
Language Translation
Using

PCCTS and C++

A Reference Guide

Terence John Parr
MageLang Institute

Automata Publishing Company, San Jose, CA 95129

Cover design: Evolved Design
Interior design: Anu Sethuram
Editing: Martha Cover

C++ and UNIX are registered trademarks of AT&T

Copyright ©1993 by Automata Publishing Company

Published by Automata Publishing Company

In addition to this title, the following HDL titles and software
are also available from Automata Publishing Company:

1. Digital Design and Synthesis with Verilog HDL

2. Digital Design and Synthesis with VHDL

Please see the order form on the last page of the book

All rights reserved. No part of this book may be
reproduced or transmitted, in any form or by any
means, without written permission from the publisher.

Automata Publishing Company
1072 De Anza Blvd.,
San Jose, CA 95129, USA
Phone: 408-255-0705
email: info @apco.com

Printed in the United States of America
1 0 9 8 7 6 5 4 3 2 1

ISBN 0-9627488-5-4

This is Tom’s fault.

v

A Completely Serious, No-Nonsense,
Startlingly-Accurate Autobiography

Terence John Parr was born in Los Angeles, California, USA in the year of the dragon on
August 17, 1964 during the week of the Tonkin Gulf Crisis, which eventually led us into
the Vietnam Conflict; coincidence? Terence’s main hobbies in California were drooling,
covering his body in mud, and screaming at the top of his lungs.

In 1970, Terence moved to Colorado Springs, Colorado with his family in search of
better mud and less smog. His formal education began in a Catholic grade school where
he became intimately familiar with penguins and other birds of prey. Terence eventually
escaped private school to attend public junior high only to return to the private sector—
attending Fountain Valley School for the "education" only a prep school can provide.
After being turned down by every college he applied to, Terence begged his way into
Purdue University's School of Humanities. Much to the surprise of his high school's
faculty and the general populace, Terence graduated in 1987 from Purdue with a
bachelor's degree in computer science.

After contemplating an existence where he had to get up and go to work, Terence quickly
applied to graduate school at Purdue University's School of Electrical Engineering. By
sheer tenacity, he was accepted and then promptly ran off to Paris, France after only one
semester of graduate work. Terence returned to Purdue in the Fall of 1988, eventually
finishing up his master's degree in May 1990 despite his best efforts. Hank Dietz served
as major professor and supervised Terence's master's thesis.

A short stint with the folks in blue suits during the summer of 1990, convinced Terence
to begin his Ph.D.; again, Hank Dietz was his advisor. He passed the Ph.D. qualifier
exam in January of 1991, stunning the local academic community. After three years of
course work, research, and general fooling around, Terence finished writing his doctoral
dissertation and defended it against a small horde of professors and students on July 1,
1993.

After completing a year of penance with Paul Woodward and Matt O’Keefe at the Army
High Performance Computing Research Center at the University of MN as a postdoctoral
slave, Terence formed Parr Research Corporation and leapt into the unknown on August
1, 1994.

The Java programming language started its inexorable climb to stardom in early 1995.
Terence entered the mad rush of Java startups in late 1995, forming MageLang Institute
(www.MageLang.com) with Tom Burns and Mel Berman, in order to provide
exceptional language training and further the cause of Java. Terence still maintains
PCCTS while working 26 hours a day at MageLang and is allegedly having a pretty good
time.

vi

Language Translation Using PCCTS and C++ 7

Table of Contents

Foreword . xvii

Preface . xix

Introduction . 23

 About this book . 24

 Exactly 1800 Words On Languages and Parsing . 25

 Bottom-up Parsers . 29

 ANTLR . 30

 SORCERER. 31

 Intermediate Representations and Translation. 33

 SORCERER Versus Hand-Coded Tree Walking 35

 What Is SORCERER Good At and Bad At? . 39

 How Is SORCERER Different Than a Code-Generator Generator? 39

 A Tutorial . 41

 Evaluating and Differentiating Polynomials . 41

 Language Recognition and Syntax-Directed Interpretation 42

 Syntax. 42

 Vocabulary . 44

 Semantic Actions . 47

 Constructing and Walking ASTs . 52

Contents

8 Language Translation Using PCCTS and C++

 AST Design. 52

 Constructing ASTs . 54

 Describing ASTs With SORCERER . 60

 Adding Actions to Compute Polynomial Values . 63

 Tree Transformations and Multiple SORCERER Phases 68

 Tree Definition . 70

 Building Trees For Differentiation . 72

 Differentiation Phase . 74

 Simplification Phase . 75

 Printing Phase . 77

 Makefile . 77

ANTLR Reference . 81

 ANTLR Descriptions . 81

 Comments . 83

 #header Directive . 83

 #parser Directive . 83

 Parser Classes . 84

 Rules. 85

 Subrules (EBNF Descriptions) . 87

 Rule Elements . 87

 Multiple ANTLR Description Files . 90

 Lexical Directives . 91

 Token Definitions . 91

 Regular Expressions. 94

 Token Order and Lexical Ambiguities. 95

 Token Definition Files (#tokdefs) . 96

 Token Classes . 97

Contents

Language Translation Using PCCTS and C++ 9

 Lexical Classes. 99

 Lexical Actions . 100

 Error Classes . 101

 How ANTLR Uses Error Classes . 103

 Actions . 104

 Placement . 104

 Time of Execution . 105

 Interpretation of Action Text . 105

 Init-Actions . 107

 Fail Actions . 108

 Accessing Token Objects From Grammar Actions. 108

 C++ Interface . 109

 The Utility of C++ Classes in Parsing . 110

 Invoking ANTLR Parsers . 111

 ANTLR C++ Class Hierarchy . 112

 Intermediate-Form Tree Construction . 121

 Required AST Definitions . 122

 AST Support Functions. 122

 Operators . 124

 Interpretation of C/C++ Actions Related to ASTs 125

 Predicates . 127

 Semantic Predicates. 127

 Syntactic Predicates . 133

 Parser Exception Handlers . 137

 Exception Handler Syntax . 138

 Exception Handler Order of Execution . 140

 Modifications to Code Generation . 142

 Semantic Predicates and NoSemViableAlt. 142

Contents

10 Language Translation Using PCCTS and C++

 Resynchronizing the Parser . 143

 The @ Operator . 144

 ANTLR Command Line Arguments . 145

 DLG Command Line Arguments . 148

 C Interface . 149

 Invocation of C Interface Parsers . 149

 Functions and Symbols in Lexical Actions . 151

 Attributes Using the C Interface . 153

 Interpretation of Symbols in C Actions. 157

 AST Definitions . 157

SORCERER Reference . 161

 Introductory Examples . 161

 C++ Programming Interface. 163

 C++ Class Hierarchy. 166

 Token Type Definitions . 167

 Using ANTLR and SORCERER Together . 168

 SORCERER Grammar Syntax . 169

 Rule Definitions: Arguments and Return Values 171

 Special Actions . 172

 Special Node References . 172

 Tree Patterns . 173

 EBNF Constructs in the Tree-Matching Environment 174

 Element Labels . 177

 @-Variables . 178

 Embedding Actions For Translation. 181

 Embedding Actions for Tree Transformations . 182

Contents

Language Translation Using PCCTS and C++ 11

 Deletion. 183

 Modification. 184

 Augmentation . 184

 C++ Support Classes and Functions . 187

 Error Detection and Reporting . 189

 Command Line Arguments . 190

 C Programming Interface. 191

 Invocation of C Interface SORCERER Parsers 191

 Combined Usage of ANTLR and SORCERER. 194

 C Support Libraries. 195

ANTLR Warning and Error Messages 201

 Token and Lexical Class Definition Messages. 201

 Warnings. 201

 Errors . 202

 Grammatical Messages . 203

 Warnings. 203

 Errors . 204

 Implementation Messages . 204

 Action, Attribute, and Rule Argument Messages . 205

 Warnings. 205

 Errors . 206

 Command-Line Option Messages . 207

 Warnings. 207

 Errors . 207

 Token and Error Class Messages . 208

 Predicate Messages . 208

 Warnings. 208

Contents

12 Language Translation Using PCCTS and C++

 Errors . 209

 Exception Handling Messages. 209

SORCERER Warning and Error Messages 211

 Syntax Messages. 211

 Warnings. 211

 Errors . 212

 Action Messages . 213

 Warnings. 213

 Errors . 213

 Grammatical Messages . 213

 Implementation Messages . 214

 Command-Line Option Messages . 214

 Warnings. 214

 Errors . 216

 Token Definition File Messages. 216

Templates and Quick Reference Guide 217

 Templates . 217

 Basic ANTLR Template . 217

 Using ANTLR With ASTs . 219

 Using ANTLR With SORCERER . 220

 Defining Your Own Tokens . 224

 Defining Your Own Scanner . 225

 The genmk Program . 226

 Rules . 226

 Rule With Multiple Alternatives . 226

 Rule With Arguments and Return Values . 227

Contents

Language Translation Using PCCTS and C++ 13

 EBNF Constructs . 227

 Subrule . 227

 Optional Subrule . 227

 Zero Or More Subrule. 227

 One Or More Subrule . 227

 Alternative Elements . 227

 Token References . 227

 Rule References . 228

 Labels . 228

 Actions . 228

 Predicates. 229

 Semantic Predicates. 229

 Syntactic Predicates . 229

 Generalized Predicate . 229

 Tree operators . 229

 Lexical Directives . 230

 Parser Exception Handling. 230

 Rule With Exception Handlers . 230

 Token Exception Operator . 231

History . 233

Notes for New Users of PCCTS. 235

Language Translation Using PCCTS and C++ 15

Tables

TABLE 1. Vocabulary Symbols for Polynomial Language 44

TABLE 2. Differentiation of Polynomial Trees 74

TABLE 3. Simplification of Polynomial Trees 75

TABLE 4. Lexical Items in an ANTLR Description 83

TABLE 5. ANTLR Subrule Format 87

TABLE 6. C++ Interface Symbols Available to Lexical Actions 92

TABLE 7. Regular Expression Syntax 94

TABLE 8. C++ Interface Interpretation of Terms in Actions 106

TABLE 9. Synopsis of C/C++ Interface Interpretation of AST Terms
in Actions 107

TABLE 10. C/C++ Interface Interpretation of AST Terms in Actions 126

TABLE 11. Sample Predicates and Their Lookahead Contexts 131

TABLE 12. Predefined Parser Exception Signals 139

TABLE 13. Sample Order of Search for Exception Handlers 141

TABLE 14. Resynchronization Functions 144

TABLE 15. C Interface Parser Invocation Macros 149

TABLE 16. C Interface Symbols Available to Lexical Actions 151

TABLE 17. Visibility and Scoping of Attributes 155

TABLE 18. C Interface Interpretation of Attribute Terms in Actions 157

TABLE 19. C Interface AST Support Functions 158

TABLE 20. Files Written by SORCERER For C++ Interface 165

Tables

16 Language Translation Using PCCTS and C++

TABLE 21. C++ Files 167

TABLE 22. SORCERER Description Elements 170

TABLE 23. Sample Tree Specification and Graphical Representation Pairs 174

TABLE 24. EBNF Subrules 175

TABLE 25. EBNF Optional Subrules 175

TABLE 26. EBNF Zero-Or-More Subrules 176

TABLE 27. EBNF One-Or-More Subrules 176

TABLE 28. Files Written by SORCERER for C Interface 192

xvii

Foreword

A few years ago, I implemented a programming language called NewtonScript(tm)1,
the application development language for the Newton(R) operating system. You may
not have heard of NewtonScript, but you’ve probably heard of the tool I used to
implement it: a crusty old thing called YACC.

YACC--like the C language, Huffman coding, and the QWERTY keyboard--is an
example of a standard engineering tool that is standard because it was the first "80%
solution". YACC opened up parsing to the average programmer. Writing a parser for
a "little language" using YACC was vastly simpler than writing one by hand, which
made YACC quite successful. In fact, it was so successful, progress on alternative
parsing tools just about stopped.

Not everybody adopted YACC, of course. There were those who needed something
better. A lot of serious compiler hackers stuck with hand-coded LL parsers, to get
maximum power and flexibility. In many cases, they had to, because languages got
more and more complicated--LALR just wasn’t good enough without lots of weird
hacks. Of course, these people had to forego the advantages of using a parser
generator.

So if your language is simple, you use YACC. If your language is too complex, or if
you want good error recovery, or if performance is critical, you write a parser from
scratch. This has been the status quo for about 20 years.

Terence Parr and PCCTS have the potential to jolt us out of this situation. First,
Terence pursued and formalized a new parsing strategy, called predicated LL(k), that
combines the robustness and intelligibility of LL with the generality of LALR.
Second, he implemented a parser generator, called ANTLR, that makes this power
easy to use. Even the dedicated hand-coders may change their minds after a close
look at this stuff. Finally, for those situations where you need to traverse a parse tree
(and who doesn't?), SORCERER applies the ANTLR philosophy to that problem.

1. NewtonScript is a trademark and Newton is a registered trademark of Apple
Computer, Inc.

xviii

The result is a tool set that I think deserves to take over from YACC and LEX as the
default answer to any parsing problem. And as Terence and others point out, a lot of
problems are parsing problems.

Finally, let me mention that PCCTS is a tool with a face. Although it’s in the public
domain, it’s actively supported by the tireless Terence Parr, as well as the large and
helpful community of users who hang out on comp.compilers.tools.pccts. This book will
help the PCCTS community to grow and prosper, so that one day predicated LL(k) will
rule, YACC will be relegated to the history books, and Terence will finally achieve his
goal of world domination.

Just kidding about that last part.

Walter Smith
Palo Alto, California
January 1996

Language Translation Using PCCTS and C++ xix

Preface

I like tools—always have. This is primarily because I’m fundamentally lazy and would
much rather work on something that makes others productive rather than actually having
to do anything useful myself. For example, as a child, my parents forced me to cut the
lawns on our property. I spent hours trying to get the lawn mower to cut the lawn
automatically rather than simply firing up the mower and walking around the lawn. This
philosophy has followed me into adult life and eventually led to my guiding principle:

“Why program by hand in five days what you can spend
five years of your life automating?”

This is pretty much what has happened to me with regard to language recognition and
translation. Towards the end of my undergraduate studies at Purdue, I was working for a
robotics company for which I was developing an interpreter/compiler for a language
called KAREL. This project was fun the first time (I inadvertently erased the whole
thing); the second time, however, I kept thinking “I don’t understand YACC. Isn’t there
a way to automate what I build by hand?” This thought kept rolling around in the back of
my head even after I had started EE graduate school to pursue neural net research (my
topic was going to be “Can I replace my lazy brain with a neural net possessing the
intelligence of a sea slug without anybody noticing?”). As an aside, I decided to take a
course on language tool building taught by Hank Dietz.

The parser generator ANTLR eventually arose from the ashes of my course project with
Hank and I dropped neural nets in favor of ANTLR as my thesis project. This initial
version of ANTLR was pretty slick because it was a shorthand for what I’d build by
hand, but at that time ANTLR could only generate LL(1) parsers. Unfortunately, there
were many such tools and unless a tool was developed with parsing strength equal to or
superior to YACC’s, nothing would displace YACC as the de facto standard for parser
generation; although, I was mainly concerned with making myself more efficient at the
time and had no World-domination aspirations.

ANTLR currently has three things that make it generate strong parsers: (i) k>1
lookahead, (ii) semantic predicates (the ability to have semantic information direct the
parse), and (iii) syntactic predicates (selective backtracking). Using more than a single
symbol of lookahead has always been desirable, but is exponentially complex in time
and space; therefore, I decided to change the definition of k>1 lookahead and voila:
LL(k) became possible. (That’s how I escaped Purdue with my Ph.D. before anyone got

Preface

xx Language Translation Using PCCTS and C++

wise). The fundamentals of semantic and syntactic predicates are not my ideas, but,
together with Russell Quong at Purdue, we substantially augmented these predicates to
make them truly useful. These capabilities can be shown in theory and in practice to
make ANTLR parsers stronger than YACC’s pure LALR(1) parsers (our tricks could
easily be added to an LALR(1) parser generator, however). ANTLR also happens to be a
flexible and easy-to-use tool and, consequently, ANTLR has become popular.

Near the end of my Ph.D., I started helping out some folks who wanted to build a
FORTRAN translator at the Army High Performance Computer Research center at the
University of Minnesota. I used ANTLR to recognize their FORTRAN subset and built
trees that I later traversed with a number of (extremely similar) tree-walking routines.
After building one too many of these tree walkers, I thought “OK, I’m bored. Why can’t
I make a tool that builds tree walkers?” Such a tool would parse trees instead of text, but
would be basically the same as ANTLR. SORCERER was born. Building language
translators became much easier because of the ANTLR/SORCERER combination.

The one weak part of these tools has always been their documentation. This book is an
attempt to rectify this appalling situation and replaces the series of disjointed release
notes for ANTLR, DLG (our scanner generator), and SORCERER—the tools of the
Purdue Compiler Construction Tool Set, PCCTS. I’ve also included Tom Moog’s
wonderful notes for the newbie as an appendix.

Giving credit to everyone who has significantly aided this project would be impossible,
but here is a good guess: Will Cohen and Hank Dietz were coauthors of the original
PCCTS as a whole. Russell Quong has been my partner in research for many years and
is a coauthor of ANTLR. Gary Funck and Aaron Sawdey are coauthors of SORCERER.
Ariel Tamches spent a week of his Christmas vacation in the wilds of Minnesota helping
with the C++ output.

Sumana Srinivasan, Mike Monegan, and Steve Naroff of NeXT, Inc., provided extensive
help in the definition of the ANTLR C++ output; Sumana also developed the C++
grammar that became the basis for the C++ grammar available for PCCTS. Thom Wood
and Randy Helzerman both influenced the C++ output. Randy Helzerman has been a
relentless supporter of PCCTS since it was forced upon him. Steve Robenalt pushed
through the comp.compilers.tools.pccts newsgroup and wrote the initial FAQ. Peter
Dahl, then Ph.D. candidate, and Professor Matt O’Keefe (both at the University of
Minnesota) tested versions of ANTLR extensively. Dana Hoggatt (Micro Data Base
Systems, Inc.) and Ed Harfmann tested 1.00 heavily. Anthony Green at Visible
Decisions, John Hall at Worcester Polytechnic Institute, Devin Hooker at Ellery
Systems, Kenneth D. Weinert at Information Handling Services, Steve Hite, Roy
Levow at Florida Atlantic University, David Seidel, and Loring Craymer at JPL have
been faithful beta testers of PCCTS. Gary Frederick manages the mailing list and offers
many suggestions. Scott Haney at Lawrence Livermore National Laboratory developed
the Macintosh MPW port.

Preface

Language Translation Using PCCTS and C++ xxi

I thank the planning group for the first annual PCCTS workshop sponsored by Parr
Research Corporation and held at NeXT July 25 and 26, 1994: Gary Funck, Steve
Robenalt, and Ivan Kissiov. The PCCTS ‘95 workshop group included Gary Funck,
Steve Robenalt, and John D. Mitchell. The following people provided reviews of the
initial release of this book (in the order their reviews arrived): Scott Stanchfield, Dan
FitzPatrick, Tuan Doan, Kris Kelley, Alistair G. Crooks, John Mitchell, Chiiwen Liou,
Jim Coker, Asgeir Olafsson, Glenn Lewis, and Michael Richter (who provided a HUGE
number of suggestions). A multitude of PCCTS users have helped refine ANTLR with
their suggestions; I apologize for not being able to mention everyone here who has
supported the PCCTS project. The following people are mentioned so they will buy a
copy of this book: Marjorie Kalman, Jennifer Wilson, Richard Raitt, Jeff Johnson, Cris
DuBord, Paul Stahura, Jim Beaver, Tom Burns, Brett Miller, Rick Guptill, Jim Schwarz,
Ephram Ajaji, Kurt Fickie, Tim Rohaly, Mike Beranek, Thierry Beauvilain, Mike
Hofflinger, Russell “Creature” Cattelan, Kevin “Pugsley” Edgar, Steve Anderson, Paul
Woodward, Gary Lutchansky, and Mark Gruenberg.

