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A Completely Serious, No-Nonsense, 
Startlingly-Accurate Autobiography

Terence John Parr was born in Los Angeles, California, USA in the year of the dragon on
August 17, 1964 during the week of the Tonkin Gulf Crisis, which eventually led us into
the Vietnam Conflict; coincidence? Terence’s main hobbies in California were drooling,
covering his body in mud, and screaming at the top of his lungs. 

In 1970, Terence moved to Colorado Springs, Colorado with his family in search of
better mud and less smog. His formal education began in a Catholic grade school where
he became intimately familiar with penguins and other birds of prey. Terence eventually
escaped private school to attend public junior high only to return to the private sector—
attending Fountain Valley School for the "education" only a prep school can provide.
After being turned down by every college he applied to, Terence begged his way into
Purdue University's School of Humanities. Much to the surprise of his high school's
faculty and the general populace, Terence graduated in 1987 from Purdue with a
bachelor's degree in computer science. 

After contemplating an existence where he had to get up and go to work, Terence quickly
applied to graduate school at Purdue University's School of Electrical Engineering. By
sheer tenacity, he was accepted and then promptly ran off to Paris, France after only one
semester of graduate work. Terence returned to Purdue in the Fall of 1988, eventually
finishing up his master's degree in May 1990 despite his best efforts. Hank Dietz served
as major professor and supervised Terence's master's thesis. 

A short stint with the folks in blue suits during the summer of 1990, convinced Terence
to begin his Ph.D.; again, Hank Dietz was his advisor. He passed the Ph.D. qualifier
exam in January of 1991, stunning the local academic community. After three years of
course work, research, and general fooling around, Terence finished writing his doctoral
dissertation and defended it against a small horde of professors and students on July 1,
1993.

After completing a year of penance with Paul Woodward and Matt O’Keefe at the Army
High Performance Computing Research Center at the University of MN as a postdoctoral
slave, Terence formed Parr Research Corporation and leapt into the unknown on August
1, 1994.

The Java programming language started its inexorable climb to stardom in early 1995.
Terence entered the mad rush of Java startups in late 1995, forming MageLang Institute
(www.MageLang.com) with Tom Burns and Mel Berman, in order to provide
exceptional language training and further the cause of Java. Terence still maintains
PCCTS while working 26 hours a day at MageLang and is allegedly having a pretty good
time.



vi



Language Translation Using PCCTS and C++ 7

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    23

   About this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

   Exactly 1800 Words On Languages and Parsing  . . . . . . . . . . . . . . . . . . . . . . 25

         Bottom-up Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

   ANTLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

   SORCERER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

         Intermediate Representations and Translation. . . . . . . . . . . . . . . . . . . . . 33

         SORCERER Versus Hand-Coded Tree Walking . . . . . . . . . . . . . . . . . . . 35

         What Is SORCERER Good At and Bad At? . . . . . . . . . . . . . . . . . . . . . . . 39

         How Is SORCERER Different Than a Code-Generator Generator?  . . . . 39

 A Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    41

   Evaluating and Differentiating Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

   Language Recognition and Syntax-Directed Interpretation . . . . . . . . . . . . . . . 42

         Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

         Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

         Semantic Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

   Constructing and Walking ASTs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Contents

8  Language Translation Using PCCTS and C++

         AST Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

         Constructing ASTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

         Describing ASTs With SORCERER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

         Adding Actions to Compute Polynomial Values . . . . . . . . . . . . . . . . . . . . 63

   Tree Transformations and Multiple SORCERER Phases . . . . . . . . . . . . . . . . 68

         Tree Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

         Building Trees For Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

         Differentiation Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

         Simplification Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

         Printing Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

         Makefile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ANTLR Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    81

   ANTLR Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

         Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

         #header Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

         #parser Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

         Parser Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

         Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

         Subrules (EBNF Descriptions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

         Rule Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

         Multiple ANTLR Description Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

   Lexical Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

         Token Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

         Regular Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

         Token Order and Lexical Ambiguities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

         Token Definition Files (#tokdefs)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

         Token Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Contents

Language Translation Using PCCTS and C++  9

         Lexical Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

         Lexical Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

         Error Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

         How ANTLR Uses Error Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

   Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

         Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

         Time of Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

         Interpretation of Action Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

         Init-Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

         Fail Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

         Accessing Token Objects From Grammar Actions. . . . . . . . . . . . . . . . . 108

   C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

         The Utility of C++ Classes in Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

         Invoking ANTLR Parsers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

         ANTLR C++ Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

   Intermediate-Form Tree Construction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

         Required AST Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

         AST Support Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

         Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

         Interpretation of C/C++ Actions Related to ASTs . . . . . . . . . . . . . . . . . . 125

   Predicates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

         Semantic Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

         Syntactic Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

   Parser Exception Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

         Exception Handler Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

         Exception Handler Order of Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 140

         Modifications to Code Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

         Semantic Predicates and NoSemViableAlt. . . . . . . . . . . . . . . . . . . . . . . 142



Contents

10  Language Translation Using PCCTS and C++

         Resynchronizing the Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

         The @ Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

   ANTLR Command Line Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

   DLG Command Line Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

   C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

         Invocation of C Interface Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

         Functions and Symbols in Lexical Actions . . . . . . . . . . . . . . . . . . . . . . . 151

         Attributes Using the C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

   Interpretation of Symbols in C Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

         AST Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

SORCERER Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    161

   Introductory Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

   C++ Programming Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

         C++ Class Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

   Token Type Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

   Using ANTLR and SORCERER Together . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

   SORCERER Grammar Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

         Rule Definitions: Arguments and Return Values  . . . . . . . . . . . . . . . . . . 171

         Special Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

         Special Node References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

         Tree Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

         EBNF Constructs in the Tree-Matching Environment . . . . . . . . . . . . . . . 174

         Element Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

   @-Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

   Embedding Actions For Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

   Embedding Actions for Tree Transformations . . . . . . . . . . . . . . . . . . . . . . . . 182



Contents

Language Translation Using PCCTS and C++  11

         Deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

         Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

         Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

   C++ Support Classes and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

   Error Detection and Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

   Command Line Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

   C Programming Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

         Invocation of C Interface SORCERER Parsers  . . . . . . . . . . . . . . . . . . . 191

         Combined Usage of ANTLR and SORCERER. . . . . . . . . . . . . . . . . . . . 194

         C Support Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

ANTLR Warning and Error Messages . . . . . . . . . . . . . . . . . . .    201

   Token and Lexical Class Definition Messages. . . . . . . . . . . . . . . . . . . . . . . . 201

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

   Grammatical Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

   Implementation Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

   Action, Attribute, and Rule Argument Messages . . . . . . . . . . . . . . . . . . . . . . 205

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

         Command-Line Option Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

   Token and Error Class Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

   Predicate Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



Contents

12  Language Translation Using PCCTS and C++

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

   Exception Handling Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

SORCERER Warning and Error Messages . . . . . . . . . . . . . . .    211

   Syntax Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

   Action Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

   Grammatical Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

   Implementation Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

   Command-Line Option Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

         Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

         Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

   Token Definition File Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Templates and Quick Reference Guide . . . . . . . . . . . . . . . . . .    217

   Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

         Basic ANTLR Template  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

         Using ANTLR With ASTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

         Using ANTLR With SORCERER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

   Defining Your Own Tokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

   Defining Your Own Scanner  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

   The genmk Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

   Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

         Rule With Multiple Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

         Rule With Arguments and Return Values . . . . . . . . . . . . . . . . . . . . . . . . 227



Contents

Language Translation Using PCCTS and C++  13

   EBNF Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

         Subrule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

         Optional Subrule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

         Zero Or More Subrule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

         One Or More Subrule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

   Alternative Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

         Token References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

         Rule References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

         Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

         Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

         Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

         Semantic Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

         Syntactic Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

         Generalized Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

         Tree operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

   Lexical Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

   Parser Exception Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

         Rule With Exception Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

         Token Exception Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    233

Notes for New Users of PCCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235





Language Translation Using PCCTS and C++ 15

Tables

TABLE 1. Vocabulary Symbols for Polynomial Language 44

TABLE 2. Differentiation of Polynomial Trees 74

TABLE 3. Simplification of Polynomial Trees 75

TABLE 4. Lexical Items in an ANTLR Description 83

TABLE 5. ANTLR Subrule Format 87

TABLE 6. C++ Interface Symbols Available to Lexical Actions 92

TABLE 7. Regular Expression Syntax 94

TABLE 8. C++ Interface Interpretation of Terms in Actions 106

TABLE 9. Synopsis of C/C++ Interface Interpretation of AST Terms
in Actions 107

TABLE 10. C/C++ Interface Interpretation of AST Terms in Actions 126

TABLE 11. Sample Predicates and Their Lookahead Contexts 131

TABLE 12. Predefined Parser Exception Signals 139

TABLE 13. Sample Order of Search for Exception Handlers 141

TABLE 14. Resynchronization Functions 144

TABLE 15. C Interface Parser Invocation Macros 149

TABLE 16. C Interface Symbols Available to Lexical Actions 151

TABLE 17. Visibility and Scoping of Attributes 155

TABLE 18. C Interface Interpretation of Attribute Terms in Actions 157

TABLE 19. C Interface AST Support Functions 158

TABLE 20. Files Written by SORCERER For C++ Interface 165



Tables

16  Language Translation Using PCCTS and C++

TABLE 21. C++ Files 167

TABLE 22. SORCERER Description Elements 170

TABLE 23. Sample Tree Specification and Graphical Representation Pairs 174

TABLE 24. EBNF Subrules 175

TABLE 25. EBNF Optional Subrules 175

TABLE 26. EBNF Zero-Or-More Subrules 176

TABLE 27. EBNF One-Or-More Subrules 176

TABLE 28. Files Written by SORCERER for C Interface 192



xvii

Foreword

A few years ago, I implemented a programming language called NewtonScript(tm)1,
the application development language for the Newton(R) operating system. You may
not have heard of NewtonScript, but you’ve probably heard of the tool I used to
implement it: a crusty old thing called YACC.

YACC--like the C language, Huffman coding, and the QWERTY keyboard--is an
example of a standard engineering tool that is standard because it was the first "80%
solution". YACC opened up parsing to the average programmer. Writing a parser for
a "little language" using YACC was vastly simpler than writing one by hand, which
made YACC quite successful. In fact, it was so successful, progress on alternative
parsing tools just about stopped.

Not everybody adopted YACC, of course. There were those who needed something
better. A lot of serious compiler hackers stuck with hand-coded LL parsers, to get
maximum power and flexibility. In many cases, they had to, because languages got
more and more complicated--LALR just wasn’t good enough without lots of weird
hacks. Of course, these people had to forego the advantages of using a parser
generator.

So if your language is simple, you use YACC. If your language is too complex, or if
you want good error recovery, or if performance is critical, you write a parser from
scratch. This has been the status quo for about 20 years.

Terence Parr and PCCTS have the potential to jolt us out of this situation. First,
Terence pursued and formalized a new parsing strategy, called predicated LL(k), that
combines the robustness and intelligibility of LL with the generality of LALR.
Second, he implemented a parser generator, called ANTLR, that makes this power
easy to use. Even the dedicated hand-coders may change their minds after a close
look at this stuff. Finally, for those situations where you need to traverse a parse tree
(and who doesn't?), SORCERER applies the ANTLR philosophy to that problem.

1.  NewtonScript is a trademark and Newton is a registered trademark of Apple
Computer, Inc.
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The result is a tool set that I think deserves to take over from YACC and LEX as the
default answer to any parsing problem. And as Terence and others point out, a lot of
problems are parsing problems.

Finally, let me mention that PCCTS is a tool with a face. Although it’s in the public
domain, it’s actively supported by the tireless Terence Parr, as well as the large and
helpful community of users who hang out on comp.compilers.tools.pccts. This book will
help the PCCTS community to grow and prosper, so that one day predicated LL(k) will
rule, YACC will be relegated to the history books, and Terence will finally achieve his
goal of world domination.

Just kidding about that last part.

Walter Smith
Palo Alto, California
January 1996
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Preface

I like tools—always have. This is primarily because I’m fundamentally lazy and would
much rather work on something that makes others productive rather than actually having
to do anything useful myself. For example, as a child, my parents forced me to cut the
lawns on our property. I spent hours trying to get the lawn mower to cut the lawn
automatically rather than simply firing up the mower and walking around the lawn. This
philosophy has followed me into adult life and eventually led to my guiding principle:

“Why program by hand in five days what you can spend 
five years of your life automating?”

This is pretty much what has happened to me with regard to language recognition and
translation. Towards the end of my undergraduate studies at Purdue, I was working for a
robotics company for which I was developing an interpreter/compiler for a language
called KAREL. This project was fun the first time (I inadvertently erased the whole
thing); the second time, however, I kept thinking “I don’t understand YACC. Isn’t there
a way to automate what I build by hand?” This thought kept rolling around in the back of
my head even after I had started EE graduate school to pursue neural net research (my
topic was going to be “Can I replace my lazy brain with a neural net possessing the
intelligence of a sea slug without anybody noticing?”). As an aside, I decided to take a
course on language tool building taught by Hank Dietz.

The parser generator ANTLR eventually arose from the ashes of my course project with
Hank and I dropped neural nets in favor of ANTLR as my thesis project. This initial
version of ANTLR was pretty slick because it was a shorthand for what I’d build by
hand, but at that time ANTLR could only generate LL(1) parsers. Unfortunately, there
were many such tools and unless a tool was developed with parsing strength equal to or
superior to YACC’s, nothing would displace YACC as the de facto standard for parser
generation; although, I was mainly concerned with making myself more efficient at the
time and had no World-domination aspirations.

ANTLR currently has three things that make it generate strong parsers: (i) k>1
lookahead, (ii) semantic predicates (the ability to have semantic information direct the
parse), and (iii) syntactic predicates (selective backtracking). Using more than a single
symbol of lookahead has always been desirable, but is exponentially complex in time
and space; therefore, I decided to change the definition of k>1 lookahead and voila:
LL(k) became possible. (That’s how I escaped Purdue with my Ph.D. before anyone got
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wise). The fundamentals of semantic and syntactic predicates are not my ideas, but,
together with Russell Quong at Purdue, we substantially augmented these predicates to
make them truly useful. These capabilities can be shown in theory and in practice to
make ANTLR parsers stronger than YACC’s pure LALR(1) parsers (our tricks could
easily be added to an LALR(1) parser generator, however). ANTLR also happens to be a
flexible and easy-to-use tool and, consequently, ANTLR has become popular.

Near the end of my Ph.D., I started helping out some folks who wanted to build a
FORTRAN translator at the Army High Performance Computer Research center at the
University of Minnesota. I used ANTLR to recognize their FORTRAN subset and built
trees that I later traversed with a number of (extremely similar) tree-walking routines.
After building one too many of these tree walkers, I thought “OK, I’m bored. Why can’t
I make a tool that builds tree walkers?” Such a tool would parse trees instead of text, but
would be basically the same as ANTLR. SORCERER was born. Building language
translators became much easier because of the ANTLR/SORCERER combination.

The one weak part of these tools has always been their documentation. This book is an
attempt to rectify this appalling situation and replaces the series of disjointed release
notes for ANTLR, DLG (our scanner generator), and SORCERER—the tools of the
Purdue Compiler Construction Tool Set, PCCTS. I’ve also included Tom Moog’s
wonderful notes for the newbie as an appendix.

Giving credit to everyone who has significantly aided this project would be impossible,
but here is a good guess: Will Cohen and Hank Dietz were coauthors of the original
PCCTS as a whole.  Russell Quong has been my partner in research for many years and
is a coauthor of ANTLR. Gary Funck and Aaron Sawdey are coauthors of SORCERER.
Ariel Tamches spent a week of his Christmas vacation in the wilds of Minnesota helping
with the C++ output.  

Sumana Srinivasan, Mike Monegan, and Steve Naroff of NeXT, Inc., provided extensive
help in the definition of the ANTLR C++ output; Sumana also developed the C++
grammar that became the basis for the C++ grammar available for PCCTS. Thom Wood
and Randy Helzerman both influenced the C++ output.  Randy Helzerman has been a
relentless supporter of PCCTS since it was forced upon him. Steve Robenalt pushed
through the comp.compilers.tools.pccts newsgroup and wrote the initial FAQ. Peter
Dahl, then Ph.D. candidate, and Professor Matt O’Keefe (both at the University of
Minnesota) tested versions of ANTLR extensively. Dana Hoggatt (Micro Data Base
Systems, Inc.) and Ed Harfmann tested 1.00 heavily. Anthony Green at Visible
Decisions, John Hall at Worcester Polytechnic Institute, Devin Hooker at Ellery
Systems, Kenneth D.  Weinert at Information Handling Services, Steve Hite, Roy
Levow at Florida Atlantic University, David Seidel, and Loring Craymer at JPL have
been faithful beta testers of PCCTS. Gary Frederick manages the mailing list and offers
many suggestions. Scott Haney at Lawrence Livermore National Laboratory developed
the Macintosh MPW port.
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I thank the planning group for the first annual PCCTS workshop sponsored by Parr
Research Corporation and held at NeXT July 25 and 26, 1994: Gary Funck, Steve
Robenalt, and Ivan Kissiov. The PCCTS ‘95 workshop group included Gary Funck,
Steve Robenalt, and John D. Mitchell. The following people provided reviews of the
initial release of this book (in the order their reviews arrived): Scott Stanchfield, Dan
FitzPatrick, Tuan Doan, Kris Kelley, Alistair G. Crooks, John Mitchell, Chiiwen Liou,
Jim Coker, Asgeir Olafsson, Glenn Lewis, and Michael Richter (who provided a HUGE
number of suggestions). A multitude of PCCTS users have helped refine ANTLR with
their suggestions; I apologize for not being able to mention everyone here who has
supported the PCCTS project. The following people are mentioned so they will buy a
copy of this book: Marjorie Kalman, Jennifer Wilson, Richard Raitt, Jeff Johnson, Cris
DuBord, Paul Stahura, Jim Beaver, Tom Burns, Brett Miller, Rick Guptill, Jim Schwarz,
Ephram Ajaji, Kurt Fickie, Tim Rohaly, Mike Beranek, Thierry Beauvilain, Mike
Hofflinger, Russell “Creature” Cattelan, Kevin “Pugsley” Edgar, Steve Anderson, Paul
Woodward, Gary Lutchansky, and Mark Gruenberg.

Bug reports and general words of encouragement are welcome. Please send mail to

parrt@parr-research.com

You may also wish to visit our newsgroup

comp.compilers.tools.pccts

or the ftp site:

ftp://ftp.parr-research.com/pub/pccts/

All of the tools in PCCTS are public domain. As such, there is no guarantee that the
software is useful, will do what you want, or will behave as you expect. There are most
certainly bugs still lurking in the code and there are probably errors in this book. I hope
the benefits of the tools will outweigh any inconvenience in using them.

Terence John Parr
parrt@MageLang.com (general chatting, social commentary)
parrt@parr-research.com (bug reports, PCCTS questions, etc...)
www.MageLang.com (company website)
www.parr-research.com/~parrt (personal web site)

Irreverent in San Francisco, California
August 1996
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 1 Introduction

Computer language translation has become a common task. While compilers and tools for 
traditional computer languages (such as C, C++, FORTRAN, SMALLTALK or Java) are 
still being built, their number is dwarfed by the thousands of mini-languages for which 
recognizers and translators are being developed. Programmers construct translators for 
database formats, graphical data files (e.g., SGI Inventor, AutoCAD), text processing files 
(e.g., HTML, SGML), and application command-interpreters (e.g., SQL, EMACS); even 
physicists must write code to read in the initial conditions for their finite-element 
computations.

Many programmers build recognizers (i.e., parsers) and translators by hand. They write a 
recursive-descent parser that recognizes the input and either generates output directly, if the 
translation is simple enough to allow this, or builds an intermediate representation of the 
input for later translation, if the translation is complicated. Generally, some form of tree 
data-structure is used as an intermediate representation in this case (e.g., the input "3+4" 
can be conveniently represented by a tree with "+" at the root and "3" and "4" as leaves). In 
order to manipulate or generate output from a tree, the programmer is again confronted with 
a recognition problem—that of matching tree templates against an input tree. As an input 
tree is traversed, each subtree must be recognized in order to determine which translation 
action to execute.

Many language tools aid in translator construction and can be broadly divided into either 
parser generator or the translator generator. 

• A parser generator is a program that accepts a grammatical language 
description and generates a parser that recognizes sentences in that language. 
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• A translator generator is a tool that accepts a grammatical language description 
along with some form of translation specification and generates a program to 
recognize and translate sentences in that language.

This book is a reference guide for the parser generator ANTLR, ANother Tool for Language 
Recognition, and the tree-parser generator SORCERER, which is suited to source-to-source 
translation. SORCERER does not fit into the translator generator category perfectly because 
it translates trees, whereas the typical translator generator can only be used to translate text 
directly, thus hiding any intermediate steps or data structures from the programmer. The 
ANTLR and SORCERER team more closely supports what programmers would build by 
hand. Specifically, ANTLR recognizes textual input and generates an intermediate form 
tree, which can be manipulated by a SORCERER-generated tree-walker; however, both 
tools can be used independently.

While every tool has its strengths and weaknesses, any evaluation must boil down to this: 
Programmers want to use tools that employ mechanisms they understand, that are 
sufficiently powerful to solve their problem, that are flexible, that automate tedious tasks, 
and that generate output that is easily folded into their application. Most language tools fail 
one or many of these criteria. Consequently, parsers and translators are still often written by 
hand. ANTLR and SORCERER have become popular because they were written 
specifically with these issues in mind.

About this book

This book is intended as a reference manual not a textbook or how-to book on language 
translation. Nonetheless, this book is valuable to any scientist, engineer, or programmer who 
has to translate, evaluate, interpret, manipulate or otherwise examine data or language 
statements of any kind. ANTLR and SORCERER (the two main components of PCCTS) 
were designed to be usable by people who are not language experts. Indeed, we are aware of 
two biologists doing biochemical pattern recognition with PCCTS.

For those already familiar with PCCTS, Chapters “ANTLR Reference” on page 81, 
“SORCERER Reference” on page 161, and “Templates and Quick Reference Guide” on 
page 217 will be the most useful. Those familiar with other language tools should skim 
“Chapter 2 - A Tutorial” and then read the ANTLR and SORCERER reference chapters; 
Chapter “Templates and Quick Reference Guide” on page 217, the Section on ANTLR on 
page 30, and the Section on SORCERER on page 31 will also be of interest as they 
summarize the behavior and flavor of the tools. Persons unfamiliar with languages, parsers, 
and language tools should carefully read “Exactly 1800 Words On Languages and Parsing” 
on page 25 and “A Tutorial” on page 41; they should finish up by reading the reference 
chapters on ANTLR and SORCERER.
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We assume that you have a working knowledge of C++ or C. Any knowledge of grammars 
or language tools is extremely helpful.

Exactly 1800 Words On Languages and Parsing

We give only a taste of language theory here and in a very loose fashion. However, it should 
give you enough information and define enough terms to get you through the rest of the 
book.

In the Spring of 1983, as first year computer science students at Purdue University, we were 
assigned the problem of recognizing arithmetic expressions, which could include nested 
parentheses. We were given a specification that described what the expressions looked like 
and were asked to produce a Pascal program that recognized such expressions. The 
specification looked something like

expr-> factor
factor-> term ( "+" term )*
term-> atom ( "*" atom )*
atom-> "(" expr ")"
atom-> INTEGER
atom-> IDENTIFIER

where INTEGER and IDENTIFIER were shorthands for strings of digits and strings of 
letters, respectively; “( "+" term )*” indicated that zero or more "+" term sequences 
could be seen. [Or did we get term and factor mixed up?]. The rules described the structure 
of small pieces of the expression language. For example, 

term-> atom ( "*" atom )*

was read by saying, "a term is an atom followed by zero or more ‘"*" atom’ sequences." 
We remember thinking what a marvelously precise means of describing an infinitely large 
set of input strings.

We decided that our program would have one function to recognize each rule in the 
grammar to keep things nice and neat. In this manner, references to rules would become, 
possibly recursive, procedure calls in our program. References to actual input strings such as 
"(" and INTEGER were all hard coded to eat white space and look for the particular string. 
This got to be repetitive and so we decided to factor out the common operations among all 
input string matching code. Further, it seemed easier to treat input strings as single "words" 
when trying to match the grammatical structure of the expressions. We eventually came up 
with a function called getword that returned an integer describing what input vocabulary 
word was found. It also made sense to assume that some variable would always hold the 
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next word to be matched; that is, after matching a word, the variable would be set to the 
result of calling getword again.

With the benefit of our current knowledge, now we would say that we were provided with a 
grammar consisting of a set of rules that specified the set of all possible sentences in the 
expression language; that is, the grammar specified the syntax of the language. Rules with 
more than one alternative were considered to have multiple productions. Our program was a 
parser that made calls to a lexical analyzer or scanner (our getword function) that broke 
up the input character stream into vocabulary symbols, or tokens. The program we built was 
a classic example of a recursive-descent parser. A generic term for this type of parsing is 
top-down because when you look at the parse tree, the parse starts at the top (the start 
symbol) and works its way down the tree. Recursive-descent parsers are a set of mutually 
recursive procedures that normally use a single symbol of lookahead to make parsing 
decisions. For example, rule atom could be encoded in C as

int atom()
{

// use lookahead to decide which alternative applies
switch ( current_token ) {

case LPAREN :// -> "(" expr ")"
current_token = getword();
expr();
if ( current_token != RPAREN ) error-clause;
current_token = getword();
break;

case INTEGER :// -> INTEGER
current_token = getword();
break;

case IDENTIFIER :// -> IDENTIFIER
current_token = getword();
break;

default :
error-clause (missing LPAREN, INTEGER, or IDENTIFIER)

}
}

where the variable current_token is the lookahead symbol.

Parsers that follow this simple formula can be classified as LL(1), which is a 
shorthand indicating that the input is matched from left-to-right (as opposed to 
backwards) and that parsing decisions are made on the left edge of alternative 
productions with 1 symbol of lookahead. This amounts to saying that LL(1) parsers 
must predict which alternative production will be successfully matched by 
examining only the set of tokens that can be matched first by each production. We 
loosely define this set of tokens that predicts alternatives to be the lookahead set. 
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Normally, this is set of tokens that can be matched first by a production p and is 
called FIRST(p); e.g.,

FIRST("(" expr ")")

is the singleton set {"("}. Occasionally, the FOLLOW set is used to predict alternatives. 
FOLLOW(r) is the set of all tokens that can be matched following references to rule r. For 
example, given the grammar

rule -> optional_ID SEMICOLON
optional_ID -> IDENTIFIER
optional_ID ->

FOLLOW(optional_ID) is { SEMICOLON } because SEMICOLON follows the 
reference to optional_ID. The lookahead set for the empty production is defined to be 
the FOLLOW of the invoking rule. Therefore, SEMICOLON predicts the empty production 
of optional_ID.

When the lookahead sets from alternative productions are not disjoint, we say that the 
parsing decision is nondeterministic or ambiguous. In other words, there is at least one token 
that predicts more than one alternative. Most of the time, this is a bad thing.

LL(1) parsers may be generalized to LL(k) for k>1. For example, the following grammar is 
ambiguous upon token A:

a -> A B C
a -> A D E

where A, B, C, D, and E are some vocabulary tokens. Because both productions have a 
common prefix of A, an LL(1) parser could not determine which production was going to 
successfully match. However, if the parser could see ahead to both the A and what followed 
A on the input stream, the parser could determine which production was going to match. An 
LL(2) parser is such a creature; hence, rule a is unambiguous in the LL(2) sense. A grammar 
for which a deterministic LL(k) parser can be built is LL(k). A language for which an LL(k) 
grammar exists is LL(k).

Because recursive-descent parsers are just piles of code, more sophisticated predictions can 
be made than simple lookahead buffer comparisons. For example, what if two productions 
are exactly alike syntactically, but are semantically different? What if the productions have 
different meanings (usually depending upon context or other information)? Consider the 
following grammar:

element -> ID "(" expression_list ")" // array reference
element -> ID "(" expression_list ")" // procedure call

It is perfectly reasonable to separate these two cases because while they look the same, array 
references and procedure calls are very different semantically. The definition of the ID must 
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be consulted to determine which production to match. In a hand-built parser, you could do 
this:

element()
{

if ( current_token == ID && isarray(current_text) ) {
match an array reference;

}
else if ( current_token == ID && isprocedure(current_text) ) {

match a procedure call;
}
else error;

}

where isarray(current_text) is some function you have defined that returns true if 
the ID is previously defined as an array; isprocedure would be defined similarly. We 
call such a parser a predicated LL(k) parser, pred-LL(k), because at least one parsing 
decision was predicated upon information not available to a pure LL(k) parser. The forms 
isarray(current_text) and isprocedure(current_text) are considered 
semantic predicates. We could modify the grammar as follows:

element -> <<isarray(current_text)>>? ID "(" expression_list ")" 
element -> <<isprocedure(current_text)>>? ID "(" expression_list ")"

where <<...>>? is a semantic predicate in ANTLR notation.

Pred-LL(k) parsing covers another type of predicated parsing decision. Consider the 
following grammar:

a -> (A)* B
a -> (A)* C

No matter how large we make the k of LL(k), a sequence of k+1 A’ s could always be 
presented to the parser, and the parser could not see past the A’s to the B or C. This grammar 
then is non-LL(k) for any fixed value of k. Because there are real grammars that might have 
constructs requiring arbitrary lookahead, we introduced another type of predicate called 
syntactic predicates. A syntactic predicate specifies a grammar fragment that uniquely 
predicts the associated production. The grammar could be modified as follows:

a -> ( (A)* B )? (A)* B
a -> (A)* C

which indicates that, to predict the first production, zero or more A’s must be seen followed 
by a B. If this syntactic predicate fails, the second production will be attempted by default; 
hence, no predicate is required at its left edge. Clearly, this ability to scan arbitrarily ahead, 
renders the class of pred-LL(k) languages much larger than the class of LL(k) languages.



Exactly 1800 Words On Languages and Parsing

Language Translation Using PCCTS and C++ 29

Bottom-up Parsers

And now, for something completely different: a bit about the class of languages and parsers 
called LR(k). LR(k) parsers are considered bottom-up parsers because they try to match the 
leaves of the parse tree as they work their way up the parse tree towards the start symbol at 
the root. A simple way to illustrate LR parsing is to consider a simple language as described 
the following grammar.

a -> A B C
a -> A B D

Loosely speaking, an LR-based parser consumes input symbols until it finds a viable 
complete production; for the purposes of this discussion, all productions are viable. Input 
token A would be tested against both productions. Since A matches neither completely, 
another input token would be consumed, and AB would be compared against the 
productions. Again, a complete right-hand-side would not be matched. The next input 
symbol would be consumed, say token D. At this point, ABD matches the second right-hand-
side and the parser would report that it had found input for rule a. The process of consuming 
input is called shifting, and the process of matching complete right-hand-sides is called 
reducing. (The right-hand-side is reduced to the left-hand-side.) In our example, no 
lookahead is required to determine that a valid sentence was found because the entire 
production can be seen before making a decision. Therefore, this grammar is LR(0).

LR(k) recognizers (and their variants such as LALR(k)) are stronger than LL(k) recognizers 
because the LR strategy uses more context information.  For an LR parser, the context 
consists of all grammar productions consistent with the previously seen input.  This context 
often includes several “pending” grammar productions.  Intuitively, an LR(k) parser 
attempts to match multiple productions at the same time and postpones making a decision 
until sufficient input has been seen.  In contrast, the context for an LL parser is restricted to 
the sequence of previously matched productions and the position within the current 
grammar production being matched. An LL(k) parser must make decisions about which 
production to match without having seen any portion of the pending productions—it has 
access to less context information.  Hence, LL(k) parsers rely heavily on lookahead. We 
note that our LR(0) grammar is LL(3) as a case in point.

On the other hand, our pred-LL(k) parsers are stronger than LR(k) parsers for two reasons. 
First, semantic predicates may be used to parse context sensitive languages. Second, pred-
LL(k) parsers have access to arbitrary lookahead. Further, embedding actions in an LR 
grammar can introduce ambiguities, thus reducing the strength of LR.
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ANTLR

ANTLR constructs human-readable recursive-descent parsers in C or C++ from pred-LL(k) 
grammars, namely LL(k) grammars, for k>1 that support predicates.

Predicates allow arbitrary semantic and syntactic context to direct the parse in a systematic 
way. As a result, ANTLR can generate parsers for many context-sensitive languages and 
many non-LL(k)/LR(k) context-free languages. Semantic predicates indicate the semantic 
validity of applying a production; syntactic predicates are grammar fragments that describe 
a syntactic context that must be satisfied before recognizing an associated production. In 
practice, many ANTLR users report that developing a pred-LL(k) grammar is easier than 
developing the corresponding LR(1) grammar.

In addition to a strong parsing strategy, ANTLR has many features that make it more 
programmer-friendly than the majority of LR/LALR and LL parser generators.

• ANTLR integrates the specification of lexical and syntactic analysis. A 
separate lexical specification is unnecessary because lexical regular 
expressions (token descriptions) can be placed in double-quotes and used 
as normal token references in an ANTLR grammar.

• ANTLR accepts grammar constructs in Extended Backus-Naur Form 
(EBNF) notation.

• ANTLR provides facilities for automatic abstract syntax tree construction.

• ANTLR generates recursive-descent parsers in C/C++ so that there is a 
clear correspondence between the grammar specification and the ANTLR 
output. Consequently, it is relatively easy for non-parsing experts to design 
and debug an ANTLR grammar.

• ANTLR has both automatic and manual facilities for error recovery and 
reporting. The automatic mechanism is simple and effective for many 
parsing situations; the manual mechanism called “parser exception 
handling” simplifies development of high-quality error handling.

• ANTLR allows each grammar rule to have parameters and return values, 
facilitating attribute passing during the parse. Because ANTLR converts 
each rule to a C/C++ function in a recursive descent parser, a rule 
parameter is simply a function parameter. Additionally, ANTLR rules can 
have multiple return values.

• ANTLR has numerous other features that make it a product rather than a 
research project. ANTLR itself is written in highly portable C; its output 
can be debugged with existing source-level debuggers and is easily inte-
grated into programmers’ applications.
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Ultimately, the true test of a language tool’s usefulness lies with the vast industrial 
programmer community. ANTLR is widely used in the commercial and academic 
communities. Thousands of people in virtually all industrialized nations have acquired the 
software since the original 1.00 release in 1992. Several universities currently teach courses 
with ANTLR. Many commercial programs use ANTLR.

For example NeXT, Inc. has completed and is testing a unified C/Objective-C/C++ compiler 
using an ANTLR grammar that was derived directly from the June 1993 ANSI X3J16 C++ 
grammar. (Measurements show that this ANTLR parser is about 20% slower, in terms of 
pure parsing speed, than a hand-built recursive-descent parser that parses only C/Objective-
C, but not C++. The C++ grammar available for ANTLR was developed using the NeXT 
grammar as a guide.) C++ has been traditionally difficult for other LL(1) tools and LR(1)-
based tools such as YACC. YACC grammars for C++ are extremely fragile with regard to 
action placement; i.e., the insertion of an action can introduce conflicts into the C++ 
grammar. In contrast, ANTLR grammars are insensitive to action placement because of their 
LL(k) nature.

The reference guide for ANTLR begins on page 81.

SORCERER

Despite the sophistication of code-generator generators and source-to-source translator 
generators (such as attribute grammar based tools), programmers often choose to build tree 
parsers by hand to solve source translation problems.  In many cases, a programmer has a 
front-end that constructs intermediate form trees and simply wants to traverse the trees and 
execute a few actions.  In such cases, the optimal tree walks of code-generator generators 
and the powerful attribute evaluation schemes of source-to-source translator systems are 
overkill. Programmers would rather avoid the overhead and complexity.

A SORCERER description is essentially an unambiguous grammar (collection of rules) in 
Extended BNF notation that describes the structure and content of a user's trees.  The 
programmer annotates the tree grammar with actions to effect a translation, manipulate a 
user-defined data structure, or manipulate the tree itself.  SORCERER generates a collection 
of simple C or C++ functions, one for each tree-grammar rule that recognizes tree patterns 
and performs the programmer's actions in the specified sequence.
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Tree pattern matching is done efficiently in a top-down manner with an LL(1)-based1 
parsing strategy augmented with syntactic predicates to resolve non-LL(1) constructs (with 
selective backtracking) and semantic predicates to specify any context-sensitive tree 
patterns. Tree traversal speed is linear in the size of the tree unless a non-LL(1) construct is 
specified—in which case backtracking can be used selectively to recognize the construct 
while maintaining near-linear traversal speed.

SORCERER can be considered an extension to an existing language rather than a total 
replacement as other tools aspire to be. Consequently, programmers can use SORCERER to 
perform the well understood, tedious problem of parsing trees, without limiting themselves 
to describing the intended translation problem purely as attribute manipulations.  
SORCERER does not force you to use any particular parser generator or intermediate 
representation.  Its application interface is extremely simple and can be linked with almost 
any application that constructs and manipulates trees.

SORCERER was designed to work with as many tree structures as possible because it 
requires nor assumes no pre-existing application such as a parser generator. However, we 
have made it particularly easy to integrate with trees built by ANTLR-generated parsers. 
Using the SORCERER C interface, the programmer’s trees must have fields down, right, 
and token (which can be redefined easily with the C preprocessor). The SORCERER C++ 
interface is much less restrictive. The programmer must only define a small set of functions 
to allow the tree-parser to walk the programmer’s trees. (This set includes down(), 
right(), and type().)

SORCERER operates in one of two modes: non-transform mode and transform mode. In 
non-transform mode (the default case), SORCERER generates a simple tree parser that is 
best suited to syntax-directed translation. (The tree is not rewritten—a set of actions 
generates some form of output.) In transform mode, SORCERER generates a parser that 
assumes a tree transformation will be done. Without programmer intervention, the parser 
automatically copies the input tree to an output tree. Each rule has an implicit (automatically 
defined) result tree; the result tree of the start symbol is a pointer to the transformed tree. 
The various alternatives and grammar elements may be annotated with "!" to indicate that 
they should not be automatically linked into the output tree. Portions of, or entire, subtrees 
may be rewritten. A set of library functions is available to support tree manipulations. 
Transform mode is specified with the SORCERER -transform command-line option.

1.  We build top-down parsers with one symbol of lookahead because they are usually sufficient to 
recognize intermediate form trees because they are often specifically designed to make translation 
easy; moreover, recursive-descent parsers provide tremendous semantic flexibility.
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Intermediate Representations and Translation

We are often confronted with questions regarding the applicability of SORCERER. Some 
people ask why intermediate representations are used for translation. Those who are already 
familiar with the use of trees for translation ask why they should use SORCERER instead of 
building a tree walker by hand or building a C++ class hierarchy with walk() or 
action() virtual member functions. Compiler writers ask how SORCERER differs from 
code-generator generators and ask what SORCERER is good at. This section and the next 
address these issues to support our design choices regarding source translation and 
SORCERER.

The construction of computer language translators and compilers is generally broken down 
into separate phases such as lexical analysis, syntactic analysis, and translation where the 
task of translation can be handled in one of two ways:

• Actions can be executed during the parse of the input text stream to 
generate output; when the parser has finished recognizing the input, the 
translation is complete. This type of translation is often called syntax-
directed translation.

• Actions can be executed during the parse of the input text stream to con-
struct an intermediate representation (IR) of the input, which will be re-
examined later to perform a translation. These actions can be automatically 
inserted into the text parser by ANTLR as we have shown in previous 
chapters.

The advantages of constructing an intermediate representation are that multiple translators 
can be built without modifying the text parser, multiple simple passes over an IR can be 
used rather than a single complex pass, and, because large portions of an IR can be 
examined quickly (i.e., without rewinding an input file), more complicated translations can 
be performed. Syntax-directed translations are typically sufficient only for output languages 
that closely resemble the input language or for languages that can be generated without 
having to examine large amounts of the input stream, that is, with only local information.

For source to source translation, trees (normally called abstract syntax trees or ASTs) are the 
most appropriate implementation of an IR because they encode the grammatical structure 
used to recognize the input stream. For example, input string "3+4" is a valid phrase in an 
expression language, but does not specify what language structure it satisfies. On the other 
hand, the tree structure

+

3 4
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has the same three input symbols, but additionally encodes the fact that the "+" is an 
operator and that "3" and "4" are operands. There is no point to parsing the input if your 
AST does not encode at least some of the language structure used to parse the input. The 
structure you encode in the AST should be specifically designed to make tree walking easy 
during a subsequent translation phase.

An AST should be distinguished from a parse tree, which encodes not only the grammatical 
structure of the input, but records which rules were applied during the parse. A parse tree for 
our plus-tree might look like:

which is bulkier, contains information that is unnecessary for translation (namely the rule 
names), and harder to manipulate than a tree with operators as subtree roots.

If all tree structures were binary (each node had only two children), then a tree node could 
be described with whatever information was needed for each node plus two child pointers. 
Unfortunately, AST nodes often need more than two children and, worse still, the number of 
child varies greatly; that is, the most appropriate tree structure for an if-statement may be 
an If root node with three children: one for the conditional, one for the then statement list, 
and one for the else clause statement list. In both ANTLR and SORCERER we have 
adopted the child-sibling tree implementation structure where each node has a first-child 
and next-sibling pointer. The expression tree above would be structured and illustrated as

and an if-statement would be structured as

Child-sibling trees can be conveniently described textually in a LISP-like manner:

( parent child1 ... childn )

So, our expression tree could be described as

( + 3 4 )

expr

4

factor factor+

3

+

3 4

If

expr slist slist
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and our If tree as

( If expr slist slist )

The contents of each AST node may contain a variety of things such as pointers into the 
symbol table and information about the associated token object. The most important piece of 
information is the token type associated with the input token from which the node was 
constructed. It is used during a tree walk to distinguish between trees of identical structure 
but different contents. For example, the tree

is considered different than

because of the differences in their token types (which we normally identify graphically via 
node labels). Whether the token type is available as a C struct field or a C++ member 
function is irrelevant.

Tree structures with homogeneous nodes as described here are easy to construct, whereas 
trees consisting of a variety of node types are very difficult to construct or transform 
automatically. 

SORCERER Versus Hand-Coded Tree Walking

The question "Why is SORCERER useful when you can write a tree parser by hand?" is 
analogous to asking why you need a parser generator when you can write text parser by 
hand. The answer is the same, although it is not a perfectly fair comparison because IRs are 
generally designed to be easier to parse than the corresponding input text. Nonetheless, 
SORCERER grammars have the advantage over hand-coded tree parsers because grammars:

• Are much easier and faster to write

• Are smaller than programs

• Are more readable as grammars directly specify the IR structure

• Are more maintainable

• Automatically detect malformed input trees

*

a b

+

3 4
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• Can possibly detect ambiguities/nondeterminisms in your tree description 
(such as when two different patterns have the same root token) that might 
be missed when writing a tree walker by hand

Further, parsing a tree is the same as parsing a text stream except that the tree parser must 
match a two-dimensional stream rather than a one-dimensional stream.

Because a variety of techniques are available to perform tree walks and translations, it’s 
worth looking at some common C and C++ hand-coding techniques and understanding why 
(or how?) SORCERER grammars often represent more elegant solutions.

In C, given homogeneous tree structures, there are two possible tree-walking strategies:

• A simple recursive depth-first search function applies a translation function 
to each node in the tree indiscriminately. The translation function would 
have to test the node to which it was applied in order to perform the 
necessary task. Any translation function would have trouble dealing with 
multiple-node subtrees such as those constructed for if-statements. The 
structure of the IR is not tested for deformities.

• A hand-built parser explicitly tests for the IR structure such as "if root node 
is a If node and the first child is an expression, ...." SORCERER is a sim-
ply a shorthand for this strategy.

Alternatively, you can use C structures with fields that point to the required children rather 
than a list of children nodes. In C++, given tree nodes with homogeneous behavior, you 
could make each node in the tree an appropriate class that had a walk() member function. 
The walk() function would do the appropriate thing depending on what type of tree node 
it was. However, you would end up building a complete tree parser by hand. The class 
member PLUSNode::walk() would be analogous to a rule plus_expr. For example,

class PLUSNode : public AST {
walk()
{

MATCH(PLUS); // match the root
this->down()->walk(); // walk left operand
this->down()->right()->walk(); // walk right operand

}
...

}

versus

plus_expr
: #( PLUS expr expr )
;

where expr would nicely group all the expression templates in one rule. For example,
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expr
: plus_expr
| mult_expr
...
;

whereas in the hand-coded version, there could be no explicit specification for what an 
expression tree looks like—there is just a collection C++ classes with similar names such as 
PLUSNode, MULTNode, and so on:

class PLUSNode : public AST { walk(); ... };
class MULTNode : public AST { walk(); ... };

On the other hand, if we used a variety of tree node types, a set of class members could point 
to the appropriate information rather than using a generic list of children. For example,

class EXPRNode : public AST {...};

class PLUSNode : public EXPRNode {
EXPR *left_opnd;
EXPR *right_opnd;
walk()
{

left_opnd->walk();
right_opnd->walk();

}
};

However, a walk() function is still needed to specify what to do and in what order. A set 
of member pointers is not nearly as powerful as a grammar because a grammar can specify 
operand order and sequences of operands. The order of operands is important during 
translation when you want to generate an appropriate sequence of output. (What if the field 
names were Bill and Ted instead of left_opnd and right_opnd? While these are 
silly names, the point is made that you have to encode order in the names of the fields.) The 
ability to specify sequences is analogous to allowing you to specify structures of varying 
size. For example, the tree structure to describe a function call expression would have to be 
encoded as follows:

class FUNCCallNode : public EXPRNode {
char *id;
List<EXPRNode *> arguments;
walk()
{

for ( each element of arguments list )
arg->walk();

}
};
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Because the number of arguments is unknown at compile time, a list of arguments must be 
maintained and walked by hand; whereas, using SORCERER, because everything is 
represented as a generic list of nodes, you could easily describe such IR structures:

func_call
: #( FUNCCall ID ( expr )* )
;

No matter how fancy you get using C or C++, you must still describe your IR structure at 
least partially with hand-written code rather than with a grammar.

The only remaining reason to have a variety of node class types is to specify what 
translation action to execute for each node. Action execution, too, is better handled 
grammatically. Actions embedded within the SORCERER grammar dictate what to do and, 
according to action position, when to do it. In this manner, it is very obvious what actions 
are executed during the tree walk. With the hand-coded C++ approach, you would have to 
peruse the class hierarchy to discover what would happen at each node. Further, there may 
be cases where you have two identical nodes in an IR structure for which you want to 
perform two different actions, depending on their context. With the grammatical approach, 
you simply place a different action at each node reference. The hand-coded approach forces 
you to make action member functions sensitive to their surrounding tree context, which is 
difficult and cumbersome.

We have argued in this section that a grammar is more appropriate for describing the 
structure of an IR than a hand-coded C function or C++ class hierarchy with a set of 
walk() member functions and that child-sibling trees are very convenient tree-structure 
implementation. Different tree node types in C/C++ are required only when a grammar 
cannot be used to describe the tree’s structure. Translations can also be performed more 
easily by embedding actions within a grammar rather than scattering the actions around a 
class hierarchy. On the other hand, we do not stop you from walking trees with a variety of 
class types. SORCERER will pretend, however, that your tree consists only of nodes of a 
single type.
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What Is SORCERER Good At and Bad At?

SORCERER is not the "silver bullet" of translation. It was designed specifically to support 
source-to-source translations through a set of embedded actions that generate output directly 
or via a set of tree transformation actions.

SORCERER is good at

• Describing tree structures (just as LISP is good at it)

• Syntax-directed translations

• Tree transformations either local such as constant folding and tree 
normalizations or global such as adding declarations for implicitly defined 
variables

• Interpreting trees such as for scripting languages

SORCERER is not good at or does not support

• Optimized assembly code generation

• Construction of “use-def” chains, data-flow dependency graphs, and other 
common compiler data structures, although SORCERER can be used to 
traverse statement lists to construct these data structures with user-supplied 
actions

How Is SORCERER Different Than a Code-Generator Generator?

Compiler code-generator generators are designed to produce a stream of assembly langauge 
instructions from an input tree representing the statements in a source program. Because 
there may be multiple assembly instructions for a single tree pattern (e.g., integer addition 
and increment), a code-generator generator must handle ambiguous grammars. An 
ambiguous grammar is one for which an input sequence may be recognized in more than one 
way by the resulting parser (i.e., there is more than one grammatical derivation). A "cost" is 
provided for each tree pattern in the grammar to indicate how "expensive" the instruction 
issued by the pattern would be in terms of execution speed or memory space. The code-
generator finds the optimal walk of the input tree, which results in the optimal assembly 
instruction stream. SORCERER differs in the following ways:

1. Because code-generators must choose between competing grammar 
alternatives, they must match the entire alternative before executing a 
translation action. However, the ability to execute a translation action at 
any point during the parse is indispensable for source-to-source translation.

2. Code-generator generators were not designed for and cannot perform tree 
rewrites.
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3. Code-generator generators normally do not allow EBNF grammar 
constructs to specify lists of elements. 

4. While code-generator generators handle unambiguous grammars such as 
SORCERER’s as well as ambiguous grammars, they may not handle 
unambiguous grammars as efficiently as a tool specifically tuned for fast, 
deterministic parsing.

It is ironic that most translator generators are code-generator generators, even though most 
translation problems do not involve compilation.  Unfortunately, few practical tools like 
SORCERER exist for the larger scope of source-to-source translation.
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 2  A Tutorial

In this chapter we walk you through a series of progressively complex recognizers, 
interpreters, and translators for polynomials using ANTLR and SORCERER. We assume a 
passing familiarity with the syntax of ANTLR/SORCERER and a basic understanding of 
scanners (regular expressions) and parsers (grammars).

Evaluating and Differentiating Polynomials

The first application developed in this chapter accepts a sequence of polynomial equations of 
the form:

r = ax^n + by^m + ... ;

for some real numbers a, b, m, and n where the polynomial variables (here, x, y and r) may 
be any single lowercase letter (which we call a register or identifier) "a..z". Each 
polynomial is evaluated, and the result is stored into the variable on the left-hand-side of the 
equation. (Here, the result is stored into r.) As output, we print the result after each 
polynomial evaluation. For example,

lonewolf:/projects/Book/tutorial/simple$ poly
a = 5;
storing 5.000000 in a
b = 3a^2 + 2a + 7;
storing 92.000000 in b

where the bold characters are the polynomials to be entered.
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This task uses two equivalent methods: (i) an ANTLR grammar to recognize the input and to 
compute the results, and (ii) an ANTLR grammar to recognize the input and to construct 
ASTs that will be evaluated with a SORCERER grammar.

The second application developed in this tutorial differentiates a polynomial to demonstrate 
the tree transformation abilities of SORCERER. A polynomial of the form:

ax^n + bx^m + ...

is differentiated by manipulating the associated AST and printing the polynomial back out. 
(Those of you who slept through calculus may need to be reminded that the derivative of 
ax^b is (ab)x^(b-1), the derivative of ax is a (even if a is 1) and the derivative of a is 0 where 
a is real and b is an integer.) For example,

lonewolf:/projects/Book/tutorial/rewrite$ ./poly
2x^5 + x^2 + 3x + 9
10x^4+2x+3

where again the bold characters represent the input string.

Language Recognition and Syntax-Directed 
Interpretation

We break up building our polynomial evaluator into three main tasks:

1. Describing the syntax

2. Describing the vocabulary (set of input symbols or tokens)

3. Inserting semantic actions to evaluate the polynomial

Tasks 1 and 2 result in a working polynomial recognizer and task 3 results in a working 
evaluator. Testing a project at each such stage is recommended.

Syntax

Begin the task of building a recognizer for a language by examining a representative set of 
input strings and trying to identify the underlying grammatical structure. In our case, 
equations are strings like:

a = 3;
b = a+5a + 2a^2 + a^8 + 4;
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The best way to describe the input "at a coarse level" is as a series of assignments with an 
identifier on the left and a polynomial on the right, terminated with a semicolon. In grammar 
notation, we write:

interp
: ( ID "=" poly ";" )+
;

where anything inside double quotes is a regular expression describing an input symbol 
(e.g., "=" matches the equal sign) and ID is a label for a regular expression defined 
elsewhere. The (...)+ construct indicates that the enclosed elements should be matched 
one or more times. A polynomial looks like a series of terms added together; hence, we can 
describe a polynomial as:

poly
: term ( "\+" term )*
;

where the (...)* construct indicates that the enclosed elements can be matched zero or 
more times; a polynomial may be composed of a single term; hence, we use a zero-or-more 
rather than one-or-more subrule. Polynomial terms are simple numbers, simple variables, 
variables with exponents, or variables with exponents and coefficients. This fact we encode 
as:

term
: FLOAT
| reg
| reg "^" exp
| coefficient reg "^" exp
;

coefficient
: FLOAT
;

reg : ID
;

exp : reg
| FLOAT
;

where we create rules coefficient, reg and exp to make rule term more clear.

As it appears, rule term would result in a parser that needed to see two symbols ahead (over 
the common production left-prefix reg), instead of the normal one symbol, to determine 
which alternative would match. Specifically, upon input "a", the parser could not determine 
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whether the second or third alternative of term applied; that is, the parser could not see if a 
"^" followed the "a".

