language may be a simple variable in another.
The#l excl ass directiveis used to group tokensinto different lexical analyzers. For
exampl e, to separate two grammars into two lexical classes,

#l excl ass GRAMMARL
rul es for grammarl
#l excl ass GRAMVAR2
rul es for grammar?2

All tokens found beyond the #1 excl ass directive are considered to be of that class.

Single grammar, multiple lexical analyzers

For most languages, some characters are interpreted differently, depending on the syntactic
context; comments and character strings are the most common examples. Consider the
recognition of C style comments:

#l excl ass C_COMVENT

#token "[\n\r]" <<skip(); newine();>>
#t oken "\ */" <<node(START); skip();>>
#token "\*~[/]" <<skip();>>

#token "~[\*\n\r]+" <<skip();>>

#l excl ass START
#t oken "/\*" <<node( C_COWENT); skip();>>

Lexical Actions

It is sometimes convenient or necessary to have a section of user C code constructed
automatically by DLG placed in the lexical analyzer; for example, you may need to provide
ext er n definitions for variables or functions defined in the parser, but used in token
actions. Normally, actions not associated with a#t oken directive or embedded within a
rule are placed in the parser generated by ANTLR. However, preceding an action appearing
outside of any rulewith the#l exact i on pseudo-op directsthe action to thelexical analyzer
file. For example,

<< /* a normal action outside of the rules */ >>
#l exacti on
<< [/* this action is inserted into the |exical
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* anal yzer created by DLG
*/
>>

All #1 exact i on actions are collected and placed as a group into the C or C++ filewhere
the"lexer" resides. Typically, thiscode consists of functions or variable declarations needed
by #t oken actions.

Error Classes

The default syntax error reporting mechanism generates alist of tokens that could be
possibly matched when the erroneous token was encountered. Often, thislist islarge and
means little to the user for anything but small grammars. For example, an expression
recognizer might generate the following error message for an invalid expression, "a b":

syntax error at "b" mssing { "\+" "\-" Ut\xt v/
A better error message would be

syntax error at "b" missing { operator ";" }

This modification can be accomplished by defining the error class:
#errclass "operator" { "\+" "\-" "\*" "/}

The general syntax for the#err cl ass directiveis asfollows:
#errclass label { T, ... T,}

where | abel is either aquoted string or alabel (capitalized just like token labels). Any
quoted string must not conflict with any rule name, token identifier or regular expression.
Groups of expressions are replaced with this string.

The error class elements, T;, can be

» labeled tokens or regular expressions

Tokens (identifiers or regular expressions) referenced within an
error class must at some point in the grammar bereferencedin arule
or explicitly defined with #t oken. The definition need not appear
before the #er r cl ass definition.

«  other error classes
See the example following "rules.”
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e rules

the FIRST set (set of al tokensthat can be recognized first upon entering arule)
for that ruleisincluded in the error class. The - ge command-line option can be
used to have ANTLR generate an error class for each rule of the form:

#errclass Rule { rule }

where the error class nameisthe same as the rule except that the first character
is converted to uppercase.

The ability to reference other error classes error class hierarchies. For example,

#errclass Fruit { CHERRY APPLE }
#errclass Meat { CONPIG }
#errclass "stuff you can eat" { Fruit Meat }

yum : (CHERRY | APPLE) PIE
| (COW| PIG FARM
| THE (CHERRY | APPLE) TREE

Different error messages result depending upon where in rule yuma syntax error is detected.
If theinput were

THE Pl G TREE

the following error message would result:

syntax error at “PIG” missing { Fruit }

However, if the input were

FARM COW

the decent error message

syntax error at “FARM" missing { “stuff you can eat” THE }

would result. Note that without the error class definitions, the error message would have
been:

syntax error at “FARM" missing { CHERRY APPLE COW PIG THE }

which conveys the same information, but at a much more detailed level.
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How ANTLR Uses Error Classes

ANTLR attempts to construct sets of tokens for error reporting—error sets. The sets are
created wherever a parsing decision will be made in the generated parser. At every point in
the parsing process, there is a set of currently recognizable or acceptable token. This set can
be decoded and printed out when a syntax error is detected. ANTLR attempts to replace
subsets of all error sets with error classes defined by the user. For examplé&elole

contains a subrule with more than one alternative implying that a parsing decision will be
required at run-time to determine which alternative to choose.

a: (Happy | Sad | Funny | Carefree) Person ;

If, upon entering rule, the current token is not one of the four tokens found in the
alternatives, a syntax error will have occurred and the following message would be
generated (ifiuh" were the input token):

syntax error at “huh” missing { Happy Sad Funny Carefree }

Let us define an error class called Adjective  that groups those same four tokens together.
#errclass Adjective { Happy Sad Funny Carefree }

Now the error message would be:

syntax error at “huh” missing { Adjective }

ANTLR repeatedly trysto replace subsets of the error set until no more substitutions can be
made. At each replacement iteration, the largest error class that is completely contained
within the error set is substituted for that group of tokens. One replacement iteration may
perform some substitution that makes another, previously inviable, substitution possible.
This allows the hierarchy mechanism described above in the error class description section.
The sequence of substitutions for the yum example in the previous section would be:

1. {CHERRY APPLE COW PIG THE}

2. {Fruit COW PIG THE }

3. { Fruit Meat THE }

4. {"stuff you can eat" THE }

The error class mechanism leads to smaller error sets and can be used to provide more
informative error messages.
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Actions

Actions are embedded within your grammar to effect atrans ation. Without actions, ANTLR
grammars result in a simple recognizer, which answers yes or no as to whether an input
sentence was valid. This section describes where actions may occur within an ANTLR
grammar, when they are executed, and what special terms they may reference (e.g., for
attributes). Actions are of the form "<<. . . >>" (normal action) or "[ ... 1" (argument or
return value block).

Placement

There are three main positions where actions may occur:

Outside of any rule These actions may not contain executable code unlessiit
occurs within a compl etely-specified function. Typicaly, these actions contain
variable and function declarations as would normally be found in a C or C++
program. These actions are placed in the global scope in the resulting parser.
Consequently, all other actions have access to the declarations given in these
global actions. For example,

<<

extern int fromel sewhere;

enumT { X, Y, Z};

nai n()

{
}

>>
a: <<T b=X; printf("starting a");>>
bl ah

Within a rule or immediately following the rule. These actions are executed
during the recognition of the input and must be executable code unlessthey are
init-actions, in which case, they may contain variable declarations as well. Actions
immediately following the ;' of a rule definition are fail-actions and are used to
clean up after a syntax errorhgse are less useful now due to parser exception
handlers.) For example,
rule : <<init-action>>

<<normal action>> ...

<<fail-action>>
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e Asarule argument or return value block These actions either define arguments
and return val ues or they specify the value of arguments and return values; their
behavior isidentical to that of normal C/C++ functions except that ANTLR alows
you to define more than one return value. For example,
code_bl ock[ Scope s] > [ Synbol Li st | ocal syns]

<<Symbol *sym >>
"begi n" decl[$s] > [syn] <<$I ocal syms. add(syn);>> "end"

where s isan input argument to code_bl ock, | ocal syns isareturn value,
and symisalocal variablein code_bl ock that holdsthe result of calling rule
decl .

Time of Execution

Actions placed among the elements in the productions of arule are executed immediately
following the recognition of the preceding grammar element, whether that element is a
simple token reference or large subrule.

Init-actions are executed before anything has been recognized in a subrule or rule. Init-
actions of subrules are executed regardless of whether or not anything is matched by the
subrule. Further, init-actions are always executed during guess mode; i.e., while evaluating a
syntactic predicate.

Fail-actions are used only when parser exception handlers are not used and are executed
upon asyntax error within that rule.

Interpretation of Action Text

ANTLR generally ignores what you place inside actions with the exception that certain
expression terms are available to allow easy access to attributes (C interface), token pointers
(C++ interface), and trees. The following tables describe the various special symbols
recognized by ANTLR inside[...] and <<. .. >> actions for the C and C++ interface.

Comments (both C and C++), characters, and strings are ignored by ANTLR. To @scape *
and %', use \$ and \ #'.
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TABLE 8. C++ Interface Interpretation of Termsin Actions

Symbol M eaning

$j The token pointer for the jth element (which
must be a token reference) of the current alterna-
tive. The counting includes actions. Subrules
embedded within the alternative are counted as
one element. Thereisno token pointer associated
with subrules, actions, or rule references.

$i.j The token pointer for the jth element of ith level
starting from the outermost (rule) level at 1. .

$0 Invalid. No tranglation. There is no token pointer
associated with rules.

$$ Invalid. No trandation.

$arg The rule argument labeled ar g.

$rul e Invalid. No trangation.

$rv Therulereturn result labeled r v. (I-value)

$[ t oken_t ype, t ext]

Invalid. There are no attributes using the C++
interface.

$[]

Invalid.

Table 9 on page 107 provides a brief description of the available AST expressions. See
Table 10 on page 126 for a more complete description
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TABLE 9. Synopsis of C/C++ Interface Interpretation of AST Terms

in Actions

Symbol M eaning

#0 A pointer to the result tree of the enclosing rule.
(I-value).

#i A pointer to the AST built (or returned from) the
ith element of the enclosing alternative.

#1 abel A pointer to the AST built (or returned from) the
elemented labeled withabel . Translated to
| abel _ast .

#[ ar gs] Tree node constructor. Translated to a call to
zznk_ast (zzastnew(), args) inC.
In C++, it is translated tonew AST( ar gs)”.

#[ ] Empty tree node constructor.

#(root, child1, ..., Tree constructor.

chi | dn)

#() NULL.

Init-Actions

Init-actions are used to define local variables and optionally to execute some initialization

code for a rule or subrule. The init-action of a rule is executed exactly once—before any in
the rule has been executed. It is not executed unless the rule is actually invoked by another
rule or a user action (such as main routine). For example,

a : <<int i;>
a I NT <<i = atoi (a->getText());>>
| ID <<i = 0;>>

The init-action of a subrule is always executed regardless of whether the subrule matches
any input. For example,

a ( <<int i=3;>>1D)*
/* i is local tothe (...)* loop and initialized only once */

{ <<f = 0;>> b: FLOAT <<f=at of (b->get Text());>> }
/* f is 0if a FLOAT was not found */
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Init-actions can not reference attribute or token pointer symbols such as$/ abel .

Fail Actions

Fail actions are actions that are placed immediately following the"; " rule terminator. They
are executed after a syntax error has been detected but before a message is printed and the
attributes have been destroyed (optionally with zzd_at t r () ). However, attributes are not
valid here because we do not know at what point the error occurred and which attributes
even exist. Fail actions are often useful for cleaning up data structures or freeing memory.
For example,
a <<Li st *p=NULL; >>

( Var <<append(p, $1);>> )+

<<CperateOn(p); rmist(p);>>

<<rmist(p);>>

The ( )+ loop matches alists of variables (Var s) and collectionsthem in alist. Thefail-
action <<r nl i st (p) ; >> specifiesthat if and when a syntax error occurs, the elements are
tobefreed.

Fail-actions should not reference attribute or token pointer symbols such as$/ abel .

Fail-actions are executed right before the rule returns to the invoking rule.

Accessing Token Objects From Grammar Actions

The C++ interface parsing-model specifies that the parser accepts a stream of token pointers
rather than a stream of simple token types, such as is done using the C interface parsing-
model. Rather than accessing attributes computed from the text and token type of the input
token, the C++ interface allows direct access to the stream of token objects created by the
scanner. You may reference $/ abel within the actions of arule where | abel isalabel
attached to a token element defined within the same alternative. For example,

def :  "var" id:ID";" <<behavi or->defineVar ($id->get Text());>>

Inthiscase, $i d isapointer to the token object created by the scanner (with the
makeToken() function) for the token immediately following the keyword var on the input
stream. Normally, you will subclass ANTLRRef Count Token or simply use
ANTLRCommmonToken as the token object class. Functionsget Text () and get Li ne() can
be used to access the attributes of the token object.
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C++ Interface

When generating recursive-descent parsersin C++, ANTLR uses the flexibility of C++
classes in two ways to create modular, reusable code. First, ANTLR will generate parser
classes in which the class member functions, rather than global functions, contain the code
e torecognizerulesand
*  to perform semantic actions
Second, ANTLR uses snap-together classes for the input, the lexer, and the token buffer.

Figure 1 on page 109 shows the files generated by ANTLR and DL G for grammar class
Par ser and grammar filefil e. g.

FIGURE 1 Files Generated By ANTLR, DLG
ANTLR

Parser .cpp Parser .h file .cpp parser.dlg tokens.h

DLG

& T

DLGLexer.cpp DLGLexer.h

An ANTLR parser consists of one or more C++ classes, called parser classes. Each parser
class recognizes and translates part (or all) of alanguage. The recursive-descent recognition
routines and the semantic actions are member functions of this class. A parser object isan
instantiation (or variable) of the parser class.

To specify the name of the parser classin an ANTLR grammar description, enclose the
appropriate rules and actions in a C++ class definition, as follows:

class Expr {
<«<int i;>
<<
publi c:
void print();
>>
e INT ("\*" INT)* ;

. I/ other grammar rules

}
ANTLR then generates a parser class Expr that looks like the following:
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class Expr : public ANTLRParser {

publi c:
Expr (ANTLRTokenBuf fer *i nput);
Expr (ANTLRTokenBuf fer *i nput, ANTLRTokenType eof);
int i;
void print();
void e();
private:
i nternal -Expr-specific-data,
|

The Utility of C++ Classes in Parsing

It isnatural to have many separate parser objects. For example, if parsing ANSI C code, we
might have three parser classes. for C expressions, C declarations, and C statements. Parsing
multiple languages or parts of languages simply involves switching parser objects. For
example, if you had aworking C language front end for a compiler, to evauate C
expressions in adebugger, just use the parser object for C expressions (and modify the
semantic actions with virtual functions.)

Using parser classes has the standard advantages of C++ classes involving name spaces and
encapsulation of state. Because all routines are class member functions, they belong in the
class name space and do not clutter the global name space, reducing (or greatly simplifying)
the problem of name clashes. A parser object encapsulates the various state needed during a
parse or tranglation.

While the ability to cleanly instantiate and invoke multiple parsersis useful, the main
advantage of parser classesis that they can be extended in an object-oriented fashion. By
using the inheritance and virtual functions mechanisms of C++, a parser class can be used as
the base class (superclass) for avariety of similar but non-identical uses. Derived parser
classes can be specialized for different activities; in many cases, these derived classes need
only redefine trangl ation actions because they inherit the grammar rules (these recursive-
descent routines are member functions) from the base class. For example,

cl ass CPP_Parser {

<<
virtual void defined ass(char *cl);
>>
cdef
: "class" id:ID"\{" ... "\}" <<defined ass(id->getText());>>
}
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To construct a browser, you might subclass CPP_Par ser to overridedef i ned ass() so
that the function would highlight the class name on the screen; e.g.,

class CPP_Browser {
/1 nondefault constructor is required.
CPP_Br owser (ANTLRTokenBuf fer *in) : CPP_Parser(in) { }
voi d defined ass(char *cl) { highlight(cl); }

H

A C++ compiler might override def i ned ass() to add the symbal to the symbol table.

Alternatively, the behavior of aparser can be delegated to a behavior object such that actions
in the parser would be of the form

<<behavi or - >t ri gger SoneActi on(); >>

This approach has the advantage that behavior of the parser can be changed at runtime.

Invoking ANTLR Parsers

The second way ANTLR uses C++ classes isto have separate C++ classes for the input
stream, the lexical analyzer (scanner), the token buffer, and the parser. Conceptually, these
classesfit together as shown in Figure 2 on page 111. In fact, the ANTLR-generated classes
"snap together" in an identical fashion. To initialize the parser, you

1. Attach an input stream object to a DL G-based scanner; if the user has constructed
their own scanner, they would attach it here.

2. Attach a scanner to atoken buffer object.
3. Attach the token buffer to a parser object generated by ANTLR.

FIGURE 2 Overview of the C++ classes generated by ANTLR.

DLGLexer ANTLRParser

The following code illustrates how these classes fit together for a parser object Expr .

DLGInputStream

> > ANTLRTokenBuffer >
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mai n()
{
DLGFi | el nput in(stdin); // get an input streamfor DLG
DLG.exer scan(& n); // connect a scanner to an input stream

ANTLRTokenBuf f er pi pe(&can); [// connect scanner, parser via pipe
/1 DLG needs vtbl to access virtual func, pass a token.

/1 nytoken(aToken) converts aToken to a (ANTLRToken *).

/' You don't need mytoken if you don't use garbage-

/I collected token objects.

ANTLRTokenPtr aToken = new ANTLRToken;

scan.setToken(mytoken(aToken));

Expr parser(&pipe); /I make a parser connected to the pipe
parser.init(); [/ initialize the parser
parser.e(); /I begin parsing; e = start symbol

}

where ANTLRToken is programmer-defined and must be a subclass of
ANTLRAbstractToken . To start parsing, it is sufficient to call the Expr member function
associated with the grammar rule; here, e isthe start symbol. Naturally, this explicit
sequence is a pain to type so we have provided a"black box" template:

main()

{
ParserBlackBox<DLGLexer, Expr, ANTLRToken> p(stdin);
p.parser()->e();

}

To ensure compatibility among different input streams, lexers, token buffers, and parsers, all
objects are derived from one of the four common bases classes DLGInputStream
DLGLexerBase , ANTLRTokenBuffer or ANTLRParser . All parsers are derived from a
common base class ANTLRParser .

ANTLR C++ Class Hierarchy

Figure 3 on page 121 shows an overview of important class relationships defined by the C++
interface. Each element of the class hierarchy includes rules, behaviors, and design tips for
building hierarchies that is a benefit to a user of good hierarchies.

Token Classes

Each token object passed to the parser must satisify at least the interface defined by class
ANTLRADbstractToken if ANTLR isto compile and report errors for you. Specifically,
ANTLR token objects know their token type, line number, and associated input text.
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cl ass ANTLRAbst ract Token {

publi c:
vi rtual ANTLRTokenType get Type();
virtual void setType( ANTLRTokenType t); /1 optional
virtual int getLine();
virtual void setLine(int line); /1 optional
virtual ANTLRChar *get Text();
virtual void setText (ANTLRChar *); /1 optional

virtual ANTLRAbstract Token *
nmakeToken( ANTLRTokenType t, ANTLRChar *txt, int |n);
H
Most of the time you will want your token objects to be garbage collected to avoid memory
leaks. The ANTLRRef Count Token classis provided for this purpose. All subclasses are
garbage collected (assuming you use the provide "smart pointer" class ANTLRTokenPt r).

The common caseis that you will subclass the ANTLRRef Count Token interface. For your
convenience, however, atoken object class, ANTLRComonToken, that will work "out of the
box." It does garbage collection and has afixed text field that stores the text of token found
in the input stream.

Why function makeToken() isrequired at all and why you have to pass the address of an
ANTLRToken into the DL G-based scanner during parser initialization may not be obvious.
Why cannot the constructor be used to create atoken and so on? The reason lies with the
scanner, which must construct the token objects. The DL G support routines aretypically ina
precompiled object file that is linked, regardless of your token definition. Hence, DLG must
be able to create tokens of any type.

Because objects in C++ are not "self-conscious” (i.e., they do not know their own type),
DL G has no idea of the appropriate constructor. Constructors cannot be virtual anyway; so,
we provide a constructor that is virtual and that acts like afactory. It returns the address of a
new token object upon each invocation rather than just initializing an existing object.

Because classes are not first-class objectsin C++ (i.e., you cannot pass class names around),
we must pass DL G the address of an ANTLRToken token object so DL G has access to the
appropriate virtual table and is, thus, ableto call the appropriate makeToken() . This
weirdness would disappear if all objects knew their type or if class names were first-class
objects. Hereisthe code fragment in DL G that constructs the token objects that are passed to
the parser viathe ANTLRTokenBuf f er :

ANTLRAbst r act Token *DLG.exer Base: :
get Token()

{
if ( token_to fill==NULL ) panic("NUL token_to fill");
ANTLRTokenType tt = next TokenType();
DLGBasedToken *tk = (DLGBasedToken *)
token_to_fill->makeToken(tt, _lextext, _line);
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return tk;

}
Token Object Garbage Collection

Token objects are created via ANTLRToken: : makeToken( ) , but how arethey deleted? The
class ANTLRConmonToken is garbage collected through a " smart pointer” called
ANTLRTokenPt r using reference counting. Any token object not referenced by your
grammar’s actions is destroyed by iLRTokenBuf f er when it makes room for more
token objects. (Calling functioANTLRPar ser : : noGar bageCol | ecti on() will turn of
this mechanism.) Token objects referenced by your actions are destroyed when local
ANTLRTokenPt r objects are deleted. For example,

a: label:ID;
would be converted to something like:

voi d yourcl ass: : a(voi d)

{
zzRULE;
ANTLRTokenPt r | abel =NULL;
zzmat ch(1D);
| abel = (ANTLRTokenPtr)LT(1);
consune();

}

When thd abel object is destroyed (it is just a pointer to your input token object obtained
fromLT( 1)), it decrements the reference count on the object created fdp.thethe count
goes to zero, the object pointedimbel is deleted.

To correctly manage the garbage collection,AN&.RTokenPt r instead of ANTLRToken

* " Unforunately, the smart pointers can only be pointers to the abstract token class, which
causes trouble in your actions. If you subclass ANTLRCommonToken and then attempt to
refer to one of your token members via a token pointer in your grammar actions, the C++
compiler will complain that your token object does not have that member. For example, the
following results in a compile-time error:

<<

cl ass ANTLRToken : public ANTLRCommonToken {
i nt rmuck;

H

>>

class Foo {
a: t:ID<<t->muck = ...; > ;

}
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Thet - >muck reference will convert thet to “ANTLRAbst r act Token *” resulting from
ANTLRTokenPtr: : oper at or - >() . Instead, you must do the following:

a: t:ID << nytoken(t)->muck = ...; >>;

in order to downcast to be an ANTLRToken *”. Macronyt oken( aSmart TokenPt r)
gets an ANTLRToken *” from a smart pointer.

The reference counting interface used\bfLRTokenPt r is as follows:
cl ass ANTLRRef Count Token : public ANTLRAbstract Token {

/* define to satisfy ANTLRTokenBuffer’s need to deternine
whet her or not a token object can be destroyed. |If
nref()==0, no one has a reference, and the object may be
destroyed. This function defaults to 1, hence, if you use
ANTLRPar ser : : gar bageCol | ect Tokens() nessage with a token
obj ect not derived from ANTLRComronRef Count Token, the parser
will compile but will not delete objects after they | eave the
token buffer. */

pr ot ect ed:
unsi gned refcnt _;
publi c:
// these 3 functions are called by ANTLRTokenPtr cl ass
virtual unsigned nref() { return 1; }
virtual void ref();
virtual void deref();

}s
Scanners and Token Streams

The raw stream of tokens coming from a scanner is accessedAN&IzRTokenSt r eam
The required interface is simply that the token stream must be able to answer the message
get Token() :

cl ass ANTLRTokenStream {
publi c:

virtual ANTLRAbstract Token *get Token() = O;
¥

To use your own scanner, subclasBLRTokenSt r eamand defineget Token() or have
get Token() call the appropriate function in your scanner. For example,

class MyLexer : public ANTLRTokenStream {
private:

int c;
publi c:

M/Lexer () ;
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vi rtual ANTLRAbstract Token *get Token();
b

DLG scanners are all subclasses of ANTLRTokenSt r eam

Token Buffer

The parser is "attached" to an ANTLRTokenBuf f er by interface functions: get Token()
and buf f er edToken() . The object that actually consumes characters and constructs
tokens, a subclass of ANTLRTokenSt r eam is connected to the ANTLRTokenBuf f er via
interface function ANTLRTokenSt r eam : get Token() . This strategy isolates the infinite

| ookahead mechanism (used for syntactic predicates) from the parser and providesa"sliding
window" into the token stream.

The ANTLRTokenBuf f er begins with k token object pointers where k is the size of the
lookahead specified on the ANTLR command line. The buffer is circular when the parser is
not evaluating a syntactic predicate (that is, when ANTLR is guessing during the parse);
when a new token is consumed, the least recently read token pointer is discarded. When the
end of the token buffer is reached during a syntactic predicate evaluation, however, the
buffer grows so that the token stream can be rewound to the point at which the predicate was
initiated. The buffer can only grow, never shrink.

By default, the token buffer deletes token objects when they are no longer needed. A
reference count is used to determine how many references exist to each token object. When
the count reaches zero, the token object is subject to deletion. If your grammar references a
token object in agrammar action, the token buffer will not delete that object. The "smart
pointer" to the token object used by your action will delete it.

The token object pointersin the token buffer may be accessed from your actions with
ANTLRPar ser : : LT(1), wherei=1..n where n is the number of token objects remaining in
thefile; LT( 1) isapointer to the next token to be recognized. This function can be used to
write sophisticated semantic predicates that look deep into the rest of the input token stream
to make complicated decisions. For example, the C++ qualified item construct is difficult to
match because there may be an arbitrarily large sequence of scopes before the object can be
identified (e.g., A: : B: : ~B() ).

The ANTLRPar ser : : LA(1) function returns the token type of the i |ookahead symbol, but
isvalid only for i=1..k. This function uses a cache of k tokens stored in the parser itself. The
token buffer itself is not queried.
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The commonly used ANTLRTokenBuf f er functions are:

virtual ANTLRAbstract Token *get Token();
Return the next token from the buffer.

virtual ANTLRAbstract Token *bufferedToken(int i);

Returnthetokeni ahead wherei = 1..nwith nequal to the number of tokens
remaining in the input.

voi d noGar bageCol | ect Tokens();
Turn off deletion of token objects by buffer.

voi d garbageCol | ect Tokens();
Turn on deletion of token objects by buffer; thisis the default.

virtual void set M nTokens(int k_new;
Specify the minimum number of token objects held by the buffer. Thek_new
element must as large as the k specified to the ANTLRTokenBuf f er
constructor.

Parsers

ANTLR generates a subclass of ANTLRPar ser called P for definitionsin your grammar file
of the form:

class P {

}
The commonly used functions that you may wish to invoke or override are:

cl ass ANTLRParser {
publi c:
virtual void init();
Note: you must call ANTLRPar ser: :init()if youoverridei nit().

ANTLRTokenType LA(int i);
The token type of thei th symbol of lookahead wherei =1..k.

ANTLR Abstract Token *LT(int i);
The token object pointer of thei M symbol of lookahead wherei =1..n (nis
the number of tokens remaining in the input).

voi d set Eof Token( ANTLRTokenType t);
When using non-DL G-based scanners, you must inform the parser what token
type should be considered end-of-input. This token type is then used by the
errorecovery facilities to scan past bogus tokens without going beyond the end
of the input.
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voi d gar bageCol | ect Tokens() ;
Any token pointer discarded from the token buffer isdel et ed if this
functionis called (assuming the reference count is zero for that token.) Thisis
the default.

voi d noGr bageCol | ect Tokens() ;
The token buffer does not delete any tokens.
virtual void syn (ANTLRAbstract Token *tok, ANTLChar *egroup, Set Wr dType
*eset, ANTLRTokenType etok, int k);
You can redefine syn() to change how ANTLR resports error messages,
seeedecode() below.

virtual void panic(char *nsg);
Call thisif something really bad happens. The parser will terminate.

virtual void consune();
Get another token of input.

voi d consuneUntil (Set WrdType *st); // for exceptions
This function forces the parser to consume tokens until atoken in the token
class specified (or end-of-input) isfound. That token is not consumed. Y ou
may want to call consune() afterwards.

voi d consuneUntil Token(int t);
Consume tokens until the specified token is found(or end of input). That token
is not consumed—you may wantdonsune() afterwards.

pr ot ect ed:

voi d edecode( Set Wr dType *);
Print out in set notation the specified token class. Given a token classlcalled

in your grammar, the set name will be calledet in an action.

virtual void tracein(char *r);
This function is called upon exit from rule

virtual void traceout(char *r);
This function is called upon exit from rule r.
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AST Classes

ANTLR’s AST definitions are subclassesAg8TBase, which is derived fronPCCT_AST (so
that the SORCERER and ANTLR trees have a common base). The interesting functions are
as follows:

class PCCTS_AST {
/1 mninmal SORCERER interface

virtual PCCTS_AST *right();
Return next sibling.

virtual PCCTS_AST *down();
Return first child.

virtual void setR ght (PCCTS_AST *t);
Set the next sibling.

virtual void set Down(PCCTS_AST *t);
Set the first child.

virtual int type();
What is the node type (used by SORCERER).

virtual void setType(int t);
Set the node type (used by SORCERER)?

virtual PCCTS_AST *shal | owCopy();
Return a copy of the node (used for SORCERER in transform mode). When
you implement this, you must NULL the child-sibling pointers. You can
define a copy constructor and havel | owCopy() call that. If you you
want to uselup() with either ANTLR or SORCERER et r ansf or mmode
with SORCERER, you must defis@al | owCopy/() .

/I not needed by ANTLR—support functions; see SORCERER doc
virtual PCCTS_AST *deepCopy();

virtual void addChi | d(PCCTS_AST *t);
virtual void i nsert _after (PCCTS_AST *a, PCCTS_AST *b);
virtual void append(PCCTS_AST *a, PCCTS_AST *h);

virtual PCCTS_AST*  tail (PCCTS_AST *a);

virtual PCCTS_AST * bot t om{(PCCTS_AST *a);

virtual PCCTS_AST * cut _bet ween(PCCTS_AST *a, PCCTS_AST *b);
virtual void tfree(PCCTS_AST *t);

virtual int nsi bl i ngs(PCCTS_AST *t);

virtual PCCTS_AST*  si bl i ng_i ndex(PCCTS_AST *, inti);

virtual void pani c(char *err);
Print an error message and terminate the program.
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ASTBase isasubclass of PCCTS_AST and adds the functionality:

cl ass ASTBase : public PCCTS _AST {
publi c:
ASTBase *dup();
Return a duplicate of the tree.

voi d destroy();
Del et e the entire tree.

static ASTBase *tmake(ASTBase *, ...);
Construct atree from a possibly NULL root (first argument) and alist of
children. Followed by a NULL argument.

voi d preorder();
Preorder traversal of atree (normally used to print out atreein LISP form).

virtual void preorder_action();
What to do at each node during the traversal.

virtual void preorder_before_action ();
What to do before descending a down pointer link (i.e., before visiting the
children list). Prints aleft parenthesis by default.

virtual void preorder_after_action();
What to do upon return from visiting a children list. Prints aright parenthesis
by default.

s
To use doubly linked child-sibling trees, subclass ASTDoubl yLi nkedBase instead:

cl ass ASTDoubl yLi nkedBase : public ASTBase {
publi c:
voi d doubl e_| i nk( ASTBase *| eft, ASTBase *up);
Set the parent (up) and previous child (left) pointers of the whole tree.
Initialy, | eft and up arguments to this function must be NULL.

PCCTS_AST *left() { return _left; }
Return the previous child.

PCCTS_AST *up() { return _up; }
Return the parent (works for any sibling in asibling list).

}s

Note, however, that the tree routines from ASTBase do not update the left and up pointers.
You must call doubl e_I i nk() to update al the linksin the tree.
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FIGURE 3 C++ ClassHierarchies
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Intermediate-Form Tree Construction

Y ou may embed actions within an ANTLR grammar to construct abstract syntax trees
(ASTs) but ANTLR provides an automatic mechanism for implicitly or explicitly specifying
tree structures. Using the automatic mechanism, you must define what an AST node looks
like and how to construct an AST node given an attribute (C) or token pointer (C++). The
ANTLR - gt command line option must be turned on so that ANTLR knows to generate the
extra code in the resulting parser to construct and manipulate trees. In this section, we
describe the required C or C++ definitions, the available support functions, the AST
operators, and the special symbols used in actionsto construct nodes and trees.
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Required AST Definitions

The C++ interface requires that you derive aclass called AST from ASTBase. The derived
class contains the fields you need for your purposes and a constructor that accepts an
ANTLRToken pointer; the constructor fillsin the AST node from the contents of the token
object. Here is a sample AST node definition that merely makes areference to the token
object for which the node was created:

class AST : public ASTBase {
publi c:

ANTLRTokenPt r token;

AST(ANTLRTokenPtr t) { token =1t; }
H
The calling of grammar rules from C++ code is slightly different when trees are being built.
Aswith the C interface, the address of a NULL-initialized tree pointer must be passed to the
starting rule. The pointer comes back set to the tree constructed for that rule:

mai n()
{
Par ser Bl ackBox<...> p(stdin);

ASTBase *root = NULL;
p. par ser - >start_rule( &r oot ) ;

AST Support Functions

The following PCCTS_AST members are not needed by ANTLR or SORCERER, but are
support functions available to both; they are useful in SORCERER applications

voi d addChi | d( PCCTS_AST *t);
Addachild t of t hi s.

PCCTS _AST *ast _find_all (PCCTS_AST *t,
PCCTS_AST *u,
PCCTS_AST **cursor);
Find all occurrences of u int . The cursor must be initialized to NULL before
calling this function and is used to keep track of whereint the function left
off between function calls. Returns NULL when no more occurrences are
found. Useful for iterating over every occurrence of a particular subtree.

int mat ch(PCCTS_AST *t, PCCTS_AST *u);
Returnstrueif t and u have the same structure (the trees have the same tree
structure and token type fields.) If both trees are NULL, trueis returned.
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voi d insert_after(PCCTS_AST *a, PCCTS_AST *b);
Add b immediately after a asitssibling. If b isasibling list at itstop level,
then the last sibling of b points to the previous right sibling of a. Inserting a
NULL pointer has no effect.

voi d append( PCCTS_AST *a, PCCTS _AST *b);
Add b to theend of t he sibling list for a. Appending aNULL pointer isillegal.

POCTS_AST *tail (PCCTS AST *a);
Find the end of the sibling list for a and return a pointer to it.

POCTS_AST *bot t on{ PCCTS_AST *a) ;
Find the bottom of t he child list for a (going straight "down".)

PCCTS_AST *cut _bet ween( PCCTS_AST *a, PCCTS_AST *b);
Unlink all siblings between a and b and return a pointer to the first element of
the sibling list that was unlinked. This routine makes a point to b and makes
surethat the tail of the sibling list, which was unlinked, does not point to b.
The routine ensures that a and b are (perhaps indirectly) connected.

voi d tfree(PCCTS_AST *t);
Recursively walk t , deleting all the nodes in a depth-first order.

i nt nsiblings(PCCTS AST *t);
Returns the number of siblings of t.

PCCTS_AST *si bli ng_i ndex(PCCTS _AST *t, int i);
Return apointer to thei thsibling wherethesibling to theright of t isthefirst.
Anindex of O, returnst.

The following ASTBase members are specific to ANTLR:

stati c ASTBase *tnmake(ASTBase *, ...);
Seethe#(...) in“Interpretation of C/C++ Actions Related to ASTs” on
page 125.

ASTBase *dup();
Duplicate the current tree.

voi d preorder();
Perform a preorder walk of the tree using the following member functions.

voi d preorder_action();
What to do in each node as you do a preorder walk. Typipakyr der () is
used to print out a tree in lisp-like notation. In that case, it is sufficient to
redefine this function alone.

voi d preorder_before_action();
What to print out before walking down a tree.
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voi d preorder_after_action();
What to print out after walking down atree.

Operators

ANTLR grammars may be annotated with AST construction operators. The operators are
sufficient to describe all but the strangest tree structures.

Consider the "root" operator "~." The token modified by the root operator is considered the
root of the currently-built AST. As aresult, the rule

add : I NT PLUS™ INT ;

resultsin an AST of the form:

PLUS

I NT— | NT

The way to "read" rule add with regards to AST building isto say

"Make anode for | NT and add it to the sibling list (it is a parent-less only
child now). Make a node for PLUS and make it the root of the current tree
(which makesit simply the parent of the only child). Make a node for the
second | NT and add it to the sibling list."

Think of the AST operators as actions that are executed as they are encountered not as
something that specifies atree structure known at ANTLR analysistime. For example, what
if alooping subruleis placed in the rule?

add: INT (PLUS* INT)* ;
Input "3+4+5" would yield:

After the"3+4" has been read, the current tree for rule add would be:

W +
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just as before. However, becausethe (. . . ) * alowsyou to match another addition term,
two more nodes are added to the tree for add, one of which isaroot node. After the
recognition of the second + in the input, the tree for add would look like this:

We— ++— +

— 4

because the + was made the root of the current tree due to theroot operator. The 5 isasimple
leaf node (since it was not modified with either ~ or ! ) and is added to the current sibling
list. The addition of the new root changes the current sibling list from the 3 and 4 list to the
first + that was added to the tree; i.e., the first child of the new root. Hence, the 5 is added to
the second level in the tree and we arrive at the fina tree structure.

Subrules merely modify the tree being built for the current rule, whereas each rule hasits
own tree. For example, if the (.. .)* in add were moved to a different rule:

add : I NT addTer ns

addTer ns
(PLUS | NT)*

then the following, very different, tree would be generated for input "3+4+5:"

33—+

l

+—»5

l

4

While this tree structure is not totally useless, it is not as useful as the previous structure
because the + operators are not at the subtree roots.

Interpretation of C/C++ Actions Related to ASTs

Actions within ANTLR grammar rules may reference expression terms that are not valid C
or C++ expressions, but are understood and translated by ANTLR. These terms are useful,
for example, when you must construct trees too complicated for simple grammar annotation,
when nodes must be added to the trees built by ANTLR, or when partial trees must be
examined.
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TABLE 10. C/C++ Interface Interpretation of AST Termsin Actions

Symbol M eaning

#0 A pointer to the result tree of the enclosing rule
(I-value).

#i A pointer to the AST built (or returned from) the

i " dement of the enclosi ng alternative. You
should really usethe #/ abel instead.

#1 abel A pointer to the AST built (or returned from) the
element labeled with / abel . Trandlated to
| abel _ast.

#[ ar gs] Tree node constructor. Translated to acall to

zznk_ast (zzastnew(), args) inCwhere
zzast new() allocates and returns a pointer to a
new, initialized AST node. Y ou must define
zznk_ast () if thistermis used.

In C++, translated torfew AST( ar gs)”.

#[ 1] Empty tree node constructor. Translated to a call

tozzast new() in C and to iew AST” in C++,
#(root childi, ..., Tree constructor. If oot isNULL, then a sibling
chi | dn) list is returned. Thehi | di arguments are

added to the sibling list until the firstLL
pointer (not counting theoot pointer) is
encountered .