Bug reports and general words of encouragement are welcome. Please send mail to

parrt@parr-research.com

You may also wish to visit our newsgroup

comp.compilers.tools.pccts

or the ftp site:

ftp://ftp.parr-research.com/pub/pccts/

All of the tools in PCCTS are public domain. As such, there is no guarantee that the
software is useful, will do what you want, or will behave as you expect. There are most
certainly bugs still lurking in the code and there are probably errors in this book. I hope
the benefits of the tools will outweigh any inconvenience in using them.

Terence John Parr
parrt@MageLang.com (general chatting, social commentary)
parrt@parr-research.com (bug reports, PCCTS questions, etc...)
www.MageLang.com (company website)
www.parr-research.com/~parrt (personal web site)

Irreverent in San Francisco, California
August 1996

Language Translation Using PCCTS and C++ 23

 1 Introduction

Computer language translation has become a common task. While compilers and tools for
traditional computer languages (such as C, C++, FORTRAN, SMALLTALK or Java) are
still being built, their number is dwarfed by the thousands of mini-languages for which
recognizers and translators are being developed. Programmers construct translators for
database formats, graphical data files (e.g., SGI Inventor, AutoCAD), text processing files
(e.g., HTML, SGML), and application command-interpreters (e.g., SQL, EMACS); even
physicists must write code to read in the initial conditions for their finite-element
computations.

Many programmers build recognizers (i.e., parsers) and translators by hand. They write a
recursive-descent parser that recognizes the input and either generates output directly, if the
translation is simple enough to allow this, or builds an intermediate representation of the
input for later translation, if the translation is complicated. Generally, some form of tree
data-structure is used as an intermediate representation in this case (e.g., the input "3+4"
can be conveniently represented by a tree with "+" at the root and "3" and "4" as leaves). In
order to manipulate or generate output from a tree, the programmer is again confronted with
a recognition problem—that of matching tree templates against an input tree. As an input
tree is traversed, each subtree must be recognized in order to determine which translation
action to execute.

Many language tools aid in translator construction and can be broadly divided into either
parser generator or the translator generator.

• A parser generator is a program that accepts a grammatical language
description and generates a parser that recognizes sentences in that language.

Introduction

24 Language Translation Using PCCTS and C++

• A translator generator is a tool that accepts a grammatical language description
along with some form of translation specification and generates a program to
recognize and translate sentences in that language.

This book is a reference guide for the parser generator ANTLR, ANother Tool for Language
Recognition, and the tree-parser generator SORCERER, which is suited to source-to-source
translation. SORCERER does not fit into the translator generator category perfectly because
it translates trees, whereas the typical translator generator can only be used to translate text
directly, thus hiding any intermediate steps or data structures from the programmer. The
ANTLR and SORCERER team more closely supports what programmers would build by
hand. Specifically, ANTLR recognizes textual input and generates an intermediate form
tree, which can be manipulated by a SORCERER-generated tree-walker; however, both
tools can be used independently.

While every tool has its strengths and weaknesses, any evaluation must boil down to this:
Programmers want to use tools that employ mechanisms they understand, that are
sufficiently powerful to solve their problem, that are flexible, that automate tedious tasks,
and that generate output that is easily folded into their application. Most language tools fail
one or many of these criteria. Consequently, parsers and translators are still often written by
hand. ANTLR and SORCERER have become popular because they were written
specifically with these issues in mind.

About this book

This book is intended as a reference manual not a textbook or how-to book on language
translation. Nonetheless, this book is valuable to any scientist, engineer, or programmer who
has to translate, evaluate, interpret, manipulate or otherwise examine data or language
statements of any kind. ANTLR and SORCERER (the two main components of PCCTS)
were designed to be usable by people who are not language experts. Indeed, we are aware of
two biologists doing biochemical pattern recognition with PCCTS.

For those already familiar with PCCTS, Chapters “ANTLR Reference” on page 81,
“SORCERER Reference” on page 161, and “Templates and Quick Reference Guide” on
page 217 will be the most useful. Those familiar with other language tools should skim
“Chapter 2 - A Tutorial” and then read the ANTLR and SORCERER reference chapters;
Chapter “Templates and Quick Reference Guide” on page 217, the Section on ANTLR on
page 30, and the Section on SORCERER on page 31 will also be of interest as they
summarize the behavior and flavor of the tools. Persons unfamiliar with languages, parsers,
and language tools should carefully read “Exactly 1800 Words On Languages and Parsing”
on page 25 and “A Tutorial” on page 41; they should finish up by reading the reference
chapters on ANTLR and SORCERER.

Exactly 1800 Words On Languages and Parsing

Language Translation Using PCCTS and C++ 25

We assume that you have a working knowledge of C++ or C. Any knowledge of grammars
or language tools is extremely helpful.

Exactly 1800 Words On Languages and Parsing

We give only a taste of language theory here and in a very loose fashion. However, it should
give you enough information and define enough terms to get you through the rest of the
book.

In the Spring of 1983, as first year computer science students at Purdue University, we were
assigned the problem of recognizing arithmetic expressions, which could include nested
parentheses. We were given a specification that described what the expressions looked like
and were asked to produce a Pascal program that recognized such expressions. The
specification looked something like

expr-> factor
factor-> term ("+" term)*
term-> atom ("*" atom)*
atom-> "(" expr ")"
atom-> INTEGER
atom-> IDENTIFIER

where INTEGER and IDENTIFIER were shorthands for strings of digits and strings of
letters, respectively; “("+" term)*” indicated that zero or more "+" term sequences
could be seen. [Or did we get term and factor mixed up?]. The rules described the structure
of small pieces of the expression language. For example,

term-> atom ("*" atom)*

was read by saying, "a term is an atom followed by zero or more ‘"*" atom’ sequences."
We remember thinking what a marvelously precise means of describing an infinitely large
set of input strings.

We decided that our program would have one function to recognize each rule in the
grammar to keep things nice and neat. In this manner, references to rules would become,
possibly recursive, procedure calls in our program. References to actual input strings such as
"(" and INTEGER were all hard coded to eat white space and look for the particular string.
This got to be repetitive and so we decided to factor out the common operations among all
input string matching code. Further, it seemed easier to treat input strings as single "words"
when trying to match the grammatical structure of the expressions. We eventually came up
with a function called getword that returned an integer describing what input vocabulary
word was found. It also made sense to assume that some variable would always hold the

Introduction

26 Language Translation Using PCCTS and C++

next word to be matched; that is, after matching a word, the variable would be set to the
result of calling getword again.

With the benefit of our current knowledge, now we would say that we were provided with a
grammar consisting of a set of rules that specified the set of all possible sentences in the
expression language; that is, the grammar specified the syntax of the language. Rules with
more than one alternative were considered to have multiple productions. Our program was a
parser that made calls to a lexical analyzer or scanner (our getword function) that broke
up the input character stream into vocabulary symbols, or tokens. The program we built was
a classic example of a recursive-descent parser. A generic term for this type of parsing is
top-down because when you look at the parse tree, the parse starts at the top (the start
symbol) and works its way down the tree. Recursive-descent parsers are a set of mutually
recursive procedures that normally use a single symbol of lookahead to make parsing
decisions. For example, rule atom could be encoded in C as

int atom()
{

// use lookahead to decide which alternative applies
switch (current_token) {

case LPAREN :// -> "(" expr ")"
current_token = getword();
expr();
if (current_token != RPAREN) error-clause;
current_token = getword();
break;

case INTEGER :// -> INTEGER
current_token = getword();
break;

case IDENTIFIER :// -> IDENTIFIER
current_token = getword();
break;

default :
error-clause (missing LPAREN, INTEGER, or IDENTIFIER)

}
}

where the variable current_token is the lookahead symbol.

Parsers that follow this simple formula can be classified as LL(1), which is a
shorthand indicating that the input is matched from left-to-right (as opposed to
backwards) and that parsing decisions are made on the left edge of alternative
productions with 1 symbol of lookahead. This amounts to saying that LL(1) parsers
must predict which alternative production will be successfully matched by
examining only the set of tokens that can be matched first by each production. We
loosely define this set of tokens that predicts alternatives to be the lookahead set.

Exactly 1800 Words On Languages and Parsing

Language Translation Using PCCTS and C++ 27

Normally, this is set of tokens that can be matched first by a production p and is
called FIRST(p); e.g.,

FIRST("(" expr ")")

is the singleton set {"("}. Occasionally, the FOLLOW set is used to predict alternatives.
FOLLOW(r) is the set of all tokens that can be matched following references to rule r. For
example, given the grammar

rule -> optional_ID SEMICOLON
optional_ID -> IDENTIFIER
optional_ID ->

FOLLOW(optional_ID) is { SEMICOLON } because SEMICOLON follows the
reference to optional_ID. The lookahead set for the empty production is defined to be
the FOLLOW of the invoking rule. Therefore, SEMICOLON predicts the empty production
of optional_ID.

When the lookahead sets from alternative productions are not disjoint, we say that the
parsing decision is nondeterministic or ambiguous. In other words, there is at least one token
that predicts more than one alternative. Most of the time, this is a bad thing.

LL(1) parsers may be generalized to LL(k) for k>1. For example, the following grammar is
ambiguous upon token A:

a -> A B C
a -> A D E

where A, B, C, D, and E are some vocabulary tokens. Because both productions have a
common prefix of A, an LL(1) parser could not determine which production was going to
successfully match. However, if the parser could see ahead to both the A and what followed
A on the input stream, the parser could determine which production was going to match. An
LL(2) parser is such a creature; hence, rule a is unambiguous in the LL(2) sense. A grammar
for which a deterministic LL(k) parser can be built is LL(k). A language for which an LL(k)
grammar exists is LL(k).

Because recursive-descent parsers are just piles of code, more sophisticated predictions can
be made than simple lookahead buffer comparisons. For example, what if two productions
are exactly alike syntactically, but are semantically different? What if the productions have
different meanings (usually depending upon context or other information)? Consider the
following grammar:

element -> ID "(" expression_list ")" // array reference
element -> ID "(" expression_list ")" // procedure call

It is perfectly reasonable to separate these two cases because while they look the same, array
references and procedure calls are very different semantically. The definition of the ID must

Introduction

28 Language Translation Using PCCTS and C++

be consulted to determine which production to match. In a hand-built parser, you could do
this:

element()
{

if (current_token == ID && isarray(current_text)) {
match an array reference;

}
else if (current_token == ID && isprocedure(current_text)) {

match a procedure call;
}
else error;

}

where isarray(current_text) is some function you have defined that returns true if
the ID is previously defined as an array; isprocedure would be defined similarly. We
call such a parser a predicated LL(k) parser, pred-LL(k), because at least one parsing
decision was predicated upon information not available to a pure LL(k) parser. The forms
isarray(current_text) and isprocedure(current_text) are considered
semantic predicates. We could modify the grammar as follows:

element -> <<isarray(current_text)>>? ID "(" expression_list ")"
element -> <<isprocedure(current_text)>>? ID "(" expression_list ")"

where <<...>>? is a semantic predicate in ANTLR notation.

Pred-LL(k) parsing covers another type of predicated parsing decision. Consider the
following grammar:

a -> (A)* B
a -> (A)* C

No matter how large we make the k of LL(k), a sequence of k+1 A’ s could always be
presented to the parser, and the parser could not see past the A’s to the B or C. This grammar
then is non-LL(k) for any fixed value of k. Because there are real grammars that might have
constructs requiring arbitrary lookahead, we introduced another type of predicate called
syntactic predicates. A syntactic predicate specifies a grammar fragment that uniquely
predicts the associated production. The grammar could be modified as follows:

a -> ((A)* B)? (A)* B
a -> (A)* C

which indicates that, to predict the first production, zero or more A’s must be seen followed
by a B. If this syntactic predicate fails, the second production will be attempted by default;
hence, no predicate is required at its left edge. Clearly, this ability to scan arbitrarily ahead,
renders the class of pred-LL(k) languages much larger than the class of LL(k) languages.

Exactly 1800 Words On Languages and Parsing

Language Translation Using PCCTS and C++ 29

Bottom-up Parsers

And now, for something completely different: a bit about the class of languages and parsers
called LR(k). LR(k) parsers are considered bottom-up parsers because they try to match the
leaves of the parse tree as they work their way up the parse tree towards the start symbol at
the root. A simple way to illustrate LR parsing is to consider a simple language as described
the following grammar.

a -> A B C
a -> A B D

Loosely speaking, an LR-based parser consumes input symbols until it finds a viable
complete production; for the purposes of this discussion, all productions are viable. Input
token A would be tested against both productions. Since A matches neither completely,
another input token would be consumed, and AB would be compared against the
productions. Again, a complete right-hand-side would not be matched. The next input
symbol would be consumed, say token D. At this point, ABD matches the second right-hand-
side and the parser would report that it had found input for rule a. The process of consuming
input is called shifting, and the process of matching complete right-hand-sides is called
reducing. (The right-hand-side is reduced to the left-hand-side.) In our example, no
lookahead is required to determine that a valid sentence was found because the entire
production can be seen before making a decision. Therefore, this grammar is LR(0).

LR(k) recognizers (and their variants such as LALR(k)) are stronger than LL(k) recognizers
because the LR strategy uses more context information. For an LR parser, the context
consists of all grammar productions consistent with the previously seen input. This context
often includes several “pending” grammar productions. Intuitively, an LR(k) parser
attempts to match multiple productions at the same time and postpones making a decision
until sufficient input has been seen. In contrast, the context for an LL parser is restricted to
the sequence of previously matched productions and the position within the current
grammar production being matched. An LL(k) parser must make decisions about which
production to match without having seen any portion of the pending productions—it has
access to less context information. Hence, LL(k) parsers rely heavily on lookahead. We
note that our LR(0) grammar is LL(3) as a case in point.

On the other hand, our pred-LL(k) parsers are stronger than LR(k) parsers for two reasons.
First, semantic predicates may be used to parse context sensitive languages. Second, pred-
LL(k) parsers have access to arbitrary lookahead. Further, embedding actions in an LR
grammar can introduce ambiguities, thus reducing the strength of LR.

Introduction

30 Language Translation Using PCCTS and C++

ANTLR

ANTLR constructs human-readable recursive-descent parsers in C or C++ from pred-LL(k)
grammars, namely LL(k) grammars, for k>1 that support predicates.

Predicates allow arbitrary semantic and syntactic context to direct the parse in a systematic
way. As a result, ANTLR can generate parsers for many context-sensitive languages and
many non-LL(k)/LR(k) context-free languages. Semantic predicates indicate the semantic
validity of applying a production; syntactic predicates are grammar fragments that describe
a syntactic context that must be satisfied before recognizing an associated production. In
practice, many ANTLR users report that developing a pred-LL(k) grammar is easier than
developing the corresponding LR(1) grammar.

In addition to a strong parsing strategy, ANTLR has many features that make it more
programmer-friendly than the majority of LR/LALR and LL parser generators.

• ANTLR integrates the specification of lexical and syntactic analysis. A
separate lexical specification is unnecessary because lexical regular
expressions (token descriptions) can be placed in double-quotes and used
as normal token references in an ANTLR grammar.

• ANTLR accepts grammar constructs in Extended Backus-Naur Form
(EBNF) notation.

• ANTLR provides facilities for automatic abstract syntax tree construction.

• ANTLR generates recursive-descent parsers in C/C++ so that there is a
clear correspondence between the grammar specification and the ANTLR
output. Consequently, it is relatively easy for non-parsing experts to design
and debug an ANTLR grammar.

• ANTLR has both automatic and manual facilities for error recovery and
reporting. The automatic mechanism is simple and effective for many
parsing situations; the manual mechanism called “parser exception
handling” simplifies development of high-quality error handling.

• ANTLR allows each grammar rule to have parameters and return values,
facilitating attribute passing during the parse. Because ANTLR converts
each rule to a C/C++ function in a recursive descent parser, a rule
parameter is simply a function parameter. Additionally, ANTLR rules can
have multiple return values.

• ANTLR has numerous other features that make it a product rather than a
research project. ANTLR itself is written in highly portable C; its output
can be debugged with existing source-level debuggers and is easily inte-
grated into programmers’ applications.

SORCERER

Language Translation Using PCCTS and C++ 31

Ultimately, the true test of a language tool’s usefulness lies with the vast industrial
programmer community. ANTLR is widely used in the commercial and academic
communities. Thousands of people in virtually all industrialized nations have acquired the
software since the original 1.00 release in 1992. Several universities currently teach courses
with ANTLR. Many commercial programs use ANTLR.

For example NeXT, Inc. has completed and is testing a unified C/Objective-C/C++ compiler
using an ANTLR grammar that was derived directly from the June 1993 ANSI X3J16 C++
grammar. (Measurements show that this ANTLR parser is about 20% slower, in terms of
pure parsing speed, than a hand-built recursive-descent parser that parses only C/Objective-
C, but not C++. The C++ grammar available for ANTLR was developed using the NeXT
grammar as a guide.) C++ has been traditionally difficult for other LL(1) tools and LR(1)-
based tools such as YACC. YACC grammars for C++ are extremely fragile with regard to
action placement; i.e., the insertion of an action can introduce conflicts into the C++
grammar. In contrast, ANTLR grammars are insensitive to action placement because of their
LL(k) nature.

The reference guide for ANTLR begins on page 81.

SORCERER

Despite the sophistication of code-generator generators and source-to-source translator
generators (such as attribute grammar based tools), programmers often choose to build tree
parsers by hand to solve source translation problems. In many cases, a programmer has a
front-end that constructs intermediate form trees and simply wants to traverse the trees and
execute a few actions. In such cases, the optimal tree walks of code-generator generators
and the powerful attribute evaluation schemes of source-to-source translator systems are
overkill. Programmers would rather avoid the overhead and complexity.

A SORCERER description is essentially an unambiguous grammar (collection of rules) in
Extended BNF notation that describes the structure and content of a user's trees. The
programmer annotates the tree grammar with actions to effect a translation, manipulate a
user-defined data structure, or manipulate the tree itself. SORCERER generates a collection
of simple C or C++ functions, one for each tree-grammar rule that recognizes tree patterns
and performs the programmer's actions in the specified sequence.

Introduction

32 Language Translation Using PCCTS and C++

Tree pattern matching is done efficiently in a top-down manner with an LL(1)-based1
parsing strategy augmented with syntactic predicates to resolve non-LL(1) constructs (with
selective backtracking) and semantic predicates to specify any context-sensitive tree
patterns. Tree traversal speed is linear in the size of the tree unless a non-LL(1) construct is
specified—in which case backtracking can be used selectively to recognize the construct
while maintaining near-linear traversal speed.

SORCERER can be considered an extension to an existing language rather than a total
replacement as other tools aspire to be. Consequently, programmers can use SORCERER to
perform the well understood, tedious problem of parsing trees, without limiting themselves
to describing the intended translation problem purely as attribute manipulations.
SORCERER does not force you to use any particular parser generator or intermediate
representation. Its application interface is extremely simple and can be linked with almost
any application that constructs and manipulates trees.

SORCERER was designed to work with as many tree structures as possible because it
requires nor assumes no pre-existing application such as a parser generator. However, we
have made it particularly easy to integrate with trees built by ANTLR-generated parsers.
Using the SORCERER C interface, the programmer’s trees must have fields down, right,
and token (which can be redefined easily with the C preprocessor). The SORCERER C++
interface is much less restrictive. The programmer must only define a small set of functions
to allow the tree-parser to walk the programmer’s trees. (This set includes down(),
right(), and type().)

SORCERER operates in one of two modes: non-transform mode and transform mode. In
non-transform mode (the default case), SORCERER generates a simple tree parser that is
best suited to syntax-directed translation. (The tree is not rewritten—a set of actions
generates some form of output.) In transform mode, SORCERER generates a parser that
assumes a tree transformation will be done. Without programmer intervention, the parser
automatically copies the input tree to an output tree. Each rule has an implicit (automatically
defined) result tree; the result tree of the start symbol is a pointer to the transformed tree.
The various alternatives and grammar elements may be annotated with "!" to indicate that
they should not be automatically linked into the output tree. Portions of, or entire, subtrees
may be rewritten. A set of library functions is available to support tree manipulations.
Transform mode is specified with the SORCERER -transform command-line option.