In order to demonstrate the principle of "left-factoring" and to make the resulting parser 
behave more naturally, we left-factor rule term so that the resulting parser requires only a 
single symbol of lookahead. (Note that in general, left-factoring is not always possible and 
more than a single symbol of lookahead is beneficial.) Left-factoring a rule means that you 
combine common left-prefixes among the productions. In our case, it is necessary to merge 
alternatives two and three, and one and four into two new, slightly more complicated, 
alternatives:

term
:coefficient { reg { "^" exp } } // merged alts 1 and 4
|reg { "^" exp } // merged alts 2 and 3
;

where the {..} subrule implies that the enclosed elements are optional. In this form, we 
have preserved the grammatical structure, but have reduced the lookahead requirements. For 
example, rule term attempts to match alternative one if the input is a number and attempts 
alternative two if the input is a register.

Vocabulary

Once the grammatical structure of a language is described, the set of vocabulary symbols 
called tokens must be specified. Our polynomial language has only six tokens, which are 
described in Table 1 on page 44. The grammar we have developed so far provides implicit 

TABLE 1. Vocabulary Symbols for Polynomial Language

Regular Expression Description 

"=" The equals sign

";" The semicolon

"\+" The plus sign where the "\" escape character indicates 
that the actual plus sign is required—an unescaped "+" 
is a reserved symbol (meaning one or more as it does at 
the grammatical level)

"^" The exponentiation operator or caret
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definitions (by simply referring to them) for all but numbers and registers, which can be 
described as

#token ID       "[a-z]"
#token FLOAT    "[0-9]+ { . [0-9]+ }"

where we have labeled them for grammar readability.

We must also specify that white space is to be ignored, which is conveniently done with a 
regular expression. The scanner (the code that breaks up the input character stream into 
vocabulary symbols) normally returns after matching a regular expression. However, we 
don’t want to mention a white space vocabulary symbol everywhere within our grammar. 
So, we attach an action to the regular expression, indicating that the matched input symbol 
should be ignored:

#token "[\ \t]+"    <<skip();>>
#token "\n"         <<skip(); newline();>>

where we have separated out the recognition of the newline character so that we can tell the 
scanner to increment the line count (for error reporting).

The recognizer for our language is now complete. In order to test it, we must specify a 
grammar class for ANTLR, inform ANTLR what the type of our token objects is, and 
provide a main program. The following code section is a complete description that will 
result in an executable parser:

<<
#include "PBlackBox.h" // Define a black box for main()
#include "DLGLexer.h" // What’s the scanner called?
typedef ANTLRCommonToken ANTLRToken; // Use a predefined token object

main()
{

"[0-9]+ {.[0-9]+}" A floating point number. Match a series of one or more 
digits (0 through 9) followed optionally by a decimal 
point and more digits 

"[a-z]" An identifier. Our language restricts identifiers to sin-
gle lower-case letters called registers, which simplifies 
associating a value with an identifier.

TABLE 1.  (Continued)  Vocabulary Symbols for Polynomial Language

Regular Expression Description 
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    ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
    p.parser()->interp();// start up the parser
}
>>

#token "[\ \t]+"    <<skip();>>
#token "\n"         <<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT "[0-9]+ { . [0-9]+ }"

class PolyParser {
interp

: ( ID "=" poly ";" )+
;

poly
: term ( "\+" term )*
;

term
: coefficient { reg { "^" exp } }
| reg { "^" exp }
;

coefficient
: FLOAT
;

reg : ID
;

exp : reg
| FLOAT
;

}

A makefile that constructs the executable is written automatically by the genmk tool as:

genmk -CC -class PolyParser -project poly poly.g > makefile

The makefile then has to be modified so that makefile variables PCCTS and CCC (the C++ 
compiler) are set properly. For example,

PCCTS = /usr/local/src/pccts
CCC=g++

The executable called poly can be used to check the syntax of our language, but nothing 
else. For example,
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lonewolf:/projects/Book/tutorial/simple$ poly
a = a + =
line 1: syntax error at "=" missing { ID FLOAT }
line 2: syntax error at "" missing ;

Semantic Actions

To actually compute the values described by the polynomials, we must embed actions within 
the grammar.

Begin by making a basic assumption: every rule except interp returns the value indicated 
by its part of the computation. The result of poly is then the overall result of evaluating the 
polynomial:

poly > [float r]
    :   <<float f;>>
        term>[$r] ( "\+" term>[f] <<$r += f;>> )*
    ;

Rule poly is defined to have a return value called $r via the "> [float r]" notation; this 
is similar to the output redirection character of UNIX shells. Setting the value of $r sets the 
return value of poly.

The first action after the ":" is an init-action (because it is the first action of a rule or 
subrule). The init-action defines a local variable called f that will be used in the (...)* 
loop to hold the return value of the term.

The result of each polynomial is stored into the register specified on the left-hand side of the 
equation.

interp
    :   <<float r;>>
        (   lhs:ID "=" poly>[r] ";" <<store($lhs->getText(), r);>>
        )+
    ;

The result of poly is placed into local variable r, and the register (a..z, in our case) is 
accessed by labeling the token reference that matches the left-hand side. The label lhs 
becomes an ANTLRTokenPtr in the output C++ code, and the standard method getText() 
is used to obtain the text associated with a token object. Our use of the store() function is 
postponed until after the remainder of the grammar is explained.

The rules in the parse tree at the lowest level are easily augmented to return the value of the 
specified polynomial portion.
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coefficient > [float r]
    :   flt:FLOAT       <<$r = atof($flt->getText());>>
    ;

Here, the atof() library function is used compute the floating point value of the text 
matched for the FLOAT token. (That is, string "3.14" is converted to floating value 3.14.) 
Again, the return value is set by assigning a value to $r.

To compute the value of a variable, we call a function to return the value of the referenced 
register; value() is explained shortly.

reg > [float r]
    :   id:ID           <<$r = value($id->getText());>>
    ;

Rule exp is just as simple:

exp > [float r]
    :   reg > [$r]
    |   flt:FLOAT       <<$r = atof($flt->getText());>>
    ;

Rule term, on the other hand, is a bit more complicated. Given input "3x^2", rule term 
chooses alternative one and begins by using a rule reference to coefficient to match "3". 
The "x" is matched by choosing the first alternative of the outermost subrule. After having 
matched rule reference reg, the parser sees the "^2" and applies the first alternative of the 
nested subrule. At that point, the parser has collected the coefficient value (variable c, the 
value stored in the register (variable v), and the value of the exponent (variable e). The 
result of the rule is c times v to the power e.

You may have noticed that what was previously an optional subrule in the grammar without 
actions is now a subrule with an empty alternative. The two are functionally equivalent from 
a language recognition standpoint, but allow us to attach an action to the case when nothing 
is matched for that subrule. For example, input "3x" follows the same path through rule term 
as "3x^2" except that the exponent is missing. The empty path of the nested subrule is taken 
instead. We have added an action "$r=c*v;" to the empty path to compute the correct value 
when the exponent is missing. The other paths of term can be inferred from this description.

term > [float r]
    :   <<float f=0.0, e=0.0, c=0.0, v=0.0;>>
        coefficient > [c]
        (   reg > [v]
            (   "^" exp>[e]     <<$r = c*pow(v,e);>>
            |                   <<$r = c*v;>>
            )
        |                       <<$r = c;>>
        )
    |   reg > [f]
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        (   "^" exp > [e]       <<$r = pow(f,e);>>
        |                       <<$r = f;>>
        )
    ;

Trigger Functions. The functions store() and value() isolate our implementation from 
the grammar a bit and avoid placing actions within the grammar. This is a good principle to 
follow because it allows the behavior or implementation details of a translator to be changed 
without having to actually go inside a possibly dark and scary grammar. Trigger functions 
are defined easily by adding some virtual functions to the class definition:

class PolyParser {
<<
protected:
    virtual void store(char *reg, float v) {;}
    virtual float value(char *reg) {;}
>>

...
}

where we have defined only the two most basic operations needed by our parser. When 
PolyParser is subclassed, these parser triggers can be easily overridden:

class InterpretingPolyParser : public PolyParser {
protected:
    float regs[’z’-’a’+1];
    virtual void store(char *reg, float v)
        {
            regs[reg[0]-’a’] = v;
            printf("storing %f in %s\n", v, reg);
        }
    virtual float value(char *reg) { return regs[reg[0]-’a’]; }
public:
    InterpretingPolyParser(ANTLRTokenBuffer *input)
        : PolyParser(input)
        {
            for (int i=’a’; i<=’z’; i++) regs[i-’a’] = 0.0;
        }
};

Note that we have used a float array indexed by the registers a..z to store and retrieve the 
register values.

The main program is modified to use the subclassed parser:

main()
{
    ParserBlackBox<DLGLexer,
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                   InterpretingPolyParser,
                   ANTLRToken> p(stdin);
    p.parser()->interp();
}

We have now successfully augmented our grammar to compute and print out the values of 
input polynomials. The entire grammar file looks like this:

<<
#include <math.h>

class InterpretingPolyParser : public PolyParser {
protected:

float regs[’z’-’a’+1];
virtual void store(char *reg, float v)

{
regs[reg[0]-’a’] = v;
printf("storing %f in %s\n", v, reg);

}
virtual float value(char *reg)

{ return regs[reg[0]-’a’]; }
public:

InterpretingPolyParser(ANTLRTokenBuffer *input)
: PolyParser(input)
{

for (int i=’a’; i<=’z’; i++) regs[i-’a’] = 0.0;
}

};

#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

main()
{

ParserBlackBox<DLGLexer,
InterpretingPolyParser,
ANTLRToken> p(stdin);

p.parser()->interp();
}
>>

#token "[\ \t]+"<<skip();>>
#token "\n"<<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT"[0-9]+ { . [0-9]+ }"
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class PolyParser {
<<
protected:

virtual void store(char *reg, float v) {;}
virtual float value(char *reg) {;}

>>

interp
: <<float r;>>

( lhs:ID "=" poly>[r] ";" <<store($lhs->getText(),r);>>
)+

;

poly > [float r]
: <<float f;>>

term>[$r] ( "\+" term>[f] <<$r += f;>> )*
;

term > [float r]
: <<float f=0.0, e=0.0, c=0.0, v=0.0;>>

coefficient > [c]
( reg > [v]

( "^" exp>[e]<<$r = c*pow(v,e);>>
|  <<$r = c*v;>>
)

|  <<$r = c;>>
)

| reg > [f]
( "^" exp > [e]<<$r = pow(f,e);>>
| <<$r = f;>>
)

;

coefficient > [float r]
: flt:FLOAT<<$r = atof($flt->getText());>>
;

reg > [float r]
: id:ID <<$r = value($id->getText());>>
;

exp > [float r]
: reg > [$r]
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| flt:FLOAT<<$r = atof($flt->getText());>>
;

}

The makefile has not changed, and the executable can be generated by simply remaking. 
Here is some sample input ouput.

lonewolf:/projects/Book/tutorial/simple$ poly
a=3;
storing 3.000000 in a
b = 10a^2 + 4a + 3;
storing 105.000000 in b

Constructing and Walking ASTs

Another way to evaluate the polynomial equations in the previous section is to have the 
parser construct trees and then walk those trees to compute the results. In this section, we 
remove the actions from the previous example’s grammar, annotate the grammar with a few 
symbols and actions to construct trees, then build a SORCERER grammar to walk our trees 
and compute the results.

AST Design

The structure of intermediate trees is important. The fundamental design goal is that an 
intermediate form should contain not only the contents of the input stream, but should 
represent the structure of the underlying language as well. For example, a linked list of the 
input token objects has complete contents, but has no structure to indicate how the input was 
parsed.

The top-level tree structure for our ASTs will represent the assignment operation as:

where lhs and rhs are left-hand side and right-hand side, respectively. For example, "a=3;" 
will be represented by:

=

lhs rhs
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Polynomials are sums of terms:

for "term1 + term2". For simplicity, we have exactly two children for "+" nodes; hence, 
multiple additions are represented by using the result of one addition as the operand of 
another addition. For example, "term1 + term2 + term3" would be represented as:

With a depth-first walk of the tree, the order of operations is correct—left to right for 
addition.

Terms themselves have the following template:

For example, "3x^2" is represented by:

=

a 3

+

term1 term2

+

+

term1 term2

term3

MULT

coeff EXP

x exponent

MULT

3 EXP

x 2
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Terms without exponents such as "3x" look like:

and terms without coefficients such as "x^2" look like:

Notice that there is no corresponding input token for the multiply operation because it is 
implicit that the term variable is multiplied by its coefficient. This node must be created 
manually with a grammar action.

Constructing ASTs

In this section, we define the appearance of AST node and modify the grammar to construct 
ASTs.

For simplicity, define an AST node to contain simply a pointer to the associated input token 
object. The type of an AST must be called AST, and we have placed its definition in a file 
called AST.h:

#include "ASTBase.h"
#include "AToken.h"

class AST : public ASTBase {
protected:

ANTLRTokenPtr token; // pointer to the token found in input
public:

// called when #[tokentype,string] is seen in an action
AST(ANTLRTokenType tok, char *s) { token = new ANTLRToken(tok,s); }

// constructor called by parser for token references in grammar
AST(ANTLRTokenPtr t) { token = t; }

// define what happens at a node when preorder() is called
void preorder_action() {

char *s = token->getText();

MULT

3 x

EXP

x 2
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printf(" %s", s);
}

};

The main program and required definitions become:

<<
#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"

main()
{
    ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
    ASTBase *root = NULL;
    p.parser()->interp(&root);
}
>>

ANTLR uses a return parameter to return the AST constructed for each rule. As a result, the 
call to the starting rule must pass the address of a tree pointer where the result will be stored; 
this pointer must be initialized to NULL.

Tree building. Eventually, each polynomial is passed to the tree walker for evaluation one 
at a time; a list of all equations is not maintained. The previous starting rule

interp
    :   ( ID "=" poly ";" )+
    ;

is therefore split into the following:

interp!
: ( assign )+
;

assign
: ID "="^ poly ";"! <<#0->preorder(); printf("\n");>>
;

where the ! on the interp header indicates that ANTLR is not to construct trees in that rule 
(a list of assignments is not required). Had we left the rule as written and added the tree 
construction grammar operators (as shown in the assign rule), the trees would not be 
constructed correctly after the first polynomial. The second iteration of the (...)+ loop 
would continue to add to the same tree because each rule constructs exactly one tree.
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The ! on the ";" token in rule assign indicates that a node is not to be constructed in the 
AST for that token. The ^ suffix on the "=" token indicates that the assignment is to be made 
the root of the current subtree (whatever that happens to be at the time the assignment 
operator is matched)—in this case, a lone ID node. Any other token is assumed to be a leaf 
node in the AST. All rule references without ! suffixes return subtrees whose roots are 
made children of the current subtree root. For example, the tree returned from poly is made 
a child of the assignment node with the target of the assignment as the other child.

The call to preorder() for the return tree, #0, in assign walks the tree and prints it out 
in LISP form. For the moment, we print out the tree rather than invoke a SORCERER tree 
walker so that this portion of the evaluator can be tested separately.

To collect the sum of terms is easy to do:

poly
    :   term ( "\+"^ term )*
    ;

The ̂  suffix on the "\+" tells ANTLR to create an addition node and place it as the root of 
whatever subtree has been constructed up until that point for rule poly. The subtrees 
returned by the term references are collected as children of the addition nodes.

The simple terms of the x^e are constructed by the second alternative of term:

| reg { "^"^ exp }

where we have converted the (exp|) back to the simpler optional subrule. The “"^"^” 
may be a bit confusing. The input token is the up-arrow and the grammar operator for AST 
root is also up-arrow. Hence, trees of the form

are created (assuming an exponent is found on the input).

Constructing trees for terms with coefficients is complicated by the fact that a multiply node 
must be created and placed in the tree for which there is no corresponding input symbol. We 
will therefore have to turn off ANTLR’s  default tree construction mechanism to build the 
AST manually. Because the automatic AST mechanism can only be turned off at a rule-level 
granularity, we have term call another rule which builds the appropriate tree manually, thus 
leaving the automatic mechanism to work its magic for the other alternatives in term:

term
: bigterm
| reg { "^"^ exp }
;

^

reg exp
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bigterm!
: c:coefficient

( r:reg
( "^" e:exp

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, #e));>>
| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

where "#[arglist]" is a node constructor translated to "new AST(arglist)" and

#(root, child1, ..., childn)

is converted to a call to the tree constructor

ASTBase::tmake(root, child1, ..., childn, NULL);

The rule references in bigterm are labeled so that the resulting ASTs can be referenced and 
placed in the tree for bigterm. The simplest path through the rule is to match 
coefficient followed by nothing, in which case the <<#0=#c;>> action is executed to set 
the return value (#0) of bigterm. If a coefficient and a register are found, but no exponent, 
the

<<#0 = #(#[MULT,"MULT"], #c, #r);>>

action is executed. It creates a tree with a MULT node at the root and the coefficient and 
register as children, where the #[...] node constructor is translated to a call to AST(...) 
by ANTLR. The #(...) is translated to a call to the tree constructor where the first 
argument is the root node and all subsequent arguments are the children of that node. Trees 
for full terms are constructed in a similar fashion.We define the MULT token type referenced 
within the above actions with

#token MULT

even though no input symbol corresponds to this token type and, therefore, we do not 
specify a regular expression. We also need to access the token type of the exponent operator 
so that the manual tree construction actions can build the appropriate nodes:

#token EXP "^"

Rules coefficient, reg, and exp automatically construct nodes for the single tokens 
they match; nothing further must be specified.

The grammar does not yet pass anything to a tree walker for evaluation, but may be tested to 
see that the correct trees are being produced. In the complete ANTLR description, 
(ASTBase::preorder() is called to dump out the trees):
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<<
#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"

main()
{
    ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
    ASTBase *root = NULL;
    p.parser()->interp(&root);
}
>>

#token "[\ \t]+"    <<skip();>>
#token "\n"         <<skip(); newline();>>
#token ID           "[a-z]"
#token FLOAT        "[0-9]+ { . [0-9]+ }"

#token EXP      "^"
#token MULT

class PolyParser {

interp!
: ( a:assign )+
;

assign
: ID "="^ poly ";"!   <<#0->preorder(); printf("\n");>>
;

poly
: term ( "\+"^ term )*
;

term
: bigterm
| reg { "^"^ exp }
;

bigterm!
: c:coefficient

( r:reg
( "^" e:exp
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<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, 
#e));>>

| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

coefficient
    :  FLOAT
    ;

reg :  ID
    ;

exp :   reg
    |   FLOAT
    ;
}

A makefile may be constructed by invoking

genmk -CC -class PolyParser -project poly -trees poly.g

and placing the output in makefile. Do not forget to fill in appropriate values for the 
PCCTS and CCC make variables. Here is some sample input/output:

lonewolf:/projects/Book/tutorial/testAST$ ./poly
x = 2;
 ( = x 2 )
y = 4x^7 + 3x + 1;
 ( = y ( + ( + ( MULT 4 ( EXP x 7 ) ) ( MULT 3 x ) ) 1 ) )

The corresponding ASTs look like

and

=

x 2
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Describing ASTs With SORCERER

Now that our parser constructs trees, we can evaluate the polynomials by walking them, 
either with a hand-built tree walker or by having SORCERER generate a tree walker 
automatically. SORCERER accepts a grammatical description of your AST structure and 
generates a recursive-descent tree walker that looks very much like what you would build by 
hand. However, tree grammars have the same advantages over hand built tree walkers that 
ANTLR grammars has over hand-built conventional text parsers.

As in our AST design, assignments are of the form

which can easily be described with a rule in SORCERER:

assign
: #( ASSIGN ID poly )
;

Where the ASSIGN token type will be attached to the "=" token in the ANTLR grammar 
later.

Our AST design for polynomials can be described as:

poly: #( MULT poly poly )
| #( ADD poly poly )
| #( EXP poly poly )
| ID

=

y +

+

MULT

4 EXP

x 7

MULT

3 x

1

=

lhs rhs
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| FLOAT
;

where the ADD token type is attached to the "\+" token in the ANTLR grammar later. Rule 
poly lists all the possible subtrees and leaf nodes. Each subtree has a binary operator at the 
root. We do not have to specify a priority in which these particular subtrees can be matched 
against the input tree because the incoming tree has the precedence encoded in the structure 
itself. For example, in the tree

it is clear that the exponentiation is to be done first because it is farther down in the tree than 
the multiplication operator. All children must be computed before the parent operation can 
take place.

The experienced reader will note that our SORCERER grammar is a bit looser than 
necessary. For example, the third alternative can describe the AST structure more precisely:

| #( EXP ID FLOAT )

because “x^e” is only allowed for x as identifiers and e as floats. However, for simplicity, we 
make all operands references to rule poly. Later, we will only need one action to compute 
the value of a FLOAT node (i.e., in the fourth alternative) rather than at each place in a 
“tighter” grammar where FLOAT is referenced.

To satisfy the SORCERER programmer’s interface, we must define what the input trees 
look like by providing type SORAST. We include AST.h and then specify

typedef AST SORAST;

The SORCERER programmer’s interface requires also that each node be able to identify its 
token type. For convenience, we have added a function to retrieve the text associated with 
the token object stored in each AST node. The augmented AST definition looks like this:

#include "ASTBase.h"
#include "AToken.h"
#include "ATokPtr.h"
class AST : public ASTBase {
protected:

ANTLRTokenPtr token;// pointer to the token found on input
public:

// called when #[tokentype,string] is seen in an action

MULT

3 EXP

x 2
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AST(ANTLRTokenType tok, char *s) {token = new ANTLRToken(tok, s);}

// constructor called by parser for token references in grammar
AST(ANTLRTokenPtr t) { token = t; }

// define what happens at a node when preorder() is called
void preorder_action() {
char *s = token->getText();
printf(" %s", s);
}

// every node must know it’s token type
virtual int type() { return token->getType(); }

// convenient to get text of associated input token
char *getText()    { return token->getText(); }

};

We also need to give a class definition around the SORCERER grammar along with our two 
trigger functions.

class EvalPoly {
<<
protected:

virtual float value(char *r) = 0;
virtual void store(char *r, float v) = 0;

>>
...

}

We subclass EvalPoly  and place it in MyEvalPoly.h  to define these trigger functions.

#include "EvalPoly.h"

class MyEvalPoly : public EvalPoly {
protected:

float regs[’z’-’a’+1];
virtual float value(char *r){ return regs[r[0]-’a’]; }
virtual void store(char *r, float v){ regs[r[0]-’a’] = v; }

public:
MyEvalPoly()

{
for (int i=’a’; i<=’z’; i++) regs[i-’a’] = 0.0;

}
};

We have again used a float  array indexed by the registers a..z  to store and retrieve the 
register values.
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Adding Actions to Compute Polynomial Values

To actually compute the value of a polynomial, we add actions to the SORCERER grammar. 
As with the ANTLR only version, we use a few trigger functions to store and retrieve 
register values. Assigning the result of evaluating a polynomial is done in rule assign as 
follows:

assign
: <<float r;>>

#( ASSIGN id:ID poly>[r] )
<<
store(id->getText(), r);
printf("storing %f in %s\n", r, id->getText());
>>

;

We define a local variable, r, with the init-action (first action of a rule or subrule) and place 
the result of poly into it. We call our trigger function store() with the register and the 
result value and print it out. The position of this action is important: It must be done after the 
reference to poly so that poly’s  value is computed before the printf tries to use it.

Computing the value of the polynomial trees is straightforward (one of the design goals of 
our AST, remember?):

poly > [float r]
: <<float p1,p2;>>

#( MULT poly>[p1] poly>[p2] ) <<r = p1*p2;>>

| <<float p1,p2;>>
#( ADD poly>[p1] poly>[p2] ) <<r = p1+p2;>>

| <<float p1,p2;>>
#( EXP poly>[p1] poly>[p2] ) <<r = pow(p1,p2);>>

| id:ID <<r = value(id->getText());>>
| f:FLOAT <<r = atof(f->getText());>>
;

Rule poly returns the floating point result as a return value. Starting with the simplest 
alternatives, you will note that for a floating point tree node, we simply compute the floating 
point value ( atof())  of the text found on the input stream for that token. For an identifier 
(register) node, we call our trigger function value() with the register identifier and return 
the result. The other alternatives of poly take the results of the two operands and perform 
the appropriate operation. Again, the actions must appear after the calls to the operands so 
that both results are available before being used.
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Because rule assign will be called from the ANTLR grammar, no main program is required 
or specified in the SORCERER description. The entire specification is

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class EvalPoly {
<<
protected:

virtual float value(char *r) = 0;
virtual void store(char *r, float v) = 0;

>>

assign
: <<float r;>>

#( ASSIGN id:ID poly>[r] )
<<
store(id->getText(), r);
printf("storing %f in %s\n", r, id->getText());
>>

;

poly > [float r]
: <<float p1,p2;>>

#( MULT poly>[p1] poly>[p2] ) <<r = p1*p2;>>

| <<float p1,p2;>>
#( ADD poly>[p1] poly>[p2] ) <<r = p1+p2;>>

| <<float p1,p2;>>
#( EXP poly>[p1] poly>[p2] ) <<r = pow(p1,p2);>>
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| id:ID <<r = value(id->getText());>>
| f:FLOAT <<r = atof(f->getText());>>
;

}

Now the question is, how do we link our SORCERER tree-walker into our AST-
constructing ANTLR grammar? First, we need to include the tree walker definition:

#header <<
// must be visible to all generated files; hence, must
// be in #header action
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "MyEvalPoly.h"
>>

Second, we need to associate labels with the assignment and addition operator tokens so that 
they may be referenced in our SORCERER description.

#token ASSIGN  "="
#token ADD  "\+"

Third, and finally, we need to place a call in the assign ANTLR rule to invoke the 
SORCERER assign rule (which will evaluate the polynomial):

assign
: ID "="^ poly ";"!

<<walker.assign((SORASTBase **)&#0);>>
;

where our tree walker is defined as a member variable of our parser:

class PolyParser {
<<
protected:
    MyEvalPoly walker;
>>

...
}

The action invokes the assign rule of the tree walker we have declared. The cast is required 
because SORCERER generates tree-walking functions that take generic SORASTBase tree 
pointers not ASTBase pointers (the type of #0).

The augmented ANTLR description is

#header <<
// must be visible to all generated files; hence, must put in #header
#include "AToken.h"
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typedef ANTLRCommonToken ANTLRToken;
#include "MyEvalPoly.h"
>>

<<
#include "PBlackBox.h"
#include "DLGLexer.h"

main()
{

ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p.parser()->interp(&root);

}
>>

#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT "[0-9]+ { . [0-9]+ }"

#token EXP "^"
#token ASSIGN "="
#token ADD "\+"
#token MULT

class PolyParser {

<<
protected:

MyEvalPoly walker;
>>

interp!
: ( a:assign )+
;

assign
: ID "="^ poly ";"!

<<walker.assign((SORASTBase **)&#0);>>
;

poly
: term ( "\+"^ term )*
;
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term:bigterm
| reg { "^"^ exp }
;

bigterm!
: c:coefficient

( r:reg
( "^" e:exp

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, #e));>>
| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

coefficient
: FLOAT
;

reg : ID
;

exp : reg
| FLOAT
;

}

The previous makefile created with

genmk -CC -class PolyParser -project poly -trees poly.g

for testing the AST construction can be modified for use with a SORCERER phase in the 
following ways:

• MAKE variables for SORCERER support code and binaries are added:
SOR_H = $(PCCTS)/sorcerer/h
SOR_LIB = $(PCCTS)/sorcerer/lib
SOR = $(PCCTS)/sorcerer/sor

• CFLAGS variable is changed to add the SORCERER directory:
CFLAGS = -I. -I$(ANTLR_H) -I$(SOR_H)
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• SRC variable is changed to add the SORCERER phase and support file:
SRC = poly.cpp \
      PolyParser.cpp \
      $(ANTLR_H)/AParser.cpp $(ANTLR_H)/DLexerBase.cpp \
      $(ANTLR_H)/ASTBase.cpp $(ANTLR_H)/PCCTSAST.cpp \
      $(ANTLR_H)/ATokenBuffer.cpp $(SCAN).cpp \
      eval.cpp EvalPoly.cpp \
      $(SOR_LIB)/STreeParser.cpp

• OBJ variable is changed in a similar way.

• Target poly.o is changed to depend on the SORCERER phase include file:
poly.o : $(TOKENS) $(SCAN).h poly.cpp EvalPoly.h
        $(CCC) -c $(CFLAGS) -o poly.o poly.cpp

• Finally, we add targets for all the SORCERER output and support code:
EvalPoly.o : EvalPoly.cpp
        $(CCC) -c $(CFLAGS) EvalPoly.cpp

eval.o : eval.cpp
        $(CCC) -c $(CFLAGS) eval.cpp

eval.cpp EvalPoly.cpp EvalPoly.h : eval.sor
        $(SOR) -CPP eval.sor

STreeParser.o : $(SOR_LIB)/STreeParser.cpp
        $(CCC) -o STreeParser.o -c $(CFLAGS) \
                $(SOR_LIB)/STreeParser.cpp

Tree Transformations and Multiple SORCERER Phases

The previous example used SORCERER to evaluate polynomial assignments. We now 
consider how to use SORCERER to perform tree rewrites. We shall differentiate 
polynomials of the form:

ax^n + bx^m + ...

for integers a, b, n and m; we assume a single free variable x. As before, we will construct 
trees for the polynomials using an ANTLR grammar, but then manipulate the trees using 
three SORCERER phases. For example, given input

x^2 + 2x + 1
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the ANTLR grammar constructs the tree

The first SORCERER phase differentiates the polynomial, yielding:

or 

2x^1 + 2 + 0

The second phase normalizes the polynomial so that additions of zero are removed and 
exponents of one are removed:

or 

2x + 2

The third and final phase prints the tree back out in polynomial form.

SORCERER will be used in transform mode where it makes the following assumptions:

• There is an input tree from which an output tree is derived.
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• If given no instructions to the contrary, SORCERER automatically copies the input 
tree to the output tree.

• Each rule has a result tree, and the result tree of the first rule called is considered 
the final, transformed tree. This added functionality does not affect the normal rule 
argument and return value mechanism.

• Labels attached to grammar elements are generally referred to as label, where label 
refers to the input tree subtree in nontransform mode.

The output tree in transform mode is referred to as label. The input node, 
for token references only, can be obtained with label_in. The input 
subtree associated with rule references is unavailable after the rule has 
been matched—the tree pointer points to where that rule left off parsing. 
Input nodes in transform mode are not needed very often.

• A C++ variable exists for any labeled token reference even if it is never set by 
SORCERER.

• The output tree of a rule can be set and/or referenced as #rule.

Tree Definition

To satisfy SORCERER in transform mode (in this situation), you must tell SORCERER how 
to construct new trees with shallowCopy() where t->shallowCopy() returns a 
duplicate of node t with all node pointers NULL. If you refer to #[...] in an action, you 
must also define a constructor with the appropriate arguments. The AST used in this 
application differs from the previous in that we have added

• An integer iconst field to make decrementing exponents easier

• Constructors for all #[...] node constructor references

• A definition of shallowCopy()

The AST is defined as follows:

#ifndef AST_h
#define AST_h

#include "ASTBase.h"
#include "AToken.h"
// use smart pointers ANTLRTokenPtr for garbage collection
#include "ATokPtr.h"

class AST : public ASTBase {
protected:
    ANTLRTokenPtr token;
    int iconst;
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public:
/* These ctor are called when you ref node constructor #[tok,s] */
AST(ANTLRTokenType tok, char *s)

{
token = new ANTLRToken(tok, s);
if ( token->getType() == INT )

 iconst = atoi(token->getText());
}

AST(ANTLRTokenType tok, int i)
{

token = new ANTLRToken(tok, "");
iconst = i;

}
// called by ANTLR grammar during initial tree construction
AST(ANTLRTokenPtr t)

{
token = t;
if ( token->getType() == INT )
{

iconst = atoi(token->getText());
}

}
AST(const AST &t)     // copy constructor

{
token = t.token;
iconst = t.iconst;
setDown(NULL);
setRight(NULL);

}
void preorder_action() {

char *s = token->getText();
if ( token->getType()==INT ) printf(" %d", iconst);
else printf(" %s", s);

}
virtual int type() { return token->getType(); }
char *getText()    { return token->getText(); }
void setText(char *s) { token->setText(s); }
virtual PCCTS_AST *shallowCopy() { return new AST(*this); }
int getIConst() { return iconst; }
void setIConst(int i) { iconst = i; }
void decIConst() { iconst--; }
};

#endif
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Building Trees For Differentiation

The grammar needed to build the ASTs is a slightly modified version of poly.g used in the 
previous examples. The differences are that assignments are not recognized and coefficients 
and exponents must be simple integers. (Support code differences are commented in the 
grammar.)

<<
#include “PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"
#include "DiffPoly.h" // include the .h files for 3 phases
#include "SimplifyPoly.h"
#include "PrintPoly.h"

main()
{

ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p.parser()->poly(&root)

}
>>

#token "[\ \t]+"<<skip();>>
#token "\n" <<skip(); newline();>>

#token EXP "^"
#token ADD "\+" // def used by SORCERER phases
#token MULT // used by SORCERER phases

class PolyParser {

poly
: <<

AST *result=NULL, *nresult=NULL;
DiffPoly dp; // define the 3 phases
PrintPoly pp;
SimplifyPoly sp;
>>
term ( "\+"^ term )*
<<
// execute the 3 phases, creating new tree after phase 1,2
dp.poly((SORASTBase **)&(#0), (SORASTBase **)&result);
sp.poly((SORASTBase **)&result, (SORASTBase **)&nresult);
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pp.poly((SORASTBase **)&nresult);
printf("\n");
>>

;

term:bigterm
| reg { "^"^ INT }
;

bigterm!
: c:coefficient

( r:reg
( "^" e:exp

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, #e));>>
| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

coefficient
: INT
;

reg : ID
;

exp : INT
;

}

#token ID "[a-z]"
#token INT "[0-9]+"
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Differentiation Phase

Differentiating our polynomial trees follows these rules:

The complete SORCERER diffierentiation grammar looks like this:

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class DiffPoly {

poly:   #( ADD poly poly )
    |   term
    ;

term!:  i:INT                   <<#term = #[INT,"0"];>>
    |   id:ID                   <<#term = #[INT,"1"];>>

 |   #( ex:EXP id:ID e:INT )
        <<

 #term = #(#[MULT,"MULT"], #[INT,e->getIConst()], #(ex,id,e));
  e->decIConst();     // decrement exponent

TABLE 2. Differentiation of Polynomial Trees

Isolated integers Set the value to 0.

Isolated identifiers Replace with an integer node whose value is 1

Terms with exponents and no 
coefficient

Make a new tree with a multiply at the root, the pre-
vious exponent as the first child, and the previous 
term as the second child. Decrement the exponent of 
the term.

Terms with no exponent, but 
with coefficient

Replace the term with the coefficient node.

Terms with coefficients and 
exponents

Multiply the exponent into the coefficient and decre-
ment the exponent.
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        >>
    |   #(  m:MULT ct:INT

(   #( ex:EXP idt:ID et:INT )
 <<

// just reset the integer values everywhere
ct->setIConst(ct->getIConst()*et->getIConst());
et->decIConst();
#term = #(m, ct, #(ex,idt,et));
>>

 | ID
<<#term = ct;>> // just return the INT node

            )
        )
    ;

}

The action

#term = #[INT,"0"];

sets the output tree for rule term to be a single node (using the #[...] node constructor). 
The action

#term = #(#[MULT,"MULT"], #[INT,e->getIConst()], #(ex,id,e));

creates a tree with a new MULT node as the root, a new INT node as the first child and the 
previous term, #(ex,id,e), because the second child where nodes labeled by ex, id 
and e are duplicates made automatically from the input nodes.

Simplification Phase

Differentiation can leave unusual terms such as additions of zero and exponents of one. A 
SORCERER phase to simply polynomials is useful. The following simple rules are used:

TABLE 3. Simplification of Polynomial Trees

Addition of 0+0 Return NULL.

Addition of integer with value 0 to any 
other term, t

Return t.

Terms t with exponents of value 1 Return just t.



A Tutorial

76 Language Translation Using PCCTS and C++ 

The following SORCERER transform mode phase implements these rules.

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class SimplifyPoly {

poly:   #( MULT poly poly )
    |!  #( a:ADD p:poly q:poly )
        <<
        if ( p==NULL ) #poly = q;
        else if ( q==NULL ) #poly = p;
        else {

int leftIdentity=( p->type()==INT && p->getIConst()==0 );
       int rightIdentity=( q->type()==INT && q->getIConst()==0);
        if ( leftIdentity && !rightIdentity ) #poly = q; //0+x
        else if ( !leftIdentity && rightIdentity ) #poly = p; //x+0
         else if (!leftIdentity&&!rightIdentity) #poly = #(a,p,q);
        else #poly = NULL; //0+0
        }
        >>
    |!  #( e:EXP v:poly ex:INT )
        <<
        if ( ex->getIConst()==1 ) #poly = v;
        else #poly = #(e,v,ex);
        >>
    |   id:ID
    |   i:INT
    ;

}
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Printing Phase

After simplification, the only remaining task is to print the differentiated tree back out in 
polynomial form, which is done in SORCERER nontransform mode:

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class PrintPoly {

poly:   #( MULT poly poly )
    |   #( ADD poly <<printf("+");>> poly )
    |   #( EXP poly <<printf("^");>> poly )
    |   id:ID   <<printf("%s",id->getText());>>
    |   i:INT   <<printf("%d",i->getIConst());>>
    ;

}

The order of action execution is important. Because we wish to print out polynomials in 
infix notation (as opposed to postfix, for example), we insert the

printf("+");

action in between the printing of the two operands of the ADD root node.

Makefile

The following makefile has targets for the parser and three tree-walking phases. This was 
initially generated by the genmk program, but was modified by hand for the SORCERER 
targets.

#
# PCCTS makefile for: poly.g
#
# Created from: genmk -CC -class PolyParser -project poly -trees poly.g
#
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# PCCTS release 1.32
# Project: poly
# C++ output
# DLG scanner
# ANTLR-defined token types
#
TOKENS = tokens.h
#
# The following filenames must be consistent with ANTLR/DLG flags
DLG_FILE = parser.dlg
ERR = err
HDR_FILE =
SCAN = DLGLexer
PCCTS = /projects/pccts
ANTLR_H = $(PCCTS)/h
SOR_H = $(PCCTS)/sorcerer/h
SOR_LIB = $(PCCTS)/sorcerer/lib
BIN = $(PCCTS)/bin
ANTLR = $(BIN)/antlr
DLG = $(BIN)/dlg
SOR = $(PCCTS)/sorcerer/sor
CFLAGS = -I. -I$(ANTLR_H) -g -I$(SOR_H)
AFLAGS = -CC -gt
DFLAGS = -C2 -i -CC
GRM = poly.g
SRC = poly.cpp \

PolyParser.cpp \
$(ANTLR_H)/AParser.cpp $(ANTLR_H)/DLexerBase.cpp \

 $(ANTLR_H)/ASTBase.cpp $(ANTLR_H)/PCCTSAST.cpp \
 $(ANTLR_H)/ATokenBuffer.cpp $(SCAN).cpp \
 diff.cpp DiffPoly.cpp print.cpp PrintPoly.cpp simplify.cpp \ 

SimplifyPoly.cpp \
 $(SOR_LIB)/STreeParser.cpp 
OBJ = poly.o \
 PolyParser.o \
 AParser.o DLexerBase.o \
 ASTBase.o PCCTSAST.o \
 ATokenBuffer.o $(SCAN).o \
 diff.o DiffPoly.o print.o PrintPoly.o simplify.o SimplifyPoly.o \
 STreeParser.o
ANTLR_SPAWN = poly.cpp PolyParser.cpp \

PolyParser.h $(DLG_FILE) $(TOKENS)
DLG_SPAWN = $(SCAN).cpp $(SCAN).h
CCC=g++
CC=$(CCC)
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poly : $(OBJ) $(SRC)
$(CCC) -o poly $(CFLAGS) $(OBJ)

poly.o : $(TOKENS) $(SCAN).h poly.cpp PrintPoly.h DiffPoly.h 
SimplifyPoly.h

$(CCC) -c $(CFLAGS) -o poly.o poly.cpp

PolyParser.o : $(TOKENS) $(SCAN).h PolyParser.cpp PolyParser.h
$(CCC) -c $(CFLAGS) -o PolyParser.o PolyParser.cpp

$(SCAN).o : $(SCAN).cpp $(TOKENS)
$(CCC) -c $(CFLAGS) -o $(SCAN).o $(SCAN).cpp

$(ANTLR_SPAWN) : $(GRM)
$(ANTLR) $(AFLAGS) $(GRM)

$(DLG_SPAWN) : $(DLG_FILE)
$(DLG) $(DFLAGS) $(DLG_FILE)

AParser.o : $(ANTLR_H)/AParser.cpp
$(CCC) -c $(CFLAGS) -o AParser.o $(ANTLR_H)/AParser.cpp

ATokenBuffer.o : $(ANTLR_H)/ATokenBuffer.cpp
$(CCC) -c $(CFLAGS) -o ATokenBuffer.o $(ANTLR_H)/ATokenBuffer.cpp

DLexerBase.o : $(ANTLR_H)/DLexerBase.cpp
$(CCC) -c $(CFLAGS) -o DLexerBase.o $(ANTLR_H)/DLexerBase.cpp

ASTBase.o : $(ANTLR_H)/ASTBase.cpp
$(CCC) -c $(CFLAGS) -o ASTBase.o $(ANTLR_H)/ASTBase.cpp

PCCTSAST.o : $(ANTLR_H)/PCCTSAST.cpp
$(CCC) -c $(CFLAGS) -o PCCTSAST.o $(ANTLR_H)/PCCTSAST.cpp

#
# SORCERER crud
#
PrintPoly.o : PrintPoly.cpp

$(CCC) -c $(CFLAGS) PrintPoly.cpp

print.o : print.cpp
$(CCC) -c $(CFLAGS) print.cpp

print.cpp PrintPoly.cpp PrintPoly.h : print.sor
$(SOR) -CPP print.sor
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DiffPoly.o : DiffPoly.cpp
$(CCC) -c $(CFLAGS) DiffPoly.cpp

diff.o : diff.cpp
$(CCC) -c $(CFLAGS) diff.cpp

diff.cpp DiffPoly.cpp DiffPoly.h : diff.sor
$(SOR) -transform -CPP diff.sor

SimplifyPoly.o : SimplifyPoly.cpp
$(CCC) -c $(CFLAGS) SimplifyPoly.cpp

simplify.o : simplify.cpp
$(CCC) -c $(CFLAGS) simplify.cpp

simplify.cpp SimplifyPoly.cpp SimplifyPoly.h : simplify.sor
$(SOR) -transform -CPP simplify.sor

STreeParser.o : $(SOR_LIB)/STreeParser.cpp
$(CCC) -o STreeParser.o -c $(CFLAGS) $(SOR_LIB)/STreeParser.cpp

clean:
rm -f *.o core poly

scrub:
rm -f *.o core poly $(ANTLR_SPAWN) $(DLG_SPAWN)
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 3 ANTLR Reference

This chapter tells you what you need to know so you can construct parsers via ANTLR 
grammars, how to interface a parser to your application, and how to insert actions to 
generate output. Unless otherwise specified, actions and other source code is C++.

[Professors Russell Quong, Hank Dietz, and Will Cohen all have contributed greatly to the 
overall development of PCCTS in general. In particular, much of the intellectual property of 
ANTLR was conceived with Russell Quong.]

ANTLR Descriptions

Generally speaking, an ANTLR description consists of a collection of lexical and syntactic 
rules describing the language to be recognized and a collection of user-defined semantic 
actions describing what to do with the input sentences as they are recognized. A single 
grammar may be broken up into multiple files and multiple grammars may be specified 
within a single file, but the basic sequence follows something like:

header action
actions
token definitions
rules
actions
token definitions
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For example, the following is a complete ANTLR description that recognizes the vocabulary 
of B. Simpson:

<<
typedef ANTLRCommonToken ANTLRToken;
#include "DLGLexer.h"
#include "PBlackBox.h"
main() {
    ParserBlackBox<DLGLexer, // create a parser

 BSimpsonParser,
ANTLRToken> bart(stdin);

    bart.parser()->a(); // invoke parser
}
>>

#token  "[\ \t\n]+"  <<skip();>> // ignore whitespace
#token MAN "man"

class BSimpsonParser {
a   :   "no" "way" MAN
    |   "don’t" "have" "a" "cow" "man"
    ;
}

More precisely, ANTLR descriptions conform to the following grammar:

grammar
: ( "#header" ACTION

| "#parser" STRING
| "#tokdefs" STRING
)*
{ "class" ID "\{" }
( ACTION | lexaction | directive | global_exception_handler )*
( rule | directive )+
( ACTION | directive )*
{ "\}" }
( ACTION | directive )*

;

directive
: lexclass | token_def | errclass_def | tokclass_def
;

where the lexical items in Table 4 on page 83 apply:

There is no start rule specification per se because any rule can be invoked first.
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Comments

Both C and C++ style comments are allowed within the grammar (outside of actions) 
regardless of the language used within actions. For example,

/* here is a rule */
args : ID ( "," ID )* ; // match a list of ID’s

The comments used within your actions is determined by your language. 

#header Directive

Any C or C++ code that must be visible to files generated by ANTLR must placed in an 
action at the start of your description preceded by the #header  directive. This directive is 
necessary when using the C interface and is optional with the C++ interface. Turn on 
ANTLR command line option -gh when using the C interface if the function that invokes 
the parser is in a non-ANTLR-generated file.

#parser Directive

Because C does not have the notion of a package or module, linking ANTLR-generated 
parser causes multiply defined symbol errors (because of the global variables defined in 

TABLE 4. Lexical Items in an ANTLR Description

Token Name Form Example

ACTION <<...>> <<int i;>>

<<define(id->getText());>>

STRING “...” “[a-z]+” “begin”

“includefile.h” “test”

TOKEN [A-Z][a-zA-Z0-9_]* ID KeyBegin Int_Form1

RULE [a-z][a-zA-Z0-9_]* expr statement func_def

ARGBLOCK [...] [34] [int i, float j]

ID [a-zA-Z][a-z0-9_]* CParser label

SEMPRED <<...>>? <<isType(id->getText()) >>?
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each parser). The solution to the problem is to prefix all global ANTLR symbols with a user-
defined string in order to make the symbols unique to the C linker. The #parser is used to 
specify this prefix. A file called remap.h is generated that contains a sequence of 
redefinitions for the global symbols. For example,

#parser foo

generates a remap.h file similar to:

#define your_rule foo_your_rule
#define zztokenLA xyz_zztokenLA
#define AST xyz_AST
...

Parser Classes

When using the C++ interface, you must specify the name of the parser class by enclosing 
all rules in

class Parser {
    ...
}

A parser class results in a subclass of ANTLRParser in the parser. A parser object is simply 
a set of actions and routines for recognizing and performing operations on sentences of a 
language.  Consequently, it is natural to have many separate parser objects; for example, one 
for recognizing include files.

Exactly one parser class may be defined.  For the defined class, ANTLR generates a derived 
class of ANTLRparser.

Actions may be placed within the parser class scope and may contain any C++ code that is 
valid within a C++ class definition. Any variable or function declarations will become 
members of the class in the resulting C++ output. For example,

class Parser {
<<public: int i;>>
<<int f() { blah; }>>

rule : A B <<f();>> ; <<fail-action for rule;>>

<<final action;>>
}

Here, variable i and function f are members of class Parser that become a subclass of 
ANTLRParser in the resulting C++ code.
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The actions at the head of the parser class are collected and placed near the head of the 
resulting C++ class; the actions at the end of the parser class are similarly collected and 
placed near the end of the resulting parser class definition.

The Parser.h file generated by ANTLR for this parser class would look something like 
this:

class Parser : public ANTLRParser {
protected:
        static ANTLRChar *_token_tbl[];
public: int i;  
int f() { blah; }  
        static SetWordType setwd1[4];
public:
        Parser(ANTLRTokenBuffer *input);
        Parser(ANTLRTokenBuffer *input, ANTLRTokenType eof);
        void rule(void);
        final action;
};

Rules

An ANTLR rule describes a portion of the input language and consists of a list of 
alternatives; rules also contain code for error handling and argument or return value passing. 
A rule looks like:

rule : alternative1
| alternative2

...
| alternativen

 ;
where each alternative production is composed of a list of elements that can be references to 
rules, references to tokens, actions, predicates, and subrules. Argument and return value 
definitions looks like the following where there are n arguments and m return values:

rule[arg1,...,argn] > [retval1,...,retvalm] : ... ;

The syntax for using a rule mirrors its definition:

a   :   ... rule[arg1,...,argn] > [v1,...,vm] ...
    ;

Here, the various vi receive the return values from the rule rule, each vi must be an l-value. 
For example,

start
: <<int r;>> // init-action declares local var r
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expr[3,4] > [r] <<printf("result %d\n");>>
;

expr[int a, int b] > [int result]
: i:INT <<$result = $a+$b+atoi($i->getText());>>
;

The reference to rule expr in rule start passes two arguments, 3 and 4, which correspond 
to a and b in rule expr just like a normal programming language. The return value of expr is 
an integer called result, which is set in the action. The integer value of the text for the 
incoming integer is added to the two arguments to compute the result.

We make special note of the first action of rule start: if the first element of the rule is an 
action, that action is an init-action and is executed once before recognition of the rule begins 
and is the place to define local variables.

The exact syntax of a rule is the following:

rule
: RULE { "!" } { ARGBLOCK }

{ ">" ARGBLOCK }
{ STRING } // error string to print instead of rule name
":"
block ";"
{ ACTION } // fail action
( exception_group )*

;

block
: alt ( exception_group )* ( "\|" alt ( exception_group )* )*
;

alt : { "\@" } ( { "\~" } element )*
;

token: TOKEN | STRING
;

element
: { ID ":" }

( token { ".." token } { "^" | "!" } { "\@" }
| "." { "^" | "!" }
| RULE { "!" } { ARGBLOCK } { ">" ARGBLOCK }
)

| ACTION // <<...>>
| SEMPRED // <<...>>?
| "\(" block "\)" { "\*" | "\+" | "?" }
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| "\{" block "\}"
;

Subrules (EBNF Descriptions)

A subrule is the same as a rule without a label and, hence, has no arguments or return values. 
The four subrules to choose from are listed in Table 5 on page 87.

If the first element of the whole subrule is an action, that action is an init-action and is 
executed once before recognition of the subrule begins—even if the subrule is a looping 
construct. Further, the action is always executed even if the subrule matches nothing.

Rule Elements

In this section, we summarize the elements that can appear in rules. Most elements (i.e., 
predicates, actions, tree operators, and exceptions) are described in more detail later.

Actions

Actions are of the form <<...>> and contain user-supplied C or C++ code that must be 
executed during the parse. Init-actions are actions that are the very first element of a rule or 
subrule; they are executed before the rule or subrule recognizes anything and can be used to 
define local variables. Fail-actions are placed after the ‘;’ in a rule definition and are 
executed if an error occurred while parsing the rule (unless exception handlers are used). 
Any other action is executed immediately after the preceding rule element and before any 
following elements.

TABLE 5. ANTLR Subrule Format

Name Form Example

plain subrule (...) (ID | INT)

zero-or-more (...)* ID ( “,” ID )*

one-or-more (...)+ ( declaration )+

optional {...} { “else” statement }
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Semantic Predicate

A semantic predicate has two forms:

• <<...>>? This form represents a C or C++ expression that must evaluate to true 
before recognition of elements beyond it in the rule are authorized for recognition.

• ( lookahead-context )? => <<...>>? This form is simply a more specific 
form as it indicates that the predicate is only valid under a particular lookahead 
context; e.g., the following predicate indicates that the isTypeName() test is only 
valid if the first symbol of lookahead is an identifier:

( ID )? => <<isTypeName(LT(1)->getText())>>?

Typically, semantic predicates are used to specify the semantic validity of a particular 
production and, therefore, most often are placed at the extreme left edge of productions.

You should normally allow ANTLR to compute the lookahead context (ANTLR command 
line option “-prc on”). See “Predicates” on page 127.

Syntactic Predicate

Syntactic predicates are of the form (...)? specify the syntactic context under which a 
production will successfully match. They are useful in situations where normal LL(k) 
parsing is inadequate. For example,

a : ( list "=" )? list "=" list
| list
;

Tokens, Token Classes and Token Operators

Token references indicate the token that must be matched on the input stream and are either 
identifiers beginning with an upper case letter or are regular expressions enclosed in double 
quotes. A token class looks just like a token reference, but has an associated #tokclass 
definition and indicates the set of tokens that can be matched on the input stream.

The range operator has the form T1 .. Tn and specifies a token class containing the set of 
token type values from T1 up to Tn inclusively. Any token found on the input stream that is 
contained in this set is considered a valid match.