#() NULL.

Consider how one might build an AST for ani f statement. A useful tree may quickly and
easily be constructed via grammar annotations:

if o | FA expr THEN stat { ELSE stat } ;

Here, the | Fisidentified astheroot of the treg, the THEN and EL SE are omitted as
unnecessary, and the trees constructed by expr and st at arelinked in as children of the | F
node:

I F

expr — stat —» stat
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To construct the same tree structure manually, the following grammar is sufficient:

ifl: IF e:expr THEN st:stat { ELSE el:stat }
<<#if = #(#[IF], #e, #st, #el);>>

where the !’ in the rule header indicates that no automatic tree construction should be done
by ANTLR. The %[ | F] " term constructs a tree node vieew AST(IF)" (assuming you

have defined aAST constructor taking ANTLRTokenType argument) and the#{...)”

tree constructor puts thé& node above the children matched for the conditional and
statements. Thel label is initialized taNULL and contributes nothing to the resulting tree if
anel se clause is not found on the input.

Predicates

Predicates are used to recognize difficult language constructs such as those that are context-
sensitive or those that require unbounded lookahead to recognize. This section provides a
brief description of how predicates are defined and used to alter the normal LL(k) parsing
strategy.

Semantic Predicates

Semantic predicates alter the parse based upon run-time information. Generally, this
information is obtained from a symbol table and is used to recognize context-sensitive
constructs such as those that are syntactically identical but semantically very different; e.g.,
variables and type names are simple identifiers, but are used in completely different
contexts.

The basic semantic predicate takes the form of an action suffixed with"tbpérator:
"<<...>>?." No white space is allowed between the™and the ?." Predicates must be
boolean expressions and may not have side effects (i.e., they should not modify variables.)
Alternatives without predicates are assumed to have a predicatelof?." Also, because
predicates can be "hoisted," out of rules as we will see shortly, predicates that refer to rule
parameters or local variables are often undesirable.

Validating Semantic Predicates

All semantic predicates behave at leastadiglating predicates. That is, all predicates must
evaluate to true as the parser encounters them during the parse or a semantic error occurs.
For example in,
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t ypenane
<<i sTypeNarme(LT(1)->get Text())>>? ID

Whent ypenane isinvoked, the predicate is tested before attempting to match the | Dtoken
reference; wherei sTypeName() is some user-defined boolean function. If the first symbol
of lookahead is not avalid type name, ANTLR generates an error message indicating that
the predicate failed.

A fail action may be specified by appendinga”[ . . . ] " action; this action is executed upon
failure of the predicate when acting as a validating predicate:

t ypenane
<<i sTypeNane(LT(1) - >get Text () ) >>?[ di al ogBox(BadType)] D

where we can presume that di al ogBox( BadType) isa user-defined function that opens a
dialog box to display an error message. ANTLR generates code similar to the following:

void Parser::typenane(voi d)

{
if (!'(isTypeName(LT(1)->getText()))) dial ogBox(BadType) ;
zzmat ch(1D);
consune() ;
return;
}

using the C++ interface.

Disambiguating Semantic Predicates

When ANTLR finds a syntactic ambiguity in your grammar, ANTLR attemptsto resolve the
ambiguity with semantic information. In other words, ANTLR searches the grammar for any
predicates that provide semantic information concerning the tokens in the lookahead buffer.
A predicate that istested during the parse to make a parsing decision (as opposed to merely
checking for validity once a decision has been made) is considered a disambiguating
predicate. We say that disambiguating predicates are hoisted into a parsing decision from a
ruleor rules. A predicate that may be hoisted into adecision is said to be visible to that
decision. In this section, we describe which predicates are visible, how multiple predicates
are combined, and how visible predicates are incorporated into parsing decisions.

ANTLR searches for semantic predicates when a syntactically ambiguous parsing decision
isdiscovered. The set of visible predicates is collected and tested in the appropriate
prediction expression. We say that predicate p is visible to an alternative (and, hence, may
be used to predict that alternative) if p can be evaluated correctly without consuming another
input token and without executing a user action. Generally, visible predicates reside on the
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left edge of productions; predicates not on the left edge usually function as validating
predicates only. For example,

a : <<pl>>? 1D
| b
b <«<p2>>? |1D

| <<action>> <<p3>>? |ID
| INT <<p4>>? |D
| { FLOAT } <<p5>>? ID

First we observe that alookahead of | D predicts both alternatives of rulea. ANTLR searchs
for predicates that potentially disambiguate the parsing decision. Here, we see that p1 may
be used to predict alternative one because it can be evaluated without being hoisted over a
grammar element or user action. Alternative two of rule a has no predicate, but the
aternative references rule b which has two predicates. Predicate p2 isvisible, but p3is not
because p3 would have to be executed before act i on, which would change the action
execution order. Predicate p4 is not visible because an | NT token would have to be
consumed before p4 could be evaluated in the correct context. Predicate p5is not visible
because a FLOAT token may have to be consumed to gain the correct context. Rule a could
be coded something like the following:

a()

{
if ( LA(1)==I1D && (p1) ) {
MATCH( I D) ;
consune();
}
else ( LA(1)==ID && (p2) ) {
b();
}
}

Predicates may be hoisted over init-actions because init-actions are assumed to contain
merely local variable allocations. For example,

a : <<init-action>>/ does not affect hoisting
<<pl>>? 1D
| b
Care must be taken so that predicates do not refer to local variables or rule parametersif the
predicate could be hoisted out of that rule. In this example,

a b| ID
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b[int ctx]
<<ctx>>? ID

predicate ct x is hoisted into rule a, resulting in a C or C++ compilation error because ct x
existsonly inruleb.

Alternatives without predicates are assumed to be semantically valid; hence, predicates on
some alternatives are redundant. For example,

a @ <<flag>>? ID

| <<!flag>>?ID
The predicate on the second alternative is unnecessary because if f | ag evaluatesto false,
I f1 ag isredundant.

A predicate used to help predict an alternative may or may not apply to all lookahead
sequences predicting that alternative. We say that the |ookahead must be consistent with the
context of the predicate for it to provide useful information. Consider the following example.

a (var | INT)
| ID

var :  <<isVar (LATEXT(1))>>? ID

Because | D predicts both alternatives of rule a, ANTLR hoists the predicatei svar () into
the prediction expression for the first alternative. However, both | NT and | D predict the first
alternative—evaluatingsVar () when the lookahead iSNT would be incorrect as it would
return false when in fact no semantic information is known aligtg. The first alternative
of rulea would never be able to match laxT.

When hoisting a predicate, ANTLR computes and then carries along the context under
which the predicate was found (withpt ¢ on" command-line option). The required depth,
k, for the predicate context is determined by examining the actual predicate to see what
lookahead depths are used; predicates that do not refergpkle or LATEXT( k) are
assumed to have=1. Normally,k=1 as predicates usually test only the next lookahead
symbol.
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TABLE 11. Sample Predicates and Their Lookahead Contexts

Predicate Context
a : <<p(LT(1))>>? ID; I D

a <<p(LT(1))>>? b ; I D, INT
b: ID| INT;

a : <<p(LT(2))>>? LPAREN I D ; LPAREN | D

The third predicate in the table provides context information for the I D following the
LPAREN; hence, the context is LPAREN followed by | D. The other two examples require a
lookahead depth of k=1.

Predicates normally apply to exactly one lookahead sequence. ANTLR will give you a
warning for any predicate that applies to more than one sequence.

There are situations when you would not wish ANTLR to compute the lookahead context of
predicates:
*  When ANTLR would take too long to compute the context and
e When the predicate applies only to a subset of the full context computed by
ANTLR

In these situations, a predicate context-guard is required, which allows you to specify the
syntactic context under which the predicate is valid. The form of a context-guarded
predicateis

( context-guard )? => <<semanti c-predi cat e>>?

Where the cont ext - guar d can be any grammar fragment that specifies a set of k-
sequences where k is the depth referenced in semant i ¢- pr edi cat e. For example,

cast _expr
( LPAREN ID )? => <<isTypeNane(LT(2))>>?
LPAREN abstract type RPAREN

This predicate dictates that when the lookahead is LPAREN followed by | D, then the

i sTypeNare() predicate provides semantic information and may be evaluated. Without the
guard, ANTLR assumes that the lookahead was L PAREN followed by all tokens that could
begin an abst ract _t ype.

Multiple lookahead k-sequences can also be specified inside the context guard:
a: (ID| KEYWORD )? => <<predicate>>? b ;
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The use of EBNF looping-constructssuch as( . . . ) * are not valid in context-guards.

Because there may be more than one predicate visible to an alternative, ANTLR has rules
for combining multiple predicates.

e Predicates or groups of predicates taken from aternative productions are| | 'd

together.
*  Predicates or groups of predicates taken from the same production are &&'d
together.
For example,
decl
typenane declarator ";"
| declarator ";"
decl ar at or
I D
t ypenane
cl assnane
| enumane
cl assnare
<<i sd ass(LATEXT(1))>>? ID
enummane

<<i SEnun{ LATEXT(1))>>? I D

The decision for the first alternative of rulecl would hoist both predicates and test them
in a decision similar to the following:

if ( LA(1)==ID && (i sO ass(LATEXT(1)||i SEnun(LATEXT(1)) ) { ...
Adding a predicate to rukgecl :

decl
<<fl ag>>? typenane declarator ";"
| declarator ";"

would result in flag being&'d with the result of the combination of the other two
predicates:

if (LA(1)==ID && (f|ag&&(isd ass(LATEXT(1)]|i sEnun{ LATEXT(1)))) { ...
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Inreality, ANTLR inserts code to ensure that the predicates are tested only when the parser
lookahead is consistent with the context associated with each predicate; here, al predicates
have I D as their context, and the redundant tests have been removed for clarity.

Semantic Predicates Effect upon Syntactic Predicates

During the evaluation of a syntactic predicate, semantic predicates that have been hoisted
into prediction expressions are still evaluated. Success or failure of these disambiguating
predicates simply alters the parse and does not directly cause syntax errors.

Validation predicates (those that have not been hoisted) are also still evaluated. However, a
failed validation predicate aborts the current syntactic predicate being eval uated whereas,
normally, afailure causes a syntax error.

Syntactic Predicates

Just as semantic predicates indicate when a production is valid, syntactic predicates also
indicate when a production is a candidate for recognition. The difference liesin the type of
information used to predict alternative productions. Semantic predicates employ
information about the meaning of the input (e.g., symbol table information), whereas
syntactic predicates employ structural information like normal LL (k) parsing decisions.
Syntactic predicates specify agrammatical construct that must be seen on the input stream to
make a production valid. Moreover, this construct may match input streams that are
arbitrarily long; normal LL (k) parsers are restricted to using the next k symbols of
lookahead.

Syntactic Predicate Form and Meaning
Syntactic predictions have the form

(a)?B

or, the shorthand form

(a)?

which isidentical to

( a)?a

where o and 3 are arbitrary Extended BNF (EBNF) grammar fragments that do not define
new nonterminals. The meaning of the long form syntactic predicateis:

“If ais matched on the input stream, attempt to recoghize

Note the similarity to the semantic predicate
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<<a>>7?[
which means
“If a evaluates to true at parser run-time, attempt to nfatch

Syntactic predicates may occur only at the extreme left edge of alternatives because they are
only useful during the prediction of alternatives—not during the subsequent recognition of
the alternatives.

Alternative productions that are syntactically unambiguous, but non-LL(k), should be
rewritten, left-factored, or modified to use syntactic predicates. Consider the following rule:

type : ID
| ID

The alternatives are syntactically ambiguous because they can both match the same input.
The rule is a candidate for semantic predicates, not syntactic predicates. The following
example is unambiguous. It is just not deterministic to a normal LL(k) parser.

Consider a small chunk of the vast C++ declaration syntax. Can you tell exactly what type of
objectf is after having seen the left parenthesis?

int f(

The answer is "no." Objeétcould be an integer initialized to some previously defined
symbola:

int f(a);

or a function prototype or definition:

int f(float a) {...}

The following is a greatly simplified grammar for these two declaration types:

decl: type ID "\ (" expr_list "\)" ";"
| type ID"\(" arg_decl _list "\)" func_def

Left-factoring ‘t ype 1D "\ ("” would be trivial because our grammar is so small and the
left-prefixes are identical:

decl: type ID
ll\(ll
( expr_list "\)" ";"
| arg_decl _list

)
"\)" func_def
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However, if auser action were required before recognition of the referenceto rulet ype,
left-factoring would not be possible:

decl
<<// dummy init action; next action isn't init action>>
<<printf("var init\in");>>
type ID "\(" expr_list "\)" ;"
|  <<printf(“func defin");>>
type ID "\(" arg_decl_list "\)" func_def

The solution to the problem involves looking arbitrarily ahead (type could be arbitrarily
big, in general) to determine what appears after the left parenthesis. This problemis easily
solved implicitly by using a syntactic predicate:

decl
( <</[dummy action>>
<<printf("var init\in");>>
type ID "\(" expr_list "\)" ;"
)?
|  <<printf("func defin");>>
type ID "\(" arg_decl_list "\)" func_def

The(...)? indicatesthat it isimpossible to decide from the left edge of ruledecl with a
finite amount of lookahead, which production to predict. Any grammar construct inside a
(..)? block is attempted and, if it fails, the next aternative production that could match
theinput is attempted. This represents selective backtracking and is similar to allowing
ANTLR parsersto guess without being "penalized” for being wrong. Note that the first
action of any block is considered an init-action and hence, because it may define local
variablesit cannot be gated out with an if -statement. (Local variables would not be visible
outsidetheif -statement.)

Modified Parsing Strategy

Decisions that are not augmented with syntactic predicates are parsed deterministically with
finite lookahead up to depth k asisnormal for ANTL R-generated parsers. When at |east one
syntactic predicate is present in a decision, rule recognition proceeds as follows:

1. Findthefirst viable production (i.e., the first production in the alternative list
predicted by the current finite lookahead) according to the associated finite-
lookahead prediction-expression.

2. If thefirst grammar element in that production is not a syntactic predicate, predict
that production and go to Step 3 else attempt to match the predicting grammar
fragment of the syntactic predicate.
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3. If the predicting grammar fragment is matched, predict the associated production
and go to Step 4 else find the next viable production and go to Step 2.

4.  Proceed with the normal recognition of the production predicted in
Steps 2 or 3.

For successful predicates, both the predicting grammar fragment and the remainder of the
production are actually matched: hence, the short form, (o) ?, actually matches a twice—
once to predict and once to appiynormally, executing any embedded actions.

Nested Syntactic Predicate Invocation

Because syntactic predicates may reference any defined nonterminal and because of the
recursive nature of grammars, it is possible for the parser to return to a point in the grammar
that had already requested backtracking. This nested invocation poses no problem from a
theoretical point of view, but it can cause unexpected parsing delays in practice.

Efficiency

The order of alternative productions in a decision is significant. Productions in an ANTLR
grammar are always attempted in the order specified. For example, the parsing strategy
outline above indicates that the following rule is most efficient whamis less complex
thanbar .

a : (foo)?
| bar

because they testing the simplest possibility first is faster.

Any parsing decisions made insidé.a ) ? block are made deterministically unless they
themselves are prefixed with syntactic predicates. For example,
a : ((A+X] (B+ X)?
| (A*Y
specifies that the parser should attempt to match the nonpredicated grammar fragment
( (A+X
| (B)+ X
)
using normal the normal finite-lookahead parsing strategy. If a phrase recognizable by this
grammar fragment is found on the input stream, the state of the parser is restored to what it

was before the predicate invocation and the grammar fragment is parsed again. If not, if the
grammar fragment failed to match the input, apply the next production in the outer block:

(A* Y
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Effect of Syntactic Predicates on Actions and Semantic Predicates

While evaluating a syntactic predicate, user actions, such as adding symbol table entries, are

not executed because in general, they cannot be "undone”; this conservative approach avoids

affecting the parser statein an irreversible manner. Upon successful evaluation of asyntactic

predicate, actions are once again enabled—unless the parser was in the process of evaluating
another syntactic predicate.

Because semantic predicates are restricted to side-effect-free expressions, they are always
evaluated when encountered. However, during syntactic predicate evaluation, the semantic
predicates evaluated must be functions of values computed when actions were enabled. For
example, if your grammar has semantic predicates that examine the symbol table, all
symbols needed to direct the parse during syntactic predicate evaluation must be entered into
the table before this backtracking phase has begun.

Because init-actions are always executed, it is possible to make ANTLR into actually
executing an action during the evaluation of a syntactic predicate by simply enclosing the
action in a subrule:

(<<action>>)

Syntactic Predicates effect upon Grammar Analysis

ANTLR constructs normal LL(k) decisions throughout predicated parsers, only resorting to
arbitrary lookahead predictors when necessary. Calculating the lookahead sets for a full
LL(k) parser can be quite expensive in terms of (time and space), so by default, ANTLR
uses a linear approximation to the lookahead and only uses full LL(k) analysis when
required. When ANTLR encounters a syntactic predicate, it generates the instructions for
selective backtracking as you would expect, but also generates an approximate decision.
Although no finite lookahead decision is actually required (the arbitrary lookahead
mechanism will accurately predict the production without it) the approximate portion of the
decision reduces the number of times backtracking is attempted without hope of a successful
match. An unexpected, but important, benefit of syntactic predicates is that they provide a
convenient method for preventing ANTLR from attempting full LL(k) analysis when doing
so would cause unacceptable analysis delays.

Parser Exception Handlers

Parser exception handlers provide a more sophisticated alternative to the automatic error
reporting and recovery facility provided by ANTLR. The notion of throwing and catching
parser error signals is similar to C++ exception handling: however, our implementation
allows both the C and C++ interface to use parser exception handling. This section provides
a short description of the syntax and semantics of ANTLR exceptions.
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When a parsing error occurs, the parser throws an exception. The most recently encountered
exception handler that cat chesthe appropriate signal is executed. The parse continues after
the exception by prematurely returning from the rule that handled the exception. Generally,
the rule that catches the exception is not the rule that throws the exception; e.g., a

st at ement rule may be a better place to handle an error than the depths of an expression
evaluator asthe st at enent rule has unambiguous context information with which to
generate a good error message and recover.

Exception handlers may be specified:

e After any alternative. These handlers apply only to signas thrown while
recognizing the elements of that alternative.

»  Afterthe ‘;’ of arule definition. These handlers apply to any signal thrown while
recognizing any alternative of the rule unless the handler references a element
label, in which case the handler applies only to recognition of that rule element.
Non-labeled handlers attached to a rule catch signals not caught by handlers
attached to an alternative.

» Before the list of rules These global exception handlers apply when asignal is
not caught by a handler attached to arule or alternative. Global handlers behave
dlightly differently in that they are aways executed in the rule that throws the
signal; the ruleis still prematurely exited.

Exception Handler Syntax

The syntax for an exception group is as follows:

exception_group
"exception" { "\[" ID"\]" } ( exception_handler )*
{ "default" ":" ACTION}

exception_handl er
"catch" SIGNAL ":" { ACTION }

where SI GNAL is one of

138 Language Translation Using PCCTS and C++



Parser Exception Handlers

TABLE 12. Predefined Parser Exception Signals

Signal Name Description

NoVi abl eAl t Exception thrown when none of the alternatives in a
pending rule or subrule were predicted by the current
lookahead.

NoSenVi abl eAl t Exception thrown when no alternatives were predicted

in a rule or subrule and at least one semantic predicate
(for a syntactically viable alternative) failed.

M smat chedToken Exception thrown when the pending token to match
did not match the first symbol of lookahead.

A "default :" clause may also be used in your exception group to match any signal that
was thrown. Currently, you cannot define your own exception signals.

Y ou can define multiple signals for asingle handler. For example,

exception
catch M smat chedToken :
catch NoVi abl eAl t
catch NoSenVi abl eAl' t
<<

printf("stat:caught predefined signal\n");
consuneUnti |l (DI E _set);
>>

If alabel attached to arule referenceis specified for an exception group, that group may be
specified after the end of the' rule terminator. Because element labels are unique for each
rule, ANTLR can still uniquely identify the appropriate rule reference to associate the
exception group. It often makes a rule cleaner to have most of the exception handlers at the
end of the rule. For example,

a At:expr B
[

exception[t]
catch ...
catch ...

TheNoVi abl eAl t signal only makes sense for labeled exception groups and for rule
exception groups.
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Exception Handler Order of Execution

Given asignal, S, the handler that is invoked is determined by looking through the list of
enabled handlersin a specific order. Loosely speaking, we say that a handler is enabled
(becomes active) and pushed onto an exception stack when it has been seen by the parser on
itsway down the parsetree. A handler isdisabled and taken off the exception stack when the
associated grammar fragment is successfully parsed. The formal rules for enabling are:

e All global handlers are enabled upon initial parser entry.

»  Exception handlers specified after an alternative become enabled when that
alternativeis predicted.

»  Exception handlers specified for a rule become enabled when the rule is invoked.
»  Exception handlers attached with alabel to a particular rule reference within an
alternative are enabled just before the invocation of that rule reference.
Disabling rules are:

* All global handlers are disabled upon parser exit.

e Exception handlers specified after an alternative are disabled when that alternative
has been (successfully) parsed completely.

»  Exception handlers specified for arule become disabled just before the rule
returns.

»  Exception handlerstied to aparticular rule reference within an alternative are dis-
abled just after the return from that rule reference.

Upon an error condition, the parser with throw an exception signal, S. Starting at the top of

the stack, each exception group is examined looking for a handler for S The first Shandler

found on the stack is executed. In practice, the run time stack and hardware program counter
are used to search for the appropriated handler. This amounts to the following:

1. If thereisan exception specified for the enclosing aternative, then look for Sin
that group first.

2. If thereis no exception for that alternative or that group did not specify an S
handler, then look for Sin the enclosing rule’s exception group.

3. Global handlers are like macros that are inserted into the rule exception group for

each rule.

4. If there is no rule exception or that group did not specifg laandler, then return
from the enclosing rule with the current error signal still s& to

5. Ifthere is an exception group attached (via label) to the rule that just returned,
check that exception group f&r

6. If an exception group attached to a rule reference does not h&teadler, then
look for Sin the enclosing rule’s exception group.
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This process continues until an Shandler isfound or areturn instruction is executed in
starting rule. When either happens, the start symbol would have a return-parameter setto S.

These guidelines are best shown in an example;

a Ac B
exception [* 1 =/
catch M snat chedToken : <<ACTI ON1>>
[ CcCt:dD
exception [* 2 *
catch M smat chedToken : <<ACTI O\2>>
catch NoVi abl eAlt : <<ACTI ON3>>
exception[t] [* 3 */
catch NoVi abl eAlt : <<ACTI O\Nd>>
exception [* 4 *

catch NoVi abl eAlt : <<ACTI ON6>>

c E ;
d e ;
e F| G
exception [* 5 */

catch M snat chedToken : <<ACTI ON6>>
Table 13 on page 141 summarizes the sequence in which the exception groups are tested.

TABLE 13. Sample Order of Search for Exception Handlers

Input Exception group search sequence Action Executed
DEB 4 5
AED 1 1
AFB 1 1
CFB 2 2
CED 5,2 3

Note that action 4 is never executed because ruled has no tokens to mismatch and
mismatched tokensin rule e are caught in that rule.
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The global handlers are like macro insertions. For example:

excepti on catch NoViabl eAlt : <<blah bl ah>>

a A
exception
catch M snmat chedToken : <<ack;>>

b B

This grammar fragment is functionally equivalent to:
a A

exception
catch M snmat chedToken : <<ack;>>
catch NoVi abl eAlt : <<bl ah bl ah>>
b B
exception
catch NoVi abl eAlt : <<bl ah bl ah>>

Modifications to Code Generation

The following items describe the changes to the output parser C or C++ code when at |east
one exception handler is specified:

e Eachrulereference acquires asignal parameter that returns 0 if no error occurred
during that reference or it returns anonzero signal S.

e TheMATCH() macrothrowsM smat chedToken rather than calling zzsyn() , the
standard error reporting and recovery function.

*  When no viable alternative isfound, NoVi abl eAl t issignaled rather than calling
thezzsyn() routine.

*  The parser no longer resynchronizes automatically.

Semantic Predicates and NoSemViableAlt

When the input stream does not predict any of the alternativesin the current list of possible
alternatives, NoVi abl eAl t isthrown. However, what happens when semantic predicates
are specified in that alternative list? There are cases where it would be very misleading to
just throw NoVi abl eAl t when in fact one or more alternatives were syntactically viable;
i.e., the reason that no alternative was predicted was due to a semantic invalidity and a
different signal must be thrown in such a case. For example,
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expr . <<P1>>? ID... /* function call */
| <<P2>>? ID... /* array reference */
| INT
exception

catch NoVi abl eAl t
<<no I D or | NT was found>>
catch NoSenVi abl eAl t
<<an I D was found, but it was not valid>>

Typically, you would want to give very different error messages for the two different
situations. Specifically, reporting a message such as

syntax error at IDnissing { IDINT }

would be very misleading (i.e., wrong).

Therule for distinguishing between NoVi abl eAl t and NoSenVi abl eAl t is:

If NoVi abl eAl t would be thrown and at least one semantic
predicate (for a syntactically viable aternative) failed, signal
NoSenmVi abl eAl t instead of NoVi abl eAl t.

(Semantic predicates that are not used to predict alternatives do not yet throw signals. You
must continue to use the fail-action attached to individual predicatesin these cases.)

Resynchronizing the Parser

When an error occurs while parsing rule R, the parser will generally not be able to continue

parsing anywhere within that rule. It will return immediately after executing any exception

code. The one exception is for handlers attached to a particular rule reference. In this case,

the parser knows exactly where in the alternative you would like to continue parsing from—
immediately after the rule reference.

After reporting an error, your handler must resynchronize the parser by consuming zero or
more tokens. More importantly, this consumption must be appropriate given the point where
the parser will attempt to continue parsing. For example, given when an error occurs during
the recognition of the conditional of ah-statement, a good way to recover would be to
consume tokens until thenen is found on the input stream.

st at : | F e:expr THEN stat
exception[ e]
default : <<print error; consurmeUntil Token( THEN) ; >>

The parser will continue with the parse afterékpr reference (because we attached the
exception handler to the rule reference) and look fot tiem right away.
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To allow this type of manual resynchronization of the parser, two functions are provided:

TABLE 14. Resynchronization Functions

Function Description

consunmeUntil ( X_set) Consume tokens until a token in the token clss
is seen. Recall that ANTLR generates a packed,|bit-
set calledX_set for each token claXs The C inter-

face prefixes the function name withz™.

consuneUnti | Token(T) Consume tokens until tokdnis seen. The C inter,
face prefixes the function name withz".

For example,
#t okcl ass RESYNCH { A C}
a b A
| bcC
b B
exception

catch M smatchedToken : // consunme until FOLLOWNb)
<<print error message; zzconsurmelntil (RESYNCH set);>>

You may also use functionset _el (T, TC set) (prefix with"zz" in C interface) to test
token type T for membership in atoken class TC. For example,

<<if ( zzset_el (LA(1), TC_set) ) blah blah bl ah;>>

The @Operator

Y ou may suffix any token reference with the @operator, which indicates that if that token is
not seen on the input stream, errors are to be handled immediately rather than throwing a

M smat chedToken exception. In particular, [for the moment] the macros

zzmat ch_wdf | t si g() orzzset match_wdf |l tsi g() iscalledinboth C and C++ mode
for simple token or token class references. In C++, you can override functions
ANTLRPar ser member functions_mat ch_wdf | t si g() and _set mat ch_wdf I tsi g().

The @operator may also be placed at the start of any alternative to indicate that all token
references in that aternative (and enclosed subrules) are to behave asif they had been
suffixed with the @ operator individually. Consider the following grammar:
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st at
@ "if" INT "then" stat { "else" stat }
<<printf("found if\n");>>
| id:lmllzll@lNT@ll;ll@
<<printf("found assignment to %\n", &$id->getText());>>

The @on the front of alternative one indicates that each token referencein the aternativeis
to be handled without throwing an exception. The match routine will catch the error. The
second aternative explicitly indicates that each token isto be handled locally without
throwing an exception.

ANTLR Command Line Arguments

ANTLR understands the following command line arguments:
-CC Generate C++ output from ANTLR.

-ck n Use up to n symbols of lookahead when using compressed (linear approxima-
tion) lookahead. This type of lookahead is very cheap to compute and is
attempted before full LL(k) lookahead, which is of exponential complexity in
theworst case. In general, the compressed |ookahead can be much deeper (e.g,
- ck 10) than the full lookahead (which usually must be less than 4).

-cr Generate a cross-reference for all rules. For each rule, print alist of all other
rulesthat referenceit.

-el Ambiguities/errors shown in low detail (default).

-e2 Ambiguities/errors shown in more detail.

-e3 Ambiguities/errors shown in excruciating detail.

-fef File Renameerr. c tof.

-fhf File Rename st dpcct s. h header (turnson -gh) to f.

-flf File Rename lexical output, par ser . dl g, tof.

- f mf File Rename file with lexical mode definitions, node. h, tof.

-frf File Rename file which remaps globally visible symbols, r emap. h, to f.

-ftf File Rename tokens.h tof.

-gc Indicates that antlr should generate no C code, i.e., only perform analysis on
the grammar.
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_gd

-ge
_gh

_gk

_gs

_gt
- gXx

-k n

-0 dir

C/C++ codeisinserted in each of the ANTLR generated parsing functions to
provide for user-defined handling of a detailed parse trace. The inserted code
consists of calls to the user-supplied macros or functions called zzTRACEIN
and zzTRACEOUT in C and callsto ANTLRPar ser: : tracei n() andtra-
ceout () inC++. Theonly argumentisachar * pointing to a C-style string,
which is the grammar rule recognized by the current parsing function. If no
definition is given for the trace functions upon rule entry and exit, amessageis
printed indicating that a particular rule as been entered or exited.

Generate an error class for each rule.

Generate st dpcct s. h for non-ANTLR-generated filesto include. Thisfile
contains all defines needed to describe the type of parser generated by ANTLR
(e.g. how much lookahead is used and whether or not trees are constructed)
and contains the header action specified by the user. If your mai n() isin
another file, you should include this file in C mode. C++ can ignore this
option.

Generate parsers that delay lookahead fetches until needed. Without this
option, ANTLR generates parsers which always have k tokens of lookahead
available. This option isincompatible with semantic predicates and renders
referencesto LA(i) invalid as one never knows when the it token of looka-
head will be fetched. [Thisis broken in C++ mode.]

Generate line info about grammar actions in the generated C/C++ code of the
form
# line "fileg"

which makes error messages from the C/C++ compiler more sensible because
they point into the grammar file, not the resulting C/C++ file. Debugging is
easier too, because you will step through the grammar, not C/C++ file.

Do not generate sets for token expression lists; instead generatea”| | "-sepa-
rated sequence of LA( 1) ==token_number. The default is to generate sets.

Generate code for Abstract Syntax Trees.

Do not create the lexical analyzer files (dlg-related). This option should be
given when you need to provide a customized lexical anayzer. It may also be
used in make scripts to cause only the parser to be rebuilt when a change not
affecting the lexical structure is made to the input grammars.

Set k of LL(K) to n; i.e., set the number of tokens of look-ahead (default==1).

Directory where output files should go (default="."). This keeps the source
directory clear of ANTLR and DL G spawn.
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-p The complete grammar, collected from all input grammar files and stripped of
all comments and embedded actionsis listed to st dout . This enables viewing
the entire grammar as awhole and eliminates the need to keep actions con-
cisely stated so that the grammar is easier to read.

- pa This option isthe same as - p except that the output is annotated with the first
sets determined from grammar analysis.

-prc on  Turnonthe computation of predicate context (default is not to compute the
context).

-prc off  Turn off the computation and hoisting of predicate context (default case).

-rl n Limit the maximum number of tree nodes used by grammar analysisto n.
Occasionally, ANTLR is unable to analyze a grammar. This rare situation
occurs when the grammar is large and the amount of lookahead is greater than
one. A nonlinear analysis algorithm is used by PCCTS to handle the general
case of LL(k) parsing. The average complexity of analysis, however, is near
linear due to some fancy footwork in the implementation which reduces the
number of callsto the full LL(k) algorithm. An error message will be dis-
played, if thislimit is reached, which indicates the grammar construct being
analyzed when ANTLR hit anonlinearity. Usethisoptionif ANTLR seemsto
go out to lunch and your disk start thrashing; try n=80000 to start. Once the
offending construct has been identified, try to remove the ambiguity that antlr
was trying to overcome with large lookahead analysis. The introduction of
(...)? backtracking predicates eliminates some of these problems—antlr
does not analyze alternatives that begin with. ) ? (it simply backtracks, if
necessary, at run time).

-wl Set low warning level. Do not warn if semantic predicates and/or (...)? blocks
are assumed to cover ambiguous alternatives.

- W2 Ambiguous parsing decisions yield warnings even if semantic predicates or
(...)? blocks are used. Warn if predicate context computed and semantic predi-
cates incompletely disambiguate alternative productions.

- Read grammar from standard input and generat n. ¢ as the parser file.
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DLG Command Line Arguments

These are the command line arguments understood by DLG (normally, you can ignore these
and concentrate on ANTLR):

-CC

-Cl evel

-mf

-cl cl ass

-ci

-CS

-odir

Generate C++ output. The output file is not specified in this case.

Where level is the compression level used. O indicates no compression, 1
removes all unused characters from the transition from table, and 2 maps
equivalent characters into the same character classes. Using level -C2 signifi-
cantly reduces the size of the DFA produced for lexical analyzer.

Produces the header file for the lexical mode with a name other than the default
name of node. h.

Aninteractive, or asinteractive as possible, scanner isproduced. A character is
obtained only when required to decide which state to go to. Some care must be
taken to obtain accept states that do not require look ahead at the next character
to determineif that is the stop state. Any regular expression with a"e*" at the
end is guaranteed to require another character of |ookahead.

Specify aclass name for DL G to generate. The default isDLGLexer .

The DFA will treat upper and lower case charactersidentically. Thisis accom-
plished in the automaton; the charactersin the lexical buffer are unmodified.

Upper and lower case characters are treated as distinct. Thisis the defaullt.

Directory where output files should go (default="."). This is very nice for
keeping the source directory clear of ANTLR and DLG spawn.

-Wanbi guity

Warns if more than one regular expression could match the same character sequence. The
warnings give the numbers of the expressions in the DLG lexical specification file. The
numbering of the expressions starts at one. Multiple warnings may be print for the same

expressions.

Used in place of file names to get input fretrdi n or send output tet dout .
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C Interface

(The C interface gradually evolved from a simplistic attributed-parser built in 1988.
Unfortunately for backward compatibility reasons, the interface has been augmented but not
changed in any significant way.)

The C interface parsing model assumes that a scanner (normally built by DLG) returns the
token type of tokens found in the input stream when it is asked to do so by the parser. The
parser provides attributes that are computed from the token type and text of the token, to
grammar actionsto facilitate translations. The line and column information are directly
accessed from the scanner. The interface requires only that you define what an attribute
looks like and how to construct one from the information provided by the scanner. Given
thisinformation, ANTLR can generate a parser that will correctly compile and recognize
sentences in the prescribed language.

Thetype of an attribute must be called At t r i b; the function or macro to convert the text and
token type of atoken to an attributeiscalled zzcr _attr ().

This chapter describes the invocation of C interface parsers, the definition of special
symbols and functions available to grammatical actions, the definition of attributes, and the
definition of AST nodes.

Invocation of C Interface Parsers

Cinterface parsers are invoked via the one of the macros defined in Table 15 on page 149.

TABLE 15. C Interface Parser Invocation Macros

Macro Description
ANTLR(r, f) Begin parsing at ruler , reading characters from stream f .

ANTLR(r, f, m Begin parsing at ruler , reading characters from stream f ;
begininlexical classm

ANTLRf (r, f) Begin parsing at rule r, reading characters by calling func-
tionf for each character.
ANTLRs(r, s) Begin parsing at ruler , reading characters from string s.

Language Translation Using PCCTS and C++ 149



ANTLR Reference

Therule argument must be avalid C function call, including any parameters required by the
starting rule. For example, to read an expr fromst di n;

ANTLR(expr (), stdin);
Toread anexpr from string buf :

char buf[] = "3+4";
ANTLRs(expr (), buf);

Toread anexpr and build an AST:

char buf[] = "3+4";
AST *root;
ANTLRs( expr (& oot), buf);

Toread an expr and build an AST where expr has a single integer parameter:

#define INITIAL 0
char buf[] = "3+4";
AST *root;

ANTLRs( expr (& oot, I NN TIAL), buf);
A simpletemplate for a C interface parser is the following:

#header <<

#i ncl ude "char buf . h"

>>

#token "[\ \t]+" <<zzskip();>>

#t oken "\ n" <<zzskip(); zzline++; >>
<<

mai n() { ANTLR(start(), stdin); }

>>

start : ;

150 Language Translation Using PCCTS and C++



C Interface

Functions and Symbols in Lexical Actions

Table 16 on page 151 describes the functions and symbols available to actions that are
executed upon the recognition of an input token (In rare cases, however, these functions
need to be called from within a grammar action).

TABLE 16. C Interface Symbols Available to Lexical Actions

Symbol

Description

zzrepl char (char c¢)

Replace the text of the most recently matched
lexical object withc.

zzrepl str(char c)

Replace the text of the most recently matched
lexical object with c.

int zzline

The current line number being scanned by DLG.
This variable must be maintained by the user;
thisvariableis normally maintained by incre-
menting it upon matching a newline character.

zznore()

This function merely setsaflag that tellsDLG to
continue looking for another token; future char-
acters are appended to zzI ext ext .

zzski p()

Thisfunction merely setsaflag that tellsDLG to
continue looking for another token; future char-
acters are not appended to zz!1 ext ext .

zzadvance()

Instruct DL G to consume another input charac-
ter. zzchar will be set to this next character.

int zzchar

The most recently scanned character.

char *zzl ext ext

Theentire lexical buffer containing all characters
matched thus far since the last token type was
returned. Seezznor e() and zzski p() .

NLA To changetoken typetot, do “NLA = t;". This
feature is not really needed anymore as semal
predicates are a more elegant means of alteri
the parse with run time information.

NLATEXT To change token type text oo, do

“strcpy( NLATEXT, foo); ".