1. We build top-down parsers with one symbol of lookahead because they are usually sufficient to
recognize intermediate form trees because they are often specifically designed to make translation
easy; moreover, recursive-descent parsers provide tremendous semantic flexibility.

SORCERER

Language Translation Using PCCTS and C++ 33

Intermediate Representations and Translation

We are often confronted with questions regarding the applicability of SORCERER. Some
people ask why intermediate representations are used for translation. Those who are already
familiar with the use of trees for translation ask why they should use SORCERER instead of
building a tree walker by hand or building a C++ class hierarchy with walk() or
action() virtual member functions. Compiler writers ask how SORCERER differs from
code-generator generators and ask what SORCERER is good at. This section and the next
address these issues to support our design choices regarding source translation and
SORCERER.

The construction of computer language translators and compilers is generally broken down
into separate phases such as lexical analysis, syntactic analysis, and translation where the
task of translation can be handled in one of two ways:

• Actions can be executed during the parse of the input text stream to
generate output; when the parser has finished recognizing the input, the
translation is complete. This type of translation is often called syntax-
directed translation.

• Actions can be executed during the parse of the input text stream to con-
struct an intermediate representation (IR) of the input, which will be re-
examined later to perform a translation. These actions can be automatically
inserted into the text parser by ANTLR as we have shown in previous
chapters.

The advantages of constructing an intermediate representation are that multiple translators
can be built without modifying the text parser, multiple simple passes over an IR can be
used rather than a single complex pass, and, because large portions of an IR can be
examined quickly (i.e., without rewinding an input file), more complicated translations can
be performed. Syntax-directed translations are typically sufficient only for output languages
that closely resemble the input language or for languages that can be generated without
having to examine large amounts of the input stream, that is, with only local information.

For source to source translation, trees (normally called abstract syntax trees or ASTs) are the
most appropriate implementation of an IR because they encode the grammatical structure
used to recognize the input stream. For example, input string "3+4" is a valid phrase in an
expression language, but does not specify what language structure it satisfies. On the other
hand, the tree structure

+

3 4

Introduction

34 Language Translation Using PCCTS and C++

has the same three input symbols, but additionally encodes the fact that the "+" is an
operator and that "3" and "4" are operands. There is no point to parsing the input if your
AST does not encode at least some of the language structure used to parse the input. The
structure you encode in the AST should be specifically designed to make tree walking easy
during a subsequent translation phase.

An AST should be distinguished from a parse tree, which encodes not only the grammatical
structure of the input, but records which rules were applied during the parse. A parse tree for
our plus-tree might look like:

which is bulkier, contains information that is unnecessary for translation (namely the rule
names), and harder to manipulate than a tree with operators as subtree roots.

If all tree structures were binary (each node had only two children), then a tree node could
be described with whatever information was needed for each node plus two child pointers.
Unfortunately, AST nodes often need more than two children and, worse still, the number of
child varies greatly; that is, the most appropriate tree structure for an if-statement may be
an If root node with three children: one for the conditional, one for the then statement list,
and one for the else clause statement list. In both ANTLR and SORCERER we have
adopted the child-sibling tree implementation structure where each node has a first-child
and next-sibling pointer. The expression tree above would be structured and illustrated as

and an if-statement would be structured as

Child-sibling trees can be conveniently described textually in a LISP-like manner:

(parent child1 ... childn)

So, our expression tree could be described as

(+ 3 4)

expr

4

factor factor+

3

+

3 4

If

expr slist slist

SORCERER

Language Translation Using PCCTS and C++ 35

and our If tree as

(If expr slist slist)

The contents of each AST node may contain a variety of things such as pointers into the
symbol table and information about the associated token object. The most important piece of
information is the token type associated with the input token from which the node was
constructed. It is used during a tree walk to distinguish between trees of identical structure
but different contents. For example, the tree

is considered different than

because of the differences in their token types (which we normally identify graphically via
node labels). Whether the token type is available as a C struct field or a C++ member
function is irrelevant.

Tree structures with homogeneous nodes as described here are easy to construct, whereas
trees consisting of a variety of node types are very difficult to construct or transform
automatically.

SORCERER Versus Hand-Coded Tree Walking

The question "Why is SORCERER useful when you can write a tree parser by hand?" is
analogous to asking why you need a parser generator when you can write text parser by
hand. The answer is the same, although it is not a perfectly fair comparison because IRs are
generally designed to be easier to parse than the corresponding input text. Nonetheless,
SORCERER grammars have the advantage over hand-coded tree parsers because grammars:

• Are much easier and faster to write

• Are smaller than programs

• Are more readable as grammars directly specify the IR structure

• Are more maintainable

• Automatically detect malformed input trees

*

a b

+

3 4

Introduction

36 Language Translation Using PCCTS and C++

• Can possibly detect ambiguities/nondeterminisms in your tree description
(such as when two different patterns have the same root token) that might
be missed when writing a tree walker by hand

Further, parsing a tree is the same as parsing a text stream except that the tree parser must
match a two-dimensional stream rather than a one-dimensional stream.

Because a variety of techniques are available to perform tree walks and translations, it’s
worth looking at some common C and C++ hand-coding techniques and understanding why
(or how?) SORCERER grammars often represent more elegant solutions.

In C, given homogeneous tree structures, there are two possible tree-walking strategies:

• A simple recursive depth-first search function applies a translation function
to each node in the tree indiscriminately. The translation function would
have to test the node to which it was applied in order to perform the
necessary task. Any translation function would have trouble dealing with
multiple-node subtrees such as those constructed for if-statements. The
structure of the IR is not tested for deformities.

• A hand-built parser explicitly tests for the IR structure such as "if root node
is a If node and the first child is an expression," SORCERER is a sim-
ply a shorthand for this strategy.

Alternatively, you can use C structures with fields that point to the required children rather
than a list of children nodes. In C++, given tree nodes with homogeneous behavior, you
could make each node in the tree an appropriate class that had a walk() member function.
The walk() function would do the appropriate thing depending on what type of tree node
it was. However, you would end up building a complete tree parser by hand. The class
member PLUSNode::walk() would be analogous to a rule plus_expr. For example,

class PLUSNode : public AST {
walk()
{

MATCH(PLUS); // match the root
this->down()->walk(); // walk left operand
this->down()->right()->walk(); // walk right operand

}
...

}

versus

plus_expr
: #(PLUS expr expr)
;

where expr would nicely group all the expression templates in one rule. For example,

SORCERER

Language Translation Using PCCTS and C++ 37

expr
: plus_expr
| mult_expr
...
;

whereas in the hand-coded version, there could be no explicit specification for what an
expression tree looks like—there is just a collection C++ classes with similar names such as
PLUSNode, MULTNode, and so on:

class PLUSNode : public AST { walk(); ... };
class MULTNode : public AST { walk(); ... };

On the other hand, if we used a variety of tree node types, a set of class members could point
to the appropriate information rather than using a generic list of children. For example,

class EXPRNode : public AST {...};

class PLUSNode : public EXPRNode {
EXPR *left_opnd;
EXPR *right_opnd;
walk()
{

left_opnd->walk();
right_opnd->walk();

}
};

However, a walk() function is still needed to specify what to do and in what order. A set
of member pointers is not nearly as powerful as a grammar because a grammar can specify
operand order and sequences of operands. The order of operands is important during
translation when you want to generate an appropriate sequence of output. (What if the field
names were Bill and Ted instead of left_opnd and right_opnd? While these are
silly names, the point is made that you have to encode order in the names of the fields.) The
ability to specify sequences is analogous to allowing you to specify structures of varying
size. For example, the tree structure to describe a function call expression would have to be
encoded as follows:

class FUNCCallNode : public EXPRNode {
char *id;
List<EXPRNode *> arguments;
walk()
{

for (each element of arguments list)
arg->walk();

}
};

Introduction

38 Language Translation Using PCCTS and C++

Because the number of arguments is unknown at compile time, a list of arguments must be
maintained and walked by hand; whereas, using SORCERER, because everything is
represented as a generic list of nodes, you could easily describe such IR structures:

func_call
: #(FUNCCall ID (expr)*)
;

No matter how fancy you get using C or C++, you must still describe your IR structure at
least partially with hand-written code rather than with a grammar.

The only remaining reason to have a variety of node class types is to specify what
translation action to execute for each node. Action execution, too, is better handled
grammatically. Actions embedded within the SORCERER grammar dictate what to do and,
according to action position, when to do it. In this manner, it is very obvious what actions
are executed during the tree walk. With the hand-coded C++ approach, you would have to
peruse the class hierarchy to discover what would happen at each node. Further, there may
be cases where you have two identical nodes in an IR structure for which you want to
perform two different actions, depending on their context. With the grammatical approach,
you simply place a different action at each node reference. The hand-coded approach forces
you to make action member functions sensitive to their surrounding tree context, which is
difficult and cumbersome.

We have argued in this section that a grammar is more appropriate for describing the
structure of an IR than a hand-coded C function or C++ class hierarchy with a set of
walk() member functions and that child-sibling trees are very convenient tree-structure
implementation. Different tree node types in C/C++ are required only when a grammar
cannot be used to describe the tree’s structure. Translations can also be performed more
easily by embedding actions within a grammar rather than scattering the actions around a
class hierarchy. On the other hand, we do not stop you from walking trees with a variety of
class types. SORCERER will pretend, however, that your tree consists only of nodes of a
single type.

SORCERER

Language Translation Using PCCTS and C++ 39

What Is SORCERER Good At and Bad At?

SORCERER is not the "silver bullet" of translation. It was designed specifically to support
source-to-source translations through a set of embedded actions that generate output directly
or via a set of tree transformation actions.

SORCERER is good at

• Describing tree structures (just as LISP is good at it)

• Syntax-directed translations

• Tree transformations either local such as constant folding and tree
normalizations or global such as adding declarations for implicitly defined
variables

• Interpreting trees such as for scripting languages

SORCERER is not good at or does not support

• Optimized assembly code generation

• Construction of “use-def” chains, data-flow dependency graphs, and other
common compiler data structures, although SORCERER can be used to
traverse statement lists to construct these data structures with user-supplied
actions

How Is SORCERER Different Than a Code-Generator Generator?

Compiler code-generator generators are designed to produce a stream of assembly langauge
instructions from an input tree representing the statements in a source program. Because
there may be multiple assembly instructions for a single tree pattern (e.g., integer addition
and increment), a code-generator generator must handle ambiguous grammars. An
ambiguous grammar is one for which an input sequence may be recognized in more than one
way by the resulting parser (i.e., there is more than one grammatical derivation). A "cost" is
provided for each tree pattern in the grammar to indicate how "expensive" the instruction
issued by the pattern would be in terms of execution speed or memory space. The code-
generator finds the optimal walk of the input tree, which results in the optimal assembly
instruction stream. SORCERER differs in the following ways:

1. Because code-generators must choose between competing grammar
alternatives, they must match the entire alternative before executing a
translation action. However, the ability to execute a translation action at
any point during the parse is indispensable for source-to-source translation.

2. Code-generator generators were not designed for and cannot perform tree
rewrites.

Introduction

40 Language Translation Using PCCTS and C++

3. Code-generator generators normally do not allow EBNF grammar
constructs to specify lists of elements.

4. While code-generator generators handle unambiguous grammars such as
SORCERER’s as well as ambiguous grammars, they may not handle
unambiguous grammars as efficiently as a tool specifically tuned for fast,
deterministic parsing.

It is ironic that most translator generators are code-generator generators, even though most
translation problems do not involve compilation. Unfortunately, few practical tools like
SORCERER exist for the larger scope of source-to-source translation.

Language Translation Using PCCTS and C++ 41

 2 A Tutorial

In this chapter we walk you through a series of progressively complex recognizers,
interpreters, and translators for polynomials using ANTLR and SORCERER. We assume a
passing familiarity with the syntax of ANTLR/SORCERER and a basic understanding of
scanners (regular expressions) and parsers (grammars).

Evaluating and Differentiating Polynomials

The first application developed in this chapter accepts a sequence of polynomial equations of
the form:

r = ax^n + by^m + ... ;

for some real numbers a, b, m, and n where the polynomial variables (here, x, y and r) may
be any single lowercase letter (which we call a register or identifier) "a..z". Each
polynomial is evaluated, and the result is stored into the variable on the left-hand-side of the
equation. (Here, the result is stored into r.) As output, we print the result after each
polynomial evaluation. For example,

lonewolf:/projects/Book/tutorial/simple$ poly
a = 5;
storing 5.000000 in a
b = 3a^2 + 2a + 7;
storing 92.000000 in b

where the bold characters are the polynomials to be entered.

A Tutorial

42 Language Translation Using PCCTS and C++

This task uses two equivalent methods: (i) an ANTLR grammar to recognize the input and to
compute the results, and (ii) an ANTLR grammar to recognize the input and to construct
ASTs that will be evaluated with a SORCERER grammar.

The second application developed in this tutorial differentiates a polynomial to demonstrate
the tree transformation abilities of SORCERER. A polynomial of the form:

ax^n + bx^m + ...

is differentiated by manipulating the associated AST and printing the polynomial back out.
(Those of you who slept through calculus may need to be reminded that the derivative of
ax^b is (ab)x^(b-1), the derivative of ax is a (even if a is 1) and the derivative of a is 0 where
a is real and b is an integer.) For example,

lonewolf:/projects/Book/tutorial/rewrite$./poly
2x^5 + x^2 + 3x + 9
10x^4+2x+3

where again the bold characters represent the input string.

Language Recognition and Syntax-Directed
Interpretation

We break up building our polynomial evaluator into three main tasks:

1. Describing the syntax

2. Describing the vocabulary (set of input symbols or tokens)

3. Inserting semantic actions to evaluate the polynomial

Tasks 1 and 2 result in a working polynomial recognizer and task 3 results in a working
evaluator. Testing a project at each such stage is recommended.

Syntax

Begin the task of building a recognizer for a language by examining a representative set of
input strings and trying to identify the underlying grammatical structure. In our case,
equations are strings like:

a = 3;
b = a+5a + 2a^2 + a^8 + 4;

Language Recognition and Syntax-Directed Interpretation

Language Translation Using PCCTS and C++ 43

The best way to describe the input "at a coarse level" is as a series of assignments with an
identifier on the left and a polynomial on the right, terminated with a semicolon. In grammar
notation, we write:

interp
: (ID "=" poly ";")+
;

where anything inside double quotes is a regular expression describing an input symbol
(e.g., "=" matches the equal sign) and ID is a label for a regular expression defined
elsewhere. The (...)+ construct indicates that the enclosed elements should be matched
one or more times. A polynomial looks like a series of terms added together; hence, we can
describe a polynomial as:

poly
: term ("\+" term)*
;

where the (...)* construct indicates that the enclosed elements can be matched zero or
more times; a polynomial may be composed of a single term; hence, we use a zero-or-more
rather than one-or-more subrule. Polynomial terms are simple numbers, simple variables,
variables with exponents, or variables with exponents and coefficients. This fact we encode
as:

term
: FLOAT
| reg
| reg "^" exp
| coefficient reg "^" exp
;

coefficient
: FLOAT
;

reg : ID
;

exp : reg
| FLOAT
;

where we create rules coefficient, reg and exp to make rule term more clear.

As it appears, rule term would result in a parser that needed to see two symbols ahead (over
the common production left-prefix reg), instead of the normal one symbol, to determine
which alternative would match. Specifically, upon input "a", the parser could not determine

A Tutorial

44 Language Translation Using PCCTS and C++

whether the second or third alternative of term applied; that is, the parser could not see if a
"^" followed the "a".

In order to demonstrate the principle of "left-factoring" and to make the resulting parser
behave more naturally, we left-factor rule term so that the resulting parser requires only a
single symbol of lookahead. (Note that in general, left-factoring is not always possible and
more than a single symbol of lookahead is beneficial.) Left-factoring a rule means that you
combine common left-prefixes among the productions. In our case, it is necessary to merge
alternatives two and three, and one and four into two new, slightly more complicated,
alternatives:

term
:coefficient { reg { "^" exp } } // merged alts 1 and 4
|reg { "^" exp } // merged alts 2 and 3
;

where the {..} subrule implies that the enclosed elements are optional. In this form, we
have preserved the grammatical structure, but have reduced the lookahead requirements. For
example, rule term attempts to match alternative one if the input is a number and attempts
alternative two if the input is a register.

Vocabulary

Once the grammatical structure of a language is described, the set of vocabulary symbols
called tokens must be specified. Our polynomial language has only six tokens, which are
described in Table 1 on page 44. The grammar we have developed so far provides implicit

TABLE 1. Vocabulary Symbols for Polynomial Language

Regular Expression Description

"=" The equals sign

";" The semicolon

"\+" The plus sign where the "\" escape character indicates
that the actual plus sign is required—an unescaped "+"
is a reserved symbol (meaning one or more as it does at
the grammatical level)

"^" The exponentiation operator or caret

Language Recognition and Syntax-Directed Interpretation

Language Translation Using PCCTS and C++ 45

definitions (by simply referring to them) for all but numbers and registers, which can be
described as

#token ID "[a-z]"
#token FLOAT "[0-9]+ { . [0-9]+ }"

where we have labeled them for grammar readability.

We must also specify that white space is to be ignored, which is conveniently done with a
regular expression. The scanner (the code that breaks up the input character stream into
vocabulary symbols) normally returns after matching a regular expression. However, we
don’t want to mention a white space vocabulary symbol everywhere within our grammar.
So, we attach an action to the regular expression, indicating that the matched input symbol
should be ignored:

#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>

where we have separated out the recognition of the newline character so that we can tell the
scanner to increment the line count (for error reporting).

The recognizer for our language is now complete. In order to test it, we must specify a
grammar class for ANTLR, inform ANTLR what the type of our token objects is, and
provide a main program. The following code section is a complete description that will
result in an executable parser:

<<
#include "PBlackBox.h" // Define a black box for main()
#include "DLGLexer.h" // What’s the scanner called?
typedef ANTLRCommonToken ANTLRToken; // Use a predefined token object

main()
{

"[0-9]+ {.[0-9]+}" A floating point number. Match a series of one or more
digits (0 through 9) followed optionally by a decimal
point and more digits

"[a-z]" An identifier. Our language restricts identifiers to sin-
gle lower-case letters called registers, which simplifies
associating a value with an identifier.

TABLE 1. (Continued) Vocabulary Symbols for Polynomial Language

Regular Expression Description

A Tutorial

46 Language Translation Using PCCTS and C++

 ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
 p.parser()->interp();// start up the parser
}
>>

#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT "[0-9]+ { . [0-9]+ }"

class PolyParser {
interp

: (ID "=" poly ";")+
;

poly
: term ("\+" term)*
;

term
: coefficient { reg { "^" exp } }
| reg { "^" exp }
;

coefficient
: FLOAT
;

reg : ID
;

exp : reg
| FLOAT
;

}

A makefile that constructs the executable is written automatically by the genmk tool as:

genmk -CC -class PolyParser -project poly poly.g > makefile

The makefile then has to be modified so that makefile variables PCCTS and CCC (the C++
compiler) are set properly. For example,

PCCTS = /usr/local/src/pccts
CCC=g++

The executable called poly can be used to check the syntax of our language, but nothing
else. For example,

Language Recognition and Syntax-Directed Interpretation

Language Translation Using PCCTS and C++ 47

lonewolf:/projects/Book/tutorial/simple$ poly
a = a + =
line 1: syntax error at "=" missing { ID FLOAT }
line 2: syntax error at "" missing ;

Semantic Actions

To actually compute the values described by the polynomials, we must embed actions within
the grammar.

Begin by making a basic assumption: every rule except interp returns the value indicated
by its part of the computation. The result of poly is then the overall result of evaluating the
polynomial:

poly > [float r]
 : <<float f;>>
 term>[$r] ("\+" term>[f] <<$r += f;>>)*
 ;

Rule poly is defined to have a return value called $r via the "> [float r]" notation; this
is similar to the output redirection character of UNIX shells. Setting the value of $r sets the
return value of poly.

The first action after the ":" is an init-action (because it is the first action of a rule or
subrule). The init-action defines a local variable called f that will be used in the (...)*
loop to hold the return value of the term.