The not operator has the form ~T and specifies the set of all tokens defined in the grammar 
except for T.
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Rule References

Rule references indicate that another rule must be invoked to recognize part of the input 
stream. The rule may be passed to some arguments and may return some values. Rules are 
indentifiers that begin with a lower case letter. For example,

a : <<int i;>> b[34] > [i]
;

b[int j] > [int k]
: A B <<$k = $j + 1;>> //return argument + 1
;

Labels

All rules, token, and token class references may be labeled with an identifier. Identifiers are 
generally used to access the attribute (C interface) or token object (C++ interface) of tokens. 
Rule labels are used primarily by the exception handling mechanism to make a group of 
handlers specific to a rule invocation.

Labels may begin with either an upper or lower case letter; e.g., id:ID ER:expr.

Actions in an ANTLR grammar may access attributes by using labels of the form $label 
attached to token rather than the conventional $i for some integer i.  By using symbols 
instead of integer identifiers, grammars are more readable and action parameters are not 
sensitive to changes in rule element positions. The form of a label is:

label:element

where element is either a token reference or a rule reference.  To refer to the attribute (C 
interface) or token pointer (C++ interface) of that element in an action, use

$label

within an action or rule argument list.  For example,

a : t:ID <<printf("%s\n", $t->getText());>>
  ;

using the C++ interface.  To reference the tree variable associated with element, use

#label

When using parser exception handling, simply reference label to attach a handler to a 
particular rule reference.  For example,

a : t:b
    exception[t]
        default : <<trap any error found during call to ’b’>>
  ;
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Labels must be unique for each rule as they have rule scope.  Labels may be accessed from 
parser exception handlers.

AST Operators

When constructing ASTs, ANTLR assumes that any nonsuffixed token is a leaf node in the 
resulting tree. To inform ANTLR that a particular token should not be included in the output 
AST, suffix the token with "!." Rules may also be suffixed with "!" to indicate that the tree 
constructed by the invoked rule should not be linked into the tree constructed for the current 
rule. Any token suffixed with the "^" operator is considered a root token. A tree node is 
constructed for that token and is made the root of whatever portion of the tree has been built; 
e..g,

a : A B^ C^ ;

results in the following tree:

First A is matched and made a lonely child, followed by B which is made the parent of the 
current tree, A. Finally, C is matched and made the parent of the current tree—making it the 
parent of the B node. Note that the same rule without any operators results in:

Exception Operator

When parser exception handlers are being used in a grammar, token references suffixed with 
the @ operator do not throw MismatchedToken upon a token mismatch. The error is 
handled within _match_wdfltsig(). 

Multiple ANTLR Description Files

ANTLR descriptions may be broken up into many different files, but the sequence 
mentioned above in the grammatical structure of ANTLR descriptions must be maintained.

For example, if file f1.g contained

#header <<#include "int.h">>
<< main() { ANTLR(start(), stdin); } >>

C

B

A

A B C
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and file f2.g contained

start   :   "begin" VAR "=" NUM ";" "end" "." "@" ;

and file f3.g contained

#token VAR "[a-z]+"
#token NUM "[0-9]+"

the correct ANTLR invocation would be

antlr f1.g f2.g f3.g

Note that the order of files f2.g and f3.g could be switched. In this case, to comply with 
ANTLR’s description meta-language, the only restriction is that file f1.g must be 
mentioned first on the command line.

Other files may be included into the parser files generated by ANTLR via actions containing 
a #include directive.  For example,

<<#include “support_code.h”>>

If a file (or anything else) must be included in all parser files generated by ANTLR, the 
#include  directive must be placed in the #header  action. In other words,

#header <<#include “necessary_type_defs_for_all_files.h”>>

Note that #include  can be used to define any ANTLR object (Attrib , AST, etc...) by 
placing it in the #header  action.

Lexical Directives

Token Definitions

Tokens are defined either explicitly with #token  or implicitly by using them as rule 
elements.  Implicitly defined tokens can be either regular expressions (non-identified tokens) 
or token names (identified).  Token names begin with an upper case letter (rules begin with a 
lower case letter).  More than one occurrence of the same regular expression in a grammar 
description produces a single regular expression in lexical description passed to DLG 
(parser.dlg ) and is assigned one token type number. Regular expressions and token 
identifiers that refer to the same lexical object (input pattern) may be used interchangeably.  
Token identifiers that are referenced, but not attached to a regular expression are simply 
assigned a token type and result in a #define  definition only. It is not necessary to label 
regular expressions with an identifier in ANTLR.  However, all token types that you wish to 
explicitly refer to in an action must be declared with a #token  instruction.
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You may introduce tokens, lexical actions, and token identifiers with the #token directive.  
Specifically,

• Simply declare a token for use in a user action:
#token VAR

This is useful for defining a token type that has no associated regular 
expression. For example, an abstract syntax tree may need a "dummy" node 
with a token type that does not class with an input token.

• Associate a token with a regular expression and, optionally, an action:
#token ID "[a-zA-Z][a-zA-Z0-9]*"
#token Eof "@" << printf("Eof Found\n"); >>

• Specify what must occur upon a regular expression:
#token "[0-9]+" <<printf("Found an int\n");>>

Important: All token identifiers result in either #define definitions or enum elements in the 
resulting parser. Be careful not to use C++ keywords as token identifiers like if.

Lexical actions tied to a token definition may access the variables, functions, and macros in 
Table 6 on page 92:

TABLE 6. C++ Interface Symbols Available to Lexical Actions

Symbol Description

replchar(DLGchar c) Replace the text of the most recently matched 
lexical object with c. You can erase the current 
expression text by sending in a ‘\0’ .

replstr(DLGchar *s) Replace the text of the most recently matched 
lexical object with s .

int line() The current line number being scanned by DLG.

newline() Maintain DLGLexer::_line  by calling this 
function when a newline character is seen; just 
increments _line .

more() Set a flag that tells DLG to continue looking for 
another token; future characters are appended to 
the current token text.

skip() Set a flag that tells DLG to continue looking for 
another token; future characters are not appended 
to the current token text.
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advance() Instruct DLG to consume another input charac-
ter. ch will be set to this next character.

int ch The most recently scanned character.

DLGchar *lextext() The entire lexical buffer containing all characters 
matched thus far since the last token type was 
returned. See more() and skip().

DLGchar *begexpr() Beginning of last token matched.

DLGchar *endexpr() Pointer to the last character of last token 
matched.

trackColumns() Call this function to get DLG to track the column 
numbers.

int begcol() The column number starting from 1 of the first 
character of the most recently matched token.

int endcol() The column number starting from 1 of the last 
character of the most recently matched token. 
Reset the column to 0 when a newline character 
is encountered. Also adjust the column in the lex-
ical action when a character is not one print posi-
tion wide (e.g., tabs or non-printing characters). 
The column information is not immediately 
updated if a token’s action calls more().

set_begcol(int a) Set the current token column number for the 
beginning of the token.

set_endcol(int a) Set the current token column number for the 
beginning of the token.

DLGchar The type name of a character read by DLG. This 
is linked by typedef to char by default, but it 
could be a class or another atomic type.

errstd(char *) Called automatically by DLG to print an error 
message indicating that the input text matches no 
defined lexical expressions. Override in a sub-
class to redefine.

TABLE 6.  (Continued)  C++ Interface Symbols Available to Lexical Actions

Symbol Description
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Regular Expressions

The input character stream is broken up into vocabulary symbols (tokens) via regular 
expressions—a meta-language similar to the ANTLR EBNF description language. ANTLR 
collects all of the regular expressions found within your grammar (both those defined 
implicitly within the grammar and those defined explicitly via the #token directive) and 
places them in a file that is converted to a scanner by DLG. Table 7 on page 94 describes the 
set of regular expressions.

mode(int m) Set the lexical mode (i.e., lexical class or autom-
aton) corresponding to a lex class defined in an 
ANTLR grammar with the #lexclass directive. 

setInputStream(

DLGInputStream *)

Specify that the scanner should read characters 
from the indicated input stream (e.g., file, string, 
function).

saveState(DLGState *) Save the current state of the scanner. You need 
this function for include files and so on; i.e., save 
the state of DLG, reset the file pointer, process 
the other file, and then restore the state.

restoreState(

DLGState *)

Restore the state of the scanner from a state 
buffer.

TABLE 7. Regular Expression Syntax

Expression Description

a|b Matches either the pattern a or the pattern b.

(a) Matches the pattern a.  Pattern a is kept as an indivisible unit.

{a} Matches a or nothing, i.e., the same as (a|).

[a] Matches any single character in character list a; e.g., [abc] matches 
either an a, b or c and is equivalent to (a|b|c).

[a-b] Matches any of the single characters whose ASCII codes are between 
a and b inclusively, i.e., the same as (a|...|b).

TABLE 6.  (Continued)  C++ Interface Symbols Available to Lexical Actions

Symbol Description
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Token Order and Lexical Ambiguities

The order in which regular expressions are found in the grammar description file(s) is 
significant. When the input stream contains a sequence of characters that match more than 
one regular expression, (i.e., one regular expression is a subset of another) the scanner is 
confronted with a dilemma. The scanner does not know which regular expression to match, 
so it does not know which action should be performed. To resolve the ambiguity, DLG (the 
scanner generator) assumes that the regular expression defined earliest in the grammar 
should take precedence over later definitions. Therefore, tokens that are special cases of 
other regular expressions should be defined before the more general regular expressions. For 
example, a keyword is a special case of a variable and thus needs to occur before the 
variable definition.

#token KeywordBegin "begin"
...

#token ID "[a-zA-Z][a-zA-Z0-9]*"

~[a] Matches any single character except for those in character list a.

~[] Matches any single character; literally “not nothing.”

a* Matches zero or more occurrences of pattern a.

a+ Matches one or more occurrences of pattern a, i.e., the same as aa*.

@ Matches end-of-file.

\t Tab character.

\n Newline character.

\r Carriage return character.

\b Backspace character.

\a Matches the single character a—even if a by itself would have a dif-
ferent meaning, e.g., \+ would match the + character.

\0nnn Matches character that has octal value nnn.

\0xnn Matches character that has hexadecimal value nnn.

\mnn Matches character with decimal value mnn, 1≤m≤9.

TABLE 7.  (Continued)  Regular Expression Syntax

Expression Description
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Token Definition Files (#tokdefs)

You will probably be interested in specifying the token types rather than having ANTLR 
generate its own; typically, this situation arises when you want to link an ANTLR-generated 
parser with a non-DLG-based scanner (perhaps an existing scanner).  To get ANTLR to use 
pre-assigned token types, specify

#tokdefs "mytokens.h"

before any token definitions, where mytokens.h is a file with only a list of #defines or an 
enum definition with optional comments.

When this directive is used, new token identifier definitions are not allowed (either explicit 
definitions like “#token A” or implicit definitions such as a reference to a token label in a 
rule).  However, you may attach regular expressions and lexical actions to the token labels 
defined in mytokens.h.  For example, if mytokens.h contained:

#define A 2

and t.g contained:

#tokdefs "mytokens.h"
#token A "blah"
a : A B;

ANTLR would report the following error message:

Antlr parser generator   Version 1.32   1989-1995
t.g, line 3: error: implicit token definition not allowed with #tokdefs

This refers to the fact that token identifier B was not defined in mytokens.h and ANTLR 
has no idea how to assign the token identifier a token type number.

Only one token definition file is allowed.

As is common in C and C++ programming, "gates" are used to prevent multiple inclusions 
of include files. ANTLR knows to ignore the following two lines at the head of a token 
definition file:

#ifndef id1
#define id2

No check is made to ensure that id1 and id2 are the same or that they conform to any 
particular naming convention (such as the name of the file suffixed with “_H”).

The following items are ignored inside your token definition file: white space, C style 
comments, C++ style comments, #ifdef, #if, #else, #endif, #undef, #import. 
Anything other than these ignored symbols, #define, #ifndef, or a valid enum statement 
yield lexical errors.
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Token Classes

A token class is set of tokens that can be referenced as one entity; token classes are 
equivalent to subrules consisting of the member tokens separated by "|"s.  The basic syntax 
is:

#tokclass Tclass { T1 ... Tn }

where Tclass is a valid token identifier (begins with an upper case letter) and Ti is a token 
reference (either a token identifier or a regular expression in double-quotes) or a token class 
reference; token classes may have overlapping tokens. Referencing Tclass is the same as 
referencing a rule of the form

tclass : T1 | ... | Tn ;

To reference the bitset created for token class Tclass in a grammar action is done as 
Tclass_set; e.g.,

#tokclass stop { ";" "end" }
statement

: ... ;
exception

default: <<consumeUntil(stop_set);>>

The difference between a token class and a rule lies in efficiency. A reference to a token 
class is a simple set membership test during parser execution rather than a linear search of 
the tokens in a rule (or subrule).  Furthermore, the set membership will be much smaller than 
a series of if-statements in a recursive-descent parser.  Note that automaton-based parsers 
(both LL and LALR) automatically perform this type of set membership (specifically, a 
table lookup), but lack the flexibility of recursive-descent parsers such as those constructed 
by ANTLR.

A predefined wildcard token class, identified by a dot, is available to represent the set of all 
defined tokens. For example,

ig : "ignore_next_token" . ;

The wildcard is sometimes useful for ignoring portions of the input stream; however, lexical 
classes are often more efficient at ignoring input. A wildcard can also be used for error 
handling as an "else-alternative".

if  :   "if" expr "then" stat
    |   .  <<fprintf(stderr, "malformed if-statement");>>
    ;

Be careful not to do things like this:

ig  :   "begin"
        ( . )*
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        "end"
    ;

because the loop generated for the "(.)*" block will never terminate because "end" is also 
matched by the wildcard. Rather than using the wildcard to match large token classes, it is 
often best to use the not operator.  For example,

ig  :   "begin"
        ( ~"end" )*
        "end"
    ;

where "~" is the not operator and implies a token class containing all tokens defined in the 
grammar except the token (or tokens in a token class) modified by the operator.  The if 
example could be rewritten as:

if  :   "if" expr "then" stat
    |   ~"if" <<fprintf(stderr, "malformed if-statement");>>
    ;

The not operator may be applied to token class references and token references only. It may 
not be applied to subrules, for example. The wildcard operator and the not operator never 
result in a set containing the end-of-file token type.

Token classes can also be created via the range operator of the form T1 .. Tn.  The token 
type of T1 must be less than Tn and the values between T1 and Tn must be valid token types.  
In general, this feature should be used in conjunction with #tokdefs so that you control the 
token type values. An example range operator is:

#tokdefs "mytokens.h"
a : operand OpStart .. OpEnd operand ;

where mytokens.h contains

#define Add 1
#define Sub 2
#define Mul 3
#define OpStart 1
#define OpEnd 3

This feature might not be needed because of the more powerful token class directive:

#tokclass Op { Add Sub Mul }
a : operand Op operand ;
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Lexical Classes

ANTLR parsers use DFAs (Deterministic Finite Automata) created by DLG to match tokens 
found on the character input stream.  More than one automaton (lexical class) may be 
defined in PCCTS. Multiple scanners are useful in two ways.  First, more than one grammar 
can be described within the same PCCTS input file(s). Second, multiple automatons can be 
used to recognize tokens that seriously conflict with other regular expressions within the 
same lexical analyzer (e.g., comments, quoted-strings, etc...).

Actions attached to regular expressions (which are executed when that expression has been 
matched on the input stream) may switch from one lexical analyzer to another.  Each 
analyzer (lex class) has a label used to enter that automaton.  A predefined lexical class 
called START is in effect from the beginning of the PCCTS description until the user issues a 
#lexclass directive or the end of the description is found.

When more than one lexical class is defined, it is possible to have the same regular 
expression and the same token label defined in multiple automatons.  Regular expressions 
found in more than one automaton are given different token type numbers, but token labels 
are unique across lexical class boundaries.  For instance,

#lexclass A
#token LABEL "expr1"

#lexclass B
#token LABEL "expr2"

In this case, LABEL is the same token type number (#define in C or enum in C++) for both 
expr1 and expr2.  A reference to LABEL within a rule can be matched by two different 
regular expressions depending on which automaton is currently active.

Hence, the #lexclass directive marks the start of a new set of lexical definitions.  Rules 
found after a #lexclass can only use tokens defined within that class—i.e., all tokens 
defined until the next #lexclass or the end of the PCCTS description, whichever comes 
first.  Any regular expressions used explicity in these rules are placed into the current lexical 
class.  Since the default automaton, START, is active upon parser startup, the start rule must 
be defined within the boundaries of the START automaton. Typically, a multiple-automaton 
grammar will begin with

#lexclass START

immediately before the rule definitions to ensure that the rules use the token definitions in 
the "main" automaton.

Tokens are given sequential token numbers across all lexical classes so that no conflicts 
arise.  This also allows you to reference ANTLRParser::token_tbl[token_num] (which 
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is a string representing the label or regular expression defined in the grammar) regardless of 
which class token_num is defined in.

Multiple grammars, multiple lexical analyzers

Different grammars generally require separate lexical analyzers to break up the input stream 
into tokens.  What may be a keyword in one language may be a simple variable in another. 
The #lexclass directive is used to group tokens into different lexical analyzers.  For 
example, to separate two grammars into two lexical classes,

#lexclass GRAMMAR1
rules for grammar1
#lexclass GRAMMAR2
rules for grammar2

All tokens found beyond the #lexclass directive are considered to be of that class.

Single grammar, multiple lexical analyzers

For most languages, some characters are interpreted differently, depending on the syntactic 
context; comments and character strings are the most common examples. Consider the 
recognition of C style comments:

#lexclass C_COMMENT
#token "[\n\r]" <<skip(); newline();>>
#token "\*/" <<mode(START); skip();>>
#token "\*~[/]" <<skip();>>
#token "~[\*\n\r]+" <<skip();>>

#lexclass START
#token "/\*" <<mode(C_COMMENT); skip();>>

Lexical Actions

It is sometimes convenient or necessary to have a section of user C code constructed 
automatically by DLG placed in the lexical analyzer; for example, you may need to provide 
extern definitions for variables or functions defined in the parser, but used in token 
actions.  Normally, actions not associated with a #token directive or embedded within a 
rule are placed in the parser generated by ANTLR.  However, preceding an action appearing 
outside of any rule with the #lexaction pseudo-op directs the action to the lexical analyzer 
file.  For example,

<< /* a normal action outside of the rules */ >>
#lexaction
    << /* this action is inserted into the lexical
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        * analyzer created by DLG
        */
    >>

All #lexaction actions are collected and placed as a group into the C or C++ file where 
the "lexer" resides.  Typically, this code consists of functions or variable declarations needed 
by #token actions. 

Error Classes

The default syntax error reporting mechanism generates a list of tokens that could be 
possibly matched when the erroneous token was encountered.  Often, this list is large and 
means little to the user for anything but small grammars.  For example, an expression 
recognizer might generate the following error message for an invalid expression, "a b":

syntax error at "b" missing { "\+" "\-" "\*" "/" ";" }

A better error message would be

syntax error at "b" missing { operator ";" }

This modification can be accomplished by defining the error class:

#errclass "operator" { "\+" "\-" "\*" "/" }

The general syntax for the #errclass directive is as follows:

#errclass label { T1 ... Tn }

where label is either a quoted string or a label (capitalized just like token labels).  Any 
quoted string must not conflict with any rule name, token identifier or regular expression.  
Groups of expressions are replaced with this string.

The error class elements, Ti, can be

• labeled tokens or regular expressions

Tokens (identifiers or regular expressions) referenced within an 
error class must at some point in the grammar be referenced in a rule 
or explicitly defined with #token. The definition need not appear 
before the #errclass definition.

• other error classes

See the example following "rules."



ANTLR Reference

102 Language Translation Using PCCTS and C++ 

• rules

the FIRST set (set of all tokens that can be recognized first upon entering a rule) 
for that rule is included in the error class. The -ge command-line option can be 
used to have ANTLR generate an error class for each rule of the form:

#errclass Rule { rule }

where the error class name is the same as the rule except that the first character 
is converted to uppercase.

The ability to reference other error classes error class hierarchies. For example,

#errclass Fruit { CHERRY APPLE }
#errclass Meat { COW PIG }
#errclass "stuff you can eat" { Fruit Meat } 

yum : (CHERRY | APPLE) PIE
| (COW | PIG) FARM
| THE (CHERRY | APPLE) TREE
;

Different error messages result depending upon where in rule yum a syntax error is detected. 
If the input were

THE PIG TREE 

the following error message would result:

syntax error at “PIG” missing { Fruit }

However, if the input were

FARM COW 

the decent error message

syntax error at “FARM” missing { “stuff you can eat” THE }

would result. Note that without the error class definitions, the error message would have 
been:

syntax error at “FARM” missing { CHERRY APPLE COW PIG THE }

which conveys the same information, but at a much more detailed level.
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How ANTLR Uses Error Classes

ANTLR attempts to construct sets of tokens for error reporting—error sets. The sets are 
created wherever a parsing decision will be made in the generated parser. At every point in 
the parsing process, there is a set of currently recognizable or acceptable token. This set can 
be decoded and printed out when a syntax error is detected. ANTLR attempts to replace 
subsets of all error sets with error classes defined by the user. For example, rule a below 
contains a subrule with more than one alternative implying that a parsing decision will be 
required at run-time to determine which alternative to choose.

a : (Happy | Sad | Funny | Carefree) Person ;

If, upon entering rule a, the current token is not one of the four tokens found in the 
alternatives, a syntax error will have occurred and the following message would be 
generated (if "huh" were the input token):

syntax error at “huh” missing { Happy Sad Funny Carefree }

Let us define an error class called Adjective  that groups those same four tokens together.

#errclass Adjective { Happy Sad Funny Carefree }

Now the error message would be:

syntax error at “huh” missing { Adjective }

ANTLR repeatedly trys to replace subsets of the error set until no more substitutions can be 
made. At each replacement iteration, the largest error class that is completely contained 
within the error set is substituted for that group of tokens. One replacement iteration may 
perform some substitution that makes another, previously inviable, substitution possible. 
This allows the hierarchy mechanism described above in the error class description section. 
The sequence of substitutions for the yum example in the previous section would be:

1. { CHERRY APPLE COW PIG THE }  

2. { Fruit COW PIG THE }  

3. { Fruit Meat THE }  

4. { "stuff you can eat" THE }  

The error class mechanism leads to smaller error sets and can be used to provide more 
informative error messages.
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Actions

Actions are embedded within your grammar to effect a translation. Without actions, ANTLR 
grammars result in a simple recognizer, which answers yes or no as to whether an input 
sentence was valid. This section describes where actions may occur within an ANTLR 
grammar, when they are executed, and what special terms they may reference (e.g., for 
attributes). Actions are of the form "<<...>>" (normal action) or "[...]" (argument or 
return value block).

Placement

There are three main positions where actions may occur:

• Outside of any rule. These actions may not contain executable code unless it 
occurs within a completely-specified function. Typically, these actions contain 
variable and function declarations as would normally be found in a C or C++ 
program. These actions are placed in the global scope in the resulting parser. 
Consequently, all other actions have access to the declarations given in these 
global actions. For example,
<<
extern int from_elsewhere;
enum T { X, Y, Z };
main()
{

...
}
>>
a: <<T b=X; printf("starting a");>>

blah
;

• Within a rule or immediately following the rule. These actions are executed 
during the recognition of the input and must be executable code unless they are 
init-actions, in which case, they may contain variable declarations as well. Actions 
immediately following the ‘;’ of a rule definition are fail-actions and are used to 
clean up after a syntax error. (These are less useful now due to parser exception 
handlers.) For example,
rule : <<init-action>>

... <<normal action>> ...
;
<<fail-action>>
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• As a rule argument or return value block. These actions either define arguments 
and return values or they specify the value of arguments and return values; their 
behavior is identical to that of normal C/C++ functions except that ANTLR allows 
you to define more than one return value. For example,
code_block[Scope s] > [SymbolList localsyms]

: <<Symbol *sym;>>
"begin" decl[$s] > [sym] <<$localsyms.add(sym);>> "end"

;

where s is an input argument to code_block, localsyms is a return value, 
and sym is a local variable in code_block that holds the result of calling rule 
decl.

Time of Execution

Actions placed among the elements in the productions of a rule are executed immediately 
following the recognition of the preceding grammar element, whether that element is a 
simple token reference or large subrule.

Init-actions are executed before anything has been recognized in a subrule or rule. Init-
actions of subrules are executed regardless of whether or not anything is matched by the 
subrule. Further, init-actions are always executed during guess mode; i.e., while evaluating a 
syntactic predicate.

Fail-actions are used only when parser exception handlers are not used and are executed 
upon a syntax error within that rule.

Interpretation of Action Text

ANTLR generally ignores what you place inside actions with the exception that certain 
expression terms are available to allow easy access to attributes (C interface), token pointers 
(C++ interface), and trees. The following tables describe the various special symbols 
recognized by ANTLR inside [...] and <<...>> actions for the C and C++ interface.

Comments (both C and C++), characters, and strings are ignored by ANTLR. To escape ‘$’ 
and ‘#’, use ‘\$’ and ‘\#’.
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Table 9 on page 107 provides a brief description of the available AST expressions. See 
Table 10 on page 126 for a more complete description

TABLE 8. C++ Interface Interpretation of Terms in Actions

Symbol Meaning

$j The token pointer for the jth element (which 
must be a token reference) of the current alterna-
tive. The counting includes actions. Subrules 
embedded within the alternative are counted as 
one element. There is no token pointer associated 
with subrules, actions, or rule references.

$i.j The token pointer for the jth element of ith level 
starting from the outermost (rule) level at 1. .

$0 Invalid. No translation. There is no token pointer 
associated with rules.

$$ Invalid. No translation.

$arg The rule argument labeled arg.

$rule Invalid. No translation.

$rv The rule return result labeled rv.  (l-value)

$[token_type,text] Invalid. There are no attributes using the C++ 
interface.

$[] Invalid.
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Init-Actions

Init-actions are used to define local variables and optionally to execute some initialization 
code for a rule or subrule. The init-action of a rule is executed exactly once—before any in 
the rule has been executed. It is not executed unless the rule is actually invoked by another 
rule or a user action (such as main routine). For example,

a : <<int i;>>
a : INT <<i = atoi(a->getText());>>

| ID <<i = 0;>>
;

The init-action of a subrule is always executed regardless of whether the subrule matches 
any input. For example,

a : ( <<int i=3;>> ID )*
/* i is local to the (...)* loop and initialized only once */
{ <<f = 0;>> b:FLOAT <<f=atof(b->getText());>> }
/* f is 0 if a FLOAT was not found */

;

TABLE 9. Synopsis of C/C++ Interface Interpretation of AST Terms
in Actions

Symbol Meaning

#0 A pointer to the result tree of the enclosing rule.

(l-value).

#i A pointer to the AST built (or returned from) the 
ith element of the enclosing alternative.

#label A pointer to the AST built (or returned from) the 
elemented labeled with label. Translated to 
label_ast.

#[args] Tree node constructor. Translated to a call to 
zzmk_ast(zzastnew(), args) in C.

In C++, it is translated to “new AST(args)”.

#[] Empty tree node constructor.

#(root, child1, ..., 
childn)

Tree constructor.

#() NULL.
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Init-actions can not reference attribute or token pointer symbols such as $label.

Fail Actions

Fail actions are actions that are placed immediately following the ";" rule terminator.  They 
are executed after a syntax error has been detected but before a message is printed and the 
attributes have been destroyed (optionally with zzd_attr()).  However, attributes are not 
valid here because we do not know at what point the error occurred and which attributes 
even exist.  Fail actions are often useful for cleaning up data structures or freeing memory.  
For example,

a : <<List *p=NULL;>>
( Var <<append(p, $1);>> )+
<<OperateOn(p); rmlist(p);>>

;
<<rmlist(p);>>

The ( )+ loop matches a lists of variables (Vars) and collections them in a list.  The fail-
action <<rmlist(p);>> specifies that if and when a syntax error occurs, the elements are 
to be freed.

Fail-actions should not reference attribute or token pointer symbols such as $label.

Fail-actions are executed right before the rule returns to the invoking rule.

Accessing Token Objects From Grammar Actions

The C++ interface parsing-model specifies that the parser accepts a stream of token pointers 
rather than a stream of simple token types, such as is done using the C interface parsing-
model. Rather than accessing attributes computed from the text and token type of the input 
token, the C++ interface allows direct access to the stream of token objects created by the 
scanner. You may reference $label within the actions of a rule where label is a label 
attached to a token element defined within the same alternative. For example,

def : "var" id:ID ";" <<behavior->defineVar($id->getText());>>

In this case, $id is a pointer to the token object created by the scanner (with the 
makeToken() function) for the token immediately following the keyword var on the input 
stream. Normally, you will subclass ANTLRRefCountToken or simply use 
ANTLRCommonToken as the token object class. Functions getText() and getLine() can 
be used to access the attributes of the token object.
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C++ Interface

When generating recursive-descent parsers in C++, ANTLR uses the flexibility of C++ 
classes in two ways to create modular, reusable code. First, ANTLR will generate parser 
classes in which the class member functions, rather than global functions, contain the code 

• to recognize rules and

• to perform semantic actions

Second, ANTLR uses snap-together classes for the input, the lexer, and the token buffer. 
Figure 1 on page 109 shows the files generated by ANTLR and DLG for grammar class 
Parser and grammar file file.g.

FIGURE  1 Files Generated By ANTLR, DLG

An ANTLR parser consists of one or more C++ classes, called parser classes. Each parser 
class recognizes and translates part (or all) of a language. The recursive-descent recognition 
routines and the semantic actions are member functions of this class. A parser object is an 
instantiation (or variable) of the parser class.

To specify the name of the parser class in an ANTLR grammar description, enclose the 
appropriate rules and actions in a C++ class definition, as follows:

class Expr {
<<int i;>>

<<
public:

void print();
>>
e : INT ("\*" INT)* ;

... // other grammar rules
}

ANTLR then generates a parser class Expr that looks like the following:

DLG

DLGLexer.cpp DLGLexer.h

ANTLR

Parser .cpp Parser .h file .cpp parser.dlg tokens.h
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class Expr : public ANTLRParser {
public:

Expr(ANTLRTokenBuffer *input);
Expr(ANTLRTokenBuffer *input, ANTLRTokenType eof);
int i;
void print();
void e();

private:
internal-Expr-specific-data;

};

The Utility of C++ Classes in Parsing

It is natural to have many separate parser objects. For example, if parsing ANSI C code, we 
might have three parser classes: for C expressions, C declarations, and C statements. Parsing 
multiple languages or parts of languages simply involves switching parser objects. For 
example, if you had a working C language front end for a compiler, to evaluate C 
expressions in a debugger, just use the parser object for C expressions (and modify the 
semantic actions with virtual functions.)

Using parser classes has the standard advantages of C++ classes involving name spaces and 
encapsulation of state. Because all routines are class member functions, they belong in the 
class name space and do not clutter the global name space, reducing (or greatly simplifying) 
the problem of name clashes. A parser object encapsulates the various state needed during a 
parse or translation.

While the ability to cleanly instantiate and invoke multiple parsers is useful, the main 
advantage of parser classes is that they can be extended in an object-oriented fashion. By 
using the inheritance and virtual functions mechanisms of C++, a parser class can be used as 
the base class (superclass) for a variety of similar but non-identical uses. Derived parser 
classes can be specialized for different activities; in many cases, these derived classes need 
only redefine translation actions because they inherit the grammar rules (these recursive-
descent routines are member functions ) from the base class. For example,

class CPP_Parser {
<<
virtual void defineClass(char *cl);
>>
cdef

: "class" id:ID "\{" ... "\}" <<defineClass(id->getText());>>
;

...
}
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To construct a browser, you might subclass CPP_Parser to override defineClass() so 
that the function would highlight the class name on the screen; e.g.,

class CPP_Browser {
// nondefault constructor is required.
CPP_Browser(ANTLRTokenBuffer *in) : CPP_Parser(in) { }
void defineClass(char *cl) { highlight(cl); }

};

A C++ compiler might override defineClass() to add the symbol to the symbol table.

Alternatively, the behavior of a parser can be delegated to a behavior object such that actions 
in the parser would be of the form

<<behavior->triggerSomeAction();>>

This approach has the advantage that behavior of the parser can be changed at runtime.

Invoking ANTLR Parsers

The second way ANTLR uses C++ classes is to have separate C++ classes for the input 
stream, the lexical analyzer (scanner), the token buffer, and the parser. Conceptually, these 
classes fit together as shown in Figure 2 on page 111. In fact, the ANTLR-generated classes 
"snap together" in an identical fashion. To initialize the parser, you 

1. Attach an input stream object to a DLG-based scanner; if the user has constructed 
their own scanner, they would attach it here.

2. Attach a scanner to a token buffer object.

3. Attach the token buffer to a parser object generated by ANTLR.

FIGURE  2 Overview of the C++ classes generated by ANTLR.

The following code illustrates how these classes fit together for a parser object Expr.

ANTLRTokenBuffer ANTLRParser
DLGInputStream output

DLGLexer
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main()
{

DLGFileInput in(stdin); // get an input stream for DLG
DLGLexer scan(&in); // connect a scanner to an input stream
ANTLRTokenBuffer pipe(&scan); // connect scanner, parser via pipe
// DLG needs vtbl to access virtual func, pass a token.
// mytoken(aToken) converts aToken to a (ANTLRToken *).
// You don’t need mytoken if you don’t use garbage-
// collected token objects.
ANTLRTokenPtr aToken = new ANTLRToken;
scan.setToken(mytoken(aToken));
Expr parser(&pipe); // make a parser connected to the pipe
parser.init(); // initialize the parser
parser.e(); // begin parsing; e = start symbol

}

where ANTLRToken is programmer-defined and must be a subclass of 
ANTLRAbstractToken . To start parsing, it is sufficient to call the Expr  member function 
associated with the grammar rule; here, e is the start symbol. Naturally, this explicit 
sequence is a pain to type so we have provided a "black box" template:

main()
{

ParserBlackBox<DLGLexer, Expr, ANTLRToken> p(stdin);
p.parser()->e();

}

To ensure compatibility among different input streams, lexers, token buffers, and parsers, all 
objects are derived from one of the four common bases classes DLGInputStream , 
DLGLexerBase , ANTLRTokenBuffer  or ANTLRParser . All parsers are derived from a 
common base class ANTLRParser .

ANTLR C++ Class Hierarchy

Figure 3 on page 121 shows an overview of important class relationships defined by the C++ 
interface. Each element of the class hierarchy includes rules, behaviors, and design tips for 
building hierarchies that is a benefit to a user of good hierarchies.

Token Classes

Each token object passed to the parser must satisify at least the interface defined by class 
ANTLRAbstractToken  if ANTLR is to compile and report errors for you. Specifically, 
ANTLR token objects know their token type, line number, and associated input text.



C++ Interface

Language Translation Using PCCTS and C++  113

class ANTLRAbstractToken {
public:

virtual ANTLRTokenType getType();
virtual void setType(ANTLRTokenType t); // optional
virtual int getLine();
virtual void setLine(int line); // optional
virtual ANTLRChar *getText();
virtual void setText(ANTLRChar *); // optional
virtual ANTLRAbstractToken *

makeToken(ANTLRTokenType t, ANTLRChar *txt, int ln);
};

Most of the time you will want your token objects to be garbage collected to avoid memory 
leaks. The ANTLRRefCountToken class is provided for this purpose. All subclasses are 
garbage collected (assuming you use the provide "smart pointer" class ANTLRTokenPtr). 

The common case is that you will subclass the ANTLRRefCountToken interface. For your 
convenience, however, a token object class, ANTLRCommonToken, that will work "out of the 
box." It does garbage collection and has a fixed text field that stores the text of token found 
in the input stream.

Why function makeToken() is required at all and why you have to pass the address of an 
ANTLRToken into the DLG-based scanner during parser initialization may not be obvious. 
Why cannot the constructor be used to create a token and so on? The reason lies with the 
scanner, which must construct the token objects. The DLG support routines are typically in a 
precompiled object file that is linked, regardless of your token definition. Hence, DLG must 
be able to create tokens of any type. 

Because objects in C++ are not "self-conscious" (i.e., they do not know their own type), 
DLG has no idea of the appropriate constructor. Constructors cannot be virtual anyway; so, 
we provide a constructor that is virtual and that acts like a factory. It returns the address of a 
new token object upon each invocation rather than just initializing an existing object.

Because classes are not first-class objects in C++ (i.e., you cannot pass class names around), 
we must pass DLG the address of an ANTLRToken token object so DLG has access to the 
appropriate virtual table and is, thus, able to call the appropriate makeToken(). This 
weirdness would disappear if all objects knew their type or if class names were first-class 
objects. Here is the code fragment in DLG that constructs the token objects that are passed to 
the parser via the ANTLRTokenBuffer:

ANTLRAbstractToken *DLGLexerBase::
getToken()
{

if ( token_to_fill==NULL ) panic("NULL token_to_fill");
ANTLRTokenType tt = nextTokenType();
DLGBasedToken *tk = (DLGBasedToken *)

token_to_fill->makeToken(tt, _lextext, _line);
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return tk;
}

Token Object Garbage Collection

Token objects are created via ANTLRToken::makeToken(), but how are they deleted? The 
class ANTLRCommonToken is garbage collected through a "smart pointer" called 
ANTLRTokenPtr using reference counting.  Any token object not referenced by your 
grammar’s actions is destroyed by the ANTLRTokenBuffer when it makes room for more 
token objects. (Calling function ANTLRParser::noGarbageCollection() will turn of 
this mechanism.) Token objects referenced by your actions are destroyed when local 
ANTLRTokenPtr objects are deleted.  For example,

a : label:ID ;

would be converted to something like:

void yourclass::a(void)
{

zzRULE;
ANTLRTokenPtr label=NULL;
zzmatch(ID);
label = (ANTLRTokenPtr)LT(1);
consume();
...

}

When the label object is destroyed (it is just a pointer to your input token object obtained 
from LT(1)), it decrements the reference count on the object created for the ID.  If the count 
goes to zero, the object pointed by label is deleted.

To correctly manage the garbage collection, use ANTLRTokenPtr instead of "ANTLRToken 
*." Unforunately, the smart pointers can only be pointers to the abstract token class, which 
causes trouble in your actions. If you subclass ANTLRCommonToken and then attempt to 
refer to one of your token members via a token pointer in your grammar actions, the C++ 
compiler will complain that your token object does not have that member.  For example, the 
following results in a compile-time error:

<<
class ANTLRToken : public ANTLRCommonToken {
        int muck;
        ...
};
>>

class Foo {
a : t:ID << t->muck = ...; >> ;
}
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The t->muck reference will convert the t to “ANTLRAbstractToken *” resulting from 
ANTLRTokenPtr::operator->(). Instead, you must do the following:

a : t:ID << mytoken(t)->muck = ...; >> ;

in order to downcast t to be an “ANTLRToken *”. Macro mytoken(aSmartTokenPtr) 
gets an “ANTLRToken *” from a smart pointer.

The reference counting interface used by ANTLRTokenPtr is as follows:

class ANTLRRefCountToken : public ANTLRAbstractToken {

/* define to satisfy ANTLRTokenBuffer’s need to determine
whether or not a token object can be destroyed.  If
nref()==0, no one has a reference, and the object may be
destroyed.  This function defaults to 1, hence, if you use
ANTLRParser::garbageCollectTokens() message with a token
object not derived from ANTLRCommonRefCountToken, the parser
will compile but will not delete objects after they leave the
token buffer. */

protected:
unsigned refcnt_;

public:
// these 3 functions are called by ANTLRTokenPtr class
virtual unsigned nref() { return 1; }
virtual void ref();
virtual void deref();

};

Scanners and Token Streams

The raw stream of tokens coming from a scanner is accessed via an ANTLRTokenStream. 
The required interface is simply that the token stream must be able to answer the message 
getToken():

class ANTLRTokenStream {
public:

virtual ANTLRAbstractToken *getToken() = 0;
};

To use your own scanner, subclass ANTLRTokenStream and define getToken() or have 
getToken() call the appropriate function in your scanner. For example,

class MyLexer : public ANTLRTokenStream {
private:

int c;
public:

MyLexer();
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virtual ANTLRAbstractToken *getToken();
};

DLG scanners are all subclasses of ANTLRTokenStream.

Token Buffer

The parser is "attached" to an ANTLRTokenBuffer by interface functions: getToken() 
and bufferedToken().  The object that actually consumes characters and constructs 
tokens, a subclass of ANTLRTokenStream, is connected to the ANTLRTokenBuffer via 
interface function ANTLRTokenStream::getToken(). This strategy isolates the infinite 
lookahead mechanism (used for syntactic predicates) from the parser and provides a "sliding 
window" into the token stream.

The ANTLRTokenBuffer begins with k token object pointers where k is the size of the 
lookahead specified on the ANTLR command line. The buffer is circular when the parser is 
not evaluating a syntactic predicate (that is, when ANTLR is guessing during the parse); 
when a new token is consumed, the least recently read token pointer is discarded. When the 
end of the token buffer is reached during a syntactic predicate evaluation, however, the 
buffer grows so that the token stream can be rewound to the point at which the predicate was 
initiated. The buffer can only grow, never shrink.

By default, the token buffer deletes token objects when they are no longer needed. A 
reference count is used to determine how many references exist to each token object. When 
the count reaches zero, the token object is subject to deletion. If your grammar references a 
token object in a grammar action, the token buffer will not delete that object. The "smart 
pointer" to the token object used by your action will delete it.

The token object pointers in the token buffer may be accessed from your actions with 
ANTLRParser::LT(i), where i=1..n where n is the number of token objects remaining in 
the file; LT(1) is a pointer to the next token to be recognized. This function can be used to 
write sophisticated semantic predicates that look deep into the rest of the input token stream 
to make complicated decisions. For example, the C++ qualified item construct is difficult to 
match because there may be an arbitrarily large sequence of scopes before the object can be 
identified (e.g., A::B::~B()).

The ANTLRParser::LA(i) function returns the token type of the ith lookahead symbol, but 
is valid only for i=1..k. This function uses a cache of k tokens stored in the parser itself. The 
token buffer itself is not queried.
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The commonly used ANTLRTokenBuffer functions are:

virtual ANTLRAbstractToken *getToken();

Return the next token from the buffer.

virtual ANTLRAbstractToken *bufferedToken(int i);

Return the token i ahead where i = 1..n with n equal to the number of tokens 
remaining in the input.

void noGarbageCollectTokens(); 

Turn off deletion of token objects by buffer.

void garbageCollectTokens();
Turn on deletion of token objects by buffer; this is the default.

virtual void setMinTokens(int k_new);
Specify the minimum number of token objects held by the buffer. The k_new 
element must as large as the k specified to the ANTLRTokenBuffer 
constructor.

Parsers

ANTLR generates a subclass of ANTLRParser called P for definitions in your grammar file 
of the form:

class P {
...
}

The commonly used functions that you may wish to invoke or override are:

class ANTLRParser {
public:

virtual void init();
Note: you must call ANTLRParser::init()if you override init().

ANTLRTokenType LA(int i);
The token type of the ith symbol of lookahead where i=1..k.

ANTLR AbstractToken *LT(int i);
The token object pointer of the ith symbol of lookahead where i=1..n (n is 
the number of tokens remaining in the input).

void setEofToken(ANTLRTokenType t);
When using non-DLG-based scanners, you must inform the parser what token 
type should be considered end-of-input. This token type is then used by the 
errorecovery facilities to scan past bogus tokens without going beyond the end 
of the input.
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void garbageCollectTokens();
Any token pointer discarded from the token buffer is deleted if this 
function is called (assuming the reference count is zero for that token.) This is 
the default.

void noGarbageCollectTokens();
The token buffer does not delete any tokens.

virtual void syn (ANTLRAbstractToken *tok,ANTLChar*egroup, SetWordType 
*eset, ANTLRTokenType etok, int k);

You can redefine syn() to change how ANTLR resports error messages; 
see edecode() below.

virtual void panic(char *msg);
Call this if something really bad happens. The parser will terminate.

virtual void consume();
Get another token of input.

void consumeUntil(SetWordType *st); // for exceptions
This function forces the parser to consume tokens until a token in the token
class specified (or end-of-input) is found. That token is not consumed. You 
may want to call consume() afterwards.

void consumeUntilToken(int t);
Consume tokens until the specified token is found(or end of input). That token 
is not consumed—you may want to consume() afterwards.

protected:

void edecode(SetWordType *);
Print out in set notation the specified token class. Given a token class called T 
in your grammar, the set name will be called T_set in an action.

virtual void tracein(char *r);
This function is called upon exit from rule r.

virtual void traceout(char *r);
This function is called upon exit from rule r.

};
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AST Classes

ANTLR’s AST definitions are subclasses of ASTBase, which is derived from PCCT_AST (so 
that the SORCERER and ANTLR trees have a common base). The interesting functions are 
as follows:

class PCCTS_AST {

// minimal SORCERER interface
virtual PCCTS_AST *right();

Return next sibling.

virtual PCCTS_AST *down();
Return first child.

virtual void setRight(PCCTS_AST *t);
Set the next sibling.

virtual void setDown(PCCTS_AST *t);
Set the first child.

virtual int type();
What is the node type (used by SORCERER).

virtual void setType(int t);
Set the node type (used by SORCERER)?

virtual PCCTS_AST *shallowCopy();
Return a copy of the node (used for SORCERER in transform mode). When 
you implement this, you must NULL the child-sibling pointers. You can 
define a copy constructor and have shallowCopy() call that. If you you 
want to use dup() with either ANTLR or SORCERER or -transform mode 
with SORCERER, you must define shallowCopy().

// not needed by ANTLR—support functions; see SORCERER doc
virtual PCCTS_AST *deepCopy();
virtual void addChild(PCCTS_AST *t);
virtual void insert_after(PCCTS_AST *a, PCCTS_AST *b);
virtual void append(PCCTS_AST *a, PCCTS_AST *b);
virtual PCCTS_AST * tail(PCCTS_AST *a);
virtual PCCTS_AST * bottom(PCCTS_AST *a);
virtual PCCTS_AST * cut_between(PCCTS_AST *a, PCCTS_AST *b);
virtual void tfree(PCCTS_AST *t);
virtual int nsiblings(PCCTS_AST *t);
virtual PCCTS_AST* sibling_index(PCCTS_AST *t, int i);

virtual void panic(char *err);
Print an error message and terminate the program.

};
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ASTBase is a subclass of PCCTS_AST and adds the functionality:

class ASTBase : public PCCTS_AST {
public:

ASTBase *dup();
Return a duplicate of the tree.

void destroy();
Delete the entire tree.

static ASTBase *tmake(ASTBase *, ...);
Construct a tree from a possibly NULL root (first argument) and a list of 
children. Followed by a NULL argument.

void preorder();
Preorder traversal of a tree (normally used to print out a tree in LISP form).

virtual void preorder_action();
What to do at each node during the traversal.

virtual void preorder_before_action (); 
What to do before descending a down pointer link (i.e., before visiting the 
children list). Prints a left parenthesis by default.

virtual void preorder_after_action();
What to do upon return from visiting a children list. Prints a right parenthesis 
by default.

};

To use doubly linked child-sibling trees, subclass ASTDoublyLinkedBase instead:

class ASTDoublyLinkedBase : public ASTBase {
public:

void double_link(ASTBase *left,ASTBase *up);
Set the parent (up) and previous child (left) pointers of the whole tree. 
Initially, left and up arguments to this function must be NULL.

PCCTS_AST *left() { return _left; }
Return the previous child.

PCCTS_AST *up() { return _up; }
Return the parent (works for any sibling in a sibling list).

};

Note, however, that the tree routines from ASTBase do not update the left and up pointers. 
You must call double_link() to update all the links in the tree.
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FIGURE  3 C++ Class Hierarchies

Intermediate-Form Tree Construction

You may embed actions within an ANTLR grammar to construct abstract syntax trees 
(ASTs) but ANTLR provides an automatic mechanism for implicitly or explicitly specifying 
tree structures. Using the automatic mechanism, you must define what an AST node looks 
like and how to construct an AST node given an attribute (C) or token pointer (C++). The 
ANTLR -gt command line option must be turned on so that ANTLR knows to generate the 
extra code in the resulting parser to construct and manipulate trees. In this section, we 
describe the required C or C++ definitions, the available support functions, the AST 
operators, and the special symbols used in actions to construct nodes and trees.
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Required AST Definitions

The C++ interface requires that you derive a class called AST from ASTBase. The derived 
class contains the fields you need for your purposes and a constructor that accepts an 
ANTLRToken pointer; the constructor fills in the AST node from the contents of the token 
object. Here is a sample AST node definition that merely makes a reference to the token 
object for which the node was created:

class AST : public ASTBase {
public:

ANTLRTokenPtr token;
AST(ANTLRTokenPtr t) { token = t; }

};

The calling of grammar rules from C++ code is slightly different when trees are being built. 
As with the C interface, the address of a NULL-initialized tree pointer must be passed to the 
starting rule. The pointer comes back set to the tree constructed for that rule:

main()
{

ParserBlackBox<...> p(stdin);

ASTBase *root = NULL;
p.parser->start_rule(&root);

}

AST Support Functions

The following PCCTS_AST members are not needed by ANTLR or SORCERER, but are 
support functions available to both; they are useful in SORCERER applications

void addChild(PCCTS_AST *t);
Add a child t of this.

PCCTS_AST *ast_find_all(PCCTS_AST *t,
PCCTS_AST *u,
PCCTS_AST **cursor);

Find all occurrences of u in t. The cursor must be initialized to NULL before 
calling this function and is used to keep track of where in t the function left 
off between function calls. Returns NULL when no more occurrences are 
found. Useful for iterating over every occurrence of a particular subtree.

int match(PCCTS_AST *t,PCCTS_AST *u);
Returns true if t and u have the same structure (the trees have the same tree 
structure and token type fields.) If both trees are NULL, true is returned.
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void insert_after(PCCTS_AST *a,PCCTS_AST *b);
Add b immediately after a as its sibling. If b is a sibling list at its top level, 
then the last sibling of b points to the previous right sibling of a. Inserting a 
NULL pointer has no effect.

void append(PCCTS_AST *a, PCCTS_AST *b);
Add b to the end of the sibling list for a. Appending a NULL pointer is illegal.

PCCTS_AST *tail(PCCTS_AST *a);
Find the end of the sibling list for a and return a pointer to it.

PCCTS_AST *bottom(PCCTS_AST *a);
Find the bottom of the child list for a (going straight "down".)

PCCTS_AST *cut_between(PCCTS_AST *a, PCCTS_AST *b);
Unlink all siblings between a and b and return a pointer to the first element of 
the sibling list that was unlinked. This routine makes a point to b and makes 
sure that the tail of the sibling list, which was unlinked, does not point to b. 
The routine ensures that a and b are (perhaps indirectly) connected. 

void tfree(PCCTS_AST *t);
Recursively walk t, deleting all the nodes in a depth-first order.

int nsiblings(PCCTS_AST *t);
Returns the number of siblings of t.

PCCTS_AST *sibling_index(PCCTS_AST *t, int i);
Return a pointer to the ith sibling where the sibling to the right of t is the first. 
An index of 0, returns t.

The following ASTBase members are specific to ANTLR:

static ASTBase *tmake(ASTBase *, ...);
See the #(...) in “Interpretation of C/C++ Actions Related to ASTs” on 
page 125.

ASTBase *dup();
Duplicate the current tree.

void preorder();
Perform a preorder walk of the tree using the following member functions.

void preorder_action();
What to do in each node as you do a preorder walk. Typically, preorder() is 
used to print out a tree in lisp-like notation. In that case, it is sufficient to 
redefine this function alone.

void preorder_before_action();
What to print out before walking down a tree.
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void preorder_after_action();
What to print out after walking down a tree.

Operators

ANTLR grammars may be annotated with AST construction operators. The operators are 
sufficient to describe all but the strangest tree structures. 

Consider the "root" operator "^." The token modified by the root operator is considered the 
root of the currently-built AST. As a result, the rule

add : INT PLUS^ INT ;

results in an AST of the form:

The way to "read" rule add with regards to AST building is to say

"Make a node for INT and add it to the sibling list (it is a parent-less only 
child now). Make a node for PLUS and make it the root of the current tree 
(which makes it simply the parent of the only child). Make a node for the 
second INT and add it to the sibling list."

Think of the AST operators as actions that are executed as they are encountered not as 
something that specifies a tree structure known at ANTLR analysis time. For example, what 
if a looping subrule is placed in the rule?

add : INT (PLUS^ INT)* ;

Input "3+4+5" would yield:

After the "3+4" has been read, the current tree for rule add would be:

PLUS

INT INT

+

+

3 4

5

+

3 4



Intermediate-Form Tree Construction

Language Translation Using PCCTS and C++  125

just as before. However, because the (...)* allows you to match another addition term, 
two more nodes are added to the tree for add, one of which is a root node. After the 
recognition of the second + in the input, the tree for add would look like this:

because the + was made the root of the current tree due to the root operator. The 5 is a simple 
leaf node (since it was not modified with either ^ or !) and is added to the current sibling 
list. The addition of the new root changes the current sibling list from the 3 and 4 list to the 
first + that was added to the tree; i.e., the first child of the new root. Hence, the 5 is added to 
the second level in the tree and we arrive at the final tree structure.