This feature sets the actual token lookahead
buffer, not the lexical buffexzl ext ext .
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TABLE 16. (Continued) C Interface Symbols Availableto Lexical Actions

Symbol

Description

char *zzbegexpr

Beginning of last token matched.

char *zzendexpr

End of last token matched.

ZZCCL

Define this preprocessor symbol to get DLG to
track the column numbers.

int zzbegcol

The column number starting from 1 of the first
character of the most recently matched token.

int zzendcol

The column number starting from 1 of the last
character of the most recently matched token.
Reset zzendcol to 0 when anewlineis encoun-
tered. Adjust zzendcol inthelexica action
when a character is not one print position wide
(e.g., tabs or non-printing characters). The col-
umn information is not immediately updated if a
token'saction callszznor e() .

void (*zzerr)(char *)

Youcansetzzerr to point to aroutine of your
choosing to handle lexical errors (e.g., when the
input does not match any regular expression).

zznode(int m

Set the lexical mode (i.e., lexical class or autom-
aton) corresponding to alex class defined in an
ANTLR grammar withthe#| excl ass directive.

int zzauto

What automaton (i.e., lexical mode) isDLG in?

zzrdstrean(FI LE *)

Specify that the scanner should read characters
from the stream argument.

zzcl ose_strean()

Close the current stream.

zzrdstr(zzchar_t *)

Specify that the scanner should read characters
from the string argument.

zzrdfunc(int (*)())

Specify that the scanner should obtain characters
by calling the indicated function.

zzsave_dl g _state(
struct zzdlg_state *)

Save the current state of the scanner. Thisis use-
ful for scanning nested includesfiles, etc...

zzrestore_dl g state(
struct zzdlg_state *)

Restore the state of the scanner from a state
buffer.
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Attributes Using the C Interface

Attributes are objects that are associated with all tokens found on the input stream.
Typically, attributes represent the text of the input token, but may include any information
that you require. The type of an attribute is specified viathe At t ri b type name, which you
must provide. A functionzzcr _at t r () isalso provided by you to inform the parser how to
convert from the token type and text of atokentoan Attri b. [In early versions of ANTLR,
attributes were also used to pass information to and from rules or subrules. Rule arguments
and return values are a more sophisticated mechanism and, hence, in this section, we will
pretend as if attributes are only used to communicate with the scanner ]

Attribute Definition and Creation

The attributes associated with input tokens must be afunction of the text and the token type
associated with that lexical object. These values are passed to zzcr _at t r () which
computes the attribute to be associated with that token. The user must define a function or
macro that has the following form:

void zzcr_attr(attr, type, text)

Attrib *attr; /* pointer to attribute associated with this [ exeme */
int type; /* the token type of the token */

char *text; /* text associated with | exene */

{

/* *attr = f(text,token); */
}

Consider thefollowing Attri b andzzcr _attr () definition.

typedef union {
int ival; float fval;

} Attrib;
zzer_attr(Attrib *attr, int type, char *text)
{
switch ( type ) {
case INT : attr->ival = atoi(text); break;
case FLOAT : attr->fval = atof(text); break;
}
}

Thet ypedef specifiesthat attributes are integer or floating point values. When the regular
expression for afloating point number (which has been identified as FLOAT) is matched on
theinput, zzcr _at tr () convertsthe string of characters representing that number toaC

f 1 oat . Integers are handled analogously.
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Y ou can specify the C definition or #i ncl ude statements the file needed to define Attri b
(and zzcr _at tr () if itisamacro) usingthe ANTLR #header directive. The action
associated with #header isplaced in every C file generated from the grammar files. Any C
file created by the user that includesant | r. h must once again define At t r i b before using
#i ncl ude ant | r. h. A convenient way to handle thisisto usethe- gh ANTLR command
line option to have ANTLR generatethe st dpcct s. h file and then simply include
stdpccts. h.

Attribute References

Attributes are referenced in user actions as $/ abel wherel abel isthelabel of atoken
referenced anywhere before the position of the action. For example,

#header <<

typedef int Attrib;

#define zzcr_attr(attr, type, text) *attr = atoi (text);
>>

#token "[\ \t\n]+"<<zzskip();>> /* ignore whitespace */

add oar"[0-9]+4" "\ +" b:"[0-9]+"
<<printf("addition is %l\n", a+b);>>

If Attri b isdefined to be astructure or union, then $/ abel . fi el d isused to accessthe
variousfields. For example, using the uni on example above,

#header <<

typedef union { ... };

>>

void zzcr_attr(...) { ... };

#token "[\ \t\n]+"<<zzskip();>> /* ignore whitespace */
add carINT "\ +" b: FLOAT

<<printf("addition is %\n", $a.ival +$b.fval);>>

For backward compatibility reasons, ANTLR still supports the notation $i and $i.j, wherei
and j are a positive integers. The integers uniquely identify an element within the currently
active block and within the current alternative of that block. With the invocation of each new
block, a new set of attributes becomes active and the previously active set istemporarily
inactive. The $i and $i.j style attributes are scoped exactly likelocal stack-based variablesin
C. Attributes are stored and accessed in stack fashion. With the recognition of each element
inarule, anew attribute is pushed on the stack. Consider the following simplerule:
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aa B| C;

Rule a has 2 alternatives. The $i refersto the it rule element in the current block and within
the same dternative. So, in rule a, both B and C are $1.

Subrules are like code blocks in C—a new scope exists within the subrule. The subrules
themselves are counted as a single element in the enclosing alternative. For example,

b : A( BC<<actionl>>| DE <<action2>>) F <<action3>>
| G <<action4>>

Table 17 on page 155 describes the attributes that are visible to each action.

TABLE 17. Visibility and Scoping of Attributes

Action Visible Attributes

actionl Bas$l (or$2. 1), Cas$2 (or$2. 2), Aas$l. 1
action2 Das$l, Eas$2,Aas$l. 1

action3 Aas3$l, F as$3

action4 Gas$l

Attribute destruction

You may elect to "destroy" all attributes created withr _attr (). A macro called

zzd_attr (), is executed once for every attribute when the attribute goes out of scope.
Deletions are done collectively at the end of every block.zEdeat t r () is passed the
address of the attribute to destroy. This can be useful when memory is allocated with

zzcr _attr() and needs to be ee() ed; make sure thULL the pointers. For example,
sometimeszcr _attr () needs to make copies of some lexical objects temporarily. Rather
than explicitly inserting code into the grammar to free these capidsat tr () can be

used to do it implicitly. This concept is similar to the constructors and destructors of C++.
Consider the case when attributes are character strings and copies of the lexical text buffer
are made which later need to be deallocated. This can be accomplished with code similar to
the following.

#header <<
typedef char *Attrib;

#define zzd attr(attr) {free(*(attr));}
>>
<<

zzcr_attr(Attrib *attr, int type, char *text)
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}

>>

if ( type == StringLiteral ) {

*attr = malloc( strlen(text)+1 );
strcpy(*attr, text);

Standard Attribute Definitions

Some typical attribute types are defined in the PCCTS include directory. These standard
attribute types are contained in the following include files:

char buf . h. Attributes are fixed-size text buffers, each 32 charactersin length. If a

string longer than 31 characters (31 + @’ terminator) is matched for a token, it

is truncated to 31 characters. You can change this buffer length from the default 32
by redefiningZzZTEXTSI ZE before the point wherehar buf . h is included. The

text for an attribute must be referencediast ext .

i nt. h. Attributesarei nt values derived from tokens using the at oi () function.

charptr. h, charptr. c. Attributes are pointers to dynamically allocated
variable-length strings. Although generally both more efficient and more flexible
than char buf . h, these attribute handlersuse mal | oc() andfree(), which are
not the fastest library functions. The file char pt r . ¢ must be used with

#i ncl ude, or linked with the C code ANTLR generates for any grammar using
charptr. h.
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Interpretation of Symbols in C Actions

TABLE 18. C Interface Interpretation of Attribute Termsin Actions

Symbol M eaning

$j The attribute for the | element of the current
aternative. The attribute counting includes
actions. Subrules embedded within the alterna-
tive are counted as one element.

$i.j The attribute for the jth element of ith level start-
ing from the outermost (rule) level at 1.

$0 The result attribute of the immediately enclosing
subrule or rule. (I-value)

$$ The result attribute of the enclosing rule.
(I-value)

$Sarg Therule argument labeled ar g.

$rul e The result attribute of the enclosing rule; thisis
the same as $$. (I-value)

$rv Therulereturn result labeled r v. (I-value)

$[ t oken_t ype, t ext] Attribute constructor; thisistranslated to acall to
zzconstr _attr(token, text).

$[ ] An empty, initialized attribute; thisis translated
toacdltozzenmpty_attr().

AST Definitions

AST nodes using the C interface always have the following structure:

struct _ast {

struct _ast *right, *down;

user_defined fields
H
whereyou must fill in user_defi ned_fi el ds using the AST_FI ELDS #def i ne and
must be provided in the #header action or in aninclude file included by the #header
action. Only the user-defined fields should be modified by the user asri ght and down are
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handled by the code generated by ANTLR. The type of an AST is provided by ANTLR and

isaways called AST.

Y ou must define what the AST nodes contain and aso how to fill in the nodes. To

accomplish this, you supply a macro or function to convert from the attribute, text, and token

type of an input token to atree node. ANTLR calls the function

zzcr_ast (AST *ast, Attrib *attr,

tofill intree node ast by calling

int token_type, char *text);

zzcr_ast(zzastnew(), attrib-of-current-token, LA(0), LATEXT(0))

The following template can be used for C interface tree building:

#header <<
#defi ne AST_FI ELDS

what - you- want - i n-t he- AST- node

#define zzcr_ast(ast,attr,ttype,text)ast->field(s) = ...

>>,

TABLE 19. C Interface AST Support Functions

Function

Description

zzchi | d(AST *1)

Return thechild of t .

zzsi bl i ng(AST *t)

Return the next sibling to theright of t .

zzpre_ast (AST *t,
FuncPtr n,
FuncPtr before,
FuncPtr after)

Do adepth-first walk of the tree applying
n to each node, bef or e before each sub-
tree, and af t er after each subtree.

zzfree_ast (AST *t)

Freeall AST nodesinthetree. Callszzt -
free() oneach node beforefree()ing.

AST *zzt make( AST *t,

Build and return atree witht asthe root
and any other arguments as children. A
NULL argument (except for t ) terminates
thelist of children. Arguments other than
the root can themselves be trees.

AST *zzdup_ast (AST *t)

Duplicate the entiretreet using zzast -
new() for creating new nodes.

zztfree( AST *t)

If macrozzd_ast () isdefined, invokes
zzd_ast () ont andthenfreest.
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TABLE 19. (Continued) C Interface AST Support Functions

Function Description

zzdoubl e_l i nk( AST *t, Set theup and | ef t pointers of all nodes
AST *up, int . Theinitial call should have up and
AST *| eft) | eft asNULL.

AST *zzast new(voi d) Usecal | oc() to create an AST node.

The invocation of the start symbol must pass the address of a NULL-initialized tree pointer
because ANTLR passes the address of the tree to fill in to each rule when the - gt optionis
turned on:

nai n()
{

AST *r oot =NULL;

ANTLR(Sstarting rul e(&oot), stdin);
}

After the parse has completed, r oot will point to the tree constructed by
starting_rule.
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SORCERER is asimple tree-parser and translator generator that has the notation and the
"flavor" of ANTLR. It accepts a collection of rules that specifies the contents and structure

of your trees and generates a top-down, recursive-descent program that will walk trees of the
indicated form. Semantic actions may be interspersed among the rule elements to effect a
translation—either by constructing an output tree (from the input tree) or by generating
output directly. SORCERER has some pretty decent tree rewriting and miscellaneous
support libraries.

This chapter describes how to construct tree parsers via SORCERER grammars, how to
interface a tree parser to a programmer’s application, how to insert actions to generate
output, and how to perform tree transformations. Unless otherwise specified, actions and
other source code is C++.

(Aaron Sawdey, Ph.D. candidate at University of MN, and Gary Funck of Intrepid
Technology are coauthors of SORCERER.)

Introductory Examples

It is often best to introduce a language tool with a simple example that illustrates its primary
function. We consider the task of printing out a simple expression tree in both postfix and
infix notation. Assuming that expression trees have operators at subtree parent nodes and
operands are children, the expressiar™ could be represented with the tree structure:
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+

l

3—4

where the 3 and 4 children nodes (of token type | NT) are operands of the addition parent
node. We will also assume that | NT type nodes have afield called val that contains the
integer value associated with the node.

expr © #( PLUS expr expr ) <<printf(" +");>>

| i I NT <<printf(" %",i->val);>>
The labeled element "i : | NT" specifiesthat an | NT node is to be matched and a pointer
calledi isto be made available to embedded actions within that alternative. Given the
indicated expression tree, thisrule would generate "3 4 +".

To construct an infix version, al we have to do is move the action, thus changing the
seguence of action executions. Naturally, the structure of the tree has not changed and the
grammar itself is no different.

expr © #( PLUS expr <<printf(" +");>> expr )
| it INT <<printf(" %l",i->val);>>
The output generated by exprisnow "3 + 4" for the same input tree.

Constructing tree walkers by hand to perform the same tasks is simple as well, but becomes
more difficult as the tree structure becomes more complicated. Further, a program is harder
to read, modify, and maintain than a grammar. The following C function is equivalent to the
postfix grammar.

expr ( SORAST *t)
{
if ( t->token==PLUS ) {
MATCH( PLUS) ;
expr (t->down);
expr (t->down->right);
printf(" +");
}
el se {
MATCH( | NT) ;
printf(" o%",i->val);

}

This hand-built function is not as robust as the SORCERER generated function, which
would check for NULL trees and for trees that did not have PLUS or | NT as root nodes.
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SORCERER is suitable for rewriting input trees as well as generating output via embedded
actions. Consider how one might swap the order of the operands for the same expression tree
given above. Having to manipulate child-sibling tree pointers manually is tedious and error
prone. SORCERER supports tree rewriting viaafew library functions, grammar element
labels, and a tree constructor. Again, because our tree structure has not changed, our
grammar remains the same; but the actions are changed from generating text output to
generating a slightly modified tree.

expr ;1 #( a:PLUS b:expr c:expr ) <<#texpr=#(a, c, b); >>

[ i i NT
SORCERER isinformed that atreetransformation isdesired viathe- t r ansf or mcommand
line option. In transform mode, SORCERER generates an output tree for every input tree
and by default copies the input tree to the output tree unless otherwise directed. The first
alternative in our example is annotated with atb indicate that SORCERER should not
generate code to construct an output tree as our embedded action will construct the output
tree. Action

#expr=#(a, c, b);

indicates that the output tree of rebepr has the same root, the node pointed ta,and
the same children, but with the order reversed. Given the input tres2-#3¢ the output tree
of expr would be

Ny

C++ Programming Interface

SORCERER generates parsers that can walk any tree that implements a simple interface.
You must specify:

1. The type of a tree node, calledRAST (derived from clasSORASTBase and given
in the#header action)

2. How to navigate a tree with member functiawswn() andri ght ()

3. And how to distinguish between different nodes via member funcyipe( )
which returns the token type associated with a tree node

If you wish to perform tree rewrites, you must also specify how to construct new trees via
set Down(), set Ri ght (), andshal | owCopy() wheret - >shal | owCopy() returns a
duplicate of node. If you refer to#[ . . . ] in an action, you must also define a constructor
with the appropriate arguments.
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For example, the most natural implementation of a child-sibling tree conforming to the
SORCERER treeinterface (transform or nontransform mode) and can be used is the
following:

cl ass SORCommonAST : public SCRASTBase {
pr ot ect ed:

SORCommonAST * _right, *_down;

int _type;

publi c:
PCCTS_AST *ri ght () { return _right; }
PCCTS_AST *down() { return _down; }
int type() { return _type; }
voi d set R ght (PCCTS_AST *t) { _right = (SORCommoONnAST *)t; }
voi d set Down( PCCTS_AST *t) { _down = (SORCommonAST *)t; }
PCCTS_AST *shal | owCopy()

{
SCORComonAST *p = new SORCommonAST;

if ( p==NULL ) panic();

*p = *this;

p- >set Down( NULL) ;

p- >set R ght (NULL) ;

return (PCCTS_AST *)p;

}

|
This definition is also satisfactory for performing tree rewrites as SORCERER knows how
to set the pointers and the token type and knows how to duplicate a node.

A SORCERER grammar contains a class definition that resultsin a C++ class derived from
STr eePar ser . For example,

cl ass M/TreeParser {
sone-actions
sone-rul es

}

Each of the rules defined within the class definition will become public member functions of
M/ Tr eePar ser . Any actions defined within the class definition must contain valid C++
member declarations or definitions.

Invoking atree parser is asimple matter of creating an instance of the parser and calling one
of the rules with the address of the root of the tree you wish to walk and any arguments you
may have defined for that rule; for example.,
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mai n()

{

M/Tr eePar ser nypar ser;

SORAST *sone_tree = ... ;

nypar ser. sone_r ul e(( SORASTBase **)&Sone_tree);
}

The cast on the input tree is required because SORCERER must generate code for
sone_rul e that can walk any kind of conformant tree:

voi d M/TreeParser:: sone_rul e(SORASTBase ** root);

Unfortunately, without the cast you get a compiler error complaining that "SORASTBase
**" jsnot the same as "SORAST **".

If sone_r ul e had an argument and return value such as
some_rul e[int i] > [float j]
the invocation would change to

mai n()
{

M/Tr eePar ser nypar ser;

SORAST *sonme_tree = ... ;

float resul t=nyparser.sone_rul e((SORASTBase **)&sone_tree, 34);
}

Table 20 on page 165 describes the files generated by SORCERER from a tree description
infile(s) f1. sor ... fn.sor.

TABLE 20. Files Written by SORCERER For C++ Interface

File Description
fl.cpp ... fn.cpp | Definition of rules specifiedin f1.sor ... fn.sor.
Parser.h Declaration of class Par ser where Par ser isdefinedin

the SORCERER grammar. All grammar rules become
member functions.

Parser. cpp Definition of support member functions of class
Par ser.
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There are no global variables defined by SORCERER for the C++ interface and, hence,
multiple SORCERER tree parsers may easily be linked together; e.g., C++ files generated
by SORCERER for different grammars can be compiled and linked together without fear of
multiply-defined symbols. This also implies that SORCERER parsers are "thread-safe” or
"re-entrant.”

C++ Class Hierarchy

Trees walked by SORCERER are all derived directly or indirectly from PCCTS_AST so that
ANTLR and SORCERER both have access to the same member functions through the same
C++ object vtables:

PCCTS_AST

v

SORASTBase

P

SORAST SORCommonAST

The classes are described as follows:

¢ PCCTS_AST. SORCERER and ANTLR trees must be derived from the same base

classif they both are to manipulate the same trees; i.e., both tools must have access
to acommon object virtual table for the tree nodes. The standard SORCERER
public interface is described in PCCTS_AST:

virtual PCCTS_AST *right();

virtual PCCTS_AST *down();

virtual void setRi ght (PCCTS AST *t);

virtual void set Dowmn(PCCTS_AST *t);

virtual int type();

virtual PCCTS_AST *shal | owCopy();

e SORASTBase. Thisiscurrently t ypedef 'd to PCCTS_AST so that the return type
of the C++ tree library routines can 88RASTBase rather tharPCCTS_AST,
which could cause some confusion for those using SORCERER without ANTLR.
*  SORAST. You must define this type name as the type of tree node that SORCERER
should walk or transform.
e SORComonAST. Thisclassisuseful when ANTLR is not used to construct the
input trees of the tree parser. It defines atypical child-sibling implementation.
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The parser class defined in your SORCERER grammar description is constructed as a
derived class of STr eePar ser ;

STr eePar ser

YourParser

which defines the standard SORCERER tree parser behavior.

TABLE 21. C++ Files

File Defines

h/ PCCTSAST. h, | i b/ Class PCCTS_AST (which contains the standard

PCCTSAST. cpp ANTLR/SORCERER tree interface).

h/ SASTBase. h SORASTBase. Currently thisis only atypedef to
PCCTS_AST.

h/ SCommonAST. h SORComDNAST.

h/ SList. h,lib/ SLi st class.

SLi st.cpp

h/ STreeParser. h, i b/ STr eePar ser class.

STr eePar ser. cpp

h/config.h Configuration information for the various platforms.

Token Type Definitions

SORCERER generates a parser that recognizes both the structure and a portion of the
contents of atree node. Member t ype() istheonly information used to determine the
contents of a node; however, semantic predicates can be used to alter the parse depending on
other node information. SORCERER-generated parsers test the content of a node with an
expression of theform™_t - >t ype() ==T". For the SORCERER output to compile, token
type T must have been defined.

SORCERER-generated translators can use either user-defined token types or can have
SORCERER assign token types to each terminal referenced in the grammar description. The
"-def -tokens fi/ e" optionisused to generate afile with#def i nesfor each referenced
token. When folding a SORCERER parser into an existing application, the token types will
already be defined. These definitions can be explicitly included viaa C or C++ action, or the

Language Translation Using PCCTS and C++ 167



SORCERER Reference

file containing the token types can be specified with a#t okdef s directive. The file may
only contain the definitions, but may be in the form of #def i nesor an enum For example,

<<enum TokenType { A=1, B=2 };>>
a: AB

or,

#t okdef s "nyt okens. h"
a: AB

To use the range operator, T,. . T,, the#t okdef s directive must be used because the actual
value of the token types must be known to verify the pred-LL(1) nature of a programmer’s
grammar.

A token type o0 is illegal.

Using ANTLR and SORCERER Together

To have ANTLR construct trees and have SORCERER walk them, do the following:

1. Define a ype() field in theAST definition for ANTLR. E.g.,

#i ncl ude " ATokPtr. h"
class AST : public ASTBase {

prot ect ed:
int _type;
publi c:
AST( ANTLRTokenPtr t) { _type = t->getType(); }
AST() _type = 0; }
int type() { return _type; }
b

2. Construct trees via ANTLR as you normally would. Ensure that any token type
that you will refer to in the SORCERER grammar has a label in the ANTLR
grammar. For example,

#t oken ASSI GN "="

3. In your SORCERER description, include &&¥ definition you gave to ANTLR
and defineSORAST to beAST. For example,
#header <<
#i ncl ude "AST. h" /* include your ANTLR tree def */

typedef AST SORAST;
>>
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4. Create amain program that calls both ANTLR and SORCERER routines.
#i ncl ude "tokens. h"
#i ncl ude "Text Parser. h"
t ypedef ANTLRCommonToken ANTLRToken;
#i ncl ude "TreeParser. h"
#i ncl ude "DLGLexer. h"
#i ncl ude "PBl ackBox. h"
mai n()
{
Par ser Bl ackBox<DLG. exer,
Text Par ser,
ANTLRToken> | ang(stdin);
AST *r oot =NULL,;
TreePar ser tparser;
| ang. par ser () - >st at ((ASTBase **) &root);
t parser.start_synbol (( SORASTBase **) & oot);

SORCERER Grammar Syntax

Just as ANTLR grammars specify a sequence of actions to perform for a given input

sentence, SORCERER descriptions specify a sequence of actions to perform for agiven

input tree. The only difference between a conventional text language parser and atree parser

isthat tree parsers have to recognize tree structure as well as grammatical structure. For this

reason, the only significant difference between ANTLR input and SORCERER input is that
SORCERER grammar productions can use an additional grouping construct—a construct to
identify the elements and structure of a tree. This section summarizes SORCERER input
syntax.

A SORCERER description is a collection of rules in Extended BNF (EBNF) form and user-
defined actions preceded by a header action where the programmer defines the type of a
SORCERER tree:

#header <<header action>>
actions

rul es

actions

where act i ons are enclosed in European quotgs. . >> and rules are defined as
follows:
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rule

al ternative;

| alternative,

| alternative,

Each alternative production is composed of alist of elements where an element can be one

of theitemsin Table 22 on page 170. The "..." within the grouping constructs can
themselves be lists of alternatives or items. C and C++ style comments are ignored by

SORCERER

TABLE 22. SORCERER Description Elements

Item Description Example

| eaf Token type ID

T;..To Token range OPSTART. . OPEND
Wild card #( FUNC ID (.)* )

rul e- nanme Reference to another rule expr

| abel : el em | Label an element id: 1D

#(...) Tree pattern #(1D expr slist slist)
<<, ., L >> User-defined semantic action <<printf("od",i->val);>>
(...) Subrule (STRING | ID| FLOAT)
(...)* Zero-or-more closure subrule args : (expr)* ;

(...)+ One-or-more positive closure slist: #(SLIST (stat)+ )
{...} Optional subrule #(1F expr stat {stat})
<<, L L >>? Semantic predicate id: <<isType()>>? ID
(...)7 Syntactic predicate ( #( M NUS expr expr )?

| #( M NUS expr )
)
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Rule Definitions: Arguments and Return Values

All rules begin with alowercase letter and may declare arguments and areturn valuein a
manner similar to C and C++:

rule[argy, arg, ..., argy, >|[return-type idl : ... ;

which declaresar ul e to have n arguments and areturn value; either may be omitted. For
example, consider

afint a, int b] > [int r]
sone-tree <<r=atb;>>

which matches sone- t r ee and returns the sum of the two arguments passed to the rule.
Thereturn value of aruleis set by assigning to the variable given in thereturn block [ . . . ] .

The invocation of rulea would be of thisform:
b : <<int local;>>
bl ah a[3,4] > [local] foo
Theresult of 7 will be stored into | ocal after the invocation of rule a. Note that the syntax
of rulereturn value assignment is like UNIX 1/O redirection and mirrors the rule declaration.

Asaless abstract example, consider that it is often desirable to pass avalue to an expression
rule indicating whether it is on the left or right hand side of an assignment:

<<enum S| DE { LHS, RHS };>>
st at : #( ASSIGN expr[LHS] expr[RHS] )
| ...

expr[ Sl DE s]

Return values are also very useful. The following example demonstrates how the number of
arguments in afunction call can be returned and placed into alocal variable of the invoking
rule.
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expr
: ID
|  FLOAT
| <<int n;>>
fc > [n]
<<printf("func call has \%l argunments\\n", n);>>

fc > [int nargs]
<<int i=0;>> #( FUNCID ( . <<i++;>>)* )
<<nargs = i;>>

Special Actions

The first action of any production is considered an init-action and can be used to declare

local variables and perform some initialization code before recognition of the associated

production begins. The code is executed only if that production is predicted by the look

ahead of the tree parser. Even when normal actions are shut off during the execution of a

syntactic predicate, (. . . ) ?, init-actions are executed. They cannot be enclosed in curly-

braces because they define local variables that must be visible to the entire production—not
just that action.

Actions suffixed with a ?” are semantic predicates and discussed below.

Special Node References

The simplest node specifier is a token, which begins with an uppercase letter. To specify that
any token may reside in a particular node position, the wildcdris ‘Used.

The wildcard sometimes behaves in a strange, but useful, manner as the "match anything
else" operator. For example,

a: A| . ;

matchesA in the first production and anything else in the second. This effect is caused by
SORCERER's parsing strategy. It tries the productions in the order specified. ARy non-
node will be bypassed by the first production and matched by the second.
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Wildcards cannot be used to predict two different productions; that is,
a
[ .

[ A

results in awarning from SORCERER:

f.sor, line 1. warning: alts 1 and 2 of (...) nondetermnistic upon {.}

To indicate that a specific range of tokens is to be matched, the range operatdp™ is
used. For example,

<<

#define Pl us 1
#define M nus 2
#define Milt 3
#define D v 4
#define I NT 10
#define OpStart Pl us
#defi ne OpEnd D v
>>

expr

#( QpStart..pEnd expr expr )
| INT

matches any expression tree comprised of integers and one of the four arithmetic operators.

For the range operator to work propefly,< T, must hold and all values from ,andT,
inclusively must be valid token types. Furthermore #thekdef s directive must be used to
provide SORCERER with the actual token type values.

Tree Patterns

Tree patterns are specified in a LISP-like notation of the form:
#( root-itemitem... item)

where the #" distinguishes a parenthetical expression from the EBNF grouping construct,
(...),androot-itemis aleaf node identifier such BB, the wildcard, or a token range.
For example, consider the tree specification and graphical-representation pairs given in
Table 23 on page 174.
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TABLE 23. Sample Tree Specification and Graphical Representation Pairs

TreeDescription Tree Structure
#(A B CDE)

A

B—~C—»>D—>E

#(A #(B C D) E)

— m@me—>

j

#(A #(B O #(D E))

OFTHZD
m+— O

Flat trees (lists of items without parents) are of the form:
item... item

Rule references and subrules may not be tree roots because they may embody more than a
single node. By definition, the root of atree must be a single node.

EBNF Constructs in the Tree-Matching Environment

A tree without any EBNF subrulesis a tree with fixed structure. When tree patterns contain
EBNF subrule specifications, the structure of the tree language may be difficult to see for
humans. This section provides numerous examples that illustrate the types of treesthat can
be matched with EBNF constructs and the tree specifier, #( . . . ) . Table 24 on page 175,
Table 25 on page 175, Table 24 on page 175, and Table 24 on page 175 illustrate the various
EBNF constructs and the tree structures the constructs match. One final note: EBNF
constructs may not be used as subtree roots..
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TABLE 24. EBNF Subrules

Tree Description Possible Tree Structures
#(Def Sub (Subr| Func) slist)

Def Sub

Subr—» dist

or

Def Sub

Func— dist

TABLE 25. EBNF Optional Subrules

Tree Description Possible Tree Structures
#(1f expr slist {slist})

I f

expr — slist

or

| f

expr — dist — dist
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TABLE 26. EBNF Zero-Or-More Subrules

Tree Description

Possible Tree Structures

#(Call Subr (expr)*)

Cal |

Subr

or

Cal |

Subr—» expr

or
Cal |

Subr—» expr —» expr

€tc...

TABLE 27. EBNF One-Or-More Subrules

Tree Description

Possible Tree Structures

#(SLI ST (stat)+)

SLI ST

stat

or

SLI ST

stat —» stat

etc...
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Element Labels

Rule elements can be labeled with an identifier (any uppercase or lowercase string), whichis
automatically defined (and initialized to NULL) as a SORAST node pointer, that can be
referenced by user actions. The syntax is:

t: el enent

where t may be any upper or lower caseidentifier and el enent iseither atoken reference,
rule reference, the wild-card, or a token range specification.

Subtrees may be labeled by labeling the root node. The following grammar fragment
illustrates atypical use of an element labels.

a : #( DO u:lD expr expr #( v:SLIST (stat)* ) )
<<
printf("induction var is %\n", u->synbol ());
anal yze_code(V);
>>

where synbol () issome member function that the user has defined as part of a SORAST.
These |abels are pointers to the nodes associated with the referenced element and are only
available after the recognition of the associated tree element; the one exception is alabeled
rule reference, whose label is available for use as an argument to the referenced rule; e.g.,

a : p:b[p->synbol ()] ;

Labels have rule scope—they are defined at the rule level and are not local to a particular
subrule or alternative.

Labels can be used to test for the presence of an optional element. Therefore, in:
expr_list: oprnd:expr { Comma oprnd:expr } ;

variableopr nd will have the value of the second operand ifGhena is present and the
first operand if not. It can also be used to track the last element added to a list:

expr_list: oprnd:expr ( Comma oprnd:expr )* ;
Note that there are rgvariables such as there are in ANTLR.

In transform model, abel refers to the output node associated with the labeled grammar
element. To access the associated input nodéatse/ i n.
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@-Variables

Local stack-based variables are convenient because a new instance is created upon each
invocation of afunction. However, unlike global variables, the symbol isonly visible within

that function (or SORCERER rule). Another function cannot access the variable. A stack-

based variable that had global scope would be extremely useful; it would also be niceif that
variable did not require the use of any “real” global variables. We have created just such
creatures and called the@rvariables for lack of a better name (the concept was derived
from NewYacc). @-variables are mainly useful with the C interface because the C++

interface allows you to define tree-parser class member variables.)

An @-variable is defined like a normal local variable, but to inform SORCERER of its
existence, you must use a special syntax:
@si npl e-type-specifier id = init-value)
To reference the variable, you must also inform SORCERER@vith For example,
a <<@int blah)>> /* define reference var: "int blah;" */
<@l ah = 3;>> /* set blah to 3 */

b
<<printf("blah = %\n", @lah);>> /* prints "blah

5 */

o
>a o0

<<
printf("blah = %\ n", @l ah); /* prints "blah
@l ah = 5;

>>

3 *

where the output should be

bl ah 3
bl ah 5

The notation@ d is used just like plain d; i.e., as the object of an assignment or as part of
a normal C/C++ expression.

As another example, consider a grammar that provides definitions for implicitly defined
scalars.

routine
#( DefSub ID slist )

sli st
<<@AST * defs)>>
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#( SLIST
( v:vardef <<define(v);>>)*
<<@lef s=v; >>
( stat )*

var def
: #( Type ID)
stat: #( Assign scalar:IDINT )
<<if ( scalar is-not-defined)
ast _append( @efs, #(#[ Type,"real"], #[ID id->synbol]));
>>

An @-variable is saved upon entry to the rule that defines it and restored upon exit from the
rule. To demonstrate this stack-oriented nature, consider the following example,

proc: #( p: PROC <<printf("enter proc %\n", p->synbol);>>
ID (decl|proc)* (stat)*
) <<printf("exit proc %\n", p->synbol);>>
decl : <<@AST * | astdecl)>>

#( VAR d:IDINT ) <<@astdecl = d;
printf("def %\n", d->synbol);>>

stat: BLAH <<printf("last decl is %\n", @astdecl->synbol;>>

Given some input such as;

procedure p;
var a : integer;
procedure q;
var b : integer;
begi n
bl ah;
end;
begi n
bl ah;
end;

with the intermediate form structure:
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PRCC

D pl—>VAR — » PROC » BLAH

| D a]—» | NT IDi[q]—>VAR—>BLAH

| O] b]— | NT

The output for thisis

enter proc

def a

enter proc

def b

|ast decl is b
exit proc

| ast decl is a
exit proc

If you want the functionality of anormal C/C++ global variable but do not want the
problems associated with a global variable, @-variables should also be used. When an @-
variable definition is prefixed with st at i ¢, it isnever save or restored like other @-
variables. For example,

a: <<@static int blah)>> ... b ...
b: ... <«<<@lah = 3;>> ...

Essentially, @l ah isaglobal variable; there just happensto be a new copy for every
STr eePar ser that you define.

While @-variables, strictly speaking, provide no more functionality than passing the address
of local variables around, @-variables are much more convenient.

When using the C++ interface, simple parser member variables are functionally equivalent
to static @-variables.
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Embedding Actions For Translation

In many cases, trandlation problems are simple enough that a single pass over an
intermediate form tree is sufficient to generate the desired output. This type of translationis
very straightforward and is the default mode of operation.

Translations of this type are done with a series of print statements sprinkled around the
SORCERER grammar. For example, consider how one might convert function prototypes
from K&R C to ANSI C (assuming the arguments and the declarations are in the same
order):

void f(i,j)

int i;

float j;

would be converted to

void f(int i, float j);

in source form. Graphically, a prototype could be structured as follows:

Proto
Type— | D—» ARGS—» Type— Type

ID—ID I D I D

where Pr ot 0 and ARGS are imaginary tokens (tokens with no corresponding input symbol)
used to structure the intermediate form tree. The | D directly under the Pr ot o nodeisthe
function name.

The following tree grammar fragment could be used to reconize these simplified C
prototypes:

proto
#( Proto Type ID#( ARGS ( ID)* ) ( decl )* )

decl
#( Type ID)

To perform the transformation, the grammar could be augmented with actionsin the
following manner:
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proto
. #( Proto t:Type f:ID
<printf("% %(", t->synbol (), f->synbol());>>
#( ARGS ( ID)* )
( d:decl <<if (d->right()!=NULL) printf(",");>>
)* <<printf(");\n");>>
)

decl
: #( t:Type id:I1D)
<<printf("% %", t->synbol (), id->synbol());>>

where synbol () isamember that returns the textual representation of the type or function
name.

Embedding Actions for Tree Transformations

While the syntax-directed scheme presented in the previous section is sometimes enough to
handle an entire tranglation, it will not handle translations requiring multiple passes. In fact,
if the translation can be handled with asimple syntax-directed translation from the
intermediate form, it could probably be handled as a syntax-directed translation directly
from the original, text input. Why even discuss syntax-directed translation for intermediate
forms? Because a programmer can rewrite a tree innumerable times but must eventually
convert the intermediate form to an output form.

This section describes the support available to the programmer in rewriting portions of an
intermediate form. We provide information about how SORCERER rewrites trees, about the
tree library, and about the other support libraries.

When tree transformations are to be made, the command-line option - t r ansf or mmust be
used. In transform mode, SORCERER makes the following assumptions:
1. Aninput tree exists from which an output tree is derived.

2. If given noinstructionsto the contrary, SORCERER automatically copiesthe input
tree to the output tree.

3. Eachrulehas aresult tree, and the result tree of the first rule called is considered
the final, transformed tree. This added functionality does not affect the normal rule
argument and return value mechanism.
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4., Labelsattached to grammar elements are generally referredto as | abel , where
| abel refersto the input tree subtree in nontransform mode.

The output tree in transform mode isreferred to as / abel . Theinput node, for
token references only, can be obtained with | abel _i n. The input subtree
associated with rule references is unavailable after the rule has been matched.
The tree pointer points to where that rule left off parsing. Input nodesin
transform mode are not needed very often.

5. A C/C++ variable exists for any labeled token reference even if it is never set by
SORCERER.

6. The output tree of arule can be set and/or referenced as#r ul e.

The following sections describe the three types of tree manipulations.

Deletion

When portions of a SORCERER tree are to be del eted, the programmer has only to suffix the
itemsto delete with a"!"; this effectively filters which nodes of the input tree are copied to
the output tree. For example, if all exponent operators were to be removed from an
expression tree, something similar to the following grammar could be used:

expr: #( Plus expr expr )

|  #( Mult expr expr )

| #( Exp expr expr )
wherea"! " appended to an alternative operator "! " indicates that the entire alternative
should not be included in the output tree. Token and rule references can also be individually
deleted. The functionality of previous example, can be specified equivalently as:

expr: #( Plus expr expr )

|  #( Mult expr expr )

|  #( Exp! expr! expr! )
No output tree nodes are constructed for the token references in the examples above.
However, alabeled token reference always results in the generation of an output tree node
regardless of the"! " suffixes. If you do not link the output node into the result tree or delete
it explicitly in an action, a"memory leak" will exist.
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Modification

To rewrite aportion of atree, you specify that the nodes of the tree are not to be

automatically linked into the output tree via an appropriately-placed "!" operator. It isthen

up to you to describe the tree result for the enclosing rule. For example, let's assume that we
want to translate assignments of the form

expr -> var
to
var := expr

Assuming that the AST transformation was from

Assi gn
expr — var

to
Assi gn

var —» expr

the following grammar fragment could perform this simple operation:

assign
! #(a: Assign e:expr id: 1D <<#assign = #(a, id, e);>>

The "#(a, id, e)"is atree constructor that behaves exactly like it does in an ANTLR
grammara is the root of a tree with two childreind (a pointer to a copy of the input node
containingl D) ande (the result returned bexpr ).