The result of each polynomial is stored into the register specified on the left-hand side of the
equation.

interp
 : <<float r;>>
 (lhs:ID "=" poly>[r] ";" <<store($lhs->getText(), r);>>
)+
 ;

The result of poly is placed into local variable r, and the register (a..z, in our case) is
accessed by labeling the token reference that matches the left-hand side. The label lhs
becomes an ANTLRTokenPtr in the output C++ code, and the standard method getText()
is used to obtain the text associated with a token object. Our use of the store() function is
postponed until after the remainder of the grammar is explained.

The rules in the parse tree at the lowest level are easily augmented to return the value of the
specified polynomial portion.

A Tutorial

48 Language Translation Using PCCTS and C++

coefficient > [float r]
 : flt:FLOAT <<$r = atof($flt->getText());>>
 ;

Here, the atof() library function is used compute the floating point value of the text
matched for the FLOAT token. (That is, string "3.14" is converted to floating value 3.14.)
Again, the return value is set by assigning a value to $r.

To compute the value of a variable, we call a function to return the value of the referenced
register; value() is explained shortly.

reg > [float r]
 : id:ID <<$r = value($id->getText());>>
 ;

Rule exp is just as simple:

exp > [float r]
 : reg > [$r]
 | flt:FLOAT <<$r = atof($flt->getText());>>
 ;

Rule term, on the other hand, is a bit more complicated. Given input "3x^2", rule term
chooses alternative one and begins by using a rule reference to coefficient to match "3".
The "x" is matched by choosing the first alternative of the outermost subrule. After having
matched rule reference reg, the parser sees the "^2" and applies the first alternative of the
nested subrule. At that point, the parser has collected the coefficient value (variable c, the
value stored in the register (variable v), and the value of the exponent (variable e). The
result of the rule is c times v to the power e.

You may have noticed that what was previously an optional subrule in the grammar without
actions is now a subrule with an empty alternative. The two are functionally equivalent from
a language recognition standpoint, but allow us to attach an action to the case when nothing
is matched for that subrule. For example, input "3x" follows the same path through rule term
as "3x^2" except that the exponent is missing. The empty path of the nested subrule is taken
instead. We have added an action "$r=c*v;" to the empty path to compute the correct value
when the exponent is missing. The other paths of term can be inferred from this description.

term > [float r]
 : <<float f=0.0, e=0.0, c=0.0, v=0.0;>>
 coefficient > [c]
 (reg > [v]
 ("^" exp>[e] <<$r = c*pow(v,e);>>
 | <<$r = c*v;>>
)
 | <<$r = c;>>
)
 | reg > [f]

Language Recognition and Syntax-Directed Interpretation

Language Translation Using PCCTS and C++ 49

 ("^" exp > [e] <<$r = pow(f,e);>>
 | <<$r = f;>>
)
 ;

Trigger Functions. The functions store() and value() isolate our implementation from
the grammar a bit and avoid placing actions within the grammar. This is a good principle to
follow because it allows the behavior or implementation details of a translator to be changed
without having to actually go inside a possibly dark and scary grammar. Trigger functions
are defined easily by adding some virtual functions to the class definition:

class PolyParser {
<<
protected:
 virtual void store(char *reg, float v) {;}
 virtual float value(char *reg) {;}
>>

...
}

where we have defined only the two most basic operations needed by our parser. When
PolyParser is subclassed, these parser triggers can be easily overridden:

class InterpretingPolyParser : public PolyParser {
protected:
 float regs[’z’-’a’+1];
 virtual void store(char *reg, float v)
 {
 regs[reg[0]-’a’] = v;
 printf("storing %f in %s\n", v, reg);
 }
 virtual float value(char *reg) { return regs[reg[0]-’a’]; }
public:
 InterpretingPolyParser(ANTLRTokenBuffer *input)
 : PolyParser(input)
 {
 for (int i=’a’; i<=’z’; i++) regs[i-’a’] = 0.0;
 }
};

Note that we have used a float array indexed by the registers a..z to store and retrieve the
register values.

The main program is modified to use the subclassed parser:

main()
{
 ParserBlackBox<DLGLexer,

A Tutorial

50 Language Translation Using PCCTS and C++

 InterpretingPolyParser,
 ANTLRToken> p(stdin);
 p.parser()->interp();
}

We have now successfully augmented our grammar to compute and print out the values of
input polynomials. The entire grammar file looks like this:

<<
#include <math.h>

class InterpretingPolyParser : public PolyParser {
protected:

float regs[’z’-’a’+1];
virtual void store(char *reg, float v)

{
regs[reg[0]-’a’] = v;
printf("storing %f in %s\n", v, reg);

}
virtual float value(char *reg)

{ return regs[reg[0]-’a’]; }
public:

InterpretingPolyParser(ANTLRTokenBuffer *input)
: PolyParser(input)
{

for (int i=’a’; i<=’z’; i++) regs[i-’a’] = 0.0;
}

};

#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

main()
{

ParserBlackBox<DLGLexer,
InterpretingPolyParser,
ANTLRToken> p(stdin);

p.parser()->interp();
}
>>

#token "[\ \t]+"<<skip();>>
#token "\n"<<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT"[0-9]+ { . [0-9]+ }"

Language Recognition and Syntax-Directed Interpretation

Language Translation Using PCCTS and C++ 51

class PolyParser {
<<
protected:

virtual void store(char *reg, float v) {;}
virtual float value(char *reg) {;}

>>

interp
: <<float r;>>

(lhs:ID "=" poly>[r] ";" <<store($lhs->getText(),r);>>
)+

;

poly > [float r]
: <<float f;>>

term>[$r] ("\+" term>[f] <<$r += f;>>)*
;

term > [float r]
: <<float f=0.0, e=0.0, c=0.0, v=0.0;>>

coefficient > [c]
(reg > [v]

("^" exp>[e]<<$r = c*pow(v,e);>>
| <<$r = c*v;>>
)

| <<$r = c;>>
)

| reg > [f]
("^" exp > [e]<<$r = pow(f,e);>>
| <<$r = f;>>
)

;

coefficient > [float r]
: flt:FLOAT<<$r = atof($flt->getText());>>
;

reg > [float r]
: id:ID <<$r = value($id->getText());>>
;

exp > [float r]
: reg > [$r]

A Tutorial

52 Language Translation Using PCCTS and C++

| flt:FLOAT<<$r = atof($flt->getText());>>
;

}

The makefile has not changed, and the executable can be generated by simply remaking.
Here is some sample input ouput.

lonewolf:/projects/Book/tutorial/simple$ poly
a=3;
storing 3.000000 in a
b = 10a^2 + 4a + 3;
storing 105.000000 in b

Constructing and Walking ASTs

Another way to evaluate the polynomial equations in the previous section is to have the
parser construct trees and then walk those trees to compute the results. In this section, we
remove the actions from the previous example’s grammar, annotate the grammar with a few
symbols and actions to construct trees, then build a SORCERER grammar to walk our trees
and compute the results.

AST Design

The structure of intermediate trees is important. The fundamental design goal is that an
intermediate form should contain not only the contents of the input stream, but should
represent the structure of the underlying language as well. For example, a linked list of the
input token objects has complete contents, but has no structure to indicate how the input was
parsed.

The top-level tree structure for our ASTs will represent the assignment operation as:

where lhs and rhs are left-hand side and right-hand side, respectively. For example, "a=3;"
will be represented by:

=

lhs rhs

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 53

Polynomials are sums of terms:

for "term1 + term2". For simplicity, we have exactly two children for "+" nodes; hence,
multiple additions are represented by using the result of one addition as the operand of
another addition. For example, "term1 + term2 + term3" would be represented as:

With a depth-first walk of the tree, the order of operations is correct—left to right for
addition.

Terms themselves have the following template:

For example, "3x^2" is represented by:

=

a 3

+

term1 term2

+

+

term1 term2

term3

MULT

coeff EXP

x exponent

MULT

3 EXP

x 2

A Tutorial

54 Language Translation Using PCCTS and C++

Terms without exponents such as "3x" look like:

and terms without coefficients such as "x^2" look like:

Notice that there is no corresponding input token for the multiply operation because it is
implicit that the term variable is multiplied by its coefficient. This node must be created
manually with a grammar action.

Constructing ASTs

In this section, we define the appearance of AST node and modify the grammar to construct
ASTs.

For simplicity, define an AST node to contain simply a pointer to the associated input token
object. The type of an AST must be called AST, and we have placed its definition in a file
called AST.h:

#include "ASTBase.h"
#include "AToken.h"

class AST : public ASTBase {
protected:

ANTLRTokenPtr token; // pointer to the token found in input
public:

// called when #[tokentype,string] is seen in an action
AST(ANTLRTokenType tok, char *s) { token = new ANTLRToken(tok,s); }

// constructor called by parser for token references in grammar
AST(ANTLRTokenPtr t) { token = t; }

// define what happens at a node when preorder() is called
void preorder_action() {

char *s = token->getText();

MULT

3 x

EXP

x 2

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 55

printf(" %s", s);
}

};

The main program and required definitions become:

<<
#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"

main()
{
 ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
 ASTBase *root = NULL;
 p.parser()->interp(&root);
}
>>

ANTLR uses a return parameter to return the AST constructed for each rule. As a result, the
call to the starting rule must pass the address of a tree pointer where the result will be stored;
this pointer must be initialized to NULL.

Tree building. Eventually, each polynomial is passed to the tree walker for evaluation one
at a time; a list of all equations is not maintained. The previous starting rule

interp
 : (ID "=" poly ";")+
 ;

is therefore split into the following:

interp!
: (assign)+
;

assign
: ID "="^ poly ";"! <<#0->preorder(); printf("\n");>>
;

where the ! on the interp header indicates that ANTLR is not to construct trees in that rule
(a list of assignments is not required). Had we left the rule as written and added the tree
construction grammar operators (as shown in the assign rule), the trees would not be
constructed correctly after the first polynomial. The second iteration of the (...)+ loop
would continue to add to the same tree because each rule constructs exactly one tree.

A Tutorial

56 Language Translation Using PCCTS and C++

The ! on the ";" token in rule assign indicates that a node is not to be constructed in the
AST for that token. The ^ suffix on the "=" token indicates that the assignment is to be made
the root of the current subtree (whatever that happens to be at the time the assignment
operator is matched)—in this case, a lone ID node. Any other token is assumed to be a leaf
node in the AST. All rule references without ! suffixes return subtrees whose roots are
made children of the current subtree root. For example, the tree returned from poly is made
a child of the assignment node with the target of the assignment as the other child.

The call to preorder() for the return tree, #0, in assign walks the tree and prints it out
in LISP form. For the moment, we print out the tree rather than invoke a SORCERER tree
walker so that this portion of the evaluator can be tested separately.

To collect the sum of terms is easy to do:

poly
 : term ("\+"^ term)*
 ;

The ̂ suffix on the "\+" tells ANTLR to create an addition node and place it as the root of
whatever subtree has been constructed up until that point for rule poly. The subtrees
returned by the term references are collected as children of the addition nodes.

The simple terms of the x^e are constructed by the second alternative of term:

| reg { "^"^ exp }

where we have converted the (exp|) back to the simpler optional subrule. The “"^"^”
may be a bit confusing. The input token is the up-arrow and the grammar operator for AST
root is also up-arrow. Hence, trees of the form

are created (assuming an exponent is found on the input).

Constructing trees for terms with coefficients is complicated by the fact that a multiply node
must be created and placed in the tree for which there is no corresponding input symbol. We
will therefore have to turn off ANTLR’s default tree construction mechanism to build the
AST manually. Because the automatic AST mechanism can only be turned off at a rule-level
granularity, we have term call another rule which builds the appropriate tree manually, thus
leaving the automatic mechanism to work its magic for the other alternatives in term:

term
: bigterm
| reg { "^"^ exp }
;

^

reg exp

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 57

bigterm!
: c:coefficient

(r:reg
("^" e:exp

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, #e));>>
| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

where "#[arglist]" is a node constructor translated to "new AST(arglist)" and

#(root, child1, ..., childn)

is converted to a call to the tree constructor

ASTBase::tmake(root, child1, ..., childn, NULL);

The rule references in bigterm are labeled so that the resulting ASTs can be referenced and
placed in the tree for bigterm. The simplest path through the rule is to match
coefficient followed by nothing, in which case the <<#0=#c;>> action is executed to set
the return value (#0) of bigterm. If a coefficient and a register are found, but no exponent,
the

<<#0 = #(#[MULT,"MULT"], #c, #r);>>

action is executed. It creates a tree with a MULT node at the root and the coefficient and
register as children, where the #[...] node constructor is translated to a call to AST(...)
by ANTLR. The #(...) is translated to a call to the tree constructor where the first
argument is the root node and all subsequent arguments are the children of that node. Trees
for full terms are constructed in a similar fashion.We define the MULT token type referenced
within the above actions with

#token MULT

even though no input symbol corresponds to this token type and, therefore, we do not
specify a regular expression. We also need to access the token type of the exponent operator
so that the manual tree construction actions can build the appropriate nodes:

#token EXP "^"

Rules coefficient, reg, and exp automatically construct nodes for the single tokens
they match; nothing further must be specified.

The grammar does not yet pass anything to a tree walker for evaluation, but may be tested to
see that the correct trees are being produced. In the complete ANTLR description,
(ASTBase::preorder() is called to dump out the trees):

A Tutorial

58 Language Translation Using PCCTS and C++

<<
#include "PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"

main()
{
 ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
 ASTBase *root = NULL;
 p.parser()->interp(&root);
}
>>

#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT "[0-9]+ { . [0-9]+ }"

#token EXP "^"
#token MULT

class PolyParser {

interp!
: (a:assign)+
;

assign
: ID "="^ poly ";"! <<#0->preorder(); printf("\n");>>
;

poly
: term ("\+"^ term)*
;

term
: bigterm
| reg { "^"^ exp }
;

bigterm!
: c:coefficient

(r:reg
("^" e:exp

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 59

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r,
#e));>>

| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

coefficient
 : FLOAT
 ;

reg : ID
 ;

exp : reg
 | FLOAT
 ;
}

A makefile may be constructed by invoking

genmk -CC -class PolyParser -project poly -trees poly.g

and placing the output in makefile. Do not forget to fill in appropriate values for the
PCCTS and CCC make variables. Here is some sample input/output:

lonewolf:/projects/Book/tutorial/testAST$./poly
x = 2;
 (= x 2)
y = 4x^7 + 3x + 1;
 (= y (+ (+ (MULT 4 (EXP x 7)) (MULT 3 x)) 1))

The corresponding ASTs look like

and

=

x 2

A Tutorial

60 Language Translation Using PCCTS and C++

Describing ASTs With SORCERER

Now that our parser constructs trees, we can evaluate the polynomials by walking them,
either with a hand-built tree walker or by having SORCERER generate a tree walker
automatically. SORCERER accepts a grammatical description of your AST structure and
generates a recursive-descent tree walker that looks very much like what you would build by
hand. However, tree grammars have the same advantages over hand built tree walkers that
ANTLR grammars has over hand-built conventional text parsers.

As in our AST design, assignments are of the form

which can easily be described with a rule in SORCERER:

assign
: #(ASSIGN ID poly)
;

Where the ASSIGN token type will be attached to the "=" token in the ANTLR grammar
later.

Our AST design for polynomials can be described as:

poly: #(MULT poly poly)
| #(ADD poly poly)
| #(EXP poly poly)
| ID

=

y +

+

MULT

4 EXP

x 7

MULT

3 x

1

=

lhs rhs

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 61

| FLOAT
;

where the ADD token type is attached to the "\+" token in the ANTLR grammar later. Rule
poly lists all the possible subtrees and leaf nodes. Each subtree has a binary operator at the
root. We do not have to specify a priority in which these particular subtrees can be matched
against the input tree because the incoming tree has the precedence encoded in the structure
itself. For example, in the tree

it is clear that the exponentiation is to be done first because it is farther down in the tree than
the multiplication operator. All children must be computed before the parent operation can
take place.

The experienced reader will note that our SORCERER grammar is a bit looser than
necessary. For example, the third alternative can describe the AST structure more precisely:

| #(EXP ID FLOAT)

because “x^e” is only allowed for x as identifiers and e as floats. However, for simplicity, we
make all operands references to rule poly. Later, we will only need one action to compute
the value of a FLOAT node (i.e., in the fourth alternative) rather than at each place in a
“tighter” grammar where FLOAT is referenced.

To satisfy the SORCERER programmer’s interface, we must define what the input trees
look like by providing type SORAST. We include AST.h and then specify

typedef AST SORAST;

The SORCERER programmer’s interface requires also that each node be able to identify its
token type. For convenience, we have added a function to retrieve the text associated with
the token object stored in each AST node. The augmented AST definition looks like this:

#include "ASTBase.h"
#include "AToken.h"
#include "ATokPtr.h"
class AST : public ASTBase {
protected:

ANTLRTokenPtr token;// pointer to the token found on input
public:

// called when #[tokentype,string] is seen in an action

MULT

3 EXP

x 2

A Tutorial

62 Language Translation Using PCCTS and C++

AST(ANTLRTokenType tok, char *s) {token = new ANTLRToken(tok, s);}

// constructor called by parser for token references in grammar
AST(ANTLRTokenPtr t) { token = t; }

// define what happens at a node when preorder() is called
void preorder_action() {
char *s = token->getText();
printf(" %s", s);
}

// every node must know it’s token type
virtual int type() { return token->getType(); }

// convenient to get text of associated input token
char *getText() { return token->getText(); }

};

We also need to give a class definition around the SORCERER grammar along with our two
trigger functions.

class EvalPoly {
<<
protected:

virtual float value(char *r) = 0;
virtual void store(char *r, float v) = 0;

>>
...

}

We subclass EvalPoly and place it in MyEvalPoly.h to define these trigger functions.

#include "EvalPoly.h"

class MyEvalPoly : public EvalPoly {
protected:

float regs[’z’-’a’+1];
virtual float value(char *r){ return regs[r[0]-’a’]; }
virtual void store(char *r, float v){ regs[r[0]-’a’] = v; }

public:
MyEvalPoly()

{
for (int i=’a’; i<=’z’; i++) regs[i-’a’] = 0.0;

}
};

We have again used a float array indexed by the registers a..z to store and retrieve the
register values.

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 63

Adding Actions to Compute Polynomial Values

To actually compute the value of a polynomial, we add actions to the SORCERER grammar.
As with the ANTLR only version, we use a few trigger functions to store and retrieve
register values. Assigning the result of evaluating a polynomial is done in rule assign as
follows:

assign
: <<float r;>>

#(ASSIGN id:ID poly>[r])
<<
store(id->getText(), r);
printf("storing %f in %s\n", r, id->getText());
>>

;

We define a local variable, r, with the init-action (first action of a rule or subrule) and place
the result of poly into it. We call our trigger function store() with the register and the
result value and print it out. The position of this action is important: It must be done after the
reference to poly so that poly’s value is computed before the printf tries to use it.

Computing the value of the polynomial trees is straightforward (one of the design goals of
our AST, remember?):

poly > [float r]
: <<float p1,p2;>>

#(MULT poly>[p1] poly>[p2]) <<r = p1*p2;>>

| <<float p1,p2;>>
#(ADD poly>[p1] poly>[p2]) <<r = p1+p2;>>

| <<float p1,p2;>>
#(EXP poly>[p1] poly>[p2]) <<r = pow(p1,p2);>>

| id:ID <<r = value(id->getText());>>
| f:FLOAT <<r = atof(f->getText());>>
;

Rule poly returns the floating point result as a return value. Starting with the simplest
alternatives, you will note that for a floating point tree node, we simply compute the floating
point value (atof()) of the text found on the input stream for that token. For an identifier
(register) node, we call our trigger function value() with the register identifier and return
the result. The other alternatives of poly take the results of the two operands and perform
the appropriate operation. Again, the actions must appear after the calls to the operands so
that both results are available before being used.