Subrules merely modify the tree being built for the current rule, whereas each rule has its 
own tree. For example, if the (...)* in add were moved to a different rule:

add : INT addTerms
;

addTerms
: (PLUS^ INT)*
;

then the following, very different, tree would be generated for input "3+4+5:"

While this tree structure is not totally useless, it is not as useful as the previous structure 
because the + operators are not at the subtree roots.

Interpretation of C/C++ Actions Related to ASTs

Actions within ANTLR grammar rules may reference expression terms that are not valid C 
or C++ expressions, but are understood and translated by ANTLR. These terms are useful, 
for example, when you must construct trees too complicated for simple grammar annotation, 
when nodes must be added to the trees built by ANTLR, or when partial trees must be 
examined. 

+

+

3 4

3 +

+

4

5
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Consider how one might build an AST for an if statement. A useful tree may quickly and 
easily be constructed via grammar annotations:

if : IF^ expr THEN! stat { ELSE! stat } ;

Here, the IF is identified as the root of the tree, the THEN and ELSE are omitted as 
unnecessary, and the trees constructed by expr and stat are linked in as children of the IF 
node:

TABLE 10. C/C++ Interface Interpretation of AST Terms in Actions

Symbol Meaning

#0 A pointer to the result tree of the enclosing rule

(l-value).

#i A pointer to the AST built (or returned from) the 
ith element of the enclosing alternative. You 
should really use the #label instead.

#label A pointer to the AST built (or returned from) the 
element labeled with label. Translated to 
label_ast.

#[args] Tree node constructor. Translated to a call to 
zzmk_ast(zzastnew(), args) in C where 
zzastnew() allocates and returns a pointer to a 
new, initialized AST node. You must define 
zzmk_ast() if this term is used.

In C++, translated to “new AST(args)”.

#[] Empty tree node constructor. Translated to a call 
to zzastnew() in C and to “new AST” in C++.

#(root child1, ..., 
childn)

Tree constructor. If root is NULL, then a sibling 
list is returned. The childi arguments are 
added to the sibling list until the first NULL 
pointer (not counting the root pointer) is 
encountered .

#() NULL.

IF

expr stat stat
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To construct the same tree structure manually, the following grammar is sufficient:

if! : IF e:expr THEN st:stat { ELSE el:stat }
<<#if = #(#[IF], #e, #st, #el);>>

;

where the ‘!’ in the rule header indicates that no automatic tree construction should be done 
by ANTLR. The “#[IF]” term constructs a tree node via "new AST(IF)" (assuming you 
have defined an AST constructor taking a ANTLRTokenType argument) and the “#(...)” 
tree constructor puts the IF node above the children matched for the conditional and 
statements. The el label is initialized to NULL and contributes nothing to the resulting tree if 
an else clause is not found on the input.

Predicates

Predicates are used to recognize difficult language constructs such as those that are context-
sensitive or those that require unbounded lookahead to recognize. This section provides a 
brief description of how predicates are defined and used to alter the normal LL(k) parsing 
strategy.

Semantic Predicates

Semantic predicates alter the parse based upon run-time information. Generally, this 
information is obtained from a symbol table and is used to recognize context-sensitive 
constructs such as those that are syntactically identical but semantically very different; e.g., 
variables and type names are simple identifiers, but are used in completely different 
contexts.

The basic semantic predicate takes the form of an action suffixed with the "?" operator: 
"<<...>>?." No white space is allowed between the ">>" and the "?." Predicates must be 
boolean expressions and may not have side effects (i.e., they should not modify variables.) 
Alternatives without predicates are assumed to have a predicate of "<<1>>?." Also, because 
predicates can be "hoisted," out of rules as we will see shortly, predicates that refer to rule 
parameters or local variables are often undesirable.

Validating Semantic Predicates

All semantic predicates behave at least as validating predicates. That is, all predicates must 
evaluate to true as the parser encounters them during the parse or a semantic error occurs. 
For example in,
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typename
: <<isTypeName(LT(1)->getText())>>? ID
;

When typename is invoked, the predicate is tested before attempting to match the ID token 
reference; where isTypeName() is some user-defined boolean function. If the first symbol 
of lookahead is not a valid type name, ANTLR generates an error message indicating that 
the predicate failed.

A fail action may be specified by appending a "[...]" action; this action is executed upon 
failure of the predicate when acting as a validating predicate:

typename
: <<isTypeName(LT(1)->getText())>>?[dialogBox(BadType)] ID
;

where we can presume that dialogBox(BadType) is a user-defined function that opens a 
dialog box to display an error message. ANTLR generates code similar to the following:

void Parser::typename(void)
{

if (!(isTypeName(LT(1)->getText()))) dialogBox(BadType) ;
zzmatch(ID);
consume();
return;

}

using the C++ interface.

Disambiguating Semantic Predicates

When ANTLR finds a syntactic ambiguity in your grammar, ANTLR attempts to resolve the 
ambiguity with semantic information. In other words, ANTLR searches the grammar for any 
predicates that provide semantic information concerning the tokens in the lookahead buffer. 
A predicate that is tested during the parse to make a parsing decision (as opposed to merely 
checking for validity once a decision has been made) is considered a disambiguating 
predicate. We say that disambiguating predicates are hoisted into a parsing decision from a 
rule or rules. A predicate that may be hoisted into a decision is said to be visible to that 
decision. In this section, we describe which predicates are visible, how multiple predicates 
are combined, and how visible predicates are incorporated into parsing decisions.

ANTLR searches for semantic predicates when a syntactically ambiguous parsing decision 
is discovered. The set of visible predicates is collected and tested in the appropriate 
prediction expression. We say that predicate p is visible to an alternative (and, hence, may 
be used to predict that alternative) if p can be evaluated correctly without consuming another 
input token and without executing a user action. Generally, visible predicates reside on the 



Predicates

Language Translation Using PCCTS and C++  129

left edge of productions; predicates not on the left edge usually function as validating 
predicates only. For example,

a : <<p1>>? ID
| b
;

b : <<p2>>? ID
| <<action>> <<p3>>? ID
| INT <<p4>>? ID
| { FLOAT } <<p5>>? ID
;

First we observe that a lookahead of ID predicts both alternatives of rule a. ANTLR searchs 
for predicates that potentially disambiguate the parsing decision. Here, we see that p1 may 
be used to predict alternative one because it can be evaluated without being hoisted over a 
grammar element or user action. Alternative two of rule a has no predicate, but the 
alternative references rule b which has two predicates. Predicate p2 is visible, but p3 is not 
because p3 would have to be executed before action, which would change the action 
execution order. Predicate p4 is not visible because an INT token would have to be 
consumed before p4 could be evaluated in the correct context. Predicate p5 is not visible 
because a FLOAT token may have to be consumed to gain the correct context. Rule a could 
be coded something like the following:

a()
{

if ( LA(1)==ID && (p1) ) {
MATCH(ID);
consume();

}
else ( LA(1)==ID && (p2) ) {

b();
}

}

Predicates may be hoisted over init-actions because init-actions are assumed to contain 
merely local variable allocations. For example,

a : <<init-action>>// does not affect hoisting
<<p1>>? ID

| b
;

Care must be taken so that predicates do not refer to local variables or rule parameters if the 
predicate could be hoisted out of that rule. In this example,

a : b | ID
;
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b[int ctx]
: <<ctx>>? ID
;

predicate ctx is hoisted into rule a, resulting in a C or C++ compilation error because ctx 
exists only in rule b.

Alternatives without predicates are assumed to be semantically valid; hence, predicates on 
some alternatives are redundant. For example,

a : <<flag>>? ID
| <<!flag>>?ID
;

The predicate on the second alternative is unnecessary because if flag evaluates to false, 
!flag is redundant.

A predicate used to help predict an alternative may or may not apply to all lookahead 
sequences predicting that alternative. We say that the lookahead must be consistent with the 
context of the predicate for it to provide useful information. Consider the following example.

a : (var | INT)
| ID
;

var : <<isVar(LATEXT(1))>>? ID
;

Because ID predicts both alternatives of rule a, ANTLR hoists the predicate isVar() into 
the prediction expression for the first alternative. However, both INT and ID predict the first 
alternative—evaluating isVar() when the lookahead is INT would be incorrect as it would 
return false when in fact no semantic information is known about INTs. The first alternative 
of rule a would never be able to match an INT.

When hoisting a predicate, ANTLR computes and then carries along the context under 
which the predicate was found (with "-prc on" command-line option). The required depth, 
k, for the predicate context is determined by examining the actual predicate to see what 
lookahead depths are used; predicates that do not reference LT(k) or LATEXT(k) are 
assumed to have k=1. Normally, k=1 as predicates usually test only the next lookahead 
symbol.
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The third predicate in the table provides context information for the ID following the 
LPAREN; hence, the context is LPAREN followed by ID. The other two examples require a 
lookahead depth of k=1.

Predicates normally apply to exactly one lookahead sequence. ANTLR will give you a 
warning for any predicate that applies to more than one sequence.

There are situations when you would not wish ANTLR to compute the lookahead context of 
predicates: 

• When ANTLR would take too long to compute the context and 

• When the predicate applies only to a subset of the full context computed by 
ANTLR

In these situations, a predicate context-guard is required, which allows you to specify the 
syntactic context under which the predicate is valid. The form of a context-guarded 
predicate is

( context-guard )? => <<semantic-predicate>>?

Where the context-guard can be any grammar fragment that specifies a set of k-
sequences where k is the depth referenced in semantic-predicate. For example,

cast_expr
: ( LPAREN ID )? => <<isTypeName(LT(2))>>?

LPAREN abstract_type RPAREN
;

This predicate dictates that when the lookahead is LPAREN followed by ID, then the 
isTypeName() predicate provides semantic information and may be evaluated. Without the 
guard, ANTLR assumes that the lookahead was LPAREN followed by all tokens that could 
begin an abstract_type.

Multiple lookahead k-sequences can also be specified inside the context guard:

a : ( ID | KEYWORD )? => <<predicate>>? b ;

TABLE 11. Sample Predicates and Their Lookahead Contexts

Predicate Context

a : <<p(LT(1))>>? ID ; ID

a : <<p(LT(1))>>? b ;

b : ID | INT ;

ID, INT

a : <<p(LT(2))>>? LPAREN ID ; LPAREN ID
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The use of EBNF looping-constructs such as (...)* are not valid in context-guards.

Because there may be more than one predicate visible to an alternative, ANTLR has rules 
for combining multiple predicates.

• Predicates or groups of predicates taken from alternative productions are ||’d 
together.

• Predicates or groups of predicates taken from the same production are &&’d 
together.

For example,

decl
: typename declarator ";"
| declarator ";"
;

declarator
: ID
;

typename
: classname
| enumname
;

classname
: <<isClass(LATEXT(1))>>? ID
;

enumname
: <<isEnum(LATEXT(1))>>? ID
;

The decision for the first alternative of rule decl would hoist both predicates and test them 
in a decision similar to the following:

if ( LA(1)==ID && (isClass(LATEXT(1)||isEnum(LATEXT(1)) ) { ...

Adding a predicate to rule decl:

decl
: <<flag>>? typename declarator ";"
| declarator ";"
;

would result in flag being &&’d with the result of the combination of the other two 
predicates:

if (LA(1)==ID && (flag&&(isClass(LATEXT(1)||isEnum(LATEXT(1)))) { ...
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In reality, ANTLR inserts code to ensure that the predicates are tested only when the parser 
lookahead is consistent with the context associated with each predicate; here, all predicates 
have ID as their context, and the redundant tests have been removed for clarity.

Semantic Predicates Effect upon Syntactic Predicates

During the evaluation of a syntactic predicate, semantic predicates that have been hoisted 
into prediction expressions are still evaluated. Success or failure of these disambiguating 
predicates simply alters the parse and does not directly cause syntax errors.

Validation predicates (those that have not been hoisted) are also still evaluated. However, a 
failed validation predicate aborts the current syntactic predicate being evaluated whereas, 
normally, a failure causes a syntax error.

Syntactic Predicates

Just as semantic predicates indicate when a production is valid, syntactic predicates also 
indicate when a production is a candidate for recognition.  The difference lies in the type of 
information used to predict alternative productions.  Semantic predicates employ 
information about the meaning of the input (e.g., symbol table information), whereas 
syntactic predicates employ structural information like normal LL(k) parsing decisions. 
Syntactic predicates specify a grammatical construct that must be seen on the input stream to 
make a production valid.  Moreover, this construct may match input streams that are 
arbitrarily long; normal LL(k) parsers are restricted to using the next k symbols of 
lookahead. 

Syntactic Predicate Form and Meaning

Syntactic predictions have the form

( α )? β

or, the shorthand form

( α )?

which is identical to

( α )? α

where α and β are arbitrary Extended BNF (EBNF) grammar fragments that do not define 
new nonterminals.  The meaning of the long form syntactic predicate is:

“If α is matched on the input stream, attempt to recognize β.”

Note the similarity to the semantic predicate
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<<α>>? β

which means

“If α evaluates to true at parser run-time, attempt to match β.”

Syntactic predicates may occur only at the extreme left edge of alternatives because they are 
only useful during the prediction of alternatives—not during the subsequent recognition of 
the alternatives.

Alternative productions that are syntactically unambiguous, but non-LL(k), should be 
rewritten, left-factored, or modified to use syntactic predicates. Consider the following rule:

type : ID
| ID
;

The alternatives are syntactically ambiguous because they can both match the same input. 
The rule is a candidate for semantic predicates, not syntactic predicates. The following 
example is unambiguous. It is just not deterministic to a normal LL(k) parser.

Consider a small chunk of the vast C++ declaration syntax. Can you tell exactly what type of 
object f is after having seen the left parenthesis?

int f(

The answer is "no." Object f could be an integer initialized to some previously defined 
symbol a:

int f(a);

or a function prototype or definition:

int f(float a) {...}

The following is a greatly simplified grammar for these two declaration types:

decl: type ID "\(" expr_list "\)" ";"
| type ID "\(" arg_decl_list "\)" func_def
;

Left-factoring “type ID "\("” would be trivial because our grammar is so small and the 
left-prefixes are identical:

decl: type ID
"\("

( expr_list "\)" ";"
| arg_decl_list
)

"\)" func_def
;
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However, if a user action were required before recognition of the reference to rule type, 
left-factoring would not be possible:

decl
: <<// dummy init action; next action isn’t init action>>

 <<printf("var init\n");>>
type ID "\(" expr_list "\)" ";"

| <<printf("func def\n");>>
type ID "\(" arg_decl_list "\)" func_def

;

The solution to the problem involves looking arbitrarily ahead (type  could be arbitrarily 
big, in general) to determine what appears after the left parenthesis.  This problem is easily 
solved implicitly by using a syntactic predicate:

decl
: ( <<//dummy action>>

<<printf("var init\n");>>
type ID "\(" expr_list "\)" ";"

)?
| <<printf("func def\n");>>

type ID "\(" arg_decl_list "\)" func_def
;

The (...)?  indicates that it is impossible to decide from the left edge of rule decl  with a 
finite amount of lookahead, which production to predict.  Any grammar construct inside a 
(...)? block is attempted and, if it fails, the next alternative production that could match 
the input is attempted.  This represents selective backtracking and is similar to allowing 
ANTLR parsers to guess without being "penalized" for being wrong.  Note that the first 
action of any block is considered an init-action and hence, because it may define local 
variables it cannot be gated out with an if -statement. (Local variables would not be visible 
outside the if -statement.)

Modified Parsing Strategy

Decisions that are not augmented with syntactic predicates are parsed deterministically with 
finite lookahead up to depth k as is normal for ANTLR-generated parsers.  When at least one 
syntactic predicate is present in a decision, rule recognition proceeds as follows:

1. Find the first viable production (i.e., the first production in the alternative list 
predicted by the current finite lookahead) according to the associated finite-
lookahead prediction-expression.

2. If the first grammar element in that production is not a syntactic predicate, predict 
that production and go to Step 3 else attempt to match the predicting grammar 
fragment of the syntactic predicate.
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3. If the predicting grammar fragment is matched, predict the associated production 
and go to Step 4 else find the next viable production and go to Step 2.

4. Proceed with the normal recognition of the production predicted in 
Steps 2 or 3.

For successful predicates, both the predicting grammar fragment and the remainder of the 
production are actually matched: hence, the short form, (α)?, actually matches α twice—
once to predict and once to apply α normally, executing any embedded actions.

Nested Syntactic Predicate Invocation

Because syntactic predicates may reference any defined nonterminal and because of the 
recursive nature of grammars, it is possible for the parser to return to a point in the grammar 
that had already requested backtracking.  This nested invocation poses no problem from a 
theoretical point of view, but it can cause unexpected parsing delays in practice. 

Efficiency

The order of alternative productions in a decision is significant. Productions in an ANTLR 
grammar are always attempted in the order specified.  For example, the parsing strategy 
outline above indicates that the following rule is most efficient when foo is less complex 
than bar.

a : (foo)?
| bar
;

because they testing the simplest possibility first is faster.

Any parsing decisions made inside a (..)? block are made deterministically unless they 
themselves are prefixed with syntactic predicates.  For example,

a : ( (A)+ X | (B)+ X )?
| (A)* Y
;

specifies that the parser should attempt to match the nonpredicated grammar fragment

( (A)+ X
| (B)+ X
)

using normal the normal finite-lookahead parsing strategy.  If a phrase recognizable by this 
grammar fragment is found on the input stream, the state of the parser is restored to what it 
was before the predicate invocation and the grammar fragment is parsed again. If not, if the 
grammar fragment failed to match the input, apply the next production in the outer block:

(A)* Y
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Effect of Syntactic Predicates on Actions and Semantic Predicates

While evaluating a syntactic predicate, user actions, such as adding symbol table entries, are 
not executed because in general, they cannot be "undone"; this conservative approach avoids 
affecting the parser state in an irreversible manner. Upon successful evaluation of a syntactic 
predicate, actions are once again enabled—unless the parser was in the process of evaluating 
another syntactic predicate.

Because semantic predicates are restricted to side-effect-free expressions, they are always 
evaluated when encountered. However, during syntactic predicate evaluation, the semantic 
predicates evaluated must be functions of values computed when actions were enabled. For 
example, if your grammar has semantic predicates that examine the symbol table, all 
symbols needed to direct the parse during syntactic predicate evaluation must be entered into 
the table before this backtracking phase has begun.

Because init-actions are always executed, it is possible to make ANTLR into actually 
executing an action during the evaluation of a syntactic predicate by simply enclosing the 
action in a subrule:

(<<action>>)

Syntactic Predicates effect upon Grammar Analysis

ANTLR constructs normal LL(k) decisions throughout predicated parsers, only resorting to 
arbitrary lookahead predictors when necessary. Calculating the lookahead sets for a full 
LL(k) parser can be quite expensive in terms of (time and space), so by default, ANTLR 
uses a linear approximation to the lookahead and only uses full LL(k) analysis when 
required. When ANTLR encounters a syntactic predicate, it generates the instructions for 
selective backtracking as you would expect, but also generates an approximate decision. 
Although no finite lookahead decision is actually required (the arbitrary lookahead 
mechanism will accurately predict the production without it) the approximate portion of the 
decision reduces the number of times backtracking is attempted without hope of a successful 
match. An unexpected, but important, benefit of syntactic predicates is that they provide a 
convenient method for preventing ANTLR from attempting full LL(k) analysis when doing 
so would cause unacceptable analysis delays.

Parser Exception Handlers

Parser exception handlers provide a more sophisticated alternative to the automatic error 
reporting and recovery facility provided by ANTLR. The notion of throwing and catching 
parser error signals is similar to C++ exception handling: however, our implementation 
allows both the C and C++ interface to use parser exception handling. This section provides 
a short description of the syntax and semantics of ANTLR exceptions.
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When a parsing error occurs, the parser throws an exception. The most recently encountered 
exception handler that catches the appropriate signal is executed. The parse continues after 
the exception by prematurely returning from the rule that handled the exception. Generally, 
the rule that catches the exception is not the rule that throws the exception; e.g., a 
statement rule may be a better place to handle an error than the depths of an expression 
evaluator as the statement rule has unambiguous context information with which to 
generate a good error message and recover.

Exception handlers may be specified:

• After any alternative. These handlers apply only to signals thrown while 
recognizing the elements of that alternative.

• After the ‘ ;’ of a rule definition . These handlers apply to any signal thrown while 
recognizing any alternative of the rule unless the handler references a element 
label, in which case the handler applies only to recognition of that rule element. 
Non-labeled handlers attached to a rule catch signals not caught by handlers 
attached to an alternative.

• Before the list of rules. These global exception handlers apply when a signal is 
not caught by a handler attached to a rule or alternative. Global handlers behave 
slightly differently in that they are always executed in the rule that throws the 
signal; the rule is still prematurely exited.

Exception Handler Syntax

The syntax for an exception group is as follows:

exception_group
: "exception" { "\[" ID "\]" } ( exception_handler )*

{ "default" ":" ACTION }
;

exception_handler
: "catch" SIGNAL ":" { ACTION }
;

where SIGNAL is one of:
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A "default :" clause may also be used in your exception group to match any signal that 
was thrown. Currently, you cannot define your own exception signals.

You can define multiple signals for a single handler. For example,

exception
catch MismatchedToken :
catch NoViableAlt :
catch NoSemViableAlt :

<<
printf("stat:caught predefined signal\n");
consumeUntil(DIE_set);
>>

If a label attached to a rule reference is specified for an exception group, that group may be 
specified after the end of the ‘;’ rule terminator. Because element labels are unique for each 
rule, ANTLR can still uniquely identify the appropriate rule reference to associate the 
exception group. It often makes a rule cleaner to have most of the exception handlers at the 
end of the rule. For example,

a : A t:expr B
| ...
;
exception[t]

catch ...
catch ...

The NoViableAlt signal only makes sense for labeled exception groups and for rule 
exception groups.

TABLE 12. Predefined Parser Exception Signals

Signal Name Description

NoViableAlt Exception thrown when none of the alternatives in a 
pending rule or subrule were predicted by the current 
lookahead.

NoSemViableAlt Exception thrown when no alternatives were predicted 
in a rule or subrule and at least one semantic predicate 
(for a syntactically viable alternative) failed.

MismatchedToken Exception thrown when the pending token to match 
did not match the first symbol of lookahead.
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Exception Handler Order of Execution

Given a signal, S, the handler that is invoked is determined by looking through the list of 
enabled handlers in a specific order. Loosely speaking, we say that a handler is enabled 
(becomes active) and pushed onto an exception stack when it has been seen by the parser on 
its way down the parse tree. A handler is disabled and taken off the exception stack when the 
associated grammar fragment is successfully parsed. The formal rules for enabling are:

• All global handlers are enabled upon initial parser entry.

• Exception handlers specified after an alternative become enabled when that 
alternative is predicted.

• Exception handlers specified for a rule become enabled when the rule is invoked.

• Exception handlers attached with a label to a particular rule reference within an 
alternative are enabled just before the invocation of that rule reference.

Disabling rules are:

• All global handlers are disabled upon parser exit.

• Exception handlers specified after an alternative are disabled when that alternative 
has been (successfully) parsed completely.

• Exception handlers specified for a rule become disabled just before the rule 
returns.

• Exception handlers tied to a particular rule reference within an alternative are dis-
abled just after the return from that rule reference.

Upon an error condition, the parser with throw an exception signal, S. Starting at the top of 
the stack, each exception group is examined looking for a handler for S. The first S handler 
found on the stack is executed. In practice, the run time stack and hardware program counter 
are used to search for the appropriated handler. This amounts to the following:

1. If there is an exception specified for the enclosing alternative, then look for S in 
that group first.

2. If there is no exception for that alternative or that group did not specify an S 
handler, then look for S in the enclosing rule’s exception group.

3. Global handlers are like macros that are inserted into the rule exception group for 
each rule.

4. If there is no rule exception or that group did not specify an S handler, then return 
from the enclosing rule with the current error signal still set to S.

5. If there is an exception group attached (via label) to the rule that just returned, 
check that exception group for S.

6. If an exception group attached to a rule reference does not have an S handler, then 
look for S in the enclosing rule’s exception group.
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This process continues until an S handler is found or a return instruction is executed in 
starting rule. When either happens, the start symbol would have a return-parameter set to S.

These guidelines are best shown in an example:

a : A c B
exception /* 1 */

catch MismatchedToken : <<ACTION1>>
| C t:d D

exception /* 2 */
catch MismatchedToken :<<ACTION2>>
catch NoViableAlt : <<ACTION3>>

;
exception[t] /* 3 */

catch NoViableAlt : <<ACTION4>>
exception /* 4 */

catch NoViableAlt : <<ACTION5>>

c : E ;
d : e ;
e : F | G

;
exception /* 5 */

catch MismatchedToken : <<ACTION6>>

Table 13 on page 141 summarizes the sequence in which the exception groups are tested.

Note that action 4 is never executed because rule d has no tokens to mismatch and 
mismatched tokens in rule e are caught in that rule.

TABLE 13. Sample Order of Search for Exception Handlers

Input Exception group search sequence Action Executed

D E B 4 5

A E D 1 1

A F B 1 1

C F B 2 2

C E D 5, 2 3
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The global handlers are like macro insertions. For example:

exception catch NoViableAlt : <<blah blah>>
a : A

;
exception

catch MismatchedToken : <<ack;>>
b : B

;

This grammar fragment is functionally equivalent to:

a : A
;
exception

catch MismatchedToken : <<ack;>>
catch NoViableAlt : <<blah blah>>

b : B
;
exception

catch NoViableAlt : <<blah blah>>

Modifications to Code Generation

The following items describe the changes to the output parser C or C++ code when at least 
one exception handler is specified:

• Each rule reference acquires a signal parameter that returns 0 if no error occurred 
during that reference or it returns a nonzero signal S.

• The MATCH() macro throws MismatchedToken rather than calling zzsyn(), the 
standard error reporting and recovery function.

• When no viable alternative is found, NoViableAlt is signaled rather than calling 
the zzsyn() routine.

• The parser no longer resynchronizes automatically. 

Semantic Predicates and NoSemViableAlt

When the input stream does not predict any of the alternatives in the current list of possible 
alternatives, NoViableAlt is thrown. However, what happens when semantic predicates 
are specified in that alternative list? There are cases where it would be very misleading to 
just throw NoViableAlt when in fact one or more alternatives were syntactically viable; 
i.e., the reason that no alternative was predicted was due to a semantic invalidity and a 
different signal must be thrown in such a case. For example,
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expr : <<P1>>? ID ... /* function call */
| <<P2>>? ID ... /* array reference */
| INT
;
exception

catch NoViableAlt :
<<no ID or INT was found>>

catch NoSemViableAlt :
<<an ID was found, but it was not valid>>

Typically, you would want to give very different error messages for the two different 
situations. Specifically, reporting a message such as

syntax error at ID missing { ID INT }

would be very misleading (i.e., wrong).

The rule for distinguishing between NoViableAlt and NoSemViableAlt is:

If NoViableAlt would be thrown and at least one semantic 
predicate (for a syntactically viable alternative) failed, signal 
NoSemViableAlt instead of NoViableAlt.

(Semantic predicates that are not used to predict alternatives do not yet throw signals. You 
must continue to use the fail-action attached to individual predicates in these cases.)

Resynchronizing the Parser

When an error occurs while parsing rule R, the parser will generally not be able to continue 
parsing anywhere within that rule. It will return immediately after executing any exception 
code. The one exception is for handlers attached to a particular rule reference. In this case, 
the parser knows exactly where in the alternative you would like to continue parsing from— 
immediately after the rule reference.

After reporting an error, your handler must resynchronize the parser by consuming zero or 
more tokens. More importantly, this consumption must be appropriate given the point where 
the parser will attempt to continue parsing. For example, given when an error occurs during 
the recognition of the conditional of an if-statement, a good way to recover would be to 
consume tokens until the then is found on the input stream.

stat : IF e:expr THEN stat
;
exception[e]

default : <<print error; consumeUntilToken(THEN);>>

The parser will continue with the parse after the expr reference (because we attached the 
exception handler to the rule reference) and look for the then right away.
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To allow this type of manual resynchronization of the parser, two functions are provided:

For example,

#tokclass RESYNCH { A C }
a : b A

| b C
;

b : B
;
exception

catch MismatchedToken : // consume until FOLLOW(b)
<<print error message; zzconsumeUntil(RESYNCH_set);>>

You may also use function set_el(T, TC_set) (prefix with "zz" in C interface) to test 
token type T for membership in a token class TC. For example,

<<if ( zzset_el(LA(1), TC_set) ) blah blah blah;>>

The @ Operator

You may suffix any token reference with the @ operator, which indicates that if that token is 
not seen on the input stream, errors are to be handled immediately rather than throwing a 
MismatchedToken exception.  In particular, [for the moment] the macros 
zzmatch_wdfltsig() or zzsetmatch_wdfltsig() is called in both C and C++ mode 
for simple token or token class references. In C++, you can override functions 
ANTLRParser member functions _match_wdfltsig() and _setmatch_wdfltsig().

The @ operator may also be placed at the start of any alternative to indicate that all token 
references in that alternative (and enclosed subrules) are to behave as if they had been 
suffixed with the ‘@’ operator individually. Consider the following grammar:

TABLE 14. Resynchronization Functions

Function Description

consumeUntil(X_set) Consume tokens until a token in the token class X 
is seen. Recall that ANTLR generates a packed bit-
set called X_set for each token class X. The C inter-
face prefixes the function name with "zz".

consumeUntilToken(T) Consume tokens until token T is seen. The C inter-
face prefixes the function name with "zz".
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stat
:@ "if" INT "then" stat { "else" stat }

<<printf("found if\n");>>
| id:ID@ "="@ INT@ ";"@

<<printf("found assignment to %s\n", $id->getText());>>
;

The @ on the front of alternative one indicates that each token reference in the alternative is 
to be handled without throwing an exception. The match routine will catch the error. The 
second alternative explicitly indicates that each token is to be handled locally without 
throwing an exception.

ANTLR Command Line Arguments

ANTLR understands the following command line arguments:

-CC Generate C++ output from ANTLR.

-ck n Use up to n symbols of lookahead when using compressed (linear approxima-
tion) lookahead. This type of lookahead is very cheap to compute and is 
attempted before full LL(k) lookahead, which is of exponential complexity in 
the worst case. In general, the compressed lookahead can be much deeper (e.g, 
-ck 10) than the full lookahead (which usually must be less than 4).

-cr Generate a cross-reference for all rules. For each rule, print a list of all other 
rules that reference it.

-e1 Ambiguities/errors shown in low detail (default).

-e2 Ambiguities/errors shown in more detail.

-e3 Ambiguities/errors shown in excruciating detail.

-fe f File Rename err.c to f.

-fh f File Rename stdpccts.h header (turns on -gh) to f.

-fl f File Rename lexical output, parser.dlg, to f.

-fm f File Rename file with lexical mode definitions, mode.h, to f.

-fr f File Rename file which remaps globally visible symbols, remap.h, to f.

-ft f File Rename tokens.h to f.

-gc Indicates that antlr should generate no C code, i.e., only perform analysis on 
the grammar.
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-gd C/C++ code is inserted in each of the ANTLR generated parsing functions to 
provide for user-defined handling of a detailed parse trace. The inserted code 
consists of calls to the user-supplied macros or functions called zzTRACEIN 
and zzTRACEOUT in C and calls to ANTLRParser::tracein() and tra-
ceout() in C++. The only argument is a char * pointing to a C-style string, 
which is the grammar rule recognized by the current parsing function. If no 
definition is given for the trace functions upon rule entry and exit, a message is 
printed indicating that a particular rule as been entered or exited.

-ge Generate an error class for each rule.

-gh Generate stdpccts.h for non-ANTLR-generated files to include. This file 
contains all defines needed to describe the type of parser generated by ANTLR 
(e.g. how much lookahead is used and whether or not trees are constructed) 
and contains the header action specified by the user. If your main() is in 
another file, you should include this file in C mode. C++ can ignore this 
option.

-gk Generate parsers that delay lookahead fetches until needed. Without this 
option, ANTLR generates parsers which always have k tokens of lookahead 
available. This option is incompatible with semantic predicates and renders 
references to LA(i) invalid as one never knows when the ith token of looka-
head will be fetched. [This is broken in C++ mode.]

-gl Generate line info about grammar actions in the generated C/C++ code of the 
form
# line "file.g"

which makes error messages from the C/C++ compiler more sensible because 
they point into the grammar file, not the resulting C/C++ file. Debugging is 
easier too, because you will step through the grammar, not C/C++ file.

-gs Do not generate sets for token expression lists; instead generate a "||"-sepa-
rated sequence of LA(1)==token_number. The default is to generate sets.

-gt Generate code for Abstract Syntax Trees.

-gx Do not create the lexical analyzer files (dlg-related). This option should be 
given when you need to provide a customized lexical analyzer. It may also be 
used in make scripts to cause only the parser to be rebuilt when a change not 
affecting the lexical structure is made to the input grammars.

-k n Set k of LL(k) to n; i.e., set the number of tokens of look-ahead (default==1).

-o dir Directory where output files should go (default="."). This keeps the source 
directory clear of ANTLR and DLG spawn.
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-p The complete grammar, collected from all input grammar files and stripped of 
all comments and embedded actions is listed to stdout. This enables viewing 
the entire grammar as a whole and eliminates the need to keep actions con-
cisely stated so that the grammar is easier to read.

-pa This option is the same as -p except that the output is annotated with the first 
sets determined from grammar analysis.

-prc on Turn on the computation of predicate context (default is not to compute the 
context).

-prc off Turn off the computation and hoisting of predicate context (default case).

-rl n Limit the maximum number of tree nodes used by grammar analysis to n. 
Occasionally, ANTLR is unable to analyze a grammar. This rare situation 
occurs when the grammar is large and the amount of lookahead is greater than 
one. A nonlinear analysis algorithm is used by PCCTS to handle the general 
case of LL(k) parsing. The average complexity of analysis, however, is near 
linear due to some fancy footwork in the implementation which reduces the 
number of calls to the full LL(k) algorithm. An error message will be dis-
played, if this limit is reached, which indicates the grammar construct being 
analyzed when ANTLR hit a nonlinearity. Use this option if ANTLR seems to 
go out to lunch and your disk start thrashing; try n=80000 to start. Once the 
offending construct has been identified, try to remove the ambiguity that antlr 
was trying to overcome with large lookahead analysis. The introduction of 
(...)? backtracking predicates eliminates some of these problems—antlr 
does not analyze alternatives that begin with (...)? (it simply backtracks, if 
necessary, at run time).

-w1 Set low warning level. Do not warn if semantic predicates and/or (...)? blocks 
are assumed to cover ambiguous alternatives.

-w2 Ambiguous parsing decisions yield warnings even if semantic predicates or 
(...)? blocks are used. Warn if predicate context computed and semantic predi-
cates incompletely disambiguate alternative productions.

- Read grammar from standard input and generate stdin.c as the parser file. 
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DLG Command Line Arguments

These are the command line arguments understood by DLG (normally, you can ignore these 
and concentrate on ANTLR):

-CC Generate C++ output. The output file is not specified in this case.

-Clevel Where level is the compression level used. 0 indicates no compression, 1 
removes all unused characters from the transition from table, and 2 maps 
equivalent characters into the same character classes. Using level -C2 signifi-
cantly reduces the size of the DFA produced for lexical analyzer.

-m f Produces the header file for the lexical mode with a name other than the default 
name of mode.h.

-i An interactive, or as interactive as possible, scanner is produced. A character is 
obtained only when required to decide which state to go to. Some care must be 
taken to obtain accept states that do not require look ahead at the next character 
to determine if that is the stop state. Any regular expression with a "e*" at the 
end is guaranteed to require another character of lookahead.

-cl class Specify a class name for DLG to generate. The default is DLGLexer.

-ci The DFA will treat upper and lower case characters identically. This is accom-
plished in the automaton; the characters in the lexical buffer are unmodified.

-cs Upper and lower case characters are treated as distinct. This is the default.

-o dir Directory where output files should go (default=”.”). This is very nice for 
keeping the source directory clear of ANTLR and DLG spawn.

-Wambiguity

Warns if more than one regular expression could match the same character sequence. The 
warnings give the numbers of the expressions in the DLG lexical specification file. The 
numbering of the expressions starts at one. Multiple warnings may be print for the same 
expressions.

- Used in place of file names to get input from stdin or send output to stdout. 
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C Interface

(The C interface gradually evolved from a simplistic attributed-parser built in 1988. 
Unfortunately for backward compatibility reasons, the interface has been augmented but not 
changed in any significant way.) 

The C interface parsing model assumes that a scanner (normally built by DLG) returns the 
token type of tokens found in the input stream when it is asked to do so by the parser. The 
parser provides attributes that are computed from the token type and text of the token, to 
grammar actions to facilitate translations. The line and column information are directly 
accessed from the scanner. The interface requires only that you define what an attribute 
looks like and how to construct one from the information provided by the scanner. Given 
this information, ANTLR can generate a parser that will correctly compile and recognize 
sentences in the prescribed language.

The type of an attribute must be called Attrib; the function or macro to convert the text and 
token type of a token to an attribute is called zzcr_attr().

This chapter describes the invocation of C interface parsers, the definition of special 
symbols and functions available to grammatical actions, the definition of attributes, and the 
definition of AST nodes.

Invocation of C Interface Parsers

C interface parsers are invoked via the one of the macros defined in Table 15 on page 149.

TABLE 15. C Interface Parser Invocation Macros

Macro Description

ANTLR(r,f) Begin parsing at rule r, reading characters from stream f.

ANTLRm(r,f,m) Begin parsing at rule r, reading characters from stream f; 
begin in lexical class m.

ANTLRf(r,f) Begin parsing at rule r, reading characters by calling func-
tion f for each character.

ANTLRs(r,s) Begin parsing at rule r, reading characters from string s.
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The rule argument must be a valid C function call, including any parameters required by the 
starting rule. For example, to read an expr from stdin:

ANTLR(expr(), stdin);

To read an expr from string buf:

char buf[] = "3+4";
ANTLRs(expr(), buf);

To read an expr and build an AST:

char buf[] = "3+4";
AST *root;
ANTLRs(expr(&root), buf);

To read an expr and build an AST where expr has a single integer parameter:

#define INITIAL 0
char buf[] = "3+4";
AST *root;
ANTLRs(expr(&root,INITIAL), buf);

A simple template for a C interface parser is the following:

#header <<
#include "charbuf.h"
>>
#token "[\ \t]+" <<zzskip();>>
#token "\n" <<zzskip(); zzline++;>>
<<
main() { ANTLR(start(), stdin); }
>>

start : ;
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Functions and Symbols in Lexical Actions

Table 16 on page 151 describes the functions and symbols available to actions that are 
executed upon the recognition of an input token (In rare cases, however, these functions 
need to be called from within a grammar action).

TABLE 16. C Interface Symbols Available to Lexical Actions

Symbol Description

zzreplchar(char c) Replace the text of the most recently matched 
lexical object with c.

zzreplstr(char c) Replace the text of the most recently matched 
lexical object with c.

int zzline The current line number being scanned by DLG. 
This variable must be maintained by the user; 
this variable is normally maintained by incre-
menting it upon matching a newline character.

zzmore() This function merely sets a flag that tells DLG to 
continue looking for another token; future char-
acters are appended to zzlextext.

zzskip() This function merely sets a flag that tells DLG to 
continue looking for another token; future char-
acters are not appended to zzlextext.

zzadvance() Instruct DLG to consume another input charac-
ter. zzchar will be set to this next character.

int zzchar The most recently scanned character.

char *zzlextext The entire lexical buffer containing all characters 
matched thus far since the last token type was 
returned. See zzmore() and zzskip().

NLA To change token type to t, do “NLA = t;”. This 
feature is not really needed anymore as semantic 
predicates are a more elegant means of altering 
the parse with run time information.

NLATEXT To change token type text to foo, do

“strcpy(NLATEXT,foo);”.

This feature sets the actual token lookahead 
buffer, not the lexical buffer zzlextext.
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char *zzbegexpr Beginning of last token matched.

char *zzendexpr End of last token matched.

ZZCOL Define this preprocessor symbol to get DLG to 
track the column numbers.

int zzbegcol The column number starting from 1 of the first 
character of the most recently matched token.

int zzendcol The column number starting from 1 of the last 
character of the most recently matched token. 
Reset zzendcol to 0 when a newline is encoun-
tered. Adjust zzendcol in the lexical action 
when a character is not one print position wide 
(e.g., tabs or non-printing characters). The col-
umn information is not immediately updated if a 
token’s action calls zzmore().

void (*zzerr)(char *) You can set zzerr to point to a routine of your 
choosing to handle lexical errors (e.g., when the 
input does not match any regular expression).

zzmode(int m) Set the lexical mode (i.e., lexical class or autom-
aton) corresponding to a lex class defined in an 
ANTLR grammar with the #lexclass directive. 

int zzauto What automaton (i.e., lexical mode) is DLG in?

zzrdstream(FILE *) Specify that the scanner should read characters 
from the stream argument.

zzclose_stream() Close the current stream.

zzrdstr(zzchar_t *) Specify that the scanner should read characters 
from the string argument.

zzrdfunc(int (*)()) Specify that the scanner should obtain characters 
by calling the indicated function.

zzsave_dlg_state(

struct zzdlg_state *)

Save the current state of the scanner. This is use-
ful for scanning nested includes files, etc...

zzrestore_dlg_state(

struct zzdlg_state *)

Restore the state of the scanner from a state 
buffer.

TABLE 16.  (Continued)  C Interface Symbols Available to Lexical Actions

Symbol Description
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Attributes Using the C Interface

Attributes are objects that are associated with all tokens found on the input stream. 
Typically, attributes represent the text of the input token, but may include any information 
that you require. The type of an attribute is specified via the Attrib type name, which you 
must provide. A function zzcr_attr() is also provided by you to inform the parser how to 
convert from the token type and text of a token to an Attrib. [In early versions of ANTLR, 
attributes were also used to pass information to and from rules or subrules. Rule arguments 
and return values are a more sophisticated mechanism and, hence, in this section, we will 
pretend as if attributes are only used to communicate with the scanner.]

Attribute Definition and Creation

The attributes associated with input tokens must be a function of the text and the token type 
associated with that lexical object. These values are passed to zzcr_attr() which 
computes the attribute to be associated with that token. The user must define a function or 
macro that has the following form:

void zzcr_attr(attr, type, text)
Attrib *attr; /* pointer to attribute associated with this lexeme */
int type; /* the token type of the token */
char *text; /* text associated with lexeme */
{

/* *attr = f(text,token); */
}

Consider the following Attrib and zzcr_attr() definition.

typedef union {
int ival; float fval;

} Attrib;

zzcr_attr(Attrib *attr, int type, char *text)
{

switch ( type ) {
case INT : attr->ival = atoi(text); break;
case FLOAT : attr->fval = atof(text); break;

}
}

The typedef specifies that attributes are integer or floating point values. When the regular 
expression for a floating point number (which has been identified as FLOAT) is matched on 
the input, zzcr_attr() converts the string of characters representing that number to a C 
float. Integers are handled analogously.
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You can specify the C definition or #include statements the file needed to define Attrib 
(and zzcr_attr() if it is a macro) using the ANTLR #header directive. The action 
associated with #header is placed in every C file generated from the grammar files. Any C 
file created by the user that includes antlr.h must once again define Attrib before using 
#include antlr.h. A convenient way to handle this is to use the -gh ANTLR command 
line option to have ANTLR generate the stdpccts.h file and then simply include 
stdpccts.h.

Attribute References

Attributes are referenced in user actions as $label where label is the label of a token 
referenced anywhere before the position of the action. For example,

#header <<
typedef int Attrib;
#define zzcr_attr(attr, type, text) *attr = atoi(text);
>>
#token "[\ \t\n]+"<<zzskip();>> /* ignore whitespace */

add : a:"[0-9]+" "\+" b:"[0-9]+"
<<printf("addition is %d\n", a+b);>>
;

If Attrib is defined to be a structure or union, then $label.field is used to access the 
various fields. For example, using the union example above,

#header <<
typedef union { ... };
>>
void zzcr_attr(...) { ... };
#token "[\ \t\n]+"<<zzskip();>> /* ignore whitespace */

add : a:INT "\+" b:FLOAT
<<printf("addition is %f\n", $a.ival+$b.fval);>>

;

For backward compatibility reasons, ANTLR still supports the notation $i and $i.j, where i 
and j are a positive integers. The integers uniquely identify an element within the currently 
active block and within the current alternative of that block. With the invocation of each new 
block, a new set of attributes becomes active and the previously active set is temporarily 
inactive. The $i and $i.j style attributes are scoped exactly like local stack-based variables in 
C. Attributes are stored and accessed in stack fashion. With the recognition of each element 
in a rule, a new attribute is pushed on the stack. Consider the following simple rule:
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a: B | C ;

Rule a has 2 alternatives. The $i refers to the ith rule element in the current block and within 
the same alternative. So, in rule a, both B and C are $1.

Subrules are like code blocks in C—a new scope exists within the subrule. The subrules 
themselves are counted as a single element in the enclosing alternative. For example,

b : A ( B C <<action1>> | D E <<action2>> ) F <<action3>>
| G <<action4>>
;

Table 17 on page 155 describes the attributes that are visible to each action.

Attribute destruction

You may elect to "destroy" all attributes created with zzcr_attr(). A macro called 
zzd_attr(), is executed once for every attribute when the attribute goes out of scope. 
Deletions are done collectively at the end of every block. The zzd_attr() is passed the 
address of the attribute to destroy. This can be useful when memory is allocated with 
zzcr_attr() and needs to be free()ed; make sure to NULL the pointers. For example, 
sometimes zzcr_attr() needs to make copies of some lexical objects temporarily. Rather 
than explicitly inserting code into the grammar to free these copies, zzd_attr() can be 
used to do it implicitly. This concept is similar to the constructors and destructors of C++. 
Consider the case when attributes are character strings and copies of the lexical text buffer 
are made which later need to be deallocated. This can be accomplished with code similar to 
the following.

#header <<
typedef char *Attrib;
#define zzd_attr(attr) {free(*(attr));}
>>
<<
zzcr_attr(Attrib *attr, int type, char *text)

TABLE 17. Visibility and Scoping of Attributes

Action Visible Attributes

action1 B as $1 (or $2.1), C as $2 (or $2.2), A as $1.1

action2 D as $1, E as $2, A as $1.1

action3 A as $1, F as $3

action4 G as $1
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{
if ( type == StringLiteral ) {

*attr = malloc( strlen(text)+1 );
strcpy(*attr, text);

}
}
>>

Standard Attribute Definitions

Some typical attribute types are defined in the PCCTS include directory. These standard 
attribute types are contained in the following include files:

• charbuf.h. Attributes are fixed-size text buffers, each 32 characters in length. If a 
string longer than 31 characters (31 + 1 ‘\0’ terminator) is matched for a token, it 
is truncated to 31 characters. You can change this buffer length from the default 32 
by redefining ZZTEXTSIZE before the point where charbuf.h is included. The 
text for an attribute must be referenced as $i.text.

• int.h. Attributes are int values derived from tokens using the atoi() function.

• charptr.h, charptr.c. Attributes are pointers to dynamically allocated 
variable-length strings. Although generally both more efficient and more flexible 
than charbuf.h, these attribute handlers use malloc() and free(), which are 
not the fastest library functions. The file charptr.c must be used with 
#include, or linked with the C code ANTLR generates for any grammar using 
charptr.h.
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Interpretation of Symbols in C Actions

AST Definitions

AST nodes using the C interface always have the following structure:

struct _ast {
struct _ast *right, *down;
user_defined_fields

};

where you must fill in user_defined_fields using the AST_FIELDS #define and 
must be provided in the #header action or in an include file included by the #header 
action. Only the user-defined fields should be modified by the user as right and down are 

TABLE 18. C Interface Interpretation of Attribute Terms in Actions

Symbol Meaning

$j The attribute for the jth element of the current 
alternative. The attribute counting includes 
actions. Subrules embedded within the alterna-
tive are counted as one element.

$i.j The attribute for the jth element of ith level start-
ing from the outermost (rule) level at 1.

$0 The result attribute of the immediately enclosing 
subrule or rule. (l-value)

$$ The result attribute of the enclosing rule. 

(l-value)

$arg The rule argument labeled arg.

$rule The result attribute of the enclosing rule; this is 
the same as $$.  (l-value)

$rv The rule return result labeled rv.  (l-value)

$[token_type,text] Attribute constructor; this is translated to a call to 
zzconstr_attr(token,text).

$[] An empty, initialized attribute; this is translated 
to a call to zzempty_attr().
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handled by the code generated by ANTLR. The type of an AST is provided by ANTLR and 
is always called AST.

You must define what the AST nodes contain and also how to fill in the nodes. To 
accomplish this, you supply a macro or function to convert from the attribute, text, and token 
type of an input token to a tree node. ANTLR calls the function

zzcr_ast(AST *ast, Attrib *attr, int token_type, char *text);

to fill in tree node ast by calling

zzcr_ast(zzastnew(), attrib-of-current-token, LA(0), LATEXT(0))

The following template can be used for C interface tree building:

#header <<
#define AST_FIELDS what-you-want-in-the-AST-node
#define zzcr_ast(ast,attr,ttype,text)ast->field(s) = ... ;
>>.

TABLE 19. C Interface AST Support Functions

Function Description

zzchild(AST *t) Return the child of t.

zzsibling(AST *t) Return the next sibling to the right of t.

zzpre_ast(AST *t,

 FuncPtr n,

 FuncPtr before,

 FuncPtr after)

Do a depth-first walk of the tree applying 
n to each node, before before each sub-
tree, and after after each subtree.

zzfree_ast(AST *t) Free all AST nodes in the tree. Calls zzt-
free() on each node before free()ing.

AST *zztmake(AST *t, ...) Build and return a tree with t as the root 
and any other arguments as children. A 
NULL argument (except for t) terminates 
the list of children. Arguments other than 
the root can themselves be trees.

AST *zzdup_ast(AST *t) Duplicate the entire tree t using zzast-
new() for creating new nodes.

zztfree(AST *t) If macro zzd_ast() is defined, invokes 
zzd_ast() on t and then frees t.
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The invocation of the start symbol must pass the address of a NULL-initialized tree pointer 
because ANTLR passes the address of the tree to fill in to each rule when the -gt option is 
turned on:

main()
{

AST *root=NULL;
ANTLR(starting_rule(&root), stdin);

}

After the parse has completed, root will point to the tree constructed by 
starting_rule.

zzdouble_link(AST *t,

 AST *up,

 AST *left)

Set the up and left pointers of all nodes 
in t. The initial call should have up and 
left as NULL.

AST *zzastnew(void) Use calloc() to create an AST node.

TABLE 19.  (Continued)  C Interface AST Support Functions

Function Description
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 4 SORCERER Reference

SORCERER is a simple tree-parser and translator generator that has the notation and the 
"flavor" of ANTLR. It accepts a collection of rules that specifies the contents and structure 
of your trees and generates a top-down, recursive-descent program that will walk trees of the 
indicated form. Semantic actions may be interspersed among the rule elements to effect a 
translation—either by constructing an output tree (from the input tree) or by generating 
output directly. SORCERER has some pretty decent tree rewriting and miscellaneous 
support libraries.

This chapter describes how to construct tree parsers via SORCERER grammars, how to 
interface a tree parser to a programmer’s application, how to insert actions to generate 
output, and how to perform tree transformations. Unless otherwise specified, actions and 
other source code is C++.

(Aaron Sawdey, Ph.D. candidate at University of MN, and Gary Funck of Intrepid 
Technology are coauthors of SORCERER.)

Introductory Examples

It is often best to introduce a language tool with a simple example that illustrates its primary 
function.  We consider the task of printing out a simple expression tree in both postfix and 
infix notation. Assuming that expression trees have operators at subtree parent nodes and 
operands are children, the expression "3+4" could be represented with the tree structure:
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where the 3 and 4 children nodes (of token type INT) are operands of the addition parent 
node. We will also assume that INT type nodes have a field called val that contains the 
integer value associated with the node.

expr : #( PLUS expr expr ) <<printf(" +");>>
| i:INT <<printf(" %d",i->val);>>
;

The labeled element "i:INT" specifies that an INT node is to be matched and a pointer 
called i is to be made available to embedded actions within that alternative. Given the 
indicated expression tree, this rule would generate "3 4 +".

To construct an infix version, all we have to do is move the action, thus changing the 
sequence of action executions. Naturally, the structure of the tree has not changed and the 
grammar itself is no different.

expr : #( PLUS expr <<printf(" +");>> expr )
| i: INT   <<printf(" %d",i->val);>>
;

The output generated by expr is now "3 + 4" for the same input tree.

Constructing tree walkers by hand to perform the same tasks is simple as well, but becomes 
more difficult as the tree structure becomes more complicated. Further, a program is harder 
to read, modify, and maintain than a grammar. The following C function is equivalent to the 
postfix grammar.

expr(SORAST *t)
{

if ( t->token==PLUS ) {
MATCH(PLUS);
expr(t->down);
expr(t->down->right);
printf(" +");

}
else {

MATCH(INT);
printf(" %d",i->val);

}
}

This hand-built function is not as robust as the SORCERER generated function, which 
would check for NULL trees and for trees that did not have PLUS or INT as root nodes.