You must be careful not to refer to the same output node more than once. Cycles can appear
in the output tree, thus making it a graph not a tree. Also, be careful not to include any input
tree nodes in the output tree.

Augmentation

The result tree of a rule can be augmented as well as rearranged. This section briefly
describes how the tree library routines (illustrated in the next section) can be used to add
subtrees and nodes to the output tree.
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Consider the task of adding variable definitionsfor implicitly defined scalarsin FORTRAN.
Let's assume that the tree structure of a simple FORTRAN subroutine with scalar definitions
and assignments such as:

subroutine t
real a
a=1

b =2

end

looks like

Def Sub
ID[t]— SLIST
Type—» Assi gn——» Assi gn
IO a] IDal»INT D b]l—INT

We would like the tree to be rewritten as follows

Def Sub

I D[ t]— SLI ST
Type— Type—» Assi gn—— Assi gn
IDla] 1Db] D al—»INT |[%b]—>|NT

wherel O a] represents anD node with a symbol field af. In other words, we would like
to add definitions before the statement list for implicitly defined scalars.

The following grammar fragment could be used to recognize implicitly defined scalars and
add a definition for it above in the tree after the last definition.

class FortranTransl ate {

<<
SORAST *def s; /'l instance var tracking variable definitions
publi c:
FortranTransl ate() { defs=NULL; }
>>
routine
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#( DefSub ID slist )

slist
: #( SLIST
( v:ivardef )* <<defs=v; define(v);>>
( stat )*
)
var def
: #( Type ID)

stat: #( Assign scalar: 1D INT )
<<if ( is-not-defined(scalar) )
ast _append(defs, #(#[ Type, "real "], #[ I D, scal ar->synbol ()]));
>>

}
where the notation#] ar gs] ” is a node constructor and is translated to
new SORAST( ar gs)

(or functionast _node( ar gs) using the C interface). For example, in our case, you would
define

cl ass SORAST : public SCRASTBase {
SORAST(i nt token_type, char *sym;
b
The tree constructor
#(#[ Type, "real "], #[1D,id->synbol ()])

builds a tree like
Type[real ]

1 D[ b]

Theast _append(defs, tree) function call addg r ee to the end of the sibling list
pointed to bydef s.
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C++ Support Classes and Functions

SORCERER ASTs are defined by a class called SORAST that must be derived from
SORASTBase, which inherits the following member functions (defined in | i b/
PCCTAST. O):

addChi I d

voi d addChild(t).Addt tothelist of childrenfort his.

append

voi d append(b).Add b to the end of the sibling list. Appending a NULL
pointer isillegal.

bot t om

SORASTBase *bot t on() . Find the bottom of the child list (going straight
"down").

cut _between

SORASTBase *cut _between(a, b).

Unlink all siblings between a and b and return a pointer to the first element of
the sibling list that was unlinked. Basically, all this routine doesisto makeb a
sibling of a and make sure that the tail of the sibling list, which was unlinked,
does not point to b. The routine ensures that a and b are (perhaps indirectly)
connected to start with. Thisroutine returns NULL if either of a or b are NULL or
if a and b are not connected.

insert_after

void insert_after(b).

Add subtree b immediately after t hi s asitssibling. If b isasibling list at itstop
level, then the last sibling of b points to the previous right-sibling of t hi s. If b
iSNULL, nothing is done. Inserting a NULL pointer has no effect.

ast _find_all

SORASTBase *ast_find_all (u, cursor).

Find al occurrences of u in the tree pointed to by t hi s.cur sor (apointer to a
SORAST pointer) must beinitialized tot hi s. It eventually returns NULL when
no more occurrences of u are found. This function is useful for iterating over
every occurrence of a particular subtree. For example,

/* find all scalar assignnents withing a statenent list */
SORAST *scal ar_assign = #( #[Assign], #[Var] );

PCCTS_AST *cursor = slist;

SCRAST *p;

while ((p=(SORAST *)slist->ast_find_all (scal ar_assign, &ursor)))
{

/* performan operation on 'p’ */

Language Translation Using PCCTS and C++ 187



SORCERER Reference

where assignments are structured as
Assi gn
Var—» expr

This function does not seem to work if you make nested callstoit; i.e., a
loop containing anast _fi nd_al | () that containsacall to another

find all().
tfree
voi d tfree().Recursively walk atreedel et e’'ing all the nodes in a depth-
first order.
make
stati c SORASTBase *make(root,childy, ..., child, NULL). Create

a tree withr oot as the root of the specifietichildren. Ifr oot isNULL, then a
sibling list is constructed. hi | d; is a list of sibling, therhi | d;,; will be
attached to the last sibling ofii | d;. Any NULL chi | d; results inchi | d;_4
being the last sibling. The root must not have children to begin with. A
shorthand can be used in a description read by SORCERER:

#(root, childy, ..., childp
mat ch

i nt mat ch(u) . Returns true if hi s andu are the same (the trees have the
same tree structure and token types); else it returns falses MULL, false is

returned.
nsi bl i ngs
i nt nsiblings(). Returns the number of siblings.
ast _scan
int ast_scan(tenplate, labelptrq, ..., labelptry). This

function is analogous tecanf . It tries to match treehi s against enpl at e
and return the number of labels that were successfully mappeteitbleat e
is a string consisting of a SORCERER tree description with an optional set of
node labels. For every label specified in template, the addre SGRAST
pointer must be passed. Upon return frsn_scan() , the pointers will point
to the requested nodestihi s. This function can only be conveniently used
from within a SORCERER description file and requires the use of the
#t okdef s directive; it can be used in non-transform mode.
Consider the following example.
n =t->ast_scan("#( %4:A%®R:B ¥:C)", &, &, &);

which SORCERER converts to before the cali$d _scan() }:
n =t->ast_scan("#( %:7 %®:8 93:9 )", &, &, &z);
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where the token types of A, B, and Care 7, 8, and 9, respectively. After the call,
pointers x, y, and z will point to the root, the first child and the second child,
respectively; n will be 3.

si bl i ng_i ndex
SORASTBase *si bling_i ndex(i) . Return apointer to thei th sibling where
thefirst sibling to the right isthe index 2. Anindex of i ==0, returns NULL and
i ==1 returnst hi s.

tail
SORASTBase *tail (). Findtheend of the sibling list and return a pointer to
it.

Error Detection and Reporting

The following STr eePar ser member functions are called for the various possible parsing
errors:

m smat ched_t oken
nmi smat ched_t oken(int | ooking for, AST *found). The parser was
looking for a particular token that was not matched.

nm smat ched_r ange
nmi smat ched_range(int | ower, int upper, AST *found). The parser
was looking for atoken in arange and did not find one.

m ssing_wi | dcard()
mi ssi ng_wi | dcard(). The parser was looking for any tree element or
subtree and found a NULL pointer.

no_vi abl e_al t
no_viabl e_alt(char *which_rule, AST *current_root). The parser
entered a rule for which no alternative’s lookahead predicted that the input
subtree would be matched.

sorcerer_panic
sorcerer_pani c(char *err). This is called explicitly by you or by the
support code when something terrible has happened.
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Command Line Arguments

The basic form of a SORCERER command lineis
sor [options] filej.sor ... file,. sor

wheref i | eq isthe only one that may begin with a#header directive and options may be
taken from:

- CPP
Turn on C++ output mode. Y ou must define a class around your grammar rules. An
".h"and". C'fileare created for the class definition aswell asthenormal ". C' file
for the parser your grammar rules.

- def -t okens

[C++ npde onl y] For each token referenced in the grammar, generate an enum
STokenType definition in the class definition file. This should not be used with the
#t okdef s directive, which specifies token types you've already defined.

-def-tokens-file file
[C npde onl y] For each token referenced in the grammar, generadefa ne
in the specified file. This should not be used with#hekdef s directive, which
specifies token types you've already defined.

-funcs style
Specify the style of the function headers and prototypes to be generated by
SORCERER.st yl e must be one ofNS/ (the default)KR, or bot h. .

-inline
Only generate actions and functions for the given rules. Do not generate header
information in the output. The usefulness of this option for anything but
documentation has not been established.

-out-dir style
Directory where all output files go; the default is'*

-prefix s
Prefix all globally visible symbols with, including the error routines. Actions that
call rules must prefix the function withas well. This option can be used to link
multiple SORCERER-generated parsers together by generating them with different
prefixes. This is not useful in C++ mode.
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-proto-file file
Put all prototypes for rule functionsin thisfile.

-transform
Assume that atree transformation will take place.

Take input from st di n rather than afile.

C Programming Interface

Invocation of C Interface SORCERER Parsers

Aswith the C++ interface, the C interface requires that you specify the type of atree node,
how to navigate the tree, and the type of anode:

1. You must define tree node type SORAST in the #header action. SORAST must
contain the fieldsin point 2 and 3.

2. Your trees must be in child-sibling form; i.e., the trees must have fields down
(pointsto thefirst child) and r i ght (pointsto the next sibling).

3. Your tree must have at oken field, which is used to distinguish between tree
nodes. (To be consistent with ANTLR and the SORCERER C++ interface, this
field should be called t ype, but we have left it ast oken for backward
compatibility reasons. The C interface of SORCERER is well enough
established that changing it would invalidate too many grammars).

A conforming tree using the C interface is the following:

typedef struct _node {
struct _node *right, *down;
int token;
/* add fields you need here */
} SORAST;

Table 28 on page 192 describes the files generated by SORCERER from a tree description
infile(s) f1.sor ... fn.sor.
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TABLE 28. Files Written by SORCERER for C Interface

File Description
fi.c ... fn.C | Definitionof rulesspecifiedin f1.sor ... fn.sor.
t okens. h If SORCERER command-line optiondef - t okens-fil e

t okens. h” is specified, this file contains a seriesfokf i nes
for token types assigned by SORCERER for all node references
in the grammar.

Using the C interface, SORCERER may also be used as afilter fromst di n, in which case,
the parser functions are written to st dout and no files are written (unless - def - t okens-
file tokens.h"isgspecified).

There are no global variables defined by SORCERER for the C interface, so multiple
SORCERER tree parsers may easily be linked together; e.g., C files generated by
SORCERER for different grammars can be compiled and linked together without fear of
multiply defined symbols. Thisis accomplished by simulating at hi s pointer. The first
argument of every parser function is a pointer to an STr eePar ser structure containing all
variables needed to by the parser. Having a parser structure that is passed around from rule
to rule implies that SORCERER parsers are "thread-safe” or "re-entrant."

Y ou may add variables to the STr eePar ser structure by defining _PARSER_VARS; e.g.,
#defi ne _PARSER VARS nt val ue; Sym *p;

Invoking atree parser is amatter of creating an STr eePar ser variable, initializing it, and
calling one of the parsing functions created from the rules. Parsing functions are called with
the address of the parser variable, the address of the root of the tree you wish to walk, and
any arguments you may have defined for that rule; e.g.,

mai n()

{
M/Tr eePar ser nypar ser;
SORAST *sone_tree = ... ;
STreePar ser | nit (&myparser);
rul e(&nyparser, &sone_tree);

}
If rul e had an argument and return value such as
rulelint i] > [float j] : ... ;

the invocation would change to
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nmai n()
{

M/Tr eePar ser nypar ser;

SORAST *sone_tree = ... ;

float result;

STreeParser| nit (&yparser);

result = rul e(&yparser, &sone_tree, 34);
}

C Types

The following types are used with C interface (see Figure on page 189):

SORAST
Y ou must provide the definition of this type, which represents the type of tree
nodes that SORCERER isto walk or transform.

Sl nt St ack

A simple stack of integers.
SLi st

A simplelinked list of voi d pointers.
SSt ack

A simple stack of voi d pointers.

STr eePar ser
This type defines the variables needed by a tree walker. The address of one of
these objectsis passed to every parser function as the first argument.

C Files

The following files are used with the C interface.

h/astlib.h, lib/astlib.c
Define the SORCERER AST library routines.

I'i b/ CASTBase. h
Thisisonly used to compile thelibrary routines. Y ou can force them to compile
with your SORAST definition if you want; that way, the order of thefieldsis

irrelevant.
h/ config.h

Defines configuration information for the various platforms.
h/ sorcerer.h, lib/sorcerer.c

Define STr eePar ser and the support functions needed by SORCERER.

h/sorlist.h,lib/sorlist.c
The SLi st manager.
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h/ si ntstack. h, |ib/sintstack.c
The SI nt St ack manager.

h/ sstack. h, |ib/sstack.c
The SSt ack manager.

|ib/errsupport.c
Defines error support code for SORCERER parser that you can link in, includes
m smat ched_range(), m ssing_wi | dcard(), m smat ched_t oken(),
no_viable_alt(),andsorcerer_panic().

Combined Usage of ANTLR and SORCERER

To get SORCERER to walk an ANTLR-generated tree using the C interfaceis
straightforward:

1. Defineat oken field inthe AST definition for ANTLR in your ANTLR grammar
file. For example,
#defi ne AST_FI ELDSchar text[50]; int token;

2. Haveyour ANTLR parser construct trees as you normally would. Ensure that any
token type that you will refer to in the SORCERER grammar has alabel in the
ANTLR grammar. For example,

#t oken ASSIGN "="

3. Inyour SORCERER description, include the AST definition you gaveto ANTLR
and define SORAST to be AST. If you have used the ANTLR - gh option, you can
simply include st dpcct s. h. For example,

#header <<
#i ncl ude "stdpccts. h" /* define AST and ANTLR token types */

typedef AST SORAST;
>>

4. A main program that calls both ANTLR and SORCERER routines looks like this:
nai n()
{
AST *root =NULL;
STr eePar ser tparser;
STreeParserlnit (& parser);
/* get the tree to wal k with SORCERER */
ANTLR(stat (& oot), stdin);
printf("input tree:"); lisp(root); printf("\n");
/* walk the tree */
start_synbol (& parser, & oot);
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C Support Libraries

Tree Library

The AST treelibrary,inli b/ ast!i b. c, isusedin transform mode to perform tree
rewriting, although some of them may be useful in nontransform mode.

ast _append
voi d ast_append(a, b).Addb tothe end of a’s sibling list. Appending a
NULL pointer is illegal.
*ast _bottom
AST *ast_botton(a). Find the bottom od’s child list (going straight down).
*ast _cut _bet ween
AST *ast_cut_between(a, b). Unlink all siblings betweea andb and
return a pointer to the first element of the sibling list that was unlinked.
Basically, all this routine does is to makeoint tob and make sure that the tail
of the sibling list, which was unlinked, does not poin td’he routine ensures
thata andb are (perhaps indirectly) connected to start with.
ast _insert_after
voi d ast_insert_after(a,b).Add subtred» immediately aftea as its
sibling. If b is a sibling list at its top level, then the last sibling @hints to the
previousri ght sibling ofa.Inserting aNULL pointer has no effect.
*ast_find all
AST *ast_find_ all(t, u, cursor). Find all occurrences afint .
cursor (a pointer to an AST pointer) must be initialized. tlh eventually
returnsNULL when no more occurrenceswére found. This function is useful
for iterating over every occurrence of a particular subtree. For example,
/* find all scalar assignments withing a statenent |ist */
AST *scal ar_assign = #( #[Assign], #[Var] );
AST *cursor = statenent_list;
while ((p=ast _find_ all(statenent |ist, scalar_assign, &cursor)))

/* performan operation on 'p’ */

}

whereast _node() (the function invoked by references#] )
is assumed to take a single argument—a token type—and
assignments are structured as:

Assi gn

Var—» expr
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This function does not seem to work if you make nested calsto it; i.e., aloop
containinganast _find_al | () which contains another call to
ast _find_all ().

ast _free
voi d ast_free(t).Recursivelywalkt,freeingal the nodesin adepth-first
order. Thisis perhaps not very useful because more than af ree() may be
required to properly destroy a node.

*ast _nake
AST *ast_ make(root, childy, ..., child, NULL).Createatree
with r oot astheroot of the specified n children. If root is NULL, then asibling
list is constructed. If child; isalist of sibling, then child;,, will be attached to
thelast sibling of child,. Any NULL child resultsin child,_; being the last sibling.
The root must not have children to begin with.
A shorthand can be used in a description read by SORCERER:

#(root, child_1, ..., child_n) }

ast _mat ch
i nt ast_match(t, u).Returnstrueift and u are the same (the trees have the
same tree structure and t oken SORAST fields); elseit returnsfalse. If both trees
are NULL, true isreturned.

ast _match_parti al
int ast_match_partial (t,u).Returnstrueif u matchest (beginning at
root), but u can be smaller thant (i.e., asubtree of t).

ast _nsi blings
i nt ast_nsiblings(t).Returnsthe number of siblingsoft .

ast _scan
int ast_scan(tenplate, t, labelptrq, ..., labelptry).This
function is analogous to scanf . It tries to match treet against template and
return the number of labels that were successfully mapped. The templateisa
string consisting of a SORCERER tree description with an optional set of node
labels. For every label specified in template, the address of a SORAST pointer
must be passed. Upon return from ast _scan() , the pointers will point to the
requested nodesint . Thisfunction can only be conveniently used fromwithin a
SORCERER description file and requires the use of the #t okdef s directive; it
can be used in nontransform mode. Consider the following example.

n = ast_scan("#( W:A%®R:BYW:C)", t, &, &, &2);

which SORCERER converts to before the call to ast_scan()}:
n = ast_scan("#( %:7 9%®2:8 983:9 )", t, &, &, &z);

where the token types of A, B, and Care 7, 8, and 9, respectively. After the call,
pointersx, y, and z will point to the root, the first child and the second child,
respectively; n will be 3.
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The order of label specificationint enpl at e is not significant.
*ast _si bling_i ndex
AST *ast_sibling_index(t,i).Returnapointertothei thsibling where
thesibling to theright of t isi ==2. A index of i ==1, returnst .
*ast _tail
AST *ast_tail (a). Findtheend of a’s sibling list and return a pointer to it.
*ast _to_slist
SList *ast_to_slist(t). Return a list containing the siblingstafThis
can be useful for walking a list of subtrees without having to parse it. For
example,
<<Slist *stats;>>
sli st
( stat )* <<stats = ast _to_list(_root);>>

where_r oot is the argument passed to every function that points to the input
tree node. In this case, the variablat s will be a list with an element
(SORAST *) for each statement in the statement list.
*slist_to_ast
AST *slist_to_ast(list). Returnatree composed of the elements of
Ii st with a sibling for each element in list.

List Library

The SORCERER list library,i b/ sorl i st. c, is a simple linked-list manager that makes
lists of pointers. The pointer for a new list must be initializedd. as any non-empty list
has a sentinel node whosieemfield pointer is really a pointer to the last element.

*slist_iterate
void *slist iterate(list,cursor). Iterate over a list of elements in
l'i st; return a pointer to a new element in list upon every calNahd when
no more are left. It can be used like this:
cursor = nylist;
while ( (p=slist_iterate(nylist,\&ursor)) ) {
/* place with elenent p */

}
Lists can also be traversed with
SLi st *p;
for (p = list->next; p!=NULL; p=p->next)
{

/* process (M/HE enent *)p->elem*/
}
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slist_add

void slist_add(list, e). Addelementetoli st . Any non-empty list
has a sentinel node whose el empointer isreally a pointer to the last element.
Elements are appended to the list. For example,
SList *Strings = NULL;
l'ist_add(&Strings, "hi");
list add(&Strings, "there");

slist_free

void slist_free(list).Freealist(freesal of the nodes used to hold
pointersto actual elements). It does not effect the elements tracked by the list.

Stack Library

The SORCERER stack library, | i b/ sst ack. ¢, isasimple linked-list style stack of
pointers. There is no sentinel node, and a pointer for a stack must be initialized to NULL
initialy.
sstack_push
voi d sstack_push(st, e) . Push element e on stack st wheree canbea
pointer to any object. For example,
SStack *st = NULL;
sstack_push(&st, "I push");
sstack_push(&st, "therefore, I'’ma stack");

*sstack_pop

voi d *sstack_pop(st). Popthetop element off of stack st and return it.
For example,

SStack *st = NULL;

char *s;

sstack_push(&st, "over the edge");

s = sstack_pop(&st);

printf("%\n", s);

should print "over the edge".

Integer Stack Library

The SORCERER Sl nt St ack library, I i b/ si nt st ack. ¢, isasimple array-based stack of
integers. Stacks of integers are common (such as saving the scope/level of programming
language); hence, we have constructed a stack which is much easier to use and faster than
the normal stack routines. Overflow and underflow conditions are trapped.

*si nt _newst ack

SInt Stack *sint_newstack(size). Makeanew stack with amaximum
depth of si ze and return apointer to it.
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sint_freestack
voi d sint_freestack(SIntStack *st). Destroysastack created by
si nt _newst ack() .

si nt _push
voi d sint_push(st, i). Pushintegeri onto stack st . For example,
Sint Stack *st = sint_newstack(100);
sint_push(st, 42);
sint_push(st, 3);

si nt_pop
i nt sint_pop(st).Popthetop integer off the stack and return it.
SIntStack *st = sint_newstack(10);
sint_push(st, 3);
printf("%\n", sint_pop(st));

would print "3".

si nt_stacksi ze
i nt sint_stacksi ze(st) . Returnsthe number of integers currently on the
stack.

si nt _st ackreset

voi d sint_stackreset (st).Removeall integers from the stack.
sint_stackenpty

i nt sint_stackenpty(st).Returnstrueif there are no integerson stack st .
sint_top

i nt sint_top(st).Returnthetop integer on the stack without affecting the

state of the stack.
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5 ANTLR Warning and

Error Messages

This chapter describes error and warning messages that can be generated by ANTLR. They
are organised by categories of ANTLR functionality. The actual messages displayed by
ANTLR are shown in bold and are followed by a brief description.

Token and Lexical Class Definition Messages

Warnings

redefinition of token t; ignored
Token t was previously seenin either a#t oken directive or rule.

token label has no associated rexpr: t
A token type is associated with token t, but no regular expression has been
provided; i.e., no input character sequence will result in this token type.

token namet and rexpr re already defined; ignored
t and r e were previoudly attached to other regular expressions or tokens,
respectively. For example:

#token T “foo”
#token U
#token U “foo”
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no regular expressionsfound in grammar
Y ou did not specify even oneinput character sequence to combineinto atoken.
Thisisan uninteresting grammar.

lexclass name conflicts with token/errclasslabel * t’
A lexclass definition tried to reuse a previously defined symbol ¢ .

Errors

redefinition of token ¢ ; ignored
Another definition of t was seen previously.

action cannot be attached to a token name ('t ) ; ignored
Actions can only be attached to regular expressions. If only atoken label is
specified, an action is meaningless.

redefinition of action for re; ignored
An action has aready been attached to regular expression r e.

#token definition ‘t ' not allowed with #tokdefs; ignored
When the#t okdef s directiveis used, al tokens are assumed to be defined
inside the specified file. New token labels may not be introduced in the
grammar specificatiion, however, regular expressions may be attached to the
token labels.

implicit token definition not allowed with #tokdefs
When the#t okdef s directiveis used, all tokens are assumed to be defined
inside the specified file. New token labels may not be introduced in the
grammar specification, however, regular expressions may be attached to the
token labelsviathe #t oken directive.

#token requires at least token name or rexpr
A lone #t oken directiveis meaningless (even if an actionis given).

redefinition of action for expr r e; ignored
Regular expression r e already has an attached action.

redefinition of expr r e; ignored
Regular expression r e has aready been defined.
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Grammatical Messages

Warnings

ruler not defined
Ruler was referenced in your grammar, but you have not defined it.

altsi and j of decision-type ambiguous upon k-seqgs
The specified aternatives (counting from 1) of the decision cannot be
distinguished. At least one input sequence of length k could be matched by
both alternatives. For example, the following rule is ambiguous at k=1 upon
tokens{ A, B} :

a: AB| AC;

It is not ambiguous at k=2. The following rule is ambiguous upon 2-sequence
AB (or, ass ANTLR would print it out: { A}, {B}):

a: ABC| AB;

Thisisonly awarning, but some decisions are inherently ambiguous like the
proverbial dangling else clause:

stat : |F expr THEN stat { ELSE stat } |
The optional clause is ambiguous upon EL SE.
optional/exit path and alt(s) of decision-type ambiguous upon k-segs
The same interpretation applies to this message as for the previous message.

The differenceliesin that no alternative number can be associated with the exit
path of aloop. For example,

a: (AB)* AC,;

is ambiguous upon A for k=1, but unambiguous at k=2.
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Errors

infiniteleft-recursion toruleafrom ruleb
Without consuming atoken of input, the parser may return to a previously
visited state. Naturally, your parser may never terminate. For example,

a: A| b;
b: cB;
c: al| C;

All rulesin this grammar can cause infinite recursion.

only one grammar class allowed in thisrelease
Only one grammar class may be specified. To include rules from multiplefiles
in one class, repeat the class header in each file.

filel:class T { somerules }

file2:class T { morerules }

Implementation Messages

action buffer overflow; size n
One of your actions was too long for an internal buffer. Increase

ZZLEXBUFSI ZEinpcct s/ ant | r/ generi c. h and recompile ANTLR. Or,
break up your action into two actions.

predicate buffer overflow; size n
One of your semantic predicates was too long for an internal buffer. Increase

ZZLEXBUFSI ZEinpcct s/ ant | r/ generi c. h and recompile ANTLR. Or,
break up your predicate into two actions.

parameter buffer overflow; sizen
One of your actions was too long for an internal buffer. Increase

ZZLEXBUFSI ZEinpcct s/ ant | r/ generi c. h and recompile ANTLR. Or,
break up your action into two actions.

#$% %*& @# internal error: error
[complain to nearest gover nment official or send hate-mail to
parrt@parr-research.com; please pray tothe‘‘bug” godsthat thereisa
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trival fix.]
Something bad happened. Send in a bug report.

hit analysisresource limit while analyzing altsi and j of decision-type
ANTLR was busily computing the |ookahead sets needed construct your
parser, but ran out of resources (you specify aresource cap with-r|1 command
line option). For large grammars, this indicates what decision was taking so
long to handle. Y ou can simplify the decision, reduce the size of the grammar
or lookahead, or use syntactic predicates.

out of memory while analyzing altsi and j of decision-type
ANTLR tried to call mal | oc() , which failed.

Action, Attribute, and Rule Argument Messages

Warnings

$t not parameter, return value, or element label
Y ou referenced $t within an action, but it is not a parameter or return value of
the enclosing rule nor isit alabel on arule or token.

invalid parameter/return value: * param-or-ret-val-definition’
Y our parameter or return value definition was poorly formed C or C++; e.g.,
missing argument name.

rule r accepts no parameter(s)
Y ou specified parametersto r in some rule of your grammar, but r does not
accept parameters.

rule r requires parameter(s)
Y ou specified no parameters to r in some rule of your grammar, but r accepts
at least one parameter.

rule r yields no return value(s)

Y ou specified areturn value assignment from r in some rule of your grammar,
but r does not return any values.
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ruler returnsavalue(s)
Y ou specified no return value assignment from r in some rule of your
grammar, but r returns at least one value.

Errors

$$ useinvalid in C++ mode
$$ can only be used in C mode. C++ mode does not have attributes. Use return
arguments or return values.

$[] useinvalid in C++ mode
$[] canonly beused in C mode. C++ mode does not have attributes.

cannot mix old-style $i with new-style labels
Y ou cannot reference $i for some integer i in your actions and $label for some
label attached to arule or token reference.

one or more $i in action(s) refer to non-token elements
In C++ mode, $i for some integer i variables do not exist for rules since
attributes are not defined. Use return arguments or return values.

cannot mix with new-style labelswith old-style $i
Y ou referenced $label at this point, but previoudly referenced $i for some
integer i in your actions.

label definition clashes with token/tokclass definition:t’
Y ou attached alabel to arule or token that is already defined as a token or
token class.

label definition clashes with rule definition: ‘t’
Y ou attached alabel to arule or token that is already defined asarule.

label definitions must be unique per rule: t’

Y ou attached alabel to arule or token that is already defined as alabel within
that rule.
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Command-Line Option Messages

Warnings

#par ser meta-op incompatible with -CC; ignored
#par ser directive can only be used in C mode. Use a class definition in C++
mode.

#parser meta-op incompatible with ‘-gp prefix’; ‘-gp’ ignored
#par ser directive should be used instead of - gp, but we l€eft it in for
backward compatibility reasons. Use a class definition in C++ mode.

-gk option could cause trouble for <<...>>? predicates
The - gk option delays the fetching of |ookahead, hence, predicates that refer to
future lookahead values may be referring to unfetched values.

-gk incompatible with semantic predicate usage; -gk turned off
See previous.

-gk conflicts with -pr; -gk turned off
See previous.

analysis resource limit (# of tree nodes) must be greater than 0
Y ou have not specified avalue or specified a negative number for the - r |
option.

must have at least one token of look-ahead (setting to 1)
Y ou have not specified avalue or specified a negative number for the - k
option.

must have compressed lookahead >= full LL(k) lookahead (setting -ck to -k)

Y ou have not specified avalue or specified a negative number for the - ck
option.

Errors

class meta-op used without C++ option
Y ou cannot give grammar class definitions without the - CC option.

Language Translation Using PCCTS and C++ 207



ANTLR Warning and Error Messages

Token and Error Class Messages

default errclass for ‘t" would conflict with token/errclass/tokclass
ANTLR cannot create an error classfor rulet because the error class would
conflict with a known symbol. Default error class names are created from rule
names by capitalizing the first letter of the rule name.

errclass name conflicts with regular expressiont™
The specified error class conflicts with a previously-defined regular
expression.

redefinition of errclass or conflict w/token or tokclass t'; ignored
Y ou have defined an error class with the same name as a previously-defined
symbol.

undefined rule ‘t’ referenced in errclass t’; ignored
You referenced arule in your error class that does not have a definition.

self-referential error class t'; ignored
Your error classreferstoitself directly or indirectly (through another error
class).

undefined token t' referenced in errclass t'; ignored
Y our error class refersto atoken that has not been defined.

redefinition of tokclass or conflict w/token t’; ignored
Y our token class name conflicts with a previoudy-defined token label.

redefinition of #tokclass t' to #token not allowed; ignored
Y ou have redefined token classt.

Predicate Messages

Warnings

alt i of deci si on-t ype has no predicate to resolve ambiguity
With options - w2 and - pr ¢ on ANTLR warns you that one of the lookahead
sequences predicts more than one alternative and that you have specified a
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predicate to resolve the ambiguity for one of the alternatives, but not the other.
For example,

a: <<f(LT(1))>>? ID| ID;

will result in

stdin, line 2: warning: alt 2 of the rule itself has no predicate to resolve
ambiguity

cannot compute context of predicatein front of (..)? block
You used option - prc onandused a<<...>>?infrontof a(...)? for
which lookahead cannot be computed. For example,

a . <<blah>>? (UGH)? | ICK;
(...)? asonly alternative of block isunnecessary
Y ou specified something like:

a: (foo)? ;
which isthe same as

a: foo ;
Errors
(...)? predicate must befirst element of production
Y ou specified a syntactic predicate with a grammar element in front of it. All

syntactic predicates must be thefirst element of aproduction in order to predict
it.

Exception Handling Messages

duplicate exception handler for label t'
Y ou specified more than one handler for asingle labdl t.

unknown label in exception handler: t’
Y ou specified a handler for an unknown label t.
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6 SORCERER Warning and

Error Messages

This chapter describes error and warning messages that can be generated by SORCERER.
We have broken the descriptions into categories rather than grouping them into error and
warning sections. The actual messages displayed by SORCERER are shown in bold and are
followed by a brief description.

Syntax Messages

Warnings

unknown meta-op: m
Meta-operation #mis not valid.

missing #header statement
You forgot a#header statement in C mode.

extra #header statement
Y ou have more than one #header statement.

extra #tokdef statement
Y ou have more than one #t okdef statement.
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Errors

Missing /*; found dangling */
Y ou forgot to start your comment witha/ * .

Missing <<; found dangling >>"
Y ou forgot to start your action or predicate with a<<.

Missing /*; found dangling */ in action
You forgot to start your comment witha/ * in an action.

missing class definition for trailing ‘}
The end of the class definition was seen, but the header was missing.

rule definition clashes withr definition: ‘ t’
Y ou have defined arule that has the same name as a previoudly defined
symbol such asalabel.

rule multiply defined: ‘ r’
Y ou have defined arule with this name already.

label definition clashes witht definition: ‘ u’
Label u classes with a previously defined symbol such as arule name.

cannot label this grammar construct
Y ou can only label rule and token references (including the wildcard).

redefinition of token t; ignored
Y ou have already defined token t.

token definition clashes withsymbol-type definition: ‘ t’
The definition of token t clashes with a predefined symbol.
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Action Messages

Warnings

eoln found in string
Y ou did not terminate your string on the same line as your started it.

eoln found in string (in user action)
Y ou did not terminate your string on the same line as your started it.

eoln found in char literal (in user action)
Y ou did not terminate your character literal on the same line as your started it.

Errors

Referencevariable clasheswith t: ‘v’
Y ou have defined an @-variable that clashes with a previously-defined symbol
such asarule name.

#id used in action outside of rule; ignored

#i d isonly valid as the result or input tree of arule. Placing a reference to
#i d outside of arule makes no sense.

Grammatical Messages

infinite recursion from rule atorule b
Rule a can reach rule b without having moved anywhere in the tree.
Naturally, infinite-recursion can result.

rule not defined: * r’
Y ou have referenced rule r, but not defined it in your grammar.

alts/ andj of (...) nondeterministicupon tree- node
Alternativesi andj both begin with the same root node or sibling node.

Language Translation Using PCCTS and C++ 213



SORCERER Warning and Error Messages

(...)? predicatein block with one alter native; will generate bad code
A syntactic predicate in arule or subrule with only one alternative makes no
sense because the tree-walker will not have to guess which alternative to
choose.

predicate not at beginning of alter native; ignored
A predicate not at the |eft-edge of a production cannot aid in the prediction of
that alternative.

Implementation Messages

action buffer overflow; sizen
One of your actions was too long for an internal buffer. Increase
ZZLEXBUFSI ZEinsor cer er/ sor . g and recompile SORCERER. Or
break up your action into two actions.

parameter buffer overflow; size n
One of your actions was too long for an internal buffer. Increase
ZZLEXBUFSI ZE insor cer er/ sor . g and recompile ANTLR. Or break
up your action into two actions.

Command-Line Option Messages

Warnings

-def-tokens valid with C++ interface only; ignored

-def-tokens-file not valid with C++ interface; ignored
C++ mode SORCERER generates a list of token definitions (unless
#t okdef ) isused in the output class definition file.

-def-tokensfile conflicts with -inline; ignored
Cannot generate atoken definition file if the output of SORCERER will be
inline.

don’t you want filename with that -def-tokens-file?; ignored
Y ou forgot to specify afile name.
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-prefix conflicts with C++ interface; ignored
C++ does not need to prefix symbols with a prefix because of the information
hiding capabilities of C++.

don’t you want string with that -prefix?; ignored
Y ou forgot to specify a string.

don’t know how to generate t’ style functions; assuming ANSI
You gave an invalid or missing - f uncs argument

-proto-file not valid with C++ interface; ignored
Prototypes are placed in the parser class definition filein C++ mode.

don’t you want filename with that -proto-file?; ignored
Y ou forgot afile name.

‘-’ (stdin) ignored as files were specified first
Y ou specified both inline mode and some grammar files.

‘-’ (stdin) cannot be used with C++ interface; ignored
C++ requires abunch of output that cannot be just concatenated together.

-inline conflicts with -def-tokens; ignored
Cannot generate token definitions when output isinline.

-inline conflicts with C++ interface; ignored
C++ requires abunch of output that cannot be just concatenated together.

tokens file not generated; it conflicts with use of #tokdefs
If atoken definition file is used to specify token type values, you cannot write
another version of thisfile out.

Can't open prototype file ‘f’; ignored
For some reason, file f could not be open for writing.

invalid parameter/return value: ‘r’
Y ou provided a poorly formed C/C++ parameter or return value.
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Errors

-funcs option makes no sensein C++ mode; ignored
Functions are always prototyped in C++.

class meta-op used without C++ option
You had a parser class definition, but forgot to turn on C++ option.

file ‘f ignored as ‘-’ (stdin option) was specified first
Y ou specified st di n mode and then afile name.

Token Definition File Messages

cannot write token definition file f
For some reason, file f could not be open for writing.

cannot open token defs filef'
File f could not be found.

range operator is illegal without #tokdefs directive
In order to use the range operator, you must tell SORCERER what the token
type values are for all your tokens. The only to do thisisto use#t okdef .

implicit token definition of * t' not allowed with #tokdefs

Token t was not defined in the token definition file. Its token type is therefore
unknown.
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7 Templates and Quick

Reference Guide

In this chapter, we provide a collection of examples and summaries that illustrate the major
features of ANTLR and DLG; we include an example linking ANTLR and SORCERER.
Much of the code istaken from thet est cpp directory in the PCCTS distribution.

Templates

This section provides templates for using ANTLR in C++ mode when not using trees, when
using trees and when using ANTLR with SORCERER.

Basic ANTLR Template

#header <<

/1 put things here that need to be defined in all output files
>>

<<
#i ncl ude "DLG.exer. h"

typedef ANTLRConmonToken ANTLRToken;
#i ncl ude "PBl ackBox. h"

class MyVersi onOf Parser : public Parser {
/1 overridetriggers declared in actual parser class def below
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public:
MyVer si onCf Par ser ( ANTLRTokenBuffer *i nput)
{
printf("start parse\n");
}
~MyVer si onOXf Par ser ()
{
printf("end parse\n");
}
}
int main()
{
Par ser Bl ackBox<DLGL.exer, MVersi on Par ser,
p.parser()->startrule();
return O;
}
>>

/* lgnore whitespace */
#token "[\ \t]+" <<skip();>>
#t oken "\ n" <<skip(); newine();>>

cl ass Parser {

<< Define member functions (triggers) and variables here;
or, in subclass above.