A Tutorial

64 Language Translation Using PCCTS and C++

Because rule assign will be called from the ANTLR grammar, no main program is required
or specified in the SORCERER description. The entire specification is

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class EvalPoly {
<<
protected:

virtual float value(char *r) = 0;
virtual void store(char *r, float v) = 0;

>>

assign
: <<float r;>>

#(ASSIGN id:ID poly>[r])
<<
store(id->getText(), r);
printf("storing %f in %s\n", r, id->getText());
>>

;

poly > [float r]
: <<float p1,p2;>>

#(MULT poly>[p1] poly>[p2]) <<r = p1*p2;>>

| <<float p1,p2;>>
#(ADD poly>[p1] poly>[p2]) <<r = p1+p2;>>

| <<float p1,p2;>>
#(EXP poly>[p1] poly>[p2]) <<r = pow(p1,p2);>>

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 65

| id:ID <<r = value(id->getText());>>
| f:FLOAT <<r = atof(f->getText());>>
;

}

Now the question is, how do we link our SORCERER tree-walker into our AST-
constructing ANTLR grammar? First, we need to include the tree walker definition:

#header <<
// must be visible to all generated files; hence, must
// be in #header action
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "MyEvalPoly.h"
>>

Second, we need to associate labels with the assignment and addition operator tokens so that
they may be referenced in our SORCERER description.

#token ASSIGN "="
#token ADD "\+"

Third, and finally, we need to place a call in the assign ANTLR rule to invoke the
SORCERER assign rule (which will evaluate the polynomial):

assign
: ID "="^ poly ";"!

<<walker.assign((SORASTBase **)�);>>
;

where our tree walker is defined as a member variable of our parser:

class PolyParser {
<<
protected:
 MyEvalPoly walker;
>>

...
}

The action invokes the assign rule of the tree walker we have declared. The cast is required
because SORCERER generates tree-walking functions that take generic SORASTBase tree
pointers not ASTBase pointers (the type of #0).

The augmented ANTLR description is

#header <<
// must be visible to all generated files; hence, must put in #header
#include "AToken.h"

A Tutorial

66 Language Translation Using PCCTS and C++

typedef ANTLRCommonToken ANTLRToken;
#include "MyEvalPoly.h"
>>

<<
#include "PBlackBox.h"
#include "DLGLexer.h"

main()
{

ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p.parser()->interp(&root);

}
>>

#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>
#token ID "[a-z]"
#token FLOAT "[0-9]+ { . [0-9]+ }"

#token EXP "^"
#token ASSIGN "="
#token ADD "\+"
#token MULT

class PolyParser {

<<
protected:

MyEvalPoly walker;
>>

interp!
: (a:assign)+
;

assign
: ID "="^ poly ";"!

<<walker.assign((SORASTBase **)�);>>
;

poly
: term ("\+"^ term)*
;

Constructing and Walking ASTs

Language Translation Using PCCTS and C++ 67

term:bigterm
| reg { "^"^ exp }
;

bigterm!
: c:coefficient

(r:reg
("^" e:exp

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, #e));>>
| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

coefficient
: FLOAT
;

reg : ID
;

exp : reg
| FLOAT
;

}

The previous makefile created with

genmk -CC -class PolyParser -project poly -trees poly.g

for testing the AST construction can be modified for use with a SORCERER phase in the
following ways:

• MAKE variables for SORCERER support code and binaries are added:
SOR_H = $(PCCTS)/sorcerer/h
SOR_LIB = $(PCCTS)/sorcerer/lib
SOR = $(PCCTS)/sorcerer/sor

• CFLAGS variable is changed to add the SORCERER directory:
CFLAGS = -I. -I$(ANTLR_H) -I$(SOR_H)

A Tutorial

68 Language Translation Using PCCTS and C++

• SRC variable is changed to add the SORCERER phase and support file:
SRC = poly.cpp \
 PolyParser.cpp \
 $(ANTLR_H)/AParser.cpp $(ANTLR_H)/DLexerBase.cpp \
 $(ANTLR_H)/ASTBase.cpp $(ANTLR_H)/PCCTSAST.cpp \
 $(ANTLR_H)/ATokenBuffer.cpp $(SCAN).cpp \
 eval.cpp EvalPoly.cpp \
 $(SOR_LIB)/STreeParser.cpp

• OBJ variable is changed in a similar way.

• Target poly.o is changed to depend on the SORCERER phase include file:
poly.o : $(TOKENS) $(SCAN).h poly.cpp EvalPoly.h
 $(CCC) -c $(CFLAGS) -o poly.o poly.cpp

• Finally, we add targets for all the SORCERER output and support code:
EvalPoly.o : EvalPoly.cpp
 $(CCC) -c $(CFLAGS) EvalPoly.cpp

eval.o : eval.cpp
 $(CCC) -c $(CFLAGS) eval.cpp

eval.cpp EvalPoly.cpp EvalPoly.h : eval.sor
 $(SOR) -CPP eval.sor

STreeParser.o : $(SOR_LIB)/STreeParser.cpp
 $(CCC) -o STreeParser.o -c $(CFLAGS) \
 $(SOR_LIB)/STreeParser.cpp

Tree Transformations and Multiple SORCERER Phases

The previous example used SORCERER to evaluate polynomial assignments. We now
consider how to use SORCERER to perform tree rewrites. We shall differentiate
polynomials of the form:

ax^n + bx^m + ...

for integers a, b, n and m; we assume a single free variable x. As before, we will construct
trees for the polynomials using an ANTLR grammar, but then manipulate the trees using
three SORCERER phases. For example, given input

x^2 + 2x + 1

Tree Transformations and Multiple SORCERER Phases

Language Translation Using PCCTS and C++ 69

the ANTLR grammar constructs the tree

The first SORCERER phase differentiates the polynomial, yielding:

or

2x^1 + 2 + 0

The second phase normalizes the polynomial so that additions of zero are removed and
exponents of one are removed:

or

2x + 2

The third and final phase prints the tree back out in polynomial form.

SORCERER will be used in transform mode where it makes the following assumptions:

• There is an input tree from which an output tree is derived.

+

+

^

x 2

MULT

2 x

1

+

+

MULT

2 ^

x 1

2

0

+

MULT

2 x

2

A Tutorial

70 Language Translation Using PCCTS and C++

• If given no instructions to the contrary, SORCERER automatically copies the input
tree to the output tree.

• Each rule has a result tree, and the result tree of the first rule called is considered
the final, transformed tree. This added functionality does not affect the normal rule
argument and return value mechanism.

• Labels attached to grammar elements are generally referred to as label, where label
refers to the input tree subtree in nontransform mode.

The output tree in transform mode is referred to as label. The input node,
for token references only, can be obtained with label_in. The input
subtree associated with rule references is unavailable after the rule has
been matched—the tree pointer points to where that rule left off parsing.
Input nodes in transform mode are not needed very often.

• A C++ variable exists for any labeled token reference even if it is never set by
SORCERER.

• The output tree of a rule can be set and/or referenced as #rule.

Tree Definition

To satisfy SORCERER in transform mode (in this situation), you must tell SORCERER how
to construct new trees with shallowCopy() where t->shallowCopy() returns a
duplicate of node t with all node pointers NULL. If you refer to #[...] in an action, you
must also define a constructor with the appropriate arguments. The AST used in this
application differs from the previous in that we have added

• An integer iconst field to make decrementing exponents easier

• Constructors for all #[...] node constructor references

• A definition of shallowCopy()

The AST is defined as follows:

#ifndef AST_h
#define AST_h

#include "ASTBase.h"
#include "AToken.h"
// use smart pointers ANTLRTokenPtr for garbage collection
#include "ATokPtr.h"

class AST : public ASTBase {
protected:
 ANTLRTokenPtr token;
 int iconst;

Tree Transformations and Multiple SORCERER Phases

Language Translation Using PCCTS and C++ 71

public:
/* These ctor are called when you ref node constructor #[tok,s] */
AST(ANTLRTokenType tok, char *s)

{
token = new ANTLRToken(tok, s);
if (token->getType() == INT)

 iconst = atoi(token->getText());
}

AST(ANTLRTokenType tok, int i)
{

token = new ANTLRToken(tok, "");
iconst = i;

}
// called by ANTLR grammar during initial tree construction
AST(ANTLRTokenPtr t)

{
token = t;
if (token->getType() == INT)
{

iconst = atoi(token->getText());
}

}
AST(const AST &t) // copy constructor

{
token = t.token;
iconst = t.iconst;
setDown(NULL);
setRight(NULL);

}
void preorder_action() {

char *s = token->getText();
if (token->getType()==INT) printf(" %d", iconst);
else printf(" %s", s);

}
virtual int type() { return token->getType(); }
char *getText() { return token->getText(); }
void setText(char *s) { token->setText(s); }
virtual PCCTS_AST *shallowCopy() { return new AST(*this); }
int getIConst() { return iconst; }
void setIConst(int i) { iconst = i; }
void decIConst() { iconst--; }
};

#endif

A Tutorial

72 Language Translation Using PCCTS and C++

Building Trees For Differentiation

The grammar needed to build the ASTs is a slightly modified version of poly.g used in the
previous examples. The differences are that assignments are not recognized and coefficients
and exponents must be simple integers. (Support code differences are commented in the
grammar.)

<<
#include “PBlackBox.h"
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;

#include "AST.h"
#include "DiffPoly.h" // include the .h files for 3 phases
#include "SimplifyPoly.h"
#include "PrintPoly.h"

main()
{

ParserBlackBox<DLGLexer, PolyParser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p.parser()->poly(&root)

}
>>

#token "[\ \t]+"<<skip();>>
#token "\n" <<skip(); newline();>>

#token EXP "^"
#token ADD "\+" // def used by SORCERER phases
#token MULT // used by SORCERER phases

class PolyParser {

poly
: <<

AST *result=NULL, *nresult=NULL;
DiffPoly dp; // define the 3 phases
PrintPoly pp;
SimplifyPoly sp;
>>
term ("\+"^ term)*
<<
// execute the 3 phases, creating new tree after phase 1,2
dp.poly((SORASTBase **)&(#0), (SORASTBase **)&result);
sp.poly((SORASTBase **)&result, (SORASTBase **)&nresult);

Tree Transformations and Multiple SORCERER Phases

Language Translation Using PCCTS and C++ 73

pp.poly((SORASTBase **)&nresult);
printf("\n");
>>

;

term:bigterm
| reg { "^"^ INT }
;

bigterm!
: c:coefficient

(r:reg
("^" e:exp

<<#0 = #(#[MULT,"MULT"], #c, #(#[EXP,"EXP"], #r, #e));>>
| <<#0 = #(#[MULT,"MULT"], #c, #r);>>
)

| <<#0 = #c;>>
)

;

coefficient
: INT
;

reg : ID
;

exp : INT
;

}

#token ID "[a-z]"
#token INT "[0-9]+"

A Tutorial

74 Language Translation Using PCCTS and C++

Differentiation Phase

Differentiating our polynomial trees follows these rules:

The complete SORCERER diffierentiation grammar looks like this:

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class DiffPoly {

poly: #(ADD poly poly)
 | term
 ;

term!: i:INT <<#term = #[INT,"0"];>>
 | id:ID <<#term = #[INT,"1"];>>

 | #(ex:EXP id:ID e:INT)
 <<

 #term = #(#[MULT,"MULT"], #[INT,e->getIConst()], #(ex,id,e));
 e->decIConst(); // decrement exponent

TABLE 2. Differentiation of Polynomial Trees

Isolated integers Set the value to 0.

Isolated identifiers Replace with an integer node whose value is 1

Terms with exponents and no
coefficient

Make a new tree with a multiply at the root, the pre-
vious exponent as the first child, and the previous
term as the second child. Decrement the exponent of
the term.

Terms with no exponent, but
with coefficient

Replace the term with the coefficient node.

Terms with coefficients and
exponents

Multiply the exponent into the coefficient and decre-
ment the exponent.

Tree Transformations and Multiple SORCERER Phases

Language Translation Using PCCTS and C++ 75

 >>
 | #(m:MULT ct:INT

(#(ex:EXP idt:ID et:INT)
 <<

// just reset the integer values everywhere
ct->setIConst(ct->getIConst()*et->getIConst());
et->decIConst();
#term = #(m, ct, #(ex,idt,et));
>>

 | ID
<<#term = ct;>> // just return the INT node

)
)
 ;

}

The action

#term = #[INT,"0"];

sets the output tree for rule term to be a single node (using the #[...] node constructor).
The action

#term = #(#[MULT,"MULT"], #[INT,e->getIConst()], #(ex,id,e));

creates a tree with a new MULT node as the root, a new INT node as the first child and the
previous term, #(ex,id,e), because the second child where nodes labeled by ex, id
and e are duplicates made automatically from the input nodes.

Simplification Phase

Differentiation can leave unusual terms such as additions of zero and exponents of one. A
SORCERER phase to simply polynomials is useful. The following simple rules are used:

TABLE 3. Simplification of Polynomial Trees

Addition of 0+0 Return NULL.

Addition of integer with value 0 to any
other term, t

Return t.

Terms t with exponents of value 1 Return just t.

A Tutorial

76 Language Translation Using PCCTS and C++

The following SORCERER transform mode phase implements these rules.

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class SimplifyPoly {

poly: #(MULT poly poly)
 |! #(a:ADD p:poly q:poly)
 <<
 if (p==NULL) #poly = q;
 else if (q==NULL) #poly = p;
 else {

int leftIdentity=(p->type()==INT && p->getIConst()==0);
 int rightIdentity=(q->type()==INT && q->getIConst()==0);
 if (leftIdentity && !rightIdentity) #poly = q; //0+x
 else if (!leftIdentity && rightIdentity) #poly = p; //x+0
 else if (!leftIdentity&&!rightIdentity) #poly = #(a,p,q);
 else #poly = NULL; //0+0
 }
 >>
 |! #(e:EXP v:poly ex:INT)
 <<
 if (ex->getIConst()==1) #poly = v;
 else #poly = #(e,v,ex);
 >>
 | id:ID
 | i:INT
 ;

}

Tree Transformations and Multiple SORCERER Phases

Language Translation Using PCCTS and C++ 77

Printing Phase

After simplification, the only remaining task is to print the differentiated tree back out in
polynomial form, which is done in SORCERER nontransform mode:

#header <<
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "tokens.h"
#include "AToken.h"
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
typedef AST SORAST;
>>

class PrintPoly {

poly: #(MULT poly poly)
 | #(ADD poly <<printf("+");>> poly)
 | #(EXP poly <<printf("^");>> poly)
 | id:ID <<printf("%s",id->getText());>>
 | i:INT <<printf("%d",i->getIConst());>>
 ;

}

The order of action execution is important. Because we wish to print out polynomials in
infix notation (as opposed to postfix, for example), we insert the

printf("+");

action in between the printing of the two operands of the ADD root node.

Makefile

The following makefile has targets for the parser and three tree-walking phases. This was
initially generated by the genmk program, but was modified by hand for the SORCERER
targets.

#
PCCTS makefile for: poly.g
#
Created from: genmk -CC -class PolyParser -project poly -trees poly.g
#

A Tutorial

78 Language Translation Using PCCTS and C++

PCCTS release 1.32
Project: poly
C++ output
DLG scanner
ANTLR-defined token types
#
TOKENS = tokens.h
#
The following filenames must be consistent with ANTLR/DLG flags
DLG_FILE = parser.dlg
ERR = err
HDR_FILE =
SCAN = DLGLexer
PCCTS = /projects/pccts
ANTLR_H = $(PCCTS)/h
SOR_H = $(PCCTS)/sorcerer/h
SOR_LIB = $(PCCTS)/sorcerer/lib
BIN = $(PCCTS)/bin
ANTLR = $(BIN)/antlr
DLG = $(BIN)/dlg
SOR = $(PCCTS)/sorcerer/sor
CFLAGS = -I. -I$(ANTLR_H) -g -I$(SOR_H)
AFLAGS = -CC -gt
DFLAGS = -C2 -i -CC
GRM = poly.g
SRC = poly.cpp \

PolyParser.cpp \
$(ANTLR_H)/AParser.cpp $(ANTLR_H)/DLexerBase.cpp \

 $(ANTLR_H)/ASTBase.cpp $(ANTLR_H)/PCCTSAST.cpp \
 $(ANTLR_H)/ATokenBuffer.cpp $(SCAN).cpp \
 diff.cpp DiffPoly.cpp print.cpp PrintPoly.cpp simplify.cpp \

SimplifyPoly.cpp \
 $(SOR_LIB)/STreeParser.cpp
OBJ = poly.o \
 PolyParser.o \
 AParser.o DLexerBase.o \
 ASTBase.o PCCTSAST.o \
 ATokenBuffer.o $(SCAN).o \
 diff.o DiffPoly.o print.o PrintPoly.o simplify.o SimplifyPoly.o \
 STreeParser.o
ANTLR_SPAWN = poly.cpp PolyParser.cpp \

PolyParser.h $(DLG_FILE) $(TOKENS)
DLG_SPAWN = $(SCAN).cpp $(SCAN).h
CCC=g++
CC=$(CCC)

Tree Transformations and Multiple SORCERER Phases

Language Translation Using PCCTS and C++ 79

poly : $(OBJ) $(SRC)
$(CCC) -o poly $(CFLAGS) $(OBJ)

poly.o : $(TOKENS) $(SCAN).h poly.cpp PrintPoly.h DiffPoly.h
SimplifyPoly.h

$(CCC) -c $(CFLAGS) -o poly.o poly.cpp

PolyParser.o : $(TOKENS) $(SCAN).h PolyParser.cpp PolyParser.h
$(CCC) -c $(CFLAGS) -o PolyParser.o PolyParser.cpp

$(SCAN).o : $(SCAN).cpp $(TOKENS)
$(CCC) -c $(CFLAGS) -o $(SCAN).o $(SCAN).cpp

$(ANTLR_SPAWN) : $(GRM)
$(ANTLR) $(AFLAGS) $(GRM)

$(DLG_SPAWN) : $(DLG_FILE)
$(DLG) $(DFLAGS) $(DLG_FILE)

AParser.o : $(ANTLR_H)/AParser.cpp
$(CCC) -c $(CFLAGS) -o AParser.o $(ANTLR_H)/AParser.cpp

ATokenBuffer.o : $(ANTLR_H)/ATokenBuffer.cpp
$(CCC) -c $(CFLAGS) -o ATokenBuffer.o $(ANTLR_H)/ATokenBuffer.cpp

DLexerBase.o : $(ANTLR_H)/DLexerBase.cpp
$(CCC) -c $(CFLAGS) -o DLexerBase.o $(ANTLR_H)/DLexerBase.cpp

ASTBase.o : $(ANTLR_H)/ASTBase.cpp
$(CCC) -c $(CFLAGS) -o ASTBase.o $(ANTLR_H)/ASTBase.cpp

PCCTSAST.o : $(ANTLR_H)/PCCTSAST.cpp
$(CCC) -c $(CFLAGS) -o PCCTSAST.o $(ANTLR_H)/PCCTSAST.cpp

#
SORCERER crud
#
PrintPoly.o : PrintPoly.cpp

$(CCC) -c $(CFLAGS) PrintPoly.cpp

print.o : print.cpp
$(CCC) -c $(CFLAGS) print.cpp

print.cpp PrintPoly.cpp PrintPoly.h : print.sor
$(SOR) -CPP print.sor

A Tutorial

80 Language Translation Using PCCTS and C++

DiffPoly.o : DiffPoly.cpp
$(CCC) -c $(CFLAGS) DiffPoly.cpp

diff.o : diff.cpp
$(CCC) -c $(CFLAGS) diff.cpp

diff.cpp DiffPoly.cpp DiffPoly.h : diff.sor
$(SOR) -transform -CPP diff.sor

SimplifyPoly.o : SimplifyPoly.cpp
$(CCC) -c $(CFLAGS) SimplifyPoly.cpp

simplify.o : simplify.cpp
$(CCC) -c $(CFLAGS) simplify.cpp

simplify.cpp SimplifyPoly.cpp SimplifyPoly.h : simplify.sor
$(SOR) -transform -CPP simplify.sor

STreeParser.o : $(SOR_LIB)/STreeParser.cpp
$(CCC) -o STreeParser.o -c $(CFLAGS) $(SOR_LIB)/STreeParser.cpp

clean:
rm -f *.o core poly

scrub:
rm -f *.o core poly $(ANTLR_SPAWN) $(DLG_SPAWN)

Language Translation Using PCCTS and C++ 81

 3 ANTLR Reference

This chapter tells you what you need to know so you can construct parsers via ANTLR
grammars, how to interface a parser to your application, and how to insert actions to
generate output. Unless otherwise specified, actions and other source code is C++.