+

3 4
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SORCERER is suitable for rewriting input trees as well as generating output via embedded 
actions. Consider how one might swap the order of the operands for the same expression tree 
given above. Having to manipulate child-sibling tree pointers manually is tedious and error 
prone. SORCERER supports tree rewriting via a few library functions, grammar element 
labels, and a tree constructor. Again, because our tree structure has not changed, our 
grammar remains the same; but the actions are changed from generating text output to 
generating a slightly modified tree.

expr :! #( a:PLUS b:expr c:expr ) <<#expr=#(a,c,b);>>
| i:INT
;

SORCERER is informed that a tree transformation is desired via the -transform command 
line option. In transform mode, SORCERER generates an output tree for every input tree 
and by default copies the input tree to the output tree unless otherwise directed. The first 
alternative in our example is annotated with a “!” to indicate that SORCERER should not 
generate code to construct an output tree as our embedded action will construct the output 
tree. Action

#expr=#(a,c,b);

indicates that the output tree of rule expr has the same root, the node pointed to by a, and 
the same children, but with the order reversed. Given the input tree for "3+4", the output tree 
of expr would be

C++ Programming Interface

SORCERER generates parsers that can walk any tree that implements a simple interface. 
You must specify:

1. The type of a tree node, called SORAST (derived from class SORASTBase and given 
in the #header action)

2. How to navigate a tree with member functions down() and right()

3. And how to distinguish between different nodes via member function type() 
which returns the token type associated with a tree node

If you wish to perform tree rewrites, you must also specify how to construct new trees via 
setDown(), setRight(), and shallowCopy() where t->shallowCopy() returns a 
duplicate of node t. If you refer to #[...] in an action, you must also define a constructor 
with the appropriate arguments.

+

4 3
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For example, the most natural implementation of a child-sibling tree conforming to the 
SORCERER tree interface (transform or nontransform mode) and can be used is the 
following:

class SORCommonAST : public SORASTBase {
protected:

SORCommonAST *_right, *_down;
int _type;

public:
PCCTS_AST *right() { return _right; }
PCCTS_AST *down() { return _down; }
int type() { return _type; }
void setRight(PCCTS_AST *t) { _right = (SORCommonAST *)t; }
void setDown(PCCTS_AST *t) { _down = (SORCommonAST *)t; }
PCCTS_AST *shallowCopy()

{
SORCommonAST *p = new SORCommonAST;
if ( p==NULL ) panic();
*p = *this;
p->setDown(NULL);
p->setRight(NULL);
return (PCCTS_AST *)p;

}
}; 
This definition is also satisfactory for performing tree rewrites as SORCERER knows how 
to set the pointers and the token type and knows how to duplicate a node.

A SORCERER grammar contains a class definition that results in a C++ class derived from 
STreeParser. For example,

class MyTreeParser {
some-actions
some-rules
}

Each of the rules defined within the class definition will become public member functions of 
MyTreeParser. Any actions defined within the class definition must contain valid C++ 
member declarations or definitions.

Invoking a tree parser is a simple matter of creating an instance of the parser and calling one 
of the rules with the address of the root of the tree you wish to walk and any arguments you 
may have defined for that rule; for example.,
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main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
myparser.some_rule((SORASTBase **)&some_tree);

}

The cast on the input tree is required because SORCERER must generate code for 
some_rule that can walk any kind of conformant tree:

void MyTreeParser::some_rule(SORASTBase **_root);

Unfortunately, without the cast you get a compiler error complaining that "SORASTBase 
**" is not the same as "SORAST **".

If some_rule had an argument and return value such as

some_rule[int i] > [float j] : ... ;

the invocation would change to

main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
float result=myparser.some_rule((SORASTBase **)&some_tree, 34);

}

Table 20 on page 165 describes the files generated by SORCERER from a tree description 
in file(s) f1.sor ... fn.sor.

TABLE 20. Files Written by SORCERER For C++ Interface

File Description

f1.cpp ... fn.cpp Definition of rules specified in f1.sor ... fn.sor.

Parser.h Declaration of class Parser where Parser is defined in 
the SORCERER grammar. All grammar rules become 
member functions.

Parser.cpp Definition of support member functions of class 
Parser.
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There are no global variables defined by SORCERER for the C++ interface and, hence, 
multiple SORCERER tree parsers may easily be linked together; e.g., C++ files generated 
by SORCERER for different grammars can be compiled and linked together without fear of 
multiply-defined symbols. This also implies that SORCERER parsers are "thread-safe" or 
"re-entrant."

C++ Class Hierarchy

Trees walked by SORCERER are all derived directly or indirectly from PCCTS_AST so that 
ANTLR and SORCERER both have access to the same member functions through the same 
C++ object vtables:

The classes are described as follows:

• PCCTS_AST. SORCERER and ANTLR trees must be derived from the same base 
class if they both are to manipulate the same trees; i.e., both tools must have access 
to a common object virtual table for the tree nodes. The standard SORCERER 
public interface is described in PCCTS_AST:

virtual PCCTS_AST *right();
virtual PCCTS_AST *down();
virtual void setRight(PCCTS_AST *t);
virtual void setDown(PCCTS_AST *t);
virtual int type();
virtual PCCTS_AST *shallowCopy();

• SORASTBase. This is currently typedef’d to PCCTS_AST so that the return type 
of the C++ tree library routines can be SORASTBase rather than PCCTS_AST, 
which could cause some confusion for those using SORCERER without ANTLR.

• SORAST. You must define this type name as the type of tree node that SORCERER 
should walk or transform.

• SORCommonAST. This class is useful when ANTLR is not used to construct the 
input trees of the tree parser. It defines a typical child-sibling implementation.

SORASTBase

SORAST SORCommonAST

PCCTS_AST
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The parser class defined in your SORCERER grammar description is constructed as a 
derived class of STreeParser:

which defines the standard SORCERER tree parser behavior.

Token Type Definitions

SORCERER generates a parser that recognizes both the structure and a portion of the 
contents of a tree node. Member type() is the only information used to determine the 
contents of a node; however, semantic predicates can be used to alter the parse depending on 
other node information. SORCERER-generated parsers test the content of a node with an 
expression of the form "_t->type()==T". For the SORCERER output to compile, token 
type T must have been defined.

SORCERER-generated translators can use either user-defined token types or can have 
SORCERER assign token types to each terminal referenced in the grammar description. The 
"-def-tokens file" option is used to generate a file with #defines for each referenced 
token. When folding a SORCERER parser into an existing application, the token types will 
already be defined. These definitions can be explicitly included via a C or C++ action, or the 

TABLE 21. C++ Files

File Defines

h/PCCTSAST.h, lib/
PCCTSAST.cpp

Class PCCTS_AST (which contains the standard 
ANTLR/SORCERER tree interface).

h/SASTBase.h SORASTBase. Currently this is only a typedef to 
PCCTS_AST.

h/SCommonAST.h SORCommonAST.

h/SList.h, lib/
SList.cpp

SList class.

h/STreeParser.h,lib/
STreeParser.cpp

STreeParser class.

h/config.h Configuration information for the various platforms.

STreeParser

YourParser
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file containing the token types can be specified with a #tokdefs directive. The file may 
only contain the definitions, but may be in the form of #defines or an enum. For example,

<<enum TokenType { A=1, B=2 };>>
a : A B;

or,

#tokdefs "mytokens.h"
a : A B;

To use the range operator, T1..T2, the #tokdefs directive must be used because the actual 
value of the token types must be known to verify the pred-LL(1) nature of a programmer’s 
grammar.

A token type of 0 is illegal.

Using ANTLR and SORCERER Together

To have ANTLR construct trees and have SORCERER walk them, do the following:

1. Define a type() field in the AST definition for ANTLR. E.g.,
#include "ATokPtr.h"
class AST : public ASTBase {
protected: 

int _type;
public:
AST(ANTLRTokenPtr t) { _type = t->getType(); }
AST()  { _type = 0; }
int type() { return _type; }
};

2. Construct trees via ANTLR as you normally would. Ensure that any token type 
that you will refer to in the SORCERER grammar has a label in the ANTLR 
grammar. For example,

#token ASSIGN "="

3. In your SORCERER description, include the AST definition you gave to ANTLR 
and define SORAST to be AST. For example,

#header <<
#include "AST.h" /* include your ANTLR tree def */
typedef AST SORAST;
>>
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4. Create a main program that calls both ANTLR and SORCERER routines.
#include "tokens.h"
#include "TextParser.h"
typedef ANTLRCommonToken ANTLRToken;
#include "TreeParser.h"
#include "DLGLexer.h"
#include "PBlackBox.h"
main()
{

ParserBlackBox<DLGLexer,
TextParser,
ANTLRToken> lang(stdin);

AST *root=NULL;
TreeParser tparser;
lang.parser()->stat((ASTBase **)&root);
tparser.start_symbol((SORASTBase **)&root);

}

SORCERER Grammar Syntax

Just as ANTLR grammars specify a sequence of actions to perform for a given input 
sentence, SORCERER descriptions specify a sequence of actions to perform for a given 
input tree. The only difference between a conventional text language parser and a tree parser 
is that tree parsers have to recognize tree structure as well as grammatical structure. For this 
reason, the only significant difference between ANTLR input and SORCERER input is that 
SORCERER grammar productions can use an additional grouping construct—a construct to 
identify the elements and structure of a tree. This section summarizes SORCERER input 
syntax.

A SORCERER description is a collection of rules in Extended BNF (EBNF) form and user-
defined actions preceded by a header action where the programmer defines the type of a 
SORCERER tree:

#header <<header action>>
actions
rules
actions

where actions are enclosed in European quotes <<...>> and rules are defined as 
follows:
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rule : alternative1
| alternative2
...
| alternativen
;

Each alternative production is composed of a list of elements where an element can be one 
of the items in Table 22 on page 170. The "..." within the grouping constructs can 
themselves be lists of alternatives or items. C and C++ style comments are ignored by 
SORCERER 

TABLE 22. SORCERER Description Elements

Item Description Example

leaf Token type ID

T1..T2 Token range OPSTART..OPEND

. Wild card #( FUNC ID (.)* )

rule-name Reference to another rule expr

label:elem Label an element id:ID

#(...) Tree pattern #(ID expr slist slist)

<<...>> User-defined semantic action <<printf("%d",i->val);>>

(...) Subrule (STRING | ID | FLOAT)

(...)* Zero-or-more closure subrule args : (expr)* ;

(...)+ One-or-more positive closure slist: #(SLIST (stat)+ )

{...} Optional subrule #(IF expr stat {stat})

<<...>>? Semantic predicate id : <<isType()>>? ID

(...)? Syntactic predicate ( #( MINUS expr expr )?

| #( MINUS expr )

)
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Rule Definitions: Arguments and Return Values

All rules begin with a lowercase letter and may declare arguments and a return value in a 
manner similar to C and C++:

rule[arg1, arg2, ..., argn] > [return-type id] : ... ;

which declares a rule to have n arguments and a return value; either may be omitted. For 
example, consider

a[int a, int b] > [int r]
: some-tree <<r=a+b;>>
;

which matches some-tree and returns the sum of the two arguments passed to the rule. 
The return value of a rule is set by assigning to the variable given in the return block [...].

The invocation of rule a would be of this form:

b : <<int local;>>
blah a[3,4] > [local] foo

;
The result of 7 will be stored into local after the invocation of rule a. Note that the syntax 
of rule return value assignment is like UNIX I/O redirection and mirrors the rule declaration.

As a less abstract example, consider that it is often desirable to pass a value to an expression 
rule indicating whether it is on the left or right hand side of an assignment:

<<enum SIDE { LHS, RHS };>>
stat : #( ASSIGN expr[LHS] expr[RHS] )

| ...
;

expr[SIDE s] : ...
;

Return values are also very useful. The following example demonstrates how the number of 
arguments in a function call can be returned and placed into a local variable of the invoking 
rule.
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expr
: ID
| FLOAT
|<<int n;>>

fc > [n]
<<printf("func call has \%d arguments\\n", n);>>

;
fc > [int nargs]

: <<int i=0;>> #( FUNC ID ( . <<i++;>> )* )
<<nargs = i;>>

;

Special Actions

The first action of any production is considered an init-action and can be used to declare 
local variables and perform some initialization code before recognition of the associated 
production begins. The code is executed only if that production is predicted by the look 
ahead of the tree parser. Even when normal actions are shut off during the execution of a 
syntactic predicate, (...)?, init-actions are executed. They cannot be enclosed in curly-
braces because they define local variables that must be visible to the entire production—not 
just that action.

Actions suffixed with a “?” are semantic predicates and discussed below.

Special Node References

The simplest node specifier is a token, which begins with an uppercase letter. To specify that 
any token may reside in a particular node position, the wildcard "." is used.

The wildcard sometimes behaves in a strange, but useful, manner as the "match anything 
else" operator. For example,

a : A | . ;

matches A in the first production and anything else in the second. This effect is caused by 
SORCERER’s parsing strategy. It tries the productions in the order specified. Any non-A 
node will be bypassed by the first production and matched by the second.
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Wildcards cannot be used to predict two different productions; that is,

a : .
| .
| A
;

results in a warning from SORCERER:

f.sor, line 1: warning: alts 1 and 2 of (...) nondeterministic upon {.}

To indicate that a specific range of tokens is to be matched, the range operator “T1..T2” is 
used. For example,

<<
#define Plus 1
#define Minus 2
#define Mult 3
#define Div 4
#define INT 10
#define OpStart Plus
#define OpEnd Div
>>
expr

: #( OpStart..OpEnd expr expr )
| INT
;

matches any expression tree comprised of integers and one of the four arithmetic operators.

For the range operator to work properly, T1 ≤ T2 must hold and all values from T1 ,and T2 
inclusively must be valid token types. Furthermore, the #tokdefs directive must be used to 
provide SORCERER with the actual token type values.

Tree Patterns

Tree patterns are specified in a LISP-like notation of the form:

#( root-item item ... item )

where the "#" distinguishes a parenthetical expression from the EBNF grouping construct, 
(...), and root-item is a leaf node identifier such as ID, the wildcard, or a token range. 
For example, consider the tree specification and graphical-representation pairs given in 
Table 23 on page 174.
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Flat trees (lists of items without parents) are of the form:

item ... item

Rule references and subrules may not be tree roots because they may embody more than a 
single node. By definition, the root of a tree must be a single node.

EBNF Constructs in the Tree-Matching Environment

A tree without any EBNF subrules is a tree with fixed structure. When tree patterns contain 
EBNF subrule specifications, the structure of the tree language may be difficult to see for 
humans. This section provides numerous examples that illustrate the types of trees that can 
be matched with EBNF constructs and the tree specifier, #(...). Table 24 on page 175, 
Table 25 on page 175, Table 24 on page 175, and Table 24 on page 175 illustrate the various 
EBNF constructs and the tree structures the constructs match. One final note: EBNF 
constructs may not be used as subtree roots..

TABLE 23. Sample Tree Specification and Graphical Representation Pairs

Tree Description Tree Structure

#(A B C D E)

#(A #(B C D) E)

#(A #(B C) #(D E))

A

B C D E

A

B

C D

E

A

B

C

D

E
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TABLE 24. EBNF Subrules

Tree Description Possible Tree Structures

#(DefSub (Subr|Func) slist)

or

TABLE 25. EBNF Optional Subrules

Tree Description Possible Tree Structures

#(If expr slist {slist})

or

DefSub

Subr slist

DefSub

Func slist

If

expr slist

If

expr slist slist
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TABLE 26. EBNF Zero-Or-More Subrules

Tree Description Possible Tree Structures

#(Call Subr (expr)*)

or

or

etc...

TABLE 27. EBNF One-Or-More Subrules

Tree Description Possible Tree Structures

#(SLIST (stat)+)

or

etc...

Call

Subr

Call

Subr expr

Call

Subr expr expr

SLIST

stat

SLIST

stat stat
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Element Labels

Rule elements can be labeled with an identifier (any uppercase or lowercase string), which is 
automatically defined (and initialized to NULL) as a SORAST node pointer, that can be 
referenced by user actions. The syntax is:

t:element

where t may be any upper or lower case identifier and element is either a token reference, 
rule reference, the wild-card, or a token range specification.

Subtrees may be labeled by labeling the root node. The following grammar fragment 
illustrates a typical use of an element labels.

a : #( DO u:ID expr expr #( v:SLIST (stat)* ) )
<<
printf("induction var is %s\n", u->symbol());
analyze_code(v);
>>

;

where symbol() is some member function that the user has defined as part of a SORAST. 
These labels are pointers to the nodes associated with the referenced element and are only 
available after the recognition of the associated tree element; the one exception is a labeled 
rule reference, whose label is available for use as an argument to the referenced rule; e.g.,

a : p:b[p->symbol()] ;

Labels have rule scope—they are defined at the rule level and are not local to a particular 
subrule or alternative.

Labels can be used to test for the presence of an optional element. Therefore, in:

expr_list: oprnd:expr { Comma oprnd:expr } ;

variable oprnd will have the value of the second operand if the Comma is present and the 
first operand if not. It can also be used to track the last element added to a list:

expr_list: oprnd:expr ( Comma oprnd:expr )* ;

Note that there are no $-variables such as there are in ANTLR.

In transform mode, label refers to the output node associated with the labeled grammar 
element. To access the associated input node use label_in.
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@-Variables

Local stack-based variables are convenient because a new instance is created upon each 
invocation of a function. However, unlike global variables, the symbol is only visible within 
that function (or SORCERER rule). Another function cannot access the variable. A stack-
based variable that had global scope would be extremely useful; it would also be nice if that 
variable did not require the use of any “real” global variables. We have created just such 
creatures and called them @-variables for lack of a better name (the concept was derived 
from NewYacc). (@-variables are mainly useful with the C interface because the C++ 
interface allows you to define tree-parser class member variables.)

An @-variable is defined like a normal local variable, but to inform SORCERER of its 
existence, you must use a special syntax:

@(simple-type-specifier id = init-value)

To reference the variable, you must also inform SORCERER with @id. For example,

a   :   <<@(int blah)>> /* define reference var: "int blah;" */
        <<@blah = 3;>>  /* set blah to 3 */
        b
        <<printf("blah = %d\n", @blah);>>  /* prints "blah = 5 */
    ;
b   :   c ;
c   :   d ;
d   :   A
        <<
        printf("blah = %d\n", @blah);      /* prints "blah = 3 */
        @blah = 5;
        >>
    ;

where the output should be

blah = 3
blah = 5

The notation @id is used just like plain id; i.e., as the object of an assignment or as part of 
a normal C/C++ expression.

As another example, consider a grammar that provides definitions for implicitly defined 
scalars.

routine
    :   #( DefSub ID slist )
    ;
slist
    :   <<@(AST * defs)>>
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        #( SLIST
            ( v:vardef <<define(v);>> )*
            <<@defs=v;>>
            ( stat )*
        )
    ;
vardef
    :   #( Type ID )
    ;
stat:   #( Assign scalar:ID INT )
        <<if ( scalar is-not-defined )
            ast_append(@defs, #(#[Type,"real"], #[ID,id->symbol]));
        >>
    ;

An @-variable is saved upon entry to the rule that defines it and restored upon exit from the 
rule. To demonstrate this stack-oriented nature, consider the following example,

proc:   #( p:PROC          <<printf("enter proc %s\n", p->symbol);>>
            ID (decl|proc)* (stat)*
        )                 <<printf("exit proc %s\n", p->symbol);>>
    ;
decl:   <<@(AST * lastdecl)>>
        #( VAR d:ID INT )  <<@lastdecl = d;
                              printf("def %s\n", d->symbol);>>
    ;
stat:   BLAH    <<printf("last decl is %s\n", @lastdecl->symbol;>>
    ;

Given some input such as:

procedure p;
var a : integer;
    procedure q;
    var b : integer;
    begin
        blah;
    end;
begin
    blah;
end;

with the intermediate form structure:
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The output for this is

enter proc
def a
enter proc
def b
last decl is b
exit proc
last decl is a
exit proc

If you want the functionality of a normal C/C++ global variable but do not want the 
problems associated with a global variable, @-variables should also be used. When an @-
variable definition is prefixed with static, it is never save or restored like other @-
variables. For example,

a : <<@(static int blah)>> ... b ... ;
b : ... <<@blah = 3;>> ... ;

Essentially, @blah is a global variable; there just happens to be a new copy for every 
STreeParser that you define.

While @-variables, strictly speaking, provide no more functionality than passing the address 
of local variables around, @-variables are much more convenient.

When using the C++ interface, simple parser member variables are functionally equivalent 
to static @-variables. 

PROC

ID[p] VAR

ID[a] INT

PROC

ID[q] VAR

ID[b] INT

BLAH

BLAH
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Embedding Actions For Translation

In many cases, translation problems are simple enough that a single pass over an 
intermediate form tree is sufficient to generate the desired output. This type of translation is 
very straightforward and is the default mode of operation.

Translations of this type are done with a series of print statements sprinkled around the 
SORCERER grammar. For example, consider how one might convert function prototypes 
from K&R C to ANSI C (assuming the arguments and the declarations are in the same 
order):

void f(i,j)
int i;
float j;

would be converted to

void f(int i, float j);

in source form. Graphically, a prototype could be structured as follows:

where Proto and ARGS are imaginary tokens (tokens with no corresponding input symbol) 
used to structure the intermediate form tree. The ID directly under the Proto node is the 
function name.

The following tree grammar fragment could be used to reconize these simplified C 
prototypes:

proto
: #( Proto Type ID #( ARGS ( ID )* ) ( decl )* )
;

decl
: #( Type ID )
;

To perform the transformation, the grammar could be augmented with actions in the 
following manner:

Proto

Type ID ARGS

ID ID

Type

ID

Type

ID
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proto
: #( Proto t:Type f:ID

<<printf("%s %s(", t->symbol(), f->symbol());>>
#( ARGS ( ID )* )
( d:decl <<if (d->right()!=NULL) printf(",");>>
)* <<printf(");\n");>>

)
    ;

decl
: #( t:Type id:ID )

<<printf("%s %s", t->symbol(), id->symbol());>>
;

where symbol() is a member that returns the textual representation of the type or function 
name.

Embedding Actions for Tree Transformations

While the syntax-directed scheme presented in the previous section is sometimes enough to 
handle an entire translation, it will not handle translations requiring multiple passes. In fact, 
if the translation can be handled with a simple syntax-directed translation from the 
intermediate form, it could probably be handled as a syntax-directed translation directly 
from the original, text input. Why even discuss syntax-directed translation for intermediate 
forms? Because a programmer can rewrite a tree innumerable times but must eventually 
convert the intermediate form to an output form.

This section describes the support available to the programmer in rewriting portions of an 
intermediate form. We provide information about how SORCERER rewrites trees, about the 
tree library, and about the other support libraries.

When tree transformations are to be made, the command-line option -transform must be 
used. In transform mode, SORCERER makes the following assumptions:

1. An input tree exists from which an output tree is derived.

2. If given no instructions to the contrary, SORCERER automatically copies the input 
tree to the output tree.

3. Each rule has a result tree, and the result tree of the first rule called is considered 
the final, transformed tree. This added functionality does not affect the normal rule 
argument and return value mechanism.
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4. Labels attached to grammar elements are generally referred to as label, where 
label refers to the input tree subtree in nontransform mode.

The output tree in transform mode is referred to as label. The input node, for 
token references only, can be obtained with label_in. The input subtree 
associated with rule references is unavailable after the rule has been matched. 
The tree pointer points to where that rule left off parsing. Input nodes in 
transform mode are not needed very often.

5. A C/C++ variable exists for any labeled token reference even if it is never set by 
SORCERER.

6. The output tree of a rule can be set and/or referenced as #rule.

The following sections describe the three types of tree manipulations.

Deletion

When portions of a SORCERER tree are to be deleted, the programmer has only to suffix the 
items to delete with a "!"; this effectively filters which nodes of the input tree are copied to 
the output tree. For example, if all exponent operators were to be removed from an 
expression tree, something similar to the following grammar could be used:

expr: #( Plus expr expr )
| #( Mult expr expr )
|! #( Exp expr expr )
;

where a "!" appended to an alternative operator "!" indicates that the entire alternative 
should not be included in the output tree. Token and rule references can also be individually 
deleted. The functionality of previous example, can be specified equivalently as:

expr: #( Plus expr expr )
| #( Mult expr expr )
| #( Exp! expr! expr! )
;

No output tree nodes are constructed for the token references in the examples above. 
However, a labeled token reference always results in the generation of an output tree node 
regardless of the "!" suffixes. If you do not link the output node into the result tree or delete 
it explicitly in an action, a "memory leak" will exist.
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Modification

To rewrite a portion of a tree, you specify that the nodes of the tree are not to be 
automatically linked into the output tree via an appropriately-placed "!" operator. It is then 
up to you to describe the tree result for the enclosing rule. For example, let’s assume that we 
want to translate assignments of the form

expr -> var

to

var := expr

Assuming that the AST transformation was from

to

the following grammar fragment could perform this simple operation:

assign
:! #(a:Assign e:expr id:ID)   <<#assign = #(a, id, e);>>
;

The "#(a, id, e)" is a tree constructor that behaves exactly like it does in an ANTLR 
grammar. a is the root of a tree with two children: id (a pointer to a copy of the input node 
containing ID) and e (the result returned by expr).

You must be careful not to refer to the same output node more than once. Cycles can appear 
in the output tree, thus making it a graph not a tree. Also, be careful not to include any input 
tree nodes in the output tree.

Augmentation

The result tree of a rule can be augmented as well as rearranged. This section briefly 
describes how the tree library routines (illustrated in the next section) can be used to add 
subtrees and nodes to the output tree.

Assign

expr var

Assign

var expr



Embedding Actions for Tree Transformations

Language Translation Using PCCTS and C++  185

Consider the task of adding variable definitions for implicitly defined scalars in FORTRAN. 
Let’s assume that the tree structure of a simple FORTRAN subroutine with scalar definitions 
and assignments such as:

subroutine t
real a
a = 1
b = 2
end

looks like

We would like the tree to be rewritten as follows

where ID[a] represents an ID node with a symbol field of a. In other words, we would like 
to add definitions before the statement list for implicitly defined scalars.

The following grammar fragment could be used to recognize implicitly defined scalars and 
add a definition for it above in the tree after the last definition.

class FortranTranslate {
<<

SORAST *defs; // instance var tracking variable definitions
public:

FortranTranslate() { defs=NULL; }
>>

routine

DefSub

ID[t] SLIST

Type

ID[a]

Assign

ID[a] INT

Assign

ID[b] INT

DefSub

ID[t] SLIST

Type

ID[a]

Type

ID[b]

Assign

ID[a] INT

Assign

ID[b] INT
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    :   #( DefSub ID slist )
    ;
slist
    :   #( SLIST
            ( v:vardef )*   <<defs=v; define(v);>>
            ( stat )*
        )
    ;
vardef
    :   #( Type ID )
    ;
stat:   #( Assign scalar:ID INT )
        <<if ( is-not-defined(scalar) )
            ast_append(defs,#(#[Type,"real"],#[ID,scalar->symbol()]));
        >>
    ;
}

where the notation “#[args]” is a node constructor and is translated to

new SORAST(args)

(or function ast_node(args) using the C interface). For example, in our case, you would 
define

class SORAST : public SORASTBase {
...

SORAST(int token_type, char *sym);
...
};

The tree constructor

 #(#[Type,"real"], #[ID,id->symbol()])

builds a tree like

The ast_append(defs,tree) function call adds tree to the end of the sibling list 
pointed to by defs.

Type[real]

ID[b]
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C++ Support Classes and Functions

SORCERER ASTs are defined by a class called SORAST that must be derived from 
SORASTBase, which inherits the following member functions (defined in lib/
PCCTAST.C):

addChild
void addChild(t). Add t to the list of children for this.

append
void append(b). Add b to the end of the sibling list. Appending a NULL 
pointer is illegal.
bottom

SORASTBase *bottom(). Find the bottom of the child list (going straight 
"down").

cut_between
SORASTBase *cut_between(a,b).
Unlink all siblings between a and b and return a pointer to the first element of 
the sibling list that was unlinked. Basically, all this routine does is to make b a 
sibling of a and make sure that the tail of the sibling list, which was unlinked, 
does not point to b. The routine ensures that a and b are (perhaps indirectly) 
connected to start with. This routine returns NULL if either of a or b are NULL or 
if a and b are not connected.

insert_after
void insert_after(b). 
Add subtree b immediately after this as its sibling. If b is a sibling list at its top 
level, then the last sibling of b points to the previous right-sibling of this. If b 
is NULL, nothing is done. Inserting a NULL pointer has no effect.

ast_find_all
SORASTBase *ast_find_all(u, cursor). 
Find all occurrences of u in the tree pointed to by this.cursor (a pointer to a 
SORAST pointer) must be initialized to this. It eventually returns NULL when 
no more occurrences of u are found. This function is useful for iterating over 
every occurrence of a particular subtree. For example,
/* find all scalar assignments withing a statement list */
SORAST *scalar_assign = #( #[Assign], #[Var] );
PCCTS_AST *cursor = slist;
SORAST *p;
while ((p=(SORAST *)slist->ast_find_all(scalar_assign,&cursor)))
{

    /* perform an operation on ’p’ */
}
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where assignments are structured as

This function does not seem to work if you make nested calls to it; i.e., a 
loop containing an ast_find_all() that contains a call to another 
find_all().

tfree
void tfree(). Recursively walk a tree delete’ing all the nodes in a depth-
first order.

make
static SORASTBase *make(root,child1,..., childn,NULL). Create 
a tree with root as the root of the specified n children. If root is NULL, then a 
sibling list is constructed. If childi is a list of sibling, then childi+1 will be 
attached to the last sibling of childi. Any NULL childi results in childi-1 
being the last sibling. The root must not have children to begin with. A 
shorthand can be used in a description read by SORCERER:
#(root, child1, ..., childn)

match
int match(u). Returns true if this and u are the same (the trees have the 
same tree structure and token types); else it returns false. If u is NULL, false is 
returned.

nsiblings
int nsiblings(). Returns the number of siblings.

ast_scan
int ast_scan(template, labelptr1, ..., labelptrn). This 
function is analogous to scanf. It tries to match tree this against template 
and return the number of labels that were successfully mapped. The template 
is a string consisting of a SORCERER tree description with an optional set of 
node labels. For every label specified in template, the address of a SORAST 
pointer must be passed. Upon return from ast_scan(), the pointers will point 
to the requested nodes in this. This function can only be conveniently used 
from within a SORCERER description file and requires the use of the 
#tokdefs directive; it can be used in non-transform mode.

Consider the following example.
n = t->ast_scan("#( %1:A %2:B %3:C )", &x, &y, &z);

which SORCERER converts to before the call to ast_scan()}:
n = t->ast_scan("#( %1:7 %2:8 %3:9 )", &x, &y, &z);

Assign

Var expr
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where the token types of A, B, and C are 7, 8, and 9, respectively. After the call, 
pointers x, y, and z will point to the root, the first child and the second child, 
respectively; n will be 3.

sibling_index
SORASTBase *sibling_index(i). Return a pointer to the ith sibling where 
the first sibling to the right is the index 2. An index of i==0, returns NULL and 
i==1 returns this.

tail
SORASTBase *tail(). Find the end of the sibling list and return a pointer to 
it.

Error Detection and Reporting

The following STreeParser member functions are called for the various possible parsing 
errors:

mismatched_token
mismatched_token(int looking_for, AST *found). The parser was 
looking for a particular token that was not matched.

mismatched_range
mismatched_range(int lower, int upper, AST *found). The parser 
was looking for a token in a range and did not find one.

missing_wildcard()
missing_wildcard(). The parser was looking for any tree element or 
subtree and found a NULL pointer.

no_viable_alt
no_viable_alt(char *which_rule, AST *current_root). The parser
entered a rule for which no alternative’s lookahead predicted that the input 
subtree would be matched.

sorcerer_panic
sorcerer_panic(char *err). This is called explicitly by you or by the 
support code when something terrible has happened.
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Command Line Arguments

The basic form of a SORCERER command line is

sor [options] file1.sor ... filen.sor

where file1 is the only one that may begin with a #header directive and options may be 
taken from:

-CPP
Turn on C++ output mode. You must define a class around your grammar rules. An 
".h" and ".C" file are created for the class definition as well as the normal ".C" file 
for the parser your grammar rules.

-def-tokens
[C++ mode only] For each token referenced in the grammar, generate an enum 
STokenType definition in the class definition file. This should not be used with the 
#tokdefs directive, which specifies token types you’ve already defined.

-def-tokens-file file
[C mode only] For each token referenced in the grammar, generate a #define 
in the specified file. This should not be used with the #tokdefs directive, which 
specifies token types you’ve already defined.

-funcs style
Specify the style of the function headers and prototypes to be generated by 
SORCERER. style must be one of ANSI (the default), KR, or both..

-inline
Only generate actions and functions for the given rules. Do not generate header 
information in the output. The usefulness of this option for anything but 
documentation has not been established.

-out-dir style
Directory where all output files go; the default is “.”.

-prefix s
Prefix all globally visible symbols with s , including the error routines. Actions that 
call rules must prefix the function with s as well. This option can be used to link 
multiple SORCERER-generated parsers together by generating them with different 
prefixes. This is not useful in C++ mode.
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-proto-file file
Put all prototypes for rule functions in this file.

-transform
Assume that a tree transformation will take place.

-
Take input from stdin rather than a file. 

C Programming Interface

Invocation of C Interface SORCERER Parsers

As with the C++ interface, the C interface requires that you specify the type of a tree node, 
how to navigate the tree, and the type of a node:

1. You must define tree node type SORAST in the #header action. SORAST must 
contain the fields in point 2 and 3.

2. Your trees must be in child-sibling form; i.e., the trees must have fields down 
(points to the first child) and right (points to the next sibling).

3. Your tree must have a token field, which is used to distinguish between tree 
nodes. (To be consistent with ANTLR and the SORCERER C++ interface, this 
field should be called type, but we have left it as token for backward 
compatibility reasons. The C interface of SORCERER is well enough 
established that changing it would invalidate too many grammars).

A conforming tree using the C interface is the following:

typedef struct _node {
            struct _node *right, *down;
            int token;
            /* add fields you need here */
        } SORAST;

Table 28 on page 192 describes the files generated by SORCERER from a tree description 
in file(s) f1.sor ... fn.sor.
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Using the C interface, SORCERER may also be used as a filter from stdin, in which case, 
the parser functions are written to stdout and no files are written (unless "-def-tokens-
file tokens.h" is specified).

There are no global variables defined by SORCERER for the C interface, so multiple 
SORCERER tree parsers may easily be linked together; e.g., C files generated by 
SORCERER for different grammars can be compiled and linked together without fear of 
multiply defined symbols. This is accomplished by simulating a this pointer. The first 
argument of every parser function is a pointer to an STreeParser structure containing all 
variables needed to by the parser. Having a parser structure that is passed around from rule 
to rule implies that SORCERER parsers are "thread-safe" or "re-entrant."

You may add variables to the STreeParser structure by defining _PARSER_VARS; e.g.,

#define _PARSER_VARSint value; Sym *p;

Invoking a tree parser is a matter of creating an STreeParser variable, initializing it, and 
calling one of the parsing functions created from the rules. Parsing functions are called with 
the address of the parser variable, the address of the root of the tree you wish to walk, and 
any arguments you may have defined for that rule; e.g.,

main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
STreeParserInit(&myparser);
rule(&myparser, &some_tree);

}

If rule had an argument and return value such as

rule[int i] > [float j] : ... ;

the invocation would change to

TABLE 28. Files Written by SORCERER for C Interface

File Description

f1.C ... fn.C Definition of rules specified in f1.sor ... fn.sor.

tokens.h If SORCERER command-line option “-def-tokens-file 
tokens.h” is specified, this file contains a series of #defines 
for token types assigned by SORCERER for all node references 
in the grammar.
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main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
float result;
STreeParserInit(&myparser);
result = rule(&myparser, &some_tree, 34);

}

C Types

The following types are used with C interface (see Figure  on page 189):

SORAST
You must provide the definition of this type, which represents the type of tree 
nodes that SORCERER is to walk or transform.

SIntStack
A simple stack of integers.

SList
A simple linked list of void pointers.

SStack
A simple stack of void pointers.

STreeParser
This type defines the variables needed by a tree walker. The address of one of 
these objects is passed to every parser function as the first argument.

C Files

The following files are used with the C interface.

h/astlib.h, lib/astlib.c
Define the SORCERER AST library routines.

lib/CASTBase.h
This is only used to compile the library routines. You can force them to compile 
with your SORAST definition if you want; that way, the order of the fields is 
irrelevant.

h/config.h 
Defines configuration information for the various platforms.

h/sorcerer.h, lib/sorcerer.c
Define STreeParser and the support functions needed by SORCERER.

h/sorlist.h,lib/sorlist.c
The SList manager.
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h/sintstack.h, lib/sintstack.c
The SIntStack manager.

h/sstack.h, lib/sstack.c
The SStack manager.

lib/errsupport.c 
Defines error support code for SORCERER parser that you can link in, includes 
mismatched_range(), missing_wildcard(), mismatched_token(), 
no_viable_alt(), and sorcerer_panic().

Combined Usage of ANTLR and SORCERER

To get SORCERER to walk an ANTLR-generated tree using the C interface is 
straightforward:

1. Define a token field in the AST definition for ANTLR in your ANTLR grammar 
file. For example,

#define AST_FIELDSchar text[50]; int token;

2. Have your ANTLR parser construct trees as you normally would. Ensure that any 
token type that you will refer to in the SORCERER grammar has a label in the 
ANTLR grammar. For example,

#token ASSIGN "="

3. In your SORCERER description, include the AST definition you gave to ANTLR 
and define SORAST to be AST. If you have used the ANTLR -gh option, you can 
simply include stdpccts.h. For example,

#header <<
#include "stdpccts.h" /* define AST and ANTLR token types */
typedef AST SORAST;
>>

4. A main program that calls both ANTLR and SORCERER routines looks like this:
main()
{

AST *root=NULL;
STreeParser tparser;
STreeParserInit(&tparser);
/* get the tree to walk with SORCERER */
ANTLR(stat(&root), stdin);
printf("input tree:"); lisp(root); printf("\n");
/* walk the tree */
start_symbol(&tparser, &root);

}
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C Support Libraries

Tree Library

The AST tree library, in lib/astlib.c, is used in transform mode to perform tree 
rewriting, although some of them may be useful in nontransform mode.

ast_append
void ast_append(a,b). Add b to the end of a’s sibling list. Appending a 
NULL pointer is illegal.

*ast_bottom
AST *ast_bottom(a). Find the bottom of a’s child list (going straight down).

*ast_cut_between
AST *ast_cut_between(a,b). Unlink all siblings between a and b and 
return a pointer to the first element of the sibling list that was unlinked. 
Basically, all this routine does is to make a point to b and make sure that the tail 
of the sibling list, which was unlinked, does not point to b. The routine ensures 
that a and b are (perhaps indirectly) connected to start with.

ast_insert_after
void ast_insert_after(a,b). Add subtree b immediately after a as its 
sibling. If b is a sibling list at its top level, then the last sibling of b points to the 
previous right sibling of a.Inserting a NULL pointer has no effect.

*ast_find_all
AST *ast_find_all(t, u, cursor). Find all occurrences of u in t. 
cursor (a pointer to an AST pointer) must be initialized to t. It eventually 
returns NULL when no more occurrences of u are found. This function is useful 
for iterating over every occurrence of a particular subtree. For example,
/* find all scalar assignments withing a statement list */
AST *scalar_assign = #( #[Assign], #[Var] );
AST *cursor = statement_list;
while ((p=ast_find_all(statement_list, scalar_assign, &cursor)))
{

 /* perform an operation on ’p’ */
}

where ast_node() (the function invoked by references to #[]) 
is assumed to take a single argument—a token type—and 
assignments are structured as:

Assign

Var expr
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This function does not seem to work if you make nested calls to it; i.e., a loop 
containing an ast_find_all() which contains another call to 
ast_find_all().

ast_free
void ast_free(t). Recursively walk t, freeing all the nodes in a depth-first 
order. This is perhaps not very useful because more than a free() may be 
required to properly destroy a node.

*ast_make
AST *ast_ make(root, child1, ..., childn, NULL). Create a tree 
with root as the root of the specified n children. If root is NULL, then a sibling 
list is constructed. If childi is a list of sibling, then childi+1 will be attached to 
the last sibling of childi. Any NULL childi results in childi-1 being the last sibling. 
The root must not have children to begin with.
A shorthand can be used in a description read by SORCERER:

 #(root, child_1, ..., child_n) }

ast_match
int ast_match(t,u). Returns true if t and u are the same (the trees have the 
same tree structure and token SORAST fields); else it returns false. If both trees 
are NULL, true is returned.

ast_match_partial
int ast_match_partial(t,u). Returns true if u matches t (beginning at 
root), but u can be smaller than t (i.e., a subtree of t).

ast_nsiblings
int ast_nsiblings(t). Returns the number of siblings of t.

ast_scan
int ast_scan(template, t, labelptr1, ..., labelptrn). This 
function is analogous to scanf. It tries to match tree t against template and 
return the number of labels that were successfully mapped. The template is a 
string consisting of a SORCERER tree description with an optional set of node 
labels. For every label specified in template, the address of a SORAST pointer 
must be passed. Upon return from ast_scan(), the pointers will point to the 
requested nodes in t. This function can only be conveniently used from within a 
SORCERER description file and requires the use of the #tokdefs directive; it 
can be used in nontransform mode. Consider the following example.
 n = ast_scan("#( %1:A %2:B %3:C )", t, &x, &y, &z);

which SORCERER converts to before the call to ast_scan()}:
 n = ast_scan("#( %1:7 %2:8 %3:9 )", t, &x, &y, &z);

where the token types of A, B, and C are 7, 8, and 9, respectively. After the call, 
pointers x, y, and z will point to the root, the first child and the second child, 
respectively; n will be 3.
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The order of label specification in template is not significant.

*ast_sibling_index
AST *ast_sibling_index(t,i). Return a pointer to the ith sibling where 
the sibling to the right of t is i==2. A index of i==1, returns t.

*ast_tail
AST *ast_tail(a). Find the end of a’s sibling list and return a pointer to it.

*ast_to_slist
SList *ast_to_slist(t). Return a list containing the siblings of t. This 
can be useful for walking a list of subtrees without having to parse it. For 
example,
<<SList *stats;>>
slist

 : ( stat )*  <<stats = ast_to_list(_root);>>
 ;

where _root is the argument passed to every function that points to the input 
tree node. In this case, the variable stats will be a list with an element 
(SORAST *) for each statement in the statement list.

*slist_to_ast
AST *slist_to_ast(list). Return a tree composed of the elements of 
list with a sibling for each element in list.

List Library

The SORCERER list library, lib/sorlist.c, is a simple linked-list manager that makes 
lists of pointers. The pointer for a new list must be initialized to NULL as any non-empty list 
has a sentinel node whose elem field pointer is really a pointer to the last element.

*slist_iterate
void *slist_iterate(list,cursor). Iterate over a list of elements in 
list; return a pointer to a new element in list upon every call and NULL when 
no more are left. It can be used like this:
cursor = mylist;
while ( (p=slist_iterate(mylist,\&cursor)) ) {

 /* place with element p */
}

Lists can also be traversed with
SList *p;
for (p = list->next; p!=NULL; p=p->next)
{

 /* process (MyElement *)p->elem */
}
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slist_add
void slist_add(list, e). Add element e to list . Any non-empty list 
has a sentinel node whose elem pointer is really a pointer to the last element. 
Elements are appended to the list. For example,
SList *Strings = NULL;
list_add(&Strings, "hi");
list_add(&Strings, "there");

slist_free
void slist_free(list). Free a list (frees all of the nodes used to hold 
pointers to actual elements). It does not effect the elements tracked by the list.

Stack Library

The SORCERER stack library, lib/sstack.c, is a simple linked-list style stack of 
pointers. There is no sentinel node, and a pointer for a stack must be initialized to NULL 
initially.

sstack_push
void sstack_push(st,e). Push element e on stack st where e can be a 
pointer to any object. For example,
SStack *st = NULL;
sstack_push(&st, "I push");
sstack_push(&st, "therefore, I’m a stack");

*sstack_pop
void *sstack_pop(st). Pop the top element off of stack st and return it. 
For example,
SStack *st = NULL;
char *s;
sstack_push(&st, "over the edge");
s = sstack_pop(&st);
printf("%s\n", s);

should print "over the edge".

Integer Stack Library

The SORCERER SIntStack library, lib/sintstack.c, is a simple array-based stack of 
integers. Stacks of integers are common (such as saving the scope/level of programming 
language); hence, we have constructed a stack which is much easier to use and faster than 
the normal stack routines. Overflow and underflow conditions are trapped.

*sint_newstack
SIntStack *sint_newstack(size). Make a new stack with a maximum 
depth of size and return a pointer to it.
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sint_freestack
void sint_freestack(SIntStack *st). Destroys a stack created by 
sint_newstack().

sint_push
void sint_push(st, i). Push integer i onto stack st. For example,
SIntStack *st = sint_newstack(100);
sint_push(st, 42);
sint_push(st, 3);

sint_pop
int sint_pop(st). Pop the top integer off the stack and return it.
SIntStack *st = sint_newstack(10);
sint_push(st, 3);
printf("%d\n", sint_pop(st));

would print "3".

sint_stacksize
int sint_stacksize(st). Returns the number of integers currently on the 
stack.

sint_stackreset
void sint_stackreset(st). Remove all integers from the stack.

sint_stackempty
int sint_stackempty(st). Returns true if there are no integers on stack st.

sint_top
int sint_top(st). Return the top integer on the stack without affecting the 
state of the stack.
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 5 ANTLR Warning and 

Error Messages

This chapter describes error and warning messages that can be generated by ANTLR. They 
are organised by categories of ANTLR functionality.The actual messages displayed by 
ANTLR are shown in bold and are followed by a brief description.

Token and Lexical Class Definition Messages

Warnings

redefinition of token t; ignored
Token t was previously seen in either a #token directive or rule.

token label has no associated rexpr: t
A token type is associated with token t, but no regular expression has been 
provided; i.e., no input character sequence will result in this token type.

token name t and rexpr re already defined; ignored
t and re were previously attached to other regular expressions or tokens, 
respectively. For example:

#token T “foo”
#token U
#token U “foo”
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no regular expressions found in grammar
You did not specify even one input character sequence to combine into a token. 
This is an uninteresting grammar.

lexclass name conflicts with token/errclass label ‘ t’
A lexclass definition tried to reuse a previously defined symbol t.

Errors

redefinition of token t; ignored
Another definition of t was seen previously.

action cannot be attached to a token name (t); ignored
Actions can only be attached to regular expressions. If only a token label is 
specified, an action is meaningless.

redefinition of action for re; ignored
An action has already been attached to regular expression re.

#token definition ‘t’ not allowed with #tokdefs; ignored
When the #tokdefs directive is used, all tokens are assumed to be defined 
inside the specified file. New token labels may not be introduced in the 
grammar specificatiion, however, regular expressions may be attached to the 
token labels.

implicit token definition not allowed with #tokdefs
When the #tokdefs directive is used, all tokens are assumed to be defined 
inside the specified file. New token labels may not be introduced in the 
grammar specification, however, regular expressions may be attached to the 
token labels via the #token directive.

#token requires at least token name or rexpr
A lone #token directive is meaningless (even if an action is given).

redefinition of action for expr re; ignored
Regular expression re already has an attached action.

redefinition of expr re; ignored
Regular expression re has already been defined.
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Grammatical Messages

Warnings

rule r not defined
Rule r was referenced in your grammar, but you have not defined it.

alts i and j of decision-type ambiguous upon k-seqs
The specified alternatives (counting from 1) of the decision cannot be 
distinguished. At least one input sequence of length k could be matched by 
both alternatives. For example, the following rule is ambiguous at k=1 upon 
tokens {A,B}:

a : A B | A C ;

It is not ambiguous at k=2. The following rule is ambiguous upon 2-sequence 
AB (or, as ANTLR would print it out: {A},{B}):

a : A B C | A B ;

This is only a warning, but some decisions are inherently ambiguous like the 
proverbial dangling else clause:

stat : IF expr THEN stat { ELSE stat } | ...;

The optional clause is ambiguous upon ELSE.

optional/exit path and alt(s) of decision-type ambiguous upon k-seqs
The same interpretation applies to this message as for the previous message. 
The difference lies in that no alternative number can be associated with the exit 
path of a loop. For example,

a : ( A B )* A C ;

is ambiguous upon A for k=1, but unambiguous at k=2.



ANTLR Warning and Error Messages

204 Language Translation Using PCCTS and C++ 

Errors

infinite left-recursion to rule a from rule b
Without consuming a token of input, the parser may return to a previously 
visited state. Naturally, your parser may never terminate. For example,

a : A | b ;
b : c B ;
c : a | C ;

All rules in this grammar can cause infinite recursion.

only one grammar class allowed in this release
Only one grammar class may be specified. To include rules from multiple files 
in one class, repeat the class header in each file.

file 1: class T { some rules }

file 2: class T { more rules }

Implementation Messages

action buffer overflow; size n
One of your actions was too long for an internal buffer. Increase 
ZZLEXBUFSIZE in pccts/antlr/generic.h and recompile ANTLR. Or, 
break up your action into two actions.

predicate buffer overflow; size n
One of your semantic predicates was too long for an internal buffer. Increase 
ZZLEXBUFSIZE in pccts/antlr/generic.h and recompile ANTLR. Or, 
break up your predicate into two actions.

parameter buffer overflow; size n
One of your actions was too long for an internal buffer. Increase 
ZZLEXBUFSIZE in pccts/antlr/generic.h and recompile ANTLR. Or, 
break up your action into two actions.

#$%%*&@# internal error: error
[complain to nearest government official or send hate-mail to 
parrt@parr-research.com; please pray to the ‘‘bug’’  gods that there is a 
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trival fix.]
Something bad happened. Send in a bug report.

hit analysis resource limit while analyzing alts i and j of decision-type
ANTLR was busily computing the lookahead sets needed construct your 
parser, but ran out of resources (you specify a resource cap with -rl command 
line option). For large grammars, this indicates what decision was taking so 
long to handle. You can simplify the decision, reduce the size of the grammar 
or lookahead, or use syntactic predicates.

out of memory while analyzing alts i and j of decision-type
ANTLR tried to call malloc(), which failed.

Action, Attribute, and Rule Argument Messages

Warnings

$t not parameter, return value, or element label
You referenced $t within an action, but it is not a parameter or return value of 
the enclosing rule nor is it a label on a rule or token.

invalid parameter/return value: ‘ param-or-ret-val-definition’
Your parameter or return value definition was poorly formed C or C++; e.g., 
missing argument name.

rule r accepts no parameter(s)
You specified parameters to r in some rule of your grammar, but r does not 
accept parameters.

rule r requires parameter(s)
You specified no parameters to r in some rule of your grammar, but r accepts 
at least one parameter.

rule r yields no return value(s)
You specified a return value assignment from r in some rule of your grammar, 
but r does not return any values.
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rule r returns a value(s)
You specified no return value assignment from r in some rule of your 
grammar, but r returns at least one value.

Errors

$$ use invalid in C++ mode
$$ can only be used in C mode. C++ mode does not have attributes. Use return 
arguments or return values.

$[] use invalid in C++ mode
$[] can only be used in C mode. C++ mode does not have attributes.

cannot mix old-style $i with new-style labels
You cannot reference $i for some integer i in your actions and $label for some 
label attached to a rule or token reference.

one or more $i in action(s) refer to non-token elements
In C++ mode, $i for some integer i variables do not exist for rules since 
attributes are not defined. Use return arguments or return values.

cannot mix with new-style labels with old-style $i
You referenced $label at this point, but previously referenced $i for some 
integer i in your actions.

label definition clashes with token/tokclass definition: ‘t’
You attached a label to a rule or token that is already defined as a token or 
token class.

label definition clashes with rule definition: ‘t’
You attached a label to a rule or token that is already defined as a rule.

label definitions must be unique per rule: ‘t’
You attached a label to a rule or token that is already defined as a label within 
that rule.
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Command-Line Option Messages

Warnings

#parser meta-op incompatible with -CC; ignored
#parser directive can only be used in C mode. Use a class definition in C++ 
mode.

#parser meta-op incompatible with ‘-gp prefix’; ‘-gp’ ignored
#parser directive should be used instead of -gp, but we left it in for 
backward compatibility reasons. Use a class definition in C++ mode.

-gk option could cause trouble for <<...>>? predicates
The -gk option delays the fetching of lookahead, hence, predicates that refer to 
future lookahead values may be referring to unfetched values.

-gk incompatible with semantic predicate usage; -gk turned off
See previous.

-gk conflicts with -pr; -gk turned off
See previous.

analysis resource limit (# of tree nodes) must be greater than 0
You have not specified a value or specified a negative number for the -rl 
option.

must have at least one token of look-ahead (setting to 1)
You have not specified a value or specified a negative number for the -k 
option.

must have compressed lookahead >= full LL(k) lookahead (setting -ck to -k)
You have not specified a value or specified a negative number for the -ck 
option.