>>
startrul e
alternative 1
| alternative 2
I
}

Par ser (i nput)

ANTLRToken> p(stdin);

/1 Sanpl e tokens that normally appear at the end of a granmar

#token INT "[0-9]+"
#token ID"[a-zA-Z ][a-zA-Z0-9_]*"
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Using ANTLR With ASTs

<<
typedef ANTLRCommonToken ANTLRToken;
#i ncl ude "DLGLexer. h"

#i ncl ude "PBl ackBox. h"

/1 ASTs are sinply snmart pointers to input token objects
class AST : public ASTBase {
ANTLRTokenPt r token;

public:
AST( ANTLRTokenPtr t) { token =t; }
voi d preorder_action() { /1 what to print out at each node

char *s = token->get Text();
printf(" %", s);

}
PCCTS_AST *shal | owCopy() { defineif you use dup or deepCopy }
}
int main()
{
Par ser Bl ackBox<DLG.exer, Parser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p. parser()->start (& oot); /1 parse and build trees
r oot - >pr eor der () ; [/ print out the tree in LISP form
printf("\n");
r oot - >destroy(); /1 del ete the nodes
return O;
}
>>

/1 token definitions
class Parser {

start

Language Translation Using PCCTS and C++ 219



Templates and Quick Reference Guide

Using ANTLR With SORCERER

This section contains a number of files representing a complete ANTLR/SORCERER
application that reads in expressions and generates a simple stack code.

File: lang.g

<<
typedef ANTLRCommonToken ANTLRToken;

#i ncl ude "AST. h"
>>

#token "[\ \t]+" <<ski p(); >>

#t oken "\ n" <<new i ne(); skip();>>
#t oken ASSI GN ="

#t oken ADD "\

#t oken MULT A

cl ass Sinpl eParser {
stat:ID "="" expr ";"!

expr:mop_expr ( "\ +"" nmop_expr )*

nop_expr
atom( "\*"~ atom)*

atom| D
| INT
}
#t oken 1D "[a-z] +"

#token INT  "[0-9]+"

File: AST.h

#i ncl ude " ASTBase. h"
#i ncl ude " AToken. h"

#defi ne AtonSize 20
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#i ncl ude "ATokPtr. h"

class AST : public ASTBase {
prot ect ed:
char text[AtonSi ze+l];
int _type;
publi c:
AST( ANTLRTokenPtr t)
{ _type = t->get Type(); strcpy(text, t->getText()); }

AST() { _type = 0; }
int type() { return _type; }
char *get Text () { return text; }
void preorder_action() { printf(" %", text); }
}
typedef AST SORAST; I/ define the type of a SORCERER tree

File: gen.sor

#header <<

#i ncl ude "tokens. h"
#i ncl ude "AST. h"

>>

class Sinpl eTreeParser {

gen_st at
#( ASSIGN t: | D gen_expr )
<<printf("\tstore %\n", t->getText());>>

gen_expr
#( ADD gen_expr gen_expr ) <<printf("\tadd\n");>>
|  #( MLT gen_expr gen_expr ) <<printf("\tmult\n");>>
| t:1D <<printf("\tpush %\n", t->getText());>>
| t:INT <<printf("\tpush %\n", t->getText());>>
}

File: main.cpp

#i ncl ude "t okens. h"
#i ncl ude " Si npl ePar ser. h" /1 define the parser
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typedef ANTLRConmonToken ANTLRToken;

#i ncl ude " Si npl eTr eePar ser . h" /1 define the tree wal ker
#i ncl ude "DLGLexer. h" I/ define the |exer

#i ncl ude "PBl ackBox. h"

mai n()

{
Par ser Bl ackBox<DLG_exer, Sinpl eParser, ANTLRToken> | ang(stdin);
AST *root =NULL, *result;
Si npl eTr eePar ser tparser;

| ang. parser()->stat ((ASTBase **)& oot); // get the tree to wal k
[l printf("input tree:"); root->preorder(); printf("\n");

t parser. gen_st at (( SORASTBase **)&oot); // walk tree
}

File: makefile

This makefile was modified from the original created with the gennmk command indicated in
the makefile comment.

DLG scanner
ANTLR- defi ned t oken types

#

# PCCTS makefile for: lang.g

#

# Created from /circle/sl3/parrt/PCCTS bi n/gennk -CC -class \
# Sinpl eParser -project t4 -trees lang.g
#

# PCCTS rel ease 1.33

# Project: t

# C++ out put

#

#

#

TOKENS = tokens. h

#

# The follow ng filenanes nust be consistent with ANTLR/ DLG fl ags
DLG FI LE = parser.dlg
ERR = err

HDR FI LE =

SCAN = DLGLexer

PCCTS = /usr/local / pccts
ANTLR H = $(PCCTS)/ h
SORH=../../h

SR LIB=../../lib
BIN = $(PCCTS)/ bin
ANTLR = $(BIN)/antlr
DLG = $(BIN/dlg
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SCR =../../sor

CFLAGS = -1. -I$(ANTLR H -1$(SCRH -1$(SCR LIB) -g
AFLAGS = -CC -gt

DFLAGS = -C2 -i -CC

GRM = lang. g

SRC = | ang. cpp main.cpp test4.cpp $(SOR LI B)/ STreeParser.cpp \
Si npl ePar ser. cpp \
Si npl eTreePar ser. cpp \
$(ANTLR_H) / APar ser. cpp $(ANTLR H)/ DLexer Base. cpp \
$(ANTLR_H) / ASTBase. cpp $(ANTLR H)/ PCCTSAST. cpp \
$(ANTLR_H) / ATokenBuf fer. cpp $(SCAN) . cpp
BJ = lang.o main.o test4.0 STreeParser.o \
Si npl eParser. o \
Si npl eTreeParser. o \
APar ser. o DLexerBase.o \
ASTBase. 0 PCCTSAST. o \
ATokenBuffer.o $(SCAN) .o
ANTLR_SPAWN = | ang. cpp Si npl eParser.cpp \
Si npl eParser. h $(DLG FI LE) $( TOKENS)
DLG SPAWN = $(SCAN). cpp $(SCAN). h
CCC=g++
CC=$( CCO)

t : $(CBJ) $(SRO
$(CO0) -0 t4 $(CFLAGS) $(OBJ)

main.o : main.cpp SinpleTreeParser.h SinpleParser.h
$(CCC) -c $(CFLAGS) main.cpp

lang.o : $(TCKENS) $(SCAN). h I ang. cpp
$(CCC) -c¢ $(CFLAGS) -0 lang.o |ang. cpp

Si npl eParser.o : $(TOKENS) $(SCAN) . h Sinpl eParser. cpp Sinpl eParser. h
$(CCC) -c $(CFLAGS) -0 Sinpl eParser.o SinpleParser.cpp

Si npl eTreeParser.o : $(TOKENS) $(SCAN). h Sinpl eTreeParser. cpp tokens. h
$(CCO -c $(CFLAGS) Sinpl eTreeParser. cpp

test4.cpp SinpleTreeParser. h Sinpl eTreeParser.cpp : test4. sor
$(SOR) - CPP test4. sor

test4.0 : test4.cpp
$(C0CC) -c $(CFLAGS) testd. cpp

STreeParser.o : $(SCR_LI B)/ STreeParser. cpp
$(CCC) -0 STreeParser.o -c¢ $(CFLAGS) $(SOR_LI B)/ STreeParser. cpp
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$(SCAN). 0 : $(SCAN).cpp $( TOKENS)
$(CCO) -c $(CFLAGS) -0 $(SCAN). 0 $(SCAN) . cpp

$(ANTLR_SPAWY) : $(GRV)
$(ANTLR) $(AFLAGS) $(GRV)

$(DLG SPAWN) : $(DLG FI LE)
$(DLG $(DFLAGS) $(DLG FILE)

AParser.o : $(ANTLR H)/ APar ser. cpp
$(COO) -c¢ $(CFLAGS) -0 AParser.o $(ANTLR H)/ AParser. cpp

ATokenBuffer.o : $(ANTLR H)/ ATokenBuffer. cpp
$(CCC) -c $(CFLAGS) -o ATokenBuffer.o $(ANTLR H)/ ATokenBuffer. cpp

DLexer Base. 0 : $(ANTLR_H)/ DLexer Base. cpp
$(CCC) -c $(CFLAGS) -0 DLexerBase. o $(ANTLR_H)/ DLexer Base. cpp

ASTBase. 0 : $(ANTLR H)/ ASTBase. cpp
$(CCO) -c¢ $(CFLAGS) -0 ASTBase.o $(ANTLR H)/ASTBase. cpp

PCCTSAST. 0 : $(ANTLR_H)/ PCCTSAST. cpp
$(CCC) -c $(CFLAGS) -0 PCCTSAST. 0 $( ANTLR_H)/ PCCTSAST. cpp

cl ean:
rm-f *.0 core t4

scr ub:
rm-f *.0 core t4 $(ANTLR_SPAWN) $(DLG SPAWN\) test4.cpp

Defining Your Own Tokens

In an action before the grammar, you may specify or include the definition of ANTLRToken
rather than use the predefined ANTLRCommonToken.

cl ass ANTLRToken : public ANTLRRef Count Token {

pr ot ect ed:
ANTLRTokenType _type; Il what's the token type of the token object
int _line; /I track line info for errors
ANTLRChar _text[30]; /' hold the text of the input token

public:

ANTLRToken(ANTLRTokenType t, ANTLRChar *s)
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ANTLRRef Count Token(t, s)

{ setType(t); _line = 0; setText(s); }
[/ Your derived class MJST have a bl ank constructor.
ANTLRToken()

{ set Type(( ANTLRTokenType)0); _line = 0; setText(""); }

/1 how to access the token type and |ine nunber stuff
ANTLRTokenType get Type() { return _type; }

voi d set Type( ANTLRTokenType t) { _type =1t; }

virtual int getLine() { return _line; }

void setLine(int line) { _line =1line; }

ANTLRChar *getText() { return _text; }
voi d set Text (ANTLRChar *s) { strncpy(_text, s, 30); }

// WARNING you nust return a streamof distinct tokens

/1 This function will disappear when we can use tenpl ates

virtual ANTLRAbstract Token *nmakeToken( ANTLRTokenType tt,
ANTLRChar *txt,

int |ine)
{
ANTLRAbst ract Token *t = new ANTLRToken(tt,txt);
t->setLine(line);
return t;
}

Defining Your Own Scanner

To use your own scanner with an ANTLR grammar, you must define a subclass of
ANTLRTokenSt r eamand then include that definition in the grammar file within an action
(instead of the usua#f ncl ude "DLGLexer. h"". Here is a sample lexer definition:;

#i ncl ude "config. h"

#i ncl ude "tokens. h" /I let's say it defines DIGIT, PUNCT
typedef ANTLRCommonToken ANTLRToken;

#include ATOKENBUFFER_H

#include <ctype.h>

class MyLexer : public ANTLRTokenStream {
private:

int c;
public:
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M/Lexer () { ¢ = getchar(); }
virtual ANTLRAbstract Token *get Token()

{
char buf[2];
buf[0] = c;
if (isdigit(c) ) return new ANTLRToken(DI G T, buf);
if ( ispunct(c) ) return new ANTLRToken( PUNCT, buf);
return NULL,

}

The gennk Program

The genmk program is provided so that most makefilesfor ANTLR can be automatically
generated. To begin most projects, you only need provide a parser class name, decide
whether you are going to build trees, decide on the name of the project (the executable), and
decide on the grammar file name. For example, the most common gennk lineis:

gennk -CC -class MyParser -project myproj file g > nakefile

Thisline creates a makefile that uses ANTLR with the C++ interface, with parser class
MyParser, and with aresulting executable called myproj; your grammar fileisfile. g. The
following lines in the makefile need to be modified to suit your environment:

PCCTS = . # normal |y sonething like /usr/local/src/pccts
#COC=g++ # uncoment and define to your C++ conpiler

If you will beusing trees, usethe -t r ee option with gennk also.

Rules

Rule With Multiple Alternatives

rul e
alternativey
| alternative,

| alternative,
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Rule With Arguments and Return Values

rulefargy,...,arg, > [retval, ..., retval,] : ... ;

where the arguments and return values are well-formed C++ definitions sueln ais™or “char

”

*p'

EBNF Constructs

Subrule

(alternative; | alternative, ... | alternative,)

Optional Subrule

{alternative; | alternative, ... | alternativep, }

Zero Or More Subrule

(alternative; | alternative, ... | alternative, )*

One Or More Subrule

(alternative; | alternative, ... | alternative, )+

Alternative Elements

Token References

1. Token identifiers. Identifiers begin with an uppercase letter;ledgl NT.
2. Regular expressions enclosed in double-quotes; [eagz] +", " begi n" .
3. Token class references; e.g.,

#t okcl ass Qperators { Plus Mnus }

e : e2 ( Operators e2 )* ;
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4. Token type ranges—two tokens separated by two dots;

FirstQperator .. LastOperator
5. “Not” operator—match any token except end-of-fileT@KEN; e.g.,
~TOKEN.

Rule References

Rule references invoke other rules possibly with arguments and return values. For example,
“b[ 34] > [i]"invokes ruleb with one argumeng4, and stores the return valueboin
some variablé .

Labels

Rule and token references may be labeled with an identifier (either upper or lower case);
e.g.,

rule : label:ID;

Labels are referenced in user actionslabel.

Labels are useful for:

1. Accessing the token object associated with the referenced token.

2. Attaching a parser exception handler to the invocation of either a rule or token
reference.

Actions

Actions are enclosed in double angle-brackets; esgction>>. If the first element of any
subrule or rule is an action, that action is an init-action; e.g.,

rule : <<int i=3;>> id:1D <<i=atoi ($id->getText());>> ;

An action placed immediately after the terminating ‘;’ on a rule is considered a fail-action.
Fail-actions are executed upon syntax error before ANTLR prints out a message and before
the rule is exited.
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Predicates

Semantic Predicates

Semantic predicates are actions followed by *?’. For example,
typenane : <<isTypeNane(LT(1)->getText())>>? ID ;

TheLT(1) is the trigger to ANTLR that only one symbol of context is needed for this
predicate when thepr c command line option is used.

Syntactic Predicates

Syntactic predicates are subrules followed by a ‘?’. For example,

st at enent
( decl )?
|  expr

Generalized Predicate

Sometimes it is necessary to specify the context under which a semantic predicate is valid
manually rather than allowing ANTLR to compute the context. The following predicate
form can be used to specify a semantic predicate with specific syntactic context:

( context )? => <<predicate>>?
For example,
(1D ? => <<qualifiedlten s()==Constructor>>?

This generalized predicate indicates that the semantic predicate should only be evaluated if
I Dis the next symbol of lookahead. You may use only simple strings of tokens inside the
context “guard” (e.g( A B | C D)? => <<blah>>?).

Tree operators

token-reference!
Do not create an AST node in the output tree for this reference.

rule-referencel
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Do not link in the AST created by the referenced rule into the current out-
put tree.

token-referencer

Create an AST node in the output tree for this token reference. It becomes
the root of the tree being built for the enclosing rule.

Lexical Directives

#t oken LABEL "regular-expression” <<action>>
where any of the items may be omitted. However, actions may only be tied
to regular expressions and at least one item must be specified.

#l excl ass LCLASS
start a new automaton or lexical classinyour grammar.

#tokclass TCLASS{ T1 T2 ... Tn}
Define TCLASS as a set of tokens.

#t okdef s "file"
Specify afile containing #def i nesor an enumof all token labels for

ANTLR to use.

Parser Exception Handling

Rule With Exception Handlers

rul e
. alternative;
exception
catch ... <<...>>
except i on[ label]
catch ... <<...>>
| alternative,
| alternative,
exception
catch ... <<...>>
catch ... <<...>>

default : <<...>>
except i on[ label 1]
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exce.p;t.i on[ label 2]

where label, label 1, and label 2 are labels attached to either rule or token references within
the alternatives; specifically, label must be contained within al t er nat i ve;.

Token Exception Operator

st at
@"if" INT "then" stat { "else" stat }
<<printf("found if\n");>>
| idID@"="@INT@";" @
<<printf("found assignment to %\n", $id->getText());>>

The @on the front of alternative one indicates that each token reference in the alternative is

to be handled without throwing an exception—the match routine will catch the error. The
second alternative explicitly indicates that each token is to be handled locally without
throwing an exception.
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History

The PCCTS project began as a parser-generator project for agraduate course at Purdue

University in the Fall of 1988 taught by Hank Dietz--“translator-writing systems”. Under the
guidance of Professor Dietz, the parser generator, ANTLR (originally called YUCC),
continued after the termination of the course and eventually became the subject of Terence
Parr's Master’s thesis. Originally, lexical analysis was performed via a simple scanner
generator which was soon replaced by Will Cohen’s DLG in the Fall of 1989 (DFA-based
lexical-analyzer generator, also an offshoot of the graduate translation course).

The alpha version of ANTLR was totally rewritten resulting in 1.00B. Version 1.00B was
released via an internet newsgroup (comp.compilers) posting in February of 1990 and
quickly gathered a large following. 1.00B generated only LL(1) parsers, but allowed the
merged description of lexical and syntactic analysis. It had rudimentary attribute handling
similar to that of YACC and did not incorporate rule parameters or return values; downward
inheritance was very awkward. 1.00B-generated parsers terminated upon the first syntax
error. Lexical classes (modes) were not allowed and DLG did not have an interactive mode.

Upon starting his Ph.D. at Purdue in the Fall of 1990, Terence Parr began the second total
rewrite of ANTLR. The method by which grammars may be practically analyzed to generate
LL(k) lookahead information was discovered in August of 1990 just before Terence’s return
to Purdue. Version 1.00 incorporated this algorithm and included the AST mechanism,
lexical classes, error classes, and automatic error recovery; code quality and portability were
higher. In February of 1992 1.00 was released via an article in SIGPLAN Notices. Peter
Dahl, then Ph.D. candidate, and Professor Matt O’Keefe (both at the University of
Minnesota) tested this version extensively. Dana Hoggatt (Micro Data Base Systems, Inc.)
tested 1.00 heavily.
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Version 1.06 was released in December 1992 and represented a large feature enhancement

over 1.00. For example, rudimentary semantic predicates were introduced, error messages

were significantly improved for k>1 lookahead and ANTLR parsers could indicate that

|ookahead fetches were to occur only when necessary for the parse (normally, the lookahead

“pipe” was constantly full). Russell Quong joined the project in the Spring of 1992 to aid in
the semantic predicate design. Beginning and advanced tutorials were created and released
as well. A makefile generator was included that sets up dependencies and such correctly for
ANTLR and DLG. Very few 1.00 incompatibilities were introduced (1.00 was quite

different from 1.00B in some areas).

Version 1.10 was released on August 31, 1993 after Terence’s release from Purdue and
incorporated bug fixes, a few feature enhancements and a major new capability--an arbitrary
lookahead operator (syntactic predicatély)?[3". This feature was codesigned with

Professor Russell Quong also at Purdue. To support infinite lookahead, a preprocessor flag,
ZZI NF_LOOK, was created that forced tANTLR() macro to tokenize all input prior to

parsing. Hence, at any moment, an action or predicate could see the entire input sentence.
The predicate mechanism of 1.06 was extended to allow multiple predicates to be hoisted;
the syntactic context of a predicate could also be moved along with the predicate.

In February of 1994, SORCERER was released. This tool allowed the user to parse child-
sibling trees by specifying a grammar rather than building a recursive-descent tree walker by
hand. Aaron Sawdey at The University of Minnesota became a second author of
SORCERER after the initial release.

On April 1, 1994, PCCTS 1.20 was released. This was the first version to actively support
C++ output. It also included important fixes regarding semantic predicates and (..)+
subrules. This version also introduced token classes, the “not” operator, and token ranges.

On June 19, 1994, SORCERER 1.00B9 was released. Gary Funck of Intrepid Technology
joined the SORCERER team and provided very valuable suggestions regarding the
“transform” mode of SORCERER.

On August 8, 1994, PCCTS 1.21 was released. It mainly cleaned up the C++ output and
included a number of bug fixes.

From the 1.21 release forward, the maintenance and support of all PCCTS tools was picked
up by Parr Research Corporation.

A sophisticated error handling mechanism called “parser exception handling” was released
for version 1.30. 1.31 fixed a few bugs.

Release 1.33 is the version corresponding to this initial book release.
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APPENDI X Notes for New Users of
PCCTS

Thomas H. Moog
Polhode, Inc.

tmoog@polhode.com

These notes are based on my own experiences and a year of observing the PCCTS mailing

list and the omp.compilers.tools.pccts news group. These notes have an emphasis on C++

mode. Those who are using C mode may wish to consult the first version of these notes

mentioned prior to Item #1. The Notes consist of atable of contents and the Notes

themselves. If an entry in the table-of-contents contains a dash ("—") instead of a page
number than the title is the entire item, so there’s no point in referring to another page for
additional information. The code mentioned in the section of examples can be obtained via
web browser oF TP from the site mentioned prior to Item #1 and at (RBSECTS archive

sites.
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Where is
#1. These notes, related examples, and an earlier version with an emphasis on

C mode, are available on the net. 247
#2. FTPsitesfor the Purdue Compiler Construction Tool Set (PCCTS). 247
#3. TheFAQ ismaintained by Michael T. Richter (mtr@globalx.net) and is

avallable at the FTP site. 247
#4.  Archive sitesfor MS-DOS programs for unpacking .tar and .gzip files

(the format of the PCCTS distribution kit). 247
#5. Example grammarsfor C++, ANSI C, Java, Fortran 77, and Objective C. 248
#6. Parr-Research web page: http://www.parr-research.com/~parrt/prc -
Basics
#7. Invoke ANTLR or DLG with no arguments to get a switch summary -
#8. Tokens begin with uppercase characters, rules begin with lowercase characters —
#9. Even in C mode you can use C++ style comments in the non-action portion

of ANTLR source code 248
#10. In #token regular expressions spaces and tabs which are not escaped are ignored 248
#11. Never choose names which coincide with compiler reserved words or

library names 248
#12. Write <<predicate>>? not <<predicate semi-colon>>? (semantic predicates

go in "if" conditions) -
#13. Some constructs which cause warnings about ambiguities and optional paths 248
Checklist
#14. Locate incorrectly spelled #token symbols using ANTLR —w2 switch or

by inspecting parserClassName.C 249
#15. Duplicate definition of a #token name is not reported 249
#16. Use ANTLR cross-reference option —cr to detect orphan rules when

ambiguities are reported -
#17. LT(i) andLATEXT(i) are magical names in semantic predicates —

punctuation is critical 249
#token
#18. To match any single character usg¢:]™, to match everything to a newline use:

"~[\n]*" -
#19. To match an@ in your input text use\"@ , otherwise it will be interpreted

as the end-of-file symbol -
#20. The escaped literals in #token regular expressionstarén \r \b

(not the same as ANSI C) -

#21. In #token expressions "\12 " is decimal "\012 " is octal, and " \0x12 " is hex

(not the same as ANSI C) -
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#22. DLG wantsto find the longest possible string that matches 249
#23. When two regular expressions of equal length match aregular expression

the first oneis chosen 249
#24. Inlineregular expression are no different than #token statements 250
#25. Watch out when you see ~[ list-of-characters] at the end of aregular expression 251
#26. Watch out when one regular expression is the prefix of another 251
#27. DLG isnot able to backtrack 251
#28. Thelexical routines mode(), skip(), and more() have smple, limited use! 252

#29. lextext() includes strings accumulated via more() — begexpr()/

endexpr() refer only to the last matched RE -
#30. Use'if (_lextext !'= begexpr) {...}"totestfor RE being

appended to lextext using more() 252
#31. #token actions can access protected variables of the DLG base class

(such as _line) if necessary -

#32. Replace semantic routines in #token actions with semantic predicates. 252
#33. For 8 bit characters in DLG, makbar variables unsigned by default

(g++ option —funsigned-char). 253
#34. The maximum size of a DLG token is set by an optional argument of the

ctor DLGLexer() — default is 2000. 253
#35. If a token is recognized using more() and its #lexclass ignores end-of-file,

then the very last token will be lost. 253
#tokclass
#36. #tokclass provides an efficient way to combine reserved words into reserved

word sets 254
#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenType is in

a #tokclass 254
#lexclass
#38. Inline regular expressions are put in the most recently defined lexical class 254
#39. Use a stack of #lexclass modes in order to emulate lexical subroutines 255
#40. Sometimes a stack of #lexclass modes isn’t enough 255

Lexical Lookahead
#41. One extra character of lookahead is available to the #token action routine in

ch (except in interactive mode) 256
#42. The lex operators "M and "$" (anchor pattern to start/end of line) can

sometimes be simulated by DLG 256
#43. When the first non-blank token on a line may have a special interpretation 257

#44. For more powerful forms of lexical lookahead one can use Vern Paxson’s flex 258
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Line and Column Information
#45. If you want column information for error messages (or other reasons) use
C++ mode -
#46. If you want accurate line information even with many characters of
lookahead use C++ mode -
#47. Call trackColumns() to request that DLG maintain column information -
#48. To report column information in syntax error messages override
ANTLRParser::syn() — See Example #6 -
#49. Call newline() and then set_endcol(0) in the #token action when a newline
is encountered -

#50. Adjusting column position for tab characters 258
#51. Computing column numbers when using more() with strings that include

tab characters and newlines 259
C++ Mode
#52. The destructors of base classes should be virtual in almost all cases
#53. Why must the AST root be declared as ASTBase rather than AST ? 259
#54. ANTLRCommonToken text field has maximum length fixed at compile time

— but there’s an alternative 260
#55. C++ Mode makes multiple parsers easy. 260
#56. Use DLGLexerBase routines to save/restore DLG state when multiple

parsers share a token buffer. 261
#57. Required AST constructors: AST(), AST(ANTLRToken), and AST(X x,Y y)

for #{X x,Y y] -
#58. In C++ Mode ASTs and ANTLRTokens do not use stack discipline as they

do in C mode. 261
#59. Summary of Token class inheritance in file AToken.h. 261
#60. Diagram showing relationship of major classes. 262
#61. Tokens are supplied as demanded by the parser. They are "pulled" rather than

"pushed”. 262
#62. Because tokens are "pulled” it is easy to access downstream objects but

difficult to access upstream objects 262
#63. Additional notes for users converting from C to C++ mode 262

ASTs
#64. To enable AST construction (automatic or explicit) use the ANTLR —gt switch —
#65. Use symbolic tags (rather than numbers) to refer to tokens and ASTs in rules
#66. Constructor AST(ANTLRToken *) is automatically called for terminals

when ANTLR —gt switch is used 263
#67. If you use ASTs you have to pass a root AST to the parser 263
#68. Use ast—>destroy() to recursively descend the AST tree and free all sub-trees
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#69. Don't confuse#[ ...] with#(...) 263
#70. The make-a-root operator for ASTs (") can be applied only to terminals

(#token, #tokclass, #tokdef) 264
#71. An already constructed AST tree cannot be the root of a new tree 264
#72. Don’t assign to #0 unless automatic construction of ASTs is disabled

using the "!I" operator on a rule 264
#73. The statement in Item #72 is stronger than necessary 264
#74. A rule that constructs an AST returns an AST even when its caller uses

the "I" operator -
#75. (C++ Mode) In AST mode a token which isn’t incorporated into an AST

will result in lost memory 265
#76. When passing(...) or#[...] toa subroutine it must be cast

from "ASTBase *" to "AST *" 265
#77. Some examples 8{ . . . ) notation using the PCCTS list notation 265
#78. A rule which derives epsilon can short circuit its caller’s explicitly

constructed AST 265
#79. How to use automatic AST tree construction when a token code depends

on the alternative chosen 266
#80. For doubly linked ASTs derive from class ASTDoublyLinkedBase and

call tree—>double_link(0,0). 266
#81. When ASTs are constructed manually the programmer is responsible for

deleting them on rule failure. 266
Rules
#82. To refer to a field of an ANTLRtOKEN within a rule’s action use

<<... mytoken($x)->field...>> 267
#83. Rules don't return tokens values, thus this won't workt e: r1:rul el

<<...%rl...>> 267
#84. A simple example of rewriting a grammar to remove left recursion 267
#85. A simple example of left-factoring to reduce the amount of ANTLR lookahead 268
#86. ANTLR will guess where to matcl@'if the user omits it from the start rule 268
#87. To match any token use the token wild-card expression "." (dot) 268
#88. The "~" (tilde) operator applied to a #token or #tokclass is satisfied when the

input token does not match 268
#89. To list the rules of the grammar grep parserClassName.h for " _root" or edit

the output from ANTLR —cr -
#90. The ANTLR —gd trace option can be useful in sometimes unexpected ways 269
#91. Associativity and precedence of operations is determined by nesting of rules 269
#92. #tokclass can replace a rule consisting only of alternatives with terminals

(no actions) 269
#93. Rather than comment out a rule during testing, add a nonsense token which never

matches — See Item #96 -
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Init-Actions

#94. Don't confuse init-actions with leading-actions (actions which precede arule). 270
#95. An empty sub-rule can change aregular action into an init-action. 271
#96. Commenting out a sub-rule can change a leading-action into an init-action. 271

#97. Init-actions are executed just once for sub-rules: (... ) +,(...)*,and{...} 271

Inheritance
#98. Downward inherited variables are just normal C arguments to the function

which recognizes therule 272
#99. Upward inheritance returns arguments by passing back values 272

#100. ANTLR —gt code will include the AST with downward inheritance values in
the rule’s argument list -

Syntactic Predicates
#101. Regular actions are suppressed while in guess mode because they have

side effects -
#102. Automatic construction of ASTs is suppressed during guess mode because

it is a side effect -
#103. Syntactic predicates should not have side-effects 273
#104. How to use init-actions to create side-effects in guess mode (despite Item #103) 273
#105. With values of k>1 or infinite lookahead mode one cannot use feedback

from parser to lexer. 274
#106. Can't use interactive scanner (ANTLR —gk option) with ANTLR

infinite lookahead. -
#107. Syntactic predicates are implemented using setjmp/longjmp — beware

C++ objects requiring destructors. -

Semantic Predicates
#108. (Bug) Semantic predicates can’t contain string literals 274
#109. (Bug) Semantic predicates can't cross lines without escaped newline 274
#110. Semantic predicates have higher precedence than alterratior? A| B

meang <<>>? A)| B -
#111. Any actions (except init-actions) inhibit the hoisting of semantic predicates 274
#112. Semantic predicates that use local variables or require init-actions must

inhibit hoisting -
#113. Semantic predicates that use inheritance variables must not be hoisted 274
#114. A semantic predicate which is not at the left edge of a rule becomes a

validation predicate 275
#115. Semantic predicates are not always hoisted into the prediction expression 275
#116. Semantic predicates can't be hoisted into a sub-ful¢: 'y" is not

exactly equivalenttoX' y | y" 275
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#117. How to change the reporting of failed semantic predicates 276
#118. A semantic predicate should be free of side-effects because it may be
evaluated multiple times. 276

#119. There’s no simple way to avoid evaluation of a semantic predicate for
validation after use in prediction. -

#120. What is the "context" of a semantic predicate ? 276
#121. Semantic predicates, predicate context, and hoisting 277
#122. Another example of predicate hoisting 282

Debugging Tips for New Users of PCCTS
#123. A syntax error with quotation marks on separate lines means a problem

with newline 283
#124. Use the ANTLR —gd switch to debug via rule trace -
#125. Use the ANTLR —gs switch to generate code with symbolic names for

token tests -
#126. How to track DLG results 283

Switches and Options
#127. Use ANTLR —gx switch to suppress regeneration of the DLG code and
recompilation of DLGLexer.C -
#128. Can't use an interactive scanner (ANTLR —gk option) with ANTLR
infinite lookahead -
#129. To make DLG case insensitive use the DLG —ci switch 284

Multiple Source Files
#130. To see how to place main() in a .C file rather than a grammar file (".g")

see pccts./testcpp/8/main.C 284
#131. How to put file scope information into the second file of a grammar with
two .g files 284

Source Code Format
#132. To place the C right shift operator ">>" inside an action use "\>>" 285
#133. One cannot continue a regular expression in a #token statement across lines 285
#134. A #token without an action will attempt to swallow an action which

immediately follows it 285
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Miscellaneous
#135. Givenrul e[ A a,B b] > [ X x] theprotoisX rul e

(ASTBase* ast,int* sig,A a,Bb) 285
#136. To remake ANTLR changes must be made to the makefile as

currently distributed 286
#137. ANTLR reports"... action buffer overflow ..." 286

#138. Exception handling uses status codes and swi t ch statements to unwind

the stack rule by rule -
#139. For tokens with complex internal structure add #token expressions to

match frequent errors 286
#140. See pccts/testcpp/2/test.g and testcpp/3/test.g for examples of how to

intergrate non-DLG lexers with PCCTS -

#141. Ambiguity, full LL(k), and the linear approximation to LL(k) 287
#142. What is the difference betwedn © . ) ? <<...>>? x"and"

(...)? => <<,..>>? X"? 289
#143. Memory leaks and lost resources 289
#144. Some ambiguities can be fixed by introduction of new #token numbers 289
#145. Use "#pragma approx" to replace full LL(k) analysis of a rule with the

linear approximation 290

(C Mode) LA/LATEXT and NLA/NLATEXT

#146. Do not use LA(i) or LATEXT(i) in the action routines of #token 290
#147. Care must be taken in using LA(i) and LATEXT(i) in interactive mode
(ANTLR switch —gk) 290

(C Mode) Execution-Time Routines
#148. Calls to zzskip() and zzmore() should appear only in #token actions
(or in subroutines they call) -
#149. Use ANTLRs or ANTLRf in line-oriented languages to control the
prefetching of characters and tokens 291
#150. Saving and restoring parser state in order to parse other objects (input files) 291

(C Mode) Attributes
#151. Use symbolic tags (rather than numbers) to refer to attributes and ASTs in rules 292
#152. Rules no longer have attributes:rule : rl:rulel

<<...$rl...;>>wontwork 292
#153. Attributes are built automatically only for terminals 292
#154. How to access the text or token part of an attribute 292

#155. The $0 and $$ constructs are no longer supported — use inheritance
instead (Item #99) -
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#156. If you use attributes then define a zzd_attr() to release resources (memory)
when an attribute is destroyed -
#157. Don't pass automatically constructed attributes to an outer rule or sibling

rule — they’ll be out of scope 293
#158. A charptr.c attribute must be copied before being passed to a calling rule 293
#159. Attributes created in a rule should be assumed not valid on entry to a fail action 293
#160. Use a fail action to destroy temporary attributes when a rule fails 293
#161. When you need more information for a token than just token type, text, and

line number 294
#162. About the pipeline between DLG and ANTLR (C Mode) 294

(C Mode) ASTs
#163. Define a zzd_ast() to recover resources when an AST is deleted -

#164. How to place prototypes for routines using ASTs in the #header 295
#165. To free an AST tree use zzfree_ast() to recursively descend the AST tree

and free all sub-trees 295
#166. Use #define zzAST_DOUBLE to add support for doubly linked ASTs 295
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Extended Examples and Short Descriptions of Distributed Source Code
#1.  Maodifications to pccts/dig/output.c to add member functions and data
to DLGLexer header 296
#2.  DLG definitions for C and C++ comments, character literals, and string literals 296
#3. A simplefloating point calculator implemented using PCCTS attributes

and inheritance 296
#4. A simplefloating point calculator implemented using PCCTS ASTsand
C++ virtual functions 296

#5. An ANTLRToken class for variable length strings allocated from the heap 296
#6.  How to extend PCCTS C++ classes using the example of adding column

information 296
#7.  How to pass whitespace through DL G for pretty-printers 297
#8.  How to prepend a newline to the DL GInputStream via derivation from
DLGLexer 297
#9.  How to maintain a stack of #lexclass modes 297
#10. Changesto pccts/h/DLexer.C to aid in debugging of DLG lexers as outlined
in ltem #126 297
#11. AT&T Cfront compatible versions of some 1.32b6 files 297
#12.  When you want to change the token type just before passing the token
to the parser 297
#13. Rewriting agrammar to remove left recursion and perform left factoring 297
#14. Using the GNU gperf (generate perfect hashing function) with PCCTS 298
#15. Processing counted stringsin DLG 300
#16. How to convert afailed validation predicate into asignal for treatment
by parser exception handling 301
#17. How to use Vern Paxson’s flex with PCCTS in C++ mode by inheritance
from ANTLRTokenStream 301
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Whereis

#1.

#2.

#3.

These notes, related examples, and an earlier version with an emphasis on C mode, are

available on the net.
Primary Site:
web browser: http://www.mcs.net/~tmoog/pccts.html
anonymous ftp:  ftp://ftp.mcs.net/mcsnet.users/tmoog/*
Europe:

anonymous ftp:  ftp://ftp.th-darmstadt.de/pub/programming/languages/compil er-
compiler/pccts/notes.newbie/*

FTP sites for the Purdue Compiler Construction Tool Set (PccTs).
Primary Site:

Node: ftp.parr-research.com (Parr Research, Inc.)
ftp-mount.ee.umn.edu [128.101.146.5] (University of Minnesota)
Files. ThepccTsdistribution kit: /pub/pccts/latest-version/pects.tar.Z

and pccts.tar.gz
FAQ comp.compilers.tools.pccts  /pub/pccts/documentation/FAQ

Contributed files: /pub/pccts/contrib/*

Pre-built binaries for pcCTS: /pub/pccts/binaries/ PC
/pub/pccts/binaries/SGI
etc.

Note: There isno guarantee that these binaries will be up-to-date. They are
contributed by users of these machines rather than thepccTs developers.

Europe:
Node: ftp.th-darmstadt.de [130.83.55.75]
Directory: /pub/programming/languages/compiler-compiler/pccts
(Thisis updated weekly on Sunday.)
Also:
Node: ftp.uu.net [192.48.96.9]
Directory: languages/tools/pccts

The FAQ ismaintained by Michael T. Richter (mtr@globalx.net) and is available at the
FTP site.

Archive sites for Ms-DOs programs for unpacking .tar and .gzip files (the format of the
PCCTS distribution kit).