[Professors Russell Quong, Hank Dietz, and Will Cohen all have contributed greatly to the
overall development of PCCTS in general. In particular, much of the intellectual property of
ANTLR was conceived with Russell Quong.]

ANTLR Descriptions

Generally speaking, an ANTLR description consists of a collection of lexical and syntactic
rules describing the language to be recognized and a collection of user-defined semantic
actions describing what to do with the input sentences as they are recognized. A single
grammar may be broken up into multiple files and multiple grammars may be specified
within a single file, but the basic sequence follows something like:

header action
actions
token definitions
rules
actions
token definitions

ANTLR Reference

82 Language Translation Using PCCTS and C++

For example, the following is a complete ANTLR description that recognizes the vocabulary
of B. Simpson:

<<
typedef ANTLRCommonToken ANTLRToken;
#include "DLGLexer.h"
#include "PBlackBox.h"
main() {
 ParserBlackBox<DLGLexer, // create a parser

 BSimpsonParser,
ANTLRToken> bart(stdin);

 bart.parser()->a(); // invoke parser
}
>>

#token "[\ \t\n]+" <<skip();>> // ignore whitespace
#token MAN "man"

class BSimpsonParser {
a : "no" "way" MAN
 | "don’t" "have" "a" "cow" "man"
 ;
}

More precisely, ANTLR descriptions conform to the following grammar:

grammar
: ("#header" ACTION

| "#parser" STRING
| "#tokdefs" STRING
)*
{ "class" ID "\{" }
(ACTION | lexaction | directive | global_exception_handler)*
(rule | directive)+
(ACTION | directive)*
{ "\}" }
(ACTION | directive)*

;

directive
: lexclass | token_def | errclass_def | tokclass_def
;

where the lexical items in Table 4 on page 83 apply:

There is no start rule specification per se because any rule can be invoked first.

ANTLR Descriptions

Language Translation Using PCCTS and C++ 83

Comments

Both C and C++ style comments are allowed within the grammar (outside of actions)
regardless of the language used within actions. For example,

/* here is a rule */
args : ID ("," ID)* ; // match a list of ID’s

The comments used within your actions is determined by your language.

#header Directive

Any C or C++ code that must be visible to files generated by ANTLR must placed in an
action at the start of your description preceded by the #header directive. This directive is
necessary when using the C interface and is optional with the C++ interface. Turn on
ANTLR command line option -gh when using the C interface if the function that invokes
the parser is in a non-ANTLR-generated file.

#parser Directive

Because C does not have the notion of a package or module, linking ANTLR-generated
parser causes multiply defined symbol errors (because of the global variables defined in

TABLE 4. Lexical Items in an ANTLR Description

Token Name Form Example

ACTION <<...>> <<int i;>>

<<define(id->getText());>>

STRING “...” “[a-z]+” “begin”

“includefile.h” “test”

TOKEN [A-Z][a-zA-Z0-9_]* ID KeyBegin Int_Form1

RULE [a-z][a-zA-Z0-9_]* expr statement func_def

ARGBLOCK [...] [34] [int i, float j]

ID [a-zA-Z][a-z0-9_]* CParser label

SEMPRED <<...>>? <<isType(id->getText()) >>?

ANTLR Reference

84 Language Translation Using PCCTS and C++

each parser). The solution to the problem is to prefix all global ANTLR symbols with a user-
defined string in order to make the symbols unique to the C linker. The #parser is used to
specify this prefix. A file called remap.h is generated that contains a sequence of
redefinitions for the global symbols. For example,

#parser foo

generates a remap.h file similar to:

#define your_rule foo_your_rule
#define zztokenLA xyz_zztokenLA
#define AST xyz_AST
...

Parser Classes

When using the C++ interface, you must specify the name of the parser class by enclosing
all rules in

class Parser {
 ...
}

A parser class results in a subclass of ANTLRParser in the parser. A parser object is simply
a set of actions and routines for recognizing and performing operations on sentences of a
language. Consequently, it is natural to have many separate parser objects; for example, one
for recognizing include files.

Exactly one parser class may be defined. For the defined class, ANTLR generates a derived
class of ANTLRparser.

Actions may be placed within the parser class scope and may contain any C++ code that is
valid within a C++ class definition. Any variable or function declarations will become
members of the class in the resulting C++ output. For example,

class Parser {
<<public: int i;>>
<<int f() { blah; }>>

rule : A B <<f();>> ; <<fail-action for rule;>>

<<final action;>>
}

Here, variable i and function f are members of class Parser that become a subclass of
ANTLRParser in the resulting C++ code.

ANTLR Descriptions

Language Translation Using PCCTS and C++ 85

The actions at the head of the parser class are collected and placed near the head of the
resulting C++ class; the actions at the end of the parser class are similarly collected and
placed near the end of the resulting parser class definition.

The Parser.h file generated by ANTLR for this parser class would look something like
this:

class Parser : public ANTLRParser {
protected:
 static ANTLRChar *_token_tbl[];
public: int i;
int f() { blah; }
 static SetWordType setwd1[4];
public:
 Parser(ANTLRTokenBuffer *input);
 Parser(ANTLRTokenBuffer *input, ANTLRTokenType eof);
 void rule(void);
 final action;
};

Rules

An ANTLR rule describes a portion of the input language and consists of a list of
alternatives; rules also contain code for error handling and argument or return value passing.
A rule looks like:

rule : alternative1
| alternative2

...
| alternativen

 ;
where each alternative production is composed of a list of elements that can be references to
rules, references to tokens, actions, predicates, and subrules. Argument and return value
definitions looks like the following where there are n arguments and m return values:

rule[arg1,...,argn] > [retval1,...,retvalm] : ... ;

The syntax for using a rule mirrors its definition:

a : ... rule[arg1,...,argn] > [v1,...,vm] ...
 ;

Here, the various vi receive the return values from the rule rule, each vi must be an l-value.
For example,

start
: <<int r;>> // init-action declares local var r

ANTLR Reference

86 Language Translation Using PCCTS and C++

expr[3,4] > [r] <<printf("result %d\n");>>
;

expr[int a, int b] > [int result]
: i:INT <<$result = $a+$b+atoi($i->getText());>>
;

The reference to rule expr in rule start passes two arguments, 3 and 4, which correspond
to a and b in rule expr just like a normal programming language. The return value of expr is
an integer called result, which is set in the action. The integer value of the text for the
incoming integer is added to the two arguments to compute the result.

We make special note of the first action of rule start: if the first element of the rule is an
action, that action is an init-action and is executed once before recognition of the rule begins
and is the place to define local variables.

The exact syntax of a rule is the following:

rule
: RULE { "!" } { ARGBLOCK }

{ ">" ARGBLOCK }
{ STRING } // error string to print instead of rule name
":"
block ";"
{ ACTION } // fail action
(exception_group)*

;

block
: alt (exception_group)* ("\|" alt (exception_group)*)*
;

alt : { "\@" } ({ "\~" } element)*
;

token: TOKEN | STRING
;

element
: { ID ":" }

(token { ".." token } { "^" | "!" } { "\@" }
| "." { "^" | "!" }
| RULE { "!" } { ARGBLOCK } { ">" ARGBLOCK }
)

| ACTION // <<...>>
| SEMPRED // <<...>>?
| "\(" block "\)" { "*" | "\+" | "?" }

ANTLR Descriptions

Language Translation Using PCCTS and C++ 87

| "\{" block "\}"
;

Subrules (EBNF Descriptions)

A subrule is the same as a rule without a label and, hence, has no arguments or return values.
The four subrules to choose from are listed in Table 5 on page 87.

If the first element of the whole subrule is an action, that action is an init-action and is
executed once before recognition of the subrule begins—even if the subrule is a looping
construct. Further, the action is always executed even if the subrule matches nothing.

Rule Elements

In this section, we summarize the elements that can appear in rules. Most elements (i.e.,
predicates, actions, tree operators, and exceptions) are described in more detail later.

Actions

Actions are of the form <<...>> and contain user-supplied C or C++ code that must be
executed during the parse. Init-actions are actions that are the very first element of a rule or
subrule; they are executed before the rule or subrule recognizes anything and can be used to
define local variables. Fail-actions are placed after the ‘;’ in a rule definition and are
executed if an error occurred while parsing the rule (unless exception handlers are used).
Any other action is executed immediately after the preceding rule element and before any
following elements.

TABLE 5. ANTLR Subrule Format

Name Form Example

plain subrule (...) (ID | INT)

zero-or-more (...)* ID (“,” ID)*

one-or-more (...)+ (declaration)+

optional {...} { “else” statement }

ANTLR Reference

88 Language Translation Using PCCTS and C++

Semantic Predicate

A semantic predicate has two forms:

• <<...>>? This form represents a C or C++ expression that must evaluate to true
before recognition of elements beyond it in the rule are authorized for recognition.

• (lookahead-context)? => <<...>>? This form is simply a more specific
form as it indicates that the predicate is only valid under a particular lookahead
context; e.g., the following predicate indicates that the isTypeName() test is only
valid if the first symbol of lookahead is an identifier:

(ID)? => <<isTypeName(LT(1)->getText())>>?

Typically, semantic predicates are used to specify the semantic validity of a particular
production and, therefore, most often are placed at the extreme left edge of productions.

You should normally allow ANTLR to compute the lookahead context (ANTLR command
line option “-prc on”). See “Predicates” on page 127.

Syntactic Predicate

Syntactic predicates are of the form (...)? specify the syntactic context under which a
production will successfully match. They are useful in situations where normal LL(k)
parsing is inadequate. For example,

a : (list "=")? list "=" list
| list
;

Tokens, Token Classes and Token Operators

Token references indicate the token that must be matched on the input stream and are either
identifiers beginning with an upper case letter or are regular expressions enclosed in double
quotes. A token class looks just like a token reference, but has an associated #tokclass
definition and indicates the set of tokens that can be matched on the input stream.

The range operator has the form T1 .. Tn and specifies a token class containing the set of
token type values from T1 up to Tn inclusively. Any token found on the input stream that is
contained in this set is considered a valid match.

The not operator has the form ~T and specifies the set of all tokens defined in the grammar
except for T.

ANTLR Descriptions

Language Translation Using PCCTS and C++ 89

Rule References

Rule references indicate that another rule must be invoked to recognize part of the input
stream. The rule may be passed to some arguments and may return some values. Rules are
indentifiers that begin with a lower case letter. For example,

a : <<int i;>> b[34] > [i]
;

b[int j] > [int k]
: A B <<$k = $j + 1;>> //return argument + 1
;

Labels

All rules, token, and token class references may be labeled with an identifier. Identifiers are
generally used to access the attribute (C interface) or token object (C++ interface) of tokens.
Rule labels are used primarily by the exception handling mechanism to make a group of
handlers specific to a rule invocation.

Labels may begin with either an upper or lower case letter; e.g., id:ID ER:expr.

Actions in an ANTLR grammar may access attributes by using labels of the form $label
attached to token rather than the conventional $i for some integer i. By using symbols
instead of integer identifiers, grammars are more readable and action parameters are not
sensitive to changes in rule element positions. The form of a label is:

label:element

where element is either a token reference or a rule reference. To refer to the attribute (C
interface) or token pointer (C++ interface) of that element in an action, use

$label

within an action or rule argument list. For example,

a : t:ID <<printf("%s\n", $t->getText());>>
 ;

using the C++ interface. To reference the tree variable associated with element, use

#label

When using parser exception handling, simply reference label to attach a handler to a
particular rule reference. For example,

a : t:b
 exception[t]
 default : <<trap any error found during call to ’b’>>
 ;

ANTLR Reference

90 Language Translation Using PCCTS and C++

Labels must be unique for each rule as they have rule scope. Labels may be accessed from
parser exception handlers.

AST Operators

When constructing ASTs, ANTLR assumes that any nonsuffixed token is a leaf node in the
resulting tree. To inform ANTLR that a particular token should not be included in the output
AST, suffix the token with "!." Rules may also be suffixed with "!" to indicate that the tree
constructed by the invoked rule should not be linked into the tree constructed for the current
rule. Any token suffixed with the "^" operator is considered a root token. A tree node is
constructed for that token and is made the root of whatever portion of the tree has been built;
e..g,

a : A B^ C^ ;

results in the following tree:

First A is matched and made a lonely child, followed by B which is made the parent of the
current tree, A. Finally, C is matched and made the parent of the current tree—making it the
parent of the B node. Note that the same rule without any operators results in:

Exception Operator

When parser exception handlers are being used in a grammar, token references suffixed with
the @ operator do not throw MismatchedToken upon a token mismatch. The error is
handled within _match_wdfltsig().

Multiple ANTLR Description Files

ANTLR descriptions may be broken up into many different files, but the sequence
mentioned above in the grammatical structure of ANTLR descriptions must be maintained.

For example, if file f1.g contained

#header <<#include "int.h">>
<< main() { ANTLR(start(), stdin); } >>

C

B

A

A B C

Lexical Directives

Language Translation Using PCCTS and C++ 91

and file f2.g contained

start : "begin" VAR "=" NUM ";" "end" "." "@" ;

and file f3.g contained

#token VAR "[a-z]+"
#token NUM "[0-9]+"

the correct ANTLR invocation would be

antlr f1.g f2.g f3.g

Note that the order of files f2.g and f3.g could be switched. In this case, to comply with
ANTLR’s description meta-language, the only restriction is that file f1.g must be
mentioned first on the command line.

Other files may be included into the parser files generated by ANTLR via actions containing
a #include directive. For example,

<<#include “support_code.h”>>

If a file (or anything else) must be included in all parser files generated by ANTLR, the
#include directive must be placed in the #header action. In other words,

#header <<#include “necessary_type_defs_for_all_files.h”>>

Note that #include can be used to define any ANTLR object (Attrib , AST, etc...) by
placing it in the #header action.

Lexical Directives

Token Definitions

Tokens are defined either explicitly with #token or implicitly by using them as rule
elements. Implicitly defined tokens can be either regular expressions (non-identified tokens)
or token names (identified). Token names begin with an upper case letter (rules begin with a
lower case letter). More than one occurrence of the same regular expression in a grammar
description produces a single regular expression in lexical description passed to DLG
(parser.dlg) and is assigned one token type number. Regular expressions and token
identifiers that refer to the same lexical object (input pattern) may be used interchangeably.
Token identifiers that are referenced, but not attached to a regular expression are simply
assigned a token type and result in a #define definition only. It is not necessary to label
regular expressions with an identifier in ANTLR. However, all token types that you wish to
explicitly refer to in an action must be declared with a #token instruction.

ANTLR Reference

92 Language Translation Using PCCTS and C++

You may introduce tokens, lexical actions, and token identifiers with the #token directive.
Specifically,

• Simply declare a token for use in a user action:
#token VAR

This is useful for defining a token type that has no associated regular
expression. For example, an abstract syntax tree may need a "dummy" node
with a token type that does not class with an input token.

• Associate a token with a regular expression and, optionally, an action:
#token ID "[a-zA-Z][a-zA-Z0-9]*"
#token Eof "@" << printf("Eof Found\n"); >>

• Specify what must occur upon a regular expression:
#token "[0-9]+" <<printf("Found an int\n");>>

Important: All token identifiers result in either #define definitions or enum elements in the
resulting parser. Be careful not to use C++ keywords as token identifiers like if.

Lexical actions tied to a token definition may access the variables, functions, and macros in
Table 6 on page 92:

TABLE 6. C++ Interface Symbols Available to Lexical Actions

Symbol Description

replchar(DLGchar c) Replace the text of the most recently matched
lexical object with c. You can erase the current
expression text by sending in a ‘\0’ .

replstr(DLGchar *s) Replace the text of the most recently matched
lexical object with s .

int line() The current line number being scanned by DLG.

newline() Maintain DLGLexer::_line by calling this
function when a newline character is seen; just
increments _line .

more() Set a flag that tells DLG to continue looking for
another token; future characters are appended to
the current token text.

skip() Set a flag that tells DLG to continue looking for
another token; future characters are not appended
to the current token text.

Lexical Directives

Language Translation Using PCCTS and C++ 93

advance() Instruct DLG to consume another input charac-
ter. ch will be set to this next character.

int ch The most recently scanned character.

DLGchar *lextext() The entire lexical buffer containing all characters
matched thus far since the last token type was
returned. See more() and skip().

DLGchar *begexpr() Beginning of last token matched.

DLGchar *endexpr() Pointer to the last character of last token
matched.

trackColumns() Call this function to get DLG to track the column
numbers.

int begcol() The column number starting from 1 of the first
character of the most recently matched token.

int endcol() The column number starting from 1 of the last
character of the most recently matched token.
Reset the column to 0 when a newline character
is encountered. Also adjust the column in the lex-
ical action when a character is not one print posi-
tion wide (e.g., tabs or non-printing characters).
The column information is not immediately
updated if a token’s action calls more().

set_begcol(int a) Set the current token column number for the
beginning of the token.

set_endcol(int a) Set the current token column number for the
beginning of the token.

DLGchar The type name of a character read by DLG. This
is linked by typedef to char by default, but it
could be a class or another atomic type.

errstd(char *) Called automatically by DLG to print an error
message indicating that the input text matches no
defined lexical expressions. Override in a sub-
class to redefine.

TABLE 6. (Continued) C++ Interface Symbols Available to Lexical Actions

Symbol Description

ANTLR Reference

94 Language Translation Using PCCTS and C++

Regular Expressions

The input character stream is broken up into vocabulary symbols (tokens) via regular
expressions—a meta-language similar to the ANTLR EBNF description language. ANTLR
collects all of the regular expressions found within your grammar (both those defined
implicitly within the grammar and those defined explicitly via the #token directive) and
places them in a file that is converted to a scanner by DLG. Table 7 on page 94 describes the
set of regular expressions.

mode(int m) Set the lexical mode (i.e., lexical class or autom-
aton) corresponding to a lex class defined in an
ANTLR grammar with the #lexclass directive.

setInputStream(

DLGInputStream *)

Specify that the scanner should read characters
from the indicated input stream (e.g., file, string,
function).

saveState(DLGState *) Save the current state of the scanner. You need
this function for include files and so on; i.e., save
the state of DLG, reset the file pointer, process
the other file, and then restore the state.

restoreState(

DLGState *)

Restore the state of the scanner from a state
buffer.

TABLE 7. Regular Expression Syntax

Expression Description

a|b Matches either the pattern a or the pattern b.

(a) Matches the pattern a. Pattern a is kept as an indivisible unit.

{a} Matches a or nothing, i.e., the same as (a|).

[a] Matches any single character in character list a; e.g., [abc] matches
either an a, b or c and is equivalent to (a|b|c).

[a-b] Matches any of the single characters whose ASCII codes are between
a and b inclusively, i.e., the same as (a|...|b).

TABLE 6. (Continued) C++ Interface Symbols Available to Lexical Actions

Symbol Description

Lexical Directives

Language Translation Using PCCTS and C++ 95

Token Order and Lexical Ambiguities

The order in which regular expressions are found in the grammar description file(s) is
significant. When the input stream contains a sequence of characters that match more than
one regular expression, (i.e., one regular expression is a subset of another) the scanner is
confronted with a dilemma. The scanner does not know which regular expression to match,
so it does not know which action should be performed. To resolve the ambiguity, DLG (the
scanner generator) assumes that the regular expression defined earliest in the grammar
should take precedence over later definitions. Therefore, tokens that are special cases of
other regular expressions should be defined before the more general regular expressions. For
example, a keyword is a special case of a variable and thus needs to occur before the
variable definition.

#token KeywordBegin "begin"
...

#token ID "[a-zA-Z][a-zA-Z0-9]*"

~[a] Matches any single character except for those in character list a.

~[] Matches any single character; literally “not nothing.”

a* Matches zero or more occurrences of pattern a.

a+ Matches one or more occurrences of pattern a, i.e., the same as aa*.

@ Matches end-of-file.

\t Tab character.

\n Newline character.

\r Carriage return character.

\b Backspace character.

\a Matches the single character a—even if a by itself would have a dif-
ferent meaning, e.g., \+ would match the + character.

\0nnn Matches character that has octal value nnn.

\0xnn Matches character that has hexadecimal value nnn.