Errors

class meta-op used without C++ option
You cannot give grammar class definitions without the -CC option.
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Token and Error Class Messages

default errclass for ‘t’ would conflict with token/errclass/tokclass
ANTLR cannot create an error class for rule t because the error class would 
conflict with a known symbol. Default error class names are created from rule 
names by capitalizing the first letter of the rule name.

errclass name conflicts with regular expression ‘t’
The specified error class conflicts with a previously-defined regular 
expression.

redefinition of errclass or conflict w/token or tokclass ‘t’; ignored
You have defined an error class with the same name as a previously-defined 
symbol.

undefined rule ‘t’ referenced in errclass ‘t’; ignored
You referenced a rule in your error class that does not have a definition.

self-referential error class ‘t’; ignored
Your error class refers to itself directly or indirectly (through another error 
class).

undefined token ‘t’ referenced in errclass ‘t’; ignored
Your error class refers to a token that has not been defined.

redefinition of tokclass or conflict w/token ‘t’; ignored
Your token class name conflicts with a previously-defined token label.

redefinition of #tokclass ‘t’ to #token not allowed; ignored
You have redefined token class t.

Predicate Messages

Warnings

alt i of decision-type has no predicate to resolve ambiguity
With options -w2 and -prc on ANTLR warns you that one of the lookahead 
sequences predicts more than one alternative and that you have specified a 
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predicate to resolve the ambiguity for one of the alternatives, but not the other. 
For example,

a : <<f(LT(1))>>? ID | ID ;

will result in

stdin, line 2: warning: alt 2 of the rule itself has no predicate to resolve 
ambiguity

cannot compute context of predicate in front of (..)? block
You used option -prc on and used a <<...>>? in front of a (...)? for 
which lookahead cannot be computed. For example,

a : <<blah>>? (UGH)? | ICK ;

(...)? as only alternative of block is unnecessary
You specified something like:

a : (foo)? ;

which is the same as

a : foo ;

Errors

(...)? predicate must be first element of production
You specified a syntactic predicate with a grammar element in front of it. All 
syntactic predicates must be the first element of a production in order to predict 
it.

Exception Handling Messages

duplicate exception handler for label ‘t’
You specified more than one handler for a single label t.

unknown label in exception handler: ‘t’
You specified a handler for an unknown label t.
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 6 SORCERER Warning and 

Error Messages

This chapter describes error and warning messages that can be generated by SORCERER. 
We have broken the descriptions into categories rather than grouping them into error and 
warning sections. The actual messages displayed by SORCERER are shown in bold and are 
followed by a brief description.

Syntax Messages

Warnings

unknown meta-op: m
Meta-operation #m is not valid.

missing #header statement
You forgot a #header statement in C mode.

extra #header statement
You have more than one #header statement.

extra #tokdef statement
You have more than one #tokdef statement.
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Errors

Missing /*; found dangling */
You forgot to start your comment with a /*.

Missing <<; found dangling >>”
You forgot to start your action or predicate with a <<.

Missing /*; found dangling */ in action
You forgot to start your comment with a /* in an action.

missing class definition for trailing ‘}’
The end of the class definition was seen, but the header was missing.

rule definition clashes with r definition: ‘ t’
You have defined a rule that has the same name as a previously defined 
symbol such as a label.

rule multiply defined: ‘ r’
You have defined a rule with this name already.

label definition clashes with t definition: ‘ u’
Label u classes with a previously defined symbol such as a rule name.

cannot label this grammar construct
You can only label rule and token references (including the wildcard).

redefinition of token t; ignored
You have already defined token t.

token definition clashes with symbol-type definition: ‘ t’
The definition of token t clashes with a predefined symbol.
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Action Messages

Warnings

eoln found in string
You did not terminate your string on the same line as your started it.

eoln found in string (in user action)
You did not terminate your string on the same line as your started it.

eoln found in char literal (in user action)
You did not terminate your character literal on the same line as your started it.

Errors

Reference variable clashes with t: ‘ v’
You have defined an @-variable that clashes with a previously-defined symbol 
such as a rule name.

#id used in action outside of rule; ignored
#id is only valid as the result or input tree of a rule. Placing a reference to 
#id outside of a rule makes no sense.

Grammatical Messages

infinite recursion from rule a to rule b
Rule a can reach rule b without having moved anywhere in the tree. 
Naturally, infinite-recursion can result.

rule not defined: ‘ r’
You have referenced rule r, but not defined it in your grammar.

alts i and j of (...) nondeterministic upon tree-node
Alternatives i and j both begin with the same root node or sibling node.
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(...)? predicate in block with one alternative; will generate bad code
A syntactic predicate in a rule or subrule with only one alternative makes no 
sense because the tree-walker will not have to guess which alternative to 
choose.

predicate not at beginning of alternative; ignored
A predicate not at the left-edge of a production cannot aid in the prediction of 
that alternative.

Implementation Messages

action buffer overflow; size n
One of your actions was too long for an internal buffer. Increase 
ZZLEXBUFSIZE in sorcerer/sor.g and recompile SORCERER. Or 
break up your action into two actions.

parameter buffer overflow; size n
One of your actions was too long for an internal buffer. Increase 
ZZLEXBUFSIZE in sorcerer/sor.g and recompile ANTLR. Or break 
up your action into two actions.

Command-Line Option Messages

Warnings

-def-tokens valid with C++ interface only; ignored
-def-tokens-file not valid with C++ interface; ignored

C++ mode SORCERER generates a list of token definitions (unless 
#tokdef) is used in the output class definition file.

-def-tokens-file conflicts with -inline; ignored
Cannot generate a token definition file if the output of SORCERER will be 
inline.

don’t you want filename with that -def-tokens-file?; ignored
You forgot to specify a file name.
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-prefix conflicts with C++ interface; ignored
C++ does not need to prefix symbols with a prefix because of the information 
hiding capabilities of C++.

don’t you want string with that -prefix?; ignored
You forgot to specify a string.

don’t know how to generate ‘t’ style functions; assuming ANSI
You gave an invalid or missing -funcs argument

-proto-file not valid with C++ interface; ignored
Prototypes are placed in the parser class definition file in C++ mode.

don’t you want filename with that -proto-file?; ignored
You forgot a file name.

‘-’ (stdin) ignored as files were specified first
You specified both inline mode and some grammar files.

‘-’ (stdin) cannot be used with C++ interface; ignored
C++ requires a bunch of output that cannot be just concatenated together.

-inline conflicts with -def-tokens; ignored
Cannot generate token definitions when output is inline.

-inline conflicts with C++ interface; ignored
C++ requires a bunch of output that cannot be just concatenated together.

tokens file not generated; it conflicts with use of #tokdefs
If a token definition file is used to specify token type values, you cannot write 
another version of this file out.

Can’t open prototype file ‘f’; ignored
For some reason, file f could not be open for writing.

invalid parameter/return value: ‘ r’
You provided a poorly formed C/C++ parameter or return value.



SORCERER Warning and Error Messages

216 Language Translation Using PCCTS and C++ 

Errors

-funcs option makes no sense in C++ mode; ignored
Functions are always prototyped in C++.

class meta-op used without C++ option
You had a parser class definition, but forgot to turn on C++ option.

file ‘ f’ ignored as ‘-’ (stdin option) was specified first
You specified stdin mode and then a file name.

Token Definition File Messages

cannot write token definition file f
For some reason, file f could not be open for writing.

cannot open token defs file ‘f’
File f could not be found.

range operator is illegal without #tokdefs directive
In order to use the range operator, you must tell SORCERER what the token 
type values are for all your tokens. The only to do this is to use #tokdef.

implicit token definition of ‘ t’ not allowed with #tokdefs
Token t was not defined in the token definition file. Its token type is therefore 
unknown.
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 7 Templates and Quick 

Reference Guide

In this chapter, we provide a collection of examples and summaries that illustrate the major 
features of ANTLR and DLG; we include an example linking ANTLR and SORCERER. 
Much of the code is taken from the testcpp directory in the PCCTS distribution.

Templates

This section provides templates for using ANTLR in C++ mode when not using trees, when 
using trees and when using ANTLR with SORCERER.

Basic ANTLR Template

#header <<
// put things here that need to be defined in all output files
>>

<<
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;
#include "PBlackBox.h"

class MyVersionOfParser : public Parser {
// override triggers declared in actual parser class def below
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public:
MyVersionOfParser(ANTLRTokenBuffer *input) : Parser(input)
{

printf("start parse\n");
}
~MyVersionOfParser()
{

printf("end parse\n");
}

};

int main()
{

ParserBlackBox<DLGLexer, MyVersionOfParser, ANTLRToken> p(stdin);
p.parser()->startrule();
return 0;

}
>>

/* Ignore whitespace */
#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>

class Parser {

<< Define member functions (triggers) and variables here;
or, in subclass above.

>>

startrule
: alternative 1
| alternative 2
| ...
;

}

// Sample tokens that normally appear at the end of a grammar
#token INT "[0-9]+"
#token ID "[a-zA-Z_][a-zA-Z0-9_]*"
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Using ANTLR With ASTs

<<
typedef ANTLRCommonToken ANTLRToken;
#include "DLGLexer.h"
#include "PBlackBox.h"

// ASTs are simply smart pointers to input token objects
class AST : public ASTBase {

ANTLRTokenPtr token;
public:

AST(ANTLRTokenPtr t) { token = t; }
void preorder_action() { // what to print out at each node

char *s = token->getText();
printf(" %s", s);

}
PCCTS_AST *shallowCopy() { define if you use dup or deepCopy }

};

int main()
{

ParserBlackBox<DLGLexer, Parser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p.parser()->start(&root); // parse and build trees
root->preorder(); // print out the tree in LISP form
printf("\n");
root->destroy(); // delete the nodes
return 0;

}
>>

// token definitions

class Parser {

start
: ...
;

}
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Using ANTLR With SORCERER

This section contains a number of files representing a complete ANTLR/SORCERER 
application that reads in expressions and generates a simple stack code.

File: lang.g

<<
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
>>

#token "[\ \t]+" <<skip();>>
#token "\n" <<newline(); skip();>>
#token ASSIGN "="
#token ADD "\+"
#token MULT "\*"

class SimpleParser {

stat:ID "="^ expr ";"!
;

expr:mop_expr ( "\+"^ mop_expr )*
;

mop_expr
: atom ( "\*"^ atom )*
;

atom:ID
| INT
;

}
#token ID "[a-z]+"
#token INT "[0-9]+"

File: AST.h

#include "ASTBase.h"
#include "AToken.h"

#define AtomSize 20
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#include "ATokPtr.h"

class AST : public ASTBase {
protected:

char text[AtomSize+1];
int _type;

public:
AST(ANTLRTokenPtr t)

{ _type = t->getType(); strcpy(text, t->getText()); }
AST() { _type = 0; }
int type() { return _type; }
char *getText() { return text; }
void preorder_action() { printf(" %s", text); }

};

typedef AST SORAST; // define the type of a SORCERER tree

File: gen.sor

#header <<
#include "tokens.h"
#include "AST.h"
>>

class SimpleTreeParser {

gen_stat
: #( ASSIGN t:ID gen_expr )

<<printf("\tstore %s\n", t->getText());>>
;

gen_expr
: #( ADD gen_expr gen_expr ) <<printf("\tadd\n");>>
| #( MULT gen_expr gen_expr ) <<printf("\tmult\n");>>
| t:ID <<printf("\tpush %s\n", t->getText());>>
| t:INT <<printf("\tpush %s\n", t->getText());>>
;

}

File: main.cpp

#include "tokens.h"
#include "SimpleParser.h" // define the parser
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typedef ANTLRCommonToken ANTLRToken;
#include "SimpleTreeParser.h" // define the tree walker
#include "DLGLexer.h" // define the lexer
#include "PBlackBox.h"

main()
{

ParserBlackBox<DLGLexer, SimpleParser, ANTLRToken> lang(stdin);
AST *root=NULL, *result;
SimpleTreeParser tparser;

lang.parser()->stat((ASTBase **)&root); // get the tree to walk
// printf("input tree:"); root->preorder(); printf("\n");

tparser.gen_stat((SORASTBase **)&root); // walk tree
}

File: makefile

This makefile was modified from the original created with the genmk command indicated in 
the makefile comment.

#
# PCCTS makefile for: lang.g
#
# Created from: /circle/s13/parrt/PCCTS/bin/genmk -CC -class \ 
# SimpleParser -project t4 -trees lang.g
#
# PCCTS release 1.33
# Project: t
# C++ output
# DLG scanner
# ANTLR-defined token types
#
TOKENS = tokens.h
#
# The following filenames must be consistent with ANTLR/DLG flags
DLG_FILE = parser.dlg
ERR = err
HDR_FILE =
SCAN = DLGLexer
PCCTS = /usr/local/pccts
ANTLR_H = $(PCCTS)/h
SOR_H = ../../h
SOR_LIB = ../../lib
BIN = $(PCCTS)/bin
ANTLR = $(BIN)/antlr
DLG = $(BIN)/dlg
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SOR = ../../sor
CFLAGS = -I. -I$(ANTLR_H) -I$(SOR_H) -I$(SOR_LIB) -g
AFLAGS = -CC -gt
DFLAGS = -C2 -i -CC
GRM = lang.g
SRC = lang.cpp main.cpp test4.cpp $(SOR_LIB)/STreeParser.cpp \
 SimpleParser.cpp \
 SimpleTreeParser.cpp \
 $(ANTLR_H)/AParser.cpp $(ANTLR_H)/DLexerBase.cpp \
 $(ANTLR_H)/ASTBase.cpp $(ANTLR_H)/PCCTSAST.cpp \
 $(ANTLR_H)/ATokenBuffer.cpp $(SCAN).cpp
OBJ = lang.o main.o test4.o STreeParser.o \
 SimpleParser.o \
 SimpleTreeParser.o \
 AParser.o DLexerBase.o \
 ASTBase.o PCCTSAST.o \
 ATokenBuffer.o $(SCAN).o
ANTLR_SPAWN = lang.cpp SimpleParser.cpp \
 SimpleParser.h $(DLG_FILE) $(TOKENS)
DLG_SPAWN = $(SCAN).cpp $(SCAN).h
CCC=g++
CC=$(CCC)

t : $(OBJ) $(SRC)
$(CCC) -o t4 $(CFLAGS) $(OBJ)

main.o : main.cpp SimpleTreeParser.h SimpleParser.h
$(CCC) -c $(CFLAGS) main.cpp

lang.o : $(TOKENS) $(SCAN).h lang.cpp
$(CCC) -c $(CFLAGS) -o lang.o lang.cpp

SimpleParser.o : $(TOKENS) $(SCAN).h SimpleParser.cpp SimpleParser.h
$(CCC) -c $(CFLAGS) -o SimpleParser.o SimpleParser.cpp

SimpleTreeParser.o : $(TOKENS) $(SCAN).h SimpleTreeParser.cpp tokens.h
$(CCC) -c $(CFLAGS) SimpleTreeParser.cpp

test4.cpp SimpleTreeParser.h SimpleTreeParser.cpp : test4.sor
$(SOR) -CPP test4.sor

test4.o : test4.cpp
$(CCC) -c $(CFLAGS) test4.cpp

STreeParser.o : $(SOR_LIB)/STreeParser.cpp
$(CCC) -o STreeParser.o -c $(CFLAGS) $(SOR_LIB)/STreeParser.cpp
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$(SCAN).o : $(SCAN).cpp $(TOKENS)
$(CCC) -c $(CFLAGS) -o $(SCAN).o $(SCAN).cpp

$(ANTLR_SPAWN) : $(GRM)
$(ANTLR) $(AFLAGS) $(GRM)

$(DLG_SPAWN) : $(DLG_FILE)
$(DLG) $(DFLAGS) $(DLG_FILE)

AParser.o : $(ANTLR_H)/AParser.cpp
$(CCC) -c $(CFLAGS) -o AParser.o $(ANTLR_H)/AParser.cpp

ATokenBuffer.o : $(ANTLR_H)/ATokenBuffer.cpp
$(CCC) -c $(CFLAGS) -o ATokenBuffer.o $(ANTLR_H)/ATokenBuffer.cpp

DLexerBase.o : $(ANTLR_H)/DLexerBase.cpp
$(CCC) -c $(CFLAGS) -o DLexerBase.o $(ANTLR_H)/DLexerBase.cpp

ASTBase.o : $(ANTLR_H)/ASTBase.cpp
$(CCC) -c $(CFLAGS) -o ASTBase.o $(ANTLR_H)/ASTBase.cpp

PCCTSAST.o : $(ANTLR_H)/PCCTSAST.cpp
$(CCC) -c $(CFLAGS) -o PCCTSAST.o $(ANTLR_H)/PCCTSAST.cpp

clean:
rm -f *.o core t4

scrub:
rm -f *.o core t4 $(ANTLR_SPAWN) $(DLG_SPAWN) test4.cpp

Defining Your Own Tokens

In an action before the grammar, you may specify or include the definition of ANTLRToken 
rather than use the predefined ANTLRCommonToken.

class ANTLRToken : public ANTLRRefCountToken {
protected:

ANTLRTokenType _type; // what’s the token type of the token object
int _line; // track line info for errors
ANTLRChar _text[30]; // hold the text of the input token

public:
ANTLRToken(ANTLRTokenType t, ANTLRChar *s)
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: ANTLRRefCountToken(t,s)
{ setType(t); _line = 0; setText(s); }

// Your derived class MUST have a blank constructor.
ANTLRToken()

{ setType((ANTLRTokenType)0); _line = 0; setText(""); }

// how to access the token type and line number stuff
ANTLRTokenType getType() { return _type; }
void setType(ANTLRTokenType t) { _type = t; }
virtual int getLine() { return _line; }
void setLine(int line) { _line = line; }

ANTLRChar *getText() { return _text; }
void setText(ANTLRChar *s) { strncpy(_text, s, 30); }

// WARNING: you must return a stream of distinct tokens
// This function will disappear when we can use templates
virtual ANTLRAbstractToken *makeToken( ANTLRTokenType tt,

 ANTLRChar *txt,
int line)

{
ANTLRAbstractToken *t = new ANTLRToken(tt,txt);
t->setLine(line);
return t;

}
};

Defining Your Own Scanner

To use your own scanner with an ANTLR grammar, you must define a subclass of 
ANTLRTokenStream and then include that definition in the grammar file within an action 
(instead of the usual “#include "DLGLexer.h"”. Here is a sample lexer definition:

#include "config.h"
#include "tokens.h" // let’s say it defines DIGIT, PUNCT
typedef ANTLRCommonToken ANTLRToken;
#include ATOKENBUFFER_H
#include <ctype.h>

class MyLexer : public ANTLRTokenStream {
private:

int c;
public:
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MyLexer() { c = getchar(); }
virtual ANTLRAbstractToken *getToken()

{
char buf[2];
buf[0] = c;
if ( isdigit(c) ) return new ANTLRToken(DIGIT,buf);
if ( ispunct(c) ) return new ANTLRToken(PUNCT,buf);
return NULL;

}
};

The genmk Program

The genmk program is provided so that most makefiles for ANTLR can be automatically 
generated. To begin most projects, you only need provide a parser class name, decide 
whether you are going to build trees, decide on the name of the project (the executable), and 
decide on the grammar file name. For example, the most common genmk line is:

genmk -CC -class MyParser -project myproj file.g > makefile

This line creates a makefile that uses ANTLR with the C++ interface, with parser class 
MyParser, and with a resulting executable called myproj; your grammar file is file.g. The 
following lines in the makefile need to be modified to suit your environment:

PCCTS = . # normally something like /usr/local/src/pccts
#CCC=g++ # uncomment and define to your C++ compiler

If you will be using trees, use the -tree option with genmk also.

Rules

Rule With Multiple Alternatives

rule
: alternative1
| alternative2
...
| alternativen
;
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Rule With Arguments and Return Values

rule[arg1,...,argn] > [retval1,...,retvalm] : ... ;

where the arguments and return values are well-formed C++ definitions such as “int i” or “char 
*p”.

EBNF Constructs

Subrule

( alternative1 | alternative2 ... | alternativen )

Optional Subrule

{ alternative1 | alternative2 ... | alternativen }

Zero Or More Subrule

( alternative1 | alternative2 ... | alternativen )*

One Or More Subrule

( alternative1 | alternative2 ... | alternativen )+

Alternative Elements

Token References

1. Token identifiers. Identifiers begin with an uppercase letter; e.g., ID, INT.

2. Regular expressions enclosed in double-quotes; e.g. "[a-z]+", "begin".

3. Token class references; e.g.,

#tokclass Operators { Plus Minus }

e : e2 ( Operators e2 )* ;
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4. Token type ranges—two tokens separated by two dots;

FirstOperator .. LastOperator

5. “Not” operator—match any token except end-of-file or TOKEN; e.g., 
~TOKEN.

Rule References

Rule references invoke other rules possibly with arguments and return values. For example, 
“b[34] > [i]” invokes rule b with one argument, 34, and stores the return value of b in 
some variable i.

Labels

Rule and token references may be labeled with an identifier (either upper or lower case); 
e.g.,

rule : label:ID ;

Labels are referenced in user actions as $label.

Labels are useful for:

1. Accessing the token object associated with the referenced token.

2. Attaching a parser exception handler to the invocation of either a rule or token 
reference.

Actions

Actions are enclosed in double angle-brackets; e.g., <<action>>. If the first element of any 
subrule or rule is an action, that action is an init-action; e.g.,

rule : <<int i=3;>> id:ID <<i=atoi($id->getText());>> ;

An action placed immediately after the terminating ‘;’ on a rule is considered a fail-action. 
Fail-actions are executed upon syntax error before ANTLR prints out a message and before 
the rule is exited.
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Predicates

Semantic Predicates

Semantic predicates are actions followed by ‘?’. For example,

typename : <<isTypeName(LT(1)->getText())>>? ID ;

The LT(1) is the trigger to ANTLR that only one symbol of context is needed for this 
predicate when the -prc command line option is used.

Syntactic Predicates

Syntactic predicates are subrules followed by a ‘?’. For example,

statement
: ( decl )?
| expr
;

Generalized Predicate

Sometimes it is necessary to specify the context under which a semantic predicate is valid 
manually rather than allowing ANTLR to compute the context. The following predicate 
form can be used to specify a semantic predicate with specific syntactic context:

( context )? => <<predicate>>?

For example,

(ID)? => <<qualifiedItemIs()==Constructor>>?

This generalized predicate indicates that the semantic predicate should only be evaluated if 
ID is the next symbol of lookahead. You may use only simple strings of tokens inside the 
context “guard” (e.g., ( A B | C D )? => <<blah>>?).

Tree operators

token-reference!

Do not create an AST node in the output tree for this reference.

rule-reference!
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Do not link in the AST created by the referenced rule into the current out-
put tree.

token-reference^

Create an AST node in the output tree for this token reference. It becomes 
the root of the tree being built for the enclosing rule.

Lexical Directives

#token LABEL "regular-expression" <<action>>
where any of the items may be omitted. However, actions may only be tied 
to regular expressions and at least one item must be specified.

#lexclass LCLASS
start a new automaton or lexical class in your grammar.

#tokclass TCLASS { T1 T2 ... Tn }
Define TCLASS as a set of tokens.

#tokdefs "file"
Specify a file containing #defines or an enum of all token labels for 
ANTLR to use.

Parser Exception Handling

Rule With Exception Handlers

rule
: alternative1

exception
catch ... <<...>>

exception[label]
catch ... <<...>>

| alternative2
...
| alternativen
;
exception

catch ... <<...>>
catch ... <<...>>
default : <<...>>

exception[label1]
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...
exception[label2]

...
where label, label1, and label2 are labels attached to either rule or token references within 
the alternatives; specifically, label must be contained within alternative1.

Token Exception Operator

stat
:@ "if" INT "then" stat { "else" stat }

<<printf("found if\n");>>
| id:ID@ "="@ INT@ ";"@

<<printf("found assignment to %s\n", $id->getText());>>
;

The @ on the front of alternative one indicates that each token reference in the alternative is 
to be handled without throwing an exception—the match routine will catch the error. The 
second alternative explicitly indicates that each token is to be handled locally without 
throwing an exception.
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 8 History

The PCCTS project began as a parser-generator project for a graduate course at Purdue 
University in the Fall of 1988 taught by Hank Dietz--“translator-writing systems”. Under the 
guidance of Professor Dietz, the parser generator, ANTLR (originally called YUCC), 
continued after the termination of the course and eventually became the subject of Terence 
Parr’s Master’s thesis. Originally, lexical analysis was performed via a simple scanner 
generator which was soon replaced by Will Cohen’s DLG in the Fall of 1989 (DFA-based 
lexical-analyzer generator, also an offshoot of the graduate translation course).

The alpha version of ANTLR was totally rewritten resulting in 1.00B. Version 1.00B was 
released via an internet newsgroup (comp.compilers) posting in February of 1990 and 
quickly gathered a large following. 1.00B generated only LL(1) parsers, but allowed the 
merged description of lexical and syntactic analysis. It had rudimentary attribute handling 
similar to that of YACC and did not incorporate rule parameters or return values; downward 
inheritance was very awkward. 1.00B-generated parsers terminated upon the first syntax 
error. Lexical classes (modes) were not allowed and DLG did not have an interactive mode.

Upon starting his Ph.D. at Purdue in the Fall of 1990, Terence Parr began the second total 
rewrite of ANTLR. The method by which grammars may be practically analyzed to generate 
LL(k) lookahead information was discovered in August of 1990 just before Terence’s return 
to Purdue. Version 1.00 incorporated this algorithm and included the AST mechanism, 
lexical classes, error classes, and automatic error recovery; code quality and portability were 
higher. In February of 1992 1.00 was released via an article in SIGPLAN Notices. Peter 
Dahl, then Ph.D. candidate, and Professor Matt O’Keefe (both at the University of 
Minnesota) tested this version extensively. Dana Hoggatt (Micro Data Base Systems, Inc.) 
tested 1.00 heavily.
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Version 1.06 was released in December 1992 and represented a large feature enhancement 
over 1.00. For example, rudimentary semantic predicates were introduced, error messages 
were significantly improved for k>1 lookahead and ANTLR parsers could indicate that 
lookahead fetches were to occur only when necessary for the parse (normally, the lookahead 
“pipe” was constantly full). Russell Quong joined the project in the Spring of 1992 to aid in 
the semantic predicate design. Beginning and advanced tutorials were created and released 
as well. A makefile generator was included that sets up dependencies and such correctly for 
ANTLR and DLG. Very few 1.00 incompatibilities were introduced (1.00 was quite 
different from 1.00B in some areas).

Version 1.10 was released on August 31, 1993 after Terence’s release from Purdue and 
incorporated bug fixes, a few feature enhancements and a major new capability--an arbitrary 
lookahead operator (syntactic predicate), “(α)?β”. This feature was codesigned with 
Professor Russell Quong also at Purdue. To support infinite lookahead, a preprocessor flag, 
ZZINF_LOOK, was created that forced the ANTLR() macro to tokenize all input prior to 
parsing. Hence, at any moment, an action or predicate could see the entire input sentence. 
The predicate mechanism of 1.06 was extended to allow multiple predicates to be hoisted; 
the syntactic context of a predicate could also be moved along with the predicate.

In February of 1994, SORCERER was released. This tool allowed the user to parse child-
sibling trees by specifying a grammar rather than building a recursive-descent tree walker by 
hand. Aaron Sawdey at The University of Minnesota became a second author of 
SORCERER after the initial release.

On April 1, 1994, PCCTS 1.20 was released. This was the first version to actively support 
C++ output. It also included important fixes regarding semantic predicates and (..)+ 
subrules. This version also introduced token classes, the “not” operator, and token ranges.

On June 19, 1994, SORCERER 1.00B9 was released. Gary Funck of Intrepid Technology 
joined the SORCERER team and provided very valuable suggestions regarding the 
“transform” mode of SORCERER.

On August 8, 1994, PCCTS 1.21 was released. It mainly cleaned up the C++ output and 
included a number of bug fixes.

From the 1.21 release forward, the maintenance and support of all PCCTS tools was picked 
up by Parr Research Corporation.

A sophisticated error handling mechanism called “parser exception handling” was released 
for version 1.30. 1.31 fixed a few bugs.

Release 1.33 is the version corresponding to this initial book release.
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APPENDIX Notes for New Users of 
PCCTS

Thomas H. Moog
Polhode, Inc.
tmoog@polhode.com

These notes are based on my own experiences and a year of observing the PCCTS mailing 
list and the omp.compilers.tools.pccts news group.  These notes have an emphasis on C++ 
mode.  Those who are using C mode may wish to consult the first version of these notes 
mentioned prior to Item #1.  The Notes consist of a table of contents and the Notes 
themselves.  If an entry in the table-of-contents contains a dash ("–")  instead of a page 
number than the title is the entire item, so there’s no point in referring to another page for 
additional information. The code mentioned in the section of examples can be obtained via 
web browser or FTP from the site mentioned prior to Item #1 and at most PCCTS archive 
sites.





Notes for New Users of PCCTS

Language Translation Using PCCTS and C++  237

Where is
#1. These notes, related examples, and an earlier version with an emphasis on 

C mode, are available on the net. 247
#2. FTP sites for the Purdue Compiler Construction Tool Set (PCCTS). 247
#3. The FAQ is maintained by Michael T. Richter (mtr@globalx.net) and is 

available at the FTP site. 247
#4. Archive sites for MS-DOS programs for unpacking .tar and .gzip files

 (the format of the PCCTS distribution kit). 247
#5. Example grammars for C++, ANSI C, Java, Fortran 77, and Objective C. 248
#6. Parr-Research web page:  http://www.parr-research.com/~parrt/prc  –

Basics
#7. Invoke ANTLR or DLG with no arguments to get a switch summary  –
#8. Tokens begin with uppercase characters, rules begin with lowercase characters  –
#9. Even in C mode you can use C++ style comments in the non-action portion 

of ANTLR source code 248
#10. In #token regular expressions spaces and tabs which are not escaped are ignored 248
#11. Never choose names which coincide with compiler reserved words or 

library names 248
#12. Write <<predicate>>? not <<predicate semi-colon>>? (semantic predicates 

go in "if" conditions)  –
#13. Some constructs which cause warnings about ambiguities and optional paths 248

Checklist
#14. Locate incorrectly spelled #token symbols using ANTLR –w2 switch or

by inspecting parserClassName.C 249
#15. Duplicate definition of a #token name is not reported 249
#16. Use ANTLR cross-reference option –cr to detect orphan rules when 

ambiguities are reported  –
#17. LT(i) and LATEXT(i) are magical names in semantic predicates — 

punctuation is critical 249

#token
#18. To match any single character use: "~[]", to match everything to a newline use: 

"~[\n]*"  –
#19. To match an "@" in your input text use "\@", otherwise it will be interpreted

 as the end-of-file symbol  –
#20. The escaped literals in #token regular expressions are: \t \n \r \b

 (not the same as ANSI C)  –
#21. In #token expressions " \12 " is decimal " \012 " is octal, and " \0x12 " is hex

 (not the same as ANSI C)  –
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#22. DLG wants to find the longest possible string that matches 249
#23. When two regular expressions of equal length match a regular expression 

the first one is chosen 249
#24. Inline regular expression are no different than #token statements 250
#25. Watch out when you see ~[list-of-characters] at the end of a regular expression 251
#26. Watch out when one regular expression is the prefix of another 251
#27. DLG is not able to backtrack 251
#28. The lexical routines mode(), skip(), and more() have simple, limited use! 252
#29. lextext() includes strings accumulated via more() — begexpr()/

endexpr() refer only to the last matched RE  –
#30. Use "if (_lextext != _begexpr) {...}" to test for RE being 

appended to lextext using more() 252
#31. #token actions can access protected variables of the DLG base class

 (such as _line) if necessary  –
#32. Replace semantic routines in #token actions with semantic predicates. 252
#33. For 8 bit characters in DLG, make char variables unsigned by default

 (g++ option –funsigned-char). 253
#34. The maximum size of a DLG token is set by an optional argument of the

 ctor DLGLexer() — default is 2000. 253
#35. If a token is recognized using more() and its #lexclass ignores end-of-file,

 then the very last token will be lost. 253

#tokclass
#36. #tokclass provides an efficient way to combine reserved words into reserved

 word sets 254
#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenType is in 

a #tokclass 254

#lexclass
#38. Inline regular expressions are put in the most recently defined lexical class 254
#39. Use a stack of #lexclass modes in order to emulate lexical subroutines 255
#40. Sometimes a stack of #lexclass modes isn’t enough 255

Lexical Lookahead
#41. One extra character of lookahead is available to the #token action routine in 

ch (except in interactive mode) 256
#42. The lex operators "^" and "$" (anchor pattern to start/end of line) can

sometimes be simulated by DLG 256
#43. When the first non-blank token on a line may have a special interpretation 257
#44. For more powerful forms of lexical lookahead one can use Vern Paxson’s flex 258
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Line and Column Information
#45. If you want column information for error messages (or other reasons) use

 C++ mode –
#46. If you want accurate line information even with many characters of 

lookahead use C++ mode  –
#47. Call trackColumns() to request that DLG maintain column information  –
#48. To report column information in syntax error messages override 

ANTLRParser::syn() — See Example #6  –
#49. Call newline() and then set_endcol(0) in the #token action when a newline

 is encountered  –
#50. Adjusting column position for tab characters 258
#51. Computing column numbers when using more() with strings that include

 tab characters and newlines 259

C++ Mode
#52. The destructors of base classes should be virtual in almost all cases 259
#53. Why must the AST root be declared as ASTBase rather than AST ? 259
#54. ANTLRCommonToken text field has maximum length fixed at compile time

 – but there’s an alternative 260
#55. C++ Mode makes multiple parsers easy. 260
#56. Use DLGLexerBase routines to save/restore DLG state when multiple 

parsers share a token buffer. 261
#57. Required AST constructors: AST(), AST(ANTLRToken), and AST(X x,Y y)

 for #[X x,Y y] –
#58. In C++ Mode ASTs and ANTLRTokens do not use stack discipline as they

 do in C mode. 261
#59. Summary of Token class inheritance in file AToken.h. 261
#60. Diagram showing relationship of major classes. 262
#61. Tokens are supplied as demanded by the parser. They are "pulled" rather than 

"pushed". 262
#62. Because tokens are "pulled" it is easy to access downstream objects but

 difficult to access upstream objects 262
#63. Additional notes for users converting from C to C++ mode 262

ASTs
#64. To enable AST construction (automatic or explicit) use the ANTLR –gt switch  –
#65. Use symbolic tags (rather than numbers) to refer to tokens and ASTs in rules 263
#66. Constructor AST(ANTLRToken *) is automatically called for terminals

 when ANTLR –gt switch is used 263
#67. If you use ASTs you have to pass a root AST to the parser 263
#68. Use ast–>destroy() to recursively descend the AST tree and free all sub-trees  –
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#69. Don’t confuse #[...] with #(...) 263
#70. The make-a-root operator for ASTs ("^") can be applied only to terminals 

(#token, #tokclass, #tokdef) 264
#71. An already constructed AST tree cannot be the root of a new tree 264
#72. Don’t assign to #0 unless automatic construction of ASTs is disabled 

using the "!" operator on a rule 264
#73. The statement in Item #72 is stronger than necessary 264
#74. A rule that constructs an AST returns an AST even when its caller uses 

the "!" operator  –
#75. (C++ Mode) In AST mode a token which isn’t incorporated into an AST 

will result in lost memory 265
#76. When passing #(...) or #[...] to a subroutine it must be cast

 from "ASTBase *" to "AST *" 265
#77. Some examples of #(...) notation using the PCCTS list notation 265
#78. A rule which derives epsilon can short circuit its caller’s explicitly

 constructed AST 265
#79. How to use automatic AST tree construction when a token code depends

 on the alternative chosen 266
#80. For doubly linked ASTs derive from class ASTDoublyLinkedBase and 

call tree–>double_link(0,0). 266
#81. When ASTs are constructed manually the programmer is responsible for 

deleting them on rule failure. 266

Rules
#82. To refer to a field of an ANTLRtOKEN within a rule’s action use  

<<... mytoken($x)->field...>> 267
#83. Rules don’t return tokens values, thus this won’t work:rule: r1:rule1  

<<...$r1...>> 267
#84. A simple example of rewriting a grammar to remove left recursion 267
#85. A simple example of left-factoring to reduce the amount of ANTLR lookahead 268
#86. ANTLR will guess where to match "@" if the user omits it from the start rule 268
#87. To match any token use the token wild-card expression "." (dot) 268
#88. The "~" (tilde) operator applied to a #token or #tokclass is satisfied when the

 input token does not match 268
#89. To list the rules of the grammar grep parserClassName.h for "_root" or edit

 the output from ANTLR –cr –
#90. The ANTLR –gd trace option can be useful in sometimes unexpected ways 269
#91. Associativity and precedence of operations is determined by nesting of rules 269
#92. #tokclass can replace a rule consisting only of alternatives with terminals 

(no actions) 269
#93. Rather than comment out a rule during testing, add a nonsense token which never 

matches — See Item #96  –
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Init-Actions
#94. Don’t confuse init-actions with leading-actions (actions which precede a rule). 270
#95. An empty sub-rule can change a regular action into an init-action. 271
#96. Commenting out a sub-rule can change a leading-action into an init-action. 271
#97. Init-actions are executed just once for sub-rules: (...)+, (...)*, and {...}271

Inheritance
#98. Downward inherited variables are just normal C arguments to the function 

which recognizes the rule 272
#99. Upward inheritance returns arguments by passing back values 272
#100. ANTLR –gt code will include the AST with downward inheritance values in 

the rule’s argument list  –

Syntactic Predicates
#101. Regular actions are suppressed while in guess mode because they have 

side effects –
#102. Automatic construction of ASTs is suppressed during guess mode because 

it is a side effect  –
#103. Syntactic predicates should not have side-effects 273
#104. How to use init-actions to create side-effects in guess mode (despite Item #103) 273
#105. With values of k>1 or infinite lookahead mode one cannot use feedback 

from parser to lexer. 274
#106. Can’t use interactive scanner (ANTLR –gk option) with ANTLR 

infinite lookahead. –
#107. Syntactic predicates are implemented using setjmp/longjmp — beware

 C++ objects requiring destructors.  –

Semantic Predicates
#108. (Bug) Semantic predicates can’t contain string literals 274
#109. (Bug) Semantic predicates can’t cross lines without escaped newline 274
#110. Semantic predicates have higher precedence than alternation: <<>>? A|B

means (<<>>? A)|B –
#111. Any actions (except init-actions) inhibit the hoisting of semantic predicates 274
#112. Semantic predicates that use local variables or require init-actions must

 inhibit hoisting –
#113. Semantic predicates that use inheritance variables must not be hoisted 274
#114. A semantic predicate which is not at the left edge of a rule becomes a

 validation predicate 275
#115. Semantic predicates are not always hoisted into the prediction expression 275
#116. Semantic predicates can’t be hoisted into a sub-rule: "{x} y" is not 

exactly equivalent to "x y | y" 275
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#117. How to change the reporting of failed semantic predicates 276
#118. A semantic predicate should be free of side-effects because it may be 

evaluated multiple times. 276
#119. There’s no simple way to avoid evaluation of a semantic predicate for 

validation after use in prediction.  –
#120. What is the "context" of a semantic predicate ? 276
#121. Semantic predicates, predicate context, and hoisting 277
#122. Another example of predicate hoisting 282

Debugging Tips for New Users of PCCTS
#123. A syntax error with quotation marks on separate lines means a problem 

with newline 283
#124. Use the ANTLR –gd switch to debug via rule trace  –
#125. Use the ANTLR –gs switch to generate code with symbolic names for

 token tests –
#126. How to track DLG results 283

Switches and Options
#127. Use ANTLR –gx switch to suppress regeneration of the DLG code and

 recompilation of DLGLexer.C  –
#128. Can’t use an interactive scanner (ANTLR –gk option) with ANTLR

 infinite lookahead  –
#129. To make DLG case insensitive use the DLG –ci switch 284

Multiple Source Files
#130. To see how to place main() in a .C file rather than a grammar file (".g") 

see pccts./testcpp/8/main.C 284
#131. How to put file scope information into the second file of a grammar with

 two .g files 284

Source Code Format
#132. To place the C right shift operator ">>" inside an action use "\>>" 285
#133. One cannot continue a regular expression in a #token statement across lines 285
#134. A #token without an action will attempt to swallow an action which 

immediately follows it 285
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Miscellaneous
#135. Given rule[A a,B b] > [X x] the proto is X rule

(ASTBase* ast,int* sig,A a,B b) 285
#136. To remake ANTLR changes must be made to the makefile as 

currently distributed 286
#137. ANTLR reports "... action buffer overflow ..." 286
#138. Exception handling uses status codes and switch statements to unwind

 the stack rule by rule  –
#139. For tokens with complex internal structure add #token expressions to 

match frequent errors 286
#140. See pccts/testcpp/2/test.g and testcpp/3/test.g for examples of how to 

intergrate non-DLG lexers with PCCTS  –
#141. Ambiguity, full LL(k), and the linear approximation to LL(k) 287
#142. What is the difference between "(...)? <<...>>? x" and "

(...)? => <<...>>? x" ? 289
#143. Memory leaks and lost resources 289
#144. Some ambiguities can be fixed by introduction of new #token numbers 289
#145. Use "#pragma approx" to replace full LL(k) analysis of a rule with the

 linear approximation 290

(C Mode) LA/LATEXT and NLA/NLATEXT
#146. Do not use LA(i) or LATEXT(i) in the action routines of #token 290
#147. Care must be taken in using LA(i) and LATEXT(i) in interactive mode

(ANTLR switch –gk) 290

(C Mode) Execution-Time Routines
#148. Calls to zzskip() and zzmore() should appear only in #token actions

 (or in subroutines they call) –
#149. Use ANTLRs or ANTLRf in line-oriented languages to control the 

prefetching of characters and tokens 291
#150. Saving and restoring parser state in order to parse other objects (input files) 291

(C Mode) Attributes
#151. Use symbolic tags (rather than numbers) to refer to attributes and ASTs in rules 292
#152. Rules no longer have attributes:rule : r1:rule1

 <<...$r1...;>> won’t work 292
#153. Attributes are built automatically only for terminals 292
#154. How to access the text or token part of an attribute 292
#155. The $0 and $$ constructs are no longer supported — use inheritance

instead (Item #99)  –
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#156. If you use attributes then define a zzd_attr() to release resources (memory) 
when an attribute is destroyed –

#157. Don't pass automatically constructed attributes to an outer rule or sibling 
rule — they’ll be out of scope 293

#158. A charptr.c attribute must be copied before being passed to a calling rule 293
#159. Attributes created in a rule should be assumed not valid on entry to a fail action 293
#160. Use a fail action to destroy temporary attributes when a rule fails 293
#161. When you need more information for a token than just token type, text, and

line number 294
#162. About the pipeline between DLG and ANTLR (C Mode) 294

(C Mode) ASTs
#163. Define a zzd_ast() to recover resources when an AST is deleted  –
#164. How to place prototypes for routines using ASTs in the #header 295
#165. To free an AST tree use zzfree_ast() to recursively descend the AST tree

 and free all sub-trees 295
#166. Use #define zzAST_DOUBLE to add support for doubly linked ASTs 295
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Extended Examples and Short Descriptions of Distributed Source Code
#1. Modifications to pccts/dlg/output.c to add member functions and data 

to DLGLexer header 296
#2. DLG definitions for C and C++ comments, character literals, and string literals 296
#3. A simple floating point calculator implemented using PCCTS attributes 

and inheritance 296
#4. A simple floating point calculator implemented using PCCTS ASTs and 

C++ virtual functions 296
#5. An ANTLRToken class for variable length strings allocated from the heap 296
#6. How to extend PCCTS C++ classes using the example of adding column

 information 296
#7. How to pass whitespace through DLG for pretty-printers 297
#8. How to prepend a newline to the DLGInputStream via derivation from

 DLGLexer 297
#9. How to maintain a stack of #lexclass modes 297
#10. Changes to pccts/h/DLexer.C to aid in debugging of DLG lexers as outlined

 in Item #126 297
#11. AT&T Cfront compatible versions of some 1.32b6 files 297
#12. When you want to change the token type just before passing the token

 to the parser 297
#13. Rewriting a grammar to remove left recursion and perform left factoring 297
#14. Using the GNU gperf (generate perfect hashing function) with PCCTS 298
#15. Processing counted strings in DLG 300
#16. How to convert a failed validation predicate into a signal for treatment 

by parser exception handling 301
#17. How to use Vern Paxson’s flex with PCCTS in C++ mode by inheritance 

from ANTLRTokenStream 301





Notes  for New Users of PCCTS

Language Translation Using PCCTS and C++ 247

Where is
#1. These notes, related examples, and an earlier version with an emphasis on C mode, are 

available on the net.

Primary Site:

web browser: http://www.mcs.net/~tmoog/pccts.html
anonymous ftp: ftp://ftp.mcs.net/mcsnet.users/tmoog/*

Europe:

anonymous ftp: ftp://ftp.th-darmstadt.de/pub/programming/languages/compiler-
compiler/pccts/notes.newbie/*

#2. FTP sites for the Purdue Compiler Construction Tool Set (PCCTS).

Primary Site:

Node: ftp.parr-research.com (Parr Research, Inc.)
ftp-mount.ee.umn.edu [128.101.146.5] (University of Minnesota)

Files: The PCCTS distribution kit: /pub/pccts/latest-version/pccts.tar.Z 
and pccts.tar.gz

FAQ comp.compilers.tools.pccts /pub/pccts/documentation/FAQ
Contributed files: /pub/pccts/contrib/*
Pre-built binaries for PCCTS: /pub/pccts/binaries/PC

/pub/pccts/binaries/SGI
etc.

Note:  There is no guarantee that these binaries will be up-to-date. They are 
contributed by users of these machines rather than thePCCTS developers.

Europe:
Node: ftp.th-darmstadt.de [130.83.55.75]
Directory: /pub/programming/languages/compiler-compiler/pccts

(This is updated weekly on Sunday.)

Also:
Node: ftp.uu.net [192.48.96.9]
Directory: languages/tools/pccts

#3. The FAQ is maintained by Michael T. Richter (mtr@globalx.net) and is available at the 
FTP site.

#4. Archive sites for MS-DOS programs for unpacking .tar and .gzip files (the format of the 
PCCTS distribution kit).

Node: oak.oakland.edu         (Oakland University in Rochester, 
Michigan)
File: simtel/msdos/archiver/tar4dos.zip
File: simtel/msdos/compress/gzip124.zip
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Node: wuarchive.wustl.edu  (Washington University in St. Louis, 
Missouri)

File: /archive/systems/ibmpc/simtel/msdos/archiver/tar4dos.zip
File: /archive/systems/ibmpc/simtel/msdos/compress/gzip124.zip

Contributed by Bill Tutt 
(rassilon@cs.simpson.edu)

#5. Example grammars for C++, ANSI C, Java, Fortran 77, and Objective C.

All the above mentioned grammars are located at the FTP site in /pub/pccts/contrib/*

The C++ grammar (FTP file pccts/contrib/cplusplus.tar), written in C++ mode, is the best 
demonstration available of the use of PCCTS capabilities.  The desire to handle the C++ 
grammar in an elegant fashion led to a number of improvements in PCCTS.

The Fortran 77 grammar (C mode) by Ferhat Hajdarpasic (ferhath@ozemail.com.au) 
includes Sorcerer routines.

#6. Parr-Research web page:  http://www.parr-research.com/~parrt/prc 

Basics
#7. Invoke ANTLR or DLG with no arguments to get a switch summary

#8. Tokens begin with uppercase characters, rules begin with lowercase characters

#9. Even in C mode you can use C++ style comments in the non-action portion of ANTLR 
source code

Inside an action you have to obey the comment conventions of your compiler.

#10. In #token regular expressions spaces and tabs which are not escaped are ignored

This makes it easy to add white space to a regular expression:
#token  Symbol  "[a-z A-Z] [a-z A-Z 0-9]*"

#11. Never choose names which coincide with compiler reserved words or library names

You’d be surprised how often someone has done something like one of the following:
#token FILE   "file"
#token EOF    "@"
const:        "[0-9]*" ;

#12. Write <<predicate>>? not <<predicate semi-colon>>? (semantic predicates go in "if" 
conditions)

#13. Some constructs which cause warnings about ambiguities and optional paths
rule : a { ( b | c )* } ;
rule : a { b } ;
b    : ( c )* ;
rule : a c* ;
a    : b { c } ;
rule : a { b | c | } ;
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Checklist
#14. Locate incorrectly spelled #token symbols using ANTLR –w2 switch or by inspecting 

parserClassName.C

If a #token symbol is spelled incorrectly ANTLR will assign it a new #token number 
which, of course, will never be matched.

#15. Duplicate definition of a #token name is not reported

ANTLR will simply use the later definition and forget the earlier one.  Using the ANTLR –
w2 option does not help

#16. Use ANTLR cross-reference option –cr to detect orphan rules when ambiguities are 
reported

#17. LT(i) and LATEXT(i) are magical names in semantic predicates — punctuation is critical

ANTLR wants to determine the amount of lookahead required for evaluating a semantic 
predicate.  It does this by searching in C++ mode for strings of the form "LT(" and in C 
mode for strings of the form "LATEXT(".  If there are spaces before the open "(" it 
won’t make a match.  It evaluates the expression following the "(" under the assumption 
that it is an integer literal (e.g."1").  If it is something like "LT(1+i)" then you’ll have 
problems.  With ANTLR switch –w2 you will receive a warning if ANTLR doesn’t find at 
least one LT(i) in a semantic predicate.

#token
See also #8, #10, #14, #15, #22, #133, #134.

#18. To match any single character use: "~[]", to match everything to a newline use: 
"~[\n]*"

#19. To match an "@" in your input text use "\@", otherwise it will be interpreted as the end-
of-file symbol

#20. The escaped literals in #token regular expressions are: \t \n \r \b (not the same 
as ANSI C)

#21. In #token expressions " \12 " is decimal " \012 " is octal, and " \0x12 " is hex (not the 
same as ANSI C)

Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

#22. DLG wants to find the longest possible string that matches

The regular expression "~[]*" will cause problems. It will gobble up everything to the 
end-of-file.

#23. When two regular expressions of equal length match a regular expression the first one is 
chosen

Thus more specific regular expressions should appear in the grammar file before more 
general ones:
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#token  HELP  "help"  /*  should appear before "symbol" */
#token  Symbol  "[a-z A-Z]*"   /*  should appear after keywords  */

Some of these may be caught by using the DLG switch –Wambiguity.  In the following 
grammar the input string "HELP" will never be matched:

#token  WhiteSpace      "[\ \t]"        <<skip();>>
#token  ID             "[a-z A-Z]+"
#token  HELP           "HELP"

statement
: HELP "@"   <<printf("token HELP\n");>> /* a1 */
| "inline" "@" <<printf("token inline\n");>>  /* a2 */
| ID "@"        <<printf("token ID\n");>>     /* a3 */
;

The best advice may be to follow the practice of TJP:  place "#token ID" at the end of 
the grammar file.

#24. Inline regular expression are no different than #token statements

PCCTS code does not check for a match to "inline" (Item #23 line a2) before attempting a 
match to the regular expressions defined by #token statements. The first two alternatives 
("a1" and "a2") will never be matched. All of this will be clear from examination of the 
file "parser.dlg" (the name does not depend on the parser’s class name).

Another way of looking at this is to recognize that the conversion of character strings to 
tokens takes place in class DLGLexer, not class ANTLRParser, and that all that is 
happening with an inline regular expression is that ANTLR is allowing you to define a 
token's regular expression in a more convenient fashion — not changing the 
fundamental behavior.

If one builds the example above using the DLG switch –Wambiguity one gets the 
message:
dlg warning: ambigious regular expression  3  4
dlg warning: ambigious regular expression  3  5

The numbers which appear in the DLG message refer to the assigned token numbers.  
Examine the array _token_tbl in parserClassName.C to find the regular expression 
which corresponds to the token number reported by DLG:
ANTLRChar *Parser::_token_tbl[]={

/* 00 */        "Invalid",
/* 01 */        "@",
/* 02 */        "WhiteSpace",
/* 03 */        "ID",
/* 04 */        "HELP",
/* 05 */        "inline"

};

Well, there is one important difference for those using Sorcerer.  With in-line regular 
expressions there is no symbolic name for the token, hence it can’t be referenced in a 
Sorcerer rule.  Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).
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#25. Watch out when you see ~[list-of-characters] at the end of a regular expression

What the user usually wants to express is that the regular expression should stop before 
the list-of-characters.  However the expression will include the complement  of that list 
as part of the regular expression.  Often users forget about what happens to the 
characters which are in the complement of the set.