Node: oak.oakland.edu (Oakland University in Rochester,
Michigan)

File: simtel/msdos/archiver/tarddos.zip

File: simtel/msdos/compress/gzip124.zip
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Node: wuarchive.wustl.edu (Washington University in St. Louis,
Missouri)

File [archive/systems/ibmpc/simtel/msdos/archiver/tar4dos.zip

File [archive/systems/ibmpc/simtel/msdos/compress/gzipl24.zip

Contributed by Bill Tutt
(rassilon@cs.simpson.edu)

#5. Example grammarsfor C++, ANSI C, Java, Fortran 77, and Objective C.
All the above mentioned grammars are located at the FTP site in /pub/pccts/contrib/*

The C++ grammar (FTP file pccts/contrib/cplusplus.tar), written in C++ mode, is the best
demonstration available of the use of PccTs capabilities. The desire to handle the C++
grammar in an elegant fashion led to a number of improvementsin PCCTS.

The Fortran 77 grammar (C mode) by Ferhat Hajdarpasic (ferhath@ozemail.com.au)
includes Sorcerer routines.

#6. Parr-Research web page: http://www.parr-research.com/~parrt/prc
Basics
#7. Invoke ANTLR or DLG with no arguments to get a switch summary

#8.  Tokens begin with uppercase characters, rules begin with lowercase characters

#9. Evenin C mode you can use C++ style comments in the non-action portion of ANTLR
source code

Inside an action you have to obey the comment conventions of your compiler.

#10. In#token regular expressions spaces and tabs which are not escaped are ignored
This makesiit easy to add white space to aregular expression:;
#token Synbol "[a-z A-Z] [a-z A-Z 0-9]*"
#11. Never choose names which coincide with compiler reserved words or library names
You'd be surprised how often someone has done something like one of the following:
#token FILE "file"

#t oken ECF "@
const: "[0-9]*" ;
#12. Write <<predicate>>? not <<predicadmi-colon>>? (semantic predicates go in "if"
conditions)

#13. Some constructs which cause warnings about ambiguities and optional paths
rule: a{ (b] c)*} ;
rule: a{ b} ;
b : ;

(c)H*;
rule a c* ;
a b{c};
rule: a{b]|] c]|}
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Checklist

#14.

Locate incorrectly spelled #token symbols using ANTLR —w2 switch or by inspecting
parserClassName.C

If a #token symbol is spelled incorreciWTLR will assign it a new #token number
which, of course, will never be matched.

#15. Duplicate definition of a #token name is not reported
ANTLR will simply use the later definition and forget the earlier one. Usingniier —
w2 option does not help

#16. UseANTLR cross-reference option —cr to detect orphan rules when ambiguities are
reported

#17. LT(i) andLATEXT(i) are magical names in semantic predicates — punctuation is critical
ANTLR wants to determine the amount of lookahead required for evaluating a semantic
predicate. It does this by searching in C++ mode for strings of the for(i' ‘and in C
mode for strings of the formrLATEXT(". If there are spaces before the open "(" it
won't make a match. It evaluates the expression following the "(" under the assumption
that it is an integer literal (e.g."1"). If it is something likeél( 1+i )" then you'll have
problems. WithaNTLR switch —w2 you will receive a warningANTLR doesn't find at
least ond.T(i) in a semantic predicate.

#token
See also #8, #10, #14, #15, #22, #133, #134.

#18. To match any single character usd:]™, to match everything to a newline use:
"~[\n]*"

#19. To match an@ in your input text use\"@ , otherwise it will be interpreted as the end-
of-file symbol

#20. The escaped literals in #token regular expressionstareén \r \ b (not the same
asANsl C)

#21. In #token expressions "\12 " is decimal "\012 " is octal, and " \0x12 " is hex (not the
same agans C)
Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

#22. DLG wants to find the longest possible string that matches
The regular expressior['] *" will cause problems. It will gobble up everything to the
end-of-file.

#23. When two regular expressions of equal length match a regular expression the first one is

chosen

Thus more specific regular expressions should appear in the grammar file before more
general ones:
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#token HELP "help" /* should appear before "synbol" */
#token Synbol "[a-z A-Z]*" /* should appear after keywords */

Some of these may be caught by using the bLG switch —Wambiguity. In the following
grammar the input string "HELP" will never be matched:

#t oken Wit eSpace NANRRY <<skip();>>
#token 1D "Ta-z A-Z] +"
#t oken HELP "HELP"
st at enent
HELP "@ <<printf("token HELP\n"); >> /[* al */
| "inline" "@ <<printf("token inline\n");>> [* a2 */
| ID"@ <<printf("token ID\n");>> /[* a3 */

The best advice may be to follow the practice of TIP: place "#token ID" at the end of
the grammar file.

#24. Inline regular expression are no different than #token statements

pcCTs code doesiot check for a match to "inline" (Item #23 line a2) before attempting a
match to the regular expressions defined by #token statements. The first two alternatives
("al" and "a2") willnever be matched. All of this will be clear from examination of the

file "parser.dlg" (the name doast depend on the parser’s class name).

Another way of looking at this is to recognize that the conversion of character strings to
tokens takes place in classGLexer, not clasaNTLRParser, and that all that is

happening with an inline regular expression is #atr is allowing you to define a

token's regular expression in a more convenient fashion — not changing the
fundamental behavior.

If one builds the example above using the switch ~Wambiguity one gets the
message:

dl g warning: anbigious regular expression 3 4

dl g warning: anbigious regular expression 3 5
The numbers which appear in thiec message refer to the assigned token numbers.
Examine the array _token_tbl parser ClassName.C to find the regular expression
which corresponds to the token number reportedusy

ANTLRChar *Parser: :—.t oken_thl[]={

/[* 00 */ "I'nval i d",
[* 01 */ "@,

/[* 02 */ "Whi t eSpace”,
/[* 03 */ "1 D',

[* 04 */ "HELP",

[* 05 */ "inline"

h
Well, there is one important difference for those using Sorcerer. With in-line regular
expressions there is no symbolic name for the token, hence it can’t be referenced in a
Sorcerer rule. Contributed by John D. Mitchell jonnm@alumni.eecs.berkeley.edu).
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#25.

#26.

#27.

Watch out when you see ~[ list-of-characters] at the end of aregular expression

What the user usually wants to express is that the regular expression should stop before
the list-of-characters. However the expression will include the complement of that list
as part of the regular expression. Often users forget about what happens to the
characters which are in the complement of the set.

Consider for example a#lexclass for a C style comment:

/[* Cstyle comment handling */
#l excl ass COWENT /* al */

#t oken "\ */" << nmode( START); skip();>> [* a2 */
#token "~[\*]+" << skip();>> /* a3 */
#token "\*~[/]" << skip(); > [/* WRONG/ /* ad */
/* Shoul d be "\*" */ /* a5 */
/* Correction due to Tim Corringham */ [* a6 */
/* tinm@an) am denon. co. uk 20-Dec-94 */ /[* a7 */

The RE at line a2 accepts "*/" and changes to #lexclass START. The RE at line a4
acceptsa"*" which is not followed by a"/". The problem arises with comments of the
form:

/* this comments breaks the exanple **/
The RE at line a4 consumes the "**" at the end of the comment leaving nothing to be
matched by " \*/ ",
Thisisarelatively efficient way to span acomment. However it is not the simplest. A
simpler description is:

#t oken "\ */" << node(START); skip(); > [* bl */
#t oken "~[]" << skip(); >> [* b2 */

Thisworks because b1 ("*/") istwo characters long while b2 is only one character long
— andpLG always prefers the longest expression which matches.

For those who are concerned with the efficiency of scanning:

#t oken "[\n\r]" <<ski p(); new ine();>>
#t oken AF <<node( START) ; ski p() ; >>
#t oken AN <<ski p();>>

#t oken "~[\*\n\r]+"  <<skip();>>

Contributed by Brad Schick (schick@interaccess.com)
Watch out when one regular expression is the prefix of another

If the shorter regular expression is followed by something which can be the first
character of the suffix of the longer regular expressios,will happily assume that it
is looking at the longer regular expression. See Item #41 for one approach to this
problem.

DLG is not able to backtrack

Consider the following example:

#t oken AR A <<ski p(); >>
#t oken ELSE "el se"
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#28.

#29.

#30.

#31.

#32.

#token ELSEIF  "else [\ \t]* if"
#t oken STCOP "stop"

with input:

el se stop
When DLG gets to the end of "else” it realizes that the space will allow it to match a
longer string than "else” by itself. So DLG accept the spaces. Everything isfine until
DLG gets to the initial "s" in "stop”. It then realizes it has no match — but it can't
backtrack. It passes back an error statusvt.R which (hormally) prints out
something like:

invalid token near line 1 (text was 'else ")
There is an "extra" space between the "else" and the closing single quote mark.

This problem is not detected by thec option —-Wambiguity.

For this particular problem "else" and "if* can be treated as separate tokens. For more
difficult cases work-arounds are (a) to push the problem onto the parser by using
syntactic predicates or (b) to use Vern Paxson’s lexical analyzer "flex" which has
powerful backtracking capabilities. See Item #44 and Example #17.

The lexical routines mode(), skip(), and more() have simple, limited use!

All they do is set status bits or fields in a structure owned by the lexical analyzer and
then return immediately. Thus it is OK to call these routines anywhere from within a
lexical action. You can even call them from within a subroutine called from a lexical
action routine.

lextext() includes strings accumulated via more() — begexpr()/endexpr() refer only to
the last matched RE

Use'if (_lextext '= begexpr) {...}"totestfor RE being appended to
lextext using more()

To track the line number of thetart of a lexical element that may span several lines |
use the following test:

if (_lextext == _begexpr) {startingLine=_line;}//user-defined var
#token actions can access protected variables pf thikase class (such as _line) if
necessary
Replace semantic routines in #token actions with semantic predicates.

In early versions oRcCTsS it was common to change the token code based on semantic
routines in the #token actions. With semantic predicates this technique is now frowned
upon:

Old style:

#t oken Typedef Nane
#token ID "[a-z A-Z]*"
<<if (isTypedef Narme(l extext)) return Typedef Nane; >>
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#33.

#34.

#35.

New Style C Mode:

#token ID "[a-z A-Z]*"

typedef Name : <<i sTypedef Nane( LATEXT(1))>>? 1D
The old technique is appropriate for making lexical decisions based on the input; for
instance, treating a number appearing in columns 1 through 5 as a statement label rather
than anumber. The new style isimportant because of the buffer between the lexer and
parser introduced by large amounts of lookahead, especially syntactic predicates. For
instance a declaration of atype may not have been entered into the symbol table by the
parser by the time the lexer encounters a declaration of avariable of that type. An
extreme case is infinite lookahead in C mode: parsing doesn’t even begin until the
entire input has been processed by the lexer. See Item #121 for an extended discussion
of semantic predicates. Example #12 shows how some semantic decisions can be
moved from the lexer to the token buffer.

For 8 bit characters in.G, makechar variables unsigned by default (g++ option —
funsigned-char).

For Unix systems this should be combined with a calktbl ocal e(LC_ALL, "")
to replace the default locale of "C" with the user's native locale. Contributed by Ulfar
Erlingsson (ulfarerl@rhi.hi.is).

The maximum size ofta G token is set by an optional argument of the ptasLexer()
— default is 2000.

The maximum size of a character string stored inNam.RToken is independent of the
maximum size of @LG token. See Item #54 and Example #5.

If a token is recognized using more() and its #lexclass ignores end-of-file, then the very
last token will be lost.

When a token is recognized in several pieces using more(), an end-of-file may have
been detected before the entire token is recognized. Without treatment of this special
case, the portions of the token already recognized will be ignored and the error of a
lexically incomplete token will be ignored. Since all appearances of the regular
expression "@", regardless of #lexclass, are mapped to the same #token value, proper
handling requires some work-arounds.

Suppose you want to recognize C style comments using:

#l excl ass START
#token Comment_Begin "/\*" <<skip(); nmode(LC Conment); nore();>>
#t oken Eof "@

#l excl ass LC_Comment

#t oken Unexpected Eof "@ <<node( START) ; >>

#t oken Comment End "\*/" <<skip(); mode( START) ; >>
#t oken "~[1" <<skip();nore()>>
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The token code "Unexpected_Eof" will never be seen by the parser. Theresultisthat C
style comments which omit the trailing "*/" can swallow all the input to the end-of-file
and not give any error message. My solution to this problem isto fool PccTs by using
the following definition:

#t oken Unexpect ed_Eof "@@ <<node( START) ; >>
This exploits a characteristic of DLG character streams. once they reach end-of-file they
must return end-of-file to every request for another character until explicitly reset.

Another example of this pitfall, with more serious implications, is the recognition of C
style strings.

#tokclass
See also #41, #387, #88, #92.

#36. #tokclass provides an efficient way to combine reserved words into reserved word sets

#t oken Read "read"

#t oken Wite "wite"

#t oken Exec "exec"

#token I D "[a-z A-Z] [a-z AZ 0-9 \@*"
#t okcl ass Any {ID Read Wite Exec}

#t okcl ass Verb {Read Wite Exec}
command: Verb Any ;

#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenTypeisin a#tokclass
To test whether atoken "t" isin the #tokclass "Verb":
if (set_el(t->getType(), Verb_set)) {...}
There are several variations of thisroutine in the ANTLRParser class.

#lexclass
See also #41, #56.
#38. Inlineregular expressions are put in the most recently defined lexical class

If the most recently defined lexical classisnot START you may be surprised:
#l excl ass START

#l excl ass LC Conment

i nl'i ne_exanpl e: synbol "=" expression ;
Thiswill place"=" inthe #lexclass LC_Comment (whereit will never be matched)
rather than the START #lexclass where the user meant it to be. Sinceitisokay to
specify a#lexclassin several piecesit might be a good ideawhen using #lexclassto
place "#lexclass START" just before the first rule — then any inline definitions of
tokens will be placed in the START #lexclass automatically:

#l excl ass START

#l excl ass COWENT
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#30.

#40.

#I éxcl ass START
Use a stack of #lexclass modesin order to emulate lexical subroutines

Consider agrammar in which lexical elements have interna structure. An example of
thisis C strings and character literals which may contain elements like:

escaped characters \" and \’
symbolic codes \t
numbers \xff V200 \O

Rather than implementing a separate #l exclass to handl e these sequences for both
character literals and string literals it would be possible to have a single # exclass which
would handle both. To implement such a scheme one needs something like a subroutine
stack to remember the previous #lexclass. See Example #9 for a set of such routines.

Sometimes a stack of #lexclass modes isn't enough

Consider a log file consisting of clauses, each of which has its own #lexclass and in
which a given word is reserved in some clauses and not others:

#1; 1- JAN-94 01: 23: 34; enabl e; forge bel |l ows al arm nmove to station B;

#2; 1- JAN-94 08: 01: 56; oper at or ; j ohn bel | ows; shift change at 08: 00;

#3; 1- JAN-94 09: 10: 11; nove; ol d pos=5.0 new pos=6. 0; oper at or request;

#4;1- JAN- 94 10: 11: 12; al ar m bel | ows; 2- JAN- 94 00: 00: 01;
If the item is terminated by a separator, there is a problem because the separator will be
consumed in the recognition of the most nested item — with nothing left over to be
consumed by other elements which end at the separator. The problem appears when it is
necessary to leave a #lexclass and return more than one level. To be more specific, a
#token action can only be executed when one or more characters is consumed.
Therefore, to return through three levels of #lexclass calls would appear to require the
consumption of at least three characters. In the case of balanced constricts like
and ' ...’ thisis not a problem since the terminating character can be used to trigger
the #token action. However, if the scan is terminateddgpaxator such as the semi-
colon above (;), you cannot use the same technique. Once the semi-colon is consumed,
it is unavailable for the other #lexclass routines on the stack to see.

One solution is to allow the user to specify (during the call to pushMode) a "lookahead"
routine to be called when the corresponding element of the mode stack is popped. At
that point the "lookahead" routine can exangiheto determine whether it also wants to

pop the stack, and so on up the mode stack. The consumption of a single character can
result in popping multiple modes from the mode stack based on a single character of
lookahead.

If your approach is more complicated than this, you might as well write a second parser
just to handle the so-called lexical elements.

Continuing with the example of the log file (above): each statement type has its fields in
a specific order. When the statement type is recognized, a pointer is set to a list of the
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#lexclasses which isin the same order as the remaining fields of that kind of statement.
An action is attached to every #token which recognizes a semi-colon (*;") advances a
pointer in the list of #lexclasses and then changes the #lexclass by calling mode() to set

the #lexclass for the next field of the statement.

Lexical L ookahead

#41.

#42.

One extra character of lookahead is available to the #token action routine in ch (except
in interactive mode)

In interactive mode (DLG switch —i)DLG fetches a character only when it needs it to
determine if the end of a token has been reached. In non-interactive mode the content of
ch is always valid. The debug code described in Iltem #126 can help debug problems
with interactive lookahead.

For the remainder of this discussion assumenhatis in non-interactive mode.

Consider the problem of distinguishing floating point numbers from range expressions
such as those used in Pascal:

range: 1..23 float: 1.23
As a first effort one might try:

#token Int "[0-9]+"
#token Range ".."
#t oken Fl oat "[0-9]+.[0-9]*"

The problem is that "1..23" looks like the floating point number "1." with an illegal ".
at the end.DLG always takes the longest matching string, so "1." will always look more
appetizing than "1". What one needs to do is to look at the character following "1." to

see if itis another ".", and if it is to assume that it is a range expression. The flex lexer
has trailing context, buiLG doesn't — except for the single characterhin

A solution inDLG is to write the #token Float action routine to look at what's been
accepted, and &th, in order to decide what to do:

#t oken Fl oat "[0-9]*.[0-9]*"
<<if (*endexpr() =="'." &% /* might use nore conplex test */
ch ="'.
nmode( LC_Range) ; /* treat it like a range expression */
return Int; /* looks like an int followed by ".."*/
>>},

#l excl ass LC Range
#t oken Range " <<nmode( START); >> // consume second "."
of range
The lex operators " and "$" (anchor pattern to start/end of line) can sometimes be

simulated bypLG

DLG doesn’t have operators to anchor a pattern match to the start or end of a line.
However, a requirement that a string start at column 1 can sometimes be simulated by a
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#43.

combination of #lexclass and #token action routines. A requirement that the string end
at the end-of-line can sometimes be simulated in a #token action routine by testing
whether ch isanewline.

In the following example, a™*" in column 1 is treated as a different lexical element than
a"*" appearing elsewhere. This example depends on having column information

enabled by use of trackColumns():
#token Star_Col 1
#token Star o <<if (get_endcol () == 1) {
return Star_Col 1;}
>>
#t oken Wit eSpace AR <<ski p(); >>
#token ID "la-z A-Z] +"
#t oken NEW.I NE "\ n" <<new i ne(); set_endcol (0);>>
expr! ;o (Star <<printf ("\nThe * is NOT in colum 1\n");>>
| Star_Coll <<printf ("\nThe * is in colum 1\n");>>
| ID <<printf ("\nFirst tokenis an IDin");>>
)@

When the first non-blank token on aline may have a special interpretation

If the set of tokens which can appear at the start of alineisrelatively small then code
the newline #token action to switch to another #lexclass where just the start-of-line
tokens will be recognized:
#1 excl ass START
#t oken NL "\n [
#t oken Nunber "[0-9]+
#t oken Mul t AN

} t\ ]*" <<newine();skip();node(StartXLine);>>

#l excl ass Start O‘ Li ne

#t oken Label "[0-9 <<node( START) ; >>

#t oken Comrent "\* [\ n] *! <<nmode( START) ; >>
If the regular expressions that can appear only at the start of aline is a subset of the
"anywhere" tokens then one can use a flag to determine which interpretation to assign to
the regular expression just matched. Checking for begcol ()==0 could also serve asthe
flag:

#l excl ass START

#t oken NL “\n [\ ]*" <<new ine();skip();firstTokenOnLi ne=1; >>

#t oken Nunber "[0-9]+" <<if (firstTokenOnLine) {return Label;};>>

#t oken Ml t A <<if(firstTokenOnLi ne){

ski p() ; node( LC_Comment ) ; more() ;
}i>>

#l excl ass LC_Conment

#token  Comment "~[\n]*" <<skip(); nmode( START); >>
Thisrequires that the flag "firstTokenOnLine" be cleared for every token but that of a
newline. This would be rather tedious to code for every token #action. It's convenient
to put it in a class derived frobLGLexer or fromaNTLRTokenBuffer. It would be
natural to put it in the makeToken routine, but it is difficult for makeToken to exchange
information with the #token action routines. See Item #62.
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Another approach is to include the newline as part of the regular expression:

#l excl ass START

#t oken Nunber "[0-9]+"
"\n [

|
#t oken Label \' 1* [0-9]+"

#t oken Mul t AN
#t oken Comment “"\n [\ ]* \* ~[\n]*"

This requires that a newline be prepended to the input character stream and that the line

number be decremented by 1 at the start to compensate for the extranewline. The

problem isthat a bLGInputStream doesn’t know how to adjust its caller’s line

information (Item #62). In any case, the line information in the 1.32b6 is a protected
variable. The result is that it is necessary to have a rather inelegant class derived from
DLGLexer in order to accomplish this. See Example #8.

#44. For more powerful forms of lexical lookahead one can use Vern Paxson'’s flex

If more than one character of lookahead is necessary and it appears difficult to solve
using #lexclass, semantic predicates, or other mechanisms you might consider using flex
by Vern Paxson (University of California — Berkeley). Flex is a superset of lex. For an
example of how to use flex WikNTLR in C++ mode see Example #17. For C mode

visit theFTp site (Item #2) for file /pub/pccts/contrib/NOTES.flex.

See also #27, #42, #56, Example #15.

Line and Column Information
Most names in this section refer to members of clast exerBase obLGLexer

Before C++ mode the proper handling of line and column information was a large part of
these notes.
#45. If you want column information for error messages (or other reasons) use C++ mode

#46. If you want accurate line information even with many characters of lookahead use C++
mode

#47. Call trackColumns() to request thhats maintain column information

#48. To report column information in syntax error messages ovemiderParser::syn() —
See Example #6

#49. Call newline() and then set_endcol(0) in the #token action when a newline is
encountered

#50. Adjusting column position for tab characters
Assume that tabs are set every eight characters starting with column 9.

Computing the column position will be simple if you match tab characters in isolation:
#token Tab "\t" <<_endcol =((_endcol -1) & ~7) + 8;>>

This would be off by 1, except thatG, on return from the #token action, computes the

next column using:
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#51.

_begcol =_endcol +1;
If you include multiple tabs and other forms of whitespace in a single regular
expression, the computation of _endcol by bLG must be backed out by subtracting the
length of the string. Then you can compute the column position by inspecting the string
character by character.

Computing column numbers when using more() with strings that include tab characters
and newlines
/* what is the colum and line position when the comment incl udes
or is followed by tabs tab tab */ tab tab i ++

Note: This code excerpt requires a change to pccTs 1.32b6 file pccts/
dig/output.c in order to inject code into the DLGL exer class header.
The modified source code is distributed as part of the notesin file
notes/changes/dlg/output.c and output_diff.c An example of itsuseis
given in Example #7.

My feeling is that the line and column information should be updated at the same time

more() is called because it will lead to more accurate position information in messages.

At the same time one may want to identify the first line on which a construct begins

rather than the line on which the problem is detected: it's more useful to know that an
unterminated string started at line 123 than that is was still unterminated at the end-of-
file.

voi d DLG.exer: :tabAdj ust () { /1 requires change to output.c
char * p; to add user code to DLG.exer
if (_lextext == begexpr) startingLi neFor Token=_Ii ne;
_endcol =_endcol - (_endexpr-_begexpr)+1; [/ back out DLG
conput ati on
for (p=_begexpr;*p != 0, p++) {
if (*p =="\n") { /1 newine() by itself
new i ne(); _endcol =0; /I doesn't reset column
}elseif (*p=="\t) {
_endcol=((_endcol-1) & ~7) + 8; // traditional tab stops

_endcol++;

_’endcol—-; /I DLG will compute begcol=endcol+1

See Example #7 for amore compl ete description.
See also #42, #56.

C++ Mode
#52. The destructors of base classes should be virtual in almost all cases

If you don’t know why, you should read Scott Meyers’ excellent bbéfkctive C++,
Fifty Specific Ways ....

#53. Why must the AST root be declared as ASTBase rather than AST ?
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The functions which implement the rules of the grammar are declared with the
prototype:

voi d aRul e(ASTBase ** _root) {...};
The underlying support code of ANTLR depends only on the behaviors of ASTBase.
There are two virtuesto this design:

No recompilation of the underlying routines is necessary when the definition of
AST changes

The same object code can be used with multiple parsersin the same program each
with its own kind of AST

Thisisin contrast to C++ templates which are designed to provide source code reuse,
not object code reuse.

An"AST *" can be passed to an "ASTBase *" why not an "AST **" for an "ASTBase

*xkM D

ThisisaC++ FAQ. Consider the following (invalid) code fragment:

struct B {}; /* al */
structDl: B {inti;}; /* a2 */
struct D2 : B {doubled;}; /* a3 */
void func(B ** ppB) {*ppB=new D2;}; /* WRONG */ /* a4 */
D1 * pDl=newDl,; /* a5 */
func(&pDl); /* a6 */

At line a5, pD1is declared to be apointer to aD1. This pointer is passed to "func" at
line a6. The function body at line a4 replaces a pointer to a D1 with apointer to aD2,
which violates the declaration at line a5.

Thefollowing islegal, although it may not do what is expected:
void func2(B * pB) {Dldl; *pB=d1;}; [* bl */
func2(pDl); /* b2 */
The assignment at line b5 dlices d1 and assigns only the B part of d1 to the object
pointed to by pB because the assignment operator chosen is that of class B, not class D1.

#54. ANTLRCcommonToken text field has maximum length fixed at compile time — but there’s
an alternative

For ANTLRCommonToken the length of the text field is fixed by #define
ANTLRCommonTokenTEXTSIZE. The default is 100 characters. If you want an
already written routine which will handle tokens which are limited by the size of the
DLG token buffers look at the definition aNTLRToken in Example #5 file varToken.*.

#55. C++ Mode makes multiple parsers easy.

pccts/testcpp/5/test.g Uses multiple instances of a single parse class (thus a
single grammar)

pccts/testcpp/6/main.C ~ Program uses parsers for two different grammars (test.g
and test2.9)
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#56.

#57.

#58.

If two parsers share the same DLG automaton it may be necessary to save DLG state. See
Item #56.

Use DLGL exerBase routines to save/restore DLG state when multiple parsers share a
token buffer.

When the second parser "takes control" the bLGLexer doesn’t know about it and doesn’t
reset the state variables such as #lexclass, line number, column tracking, etc.

UseDLGLexerBase::saveStatelGState *) and restoreStateGState *) to save and
restoreDLG state.

Required AST constructors: AST(), ASTfLRToken), and AST(X x,Y y) for
H#X X,Y'y]

In C++ Mode ASTs aneNTLRTokens do not use stack discipline as they do in C mode.

In C mode ASTs andNTLRTokens are allocated on a stack. This is an efficient way to
allocates space for structs and is not a serious limitation because in C it is customary for
a structure to be of fixed size. In C++ mode it would be a serious limitation to assume
that all objects of a given type were of the same size because derived classes may have
additional fields. For instance one may have a "basic" AST with derived classes for
unary operators, binary operators, variables, and so on. As a result the C++ mode
implementation of symbolic tags for elements of the rule uses simple pointer variables.
The pointers are initialized to 0 at the start of the rule and remain well defined for the
entire rule. The things they point will normally also remained well defined, even objects
defined in sub-rules:

rule ! : arrule2 {b:B} <<#0=#(#a,#[$b]);>>; // Konly in C++ node
This fragment is not be well defined in C mode because B would become undefined on

exitfrom"{...}"

#59. Summary of Token class inheritance in file AToken.h.

ANTLRADbstractToken — (empty class) no virtual table

<

ANTLRLightweightToken — (token type) no virtual table

<—

ANTLRTokenBase — (token type, text, line) virtual table

<

DLGBasedToken — (token type, text, line) virtual table

+-- ANTLRCommonToken — (token type, text, line) virtual table
| using fixed length text fields

+-- MyToken — (token type, text, line, ...) virtual table
notes/var/varToken.h — variable length text fields
notes/col/myToken.h — variable | ength text with
column info

Language Translation Using PCCTS and C++ 261



Notes for New Users of PCCTS

#60. Diagram showing relationship of major classes.

ANTLRTokenSt r eam
(ATokenSt ream h)
I

Y,
ANTLRPar ser --> ANTLRTokenBuffer --> DLG.exerBase --> DLd nput Stream
(APar ser . h) (ATokenBuf fer. h) (DLexer Base. h) | ( DLexer Base. h)
I I

| \Y, \Y +- DLGFi | el nput

[ M/TokenBuf f er DLG_exer

| (ANTLR gener at ed) |

\ +- DLGStringl nput

M/Par ser (generated by ANTLR fromnyFil e. g)
M/Par ser. h (cl ass header)
M/Parser.C (static variable initialization)
nyFile.C (inplenentation code for rules)
#61. Tokens are supplied as demanded by the parser. They are "pulled" rather than "pushed”.

ANTLRPar ser: : consune()
--> ANTLRTokenBuf f er: : get Token()
--> ANTLRTokenBuf f er: : get ANTLRToken()
--> DLGLexer : : get Token()
--> MyToken: : makeToken( ANTLRt okenType, | exText, | i ne)
#62. Becausetokensare "pulled” it is easy to access downstream objects but difficult to

access upstream objects

Thereisapointer from the ANTLRParser to the ANTLRTokenBuffer, from the
ANTLRTokenBuffer to the DLGL exer, and from the bLGL exer to the DLGInputStream.
However if the DLGInputStream wants to reset the bLGLexer line number, there’s no
pointer in thebLcInputStream object which points to the "paremfttLexer object. The
linked list is one-way.

The user can may want to derive a class foawnputStream in which there is a
member function setParser() thereby changing a one-way linked-list into a circular list.

#63. Additional notes for users converting from C to C++ mode

In general: Zzname => name, _name, orname()
example: zzl ext ext => |extext, | extext()
except for: zzchar => ch
InDLGLexerBase: NLA=t okenCode => return t okenCode
line++ => new i ne()
| i ne=val ue => |ine=val ue
zzt okensJ i] => parserClassName: : t okenNane( i)

The tokenName() function is promised for the
next release afccts — or see Example #7 for
how to define your own tokenName function.

zzendcol => _endcol,set _endcol (),
get _endcol ()
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zzbegcol => hegcol ,set _bhegcol (),
get _begcol ()

ASTs
#64. To enable AST construction (automatic or explicit) use the ANTLR —gt switch
#65. Use symbolic tags (rather than numbers) to refer to tokens and ASTs in rules
prior to version 1.30: rule! @ x vy <<#HO=#(#1, #2);,>> ;
with version 1.30: rule!l : xx:x yy:y  <<#0=#(#xX, #yy);>> ;
The symbolic tags are implemented as pointers to ASTs. The pointers are initialized to
0 at the start of the rule and remain defined for the entire rule. See Item #58. Rules no
longer return pointers to tokens (Item #83
#66. Constructor ASRNTLRToOken *) is automatically called for terminals whenTLR —gt
switch is used
This can be suppressed using the "!" operator.
#67. If you use ASTs you have to pass a root AST to the parser
ASTBase *r oot =NULL,;
Par ser . start Rul e( & oot , ot her Argunents) ;
r oot - >preorder () ;
root - >dest roy();
#68. Use ast—>destroy() to recursively descend the AST tree and free all sub-trees
#69. Don't confusé[...] with#(...)

The first creates a single AST node using an AST constructor (which is usually based on
anANTLRToken or armNTLRTokenType). It converts lexical information to an AST.

The second creates an AST tree or list (usually more than a single node) from other
ASTs by filling in the "down" field of the first node in the list to create a root node, and
the "sibling" fields of each of the remaining ASTs in the lists. It combines existing
ASTs to create a more complex structure.

#token ID "[a-z] *"

#t oken COLON o

#token Stmt_Wth_Label

id : nane:ID <<#0=#[ St mt _Wt h_Label , $nane- >get Text ()]; >> ;
/*al*/
The new AST (a single node) contains Stmt_With_Label in the token field, given a
traditional version of AST::ASTBNTLRTokenType,char *).

rule! : nanme:id COLON e: expr <<#O=#(#nane, #e) ; >> ;
/* a2 */

Creates an AST list with "name" at its root and "e" as its first (and only) child.
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#70.

#71.

H12.

#73.

The following example (a3) is equivalent to al, but more confusing, because the two
steps above have been combined into a single action:
rule! : nanme:|1 D COLON e: expr /* a3 */
<<#O=#(#[ St mt _Wth_Label , $nane>get Text ()], #e); >> ;
The make-a-root operator for ASTs ("'") can be applied only to terminals (#token,
#tokclass, #tokdef)

A child rule might return atree rather than asingle AST. Were thisto happen it could
not be made into aroot asit isalready aroot and the corresponding fields of the
structure arein use. To make an AST returned by a called rule aroot use the
expression; #(root-rule, siblingl, sibling2, sibling3).

addp SR S A T

#t okcl ass AddQp { "\ "\-"}
[* K */ add ! expr ("\+"™ expr)
/* Wong */ addExpr ! : expr (addQo” expr)
/* K */ addExpr ! : expr (AddQo™ expr);

An already constructed AST tree cannot be the root of a new tree

An AST tree (unlessit’s atrivial tree with no children) already has made use of the
"down" field in its structure. Thus one should be suspicious of any constructs like the
following:
rule! : anotherRule:rule2........ <<#0=#(#anotherRule, . . .); >> ;
Don't assign to #0 unless automatic construction of ASTs is disabled using the "!"
operator on a rule
al o XXiX yy:y zz:z <<#O=#(#xx, #yy, #zz);>> ; [/ ok
a . XXIX YY:y zz:z <<#O=#(#xx, #yy, #zz);>> ; [/ NOT ok
The reason for the restriction is that assignment to #0 will cause any ASTs pointed to by
#0 to be lost when the pointer is overwritten.

The statement in Item #72 is stronger than necessary

You can assign to #0 even when using automated AST construction if the old tree
pointed to by #0 is part of the new tree constructefi(hy. . ) . For example:

#t oken Conma "

#token Stnt_Li st

stnt_list: stnmt (Comma stnt)* <<#O=#(#[ Stnt _List], #0);>> ;
The automatically constructed tree pointed to by #0 is just put at the end of the new list,
so nothing is lost. If you reassign to #0 in the middle of the rule, automatic tree
construction will result in the addition of remaining elements at the end of the new tree.
This is not recommended by TJP.

Special care must be used when combining the make-a-root operator (e.g. rule: expr
Op” expr) with this transgression (assignment to #0 when automatic tree construction is
selected).
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#74. A rulethat constructs an AST returns an AST even when its caller usesthe "!" operator

#75. (C++ Mode) In AST mode a token which isn't incorporated into an AST will result in
lost memory

For a rule like the following:

rule : FOR* | Value EQ expr TO expr BY! expr ;
the tokens EQ', "TO', and 'BY" are not incorporated into any AST. In C mode the
memory they occupied (they are calkgttibutesin C mode) would be recovered on
rule exit. In C++ mode their memory will be lost unless special action is taken or the
user enables theNTLR reference counting option. Another approach is to use the
NoLeakToken class from Example #5.

#76. When passing(...) or#[...] toa subroutine it must be cast from "ASTBase *" to
"AST *1

Most of thepccTs internal routines are declared using ASTBase rather than AST

because they don’t depend on behavior added by the user to class AST. REUay

hides this by generating explicit casts, but in the case of subroutine arguments the hiding
fails and the user needs to code the cast manually. See also Iltem #135.

#77. Some examples #{ . . . ) notation using theccTs list notation

See page 45 of the 1.00 manual for a description ofdbes list notation.
a: A,
b: B ;
c: C;

#t oken T_abc

cabec <<; >> ;/* AST list (0 ABC without root */
r': abec <<#0=#(0, #1, #2,#3);>> ;/* AST list (0 A B Q wthout
root */
r: al bl c! <<#0=#(0,#1, #2,#3);>> ;/* AST list (0 A B O wi thout
root */
r: a*bec ;/* AST tree (AB C with root A */
r': abec <<#O=#(#1, #2,#3);>> ;/* AST tree (AB QO wth
root A */
r': abec <<#O0=#(#[ T_abc], #1, #2, #3) ; >>
;/* AST tree (T_abc_node A B O */
/* with root T _abc_node */
r:abec <<#0=#(#[ T_abc], #0) ; >> i |* the sane as above */

r : al bl c! <<#O=#(#[T abc],#1,#2,#3);>> ; /* the sane as above */
#78. A rule which derives epsilon can short circuit its caller’s explicitly constructed AST

When a rule derives epsilon it will return an AST value of 0. As the routine which
constructs the AST tree (ASTBase::tmake) has a variable length argument list which is
terminated by O, this can cause problem #ith . . ) lists that have more than two
elements:

rule ! : DO body: | oop_body END DO <<#0=#(#[ DJQ , #body, #] END_DJ ; >> ;
| oop_body : { statement_list } ; /* can return O on DO END DO */
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#79.

#80.

#81.

Although this particular example could be handled by automatic tree construction, the
problem isareal one when constructing atree by adding more than one sibling at a
time. This problem does not exist for automatically constructed AST trees because those
trees are constructed one element at atime. Contributed by T. Doan (tdoan@bnr.ca).

How to use automatic AST tree construction when a token code depends on the
alternative chosen

Suppose one wants to make the following transformation:

rule : lv:lhs ; => #(#[T_sinpl e], #l v)

rule : Ivilhs rvirhs ; => #(#[ T_conpl ex], #l v, #rv)
Both Ihs and rhs considered separately may be suitable for automatic construction of
ASTSs, but the change in token type from "T_simple" to "T_complex" appears to require
manual tree construction. Use the following idiom:

rule : Ihs (
@) <<#0=#(#[ T_si npl €] , #0) ; >>
| rhs  <<#0=#(#[ T_conpl ex], #0) ; >>
)
Another solution:

rul e : <<ANTLRTokenType t=T_si npl e; >>
l:1hs { r:rhs <<t=T conpl ex; >> }
<<#O=#(#[t], #0) ; >> ;
For doubly linked ASTs derive from class ASTDoublyLinkedBase and call tree—
>double_link(0,0).
The ASTDoublyLinkedBase class adds "up" and "left" fields to the AST definition, but

it does not cause them to be filled in during AST construction. After the tree is built call
tree->double_link(0,0) to traverses the tree and fill in the up and left fields.