\mnn Matches character with decimal value mnn, 1≤m≤9.

TABLE 7. (Continued) Regular Expression Syntax

Expression Description

ANTLR Reference

96 Language Translation Using PCCTS and C++

Token Definition Files (#tokdefs)

You will probably be interested in specifying the token types rather than having ANTLR
generate its own; typically, this situation arises when you want to link an ANTLR-generated
parser with a non-DLG-based scanner (perhaps an existing scanner). To get ANTLR to use
pre-assigned token types, specify

#tokdefs "mytokens.h"

before any token definitions, where mytokens.h is a file with only a list of #defines or an
enum definition with optional comments.

When this directive is used, new token identifier definitions are not allowed (either explicit
definitions like “#token A” or implicit definitions such as a reference to a token label in a
rule). However, you may attach regular expressions and lexical actions to the token labels
defined in mytokens.h. For example, if mytokens.h contained:

#define A 2

and t.g contained:

#tokdefs "mytokens.h"
#token A "blah"
a : A B;

ANTLR would report the following error message:

Antlr parser generator Version 1.32 1989-1995
t.g, line 3: error: implicit token definition not allowed with #tokdefs

This refers to the fact that token identifier B was not defined in mytokens.h and ANTLR
has no idea how to assign the token identifier a token type number.

Only one token definition file is allowed.

As is common in C and C++ programming, "gates" are used to prevent multiple inclusions
of include files. ANTLR knows to ignore the following two lines at the head of a token
definition file:

#ifndef id1
#define id2

No check is made to ensure that id1 and id2 are the same or that they conform to any
particular naming convention (such as the name of the file suffixed with “_H”).

The following items are ignored inside your token definition file: white space, C style
comments, C++ style comments, #ifdef, #if, #else, #endif, #undef, #import.
Anything other than these ignored symbols, #define, #ifndef, or a valid enum statement
yield lexical errors.

Lexical Directives

Language Translation Using PCCTS and C++ 97

Token Classes

A token class is set of tokens that can be referenced as one entity; token classes are
equivalent to subrules consisting of the member tokens separated by "|"s. The basic syntax
is:

#tokclass Tclass { T1 ... Tn }

where Tclass is a valid token identifier (begins with an upper case letter) and Ti is a token
reference (either a token identifier or a regular expression in double-quotes) or a token class
reference; token classes may have overlapping tokens. Referencing Tclass is the same as
referencing a rule of the form

tclass : T1 | ... | Tn ;

To reference the bitset created for token class Tclass in a grammar action is done as
Tclass_set; e.g.,

#tokclass stop { ";" "end" }
statement

: ... ;
exception

default: <<consumeUntil(stop_set);>>

The difference between a token class and a rule lies in efficiency. A reference to a token
class is a simple set membership test during parser execution rather than a linear search of
the tokens in a rule (or subrule). Furthermore, the set membership will be much smaller than
a series of if-statements in a recursive-descent parser. Note that automaton-based parsers
(both LL and LALR) automatically perform this type of set membership (specifically, a
table lookup), but lack the flexibility of recursive-descent parsers such as those constructed
by ANTLR.

A predefined wildcard token class, identified by a dot, is available to represent the set of all
defined tokens. For example,

ig : "ignore_next_token" . ;

The wildcard is sometimes useful for ignoring portions of the input stream; however, lexical
classes are often more efficient at ignoring input. A wildcard can also be used for error
handling as an "else-alternative".

if : "if" expr "then" stat
 | . <<fprintf(stderr, "malformed if-statement");>>
 ;

Be careful not to do things like this:

ig : "begin"
 (.)*

ANTLR Reference

98 Language Translation Using PCCTS and C++

 "end"
 ;

because the loop generated for the "(.)*" block will never terminate because "end" is also
matched by the wildcard. Rather than using the wildcard to match large token classes, it is
often best to use the not operator. For example,

ig : "begin"
 (~"end")*
 "end"
 ;

where "~" is the not operator and implies a token class containing all tokens defined in the
grammar except the token (or tokens in a token class) modified by the operator. The if
example could be rewritten as:

if : "if" expr "then" stat
 | ~"if" <<fprintf(stderr, "malformed if-statement");>>
 ;

The not operator may be applied to token class references and token references only. It may
not be applied to subrules, for example. The wildcard operator and the not operator never
result in a set containing the end-of-file token type.

Token classes can also be created via the range operator of the form T1 .. Tn. The token
type of T1 must be less than Tn and the values between T1 and Tn must be valid token types.
In general, this feature should be used in conjunction with #tokdefs so that you control the
token type values. An example range operator is:

#tokdefs "mytokens.h"
a : operand OpStart .. OpEnd operand ;

where mytokens.h contains

#define Add 1
#define Sub 2
#define Mul 3
#define OpStart 1
#define OpEnd 3

This feature might not be needed because of the more powerful token class directive:

#tokclass Op { Add Sub Mul }
a : operand Op operand ;

Lexical Directives

Language Translation Using PCCTS and C++ 99

Lexical Classes

ANTLR parsers use DFAs (Deterministic Finite Automata) created by DLG to match tokens
found on the character input stream. More than one automaton (lexical class) may be
defined in PCCTS. Multiple scanners are useful in two ways. First, more than one grammar
can be described within the same PCCTS input file(s). Second, multiple automatons can be
used to recognize tokens that seriously conflict with other regular expressions within the
same lexical analyzer (e.g., comments, quoted-strings, etc...).

Actions attached to regular expressions (which are executed when that expression has been
matched on the input stream) may switch from one lexical analyzer to another. Each
analyzer (lex class) has a label used to enter that automaton. A predefined lexical class
called START is in effect from the beginning of the PCCTS description until the user issues a
#lexclass directive or the end of the description is found.

When more than one lexical class is defined, it is possible to have the same regular
expression and the same token label defined in multiple automatons. Regular expressions
found in more than one automaton are given different token type numbers, but token labels
are unique across lexical class boundaries. For instance,

#lexclass A
#token LABEL "expr1"

#lexclass B
#token LABEL "expr2"

In this case, LABEL is the same token type number (#define in C or enum in C++) for both
expr1 and expr2. A reference to LABEL within a rule can be matched by two different
regular expressions depending on which automaton is currently active.

Hence, the #lexclass directive marks the start of a new set of lexical definitions. Rules
found after a #lexclass can only use tokens defined within that class—i.e., all tokens
defined until the next #lexclass or the end of the PCCTS description, whichever comes
first. Any regular expressions used explicity in these rules are placed into the current lexical
class. Since the default automaton, START, is active upon parser startup, the start rule must
be defined within the boundaries of the START automaton. Typically, a multiple-automaton
grammar will begin with

#lexclass START

immediately before the rule definitions to ensure that the rules use the token definitions in
the "main" automaton.

Tokens are given sequential token numbers across all lexical classes so that no conflicts
arise. This also allows you to reference ANTLRParser::token_tbl[token_num] (which

ANTLR Reference

100 Language Translation Using PCCTS and C++

is a string representing the label or regular expression defined in the grammar) regardless of
which class token_num is defined in.

Multiple grammars, multiple lexical analyzers

Different grammars generally require separate lexical analyzers to break up the input stream
into tokens. What may be a keyword in one language may be a simple variable in another.
The #lexclass directive is used to group tokens into different lexical analyzers. For
example, to separate two grammars into two lexical classes,

#lexclass GRAMMAR1
rules for grammar1
#lexclass GRAMMAR2
rules for grammar2

All tokens found beyond the #lexclass directive are considered to be of that class.

Single grammar, multiple lexical analyzers

For most languages, some characters are interpreted differently, depending on the syntactic
context; comments and character strings are the most common examples. Consider the
recognition of C style comments:

#lexclass C_COMMENT
#token "[\n\r]" <<skip(); newline();>>
#token "*/" <<mode(START); skip();>>
#token "*~[/]" <<skip();>>
#token "~[*\n\r]+" <<skip();>>

#lexclass START
#token "/*" <<mode(C_COMMENT); skip();>>

Lexical Actions

It is sometimes convenient or necessary to have a section of user C code constructed
automatically by DLG placed in the lexical analyzer; for example, you may need to provide
extern definitions for variables or functions defined in the parser, but used in token
actions. Normally, actions not associated with a #token directive or embedded within a
rule are placed in the parser generated by ANTLR. However, preceding an action appearing
outside of any rule with the #lexaction pseudo-op directs the action to the lexical analyzer
file. For example,

<< /* a normal action outside of the rules */ >>
#lexaction
 << /* this action is inserted into the lexical

Lexical Directives

Language Translation Using PCCTS and C++ 101

 * analyzer created by DLG
 */
 >>

All #lexaction actions are collected and placed as a group into the C or C++ file where
the "lexer" resides. Typically, this code consists of functions or variable declarations needed
by #token actions.

Error Classes

The default syntax error reporting mechanism generates a list of tokens that could be
possibly matched when the erroneous token was encountered. Often, this list is large and
means little to the user for anything but small grammars. For example, an expression
recognizer might generate the following error message for an invalid expression, "a b":

syntax error at "b" missing { "\+" "\-" "*" "/" ";" }

A better error message would be

syntax error at "b" missing { operator ";" }

This modification can be accomplished by defining the error class:

#errclass "operator" { "\+" "\-" "*" "/" }

The general syntax for the #errclass directive is as follows:

#errclass label { T1 ... Tn }

where label is either a quoted string or a label (capitalized just like token labels). Any
quoted string must not conflict with any rule name, token identifier or regular expression.
Groups of expressions are replaced with this string.

The error class elements, Ti, can be

• labeled tokens or regular expressions

Tokens (identifiers or regular expressions) referenced within an
error class must at some point in the grammar be referenced in a rule
or explicitly defined with #token. The definition need not appear
before the #errclass definition.

• other error classes

See the example following "rules."

ANTLR Reference

102 Language Translation Using PCCTS and C++

• rules

the FIRST set (set of all tokens that can be recognized first upon entering a rule)
for that rule is included in the error class. The -ge command-line option can be
used to have ANTLR generate an error class for each rule of the form:

#errclass Rule { rule }

where the error class name is the same as the rule except that the first character
is converted to uppercase.

The ability to reference other error classes error class hierarchies. For example,

#errclass Fruit { CHERRY APPLE }
#errclass Meat { COW PIG }
#errclass "stuff you can eat" { Fruit Meat }

yum : (CHERRY | APPLE) PIE
| (COW | PIG) FARM
| THE (CHERRY | APPLE) TREE
;

Different error messages result depending upon where in rule yum a syntax error is detected.
If the input were

THE PIG TREE

the following error message would result:

syntax error at “PIG” missing { Fruit }

However, if the input were

FARM COW

the decent error message

syntax error at “FARM” missing { “stuff you can eat” THE }

would result. Note that without the error class definitions, the error message would have
been:

syntax error at “FARM” missing { CHERRY APPLE COW PIG THE }

which conveys the same information, but at a much more detailed level.

Lexical Directives

Language Translation Using PCCTS and C++ 103

How ANTLR Uses Error Classes

ANTLR attempts to construct sets of tokens for error reporting—error sets. The sets are
created wherever a parsing decision will be made in the generated parser. At every point in
the parsing process, there is a set of currently recognizable or acceptable token. This set can
be decoded and printed out when a syntax error is detected. ANTLR attempts to replace
subsets of all error sets with error classes defined by the user. For example, rule a below
contains a subrule with more than one alternative implying that a parsing decision will be
required at run-time to determine which alternative to choose.

a : (Happy | Sad | Funny | Carefree) Person ;

If, upon entering rule a, the current token is not one of the four tokens found in the
alternatives, a syntax error will have occurred and the following message would be
generated (if "huh" were the input token):

syntax error at “huh” missing { Happy Sad Funny Carefree }

Let us define an error class called Adjective that groups those same four tokens together.

#errclass Adjective { Happy Sad Funny Carefree }

Now the error message would be:

syntax error at “huh” missing { Adjective }

ANTLR repeatedly trys to replace subsets of the error set until no more substitutions can be
made. At each replacement iteration, the largest error class that is completely contained
within the error set is substituted for that group of tokens. One replacement iteration may
perform some substitution that makes another, previously inviable, substitution possible.
This allows the hierarchy mechanism described above in the error class description section.
The sequence of substitutions for the yum example in the previous section would be:

1. { CHERRY APPLE COW PIG THE }

2. { Fruit COW PIG THE }

3. { Fruit Meat THE }

4. { "stuff you can eat" THE }

The error class mechanism leads to smaller error sets and can be used to provide more
informative error messages.

ANTLR Reference

104 Language Translation Using PCCTS and C++

Actions

Actions are embedded within your grammar to effect a translation. Without actions, ANTLR
grammars result in a simple recognizer, which answers yes or no as to whether an input
sentence was valid. This section describes where actions may occur within an ANTLR
grammar, when they are executed, and what special terms they may reference (e.g., for
attributes). Actions are of the form "<<...>>" (normal action) or "[...]" (argument or
return value block).

Placement

There are three main positions where actions may occur:

• Outside of any rule. These actions may not contain executable code unless it
occurs within a completely-specified function. Typically, these actions contain
variable and function declarations as would normally be found in a C or C++
program. These actions are placed in the global scope in the resulting parser.
Consequently, all other actions have access to the declarations given in these
global actions. For example,
<<
extern int from_elsewhere;
enum T { X, Y, Z };
main()
{

...
}
>>
a: <<T b=X; printf("starting a");>>

blah
;

• Within a rule or immediately following the rule. These actions are executed
during the recognition of the input and must be executable code unless they are
init-actions, in which case, they may contain variable declarations as well. Actions
immediately following the ‘;’ of a rule definition are fail-actions and are used to
clean up after a syntax error. (These are less useful now due to parser exception
handlers.) For example,
rule : <<init-action>>

... <<normal action>> ...
;
<<fail-action>>

Actions

Language Translation Using PCCTS and C++ 105

• As a rule argument or return value block. These actions either define arguments
and return values or they specify the value of arguments and return values; their
behavior is identical to that of normal C/C++ functions except that ANTLR allows
you to define more than one return value. For example,
code_block[Scope s] > [SymbolList localsyms]

: <<Symbol *sym;>>
"begin" decl[$s] > [sym] <<$localsyms.add(sym);>> "end"

;

where s is an input argument to code_block, localsyms is a return value,
and sym is a local variable in code_block that holds the result of calling rule
decl.

Time of Execution

Actions placed among the elements in the productions of a rule are executed immediately
following the recognition of the preceding grammar element, whether that element is a
simple token reference or large subrule.

Init-actions are executed before anything has been recognized in a subrule or rule. Init-
actions of subrules are executed regardless of whether or not anything is matched by the
subrule. Further, init-actions are always executed during guess mode; i.e., while evaluating a
syntactic predicate.

Fail-actions are used only when parser exception handlers are not used and are executed
upon a syntax error within that rule.

Interpretation of Action Text

ANTLR generally ignores what you place inside actions with the exception that certain
expression terms are available to allow easy access to attributes (C interface), token pointers
(C++ interface), and trees. The following tables describe the various special symbols
recognized by ANTLR inside [...] and <<...>> actions for the C and C++ interface.

Comments (both C and C++), characters, and strings are ignored by ANTLR. To escape ‘$’
and ‘#’, use ‘\$’ and ‘\#’.

ANTLR Reference

106 Language Translation Using PCCTS and C++

Table 9 on page 107 provides a brief description of the available AST expressions. See
Table 10 on page 126 for a more complete description

TABLE 8. C++ Interface Interpretation of Terms in Actions

Symbol Meaning

$j The token pointer for the jth element (which
must be a token reference) of the current alterna-
tive. The counting includes actions. Subrules
embedded within the alternative are counted as
one element. There is no token pointer associated
with subrules, actions, or rule references.

$i.j The token pointer for the jth element of ith level
starting from the outermost (rule) level at 1. .

$0 Invalid. No translation. There is no token pointer
associated with rules.

$$ Invalid. No translation.

$arg The rule argument labeled arg.

$rule Invalid. No translation.

$rv The rule return result labeled rv. (l-value)

$[token_type,text] Invalid. There are no attributes using the C++
interface.

$[] Invalid.

Actions

Language Translation Using PCCTS and C++ 107

Init-Actions

Init-actions are used to define local variables and optionally to execute some initialization
code for a rule or subrule. The init-action of a rule is executed exactly once—before any in
the rule has been executed. It is not executed unless the rule is actually invoked by another
rule or a user action (such as main routine). For example,

a : <<int i;>>
a : INT <<i = atoi(a->getText());>>

| ID <<i = 0;>>
;

The init-action of a subrule is always executed regardless of whether the subrule matches
any input. For example,

a : (<<int i=3;>> ID)*
/* i is local to the (...)* loop and initialized only once */
{ <<f = 0;>> b:FLOAT <<f=atof(b->getText());>> }
/* f is 0 if a FLOAT was not found */

;

TABLE 9. Synopsis of C/C++ Interface Interpretation of AST Terms
in Actions

Symbol Meaning

#0 A pointer to the result tree of the enclosing rule.

(l-value).

#i A pointer to the AST built (or returned from) the
ith element of the enclosing alternative.

#label A pointer to the AST built (or returned from) the
elemented labeled with label. Translated to
label_ast.

#[args] Tree node constructor. Translated to a call to
zzmk_ast(zzastnew(), args) in C.

In C++, it is translated to “new AST(args)”.

#[] Empty tree node constructor.

#(root, child1, ...,
childn)

Tree constructor.

#() NULL.

ANTLR Reference

108 Language Translation Using PCCTS and C++

Init-actions can not reference attribute or token pointer symbols such as $label.

Fail Actions

Fail actions are actions that are placed immediately following the ";" rule terminator. They
are executed after a syntax error has been detected but before a message is printed and the
attributes have been destroyed (optionally with zzd_attr()). However, attributes are not
valid here because we do not know at what point the error occurred and which attributes
even exist. Fail actions are often useful for cleaning up data structures or freeing memory.
For example,

a : <<List *p=NULL;>>
(Var <<append(p, $1);>>)+
<<OperateOn(p); rmlist(p);>>

;
<<rmlist(p);>>

The ()+ loop matches a lists of variables (Vars) and collections them in a list. The fail-
action <<rmlist(p);>> specifies that if and when a syntax error occurs, the elements are
to be freed.

Fail-actions should not reference attribute or token pointer symbols such as $label.

Fail-actions are executed right before the rule returns to the invoking rule.

Accessing Token Objects From Grammar Actions

The C++ interface parsing-model specifies that the parser accepts a stream of token pointers
rather than a stream of simple token types, such as is done using the C interface parsing-
model. Rather than accessing attributes computed from the text and token type of the input
token, the C++ interface allows direct access to the stream of token objects created by the
scanner. You may reference $label within the actions of a rule where label is a label
attached to a token element defined within the same alternative. For example,

def : "var" id:ID ";" <<behavior->defineVar($id->getText());>>

In this case, $id is a pointer to the token object created by the scanner (with the
makeToken() function) for the token immediately following the keyword var on the input
stream. Normally, you will subclass ANTLRRefCountToken or simply use
ANTLRCommonToken as the token object class. Functions getText() and getLine() can
be used to access the attributes of the token object.

C++ Interface

Language Translation Using PCCTS and C++ 109

C++ Interface

When generating recursive-descent parsers in C++, ANTLR uses the flexibility of C++
classes in two ways to create modular, reusable code. First, ANTLR will generate parser
classes in which the class member functions, rather than global functions, contain the code

• to recognize rules and

• to perform semantic actions

Second, ANTLR uses snap-together classes for the input, the lexer, and the token buffer.
Figure 1 on page 109 shows the files generated by ANTLR and DLG for grammar class
Parser and grammar file file.g.

FIGURE 1 Files Generated By ANTLR, DLG

An ANTLR parser consists of one or more C++ classes, called parser classes. Each parser
class recognizes and translates part (or all) of a language. The recursive-descent recognition
routines and the semantic actions are member functions of this class. A parser object is an
instantiation (or variable) of the parser class.