Consider for example a #lexclass for a C style comment:
/* C-style comment handling */
#lexclass COMMENT   /* a1 */
#token "\*/"     << mode(START); skip();>>  /* a2 */
#token "~[\*]+"  << skip();>>                /* a3 */
#token "\*~[/]"  << skip(); >>  /* WRONG*/  /* a4 */
 /* Should be "\*"         */               /* a5 */
 /* Correction due to Tim Corringham  */     /* a6 */
 /* tim@ramjam.demon.co.uk  20-Dec-94   */   /* a7 */

The RE at line a2 accepts "*/" and changes to #lexclass START.  The RE at line a4 
accepts a "*" which is not followed by a "/".  The problem arises with comments of the 
form:

/* this comments breaks the example **/

The RE at line a4 consumes the "**" at the end of the comment leaving nothing to be 
matched by " \*/ ".

This is a relatively efficient way to span a comment. However it is not the simplest. A 
simpler description is:

#token "\*/"    << mode(START); skip(); >>   /* b1 */
#token "~[]"    << skip(); >>                /* b2 */

This works because b1 ("*/") is two characters long while b2 is only one character long 
— and DLG always prefers the longest expression which matches.

For those who are concerned with the efficiency of scanning:
#token "[\n\r]" <<skip();newline();>>
#token "\*/"        <<mode(START);skip();>>
#token "\*" <<skip();>>
#token "~[\*\n\r]+" <<skip();>>

Contributed by Brad Schick (schick@interaccess.com)

#26. Watch out when one regular expression is the prefix of another

If the shorter regular expression is followed by something which can be the first 
character of the suffix of the longer regular expression, DLG will happily assume that it 
is looking at the longer regular expression.  See Item #41 for one approach to this 
problem. 

#27. DLG is not able to backtrack

Consider the following example:
#token          "[\ \t]*"       <<skip();>>
#token ELSE     "else"
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#token ELSEIF   "else [\ \t]* if"
#token STOP     "stop"

with input:
else stop

When DLG gets to the end of "else" it realizes that the space will allow it to match a 
longer string than "else" by itself.  So DLG accept the spaces.  Everything is fine until 
DLG gets to the initial "s" in "stop".  It then realizes it has no match — but it can't 
backtrack.  It passes back an error status to ANTLR which (normally) prints out 
something like:

invalid token near line 1 (text was ’else ’) ...

There is an "extra" space between the "else" and the closing single quote mark.

This problem is not detected by the DLG option –Wambiguity.

For this particular problem "else" and "if" can be treated as separate tokens.  For more 
difficult cases work-arounds are (a) to push the problem onto the parser by using 
syntactic predicates or (b) to use Vern Paxson’s lexical analyzer "flex" which has 
powerful backtracking capabilities.  See Item #44 and Example #17.

#28. The lexical routines mode(), skip(), and more() have simple, limited use!

All they do is set status bits or fields in a structure owned by the lexical analyzer and 
then return immediately.  Thus it is OK to call these routines anywhere from within a 
lexical action.  You can even call them from within a subroutine called from a lexical 
action routine.

#29. lextext() includes strings accumulated via more() — begexpr()/endexpr() refer only to 
the last matched RE

#30. Use "if (_lextext != _begexpr) {...}" to test for RE being appended to 
lextext using more()

To track the line number of the start of a lexical element that may span several lines I 
use the following test:

if (_lextext == _begexpr) {startingLine=_line;}//user-defined var

#31. #token actions can access protected variables of the DLG base class (such as _line) if 
necessary

#32. Replace semantic routines in #token actions with semantic predicates.

In early versions on PCCTS it was common to change the token code based on semantic 
routines in the #token actions.  With semantic predicates this technique is now frowned 
upon:

Old style:
#token TypedefName
#token ID  "[a-z A-Z]*"

<<if (isTypedefName(lextext)) return TypedefName;>>
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New Style C Mode:
#token ID  "[a-z A-Z]*"
typedefName : <<isTypedefName(LATEXT(1))>>? ID;

The old technique is appropriate for making lexical decisions based on the input; for 
instance, treating a number appearing in columns 1 through 5 as a statement label rather 
than a number.  The new style is important because of the buffer between the lexer and 
parser introduced by large amounts of lookahead, especially syntactic predicates. For 
instance a declaration of a type may not have been entered into the symbol table by the 
parser by the time the lexer encounters a declaration of a variable of that type.  An 
extreme case is infinite lookahead in C mode:  parsing doesn’t even begin until the 
entire input has been processed by the lexer.  See Item #121 for an extended discussion 
of semantic predicates.  Example #12 shows how some semantic decisions can be 
moved from the lexer to the token buffer.

#33. For 8 bit characters in DLG, make char variables unsigned by default (g++ option –
funsigned-char).

For Unix systems this should be combined with a call to setlocale(LC_ALL,"") 
to replace the default locale of "C" with the user's native locale. Contributed by Ulfar 
Erlingsson (ulfarerl@rhi.hi.is).

#34. The maximum size of a DLG token is set by an optional argument of the ctor DLGLexer() 
— default is 2000.

The maximum size of a character string stored  in an ANTLRToken is independent of the 
maximum size of a DLG token.  See Item #54 and Example #5.

#35. If a token is recognized using more() and its #lexclass ignores end-of-file, then the very 
last token will be lost.

When a token is recognized in several pieces using more(), an end-of-file may have 
been detected before the entire token is recognized.  Without treatment of this special 
case, the portions of the token already recognized will be ignored and the error of a 
lexically incomplete token will be ignored.  Since all appearances of the regular 
expression "@", regardless of #lexclass, are mapped to the same #token value, proper 
handling requires some work-arounds.

Suppose you want to recognize C style comments using:
#lexclass START
#token  Comment_Begin  "/\*"  <<skip();mode(LC_Comment);more();>>
#token  Eof            "@"
...
#lexclass LC_Comment
#token  Unexpected_Eof  "@"   <<mode(START);>>
#token  Comment_End     "\*/" <<skip();mode(START);>>
#token                  "~[]" <<skip();more()>>
...



Notes for New Users of PCCTS

254 Language Translation Using PCCTS and C++ 

The token code "Unexpected_Eof" will never be seen by the parser.  The result is that C 
style comments which omit the trailing "*/" can swallow all the input to the end-of-file 
and not give any error message.   My solution to this problem is to fool PCCTS by using 
the following definition:
#token  Unexpected_Eof  "@@"   <<mode(START);>>

This exploits a characteristic of DLG character streams:  once they reach end-of-file they 
must return end-of-file to every request for another character until explicitly reset.

Another example of this pitfall, with more serious implications, is the recognition of C 
style strings.

#tokclass
See also #41, #87, #88, #92.

#36. #tokclass provides an efficient way to combine reserved words into reserved word sets
#token Read     "read"
#token Write    "write"
#token Exec     "exec"
#token ID       "[a-z A-Z] [a-z A-Z 0-9 \@]*"
#tokclass Any     {ID Read Write Exec}
#tokclass Verb    {Read Write Exec}
command: Verb Any ;

#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenType is in a #tokclass

To test whether a token "t" is in the #tokclass "Verb":
if (set_el(t->getType(),Verb_set)) {...}

There are several variations of this routine in the ANTLRParser class.

#lexclass
See also #41, #56.

#38. Inline regular expressions are put in the most recently defined lexical class

If the most recently defined lexical class is not START you may be surprised:
#lexclass START
...
#lexclass LC_Comment
...
inline_example: symbol "=" expression ;

This will place "=" in the #lexclass LC_Comment (where it will never be matched) 
rather than the START #lexclass where the user meant it to be.  Since it is okay to 
specify a #lexclass in several pieces it might be a good idea when using #lexclass to 
place "#lexclass START" just before the first rule — then any inline definitions of 
tokens will be placed in the START #lexclass automatically:

#lexclass START
...
#lexclass COMMENT
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...
#lexclass START

#39. Use a stack of #lexclass modes in order to emulate lexical subroutines

Consider a grammar in which lexical elements have internal structure.  An example of 
this is C strings and character literals which may contain elements like:

escaped characters \" and \’
symbolic codes \t
numbers \xff  \200  \0

Rather than implementing a separate #lexclass to handle these sequences for both 
character literals and string literals it would be possible to have a single #lexclass which 
would handle both.  To implement such a scheme one needs something like a subroutine 
stack to remember the previous #lexclass.  See Example #9 for a set of such routines.

#40. Sometimes a stack of #lexclass modes isn’t enough

Consider a log file consisting of clauses, each of which has its own #lexclass and in 
which a given word is reserved in some clauses and not others:

#1;1-JAN-94 01:23:34;enable;forge bellows alarm;move to station B;
#2;1-JAN-94 08:01:56;operator;john bellows;shift change at 08:00;
#3;1-JAN-94 09:10:11;move;old pos=5.0 new pos=6.0;operator request;
#4;1-JAN-94 10:11:12;alarm;bellows;2-JAN-94 00:00:01;

If the item is terminated by a separator, there is a problem because the separator will be 
consumed in the recognition of the most nested item — with nothing left over to be 
consumed by other elements which end at the separator.  The problem appears when it is 
necessary to leave a #lexclass and return more than one level.  To be more specific, a 
#token action can only be executed when one or more characters is consumed. 
Therefore, to return through three levels of #lexclass calls would appear to require the 
consumption of at least three characters.  In the case of balanced constructs like "..." 
and ’...’ this is not a problem since the terminating character can be used to trigger 
the #token action.  However, if the scan is terminated by a separator such as the semi-
colon above (;), you cannot use the same technique.  Once the semi-colon is consumed, 
it is unavailable for the other #lexclass routines on the stack to see. 

One solution is to allow the user to specify (during the call to pushMode) a "lookahead" 
routine to be called when the corresponding element of the mode stack is popped.  At 
that point the "lookahead" routine can examine ch to determine whether it also wants to 
pop the stack, and so on up the mode stack.  The consumption of a single character can 
result in popping multiple modes from the mode stack based on a single character of 
lookahead. 

If your approach is more complicated than this, you might as well write a second parser 
just to handle the so-called lexical elements.

Continuing with the example of the log file (above): each statement type has its fields in 
a specific order.  When the statement type is recognized, a pointer is set to a list of the 
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#lexclasses which is in the same order as the remaining fields of that kind of statement.  
An action is attached to every #token which recognizes a semi-colon (";") advances a 
pointer in the list of #lexclasses and then changes the #lexclass by calling mode() to set 
the #lexclass for the next field of the statement.

Lexical Lookahead
#41. One extra character of lookahead is available to the #token action routine in ch (except 

in interactive mode)

In interactive mode (DLG switch –i) DLG fetches a character only when it needs it to 
determine if the end of a token has been reached.  In non-interactive mode the content of 
ch is always valid.  The debug code described in Item #126 can help debug problems 
with interactive lookahead.

For the remainder of this discussion assume that DLG is in non-interactive mode.

Consider the problem of distinguishing floating point numbers from range expressions 
such as those used in Pascal:

        range:  1..23  float:  1.23 

As a first effort one might try:
#token  Int     "[0-9]+"
#token  Range   ".."
#token  Float   "[0-9]+.[0-9]*"

The problem is that "1..23" looks like the floating point number "1." with an illegal "." 
at the end.  DLG always takes the longest matching string, so "1." will always look more 
appetizing than "1".  What one needs to do is to look at the character following "1." to 
see if it is another ".", and if it is to assume that it is a range expression.  The flex lexer 
has trailing context, but DLG doesn't — except for the single character in ch.

 A solution in DLG is to write the #token Float action routine to look at what's been 
accepted, and at ch, in order to decide what to do:

#token Float    "[0-9]*.[0-9]*" 
<<if (*endexpr() == ’.’ && /* might use more complex   test    */

ch == ’.’) {    
mode(LC_Range);   /* treat it like a range expression  */

        return Int;       /* looks like an int followed by ".."*/
      };
    >>

#lexclass LC_Range
#token Range    "."      <<mode(START);>>  // consume second "." 

of range

#42. The lex operators "^" and "$" (anchor pattern to start/end of line) can sometimes be 
simulated by DLG

DLG doesn’t have operators to anchor a pattern match to the start or end of a line.  
However, a requirement that a string start at column 1 can sometimes be simulated by a 
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combination of #lexclass and #token action routines.  A requirement that the string end 
at the end-of-line can sometimes be simulated in a #token action routine by testing 
whether ch is a newline.

In the following example, a "*" in column 1 is treated as a different lexical element than 
a "*" appearing elsewhere.  This example depends on having column information 
enabled by use of trackColumns():

#token  Star_Col1
#token  Star            "*" <<if (get_endcol() == 1) {
                                      return Star_Col1;} 

>>
#token  WhiteSpace      "[\ \t]"   <<skip();>>
#token  ID              "[a-z A-Z]+"
#token  NEWLINE         "\n" <<newline(); set_endcol(0);>>

expr!   : (Star  <<printf ("\nThe * is NOT in column 1\n");>>
        | Star_Col1  <<printf ("\nThe * is in column 1\n");>>
        | ID         <<printf ("\nFirst token is an ID\n");>>
          )* "@" ;

#43. When the first non-blank token on a line may have a special interpretation

If the set of tokens which can appear at the start of a line is relatively small then code 
the newline #token action to switch to another #lexclass where just the start-of-line 
tokens will be recognized:

#lexclass START
#token NL      "\n [\t\ ]*" <<newline();skip();mode(StartOfLine);>>
#token Number  "[0-9]+"
#token Mult    "\*"

#lexclass StartOfLine
#token Label    "[0-9]+"      <<mode(START);>>
#token Comment  "\* ~[\n]*"   <<mode(START);>>

If the regular expressions that can appear only at the start of a line is a subset of the 
"anywhere" tokens then one can use a flag to determine which interpretation to assign to 
the regular expression just matched.  Checking for begcol()==0 could also serve as the 
flag: 

#lexclass START
#token NL     "\n [\ ]*" <<newline();skip();firstTokenOnLine=1;>>
#token Number "[0-9]+"   <<if (firstTokenOnLine) {return Label;};>>
#token Mult   "\*"       <<if(firstTokenOnLine){
                              skip();mode(LC_Comment);more();
                              };>>
#lexclass LC_Comment
#token   Comment "~[\n]*" <<skip();mode(START);>>

This requires that the flag "firstTokenOnLine" be cleared for every token but that of a 
newline.  This would be rather tedious to code for every token #action.  It’s convenient 
to put it in a class derived from DLGLexer or from ANTLRTokenBuffer.  It would be 
natural to put it in the makeToken routine, but it is difficult for makeToken to exchange 
information with the #token action routines.  See Item #62.
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Another approach is to include the newline as part of the regular expression:
#lexclass START
#token Number  "[0-9]+"
#token Label   "\n [\ ]* [0-9]+"
#token Mult    "\*"
#token Comment "\n [\ ]* \* ~[\n]*"

This requires that a newline be prepended to the input character stream and that the line 
number be decremented by 1 at the start to compensate for the extra newline.  The 
problem is that a DLGInputStream doesn’t know how to adjust its caller’s line 
information (Item #62).  In any case, the line information in the 1.32b6  is a protected 
variable.  The result is that it is necessary to have a rather inelegant class derived from 

DLGLexer in order to accomplish this.  See Example #8.

#44. For more powerful forms of lexical lookahead one can use Vern Paxson’s flex

If more than one character of lookahead is necessary and it appears difficult to solve 
using #lexclass, semantic predicates, or other mechanisms you might consider using flex 
by Vern Paxson (University of California – Berkeley).  Flex is a superset of lex.  For an 
example of how to use flex with ANTLR in C++ mode see Example #17.  For  C mode 
visit the FTP site (Item #2) for file /pub/pccts/contrib/NOTES.flex.

See also #27, #42, #56, Example #15.

Line and Column Information
Most names in this section refer to members of class DLGLexerBase or DLGLexer

Before C++ mode the proper handling of line and column information was a large part of 
these notes.

#45. If you want column information for error messages (or other reasons) use C++ mode

#46. If you want accurate line information even with many characters of lookahead use C++ 
mode

#47. Call trackColumns() to request that DLG maintain column information

#48. To report column information in syntax error messages override ANTLRParser::syn() — 
See Example #6

#49. Call newline() and then set_endcol(0) in the #token action when a newline is 
encountered 

#50. Adjusting column position for tab characters

Assume that tabs are set every eight characters starting with column 9.

Computing the column position will be simple if you match tab characters in isolation:
#token Tab  "\t"    <<_endcol=((_endcol-1) & ~7) + 8;>>

This would be off by 1, except that DLG, on return from the #token action, computes the 
next column using:
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 _begcol=_endcol+1;

If you include multiple tabs and other forms of whitespace in a single regular 
expression, the computation of _endcol by DLG must be backed out by subtracting the 
length of the string.  Then you can compute the column position by inspecting the string 
character by character.

#51. Computing column numbers when using more() with strings that include tab characters 
and newlines
/* what is the column and line position when the comment includes
   or is followed by tabs tab  tab */  tab  tab  i++;

Note: This code excerpt requires a change to PCCTS 1.32b6 file pccts/
dlg/output.c in order to inject code into the DLGLexer class header.  
The modified source code is distributed as part of the notes in file 
notes/changes/dlg/output.c and output_diff.c  An example of its use is 
given in Example #7.

My feeling is that the line and column information should be updated at the same time 
more() is called because it will lead to more accurate position information in messages.  
At the same time one may want to identify the first line on which a construct begins 
rather than the line on which the problem is detected:  it’s more useful to know that an 
unterminated string started at line 123 than that is was still unterminated at the end-of-
file.
void DLGLexer::tabAdjust () { // requires change to output.c
   char * p;       //   to add user code to DLGLexer
   if (_lextext == _begexpr) startingLineForToken=_line;
   _endcol=_endcol-(_endexpr-_begexpr)+1;  // back out DLG 

computation
   for (p=_begexpr;*p != 0; p++) {
      if (*p == ’\n’) {       // newline() by itself

   newline();_endcol=0;       //   doesn’t reset column
      } else if (*p == '\t') {
         _endcol=((_endcol-1) & ~7) + 8;   // traditional tab stops
      };
     _endcol++;
   };
   _endcol--;          // DLG will compute begcol=endcol+1
}

See Example #7 for a more complete description.

See also #42, #56.

C++ Mode
#52. The destructors of base classes should be virtual in almost all cases

If you don’t know why, you should read Scott Meyers’ excellent book, Effective C++, 
Fifty Specific Ways .... 

#53. Why must the AST root be declared as ASTBase rather than AST ?
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The functions which implement the rules of the grammar are declared with the 
prototype:

void aRule(ASTBase ** _root) {...};

The underlying support code of ANTLR depends only on the behaviors of ASTBase.  
There are two virtues to this design:

No recompilation of the underlying routines is necessary when the definition of 
AST changes

The same object code can be used with multiple parsers in the same program each 
with its own kind of AST

This is in contrast to C++ templates which are designed to provide source code reuse, 
not object code reuse.

An "AST *" can be passed to an "ASTBase *" why not an "AST **" for an "ASTBase 
**" ?

This is a C++ FAQ.  Consider the following (invalid) code fragment:
struct B {};                         /* a1 */
structD1:B {inti;};                  /* a2 */
struct D2 : B {doubled;};            /* a3 */
void func(B ** ppB) {*ppB=new D2;}; /* WRONG */     /* a4 */
D1 * pD1=newD1;                      /* a5 */
func(&pD1);                          /* a6 */

At line a5, pD1 is declared to be a pointer to a D1.  This pointer is passed to "func" at 
line a6.  The function body at line a4 replaces a pointer to a D1 with a pointer to a D2, 
which violates the declaration at line a5.

The following is legal, although it may not do what is expected:
        void func2(B * pB) {D1d1;*pB=d1;};  /* b1 */
        func2(pD1);                         /* b2 */

The assignment at line b5 slices d1 and assigns only the B part of d1 to the object 
pointed to by pB because the assignment operator chosen is that of class B, not class D1.

#54. ANTLRCommonToken text field has maximum length fixed at compile time – but there’s 
an alternative

For ANTLRCommonToken the length of the text field is fixed by #define 
ANTLRCommonTokenTEXTSIZE.  The default is 100 characters.  If you want an 
already written routine which will handle tokens which are limited by the size of the 
DLG token buffers look at the definition of ANTLRToken in Example #5 file varToken.*.

#55. C++ Mode makes multiple parsers easy.

    pccts/testcpp/5/test.g Uses multiple instances of a single parse class (thus a 
single grammar)
    pccts/testcpp/6/main.C Program uses parsers for two different grammars (test.g 
and test2.g)
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If two parsers share the same DLG automaton it may be necessary to save DLG state.  See 
Item #56.

#56. Use DLGLexerBase routines to save/restore DLG state when multiple parsers share a 
token buffer.

When the second parser "takes control" the DLGLexer doesn’t know about it and doesn’t 
reset the state variables such as #lexclass, line number, column tracking, etc. 

Use DLGLexerBase::saveState (DLGState *) and restoreState(DLGState *) to save and 
restore DLG state.

#57. Required AST constructors: AST(), AST(ANTLRToken), and AST(X x,Y y) for 
#[X x,Y y]

#58. In C++ Mode ASTs and ANTLRTokens do not use stack discipline as they do in C mode.

In C mode ASTs and ANTLRTokens are allocated on a stack.  This is an efficient way to 
allocates space for structs and is not a serious limitation because in C it is customary for 
a structure to be of fixed size.  In C++ mode it would be a serious limitation to assume 
that all objects of a given type were of the same size because derived classes may have 
additional fields.  For instance one may have a "basic" AST with derived classes for 
unary operators, binary operators, variables, and so on.  As a result the C++ mode 
implementation of symbolic tags for elements of the rule uses simple pointer variables.  
The pointers are initialized to 0 at the start of the rule and remain well defined for the 
entire rule.  The things they point will normally also remained well defined, even objects 
defined in sub-rules:

rule ! : a:rule2 {b:B} <<#0=#(#a,#[$b]);>> ; // OK only in C++ mode

This fragment is not be well defined in C mode because B would become undefined on 
exit from "{...}".

#59. Summary of Token class inheritance in file AToken.h.
    ANTLRAbstractToken — (empty class) no virtual table
      |
      V
    ANTLRLightweightToken — (token type) no virtual table
      |
      V
    ANTLRTokenBase — (token type, text, line) virtual table
      |
      V
    DLGBasedToken — (token type, text, line) virtual table
      |
      +-- ANTLRCommonToken — (token type, text, line) virtual table
      |      using fixed length text fields
      |
      +-- MyToken — (token type, text, line, ...) virtual table
           notes/var/varToken.h — variable length text fields
           notes/col/myToken.h — variable l ength text with    

column info



Notes for New Users of PCCTS

262 Language Translation Using PCCTS and C++ 

#60. Diagram showing relationship of major classes.
                               ANTLRTokenStream
                               (ATokenStream.h)
                                     |
                                     V

ANTLRParser --> ANTLRTokenBuffer --> DLGLexerBase --> DLGInputStream
(AParser.h)    (ATokenBuffer.h)     (DLexerBase.h)    |(DLexerBase.h)

|               |                    |             |
|               V                    V             +- DLGFileInput
|           MyTokenBuffer         DLGLexer         |
|                              (ANTLR generated)   |
V                                                 +- DLGStringInput

MyParser (generated by ANTLR from myFile.g)                                     
   MyParser.h (class header)
   MyParser.C (static variable initialization)
   myFile.C   (implementation code for rules)

#61. Tokens are supplied as demanded by the parser. They are "pulled" rather than "pushed". 
ANTLRParser::consume()
--> ANTLRTokenBuffer::getToken()
--> ANTLRTokenBuffer::getANTLRToken()
--> DLGLexer::getToken()
--> MyToken::makeToken(ANTLRtokenType,lexText,line)

#62. Because tokens are "pulled" it is easy to access downstream objects but difficult to 
access upstream objects

There is a pointer from the ANTLRParser to the ANTLRTokenBuffer, from the 
ANTLRTokenBuffer to the DLGLexer, and from the DLGLexer to the DLGInputStream.  
However if the DLGInputStream wants to reset the DLGLexer line number, there’s no 
pointer in the DLGInputStream object which points to the "parent" DLGLexer object.  The 
linked list is one-way.

The user can may want to derive a class from DLGInputStream in which there is a 
member function setParser() thereby changing a one-way linked-list into a circular list.

#63. Additional notes for users converting from C to C++ mode

     In general: zzname => name,  _name,  or name()
        example: zzlextext => _lextext, lextext()
        except for: zzchar => ch

     In DLGLexerBase: NLA=tokenCode => return tokenCode

                        line++ => newline()

line=value => _line=value

zztokens[i] => parserClassName::tokenName(i) 

The tokenName() function is promised for the 
next release of PCCTS — or see Example #7 for 
how to define your own tokenName function.

zzendcol => _endcol, set_endcol(), 
get_endcol()
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zzbegcol => _begcol, set_begcol(), 
get_begcol()

ASTs 
#64. To enable AST construction (automatic or explicit) use the ANTLR –gt switch

#65. Use symbolic tags (rather than numbers) to refer to tokens and ASTs in rules

prior to version 1.30: rule! : x y <<#0=#(#1,#2);>>   ;

with version 1.30: rule! : xx:x yy:y <<#0=#(#xx,#yy);>> ;

The symbolic tags are implemented as pointers to ASTs.  The pointers are initialized to 
0 at the start of the rule and remain defined for the entire rule.  See Item #58.  Rules no 
longer return pointers to tokens (Item #83

#66. Constructor AST(ANTLRToken *) is automatically called for terminals when ANTLR –gt 
switch is used

This can be suppressed using the "!" operator.

#67. If you use ASTs you have to pass a root AST to the parser
ASTBase     *root=NULL;
... 
Parser.startRule(&root,otherArguments);
root->preorder();
root->destroy();

#68. Use ast–>destroy() to recursively descend the AST tree and free all sub-trees

#69. Don't confuse #[...] with #(...)

The first creates a single AST node using an AST constructor (which is usually based on 
an ANTLRToken or an ANTLRTokenType).  It converts lexical information to an AST.

The second creates an AST tree or list (usually more than a single node) from other 
ASTs by filling in the "down" field of the first node in the list to create a root node, and 
the "sibling" fields of each of the remaining ASTs in the lists.  It combines existing 
ASTs to create a more complex structure.

#token ID        "[a-z]*"
#token COLON     ":"
#token Stmt_With_Label

id! : name:ID    <<#0=#[Stmt_With_Label,$name->getText()];>> ;
/*a1*/

The new AST (a single node) contains Stmt_With_Label in the token field, given a 
traditional version of AST::AST(ANTLRTokenType,char *).

rule! : name:id COLON e:expr   <<#0=#(#name,#e);>> ;  
   /* a2 */

Creates an AST list with "name" at its root and "e" as its first (and only) child.
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The following example (a3) is equivalent to a1, but more confusing, because the two 
steps above have been combined into a single action:

rule! : name:ID COLON e:expr           /* a3 */
<<#0=#(#[Stmt_With_Label,$name>getText()],#e);>> ;

#70. The make-a-root operator for ASTs ("^") can be applied only to terminals (#token, 
#tokclass, #tokdef)

A child rule might return a tree rather than a single AST.  Were this to happen it could 
not be made into a root as it is already a root and the corresponding fields of the 
structure are in use.  To make an AST returned by a called rule a root use the 
expression: #(root-rule, sibling1, sibling2, sibling3).

 addOp           : "\+" | "\-";
 #tokclass AddOp   { "\+"   "\-"}       

/* OK    */    add !           expr ("\+"^ expr) ;            
    /* Wrong */  addExpr !       : expr (addOp^ expr) ;        
    /* OK    */    addExpr !      : expr (AddOp^ expr);

#71. An already constructed AST tree cannot be the root of a new tree

An AST tree (unless it’s a trivial tree with no children) already has made use of the 
"down" field in its structure.  Thus one should be suspicious of any constructs like the 
following:

rule! : anotherRule:rule2........ <<#0=#(#anotherRule,...);>> ;

#72. Don’t assign to #0 unless automatic construction of ASTs is disabled using the "!" 
operator on a rule

a! : xx:x yy:y zz:z <<#0=#(#xx,#yy,#zz);>> ; // ok
a  : xx:x yy:y zz:z <<#0=#(#xx,#yy,#zz);>> ; // NOT ok

The reason for the restriction is that assignment to #0 will cause any ASTs pointed to by 
#0 to be lost when the pointer is overwritten.

#73. The statement in Item #72 is stronger than necessary

You can assign to #0 even when using automated AST construction if the old tree 
pointed to by #0 is part of the new tree constructed by #(...). For example:

#token Comma      ","
#token Stmt_List

stmt_list: stmt (Comma stmt)*  <<#0=#(#[Stmt_List],#0);>> ;

The automatically constructed tree pointed to by #0 is just put at the end of the new list, 
so nothing is lost. If you reassign to #0 in the middle of the rule, automatic tree 
construction will result in the addition of remaining elements at the end of the new tree.  
This is not recommended by TJP.

Special care must be used when combining the make-a-root operator (e.g.  rule: expr 
Op^ expr) with this transgression (assignment to #0 when automatic tree construction is 
selected).
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#74. A rule that constructs an AST returns an AST even when its caller uses the "!" operator

#75. (C++ Mode) In AST mode a token which isn’t incorporated into an AST will result in 
lost memory

For a rule like the following:
rule : FOR^ lValue EQ! expr TO! expr BY! expr ;

the tokens "EQ", "TO", and "BY" are not incorporated into any AST.  In C mode the 
memory they occupied (they are called attributes in C mode) would be recovered on 
rule exit.  In C++ mode their memory will be lost unless special action is taken or the 
user enables the ANTLR reference counting option.  Another approach is to use the 
NoLeakToken class from Example #5.

#76. When passing #(...) or #[...] to a subroutine it must be cast from "ASTBase *" to 
"AST *"

Most of the PCCTS internal routines are declared using ASTBase rather than AST 
because they don’t depend on behavior added by the user to class AST.  Usually PCCTS 
hides this by generating explicit casts, but in the case of subroutine arguments the hiding 
fails and the user needs to code the cast manually.  See also Item #135.

#77. Some examples of #(...) notation using the PCCTS list notation

See page 45 of the 1.00 manual for a description of the PCCTS list notation.
a: A ;
b: B ;
c: C ;

#token T_abc

r : a b c    <<;>>           ;/* AST list (0 A B C) without root */
r!: a b c    <<#0=#(0,#1,#2,#3);>> ;/* AST list (0 A B C) without 

root */
r : a! b! c! <<#0=#(0,#1,#2,#3);>> ;/* AST list (0 A B C) without 

root */
r : a^ b c      ;/* AST tree (A B C) with root A    */
r!: a b c    <<#0=#(#1,#2,#3);>>   ;/* AST tree (A B C) with 

root A     */
r!: a b c    <<#0=#(#[T_abc],#1,#2,#3);>>
                             ;/* AST tree (T_abc_node A B C)     */
                              /*   with root T_abc_node          */
r : a b c    <<#0=#(#[T_abc],#0);>>     ;  /* the same as above  */
r : a! b! c! <<#0=#(#[T_abc],#1,#2,#3);>> ; /* the same as above */

#78. A rule which derives epsilon can short circuit its caller’s explicitly constructed AST

When a rule derives epsilon it will return an AST value of 0.  As the routine which 
constructs the AST tree (ASTBase::tmake) has a variable length argument list which is 
terminated by 0, this can cause problem with #(...) lists that have more than two 
elements:

rule ! : DO body:loop_body END_DO <<#0=#(#[DO],#body,#[END_DO];>> ;
loop_body : { statement_list } ;  /* can return 0 on DO END_DO  */
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Although this particular example could be handled by automatic tree construction, the 
problem is a real one when constructing a tree by adding more than one sibling at a 
time. This problem does not exist for automatically constructed AST trees because those 
trees are constructed one element at a time.  Contributed by T. Doan (tdoan@bnr.ca).

#79. How to use automatic AST tree construction when a token code depends on the 
alternative chosen

Suppose one wants to make the following transformation:
rule :  lv:lhs ;          => #(#[T_simple],#lv)
rule :  lv:lhs  rv:rhs ;  => #(#[T_complex],#lv,#rv)

Both lhs and rhs considered separately may be suitable for automatic construction of 
ASTs, but the change in token type from "T_simple" to "T_complex" appears to require 
manual tree construction.  Use the following idiom:

rule : lhs (
             ()      <<#0=#(#[T_simple],#0);>>
             | rhs   <<#0=#(#[T_complex],#0);>>
           ) ;

Another solution:
rule : <<ANTLRTokenType t=T_simple;>>
            l:lhs { r:rhs <<t=T_complex;>> } 

<<#0=#(#[t],#0);>> ;

#80. For doubly linked ASTs derive from class ASTDoublyLinkedBase and call tree–
>double_link(0,0).

The ASTDoublyLinkedBase class adds "up" and "left" fields to the AST definition, but 
it does not cause them to be filled in during AST construction.  After the tree is built call 
tree->double_link(0,0) to traverses the tree and fill in the up and left fields.

#81. When ASTs are constructed manually the programmer is responsible for deleting them 
on rule failure.

It is worth a little bit of extra trouble to let PCCTS construct the AST for a rule 
automatically in order to obviate the need for writing a fail action for a rule.  A safer 
implementation might be to maintain a doubly linked list of all
ASTs from which an AST is removed when it is destroyed.  See class NoLeakAST from 
Example #6.

See also #100, #102.
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Rules
#82. To refer to a field of an ANTLRtOKEN within a rule’s action use  <<... 

mytoken($x)->field...>>

ANTLR puts all "ANTLRToken*" variables in an ANTLRTokenPtr object in order to 
maintain reference counts for tokens.  When the reference counter goes to zero the token 
is deleted (assuming that the ANTLRToken definition is derived from 
ANTLRRefCountToken).  One result of this is that rule actions which need to refer to a 
real ANTLRToken field must first convert an ANTLRTokenPtr to an "ANTLRToken*" 
using the macro "mytoken":

number: n:Number <<if (mytoken($n)->value < 0)   {...};>>

#83. Rules don’t return tokens values, thus this won’t work:rule: r1:rule1  
<<...$r1...>>

In earlier versions of PCCTS (C mode) it was accepted practice to assign an attribute to a 
rule:

rule : rule1  <<$0=$1;>>

However, with the introduction of symbolic tags for labels (Item #65) this feature 
became deprecated for C mode (Item #152) and is not even supported for C++ mode.  
To return a pointer to a token (ANTLRToken *) from a rule use inheritance (See Item 
#99):

statement
: <<ANTLRToken * t;>>  rule > [t] ;

rule >  [ANTLRToken *t]
: r1:rule1   <<$t=someAction($r1);>>

It’s still standard practice to pass back AST information using assignment to #0 and to 
refer to such return values using labels on rules.  It’s also standard practice to refer to 
tokens associated with terminals:

rule : xx:X    <<...$xx...>>    // okay: "X" is a terminal (token)
rule : xx:x    <<...$xx...>>    // won’t work: "x" is a rule rather
x    : xx:X    <<$x=$xx;>>      //  than a terminal (token)

#84. A simple example of rewriting a grammar to remove left recursion

ANTLR can’t handle left-handed recursion.  A rule such as:
expr : expr Op expr
     | Number
     | String
     ;

will have to be rewritten to something like this:
expr : Number (Op expr)*
     | String (Op expr)*
     ;
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#85. A simple example of left-factoring to reduce the amount of ANTLR lookahead

Another sort of transformation required by ANTLR is left-factoring:
rule : STOP WHEN expr
     | STOP ON expr
     | STOP IN expr
     ;

These are easily distinguishable when k=2, but with a small amount of work it can be 
cast into a k=1 grammar:

rule : STOP ( WHEN expr
            | ON expr
            | IN expr
            ) ;

 or:
rule        : STOP rule_suffix
            ;
rule_suffix : WHEN expr
            | ON expr
            | IN expr
            ;

An extreme case of a grammar requiring a rewrite is in Example #13.

#86. ANTLR will guess where to match "@" if the user omits it from the start rule

ANTLR attempts to deduce "start" rules by looking for rules which are not referenced by 
any other rules.  When it finds such a rule it assumes that an end-of-file token ("@") 
should be there and adds one if the user did not code one.  This is the only case, 
according to TJP, when ANTLR adds something to the user’s grammar.

#87. To match any token use the token wild-card expression "." (dot)

This can be useful for providing a context dependent error message rather than the all 
purpose message "syntax error".

if-stmt : IF "\(" expr "\)" stmt
        | IF .   <<printf("If statement requires expression" 

"enclosed in parenthesis");
                   PARSE_FAIL;      // user defined
                 >>
        ;

This particular case is better handled by the parser exception facility.

A simpler example:
quoted : "quote" . ;            // quoted terminal

#88. The "~" (tilde) operator applied to a #token or #tokclass is satisfied when the input 
token does not match

anything : (~ Newline)* Newline ;

The "~" operator cannot be applied to rules.  Use syntactic predicates to express the idea 
"if this rule doesn’t match try to match this other rule".
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#89. To list the rules of the grammar grep parserClassName.h for "_root" or edit the output 
from ANTLR –cr

#90. The ANTLR –gd trace option can be useful in sometimes unexpected ways

For example, by suitably defining the functions ANTLRParser::tracein and 
ANTLRParser::traceout one can accumulate information on how often each rule is 
invoked.  They could be used to provide a traceback of active rules following an error 
provided that the havoc caused by syntactic predicates’ use of setjmp/longjmp is 
properly dealt with.

#91. Associativity and precedence of operations is determined by nesting of rules

In the example below "=" associates to the right and has the lowest precedence.  
Operators "+" and "*" associate to the left with "*" having the highest precedence.

expr0   : expr1 {"="^expr0};                 /* a1 */
expr1   : expr2 ("\+"^ expr2)*;              /* a2 */
expr2   : expr3 ("\*"^ expr3)* ;             /* a3 */
expr3   : ID;                                /* a4 */

The more deeply nested the rule the higher the precedence.  Thus precedence is "*" > 
"+" > "=".  Consider the expression "x=y=z".  Will it be parsed as "x=(y=z)" or as 
"(x=y)=z" ?   The first part of expr0 is expr1.  Because expr1 and its descendants cannot 
match an "=" it follows that all derivations involving a second "=" in an expression must 
arise from the "{...}" term of expr0.  This implies right association.

In the following samples the ASTs are shown in the root-and-sibling format used in 
PCCTS documentation. The numbers in brackets are the serial number of the ASTs.  This 
was created by code from Example #6.

a=b=c=d
( = <#2>  a <#1>  ( = <#4>  b <#3>  ( = <#6>  c <#5>  d <#7>  ) ) 

) NL <#8>
a+b*c
( + <#2>  a <#1>  ( * <#4>  b <#3>  c <#5>  ) ) NL <#6> 
a*b+c
( + <#4>  ( * <#2>  a <#1>  b <#3>  ) c <#5>  ) NL <#6> 

#92. #tokclass can replace a rule consisting only of alternatives with terminals (no actions)

One can replace:
addOp          : "\+" | "\-" ;

with:
#tokclass AddOp { "\+"  "\-" }

This replaces a modest subroutine with a simple bit test.  A #tokclass identifier may be 
used in a rule wherever a simple #token identifier may be used.

The other work-around is much more complicated:
expr1! : left:expr2 <<#0=#l;>>
            (op:addOp right:expr2  <<#0=#(#op,#left,#right);>> )* ;
addOp  : "\+" | "\-" ;



Notes for New Users of PCCTS

270 Language Translation Using PCCTS and C++ 

The "!" for rule "expr1" disables automatic constructions of ASTs in the rule.  This 
allows one to manipulate #0 manually.  If the expression had no addition operator then 
the sub-rule "(addOp expr)*" would not be executed and #0 will be assigned the AST 
constructed by #left.  However if there is an addOp present then each time the sub-rule 
is rescanned due to the "(...)*" the current tree in #0 is placed as the first of two 
siblings underneath a new tree.  This new tree has the AST returned by addOp as the 
root.  It is a left-leaning tree.

#93. Rather than comment out a rule during testing, add a nonsense token which never 
matches — See Item #96

See also #8, #13,#16,#66, #92, #95, #116.

Init-Actions
#94. Don't confuse init-actions with leading-actions (actions which precede a rule).

If the first element following the start of a rule or sub-rule is an action it is always 
interpreted as an init-action. An init-action occurs in a scope which includes the entire 
rule or sub-rule. An action which is not an init-action is enclosed in "{" and "}" during 
generation of code for the rule and has essentially zero scope — the action itself. 

The difference between an init-action and an action which precedes a rule can be 
especially confusing when an action appears at the start of an alternative.  These appear 
to be almost identical, but they aren't:
b  : <<int i=0;>>  b1 > [i] /* b1  <<...>> is an init-action*/
   | <<int j=0;>>  b2 > [j] /* b2  <<...>> is part of the rule*/
   ;                       /* and will cause a compilation error*/

On line "b1" the <<...>> appears immediately after the beginning of the rule making 
it an init-action.  On line "b2" the <<...>> does not appear at the start of a rule or sub-
rule, thus it is interpreted as a leading action which happens to precede the rule.

This can be especially dangerous if you are in the habit of rearranging the order of 
alternatives in a rule.

For instance, changing this:
      b  : <<int i=0,j=0;>> <<i++;>>  b1 > [i]   /* c1 */
         | <<j++;>>  b1 > [i]                    /* c2 */
         ;

to this:
      b  : /* empty production */                /* d1 */
         | <<int i=0,j=0;>> <<i++;>>  b1 > [i]   /* d2 */
         | <<j++;>>  b1 > [i]
         ;

or to this:
      b
         : <<j++;>>  b1 > [i]                    /* e1 */
         | <<int i=0,j=0;>> <<i++;>>  b1 > [i]   /* e2 */
         ;
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changes an init-action into a non-init action, and vice-versa.

#95. An empty sub-rule can change a regular action into an init-action.

A particularly nasty form of the init-action problem is when an empty sub-rule has an 
associated action:

        rule!: name:ID (
                         /* empty */
                           <<#0=#[ID,$name];>>
                       | ab:array_bounds
                          <<#0=#[T_array_declaration,$name],#ab);>>
                       );                 

Since there is no reserved word in PCCTS for epsilon, the action for the empty arm of the 
sub-rule becomes the init-action.  For this reason it’s wise to follow one of the following 
conventions

– Represent epsilon with an empty rule "()"

– Put the null rule as the last rule in a list of alternatives:
rule!: name:ID (
                 ()  <<#0=#[ID,$name];>>
                 | ab:array_bounds
                       <<#0=#[T_array_declaration,$name],#ab);>>
               );

The cost of using "()" to represent epsilon is small.

#96. Commenting out a sub-rule can change a leading-action into an init-action.

Suppose one comments out a rule in the grammar in order to test an idea:
        rule                          /* a1 */
                : <<init-action;>     /* a2 */
        ////      rule_a              /* a3 */
                | rule_b              /* a4 */
                | rule_c              /* a5 */
                ;

In this case one only wanted to comment out the "rule_a" reference in line a3.  The 
reference is indeed gone, but the change has introduced an epsilon production, which 
probably creates a large number of ambiguities.  Without the init-action the ":" would 
have probably have been commented out also, and ANTLR would report a syntax error — 
thus preventing one from shooting oneself in the foot.  See Item #93.

Commenting out a rule can create orphan rules, which can lead to misleading reports of 
ambiguity in the grammar. To detect orphan rules use the ANTLR –cr (cross-reference) 
switch.

#97. Init-actions are executed just once for sub-rules: (...)+, (...)*, and {...} 

Consider the following example from section 3.6.1 (page 29) of the 1.00 manual:
        a : <<List *p=NULL;>>   // initialize list
            Type
            (  <<int i=0;>>    // initialize index
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               v:Var <<append(p,i++,$v);>>
            )*
            <<OperateOn(p);>>
          ;

See also #104, #112, #116.

Inheritance
#98. Downward inherited variables are just normal C arguments to the function which 

recognizes the rule

If you are using downward inheritance syntax to pass results back to the caller (really 
upward inheritance !), then it is necessary to pass the address of the variable which will 
receive the result.

#99. Upward inheritance returns arguments by passing back values

If the rule has more than one item passed via upward inheritance, then ANTLR creates a 
struct to hold the result and then copies each component of the structure to the 
upward inheritance variables. 
#token  T_int
#token  T_real
#token  T_complex

class P {
...
number : <<int useRadix=10;int iValue;double rValue;double 

rPart,iPart;>>
         { radix > [useRadix] }
                intNumber [useRadix] > [iValue]
        | realNumber > [rValue]
        | complexNumber > [rPart,iPart]
;
complexNumber > [double rPart,double iPart] :
        "\[" realNumber > [$rPart] "," realNumber > [$iPart] "\]"
;
realNumber > [double result] :
        v:"[0-9]+.[0-9]*"             <<$result=toDouble($v);>>
;
radix > [int i] : v:"%[0-9]+"         <<$i=toInt($v);>>
;
intNumber [int radix] > [int result] :
        v:"[0-9]+"                    <<$result=toInt($v);>>
;
}

This example depends on the use of several constructors for ASTs and user defined 
routines toInt() and toDouble().

#100. ANTLR –gt code will include the AST with downward inheritance values in the rule’s 
argument list

See also #113.
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Syntactic Predicates
The terms "infinite lookahead," "guess mode," and "syntactic predicate" all imply use of the 
same facility in PCCTS to provide a limited amount of backtracking by the parser.  In this 
case we are not referring to backtracking in DLG or other lexers.  The term "syntactic 
predicate" emphasizes that it is handled by the parser.  The term "guess mode" emphasizes 
that the parser may have to backtrack.  The term "guess mode" may also be used to 
distinguish two mutually exclusive modes of operation in the ANTLR parser:

— Normal mode:  A failure of the input to match the rules is a syntax error.  The 
parser executes actions, constructs ASTs, reports syntax errors it finds (or invokes 
parser exception handling) and attempts automatic recovery from the syntax 
errors.  There is no provision for backtracking in this mode.

— Guess mode: The parser attempts to match a "(...)?" block and knows that 
it must be able to backtrack if the match fails.  In this case the parser does not 
execute user-actions (except init-actions), nor does it construct ASTs.  Failed 
validation predicates do not result in backtracking even when in guess mode.

In C++ mode there lookahead using a sliding window of tokens whose initial size is 
specified when the ANTLRTokenBuffer is constructed.  In C mode the entire input is read, 
processed, and tokenized by DLG before ANTLR begins parsing.  The term "infinite 
lookahead" derives from the initial implementation in ANTLR C mode.

#101. Regular actions are suppressed while in guess mode because they have side effects

#102. Automatic construction of ASTs is suppressed during guess mode because it is a side 
effect

#103. Syntactic predicates should not have side-effects

If there is no match then the rule which uses the syntactic predicate won't be executed.

#104. How to use init-actions to create side-effects in guess mode (despite Item #103)

If you absolutely have to have side-effects from syntactic predicates one can use exploit 
the fact that ANTLR always executes init-actions, even in guess mode:
rule   : (prefix)? A
       | B
       ;
prefix : <<regular-init-action-that’s-always-executed>>
         A ( <<init-action-for-empty-subrule>> ) B
       ;

The init-actions in "prefix" will always be executed (perhaps several times) in guess-
mode.  Contributed by TJP.
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#105. With values of k>1 or infinite lookahead mode one cannot use feedback from parser to 
lexer.

As infinite lookahead mode can cause large amounts of the input to be scanned by DLG 
before ANTLR begins parsing one cannot depend on feedback from the parser to the lexer 
to handle things like providing special token codes for items which are in a symbol table 
(the "lex hack" for typedefs in the C language).  Instead one must use semantic 
predicates which allow for such decisions to be made by the parser or place such checks 
in the ANTLRTokenBuffer routine getToken() which is called every time the parser 
needs another token.  See Example #12.

#106. Can’t use interactive scanner (ANTLR –gk option) with ANTLR infinite lookahead.

#107. Syntactic predicates are implemented using setjmp/longjmp — beware C++ objects 
requiring destructors.

Semantic Predicates
#108. (Bug) Semantic predicates can’t contain string literals

 A predicate containing a string literal is incorrectly "string-ized" in the call to 
zzfailed_predicate.

rule:  <<containsCharacter("!@#$%^&*",LT(1)->getText()>>?  ID ;
/*  Will not work */

The work-around is to place the literal in a string constant and use the variable name.

#109. (Bug) Semantic predicates can’t cross lines without escaped newline
rule: <<do_test();\ 
           this_is_a_workaround)>>? x y z ; /*** Note escaped 

newline ***/

#110. Semantic predicates have higher precedence than alternation: <<>>? A|B means 
(<<>>? A)|B

#111. Any actions (except init-actions) inhibit the hoisting of semantic predicates

Here is an example of an empty leading action whose sole purpose is to inhibit hoisting 
of semantic predicates appearing in rule2 into the prediction for rule1.  Note the 
presence of the empty init-action (See Item #94).

rule1    : <<;>> <<>> rule2
         | rule3
         ;
rule2    : <<semanticPred(LT(1)->getText())>>? ID ;

#112. Semantic predicates that use local variables or require init-actions must inhibit hoisting

#113. Semantic predicates that use inheritance variables must not be hoisted

You cannot use downward inheritance to pass parameters to semantic predicates which 
are not validation predicates.  The problem appears when the semantic predicate is 
hoisted into a parent rule to predict which rule to call:
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For instance:
        a  :  b1 [flag]
           |  b2
           ;
        b1 [int flag]
           : <<flag && hasPropertyABC(LT(1)->getText())>>? ID ;
        b2 : ID ;

When the semantic predicate is evaluated within rule "a" to determine whether to call 
b1, b2, or b3 the compiler will discover that there is no variable named "flag" for 
procedure "a()".  If you are unlucky enough to have a variable named "flag" in a(), 
then you will have a very difficult-to-find bug.

#114. A semantic predicate which is not at the left edge of a rule becomes a validation 
predicate

Decisions about which rule of a grammar to apply are made before entering the code 
which recognizes the rule.  If the semantic predicate is not at the left edge of the 
production, then the decision has already been made and it is too late to change rules 
based on the semantic predicate. In this case the semantic predicate is evaluated only to 
verify that it is true and is termed a "validation predicate."

#115. Semantic predicates are not always hoisted into the prediction expression

Even if a semantic predicate is on the left edge, there is no guarantee that it will be part 
of the prediction expression. Consider the following two examples:

        a  :  <<semantic-predicate>>?  ID glob       /* a1 */
           |  ID glob                           /* a2 */
          ;
        b  :  <<semantic-predicate>>?  ID glob       /* b1 */
           |  Number glob /* b2 */
          ;

With k=1 rule "a" requires the semantic predicate to disambiguate alternatives a1 and a2 
because the rules are otherwise identical.  Rule "b" has a token type of Number in 
alternative b2 so it can be distinguished from b1 without evaluation of the semantic 
predicate during prediction.  In both cases the semantic predicate will be validated by 
evaluation inside the rule.

#116. Semantic predicates can’t be hoisted into a sub-rule: "{x} y" is not exactly equivalent 
to "x y | y"

Consider the following grammar extract:
class Expr {
    e1 : (e2)+ END ;
    xid: <<is_xid(LT(1)->getText())>>? ID ;
    yid: <<is_yid(LT(1)->getText())>>? ID ;

  /* Works        */  e2:  xid "." yid | yid ;/* a1 */
  /* Doesn’t work */  e2:  {xid "."} yid ;    /* a2 */
}
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Alternatives a1 and a2 appear to be equivalent, but a1 works on input "abc" and a2 
doesn’t because only the semantic predicate of xid is hoisted into production e1 (but not 
the semantic predicate of yid).

Explanation by TJP:  These alternatives are not really the same.  The language 
described however is the same.  The rule:

e2: {xid "."} yid ;

is shorthand for:
e2: (xid "." | /* epsilon */ ) yid ;

Rule e2 has no decision to make here — hence, yid does not get its predicate hoisted. 
The decision to be made for the empty alternative does not get the predicate from yid 
hoisted because one can't hoist a predicate into a subrule from beyond the subrule.  The 
program might alter things in the subrule so that the predicate is no longer valid or 
becomes valid.

Contributed by Kari Grano (grano@cc.Helsinki.fi).

#117. How to change the reporting of failed semantic predicates

To make a global change #define the macro zzfailed_predicate(string) prior to the 
#include of pccts/h/AParser.h

One can change the handling on a case-by-case basis by using the "failed predicate" 
action which is enclosed in "[" and "]" and follows immediately after the predicate:

        a : <<isTypedef(LT(1)->getText())>>?
 [{printf("Not a typedef\n");};]  ID ;

Douglas Cuthbertson (Douglas_Cuthbertson.JTIDS@jtids_qmail.hanscom.af.mil) has 
pointed out that ANTLR doesn’t put the fail action inside "{...}".  This can lead to 
problems when the action contains multiple statements.

For an example of conversion of a failed semantic predicate into a parser exception see 
Example #16.

#118. A semantic predicate should be free of side-effects because it may be evaluated multiple 
times.

Even in simple grammars semantic predicate are often evaluated twice: once in the 
prediction expression for a rule and once inside the rule as a validation predicate to 
make sure the semantic predicate is valid.

A semantic predicate may be hoisted into more than one prediction expressions.

A prediction expression may be evaluated more than once as part of syntactic predicates 
(guess mode).