When ASTs are constructed manually the programmer is responsible for deleting them
on rule failure.

It is worth a little bit of extra trouble to letcTs construct the AST for a rule

automatically in order to obviate the need for writing a fail action for a rule. A safer
implementation might be to maintain a doubly linked list of all

ASTs from which an AST is removed when it is destroyed. See class NoLeakAST from
Example #6.

See also #100, #102.
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Rules

#82. Torefer to afield of an ANTLRt OKEN within a rule’s action usex<. . .
nyt oken($x)->field...>>

ANTLR puts all ANTLRToken*" variables in a®\NTLRTokenPtr object in order to
maintain reference counts for tokens. When the reference counter goes to zero the token
is deleted (assuming that tABITLRToken definition is derived from
ANTLRRefCountToken). One result of this is that rule actions which need to refer to a
real ANTLRToken field must first convert afiNTLRTokenPtr to anANTLRToken*"
using the macro "mytoken":
nunber: n: Nunber <<if (nytoken($n)->value < 0) {...};>>
#83. Rules don't return tokens values, thus this won't wotk:e: r1:rul el
<<...$rl...>>

In earlier versions afccTs (C mode) it was accepted practice to assign an attribute to a
rule:
rule : rulel <<$0=$%$1;>>
However, with the introduction of symbolic tags for labels (Item #65) this feature
became deprecated for C mode (Item #152) and is not even supported for C++ mode.
To return a pointer to a tokeaNTLRToken *) from a rule use inheritance (See Item
#99):
st at enent
. <<ANTLRToken * t;>> rule > [t] ;
rule > [ANTLRToken *t]
rl:rulel <<$t=soneAction($rl);>>
It's still standard practice to pass back AST information using assignment to #0 and to
refer to such return values using labels on rules. It's also standard practice to refer to
tokens associated witerminals:
rule : xx:X << L L $xx. .. >> /1 okay: "X' is a terminal (token)
rule : xx:x <<..$xx..>> [/ won'twork: "X" is a rule rather
X 1xxX  <<$x=$xx;>> // than aterminal (token)
#84. A simple example of rewriting a grammar to remove | ft recursion

ANTLR can't handle left-handed recursion. A rule such as:

expr : expr Op expr
| Number
| String

will have to be rewritten to something like this:

expr : Number (Op expr)*
| String (Op expr)*
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#85.

#86.

#87.

#88.

A simple example of |eft-factoring to reduce the amount of ANTLR lookahead

Another sort of transformation required by ANTLR is left-factoring:

rule : STOP WHEN expr
STOP ON expr
| STCP IN expr

These are easily distinguishable when k=2, but with a small amount of work it can be
cast into ak=1 grammar:

rule : STOP ( WHEN expr
| ON expr
| I'N expr
)

or:
rule : STOP rul e_suffix

rul e_suffix . VWHEN expr
| ON expr
| I'N expr

An extreme case of agrammar requiring arewrite isin Example #13.

ANTLR will guess where to match " @ if the user omitsit from the start rule

ANTLR attempts to deduce "start" rules by looking for rules which are not referenced by
any other rules. When it finds such aruleit assumes that an end-of-file token (" @")
should be there and adds one if the user did not code one. Thisisthe only case,
according to TJP, when ANTLR adds something to the user's grammar.

To match any token use the token wild-card expression "." (dot)

This can be useful for providing a context dependent error message rather than the all
purpose message "syntax error".

if-stmt @ IF "\ (" expr "\)" stm
| TF. <<printf("If statenent requires expression"
"encl osed i n parenthesis");
PARSE FAI L; /1 user defined
>>

This particular case is better handled by the parser exception facility.
A simpler example:

quoted : "quote" . ; /1 quoted term nal
The"~" (tilde) operator applied to a#token or #tokclass is satisfied when the input
token does not match

anything : (~ Newine)* Newine ;
The"~" operator cannot be applied to rules. Use syntactic predicates to express the idea
"if this rule doesn’'t match try to match this other rule".
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#89.

#90.

#91.

#92.

To list the rules of the grammar grep parserClassName.h for *_root" or edit the output
from ANTLR —Cr

TheaNTLR —gd trace option can be useful in sometimes unexpected ways

For example, by suitably defining the functionsrLRParser::tracein and
ANTLRParser::traceout one can accumulate information on how often each rule is
invoked. They could be used to provide a traceback of active rules following an error
provided that the havoc caused by syntactic predicates’ use of setjimp/longjmp is
properly dealt with.

Associativity and precedence of operations is determined by nesting of rules

In the example below "=" associates to the right and has the lowest precedence.
Operators "+" and "*" associate to the left with "*" having the highest precedence.

expr0O : exprl {"=""exprO0}; /* al */

exprl : expr2 ("\+"~ expr2)*; /* a2 */

expr2 coexpr3 ("\*"N expr3d)* /* a3 */

expr3 : ID I* a4 */
The more deeply nested the rule the higher the precedence. Thus precedence is "*" >
"+" > "=", Consider the expression "x=y=z". Will it be parsed as "x=(y=z)" or as

"(x=y)=z"? The first part of exprO is exprl. Because exprl and its descendants cannot
match an "=" it follows that all derivations involvingsacond "=" in an expression must
arise from the{'. . . } " term of expr0. This implies right association.

In the following samples the ASTs are shown in the root-and-sibling format used in
pccTs documentation. The numbers in brackets are the serial number of the ASTs. This
was created by code from Example #6.

a=b=c=d

(= <#2> a <#1> ( = <#4> b <#3> ( = <#6> c <#5> d <#7> ) )
) NL <#8>

atb*c

(+ <#2> a <#1> ( * <#4> Db <#3> c <#5> ) ) N <#6>
a*b+c
(+<#4> (> <#2> a <#1> b <#3> ) c <#5> ) NL <#6>

#tokclass can replace a rule consisting only of alternatives with terminals (no actions)

One can replace:
add0p ST T
with:
#tokcl ass AddQp { "\+" "\-"}
This replaces a modest subroutine with a simple bit test. A #tokclass identifier may be
used in a rule wherever a simple #token identifier may be used.
The other work-around is much more complicated:

exprl! : left:expr2 <<#0=#l;>>
(op:addQp right:expr2 <<#0=#(#op, #l eft, #right);>> )* ;
add@ : ||\ +|| | ll\ - n ;
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The"!" for rule "exprl" disables automatic constructions of ASTsin therule. This
allows one to manipulate #0 manually. If the expression had no addition operator then
the sub-rule " (addOp expr)*" would not be executed and #0 will be assigned the AST
constructed by #left. However if there is an addOp present then each time the sub-rule
isrescanned duetothe"(. . . ) *" the current tree in #0 is placed as the first of two
siblings underneath a new tree. This new tree has the AST returned by addOp as the
root. Itisaleft-leaning tree.

#93. Rather than comment out a rule during testing, add a nonsense token which never
matches — See Item #96

See also #8, #13,#16,#66, #92, #95, #116.

Init-Actions
#94. Don't confuse init-actions with leading-actions (actions which precede a rule).

If the first element following the start of a rule or sub-rule is an action it is always
interpreted as an init-action. An init-action occurs in a scope which includes the entire
rule or sub-rule. An action which i®t an init-action is enclosed in "{" and "}" during
generation of code for the rule and has essentially zero scope — the action itself.

The difference between an init-action and an action which precedes a rule can be
especially confusing when an action appears at the start of an alternative affisese
to be almost identical, but they aren't:
b : <<int i=0;>> bl >][i] /* bl <<...>>1is an init-action*/

| <<int j=0;>> b2 >/[j] /* b2 <<...>>is part of the rule*/

; /* and will cause a conpilation error*/
On line "b1" the<<. . . >> appears immediately after the beginning of the rule making
it an init-action. On line "b2" the<. . . >> doesnot appear at the start of a rule or sub-
rule, thus it is interpreted as a leading action which happens to precede the rule.

This can be especially dangerous if you are in the habit of rearranging the order of
alternatives in a rule.

For instance, changing this:

b : <<int i=0,]=0;>> <<i++;>> bl > [i] /* ¢l */
| <<j++;>> bl > [i] /* c2 */
to this:
b : /* enpty production */ [* dl */
| <<int i=0,j=0;>> <<i++;>> bl > [i] [* d2 */
| <<j++;>> bl > [i]
or to this:

b
D+ >> bl > [i0] [* el */
| <<int i=0,j=0;>> <<i++;>> bl > [i] [* e2 */
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changes an init-action into a non-init action, and vice-versa.
#95. An empty sub-rule can change aregular action into an init-action.
A particularly nasty form of the init-action problem is when an empty sub-rule has an
associated action:
rule!: nane: 1D (
/* enpty */
<<#0=#[ | D, $nare] ; >>

| ab:array_bounds
<<#0=#[ T_array_decl ar ati on, $nane] , #ab) ; >>
)

Since there is no reserved word in PcCTs for epsilon, the action for the empty arm of the
sub-rule becomes the init-action. For this reason it's wise to follow one of the following
conventions

— Represent epsilon with an empty rule "()"

— Put the null rule as the last rule in a list of alternatives:
rule!: nanme: 1D (
() <<#0=#[|D, $nane] ; >>
| ab:array_bounds
<<#0=#[ T_array_decl arati on, $nane] , #ab) ; >>
);
The cost of using "()" to represent epsilon is small.
#96. Commenting out a sub-rule can change a leading-action into an init-action.

Suppose one comments out a rule in the grammar in order to test an idea:

rul e /* al */
. <<init-action;> /* a2 */
111 rule_a /* a3 */
| rule_b /[* a4 */

| rule_c /* a5 */

In this case one only wanted to comment out the "rule_a" reference in line a3. The
reference is indeed gone, but the change has introduced an epsilon production, which
probably creates a large number of ambiguities. Without the init-action the ":" would
have probably have been commented out alsoasmdr would report a syntax error —

thus preventing one from shooting oneself in the foot. See Item #93.

Commenting out a rule can create orphan rules, which can lead to misleading reports of
ambiguity in the grammar. To detect orphan rules usenher —cr (cross-reference)
switch.

#97. Init-actions are executed just once for sub-rfles. ) +,(...)*,and{. ..}

Consider the following example from section 3.6.1 (page 29) of the 1.00 manual:

a: <<List *p=NULL;>> // initialize list
Type
( <<int i=0;>> /] initialize index
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v: Var <<append(p, i ++, $v); >>

)
<<Q(per ate(p); >>
See also #104, #112, #116.

Inheritance

#98. Downward inherited variables are just normal C arguments to the function which
recognizes the rule

If you are using downward inheritance syntax to pass results back to the caller (really
upward inheritance!), then it is necessary to pass the address of the variable which will
receive the result.

#99. Upward inheritance returns arguments by passing back values

If the rule has more than one item passed via upward inheritance, then ANTLR creates a
st ruct tohold the result and then copies each component of the structure to the
upward inheritance variables.

#token T_int

#token T_real
#token T_conpl ex

class P {

nunber : <<int useRadi x=10;int i Val ue; doubl e rVal ue; doubl e
rPart,iPart;>>
{ radix > [useRadi x] }
i nt N\unber [useRadi x] > [i Val ue]
| real Nunber > [rVal ue]
| conpl exNunber > [rPart,iPart]

'corrpl exNunber > [doubl e rPart, doubl e iPart]

"\[" real Nunber > [$rPart] "," real Nunber > [$iPart] "\]"
real Nunber > [doubl e result] :

V:"[0-9]+.[0-9]*" <<$r esul t =t oDoubl e( $v) ; >>
radi x > [int i] : v:"9%0-9]+" <<$i =t ol nt ($v) ; >>

i nt Nunber [int radix] > [int result] :
vi'[0-9] +" <<$resul t =t ol nt ($v) ; >>
}
This example depends on the use of several constructors for ASTs and user defined
routines tolnt() and toDoubl &().

#100. ANTLR —gt code will include the AST with downward inheritance values in the rule’s
argument list

See also #113.
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Syntactic Predicates
The terms "infinite lookahead," "guess mode," and "syntactic predicate" al imply use of the

same facility in PccTs to provide a limited amount of backtracking by the parser. In this
case we are not referring to backtracking in DLG or other lexers. The term "syntactic
predicate" emphasizesthat it is handled by the parser. The term "guess mode" emphasizes
that the parser may have to backtrack. The term "guess mode" may also be used to
distinguish two mutually exclusive modes of operation in the ANTLR parser:

— Normal mode: A failure of the input to match the rules is a syntax error. The
parser executes actions, constructs ASTSs, reports syntax errors it finds (or invokes
parser exception handling) and attempts automatic recovery from the syntax
errors. There is no provision for backtracking in this mode.

— Guess mode: The parser attempts to mat¢h a.”) ?" block and knows that
it must be able to backtrack if the match fails. In this case the parseraioes
execute user-actions (except init-actions), nor does it construct ASTs. Failed
validation predicates do not result in backtracking even when in guess mode.

In C++ mode there lookahead using a sliding window of tokens whose initial size is
specified when thenTLRTokenBuffer is constructed. In C mode the entire input is read,
processed, and tokenized hyG beforeaANTLR begins parsing. The term "infinite
lookahead" derives from the initial implementatiomnTLR C mode.

#101. Regular actions are suppressed while in guess mode because they have side effects

#102. Automatic construction of ASTs is suppressed during guess mode because it is a side
effect

#103. Syntactic predicates should not have side-effects
If there is no match then the rule which uses the syntactic predicate won't be executed.
#104. How to use init-actions to create side-effects in guess mode (despite Item #103)

If you absolutely have to have side-effects from syntactic predicates one can use exploit
the fact thal\NTLR always executes init-actions, even in guess mode:
rule : (prefix)? A
| B
prefix <<regular-init-action-that's-always-executed>>
A ( <<init-action-for-empty-subrule>> ) B

The init-actions in "prefix" will always be executed (perhaps several times) in guess-
mode. Contributed by TJP.
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#105. With values of k>1 or infinite |ookahead mode one cannot use feedback from parser to
lexer.

Asinfinite lookahead mode can cause large amounts of the input to be scanned by bLG
before ANTLR begins parsing one cannot depend on feedback from the parser to the lexer
to handle things like providing special token codes for items which are in asymbol table
(the"lex hack" for t ypedef s inthe C language). Instead one must use semantic
predicates which allow for such decisions to be made by the parser or place such checks
in the ANTLRTokenBuffer routine getToken() which is called every time the parser
needs another token. See Example #12.

#106. Can't use interactive scann@NTLR —gk option) withANTLR infinite lookahead.

#107. Syntactic predicates are implemented using setjmp/longjmp — beware C++ objects
requiring destructors.

Semantic Predicates

#108. (Bug) Semantic predicates can’t contain string literals
A predicate containing a string literal is incorrectly "string-ized" in the call to
zzfailed_predicate.

rul e: <<containsCharacter("! @3$%&",LT(1)->getText()>>? 1D ;
/[* WIIl not work */

The work-around is to place the literal in a string constant and use the variable name.

#109. (Bug) Semantic predicates can’t cross lines without escaped newline

rule: <<do_test();\
this_Is_a workaround)>>? x y z ; /*** Note escaped
new i ne ***/
#110. Semantic predicates have higher precedence than alterqatioi? A] B means
(<<>>? A|B

#111. Any actions (except init-actions) inhibit the hoisting of semantic predicates

Here is an example of an empty leading action whose sole purpose is to inhibit hoisting
of semantic predicates appearing in rule2 into the prediction for rulel. Note the
presence of the empty init-action (See Item #94).

rul el Do >> <<>> rul e2
| rule3
rul e2 ! <<semanti cPr ed(LT(1)->get Text())>>? ID ;

#112. Semantic predicates that use local variables or require init-actions must inhibit hoisting
#113. Semantic predicates that use inheritance variables must not be hoisted

You cannot use downward inheritance to pass parameters to semantic predicates which
arenot validation predicates. The problem appears when the semantic predicate is
hoisted into a parent rule to predict which rule to call:
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#114.

#115.

#116.

For instance:

a @ bl [flag]
| b2

bl [int flag]

<<flag &% hasPropertyABC(LT(1)->getText())>>? ID;
b2 : ID;

When the semantic predicate is evaluated within rule "a" to determine whether to call
bl, b2, orb3 thecompiler will discover that thereis no variable named "f | ag" for
procedure"a() ". If you are unlucky enough to have avariable named "f | ag” ina() ,
then you will have avery difficult-to-find bug.

A semantic predicate which is not at the left edge of arule becomes avalidation
predicate

Decisions about which rule of agrammar to apply are made before entering the code
which recognizes the rule. If the semantic predicateis not at the left edge of the
production, then the decision has already been made and it is too late to change rules
based on the semantic predicate. In this case the semantic predicate is evaluated only to
verify that it istrue and istermed a "validation predicate.”

Semantic predicates are not always hoisted into the prediction expression

Even if asemantic predicate is on the left edge, there is no guarantee that it will be part
of the prediction expression. Consider the following two examples:

a : <<semantic-predicate>>? |D gl ob [* al */
| 1Dglob /* a2 */

b : <<semantic-predicate>>? 1D gl ob [* bl */
|  Nunber gl ob [* b2 */

With k=1 rule "a" requires the semantic predicate to disambiguate alternatives al and a2
because the rules are otherwise identical. Rule "b" has a token type of Number in
aternative b2 so it can be distinguished from b1 without evaluation of the semantic
predicate during prediction. In both cases the semantic predicate will be validated by
evaluation inside the rule.

Semantic predicates can't be hoisted into a sub-r{ile; "y" is not exactly equivalent
tO IIX y | y|I

Consider the following grammar extract:

class Expr {
el : (e2)+ END ;
xid: <<is_xid(LT(1)->getText())>>? ID ;
yid: <<is_ yid(LT(1)->getText())>>? ID;

[ * \Wrks ¥/ e2: xid"." yid | yid ;/* al */
/* Doesn't work */ e2: {xid"."}yid; /*a2*
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Alternatives al and a2 appear to be equivalent, but al works on input "abc" and a2
doesn’t because only the semantic predicate of xid is hoisted into production el (but not
the semantic predicate of yid).
Explanation by TJP: These alternatives are not really the samédanghage
described however is the same. The rule:

e2: {xid "."} yid ;
is shorthand for:

e2: (xid"." | /* epsilon */ ) yid ;
Rule e2 has no decision to make here — hence, yid does not get its predicate hoisted.
The decision to be made for the empty alternative does not get the predicate from yid
hoisted because one can't hoist a predic&bea subrule from beyond the subrule. The

program might alter things in the subrule so that the predicate is no longer valid or
becomes valid.

Contributed by Kari Grano (grano@cc.Helsinki.fi).
#117. How to change the reporting of failed semantic predicates

To make a global change #define the macro zzfailed_predicate(string) prior to the
#include of pccts/h/AParser.h

One can change the handling on a case-by-case basis by using the "failed predicate"
action which is enclosed in "[* and "]" and follows immediately after the predicate:

a : <<isTypedef (LT(1)->getText())>>?
[{printf("Not a typedef\n");};] 1D;

Douglas Cuthbertson (Douglas_Cuthbertson.JTIDS@ijtids_gmail.hnanscom.af.mil) has
pointed out thaANTLR doesn’t put the fail action insid€ . . }". This can lead to
problems when the action contains multiple statements.

For an example of conversion of a failed semantic predicate into a parser exception see
Example #16.

#118. A semantic predicate should be free of side-effects because it may be evaluated multiple
times.

Even in simple grammars semantic predicate are often evaluated twice: once in the
prediction expression for a rule and once inside the rule as a validation predicate to
make sure the semantic predicate is valid.

A semantic predicate may be hoisted into more than one prediction expressions.

A prediction expression may be evaluated more than once as part of syntactic predicates
(guess mode).

#119. There’s no simple way to avoid evaluation of a semantic predicate for validation after
use in prediction.

#120. What is the "context" of a semantic predicate ?
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Answer according to TJP: The context of a predicate is the set of k-strings (comprised
of lookahead symbols) that can be matched following the execution of a predicate. For
example,

a : <<p>>7? al pha ;
The context of "p" isLook(al pha) where Look(al pha) isthe set of lookahead k-
stringsfor al pha.

class_nane: <<isO ass(LT(1)->getText())>>? ID;
The context of <<i sC ass ... >>?islID for k=1. Only k=1 isused since only
LT(1) is referenced in the semantic predicate. Itis important to use "—prc on" for proper
operation. The old notation:

class_name: <<LA(1l)==ID ? isC ass(LT(1)->getText()) : 1>>? ID;

/* Cbsol ete notation inconpatiable with -prc on */
shouldn’t be used for new grammars. It is not compatible with "—prc on". The only
reason "—prc on" is not the default is backward compatibility.

Here is an example that won't work because it doesn't have context check in the
predicates:
a . ( class_nanme | Num)
| type_nane
cl ass_nane © <<i s ass(LT(1)->get Text())>>? ID ;
type_name : <<isType(LT(1l)->getText())>>? ID;
The prediction for production one of rule "a" is:
if ( LA(L) in{ ID Num} & isdass(LT(1)->getText())) {...}
Clearly, Num will never satisfy isClass(), so the production will never match.
When you aslaNTLR to compute context, it can check for missing predicates. With —prc
on, for this grammar:
a : b
| <<isVar(LT(1)->getText())>>? ID
| <<isPositive(LT(1)->getText()>>? Num

b ! <<i sType(LT(1)->get Text ()) >>? ID
| Num

ANTLR reports:
warning alt 1 of rule itself has no predicate to resol ve
anbi guity upon { Num}
#121. Semantic predicates, predicate context, and hoisting

The interaction of semantic predicates with hoisting is sometimes subtle. Hoisting
involves the evaluation of semantic predicates in a rule’s parent in order to determine
whether the rule associated with the semantic predicate is "viable". There are two ways
to generate code for semantic predicates which are "hoisted" into a parent rule. With "—
prc off", the default, the behavior of semantic predicates resembles gates which enable
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or disable various productions. With "—prc on" the behavior of semantic predicates
resemble a token for which its token type is determined by run-tine information rather
than by purely lexical information. It is important to understand what "-prc on" does,
when to use semantic predicates, and when to choose an alternative method of using
semantic information to guide the parse. We start with a grammar excerpt which does
not require hoisting, then add a rule which requires hoisting and show the difference in
code with predicate context computation off (the default) and on.

st at enent
. upper
| 1 ower
| nunber
upper Co<<i sWLT(1)->getText())>>? ID ;

| ower © <<isL(LT(1)->getText())>>? ID;
nunber : Nunber ;
The code generated (with one ambiguity warning) resembles:
if (LA(1)==ID && isU) {
upper () ; ,
} elseif (LA(1)==ID && isL) {
I ower () ;

}awifﬂan:mmm){
nunber () ;

Now the need for a non-trivial prediction expression is introduced:

parent : St at enent
| 1D
st at enent
upper

| nunber

RunningANTLR causes one ambiguity warning. The code for "statement” resembles:

if ( (LA(1)==ID || LA(1l)==Nunber) && islU) {
statenent();
} else if (LA(1)==ID {

Even if LA(1) is a Number, the semantic predicate isU() will be evaluated. Depending
on the way that isU is written it may or may not be meaningful. This is exactly the
problem addressed by predicate computation. With "—prc on" one receives two
ambiguity warnings and the code for "statement" resembles:
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Code —prc on Outline format —prc on
if ( (LA(1)==ID || 8&
LA( 1) ==Nunber) && I
( "(LA())==ID) || LA(1)==I D
(LA(1)==ID && i sU)) { LA( 1) ==Nunber
statement (); [
} elseif (LA(1)==ID { ! <===== not ...
LA(1)==ID <=====an ID
i SULT(1)->getText())

The important thing to notice isthe call to isU() is guarded by atest that insures that the
tokenisindeed an ID.

The following does not change anything because ANTLR already knows that the
lookahead context for the semantic predicates can only be"I1D";

upper D (ID? => <<isUYLT(1)->getText())>>? ID;
Consider the following grammars excerpts all built with -k 2 and "—prc on":
#token X "X

#token Y y
#token Aor_ B "a | b"

class P {
statement : ( ax_or_by | bx )* "@

ax_or_hy ' aNanme X

| bNanme Y
bx © bName X
aNane << sa(LT(1)->getText())>>? Aor B ;
bNare © <<isb(LT(1)->getText())>>? A or_B;

With input "bx" the above example issues an error message when the semantic predicate
"aName" fails. The rule "statement" predicts "ax_or_by" because the gate "bName" is
true. In searching for a viable rule to call "statement" finds "ax_or_by" to be the first
alternative with a semantic predicate which is true (or with no semantic predigétie).

option "—prc off" this is the intended mode of operatianTLR doesn't realize that the

second token doesn't match because the second token isn't part of the semantic predicate.
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Outline format —prc off

Outline format —prc on

Al ternative ax_or_bhy

&&
LA(1)==A or _B

lLA(Z)::X
LA( 2) ==Y

I
i sa(LT(1)->get Text (
i sb(LT(1)->get Text (

~——
~——

Al ternative ax_or_bhy

&&
LA(1)==A or _B

lLA(Z)::X
llLﬁ(Z)::Y

1
| LA(1)==A or_B
LA(1)==A or_B
II&&
LA(1)==A or_B
i sa(LT(1)->get Text())

LA(1)==A or_B
i sb(LT(1)->get Text())

Alternative bx

&&
LA(1)==A or _B
LA( 2) ==
i sb(LT(1)->get Text())

Al ternative bx

&&
LA(1)==A or _B
T
I

LA(1)==A or _B
i sb(LT(1) - >get Text ())

If the semantic predicates are expanded inline one gets:

ax_or_hy
; <<isa(LT(1l)->getText())>>? A or_B X
| <<isb(LT(1)->getText())>>? Aor_BY
bx © <<i sh(LT(1)->get Text())>>? A or_B X

One till gets afailure of the semantic predicate for "A_or_B X". By adding areference
to LT(2) onelets ANTLR know that the context is two tokens:

ax_or_by : <<LT(2),isa(LT(1)->getText())>>? A or_B X
| <<LT(2),isb(LT(1)->getText())>>? Aor_BY
bx ' <<LT(2),isb(LT(1)->get Text())>>? A or B X

This performs exactly as desired for the inputs "ax", "by", and "bx".
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Outline format —prc off

Outline format —prc on

Al ternative ax_or_bhy

&&
LA(1)==A or _B
I
LA(2) ==X

LA(2) ==Y
| LT(2),isa(LT(1)-
>get Text ())
LT(2),1sb(LT(1)-
>get Text ())

Al ternative ax_or_by

&&
LA(1)==A or _B

| LA( 2) ==X

LA(2) ==Y
'l !
'l
&&
LA(1)==A or _B
LA( 2) ==
&&
LA(1)==A or_B
! LA( 2) ==Y
&&
LA(1)==A or _B
LA( 2) ==X

LT(2),1sa(LT(1)->get Text())
&&
&&
LA(1)==A or_B
LA(2) ==Y
LT(2),1sb(LT(1)->get Text())

Al ternative bx

&&
LA(1)==A or _B
LA( 2) ==
LT(2),isb(LT(1)->get Text())

Alternative bx

&&

LA(1)==A or _B
i_,lA( 2) ==
|
&&
LA(1)==A or_B
LA(2) ==X

LT(2),isb(LT(1)->get Text())

You can't test more context than is available at the point of definition. The following

won't work:

/* Wong */
/[* Wong */

aNane :
bNane :

<<LT(2),isa(LT(1)->getText())>>? Aor B ;
<<LT(2),isb(LT(1)->getText())>>? A or_B;

One can often avoid problems by rearranging the code:

ax_hby bx : aNanme X
| bNane Y
| bNane X
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or even:
bx_or_by : bName X
| bNanme Y
ax ' aName X

This code works without special effort because the semantic predicatesin each

aternative of "statement” are mutually exclusive. Whether this matches what one

needs for tranglation is a separate question.

| consider semantic predicates and hoisting to be a part of ANTLR which requires some
vigilance. The ANTLR —w2 switch should be used and reports of ambiguities should be
checked.

The code used to format the "if" conditions of the semantic predicates is notes/diagram/

*

See also #12, #17, #142, Example #12, Example #16.
#122. Another example of predicate hoisting

Consider the following grammar fragment which uses semantic predicates to
disambiguate an ID in rules ca and cb:

a: ({b]|] X} B)*"@ ; [* al */
b: clID; [* a2 */
c : {ca} {cb} ; /* a3 */
ca: <<pa(LATEXT(1))>>? ID [* a4 */
ch: <<pb(LATEXT(1))>>? ID, /* a5 */

The code generated for rule ¢ resembles:
if (LA(1)==ID) && pa(LATEXT(1))) { /* bl */
ca(); /*

; b2 */

} else { /* b3 */
goto exit; /* b4 */

; [* b5 */

The test of "pb" does not even appear. The problem is that the element "{cb}" is not at
the left edge of rule c — even though "{ca}" is an optional element. Although "ca" may
match epsilon, its presence in rule c still blocks the hoisting of the predicate in rule cb.

A first effort to solve this problem is to rewrite rule ¢ so as to place "cb" on the left edge
of the production:

c: () [* cl */
| ca {cb} [* c2 */
| cb [* ¢c3 */
; [* c4 */

The code generated for rule ¢ now resembiles:

if (LA(1)==1D) { [* d1 */

; [* d2 */

} else if (LA(l)::ID&&pa(LATEXT§1))d) {;* d3 */
*" 4 *
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Itis clear that rules caand cb are now unreachable because any ID will always match
thetest at line dl. The order of alternatives should be changed to:

c : ca {chb} /* el */
cb /* e2 */
| O /* e3 */
; /* ed */
However our problems aren’t over yet. The code generate for the "(...)*" test in rule "a"
resembles:

while ( (LA(1)==X || LA(1)==Eol || LA(1)==ID) && /* f1 */
(pa(...) || pb(...)) { /*f2’;/*
f3 */
If both pa and pb are false then the body of the rule is never entered even though it
should match an X or and ID using the rule on line a2 when rule ¢ derives epsilon. |
believe this is a problem in the handling of semantic predicates when confronted with

productions which can derive epsilon.
Contributed by Sigurdur Asgeirsson (sigurasg@meanandmice.is).
See also #12, #17, #142, Example #12, Example #16.

Debugging Tipsfor New Users of pccts
#123. A syntax error with quotation marks on separate lines means a problem with newline
line 1. syntax error at "
' mssing ID
#124. Use theNTLR —gd switch to debug via rule trace
#125. Use theNTLR —gs switch to generate code with symbolic names for token tests
#126. How to tracloLG results

If you can't figure out what theLG lexer is doing, try inserting the following code in
classbLcLexerBase member nextToken() near line 140 of pccts/h/DLexer.C. This is
one of the code samples — please see Example #10.

Just below:
tk=(this->*acti ons[accepts[state]])();/* invokes action routine */
Add this:

#i f def DEBUG LEXER
printf("\ntoken type=% | extext=(%) node=%",
parserClassName: : t okenNae(t k),
(_lextext[0]=="\n" && |lextext[1]==0) ?
"new ine" : _|extext,
aut ormat on) ;
if (interactive & !charfull) {
printf(" char=enmpty");
} else {
if (ch=="\n") {
printf(" char=newine");
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} else {
_printf(" char=(%)", ch);

s

printf(" %\n",
(add_erase==1 ? "skip()" :
add_erase==2 ? "nore()" :

)

#endi f
tk: token number of the token just identified
lextext: text of the token just identified
ch: lookahead character

parserClassName: name of the user’s parser class

This must be "hard-coded". In 1.32b6 there is no
way for abLGLexerBase object to determine the
parser which requested the token. See Item #62.

tokenName static member function of {barser ClassName class

Promised for the next releaserafcTs — or see Example
#7 for how to define your own tokenName function.

Switches and Options

#127. USeANTLR —gx switch to suppress regeneration oftthe code and recompilation of
DLGLexer.C

#128. Can't use an interactive scanmeNTLR —gk option) withANTLR infinite lookahead

#129. To makeLG case insensitive use theG —ci switch
The analyzer does not change the text, it just ignores case when matching it against the
regular expressions.
See also #7, #14, #16, #66, #90, #100, #106, #124, #125.

Multiple Source Files
#130. To see how to place main() in a .C file rather than a grammar file (".g") see pccts./
testcpp/8/main.C

#i ncl ude "tokens. h"
#i ncl ude "myParserClass. h"
#i ncl ude "DLG.exer. h"

#131. How to put file scope information into the second file of a grammar with two .qg files

If one did place a file scope action in the secondAilgLR would interpret it as the fail
action of the last rule appearing in the first grammar file.

To place file scope information in the second file #include the generated file in yet
another file which has the file scope declarations.
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Sour ce Code For mat
#132. To place the C right shift operator ">>" inside an action use "\>>"

If you forget to do this you'll get the error message:
war ni ng: M ssing <<; found dangling >>
This doesn’t work with #lexaction or #header because the ">>" will be passed ontoDLG
which has exactly the same problem as ANTLR. The only work-around I've found for
these special cases was to place the following in an #include file "shiftr.h":
#define SHFTR >>
where it is invisible t&aNTLR andDLG. Then | placed a #include "shiftr.h" in the
#lexaction.

No special action is required for the shift left operator.
#133. One cannot continue a regular expression in a #token statement across lines

If one tries to use "\" to continue the linec will think you are trying to match a
newline character. A workaround (not completely equivalent) is to break the regular
expression into several parts and use more() to combine them into a single token.

#134. A #token without an action will attempt to swallow an action which immediately
follows it

This is a minor problem when the #token is created for use with attributes or ASTs
nodes and has no regular expression:

#t oken Cast Expr

#t oken Subscri pt Expr
#t oken ArgunentLi st
<<

Code related to parsing
>>

You'll receive the message:

war ni ng: action cannot be attached to a token nane
(...token nane...); ignored

See also #9, #164.

Miscellaneous

#135. Giverrul e[ A a, B b] > [ X x] the proto isX rul e( ASTBase* ast,int*
sig,A a,B b)
The argument "sig" is the status value returned when using parser exception handling.
If automatic generation of ASTs is not selected, exceptions are not in use, or there are no
inheritance variables then the corresponding arguments are dropped from the argument
list. Thus with ASTs disabled, no parser exception support, and neither upward nor
downward inheritance variables the prototype of a rule would be:

voi d rul e()
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See also #53 and #76.
#136. To remake ANTLR changes must be made to the makefile as currently distributed

Thefirst problem is that generic.h does not appear in the dependency lists. The second
problem isthat the rebuild of antlr.c from antlr.g and of scan.c from parser.dig have
been commented out so as to allow building ANTLR on a machine without ANTLR the
first time when there are problems with tar restoring modification dates for files.

#137. ANTLR reports ... action buffer overflow ..."
There are several approaches:

Usually one can bypass this problem with several consecutive action blocks.
Contributed by M.T. Richter (mtr@globalx.net).

One can place the code in a separate file and use #include. Contributed by Dave
Seidel (dave@numega.com or 75342.2034@compuserve.com).

One can change ANTLR itself. Change ZZLEXBUFSIZE near line 38 of pccty/
antlr/generic.h and re-make.

#138. Exception handling uses status codes and swi t ch statements to unwind the stack rule

by rule
#139. For tokens with complex internal structure add #token expressions to match frequent
errors

Suppose one wants to match something like a floating point number, character literal, or
string literal. These have acomplex internal structure. It is possible to describe them
exactly with DLG. Butisit wiseto do so ? Consider:

"Nff' for’\xff' or "\ nThe result is: " for"\nThe result

is: "
If DLG failsto tolerate small errors like the ones above the result could be dozens of
error messages as it searches for the closing quotation mark or apostrophe.

One solution is to create additional #token definitions which recognize common errors
and either generates an appropriate error message or return a special #token code such
as"Bad_String_Const". This can be combined with a special #lexclass which scans (in
avery tolerant manner) to the end of the construct and generates no additional errors.
This isthe approach used by John D. Mitchell (johnm@alumni.eecs.berkely.edu) in the
recognizer for C character and string literals in Example #2.

Another approach isto try to scan to the end of the token in the most forgiving way
possible and then to validate the token’s syntax imtkeeaction routine.

#140. See pccts/testcpp/2/test.g and testcpp/3/test.g for examples of how to intergnate non-
lexers withpccTs

The examples were written by Ariel Tamches (tamches@cs.wisc.edu).
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#141. Ambiguity, full LL(K), and the linear approximation to LL(K)

It took me awhile to understand in an intuitive way the difference between full LL(k)

lookahead given by the ANTLR —k switch and the linear approximation given by the

ANTLR —ck switch. Most of the time | rusnTLR with —k 1 and —ck 2. Because | didn't
understand the linear approximation | didn't understand the warnings about ambiguity. |
couldn't understand wsNTLR would complain about something which | thought was
obviously parse-able with the lookahead available. | would try to make the messages go
away totally, which was sometimes very hard. If | had understood the linear
approximation | might have been able to fix them easily or at least have realized that
there was no problem with the grammar, just with the limitations of the linear
approximation.

I will restrict the discussion to the case of "—k 1" and "—ck 2".

Consider the following example:

rul el : rule2a | rule2b | rule2c ;
rule2a : AX| BY| CZ;
rule2b : BX| BZ
rule2c : CX;
It should be clear that with the sentence being only two tokens this should be parseable

with LL(2).
Instead, because k=1 and ck=®rLr will produce the following messages:

/pcctsl20/bin/antlr -k 1 -gs -ck 2 -gh exanple.g
ANTLR parser generator Version 1.20 1989-1994

exanple.g, line 23: warning: alts 1 and 2 of the rule itself
anbi guous upon { B}, { XZ}
exanple.g, line 23: warning: alts 1 and 3 of the rule itself

anbi guous upon { C}, { X
The code generated resembles the following:
if (LAC)==A || LA(1)==B || LA(1)==Q) &&
(LA(2)==X || LA(2)==Y || LA(2)==2) then rule2a()
else if (LA(1)==B) &&
(LA(2)==X || LA(2)==2) then rul e2b()
else if (LA(1)==0) &&
(LA(2)==X) then rul e3a()

This might be called "product-of-sums”. There is an "or" part for LA(1), an "or" part for
LA(2), and they are combined using "and". To match, the first lookahead token must be
in the first set and the second lookahead token must be in the second set. It doesn't
matter that what one really wants is:
i f (LA(1)==A && LA(2)==
(LA(1)==B && LA(2) ==
(LA(1) ==C && LA(2)==2)

I

I

then rul e2a()
else if (LA(1)==B && LA(2)==X) |

t

t

|
I
h
|
hen rul e2b()
hen rul e2c()

(LA(1) ==B && LA(2)==2)
else if (LA(1l)==C && LA(2)==
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This happens to be "sums-of-products” but the real problem is that each product
involves one element from LA (1) and one from LA(2) and as the number of possible
tokens increases the number of terms grows as N2. With the linear approximation the
number of terms grows (surprise) linearly in the number of tokens.