#119. There’s no simple way to avoid evaluation of a semantic predicate for validation after 
use in prediction.

#120. What is the "context" of a semantic predicate ?
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Answer according to TJP:   The context of a predicate is the set of k-strings (comprised 
of lookahead symbols) that can be matched following the execution of a predicate.  For 
example,

a : <<p>>? alpha ;

The context of "p" is Look(alpha) where Look(alpha) is the set of lookahead k-
strings for alpha.

class_name: <<isClass(LT(1)->getText())>>? ID ;

The context of <<isClass ...>>? is ID for k=1.  Only k=1 is used since only 
LT(1) is referenced in the semantic predicate.  It is important to use "–prc on" for proper 
operation.  The old notation:

class_name: <<LA(1)==ID ? isClass(LT(1)->getText()) : 1>>? ID ;
                 /* Obsolete notation incompatiable with -prc on */

shouldn’t be used for new grammars. It is not compatible with "–prc on".  The only 
reason "–prc on" is not the default is backward compatibility.

Here is an example that won't work because it doesn't have context check in the 
predicates:

a          : ( class_name | Num )
           | type_name
           ;
class_name : <<isClass(LT(1)->getText())>>? ID ;
type_name  : <<isType(LT(1)->getText())>>? ID ;

The prediction for production one of rule "a" is:
if ( LA(1) in { ID, Num } && isClass(LT(1)->getText()))  {...}

Clearly, Num will never satisfy isClass(), so the production will never match.

When you ask ANTLR to compute context, it can check for missing predicates. With –prc 
on, for this grammar:
        a   : b
            | <<isVar(LT(1)->getText())>>?      ID
            | <<isPositive(LT(1)->getText()>>?  Num
            ;
        b   : <<isType(LT(1)->getText())>>?     ID
            | Num
            ;

ANTLR reports:
warning alt 1 of rule itself has no predicate to resolve 
ambiguity upon { Num }

#121. Semantic predicates, predicate context, and hoisting

The interaction of semantic predicates with hoisting is sometimes subtle.  Hoisting 
involves the evaluation of semantic predicates in a  rule’s parent in order to determine 
whether the rule associated with the semantic predicate is "viable".  There are two ways 
to generate code for semantic predicates which are "hoisted" into a parent rule.  With "–
prc off", the default, the behavior of semantic predicates resembles gates which enable 
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or disable various productions.  With "–prc on" the behavior of semantic predicates 
resemble a token for which its token type is determined by run-tine information rather 
than by purely lexical information.  It is important to understand what "-prc on" does, 
when to use semantic predicates, and when to choose an alternative method of using 
semantic information to guide the parse. We start with a grammar excerpt which does 
not require hoisting, then add a rule which requires hoisting and show the difference in 
code with predicate context computation off (the default) and on.

statement
        : upper
        | lower
        | number
        ;
upper   : <<isU(LT(1)->getText())>>? ID ;
lower   : <<isL(LT(1)->getText())>>? ID ;
number  : Number ;

The code generated (with one ambiguity warning) resembles:
if (LA(1)==ID && isU) {
    upper();
} else if (LA(1)==ID && isL) {
    lower();
} else if (LA(1)==Number) {
    number();
...

Now the need for a non-trivial prediction expression is introduced:
parent  : statement
        | ID
        ;
statement
        : upper
        | number
        ;

Running ANTLR causes one ambiguity warning.  The code for "statement" resembles:
if ( (LA(1)==ID || LA(1)==Number) && isU) {
      statement();
} else if (LA(1)==ID) {
...

Even if LA(1) is a Number, the semantic predicate isU() will be evaluated.  Depending 
on the way that isU is written it may or may not be meaningful.  This is exactly the 
problem addressed by predicate computation.  With "–prc on" one receives two 
ambiguity warnings and the code for "statement" resembles:
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The important thing to notice is the call to isU() is guarded by a test that insures that the 
token is indeed an ID.

The following does not change anything because ANTLR already knows that the 
lookahead context for the semantic predicates can only be "ID":

upper   : (ID)? => <<isU(LT(1)->getText())>>? ID ;

Consider the following grammars excerpts all built with –k 2 and "–prc on":
#token  X       "x"
#token  Y       "y"
#token  A_or_B  "a | b"

class P {
statement : ( ax_or_by | bx )* "@"
          ;
ax_or_by  : aName X
          | bName Y
          ;
bx        : bName X
          ;
aName     : <<isa(LT(1)->getText())>>? A_or_B ;
bName     : <<isb(LT(1)->getText())>>? A_or_B ;

With input "bx" the above example issues an error message when the semantic predicate 
"aName" fails.  The rule "statement" predicts "ax_or_by" because the gate "bName" is 
true.  In searching for a viable rule to call "statement" finds "ax_or_by" to be the first 
alternative with a semantic predicate which is true (or with no semantic predicate).  With 

option "–prc off" this is the intended mode of operation.   ANTLR doesn't realize that the 
second token doesn't match because the second token isn't part of the semantic predicate.

Code  –prc on  Outline format  –prc on

if ( (LA(1)==ID ||
      LA(1)==Number) &&
     ( !(LA(1)==ID) ||
        (LA(1)==ID && isU)) {
           statement();
} else if (LA(1)==ID) {
   ...

&&
  ||
    LA(1)==ID
    LA(1)==Number
  ||
    !             <===== not ...
      LA(1)==ID   <===== an ID
    isU(LT(1)->getText())
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If the semantic predicates are expanded inline one gets:
ax_or_by
        : <<isa(LT(1)->getText())>>? A_or_B X 
        | <<isb(LT(1)->getText())>>? A_or_B Y
        ;
bx      : <<isb(LT(1)->getText())>>? A_or_B X 
        ;

One still gets a failure of the semantic predicate for "A_or_B X".  By adding a reference 
to LT(2) one lets ANTLR know that the context is two tokens:

ax_or_by : <<LT(2),isa(LT(1)->getText())>>? A_or_B X
         | <<LT(2),isb(LT(1)->getText())>>? A_or_B Y
         ;
bx       : <<LT(2),isb(LT(1)->getText())>>? A_or_B X
         ;

This performs exactly as desired for the inputs "ax", "by", and "bx".

Outline format –prc off Outline format –prc on

Alternative ax_or_by

&&
  LA(1)==A_or_B
  ||
    LA(2)==X
    LA(2)==Y
  ||
    isa(LT(1)->getText())
    isb(LT(1)->getText())

Alternative ax_or_by

&&
  LA(1)==A_or_B
  ||
    LA(2)==X
    LA(2)==Y
  ||
    !
      ||
        LA(1)==A_or_B
        LA(1)==A_or_B
    ||
      &&
        LA(1)==A_or_B
        isa(LT(1)->getText())
      &&
        LA(1)==A_or_B
        isb(LT(1)->getText())

Alternative bx

&&
  LA(1)==A_or_B
  LA(2)==X
  isb(LT(1)->getText())

Alternative bx

&&
  LA(1)==A_or_B
  LA(2)==X
  ||
    !
      LA(1)==A_or_B
    isb(LT(1)->getText())
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You can’t test more context than is available at the point of definition.  The following 
won’t work:

/* Wrong */  aName : <<LT(2),isa(LT(1)->getText())>>? A_or_B ;
/* Wrong */  bName : <<LT(2),isb(LT(1)->getText())>>? A_or_B ;

One can often avoid problems by rearranging the code:
ax_by_bx : aName X
         | bName Y
         | bName X
         ;

Outline format –prc off Outline format –prc on

Alternative ax_or_by

&&
  LA(1)==A_or_B
  ||
    LA(2)==X
    LA(2)==Y
  ||
    LT(2),isa(LT(1)-
>getText())
    LT(2),isb(LT(1)-
>getText())

Alternative ax_or_by

&&
  LA(1)==A_or_B
  ||
    LA(2)==X
    LA(2)==Y
  ||
    !
      ||
        &&
          LA(1)==A_or_B
          LA(2)==X
        &&
          LA(1)==A_or_B
          LA(2)==Y
    ||
      &&
        &&
          LA(1)==A_or_B
          LA(2)==X
        LT(2),isa(LT(1)->getText())
      &&
        &&
          LA(1)==A_or_B
          LA(2)==Y
        LT(2),isb(LT(1)->getText())

Alternative bx

&&
  LA(1)==A_or_B
  LA(2)==X
  LT(2),isb(LT(1)->getText())

Alternative bx

&&
  LA(1)==A_or_B
  LA(2)==X
  ||
    !
      &&
        LA(1)==A_or_B
        LA(2)==X
    LT(2),isb(LT(1)->getText())
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or even:
bx_or_by : bName X
         | bName Y
         ;
ax       : aName X
         ;

This code works without special effort because the semantic predicates in  each 
alternative of "statement"  are mutually exclusive.  Whether this matches what one 
needs for translation is a separate question.

I consider semantic predicates and hoisting to be a part of ANTLR which requires some 
vigilance. The ANTLR –w2 switch should be used and reports of ambiguities should be 
checked.

The code used to format the "if" conditions of the semantic predicates is notes/diagram/
*.

See also #12, #17, #142, Example #12, Example #16.

#122. Another example of predicate hoisting

Consider the following grammar fragment which uses semantic predicates to 
disambiguate an ID in rules ca and cb:

a : ( { b | X } Eol)* "@" ;    /* a1 */
b : c ID ;                     /* a2 */
c : {ca} {cb} ;                /* a3 */

ca: <<pa(LATEXT(1))>>? ID;     /* a4 */
cb: <<pb(LATEXT(1))>>? ID;     /* a5 */

The code generated for rule c resembles:
if (LA(1)==ID) && pa(LATEXT(1))) {  /* b1 */
   ca();                            /* b2 */
} else {                            /* b3 */
   goto exit;                       /* b4 */
};                                  /* b5 */

The test of "pb" does not even appear.  The problem is that the element "{cb}" is not at 
the left edge of rule c – even though "{ca}" is an optional element.  Although "ca" may 
match epsilon, its presence in rule c still blocks the hoisting of the predicate in rule cb.

A first effort to solve this problem is to rewrite rule c so as to place "cb" on the left edge 
of the production:

c : ()                         /* c1 */
  | ca {cb}                    /* c2 */
  | cb                         /* c3 */
  ;                            /* c4 */

The code generated for rule c now resembles:
if (LA(1)==ID) {                /* d1 */
  ;                             /* d2 */
} else if (LA(1)==ID && pa(LATEXT(1))) {/* d3 */
   ...                           /* d4 */
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It is clear that rules ca and cb are now unreachable because any ID will always match 
the test at line d1.  The order of alternatives should be changed to:

c : ca {cb}                     /* e1 */
  | cb                          /* e2 */
  | ()                          /* e3 */
  ;                             /* e4 */

However our problems aren’t over yet.  The code generate for the "(...)*" test in rule "a" 
resembles:

while ( (LA(1)==X || LA(1)==Eol || LA(1)==ID) &&   /* f1 */
        (pa(...) || pb(...)) { /* f2 */
   ...                                                 /* 
f3 */

If both pa and pb are false then the body of the rule is never entered even though it 
should match an X or and ID using the rule on line a2 when rule c derives epsilon.  I 
believe this is a problem in the handling of semantic predicates when confronted with 
productions which can derive epsilon.

Contributed by Sigurdur Asgeirsson (sigurasg@meanandmice.is).

See also #12, #17, #142, Example #12, Example #16.

Debugging Tips for New Users of PCCTS

#123. A syntax error with quotation marks on separate lines means a problem with newline
line 1: syntax error at "
" missing ID

#124. Use the ANTLR –gd switch to debug via rule trace

#125. Use the ANTLR –gs switch to generate code with symbolic names for token tests

#126. How to track DLG results

If you can't figure out what the DLG lexer is doing, try inserting the following code in 
class DLGLexerBase member nextToken() near line 140 of pccts/h/DLexer.C.  This is 
one of the code samples — please see Example #10.

Just below:
tk=(this->*actions[accepts[state]])();/* invokes action routine */

Add this:
#ifdef DEBUG_LEXER

 printf("\ntoken type=%s lextext=(%s) mode=%d",
         parserClassName::tokenName(tk),
         (_lextext[0]==’\n’ && _lextext[1]==0) ?
                 "newline" : _lextext,
         automaton);
   if (interactive && !charfull) {
   printf(" char=empty");
   } else {
    if (ch==’\n’) {
      printf(" char=newline");
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    } else {
      printf(" char=(%c)",ch);
    };
 };
 printf(" %s\n",
         (add_erase==1 ? "skip()" :
          add_erase==2 ? "more()" :
          ""));

#endif

tk: token number of the token just identified
lextext: text of the token just identified
ch: lookahead character
parserClassName: name of the user’s parser class

This must be "hard-coded".  In 1.32b6 there is no 
way for a DLGLexerBase object to determine the 
parser which requested the token.  See Item #62.

tokenName static member function of the parserClassName class

Promised for the next release of PCCTS — or see Example 
#7 for how to define your own tokenName function.

Switches and Options
#127. Use ANTLR –gx switch to suppress regeneration of the DLG code and recompilation of 

DLGLexer.C

#128. Can’t use an interactive scanner (ANTLR –gk option) with ANTLR infinite lookahead

#129. To make DLG case insensitive use the DLG –ci switch

The analyzer does not change the text, it just ignores case when matching it against the 
regular expressions.

See also #7, #14, #16, #66, #90, #100, #106, #124, #125.

Multiple Source Files
#130. To see how to place main() in a .C file rather than a grammar file (".g") see pccts./

testcpp/8/main.C
#include "tokens.h"
#include "myParserClass.h"
#include "DLGLexer.h"

#131. How to put file scope information into the second file of a grammar with two .g files 

If one did place a file scope action in the second file, ANTLR would interpret it as the fail 
action of the last rule appearing in the first grammar file.

To place file scope information in the second file #include the generated file in yet 
another file which has the file scope declarations.



Notes  for New Users of PCCTS

Language Translation Using PCCTS and C++ 285

Source Code Format
#132. To place the C right shift operator ">>" inside an action use "\>>"

If you forget to do this you’ll get the error message:
warning: Missing <<; found dangling >>

This doesn’t work with #lexaction or #header because the ">>" will be passed on to DLG 
which has exactly the same problem as ANTLR.  The only work-around I’ve found for 
these special cases was to place the following in an #include file "shiftr.h":

#define SHIFTR  >>

where it is invisible to ANTLR and DLG.  Then I placed a #include "shiftr.h" in the 
#lexaction.

No special action is required for the shift left operator. 

#133. One cannot continue a regular expression in a #token statement across lines

If one tries to use "\" to continue the line DLG will think you are trying to match a 
newline character.  A workaround (not completely equivalent) is to break the regular 
expression into several parts and use more() to combine them into a single token.

#134. A #token without an action will attempt to swallow an action which immediately 
follows it

This is a minor problem when the #token is created for use with attributes or ASTs 
nodes and has no regular expression:

#token  CastExpr
#token  SubscriptExpr
#token  ArgumentList
<<
... Code related to parsing
>>

You'll receive the message:
warning: action cannot be attached to a token name
        (...token name...); ignored

See also #9, #164.

Miscellaneous
#135. Given rule[A a,B b] > [X x] the proto is X rule(ASTBase* ast,int* 

sig,A a,B b)

The argument "sig" is the status value returned when using parser exception handling.

If automatic generation of ASTs is not selected, exceptions are not in use, or there are no 
inheritance variables then the corresponding arguments are dropped from the argument 
list.  Thus with ASTs disabled, no parser exception support, and neither upward nor 
downward inheritance variables the prototype of a rule would be:

void rule()
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See also #53 and #76.

#136. To remake ANTLR changes must be made to the makefile as currently distributed

The first problem is that generic.h does not appear in the dependency lists.  The second 
problem is that the rebuild of antlr.c from antlr.g and of scan.c from parser.dlg have 
been commented out so as to allow building ANTLR on a machine without ANTLR the 
first time when there are problems with tar restoring modification dates for files.

#137. ANTLR reports "... action buffer overflow ..."

There are several approaches:

Usually one can bypass this problem with several consecutive action blocks. 
Contributed by M.T. Richter (mtr@globalx.net).

One can place the code in a separate file and use #include.  Contributed by Dave 
Seidel (dave@numega.com or 75342.2034@compuserve.com).

One can change ANTLR itself.  Change ZZLEXBUFSIZE near line 38 of pccts/
antlr/generic.h and re-make.  

#138. Exception handling uses status codes and switch statements to unwind the stack rule 
by rule

#139. For tokens with complex internal structure add #token expressions to match frequent 
errors

Suppose one wants to match something like a floating point number, character literal, or 
string literal.  These have a complex internal structure.  It is possible to describe them 
exactly with DLG.  But is it wise to do so ?  Consider:

’\ff’  for ’\xff’  or  "\mThe result is: " for "\nThe result 
is: "

If DLG fails to tolerate small errors like the ones above the result could be dozens of 
error messages as it searches for the closing quotation mark or apostrophe.

One solution is to create additional #token definitions which recognize common errors 
and either generates an appropriate error message or return a special #token code such 
as "Bad_String_Const".  This can be combined with a special #lexclass which scans (in 
a very tolerant manner) to the end of the construct and generates no additional errors.  
This is the approach used by John D. Mitchell (johnm@alumni.eecs.berkely.edu) in the 
recognizer for C character and string literals in Example #2.

Another approach is to try to scan to the end of the token in the most forgiving way 
possible and then to validate the token’s syntax  in the DLG action routine.

#140. See pccts/testcpp/2/test.g and testcpp/3/test.g for examples of how to intergrate non-DLG 
lexers with PCCTS

The examples were written by Ariel Tamches (tamches@cs.wisc.edu).
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#141. Ambiguity, full LL(k), and the linear approximation to LL(k)

It took me a while to understand in an intuitive way the difference between full LL(k) 
lookahead given by the ANTLR –k switch and the linear approximation given by the 
ANTLR –ck switch. Most of the time I run ANTLR with  –k 1 and –ck 2.  Because I didn't 
understand the linear approximation I didn't understand the warnings about ambiguity.  I 
couldn't understand why ANTLR would complain about something which I thought was 
obviously parse-able with the lookahead available.  I would try to make the messages go 
away totally, which was sometimes very hard.  If I had understood the linear 
approximation I might have been able to fix them easily or at least have realized that 
there was no problem with the grammar, just with the limitations of the linear 
approximation.

I will restrict the discussion to the case of "–k 1" and "–ck 2".

 Consider the following example:
rule1   : rule2a | rule2b | rule2c ;
rule2a  : A X | B Y | C Z ;
rule2b  : B X | B Z ;
rule2c  : C X ;

It should be clear that with the sentence being only two tokens this should be parseable 
with LL(2).

Instead, because k=1 and ck=2 ANTLR will produce the following messages:
/pccts120/bin/antlr -k 1 -gs -ck 2 -gh example.g
ANTLR parser generator   Version 1.20   1989-1994
example.g, line 23: warning: alts 1 and 2 of the rule itself
         ambiguous upon { B }, { X Z }
example.g, line 23: warning: alts 1 and 3 of the rule itself
         ambiguous upon { C }, { X }

The code generated resembles the following:
if      (LA(1)==A || LA(1)==B || LA(1)==C) &&
        (LA(2)==X || LA(2)==Y || LA(2)==Z) then rule2a()
else if (LA(1)==B) &&
        (LA(2)==X || LA(2)==Z) then rule2b()
else if (LA(1)==C) &&
        (LA(2)==X) then rule3a()
        ...

This might be called "product-of-sums".  There is an "or" part for LA(1), an "or" part for 
LA(2), and they are combined using "and".  To match, the first lookahead token must be 
in the first set and the second lookahead token must be in the second set.  It doesn't 
matter that what one really wants is: 

        if      (LA(1)==A && LA(2)==X) ||
                (LA(1)==B && LA(2)==Y) ||
                (LA(1)==C && LA(2)==Z) then rule2a()
        else if (LA(1)==B && LA(2)==X) ||
                (LA(1)==B && LA(2)==Z) then rule2b()
        else if (LA(1)==C && LA(2)==X) then rule2c()
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This happens to be "sums-of-products" but the real problem is that each product 
involves one element from LA(1) and one from LA(2) and as the number of possible 
tokens increases the number of terms grows as N2. With the linear approximation the 
number of terms grows (surprise) linearly in the number of tokens.

ANTLR won’t do this with k=1 (it would for k=2).  It will only do "product-of-sums". 
However, all is not lost — you simply add a few well chosen semantic predicates which 
you have computed using your LL(k>1), mobile, water-resistant, all purpose, guaranteed-
for-a-lifetime, carbon based, analog computer.

The linear approximation selects for each branch of the "if" a set which may include 
more than what is wanted but never selects a subset of the correct lookahead sets.  We 
simply insert a hand-coded version of the LL(2) computation.  It's ugly, especially in 
this case, but it fixes the problem.  In large grammars it may not be possible to run 
ANTLR with k=2, so this fixes a few rules which cause problems.  The generated parser 
may run faster because it will have to evaluate fewer terms at execution time.

        <<
        int use_rule2a() {
          if ( LA(1)==A && LA(2)==X ) return 1;
          if ( LA(1)==B && LA(2)==Y ) return 1;
          if ( LA(1)==C && LA(2)==Z ) return 1;
          return 0;
        }
        >>

        rule1   :
                <<use_rule2a()>>? rule2a | rule2b | rule2c ;
        rule2a  : A X | B Y | C Z ;
        rule2b  : B X | B Z ;
        rule2c  : C X ;

Correction due to Monty Zukowski 
(monty@tbyte.com)

The real cases I've coded have shorter code sequences in the semantic predicate.  I 
coded this as a function to make it easier to read and because there is a bug in ANTLR 
1.3x which prevents semantic predicates from crossing lines.  Another reason to use a 
function (or macro) is to make it easier to read the generated code to determine when 
your semantic predicate is being hoisted too high.  It's easy to find references to a 
function name with the editor — but difficult to locate a particular sequence of "LA(1)" 
and "LA(2)" tests.  Predicate hoisting is a separate issue which is described in Item #121.

In some cases of reported ambiguity it is not necessary to add semantic predicates 
because no valid token sequence could get to the wrong rule. If the token sequence were 
invalid it would be detected by the grammar eventually, although perhaps not where one 
might wish.  In other cases the only necessary action is a reordering of the ambiguous 
rules so that a more specific rule is tested first.  The error messages still appear, but one 
can ignore them or place a trivial semantic predicate (i.e. <<1>>? ) in front of the later 
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rules.  This makes ANTLR happy because it thinks you’ve added a semantic predicate 
which fixes things. 

#142. What is the difference between "(...)? <<...>>? x" and "(...)? => <<...>>? 
x" ?

The first expression is a syntactic predicate followed by a semantic predicate.  The 
syntactic predicate can perform arbitrary lookahead and backtracking before committing 
to the rule.  However it won’t encounter the semantic predicate until already committed 
to the rule — this makes the semantic predicate merely a validation predicate.  Not a 
very useful semantic predicate.

The second expression is a semantic predicate with a convenient notation for specifying 
the look-ahead context.  The  context expression is used to generate an "if" condition 
similar to that used to predict which rule to invoke.  It isn’t any more powerful than the 
grammar analysis implied by the values you’ve chosen for the ANTLR switches –k and –
ck.  It doesn’t have any of the machinery of syntactic predicates and does not allow 
arbitrarily large lookahead.

#143. Memory leaks and lost resources

Syntactic predicates use setjmp/longjmp and can cause memory leaks (Item #107).
Delete temporary attributes on rule failure and exceptions (Item #156).
Delete temporary ASTs on rule failure and exceptions (Item #81).
A rule that constructs an AST returns an AST even when its caller uses the "!" operator 
(Item #74).
(C++ Mode) A rule which applies "!" to a terminal loses the token (Item #75) unless the 
ANTLR reference counting option is enabled.
(C Mode) Define a zzd_ast() routine if you define a zzcr_ast() or zzmk_ast() (Item 
#163).

#144. Some ambiguities can be fixed by introduction of new #token numbers

For instance in C++ with a suitable definition of the class "C" one can write:
C a,b,c                         /* a1 */
a.func1(b);                     /* a2 */
a.func2()=c;                    /* a3 */
a = b;                          /* a4 */
a.operator =(b);                /* a5 */

Statement a5 happens to place an "=" (or any of the usual C++ operators) in a token 
position where it can cause a lot of ambiguity in the lookahead. set.  One can solve this 
particular problem by creating a special #lexclass for things which follow "operator" 
with an entirely different token number for such operator strings — thereby avoiding the 
whole problem.

        //
        //  C++ operator sequences (somewhat simplified for these 

notes)
        //
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         //  operator <type_name>
         //  operator <special characters>
         //
         // There must be at least one non-alphanumeric character

 // between "operator" and operator name - otherwise they 
 //  would be run together - ("operatorint" instead of
 // "operator int")        
 //

        #lexclass LEX_OPERATOR
        #token  FILLER_C1               "[\ \t]*"
                  <<skip();
                    if( isalnum(ch) ) mode(START);
                  >>
        #token  OPERATOR_STRING      "[\+\-\*\/%\^\&\|\~\!\=\<\>]*"
                                <<mode(START);>>
        #token  FILLER_C2               "\(\) | \[\] "
                            <<mode(START);return OPERATOR_STRING;>>

#145. Use "#pragma approx" to replace full LL(k) analysis of a rule with the linear 
approximation

To be supplied.

(C Mode) LA/LATEXT and NLA/NLATEXT
#146. Do not use LA(i) or LATEXT(i) in the action routines of #token

To refer to the token code (in a #token action) of the token just recognized use NLA.   
NLA is an lvalue (can appear on the left hand side of an assignment statement).  To 
refer to the text just recognized use zzlextext (the entire text) or NLATEXT. One can 
also use zzbegexpr/zzendexpr which refer to the last regular expression matched. The 
char array pointed to by zzlextext may be larger than the string pointed to by zzbegexpr 
and zzendexpr because it includes substrings accumulated through the use of zzmore().

#147. Care must be taken in using LA(i) and LATEXT(i) in interactive mode (ANTLR switch –
gk)

In interactive mode ANTLR doesn't guarantee that it will fetch lookahead tokens until 
absolutely necessary. It is somewhat safer to refer to lookahead information in semantic 
predicates, but care is still required.

In this table the entries "prev" and "next" means that the item refers to the token which 
precedes (or follows) the action which generated the output.  For semantic predicate 
entries think of the following rule:

rule : <<semantic-predicate>>? Next NextNext ;
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For rule-action entries think of the following rule:
rule : Prev <<action>> Next NextNext;

-------------------------------------------------------------------
                k=1         k=1        k=3        k=3         k=3
               standard  infinite   standard  interactive  infinite
-------------------------------------------------------------------
for a semantic predicate
------------------------
  LA(0)         Next        Next       --         --           --
  LA(1)         Next        Next      Next       Next         Next
  zzlextext     Next        Next      Next        --          Next
  ZZINF_LA(0)               Next                              Next
  ZZINF_LA(1)               NextNext                          
NextNext
-----------------
for a rule action
-----------------
  LA(0)         Prev        Prev       --        Prev          --
  LA(1)         Prev        Prev      Prev       Next         Prev
  zzlextext     Prev        Prev      Prev        --          Prev
  ZZINF_LA(0)               Prev                              Prev
  ZZINF_LA(1)               Next                              Next
-------------------------------------------------------------------

(C Mode) Execution-Time Routines
#148. Calls to zzskip() and zzmore() should appear only in #token actions (or in subroutines 

they call)

#149. Use ANTLRs or ANTLRf in line-oriented languages to control the prefetching of 
characters and tokens

Write your own input routine and then use ANTLRs (input supplied by string) or ANTLRf 
(input supplied by function) rather than plain ANTLR which is used in most of the 
examples.

#150. Saving and restoring parser state in order to parse other objects (input files)

Suppose one wants to parse files that "include" other files.  The code in ANTLR (antlr.g) 
for handling #tokdefs statements demonstrates how this may be done:
    grammar:  ...
              | "#tokdefs"  QuotedTerm
                <<{
                zzantlr_state      st;    /* defined in antlr.h  */
                struct zzdlg_state  dst;   /*defined in dlgdef.h */
                FILE                    *f;
                UserTokenDefsFile = mystrdup(LATEXT(1));
                zzsave_antlr_state(&st);
                zzsave_dlg_state(&dst);
                f = fopen(StripQuotes(LATEXT(1)),"r");
                if ( f==NULL ) {
                    warn(eMsg1("cannot open token defs file ’%s’",
                                LATEXT(1)+1));}
                else {
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                    ANTLRm( enum_file(), f, PARSE_ENUM_FILE);
                    UserDefdTokens = 1;
                }
                zzrestore_antlr_state(&st);
                zzrestore_dlg_state(&dst);
                }>>

The code uses zzsave_antlr_state() and zzsave_dlg_state() to save the state of the 
current parse.  The ANTLRm macro specifies a starting rule for ANTLR of "enum_file" 
and starts DLG in the PARSE_ENUM_FILE state rather than the default state (which is the 
current state — whatever it might be).  Because enum_file() is called without any 
arguments it appears that enum_file() does not use ASTs nor pass back any attributes. 
Contributed by TJP.

(C Mode) Attributes
#151. Use symbolic tags (rather than numbers) to refer to attributes and ASTs in rules

prior to version 1.30: rule : X Y <<printf("%s %s",$1,$2);>> ;

     with version 1.30: rule : xx:X yy:Y<<printf("%s 

%s",$xx,$yy);>> ;

#152. Rules no longer have attributes:rule : r1:rule1 <<...$r1...;>> won’t work

Actually this still works if one restricts oneself to C mode and uses numeric labels like 
$1 and $2.  However numeric labels are a deprecated feature, can’t be used in C++ 
mode,  and can’t be used in the same source file as symbolic labels, so it’s best to avoid 
them.

#153. Attributes are built automatically only for terminals

To construct attributes under any other circumstances one must use 
$[TokenCode,...] or zzcr_attr().

#154. How to access the text or token part of an attribute

The way to access the text, token, (or whatever) part of an attribute depends on the way 
the attribute is stored. If one uses the PCCTS supplied routine "pccts/h/charbuf.h" then:

id : "[a-z]+"         <<printf("Token is %s\n",$1.text);>> ;

If one uses the PCCTS supplied routine "pccts/h/charptr.c" and "pccts/h/charptr.h" then:
id : "[a-z]+"         <<printf("Token is %s\n",$1);>> ;

If one uses the PCCTS supplied routine "pccts/h/int.h" (which stores numbers only) then:
number : "[0-9]+"      <<printf ("Token is %d\n",$1);>> ;

(Note the use of "%d" rather than "%s" in the printf() format).

#155. The $0 and $$ constructs are no longer supported — use inheritance instead (Item #99)

#156. If you use attributes then define a zzd_attr() to release resources (memory) when an 
attribute is destroyed
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#157. Don't pass automatically constructed attributes to an outer rule or sibling rule — they’ll 
be out of scope

The PCCTS generated variables which contain automatically generated attributes go out 
of scope at the end of the rule or sub-rule that contains them.  Of course you can copy 
the attribute to a variable that won’t go out of scope.  If the attribute contains a pointer 
which is copied (e.g. pccts/h/charptr.c) then extra caution is required because of the 
actions of zzd_attr().  See Item #158.

#158. A charptr.c attribute must be copied before being passed to a calling rule

The pccts/h/charptr.c routines use a pointer to a string.  The string itself will go out of 
scope when the rule or sub-rule is exited.  Why ? The string is copied to the heap when 
ANTLR calls the routine zzcr_attr() supplied by charptr.c — however ANTLR also calls 
the charptr.c supplied routine zzd_attr() (which frees the allocated string) as soon as the 
rule or sub-rule exits.  The result is that in order to pass charptr.c strings to outer rules 
via inheritance it is necessary to make an independent copy of the string (using strdup 
for example) or else by zeroing the original pointer to prevent its deallocation.

#159. Attributes created in a rule should be assumed not valid on entry to a fail action

Fail action are "... executed after a syntax error is detected but before a message is 
printed and the attributes have been destroyed. However, attributes are not valid here 
because one does not know at what point the error occurred and which attributes even 
exist.  Fail actions are often useful for cleaning up data structures or freeing memory." 
(Page 29 of 1.00 manual)

Example of a fail action:
          a : <<List *p=NULL;>>
              ( v:Var <<append(p,$v);>> )+
                  <<operateOn(p);rmlist(p);>>
            ; <<rmlist(p);>>
              ^^^^^^^^^^^^^^    <--- Fail Action

#160. Use a fail action to destroy temporary attributes when a rule fails

If you construct temporary, local, attributes in the middle of the recognition of a rule, 
remember to deallocate the structure should the rule fail.  The code for failure goes after 
the ";" and before the next rule.  For this reason it is sometimes desirable to defer some 
processing until the rule is recognized rather than the most convenient place:

        #include "pccts/h/charptr.h"
        ;statement!
                : <<char *label=0;>>
                  {name:ID COLON  <<label=MYstrdup($name);>> }
                         s:statement_without_label
                                <<#0=#(#[T_statement,label],#s);
                                  if (label!=0) free(label);
                                >>
        ;<<if (label !=0) free(label);>>
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In the above example attributes are handled by charptr.* (see the warning, Item #158). 
The call to MYstrdup() is necessary because $name will go out of scope at the end of 
the subrule "{name:ID COLON}". The routine written to construct ASTs from attributes 
(invoked by #[int,char *]) knows about this behavior and always makes a copy of 
the character string when it constructs the AST.  This makes the copy created by the 
explicit call to MYstrdup redundant once the AST has been constructed.  If the call to 
"statement_without_label" fails then the temporary copy must be deallocated.

#161. When you need more information for a token than just token type, text, and line number

Passing accurate column information along with the token in C mode when using 
syntactic predicates requires workarounds.  P.A. Keller (P.A.Keller@bath.ac.uk) has 
worked around this limitation of C mode by passing the address of a user-defined struct 
(rendered as text using format codes "%p" or "%x") along with (or instead) of the 
token’s actual text.  This requires changes in syntax error routines and other places 
where the token text might be displayed.

#162. About the pipeline between DLG and ANTLR (C Mode)

I find it helpful to think of lexical processing by DLG as a process which fills a pipeline 
and of ANTLR as a process which empties a pipeline. (This relationship is exposed in 
C++ mode because of the ANTLRTokenBuffer class).

With LL_K=1 the pipeline is only one item deep, trivial, and invisible. It is invisible 
because one can make a decision in ANTLR to change the DLG #lexclass with zzmode() 
and have the next token (the one following the one just parsed by ANTLR) parsed 
according to the new #lexclass.

With LL_K>1 the pipeline is not invisible.  DLG will put a number of tokens into the 
pipeline and ANTLR will analyze them in the same order.  How many tokens are in the 
pipeline depends on options one has chosen.

Case 1: Infinite lookahead mode ("(...)?"). The pipeline is as huge as the input 
since the entire input is tokenized by DLG before ANTLR even begins analysis.

Case 2: Demand lookahead (interactive mode). There is a varying amount of 
lookahead depending on how much ANTLR thinks it needs to predict which rule to 
execute next.  This may be zero tokens (or maybe it’s one token) up to k tokens.  
Naturally, it takes extra work by ANTLR to keep track of how many tokens are in 
the pipe and how many are needed to parse the next rule.

Case 3: Normal mode. DLG stays exactly k tokens ahead of ANTLR.  This is a half-
truth.  It rounds k up to the next power of 2 so that with k=3 it actually has a 
pipeline of 4 tokens. If one says "-k 3" the analysis is still k=3, but the pipeline 
size is rounded up because TJP decided it was faster to use a bit-wise "and" to 
compute the next position in a circular buffer rather than (n+1) mod k.
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(C Mode) ASTs
#163. Define a zzd_ast() to recover resources when an AST is deleted

#164. How to place prototypes for routines using ASTs in the #header

Add #include "ast.h" after the #define AST_FIELDS and before any references to AST:
        #define AST_FIELDS int token;char *text;
        #include "ast.h"
        #define zzcr_ast(ast,attr,tok,astText) \
                create_ast(ast,attr,tok,text)
        void create_ast (AST *ast,Attr *attr,int tok,char *text);

#165. To free an AST tree use zzfree_ast() to recursively descend the AST tree and free all 
sub-trees

The user should supply a routine zzd_ast() to free any resources used by a single node 
— such as pointers to character strings allocated on the heap.

#166. Use #define zzAST_DOUBLE to add support for doubly linked ASTs

There is an option for doubly linked ASTs in the module ast.c. It is controlled by 
#define zzAST_DOUBLE.  Even with zzAST_DOUBLE only the right and down fields 
are filled while the AST tree is constructed.  Once the tree is constructed the user must 
call the routine zzdouble_link(tree,0,0) to traverse the tree and fill in the left and up 
fields.
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Extended Examples and Short Descriptions of Distributed Source Code
Examples mentioned in these notes are available as .tar files at the sites mentioned in Item 
#1.  In keeping with the restrictions in PCCTS, I have used neither templates nor multiple 
inheritance in these examples.

All these examples use AST classes and token classes which are derived from NoLeakAST 
and NoLeakToken respectively.  These classes maintain a doubly-linked list of all ASTs (or 
tokens) which have been created but not yet deleted making it possible to recover memory 
for these objects.

#1. Modifications to pccts/dlg/output.c to add member functions and data to DLGLexer 
header

See files notes/changes/dlg/output*.c

This modification to output.c adds the following code to the DLGLexer class header:
#ifdef DLGLexerIncludeFile
#include DLGLexerIncludeFile
#endif

#2. DLG definitions for C and C++ comments, character literals, and string literals

See files in notes/cstuff/cstr.g (C mode) or notes/cstuff/cppstr.g (C++ mode).  
Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

#3. A simple floating point calculator implemented using PCCTS attributes and inheritance

This is the PCCTS equivalent of the approach used in the canonical yacc example.  See 
notes/calctok/*.

#4. A simple floating point calculator implemented using PCCTS ASTs and C++ virtual 
functions

See notes/calcAST/*.

In this example an expression tree is built using ASTs.  For each operator in the tree 
there is a different class derived from AST with an operator specific implementation of 
the virtual function "eval()".  Evaluation of the expression is performed by calling eval() 
for the root node of the AST tree.  Each node invokes eval() for its children nodes, 
computes its own operation, and passed the result to its parent in a recursive manner.

#5. An ANTLRToken class for variable length strings allocated from the heap

See files in notes/var/varToken.*

#6. How to extend PCCTS C++ classes using the example of adding column information

See files in notes/col/*

This demonstrates how to add column information to tokens and to produce syntax error 
messages using this information.  This example derives classes from ANTLRToken and 

ANTLRTokenBuffer.
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#7. How to pass whitespace through DLG for pretty-printers

See files in notes/ws/*

This demonstrates how to combine several separate DLG tokens (whitespace for this 
example) into a single ANTLR token.  It also demonstrates careful processing of tab 
characters to generate accurate column information even within comments or other 
constructs which use more().

#8. How to prepend a newline to the DLGInputStream via derivation from DLGLexer

See files in notes/prependnl/*

This demonstrates how to derive from DLGLexer in order to replace a user-supplied 
DLGInputStream routine with another which can perform additional processing on the 
input character stream before the characters are passed to DLG.  In this case a single 
newline is prepended to the input.  This is done to make it easier to treat the first non-
blank token on a line as a special case, even when it appears on the very first line of the 
input file.

#9. How to maintain a stack of #lexclass modes

See files in notes/modestack/*

This is based on routines written by David Seidel (dave@numega.com or 
75342.2034@compuserve.com) which allow the user to pass a a routine to be executed 
when the mode is popped from the stack.

#10. Changes to pccts/h/DLexer.C to aid in debugging of DLG lexers as outlined in Item #126

See files in notes/changes/h/DLexer*.C

#11. AT&T Cfront compatible versions of some 1.32b6 files 

See files in notes/changes/h/PCCTSAST*.*

#12. When you want to change the token type just before passing the token to the parser

See files in notes/predbuf/*

This program shows how to reassign token codes to tokens at the time they are fetched 
by the parser by deriving from class ANTLRTokenBuffer and changing the behavior of 
getToken().

#13. Rewriting a grammar to remove left recursion and perform left factoring

The original grammar:
         command := SET var BECOMES expr
                       |  SET var BECOMES QUOTE QUOTE
                       |  SET var BECOMES QUOTE expr QUOT
                       |  SET var BECOMES QUOTE command QUOTE

         expr    := QUOTE anyCharButQuote QUOTE
                       |  expr AddOp expr
                       |  expr MulOp expr
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The repetition of "SET var BECOMES" for command would require k=4 to get to the 
interesting part.  The first step is to left-factor "command":

         command := SET var BECOMES
                        ( expr
                        | QUOTE QUOTE
                        | QUOTE expr QUOTE
                        | QUOTE command QUOTE
                        )

The definition of expr uses left recursion which must be eliminated when using ANTLR:
         op      := AddOp
                 |  MulOp
         expr    := QUOTE anyCharButQuote QUOTE (op expr)*

Since expr begins with QUOTE and all the alternatives of the sub-rule of command also 
start with QUOTE.  This too can be left-factored:

          command := SET var BECOMES QUOTE
                        ( expr_suffix
                        | QUOTE
                        | expr QUOTE
                        | command QUOTE
                        )
         expr_suffix := anyCharButQuote QUOTE (op expr)*
         expr        := QUOTE expr_suffix

The final grammar can be built by ANTLR with k=2.
#token Q        "\""
#token SVB      "svb" //  "SET var BECOMES"
#token Qbar     "[a-z A-Z]*"
#token AddOp    "\+"
#token MulOp    "\*"
#token WS       "\ "    <<zzskip();>>
#token NL       "\n"    <<zzskip();>>

repeat      : ( command )+ "@";
command     : SVB Q ( expr_suffix
                    | expr Q
                    | Q          <<printf("null command\n");>>
                    | command Q  <<printf("command\n");>>
                    );
expr_suffix : Qbar Q <<printf("The Qbar expr is (%s)\n",$1.text);>>
                 { op expr };
expr        : Q expr_suffix;
op          : AddOp | MulOp ;

#14. Using the GNU gperf (generate perfect hashing function) with PCCTS

The scanner generated by DLG can be very large.  For grammars which contain a large 
number of keywords it might make sense to the use of the GNU program "gperf".  The 
gperf programs attempts to generate a "minimal perfect hash function" for testing 
whether an argument is among a fixed set of strings such as those used in the reserved 
words of languages.  It has a large number of options to specify space/time trade-offs 
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and the style of the code generated (e.g. C++ vs. C, case sensitivity, arrays vs. case 
statements, etc.).

As a test I found that a grammar with  25 keywords caused DLG to generate a file 
DLGLexer.C with 22,000 characters.  Changing the lexical analysis code to use gperf 
resulted in a file DLGLexer.C that was  2,800 characters.  The file generated by gperf 
was about 3,000 characters.

The gperf program was originally written by Douglas C. Schmidt.  It is based on an 
algorithm developed by Keith Bostic. The gperf program is covered by the GNU 
General Public License. I do not know what restrictions there are on the output of gperf.  
The source code can be found in comp.sources.unix, volume 20.

Among the many FTP sites with comp.sources.unix here are two:

ftp.cis.ohio-state.edu/pub/comp.sources.unix/Volume20/gperf
ftp.informatik.tu-muenchen.de/pub/comp/usenet/comp.sources.unix/gperf

File: keywords.h
#ifndef KEYWORDS_H
#define KEYWORDS_H

#include "tokens.h"

struct Keywords {
   char *       name;
   ANTLRTokenType    tokenType;
};

Keywords * in_cli_word_set(const char *,int);

#endif

File: clikeywords.gperf:
%{
/*
  gperf -a -k 1,3 -H cliHash -N in_cli_word_set -ptT >clikeywords.C

        a - ansi prototypes
        k - character positions to use in hash
        H - override name of hash function
        N - override namae of in_word_set function
        p - return pointer to struct or 0
        t - use structure type declaration
        T - don’t copy struct definition to output
*/

#include <string.h>
#include "keywords.h"

%}
Keywords;
%%
char,           CHAR 
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string,         STRING 
...
void,           VOID

File: main grammar
...
#lexaction <<

#include "keywords.h"
#include <string.h>

Keywords *      pKeyword;
>>

#token  Eof     "@"
#token  CHAR    "char"
#token  STRING  "string"
...
#token  VOID    "void"
#token ID "[a-z A-Z]+"
        <<pKeyword=in_cli_word_set(lextext(),strlen(lextext()));
          if (pKeyword != 0) return pKeyword->tokenType;
        >>

class P {
...
}

#15. Processing counted strings in DLG

Sometimes literals are preceded by a count field.
3abc identifier 4defg

This example works by storing the count which precedes the string in a local variable 
and then switching to a #lexclass which accepts characters one at a time while 
decrementing a counter.  When the counter reaches zero (or a newline in this example) 
the DLG routine switches back to the usual #lexclass.

...
#lexaction <<static int count;>>

#token HOLLERITH        "[0-9]*"
        <<count=atoi(lextext());
         printf("Count is %d\n",count);
         mode(COUNT);
        >>
#token Eof              "@"
#token ID               "[a-z]*"<<printf("ID is %s\n",lextext());>>
#token WS               "\ "      <<skip();>>
#token NL               "\n"

#lexclass COUNT
#token  STRING          "~[]"
        <<count--;
          if (count == 0) {
              mode(START);
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              printf ("Hollerith string is \"%s\"\n",lextext());
          } else if (ch == ’\n’) {
              mode(START);
              printf("Hollerith string %s terminated by newline\n",
                lextext());
          } else {
              more();
          };
        >>
class P {
  statement      : ( (HOLLERITH STRING | ID )* NL)+ "@";
}

See files in notes/hollerith/*

#16. How to convert a failed validation predicate into a signal for treatment by parser 
exception handling

See files notes/sim/*

This program intercepts a failed validation predicate in order to pass a signal back up the 
call tree.  The example includes code which takes the signal returned by the start rule 
and invokes the default handler

This example is not as clean as I would like because of the difficulty of adding new 
behavior to a parser class.

#17. How to use Vern Paxson’s flex with PCCTS in C++ mode by inheritance from 
ANTLRTokenStream

See files example.flex and flexLexer.* in notes/flex/*
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Guessing, see also Syntactic predicate 105

H
Hoisting, see also Semantic predicate 128
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init 112, 117
Init-action 47, 86, 87, 104, 107, 129, 135, 172
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L
LA 117, 146
Labels 89, 177
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context-guard 131
context-guard syntax 88
context-guard, use of 131
delay 146, 207
finite 135, 137
infinite 135
LA 117
linear approximation 137, 145
set 26, 137
token buffer 116
tree mismatch 189

LR(k) 29
LT 117, 130

M
make 188
makeToken 108, 113
MATCH 142
match 122, 188
MismatchedToken 139
mode 94
more 92
Multiple SORCERER Phases 68

N
newline 92
NLA 151
NLATEXT 151
node constructor 186
noGarbageCollectTokens 118
Nondeterministic decision 27
Non-LL(k) 28
Nontransform mode 77
NoSemViableAlt 139, 142
Not operator 88, 98
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Not operator, lexical 95
NoViableAlt 139
nsiblings 123, 188

O
One-or-more 87, 170
Optional 87, 170
Output

ANTLR
class (C++) generated by 84, 109, 111
constructing trees 121
files generated by 109
prefixing symbols 83

SORCERER
class (C++) generated by 164
files (C) generated by 191
files generated by 165
tree transformations 163, 182
types generated by 167

P
Panic 119
panic 118
Parse tree 34
Parser 23, 26, 117

ambiguous decision, term definition 27
ANTLRParser 117
bottom-up 29
class (C++) associated with grammar 84, 164
common prefix 27
disambiguating predicate 128
efficiency, related to syntactic predicate 136
error classes 101–103
error reporting and recovery, see Error 137
exception handler, see Exception handler
guessing 105, 133, 137
hand built 28
invocation of 111
invoking 111
LALR(k) 29
LL(1) 26
LL(k) 27
LR(k) 29
nondeterministic 27
non-LL(k) 28
pred-LL(k) 28

recursive descent 26
semantic predicate 127

context-guard 131
SORCERER, introductory example 161
syntactic predicate 133

modified parsing strategy 135
token buffer 116
token type 91
top-down 26
tree matching 32
validating predicate 127
viable production 135

parser.dlg 91
Parsing, see Parser 25
PCCTS 24
PCCTS_AST 119, 122, 166
Predicate, see Syntactic and Semantic predicate
Predicates 127
Pred-LL(k) 28, 29
preorder 120, 123
preorder_action 120, 123
preorder_after_action 120, 124
preorder_before_action 120, 123
Production, see also Rule production 85
Production, term definition 26

R
Range operator 88, 98, 170, 173
Recognizer, see Parser
Recursive-descent parser 26
Reducing 29
Regular expression 45, 201

ambiguity detection 148
avoiding conflict, lexical classes 99
syntax 94
token definitions and 91
token type assignment 99

remap.h 84
replchar 92
replstr 92
restoreState 94
Resynchronization, see also Error 143
Return value(s) 105, 165
Return value(s), see Rule
right 119, 163
Rule
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alternative, see production
argument(s) 105
definition 85
element 85, 87, 170
embedded action 104, 181, 182
error string 86
fail-action 87, 104, 105, 108
init-action 86, 104, 107, 172
label 89
labeled reference 177
production 85, 170

viable 135
reference to 89
return value(s) 105
starting 82
subrule 170
term definition 26
warnings and errors concerning 203

S
saveState 94
Scanner, term definition 26
Semantic predicate 28, 88, 127–133

ambiguity 128
buffer overflow 204
combining multiple 132
context 130, 147
context, computing 131
context-guard 131
disambiguating 128
effect upon syntactic predicate 133
exception handler 142
fail action 128
hoisting 128
init-action, hoisting over 129
side effects 137
syntax 127, 170
use with -gk option 207
validating 127
visible 128
warnings and errors related to 208

set_begcol 93
set_endcol 93
setDown 119, 163
setEofToken 117
setInputStream 94
setRight 119, 163
setToken 112

setType 119
shallowCopy 70, 119, 163
Shifting 29
sibling_index 123, 189
Side effects 137
skip 92
SList 167
Smart pointer 114
SORAST 163, 166, 177, 191
SORASTBase 164, 166
SORCERER 24
SORCommonAST 164, 166
START 99
stdpccts.h 146, 154
STreeParser 167, 192
Subrule, see Rule
syn 118
Syntactic predicate 28, 88, 105, 133–137

backtracking 135
effect upon actions and semantic 

predicates 137
effect upon grammar analysis 137
efficiency 136
infinite lookahead 135
init-action, evaluation of 135
modified parsing strategy 135
nested 136
reducing grammar analysis time 205
syntax 133, 170
viable production 135
warnings and errors related to 208

Syntax, term definition 26
Syntax-directed translation 181

T
tail 123, 189
tfree 123, 188
tmake 120, 123
Token
#ast-identifier 107
#lexclass directive 99
#tokclass directive 88
#tokdefs directive 98
#token directive 91
$token-identifier 106
ANTLRCommonToken 108
ANTLRRefCountToken 108
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attributes 108
buffer 111, 116
class hierarchy 112
classes 88, 97
creating an AST node from 122
definition Files 96
definitions 91
end of file, @ 92
error classes 101
garbage collection 113
identifiers 91
labeled reference 89, 170, 177
lexical class 99
not operator, ~ 88, 98
objects, referencing from actions 108
operators 88
order and ambiguities 95
range operator 88, 98, 170, 173
references 88
regular expression 91, 94
term definition 26
token_tbl 99
type 91, 99
#tokdefs directive 96, 168
C interface 149
component of ANTLRToken 112
consistency between ANTLR and 

SORCERER 168, 194
definition 167
end of file, setting 117
generating 190
lexical classes and 99
not operator 98
range operator 98, 173
sample tree contents 162
user defined 96
warning concerning no associated regular 

expression 201
warnings and errors concerning 201, 208
wild card 97, 170, 172

token 191
token_tbl 99
Top-down parser 26
tracein 118, 146
traceout 118, 146
trackColumns 93
-transform 182, 191
Transform mode 69
Transform mode, defining shallowCopy 119
Tree

default construction 56
matching 32
parser 35
pattern 170
transformation 42, 68

Tree, see also AST
Trigger function 49, 62
type 119, 163, 167

U
up 120

V
Viable production 135
Visible 128
Vocabulary symbol, see Token

W
Wild card 97, 170, 172

Z
Zero-or-more 87, 170
zzadvance 151
zzastnew 126
zzauto 152
zzbegcol 152
zzbegexpr 152
zzchar 151
zzclose_stream 152
ZZCOL 152
zzcr_ast 158
zzcr_attr 149
zzd_attr 108, 155
zzendcol 152
zzendexpr 152
zzerr 152
ZZLEXBUFSIZE 204, 214
zzlextext 151
zzline 151
zzmatch_wdfltsig 144
zzmk_ast 126
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zzmode 152
zzmore 151
zzrdfunc 152
zzrdstr 152
zzrdstream 152
zzreplchar 151
zzreplstr 151
zzrestore_dlg_state 152
zzsave_dlg_state 152
zzsetmatch_wdfltsig 144
zzskip 151
zzsyn 142
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