ANTLR won't do thiswith k=1 (it would for k=2). It will only do "product-of-sums".

However, all is not lost — you simply add a few well chosen semantic predicates which
you have computed using your l(1), mobile, water-resistant, all purpose, guaranteed-
for-a-lifetime, carbon based, analog computer.

The linear approximation selects for each branch of the "if* a set which may include
more than what is wanted but never selecssl@set of the correct lookahead sets. We
simply insert a hand-coded version of the LL(2) computation. It's ugly, especially in
this case, but it fixes the problem. In large grammars it may not be possible to run
ANTLR with k=2, so this fixes a few rules which cause problems. The generated parser
may run faster because it will have to evaluate fewer terms at execution time.

<<

int use_rule2a() {
if ( LA(1)==A & LA(2)==X) return 1;
if ( LA(1)==B &% LA(2)==Y ) return 1,
if ( LA(1)==C && LA(2)==Z ) return 1;
return O;

}

>>

rul el

%<use_rul e2a()>>? rule2a | rule2b | rule2c ;
rule2za : AX| BY| CZ;
rul e2b BX| BZ;
rule2c : C X ;
Correction due to Monty Zukowski
(monty@tbyte.com)

The real cases I've coded have shorter code sequences in the semantic predicate. |
coded this as a function to make it easier to read and because there is aNJug in

1.3x which prevents semantic predicates from crossing lines. Another reason to use a
function (or macro) is to make it easier to read the generated code to determine when
your semantic predicate is being hoisted too high. It's easy to find references to a
function name with the editor — but difficult to locate a particular sequence of "LA(1)"
and "LA(2)" tests. Predicate hoisting is a separate issue which is described in Item #121.

In some cases of reported ambiguity it is not necessary to add semantic predicates
because nwalid token sequence could get to the wrong rule. If the token sequence were
invalid it would be detected by the grammar eventually, although perhaps not where one
might wish. In other cases the only necessary action is a reordering of the ambiguous
rules so that a more specific rule is tested first. The error messages still appear, but one
can ignore them or place a trivial semantic predicate (i.e. <<1>>?) in front of the later
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rules. This makes ANTLR happy because it thinks you've added a semantic predicate
which fixes things.

#142. What isthe difference between"(. . .)? <<...>>? x"and"(...)? => <<...>>?
X' ?

Thefirst expression is a syntactic predicate followed by a semantic predicate. The

syntactic predicate can perform arbitrary lookahead and backtracking before committing

to the rule. However it won't encounter the semantic predicate until already committed
to the rule — this makes the semantic predicate merely a validation predicate. Not a
very useful semantic predicate.

The second expression is a semantic predicate with a convenient notation for specifying
the look-ahead context. The context expression is used to generate an "if" condition
similar to that used to predict which rule to invoke. It isn't any more powerful than the
grammar analysis implied by thalues you've chosen for theiTLR switches —k and —

ck. It doesn’t have any of the machinery of syntactic predicates andatcdow

arbitrarily large lookahead.

#143. Memory leaks and lost resources

Syntactic predicates use setjmp/longjmp and can cause memory leaks (Item #107).
Delete temporary attributes on rule failure and exceptions (Item #156).

Delete temporary ASTs on rule failure and exceptions (Iltem #81).

A rule that constructs an AST returns an AST even when its caller uses the "!" operator
(Item #74).

(C++ Mode) A rule which applies "I" to a terminal loses the token (Item #75) unless the
ANTLR reference counting option is enabled.

(C Mode) Define a zzd_ast() routine if you define a zzcr_ast() or zzmk_ast() (Item
#163).

#144. Some ambiguities can be fixed by introduction of new #token numbers
For instance in C++ with a suitable definition of the class "C" one can write:

Ca,b,c /* al */
a. funci(b); /* a2 */
a. func2() =c; /* a3 */
a = b; /* a4 */
a.operator =(h); /* a5 */

Statement a5 happens to place an "=" (or any of the usual C++ operators) in a token
position where it can cause a lot of ambiguity in the lookahead. set. One can solve this
particular problem by creating a special #lexclass for things which follow "operator”
with an entirely different token number for such operator strings — thereby avoiding the
whole problem.

/1

[l C++ operator sequences (sonewhat sinplified for these
not es)

11
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[/ operator <type_nane>

Il operator <special characters>
11

/1

There nust be at | east one non-al phanuneri c character
/] between "operator" and operator nane - otherw se they
/1 would be run together - ("operatorint” instead of
H "operator int")

#| excl ass LEX_OPERATOR

#token FILLER Cl "I\ \E]
<<skip();
i f( isalnun(ch) ) node(START);
>>
#t oken COPERATOR_STR NG AR AT SAVA AR AN AT WA RS
<<node( START) ; >>
#token FILLER "\(\) | \[V]

<<node( START) ; ret urn CPERATOR_STRI NG >>
#145. Use "#pragma approx” to replace full LL(k) analysis of arule with the linear
approximation

To be supplied.

(CMode) LA/ILATEXT and NLA/NLATEXT
#146. Do not use LA(i) or LATEXT(i) in the action routines of #token

To refer to the token code (in a#token action) of the token just recognized use NLA.
NLA isan Ivalue (can appear on the left hand side of an assignment statement). To
refer to the text just recognized use zzlextext (the entire text) or NLATEXT. One can
also use zzbegexpr/zzendexpr which refer to the last regular expression matched. The
char array pointed to by zzlextext may be larger than the string pointed to by zzbegexpr
and zzendexpr because it includes substrings accumulated through the use of zzmore().

#147. Care must be taken in using LA (i) and LATEXT(i) in interactive mode (ANTLR switch —
gk)
In interactive modeNTLR doesn't guarantee that it will fetch lookahead tokens until

absolutely necessary. It is somewhat safer to refer to lookahead information in semantic
predicates, but care is still required.

In this table the entries "prev" and "next" means that the item refers to the token which
precedes (or follows) the action which generated the output. For semantic predicate
entries think of the following rule:

rule : <<semantic-predi cate>>? Next Next Next ;
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For rule-action entries think of the following rule:

rule :

LA(1)

zz| ext ext

ZZI NF_LA(0)

ZZI NF_LA(1)
Next Next

zzl ext ext
ZZI NF_LA(0)
ZZI NF_LA(1)

Prev <<action>> Next Next Next;
k=1 k=1 k=3 k=3 k=3
standard infinite standard interactive infinite

Next Next -- -- --

Next Next Next Next Next

Next Next Next -- Next
Next Next
Next Next

Prev Prev -- Prev --

Prev Prev Prev Next Prev

Prev Prev Prev -- Prev
Prev Prev
Next Next

(C Mode) Execution-Time Routines
#148. Callsto zzskip() and zzmore() should appear only in #token actions (or in subroutines

they call)

#149. Use ANTLRs or ANTLRS in line-oriented languages to control the prefetching of
characters and tokens

Write your own input routine and then use ANTLRS (input supplied by string) or ANTLRf
(input supplied by function) rather than plain ANTLR which is used in most of the

examples.

#150. Saving and restoring parser state in order to parse other objects (input files)

Suppose one wants to parse files that "include” other files. The codein ANTLR (antlr.g)
for handling #tokdefs statements demonstrates how this may be done:

granmnar:

i " #t okdef s" Quot edTerm

<<{

zzantlr_state st; /* defined in antlr.h */
struct zzdlg_state dst; /*defined in dl gdef.h */
FI LE *f;

User TokenDef sFi | e = nystrdup( LATEXT(1));
zzsave_antlr_state(&st);
zzsave_dl g_state(&dst);
f = fopen(StripQuotes(LATEXT(1)),"r");
if ( f==NULL ) {
war n(eMsgl("cannot open token defs file "%’ ",
LATEXT(1) +1));}
el se {
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ANTLRY( enumfile(), f, PARSE ENUM FILE);
User Def dTokens = 1;

zzrestore_antlr_state(&st);
zzrestore_dl g_state(&dst);
}>>

The code uses zzsave antlr_state() and zzsave dlg_state() to save the state of the

current parse. The ANTLRM macro specifies a starting rule for ANTLR of "enum_file"

and starts DLG in the PARSE_ENUM_FILE state rather than the default state (which isthe

current state — whatever it might be). Because enum_file() is called without any
arguments it appears that enum_file() does not use ASTs nor pass back any attributes.
Contributed by TJP.

(C Mode) Attributes
#151. Use symbolic tags (rather than numbers) to refer to attributes and ASTSs in rules
prior to version 1.30: rule : XY <<printf("% %", $1, $2);>> ;
with version 1.30: rule : xx: X yy:Y<<printf("%
%", $xX, $yy); >> ;
#152. Rules no longer have attributes:rul e : rl:rulel <<...$rl...;>>won’t work
Actually this still works if one restricts oneself to C mode and osesric labels like
$1 and $2. However numeric labels are a deprecated feature, can’t be used in C++

mode, and can't be used in the same source file as symbolic labels, so it's best to avoid
them.

#153. Attributes are built automatically only for terminals

To construct attributes under any other circumstances one must use
$[ TokenCode, . . . ] or zzcr_attr().

#154. How to access the text or token part of an attribute
The way to access the text, token, (or whatever) part of an attribute depends on the way
the attribute is stored. If one uses taeTs supplied routine "pccts/h/charbuf.h” then:
id: "[a-z]+" <<printf("Token is %\n",$l.text);>> ;
If one uses theccTs supplied routine "pccts/h/charptr.c” and "pccts/h/charptr.h” then:
id: "[a-z]+" <<printf("Token is %\n", $1);>> ;
If one uses theccTs supplied routine "pccts/h/int.h" (which stores numbers only) then:
nunber : "[0-9]+" <<printf ("Token is %\ n", $1);>> ;
(Note the use of "%d" rather than "%s" in the printf() format).
#155. The $0 and $$ constructs are no longer supported — use inheritance instead (Iltem #99)

#156. If you use attributes then define a zzd_attr() to release resources (memory) when an
attribute is destroyed
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#157. Don't pass automatically constructed attributes to an outer rule or sibling rule — they’ll
be out of scope

ThepccTs generated variables which contain automatically generated attributes go out
of scope at the end of the rule or sub-rule that contains them. Of course you can copy
the attribute to a variable that won't go out of scope. If the attribute contains a pointer
which is copied (e.g. pccts/h/charptr.c) then extra caution is required because of the
actions of zzd_attr(). See Item #158.

#158. A charptr.c attribute must be copied before being passed to a calling rule

The pccts/h/charptr.c routines use a pointer to a string. The string itself will go out of
scope when the rule or sub-rule is exited. Why ? The string is copied to the heap when
ANTLR calls the routine zzcr_attr() supplied by charptr.c — howawmer R also calls

the charptr.c supplied routine zzd_attr() (which frees the allocated string) as soon as the
rule or sub-rule exits. The result is that in order to pass charptr.c strings to outer rules
via inheritance it is necessary to make an independent copy of the string (using strdup
for example) or else by zeroing the original pointer to prevent its deallocation.

#159. Attributes created in a rule should be assumed not valid on entry to a fail action

Fail action are "... executed after a syntax error is detected but before a message is
printed and the attributes have been destroyed. However, attributes are not valid here
because one does not know at what point the error occurred and which attributes even
exist. Fail actions are often useful for cleaning up data structures or freeing memory."
(Page 29 of 1.00 manual)

Example of a fail action;
a : <<List *p=NULL;>>
( v:Var <<append(p, $v);>> )+
<<operateOn(p);rmist(p);>>

<<rmist(p);>>
ANANANNNANNANNNAN P Fai | AC'[i on

#160. Use a fail action to destroy temporary attributes when a rule fails

If you construct temporary, local, attributes in the middle of the recognition of a rule,
remember to deallocate the structure should the rule fail. The code for failure goes after
the ";" and before the next rule. For this reason it is sometimes desirable to defer some
processing until the rule is recognized rather than the most convenient place:

#i nclude "pccts/h/charptr.h"
; statenent!
: <<char *|abel =0; >>
{nane: 1 D COLON <<I abel =Myst r dup( $nane) ; >> }
s: st at enent _wi t hout _| abel
<<#O=#(#[ T_statenent, | abel ], #s);
if (label!=0) free(label);
>>
;<<if (label !'=0) free(label);>>
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#161.

#162

In the above exampl e attributes are handled by charptr.* (see the warning, Item #158).
The call to MY strdup() is necessary because $name will go out of scope at the end of

the subrule "{name:ID COLON}". The routine written to construct ASTs from attributes
(invoked by #[ i nt, char *]) knows about this behavior and always makes a copy of
the character string when it constructs the AST. This makes the copy created by the
explicit call to MY strdup redundant once the AST has been constructed. If the call to
"statement_without_label" fails then the temporary copy must be deallocated.

When you need more information for a token than just token type, text, and line number

Passing accurate column information along with the token in C mode when using

syntactic predicates requires workarounds. P.A. Keller (P.A.Keller@bath.ac.uk) has
worked around this limitation of C mode by passing the address of a user-defined struct
(rendered as text using format codes "%p" or "%x") along with (or instead) of the

token’s actual text. This requires changes in syntax error routines and other places
where the token text might be displayed.

. About the pipeline betweenc andANTLR (C Mode)

| find it helpful to think of lexical processing Imy G as a process which fills a pipeline
and ofANTLR as a process which empties a pipeline. (This relationship is exposed in
C++ mode because of tAe&iTLRTokenBuffer class).

With LL_K=1 the pipeline is only one item deep, trivial, and invisible. It is invisible
because one can make a decisioRNmLR to change theLG #lexclass with zzmode()
and have the next token (the one following the one just parsedToy) parsed
according to the new #lexclass.

With LL_K>1 the pipeline is not invisibledbLG will put a number of tokens into the
pipeline andANTLR will analyze them in the same order. How many tokens are in the
pipeline depends on options one has chosen.

Case 1: Infinite lookahead modé (". . ) ?"). The pipeline is as huge as the input
since the entire input is tokenized G beforeANTLR even begins analysis.

Case 2: Demand lookahead (interactive mode). There is a varying amount of
lookahead depending on how mudlirLR thinks it needs to predict which rule to
execute next. This may be zero tokens (or maybe it's one tokenkupkiens.
Naturally, it takes extra work bYNTLR to keep track of how many tokens are in
the pipe and how many are needed to parse the next rule.

Case 3: Normal modeLG stays exactlk tokens ahead @fNTLR. This is a half-
truth. It rounds up to the next power of 2 so that with k=3 it actually has a
pipeline of 4 tokens. If one says "-k 3" the analysis iskst8l, but the pipeline

size is rounded up because TJP decided it was faster to use a bit-wise "and" to
compute the next position in a circular buffer rather than (n+1) mod k.
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(C Mode) ASTs
#163. Define azzd_ast() to recover resources when an AST is deleted
#164. How to place prototypes for routines using ASTs in the #header

Add #include "ast.h" after the #define AST_FIELDS and before any referencesto AST:

#define AST_FIELDS int token;char *text;
#i nclude "ast. h"
#define zzcr_ast(ast,attr,tok, ast Text) \
create_ast(ast, attr,tok,text)
void create_ast (AST *ast,Attr *attr,int tok,char *text);
#165. To free an AST tree use zzfree ast() to recursively descend the AST tree and free all

sub-trees

The user should supply aroutine zzd_ast() to free any resources used by a single node
— such as pointers to character strings allocated on the heap.

#166. Use #define zzAST_DOUBLE to add support for doubly linked ASTs

There is an option for doubly linked ASTs in the module ast.c. It is controlled by
#define zzAST_DOUBLE. Even with zzAST_DOUBLE only the right and down fields
are filled while the AST tree is constructed. Once the tree is constructed the user must
call the routine zzdouble_link(tree,0,0) to traverse the tree and fill in the left and up
fields.
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Extended Examples and Short Descriptions of Distributed Source Code
Examples mentioned in these notes are available as .tar files at the sites mentioned in Item
#1. In keeping with the restrictionsin pCCTS, | have used neither templates nor multiple
inheritance in these examples.

All these examples use AST classes and token classes which are derived from NoLeakAST
and NoL eakToken respectively. These classes maintain a doubly-linked list of all ASTs (or
tokens) which have been created but not yet deleted making it possible to recover memory
for these objects.

#1.

#2.

#3.

#5.

#0.

Modifications to pccts/dlg/output.c to add member functions and data to DLGL exer
header

See files notes/changes/dlg/output* .c

This modification to output.c adds the following code to the DLGL exer class header:

#i fdef DLG.exer| ncl udeFile
#i ncl ude DLG.exer | ncludeFile
#endi f

DLG definitions for C and C++ comments, character literals, and string literals

See filesin notes/cstuff/cstr.g (C mode) or notes/cstuff/cppstr.g (C++ mode).
Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

A simple floating point calculator implemented using PCCTS attributes and inheritance

Thisisthe PcCTs equivalent of the approach used in the canonical yacc example. See
notes/cal ctok/*.

A simple floating point calculator implemented using PccTs ASTs and C++ virtual
functions

See notes/calcAST/*.

In this example an expression tree is built using ASTs. For each operator in the tree
thereis a different class derived from AST with an operator specific implementation of
the virtual function "eval()". Evaluation of the expression is performed by calling eval()
for the root node of the AST tree. Each node invokes eval() for its children nodes,
computes its own operation, and passed the result to its parent in a recursive manner.

An ANTLRToken class for variable length strings allocated from the heap
Seefilesin notes/var/varToken.*

How to extend pccTs C++ classes using the example of adding column information
Seefilesin notes/col/*

This demonstrates how to add column information to tokens and to produce syntax error
messages using thisinformation. This example derives classes from ANTLRToken and
ANTLRTokenBuffer.
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#7. How to pass whitespace through DLG for pretty-printers
Seefiles in notes/ws/*

This demonstrates how to combine several separate DLG tokens (whitespace for this
example) into asingle ANTLR token. It also demonstrates careful processing of tab
characters to generate accurate column information even within comments or other
constructs which use more().

#8. How to prepend a newline to the bLGInputStream via derivation from DLGL exer
See files in notes/prependnl /*

This demonstrates how to derive from DLGLexer in order to replace a user-supplied
DLGI nputStream routine with another which can perform additional processing on the
input character stream before the characters are passed to bLG. Inthiscaseasingle
newline is prepended to theinput. Thisisdone to make it easier to treat the first non-
blank token on aline as a special case, even when it appears on the very first line of the
input file.

#9. How to maintain a stack of #lexclass modes
See files in notes/modestack/*

Thisis based on routines written by David Seidel (dave@numega.com or
75342.2034@compuserve.com) which allow the user to pass a a routine to be executed
when the mode is popped from the stack.

#10. Changesto pccts/h/DLexer.C to aid in debugging of DLG lexers as outlined in [tem #126
See filesin notes/changes/h/DL exer*.C
#11. AT&T Cfront compatible versions of some 1.32b6 files

Seefiles in notes/changes/h/PCCTSAST* .*
#12. When you want to change the token type just before passing the token to the parser
See filesin notes/predbuf/*

This program shows how to reassign token codes to tokens at the time they are fetched
by the parser by deriving from class ANTLRTokenBuffer and changing the behavior of
getToken().

#13. Rewriting agrammar to remove left recursion and perform left factoring

The original grammar:

command : = SET var BECQOVES expr
| SET var BECOMES QUOTE QUOTE
| SET var BECOVES QUOTE expr QUOT
| SET var BECOMES QUOTE command QUOTE

expr : = QUOTE anyChar But Quot e QUOTE

| expr AddCp expr
|  expr Mul O expr
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#14.

The repetition of "SET var BECOMES" for command would require k=4 to get to the
interesting part. Thefirst step isto left-factor "command":
command : = SET var BECQOVES
( expr
| QUOTE QUOTE
| QUOTE expr QUOTE
% QUOTE command QUOTE

The definition of expr uses left recursion which must be eliminated when using ANTLR:

op := AddOp
| Ml O
expr : = QUOTE anyChar But Quot e QUOTE (op expr)*

Since expr begins with QUOTE and all the alternatives of the sub-rule of command also
start with QUOTE. Thistoo can be |eft-factored:
comrand : = SET var BECOMES QUOTE

( expr_suffix
| QUOTE
| expr QUOTE
| command QUOTE
)
expr_suffix := anyChar But Quote QUOTE (op expr)*
expr : = QUOTE expr_suffix
Thefinal grammar can be built by ANTLR with k=2.
#t oken Q A
#t oken SVB "svb" [/l "SET var BECQOVES"
#t oken Qbar "la-z A-Z]*"
#t oken AddCp "\
#t oken Mul Op A
#t oken W5 A <<zzskip();>>
#t oken NL "\n" <<zzskip();>>
r epeat : ( conmmand )+ "@;
conmand : SVB Q ( expr_suffix
| expr Q

<<printf("null comrand\n");>>
| command Q <<printf("comrand\n");>>

expr_suffix : Qbar Q'<<printf("The Qbar expr is (%)\n",$1l.text);>>

{ op expr };
expr : Qexpr_suffix;
op : AddOp | MUl Op

Using the GNU gperf (generate perfect hashing function) with PccTs

The scanner generated by DLG can be very large. For grammars which contain alarge
number of keywords it might make sense to the use of the GNU program "gperf". The
gperf programs attempts to generate a"minimal perfect hash function” for testing
whether an argument is among a fixed set of strings such as those used in the reserved
words of languages. It has alarge number of options to specify space/time trade-offs
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and the style of the code generated (e.g. C++ vs. C, case sensitivity, arraysvs. case
statements, etc.).

Asatest | found that agrammar with 25 keywords caused DLG to generate afile
DLGL exer.C with 22,000 characters. Changing the lexical analysis code to use gperf
resulted in afile bLGLexer.C that was 2,800 characters. The file generated by gperf
was about 3,000 characters.

The gperf program was originally written by Douglas C. Schmidt. It isbased on an
algorithm developed by Keith Bostic. The gperf program is covered by the GNU
General Public License. | do not know what restrictions there are on the output of gperf.
The source code can be found in comp.sources.unix, volume 20.

Among the many FTP sites with comp.sources.unix here are two:

ftp.cis.ohio-state.edu/pub/comp.sources.unix/V olume20/gperf
ftp.informatik.tu-muenchen.de/pub/comp/usenet/comp.sources.unix/gperf

File: keywords.h

#i f ndef KEYWORDS H
#def i ne KEYWORDS H

#i ncl ude "tokens. h"

struct Keywords {

char * nane;
ANTLRTokenType t okenType;
b
Keywords * in_cli_word_set(const char *,int);
#endi f
0
i

gperf -a -k 1,3 -HcliHash -Nin_cli_word_set -ptT >clikeywords.C

ansi prototypes

character positions to use in hash
override name of hash function
override nanmae of in_word_set function
return pointer to struct or 0O

use structure type declaration

don’t copy struct definition to output

—AToTZIXQ

*/

#i ncl ude <string. h>
#i ncl ude "keywords. h"

0,

Keywor ds;
%0
char, CHAR
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string, STRI NG
voi d, VA D

#1 exaction <<

#i ncl ude "keywords. h"
#i nclude <string. h>

Keywor ds * pKeywor d;
>>
#t oken Eof "@

#t oken CHAR "char"
#token STRING "string"

#token VO D "voi d"
#token ID "[a-z A-Z] +"
<<pKeyword=in_cli_word_set (Il extext(),strlen(lextext()));

i f (pKeyword !'= 0) return pKeyword->tokenType;
>>

class P {
#15. Processing counted stringsin DLG

Sometimes literals are preceded by a count field.

3abc identifier 4defg
This example works by storing the count which precedes the string in alocal variable
and then switching to a # exclass which accepts characters one at atime while
decrementing a counter. When the counter reaches zero (or a newline in this example)
the DLG routine switches back to the usual # exclass.

#I éxacti on <<static int count;>>
#t oken HOLLERI TH "[0-9]*"

<<count =atoi (| extext());
printf("Count is %\ n", count);

node( COUNT) ;
>>
#t oken Eof "@
#t oken I D "la-z] *"<<printf("IDis %\n",lextext());>>
#t oken W5 "\ <<ski p();>>
#t oken NL "\ n"
#l excl ass COUNT
#t oken STRI NG "~[1"
<<count--;
if (count == 0) {
nmode( START) ;
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printf ("Hollerith string is \"%\"\n",lextext());
} elseif (ch =="\n") {

node( START) ;
printf("Hollerith string % terninated by newine\n",
lextext());
} else {
nore() ;
>>
class P {
st at enent : ( (HOLLERITH STRING | ID)* NL)+ "@;

See files in notes/hollerith/*

#16. How to convert afailed validation predicate into asignal for treatment by parser
exception handling

See files notes/sim/*

This program intercepts a failed validation predicate in order to pass asigna back up the
call tree. The example includes code which takes the signal returned by the start rule
and invokes the default handler

Thisexampleisnot as clean as | would like because of the difficulty of adding new
behavior to a parser class.

#17. How to use Vern Paxson’s flex witiccTs in C++ mode by inheritance from
ANTLRTOkenStream

See files example.flex and flexLexer.* in notes/flex/*
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#| excl ass 99
#parser 83

#t okcl ass 88

#t okdef s 96, 98, 168
#t oken 91, 201
$token-identifier 106

@ end of file 92 ANTLR warning messageo3
@Operator 144 term definition g? ?
@ variable 178 ANTLR 24, 30,81
" operator 55, 90, 124 ANTLRAbst r act Token 112, 113
" polynomial operator 41 ANTLRComonToken 108
~ operator 88, 98 ANTLRPar ser 84,112,117
~ operator, lexical 95 ANTLRRef Count Token 108
ANTLRToken 112
A ANTLRTokenBuf f er 112,116
ANTLRTokenPt r 112,113
Abstract syntax trees, see AST ANTLRTokenSt r eam 116
Action 104-108 ANTLRTokenType 127
#ast-identifier 126 append 123,187
#1 exact i on directive 100 Arbitrary lookahead, see Syntactic predicate
$token-identifier 106 Argument(s)85, 105, 165
@variable 178 Argument(s), see also Rule
accessing token objects from 108 AST 52, 121-127, 150, 157
g[%?er?egé(f) 105 | operator 55, 90, 125, 163, 183, 184

A operator 55, 90, 124

C interface definitions 157
child-sibling 34, 163, 191
class (C++) hierarchy 119, 166

embedded 87, 170, 181, 182
embedded within ANTLRPar ser class 109
fail-action 87, 105, 108
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command line option, -gt 146 interface 149, 191
construction 121 types, summary 193
constructor 184 C++ declaration syntax 134
node constructor 75 C++ interface 109
operators 90, 124 cat ch 138
parser 35 Child-sibling 191
pattern 170, 173 Child-sibling tree 34
pattern matching 31 Class hierarchy 112
sample tree contents 162 y
support functions 122 AST 119
transformation 32, 163, 182 B ERER 166
guelgertr;g?]taltg%n 184 SORCERER support 187
modification 184 %OkaniRZER trees 166
AST 122 token buffer 116
ast_append 186 token stream 115
AST_FI ELDS 158 tree 119
ast_find_al I 122, 187 Command line arguments
ast _scan 188 ANTLR 145
ASTBase 120, 122 DLG 148
ASTDoubl yLi nkedBase 120 SORCERER 190
Attrib 149, 153 Comments 83
Attribute 153-157 Common prefix 27
Sattribute-identifier 89 config.h 167
comparison to token objects 108 Constructing trees 56
creation 153 consune 118
gef'”'“f?” 183 consumelnti| 97,118, 144
rg‘éﬁg&”é? consumeUnt i | Token 118, 143, 144
standard definitions 156 Context-free |anguages 30
type name (C) 149 Context-sensitive languages 30
cut _between 123, 187
B
Backtracking, see also Syntactic predicate 135 )
Backus-Naur Form, see Grammar Depth-first walk 53
begcol 93 dest ro.y' 120 o
begexpr 93 Deterministic Finite Automata, see DFA
BNF, see Grammar DFA 99, 148 _
bot t om 123, 187 Differentiating polynomials 41
Bottom-up 29 DLG 91
buf f er edToken 116 DLGchar 93

DLGFi | el nput 112
DLG nput St ream 112
C DLGLexer 112,148
c DLGLexer Base 112

i doubl e |ink 120
AST interface 157 _
files 193 down 119, 163, 191
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dup 120, 123 get Li ne 108, 113
get Text 108
get Token 115

E Global exception handler 138
EBNF 87, 94, 169 Gfg&@grs .
Ed,z\?(‘)r dr;aﬁg ng environment 174 FIRST 102
Element, see Rule FOLLOW 27
End of fi,le @92 lookahead set 26
' resource limits 147
endcol 93 syntactic predicate effect upon 137
endexpr 93 ANTLR description 81
Error ANTLR input description 82
classes 101-103 ANTLR, accepted by 30
consuming tokens 143 AST operators 124
errstd 93 C++ 31
fail-action 104, 108 class, error concerning 204
recovery 137 combined ANTLR and SORCERER 168, 194
reporting 137, 189 combined lexical and syntactic
resynchronization 97, 144 specification 30
semantic 127 comparison, LR(k), LL(k) and pred-LL (k) 29
syn 118 context-free 30
token class, relationship to 97 context-sensitive 30
errstd 93 disambiguation 128
Exception handler 137-145 EBNF 30
@operator 144 element, see Rule
code generation changes 142 embedded action 104, 181
global 138, 142 fragment
non-labeled 138 semantic predicate 131
NoSenVi abl eAl t 142 syntactic predicate 133
order of execution 140 label 89, 177
semantic predicate and NoSemViableAlt 142 LALR(k) 29
signals, predefined 139 |eft factoring 44
syntax 138 LL(1) 26
warnings and errors concerning 209 LL(k) 27
Extended BNF, see Grammar LR(0) 29 _ _
parser class (C++) associated with 109, 117,
164
F polynomial 45
. ) polynomial tree patterns 74
Fail-action 87, 104, 105, 108 pred-LL(k) 28
Finite lookahead 137 regular expression syntax 94
FIRST 27,102 rule, see Rule
FOLLOW 27 sensitivity to action placement 31
FORTRAN 185 SORCERER description 161

SORCERER, accepted by 31
start symbol 112

G term definition 26
tree pattern 31
gar bageCol | ect Tokens 118 warnings and errors concerning 203
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Guessing, see also Syntactic predicate 105

H
Hoisting, see also Semantic predicate 128

init 112,117
Init-action 47, 86, 87, 104, 107, 129, 135, 172
insert_after 123, 187

L

LA 117, 146
Labels 89, 177
LALR(k) 29
Language
context-free 30
context-sensitive 30
term definition 26
theory 25
LATEXT 130
| eft 120
Left factoring 44, 134
Left recursion, error concerning 204
Lexeme, see Token
Lexica
ambiguity 95
analyzer 26, 111
class 99
lexclass, warning concerning 202
| ext ext 93
line 92
Line and column information 149
begcol 93
endcol 93
get Li ne 113
line 92
new i ne 92
set _begcol 93
set _endcol 93
trackCol uims 93
zzbegcol 152
zzendcol 152
zzline 151
Linear approximation 137, 145

LL(1) 26

LL(k) 27,88

LL(k) 146

Lookahead 26
arbitrary 137
backtracking 135
computing 205, 209
computing, resource limit 205
context for semantic predicate 130
context, samples 131
context-guard 131
context-guard syntax 88
context-guard, use of 131
delay 146, 207
finite 135, 137
infinite 135
LA 117
linear approximation 137, 145
set 26, 137
token buffer 116
tree mismatch 189

LR(k) 29

LT 117,130

M

make 188

makeToken 108, 113

MATCH 142

mat ch 122,188

M smat chedToken 139

node 94

nore 92

Multiple SORCERER Phases 68

N

new i ne 92

NLA 151

NLATEXT 151

node constructor 186

noGar bageCol | ect Tokens 118
Nondeterministic decision 27
Non-LL(k) 28

Nontransform mode 77

NoSenVi abl eAl t 139, 142

Not operator 88, 98
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Not operator, lexical 95
NoVi abl eAl t 139
nsi bl i ngs 123,188

O

One-or-more 87, 170
Optional 87, 170
Output
ANTLR
class (C++) generated by 84, 109, 111
constructing trees 121
files generated by 109
prefixing symbols 83
SORCERER
class (C++) generated by 164
files (C) generated by 191
files generated by 165
tree transformations 163, 182
types generated by 167

P

Panic 119

pani c 118

Parse tree 34

Parser 23, 26, 117
ambiguous decision, term definition 27
ANTLRPar ser 117
bottom-up 29

recursive descent 26
semantic predicate 127
context-guard 131
SORCERER, introductory example 161
syntactic predicate 133
modified parsing strategy 135
token buffer 116
token type 91
top-down 26
tree matching 32
validating predicate 127
viable production 135
parser.dl g 91
Parsing, see Parser 25
PCCTS 24
PCCTS_AST 119, 122, 166
Predicate, see Syntactic and Semantic predicate
Predicates 127
Pred-LL (k) 28, 29
preorder 120, 123
preorder _action 120,123
preorder _after_action 120, 124
preorder_before_action 120,123
Production, see also Rule production 85
Production, term definition 26

R

Range operator 88, 98, 170, 173
Recognizer, see Parser

class (C++) associated with grammar 84, 164 Recursive-descent parser 26

common prefix 27
disambiguating predicate 128

efficiency, related to syntactic predicate 136

error classes 101-103

error reporting and recovery, see Error 137

exception handler, see Exception handler
guessing 105, 133, 137
hand built 28
invocation of 111
invoking 111
LALR(K) 29

LL(1) 26

LL(k) 27

LR(k) 29
nondeterministic 27
non-LL(k) 28
pred-LL(K) 28

Reducing 29
Regular expression 45, 201
ambiguity detection 148
avoiding conflict, lexical classes 99
syntax 94
token definitions and 91
token type assignment 99
remap. h 84
repl char 92
replstr 92
restoreState 94
Resynchronization, see also Error 143
Return value(s) 105, 165
Return value(s), see Rule
ri ght 119, 163
Rule
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alternative, see production
argument(s) 105
definition 85
element 85, 87, 170
embedded action 104, 181, 182
error string 86
fail-action 87, 104, 105, 108
init-action 86, 104, 107, 172
label 89
labeled reference 177
production 85, 170

viable 135
referenceto 89
return value(s) 105
starting 82
subrule 170
term definition 26
warnings and errors concerning 203

S

saveState 94
Scanner, term definition 26
Semantic predicate 28, 88, 127-133
ambiguity 128
buffer overflow 204
combining multiple 132
context 130, 147
context, computing 131
context-guard 131
disambiguating 128
effect upon syntactic predicate 133
exception handler 142
fall action 128
hoisting 128
init-action, hoisting over 129
side effects 137
syntax 127, 170
use with -gk option 207
validating 127
visible 128
warnings and errorsrelated to 208
set _begcol 93
set _endcol 93
set Down 119, 163
set Eof Token 117
set | nput Stream 94
set Ri ght 119, 163
set Token 112

set Type 119
shal | owCopy 70, 119, 163
Shifting 29
si bl'i ng_i ndex 123, 189
Side effects 137
skip 92
SLi st 167
Smart pointer 114
SORAST 163, 166, 177, 191
SORASTBase 164, 166
SORCERER 24
SORCommDNAST 164, 166
START 99
stdpccts. h 146, 154
STreePar ser 167,192
Subrule, see Rule
syn 118
Syntactic predicate 28, 88, 105, 133-137
backtracking 135
effect upon actions and semantic
predicates 137
effect upon grammar analysis 137
efficiency 136
infinite lookahead 135
init-action, evaluation of 135
modified parsing strategy 135
nested 136
reducing grammar analysistime 205
syntax 133, 170
viable production 135
warnings and errors related to 208
Syntax, term definition 26
Syntax-directed translation 181

T

tail 123,189

tfree 123,188

t make 120, 123

Token
#ast-identifier 107
#l excl ass directive 99
#t okcl ass directive 88
#t okdef s directive 98
#t oken directive 91
$token-identifier 106
ANTLRCommonToken 108
ANTLRRef Count Token 108
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attributes 108 default construction 56
buffer 111, 116 matching 32

class hierarchy 112 parser 35

classes 88, 97 pattern 170

creating an AST node from 122 transformation 42, 68
definition Files 96 Tree, seeaso AST
definitions 91 Trigger function 49, 62
end of file, @92 type 119, 163, 167

error classes 101
garbage collection 113

identifiers 91 U
labeled reference 89, 170, 177
lexical class 99 up 120

not operator, ~ 88, 98
objects, referencing from actions 108

operators 838 \

order and ambiguities 95 . .

range operator %8, 98, 170, 173 Viable production 135
references 88 Visible 128

regular expression 91, 94 Vocabulary symbol, see Token
term definition 26

token_thl 99

type 91, 99 W

#t okdef s directive 96, 168
Cinterface 149
component of ANTLRToken 112

Wild card 97, 170, 172

consistency between ANTLR and 7
- SORCERER 168, 194

definition 167 Zero-or-more 87, 170

g’legeorfstfilrllg Ei%témg 117 zzadvance 151

lexical classesand 99 Zzasi nexv52126

not operator 98 zzauto

range operator 98, 173 zzbegcol 152

sample tree contents 162 ZZbﬁge’(p’ 152

user defined 96 zzchar 151

warning concerning no associated regular zzcl ose_str eam 152

expression 201 ZZCOL 152
warnings and errors concerning 201, 208 zzcr _ast 158
wild card 97, 170, 172 zzcr _attr 149

toten lfi)lI o zzd_attr 108,155
t oken_t zzendcol 152
Top-down parser 26 zzendexpr 152
tracei n 118, 146 zzerr 152
tracigglt 118, 1;12 ZZLEXBUFSI ZE 204, 214
trac ums zz|l extext 151
-transform 182,191 zzline 151
Transform mode 69 zzmat ch_wdf | tsig 144
Transform mode, defining shal | owCopy 119 ,,nk ast 126

Tree
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zznode 152

zznore 151

zzrdfunc 152

zzrdstr 152

zzrdstream 152

zzrepl char 151
zzreplstr 151
zzrestore_dl g_state 152
zzsave_dl g_state 152
zzsetmat ch_wdf I tsi g 144
zzskip 151

zzsyn 142
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