To specify the name of the parser class in an ANTLR grammar description, enclose the
appropriate rules and actions in a C++ class definition, as follows:

class Expr {
<<int i;>>

<<
public:

void print();
>>
e : INT ("*" INT)* ;

... // other grammar rules
}

ANTLR then generates a parser class Expr that looks like the following:

DLG

DLGLexer.cpp DLGLexer.h

ANTLR

Parser .cpp Parser .h file .cpp parser.dlg tokens.h

ANTLR Reference

110 Language Translation Using PCCTS and C++

class Expr : public ANTLRParser {
public:

Expr(ANTLRTokenBuffer *input);
Expr(ANTLRTokenBuffer *input, ANTLRTokenType eof);
int i;
void print();
void e();

private:
internal-Expr-specific-data;

};

The Utility of C++ Classes in Parsing

It is natural to have many separate parser objects. For example, if parsing ANSI C code, we
might have three parser classes: for C expressions, C declarations, and C statements. Parsing
multiple languages or parts of languages simply involves switching parser objects. For
example, if you had a working C language front end for a compiler, to evaluate C
expressions in a debugger, just use the parser object for C expressions (and modify the
semantic actions with virtual functions.)

Using parser classes has the standard advantages of C++ classes involving name spaces and
encapsulation of state. Because all routines are class member functions, they belong in the
class name space and do not clutter the global name space, reducing (or greatly simplifying)
the problem of name clashes. A parser object encapsulates the various state needed during a
parse or translation.

While the ability to cleanly instantiate and invoke multiple parsers is useful, the main
advantage of parser classes is that they can be extended in an object-oriented fashion. By
using the inheritance and virtual functions mechanisms of C++, a parser class can be used as
the base class (superclass) for a variety of similar but non-identical uses. Derived parser
classes can be specialized for different activities; in many cases, these derived classes need
only redefine translation actions because they inherit the grammar rules (these recursive-
descent routines are member functions) from the base class. For example,

class CPP_Parser {
<<
virtual void defineClass(char *cl);
>>
cdef

: "class" id:ID "\{" ... "\}" <<defineClass(id->getText());>>
;

...
}

C++ Interface

Language Translation Using PCCTS and C++ 111

To construct a browser, you might subclass CPP_Parser to override defineClass() so
that the function would highlight the class name on the screen; e.g.,

class CPP_Browser {
// nondefault constructor is required.
CPP_Browser(ANTLRTokenBuffer *in) : CPP_Parser(in) { }
void defineClass(char *cl) { highlight(cl); }

};

A C++ compiler might override defineClass() to add the symbol to the symbol table.

Alternatively, the behavior of a parser can be delegated to a behavior object such that actions
in the parser would be of the form

<<behavior->triggerSomeAction();>>

This approach has the advantage that behavior of the parser can be changed at runtime.

Invoking ANTLR Parsers

The second way ANTLR uses C++ classes is to have separate C++ classes for the input
stream, the lexical analyzer (scanner), the token buffer, and the parser. Conceptually, these
classes fit together as shown in Figure 2 on page 111. In fact, the ANTLR-generated classes
"snap together" in an identical fashion. To initialize the parser, you

1. Attach an input stream object to a DLG-based scanner; if the user has constructed
their own scanner, they would attach it here.

2. Attach a scanner to a token buffer object.

3. Attach the token buffer to a parser object generated by ANTLR.

FIGURE 2 Overview of the C++ classes generated by ANTLR.

The following code illustrates how these classes fit together for a parser object Expr.

ANTLRTokenBuffer ANTLRParser
DLGInputStream output

DLGLexer

ANTLR Reference

112 Language Translation Using PCCTS and C++

main()
{

DLGFileInput in(stdin); // get an input stream for DLG
DLGLexer scan(&in); // connect a scanner to an input stream
ANTLRTokenBuffer pipe(&scan); // connect scanner, parser via pipe
// DLG needs vtbl to access virtual func, pass a token.
// mytoken(aToken) converts aToken to a (ANTLRToken *).
// You don’t need mytoken if you don’t use garbage-
// collected token objects.
ANTLRTokenPtr aToken = new ANTLRToken;
scan.setToken(mytoken(aToken));
Expr parser(&pipe); // make a parser connected to the pipe
parser.init(); // initialize the parser
parser.e(); // begin parsing; e = start symbol

}

where ANTLRToken is programmer-defined and must be a subclass of
ANTLRAbstractToken . To start parsing, it is sufficient to call the Expr member function
associated with the grammar rule; here, e is the start symbol. Naturally, this explicit
sequence is a pain to type so we have provided a "black box" template:

main()
{

ParserBlackBox<DLGLexer, Expr, ANTLRToken> p(stdin);
p.parser()->e();

}

To ensure compatibility among different input streams, lexers, token buffers, and parsers, all
objects are derived from one of the four common bases classes DLGInputStream ,
DLGLexerBase , ANTLRTokenBuffer or ANTLRParser . All parsers are derived from a
common base class ANTLRParser .

ANTLR C++ Class Hierarchy

Figure 3 on page 121 shows an overview of important class relationships defined by the C++
interface. Each element of the class hierarchy includes rules, behaviors, and design tips for
building hierarchies that is a benefit to a user of good hierarchies.

Token Classes

Each token object passed to the parser must satisify at least the interface defined by class
ANTLRAbstractToken if ANTLR is to compile and report errors for you. Specifically,
ANTLR token objects know their token type, line number, and associated input text.

C++ Interface

Language Translation Using PCCTS and C++ 113

class ANTLRAbstractToken {
public:

virtual ANTLRTokenType getType();
virtual void setType(ANTLRTokenType t); // optional
virtual int getLine();
virtual void setLine(int line); // optional
virtual ANTLRChar *getText();
virtual void setText(ANTLRChar *); // optional
virtual ANTLRAbstractToken *

makeToken(ANTLRTokenType t, ANTLRChar *txt, int ln);
};

Most of the time you will want your token objects to be garbage collected to avoid memory
leaks. The ANTLRRefCountToken class is provided for this purpose. All subclasses are
garbage collected (assuming you use the provide "smart pointer" class ANTLRTokenPtr).

The common case is that you will subclass the ANTLRRefCountToken interface. For your
convenience, however, a token object class, ANTLRCommonToken, that will work "out of the
box." It does garbage collection and has a fixed text field that stores the text of token found
in the input stream.

Why function makeToken() is required at all and why you have to pass the address of an
ANTLRToken into the DLG-based scanner during parser initialization may not be obvious.
Why cannot the constructor be used to create a token and so on? The reason lies with the
scanner, which must construct the token objects. The DLG support routines are typically in a
precompiled object file that is linked, regardless of your token definition. Hence, DLG must
be able to create tokens of any type.

Because objects in C++ are not "self-conscious" (i.e., they do not know their own type),
DLG has no idea of the appropriate constructor. Constructors cannot be virtual anyway; so,
we provide a constructor that is virtual and that acts like a factory. It returns the address of a
new token object upon each invocation rather than just initializing an existing object.

Because classes are not first-class objects in C++ (i.e., you cannot pass class names around),
we must pass DLG the address of an ANTLRToken token object so DLG has access to the
appropriate virtual table and is, thus, able to call the appropriate makeToken(). This
weirdness would disappear if all objects knew their type or if class names were first-class
objects. Here is the code fragment in DLG that constructs the token objects that are passed to
the parser via the ANTLRTokenBuffer:

ANTLRAbstractToken *DLGLexerBase::
getToken()
{

if (token_to_fill==NULL) panic("NULL token_to_fill");
ANTLRTokenType tt = nextTokenType();
DLGBasedToken *tk = (DLGBasedToken *)

token_to_fill->makeToken(tt, _lextext, _line);

ANTLR Reference

114 Language Translation Using PCCTS and C++

return tk;
}

Token Object Garbage Collection

Token objects are created via ANTLRToken::makeToken(), but how are they deleted? The
class ANTLRCommonToken is garbage collected through a "smart pointer" called
ANTLRTokenPtr using reference counting. Any token object not referenced by your
grammar’s actions is destroyed by the ANTLRTokenBuffer when it makes room for more
token objects. (Calling function ANTLRParser::noGarbageCollection() will turn of
this mechanism.) Token objects referenced by your actions are destroyed when local
ANTLRTokenPtr objects are deleted. For example,

a : label:ID ;

would be converted to something like:

void yourclass::a(void)
{

zzRULE;
ANTLRTokenPtr label=NULL;
zzmatch(ID);
label = (ANTLRTokenPtr)LT(1);
consume();
...

}

When the label object is destroyed (it is just a pointer to your input token object obtained
from LT(1)), it decrements the reference count on the object created for the ID. If the count
goes to zero, the object pointed by label is deleted.

To correctly manage the garbage collection, use ANTLRTokenPtr instead of "ANTLRToken
*." Unforunately, the smart pointers can only be pointers to the abstract token class, which
causes trouble in your actions. If you subclass ANTLRCommonToken and then attempt to
refer to one of your token members via a token pointer in your grammar actions, the C++
compiler will complain that your token object does not have that member. For example, the
following results in a compile-time error:

<<
class ANTLRToken : public ANTLRCommonToken {
 int muck;
 ...
};
>>

class Foo {
a : t:ID << t->muck = ...; >> ;
}

C++ Interface

Language Translation Using PCCTS and C++ 115

The t->muck reference will convert the t to “ANTLRAbstractToken *” resulting from
ANTLRTokenPtr::operator->(). Instead, you must do the following:

a : t:ID << mytoken(t)->muck = ...; >> ;

in order to downcast t to be an “ANTLRToken *”. Macro mytoken(aSmartTokenPtr)
gets an “ANTLRToken *” from a smart pointer.

The reference counting interface used by ANTLRTokenPtr is as follows:

class ANTLRRefCountToken : public ANTLRAbstractToken {

/* define to satisfy ANTLRTokenBuffer’s need to determine
whether or not a token object can be destroyed. If
nref()==0, no one has a reference, and the object may be
destroyed. This function defaults to 1, hence, if you use
ANTLRParser::garbageCollectTokens() message with a token
object not derived from ANTLRCommonRefCountToken, the parser
will compile but will not delete objects after they leave the
token buffer. */

protected:
unsigned refcnt_;

public:
// these 3 functions are called by ANTLRTokenPtr class
virtual unsigned nref() { return 1; }
virtual void ref();
virtual void deref();

};

Scanners and Token Streams

The raw stream of tokens coming from a scanner is accessed via an ANTLRTokenStream.
The required interface is simply that the token stream must be able to answer the message
getToken():

class ANTLRTokenStream {
public:

virtual ANTLRAbstractToken *getToken() = 0;
};

To use your own scanner, subclass ANTLRTokenStream and define getToken() or have
getToken() call the appropriate function in your scanner. For example,

class MyLexer : public ANTLRTokenStream {
private:

int c;
public:

MyLexer();

ANTLR Reference

116 Language Translation Using PCCTS and C++

virtual ANTLRAbstractToken *getToken();
};

DLG scanners are all subclasses of ANTLRTokenStream.

Token Buffer

The parser is "attached" to an ANTLRTokenBuffer by interface functions: getToken()
and bufferedToken(). The object that actually consumes characters and constructs
tokens, a subclass of ANTLRTokenStream, is connected to the ANTLRTokenBuffer via
interface function ANTLRTokenStream::getToken(). This strategy isolates the infinite
lookahead mechanism (used for syntactic predicates) from the parser and provides a "sliding
window" into the token stream.

The ANTLRTokenBuffer begins with k token object pointers where k is the size of the
lookahead specified on the ANTLR command line. The buffer is circular when the parser is
not evaluating a syntactic predicate (that is, when ANTLR is guessing during the parse);
when a new token is consumed, the least recently read token pointer is discarded. When the
end of the token buffer is reached during a syntactic predicate evaluation, however, the
buffer grows so that the token stream can be rewound to the point at which the predicate was
initiated. The buffer can only grow, never shrink.

By default, the token buffer deletes token objects when they are no longer needed. A
reference count is used to determine how many references exist to each token object. When
the count reaches zero, the token object is subject to deletion. If your grammar references a
token object in a grammar action, the token buffer will not delete that object. The "smart
pointer" to the token object used by your action will delete it.

The token object pointers in the token buffer may be accessed from your actions with
ANTLRParser::LT(i), where i=1..n where n is the number of token objects remaining in
the file; LT(1) is a pointer to the next token to be recognized. This function can be used to
write sophisticated semantic predicates that look deep into the rest of the input token stream
to make complicated decisions. For example, the C++ qualified item construct is difficult to
match because there may be an arbitrarily large sequence of scopes before the object can be
identified (e.g., A::B::~B()).

The ANTLRParser::LA(i) function returns the token type of the ith lookahead symbol, but
is valid only for i=1..k. This function uses a cache of k tokens stored in the parser itself. The
token buffer itself is not queried.

C++ Interface

Language Translation Using PCCTS and C++ 117

The commonly used ANTLRTokenBuffer functions are:

virtual ANTLRAbstractToken *getToken();

Return the next token from the buffer.

virtual ANTLRAbstractToken *bufferedToken(int i);

Return the token i ahead where i = 1..n with n equal to the number of tokens
remaining in the input.

void noGarbageCollectTokens();

Turn off deletion of token objects by buffer.

void garbageCollectTokens();
Turn on deletion of token objects by buffer; this is the default.

virtual void setMinTokens(int k_new);
Specify the minimum number of token objects held by the buffer. The k_new
element must as large as the k specified to the ANTLRTokenBuffer
constructor.

Parsers

ANTLR generates a subclass of ANTLRParser called P for definitions in your grammar file
of the form:

class P {
...
}

The commonly used functions that you may wish to invoke or override are:

class ANTLRParser {
public:

virtual void init();
Note: you must call ANTLRParser::init()if you override init().

ANTLRTokenType LA(int i);
The token type of the ith symbol of lookahead where i=1..k.

ANTLR AbstractToken *LT(int i);
The token object pointer of the ith symbol of lookahead where i=1..n (n is
the number of tokens remaining in the input).

void setEofToken(ANTLRTokenType t);
When using non-DLG-based scanners, you must inform the parser what token
type should be considered end-of-input. This token type is then used by the
errorecovery facilities to scan past bogus tokens without going beyond the end
of the input.

ANTLR Reference

118 Language Translation Using PCCTS and C++

void garbageCollectTokens();
Any token pointer discarded from the token buffer is deleted if this
function is called (assuming the reference count is zero for that token.) This is
the default.

void noGarbageCollectTokens();
The token buffer does not delete any tokens.

virtual void syn (ANTLRAbstractToken *tok,ANTLChar*egroup, SetWordType
*eset, ANTLRTokenType etok, int k);

You can redefine syn() to change how ANTLR resports error messages;
see edecode() below.

virtual void panic(char *msg);
Call this if something really bad happens. The parser will terminate.

virtual void consume();
Get another token of input.

void consumeUntil(SetWordType *st); // for exceptions
This function forces the parser to consume tokens until a token in the token
class specified (or end-of-input) is found. That token is not consumed. You
may want to call consume() afterwards.

void consumeUntilToken(int t);
Consume tokens until the specified token is found(or end of input). That token
is not consumed—you may want to consume() afterwards.

protected:

void edecode(SetWordType *);
Print out in set notation the specified token class. Given a token class called T
in your grammar, the set name will be called T_set in an action.

virtual void tracein(char *r);
This function is called upon exit from rule r.

virtual void traceout(char *r);
This function is called upon exit from rule r.

};

C++ Interface

Language Translation Using PCCTS and C++ 119

AST Classes

ANTLR’s AST definitions are subclasses of ASTBase, which is derived from PCCT_AST (so
that the SORCERER and ANTLR trees have a common base). The interesting functions are
as follows:

class PCCTS_AST {

// minimal SORCERER interface
virtual PCCTS_AST *right();

Return next sibling.

virtual PCCTS_AST *down();
Return first child.

virtual void setRight(PCCTS_AST *t);
Set the next sibling.

virtual void setDown(PCCTS_AST *t);
Set the first child.

virtual int type();
What is the node type (used by SORCERER).

virtual void setType(int t);
Set the node type (used by SORCERER)?

virtual PCCTS_AST *shallowCopy();
Return a copy of the node (used for SORCERER in transform mode). When
you implement this, you must NULL the child-sibling pointers. You can
define a copy constructor and have shallowCopy() call that. If you you
want to use dup() with either ANTLR or SORCERER or -transform mode
with SORCERER, you must define shallowCopy().

// not needed by ANTLR—support functions; see SORCERER doc
virtual PCCTS_AST *deepCopy();
virtual void addChild(PCCTS_AST *t);
virtual void insert_after(PCCTS_AST *a, PCCTS_AST *b);
virtual void append(PCCTS_AST *a, PCCTS_AST *b);
virtual PCCTS_AST * tail(PCCTS_AST *a);
virtual PCCTS_AST * bottom(PCCTS_AST *a);
virtual PCCTS_AST * cut_between(PCCTS_AST *a, PCCTS_AST *b);
virtual void tfree(PCCTS_AST *t);
virtual int nsiblings(PCCTS_AST *t);
virtual PCCTS_AST* sibling_index(PCCTS_AST *t, int i);

virtual void panic(char *err);
Print an error message and terminate the program.

};

ANTLR Reference

120 Language Translation Using PCCTS and C++

ASTBase is a subclass of PCCTS_AST and adds the functionality:

class ASTBase : public PCCTS_AST {
public:

ASTBase *dup();
Return a duplicate of the tree.

void destroy();
Delete the entire tree.

static ASTBase *tmake(ASTBase *, ...);
Construct a tree from a possibly NULL root (first argument) and a list of
children. Followed by a NULL argument.

void preorder();
Preorder traversal of a tree (normally used to print out a tree in LISP form).

virtual void preorder_action();
What to do at each node during the traversal.

virtual void preorder_before_action ();
What to do before descending a down pointer link (i.e., before visiting the
children list). Prints a left parenthesis by default.

virtual void preorder_after_action();
What to do upon return from visiting a children list. Prints a right parenthesis
by default.

};

To use doubly linked child-sibling trees, subclass ASTDoublyLinkedBase instead:

class ASTDoublyLinkedBase : public ASTBase {
public:

void double_link(ASTBase *left,ASTBase *up);
Set the parent (up) and previous child (left) pointers of the whole tree.
Initially, left and up arguments to this function must be NULL.

PCCTS_AST *left() { return _left; }
Return the previous child.

PCCTS_AST *up() { return _up; }
Return the parent (works for any sibling in a sibling list).

};

Note, however, that the tree routines from ASTBase do not update the left and up pointers.
You must call double_link() to update all the links in the tree.

Intermediate-Form Tree Construction

Language Translation Using PCCTS and C++ 121

FIGURE 3 C++ Class Hierarchies

Intermediate-Form Tree Construction

You may embed actions within an ANTLR grammar to construct abstract syntax trees
(ASTs) but ANTLR provides an automatic mechanism for implicitly or explicitly specifying
tree structures. Using the automatic mechanism, you must define what an AST node looks
like and how to construct an AST node given an attribute (C) or token pointer (C++). The
ANTLR -gt command line option must be turned on so that ANTLR knows to generate the
extra code in the resulting parser to construct and manipulate trees. In this section, we
describe the required C or C++ definitions, the available support functions, the AST
operators, and the special symbols used in actions to construct nodes and trees.

ANTLRAbstractToken

ANTLRRefCountToken

ANTLRCommonToken

MyToken

ANTLRCommonNoRefCountToken

ANTLRTokenStream

DLGLexerBase

DLGLexer

DLGInputStream

DLGFileInput DLGStringInput

PCCTS_AST

ASTBase

 AST ASTDoublyLinkedBase

ANTLRParser

MyParser

ANTLR Reference

122 Language Translation Using PCCTS and C++

Required AST Definitions

The C++ interface requires that you derive a class called AST from ASTBase. The derived
class contains the fields you need for your purposes and a constructor that accepts an
ANTLRToken pointer; the constructor fills in the AST node from the contents of the token
object. Here is a sample AST node definition that merely makes a reference to the token
object for which the node was created:

class AST : public ASTBase {
public:

ANTLRTokenPtr token;
AST(ANTLRTokenPtr t) { token = t; }

};

The calling of grammar rules from C++ code is slightly different when trees are being built.
As with the C interface, the address of a NULL-initialized tree pointer must be passed to the
starting rule. The pointer comes back set to the tree constructed for that rule:

main()
{

ParserBlackBox<...> p(stdin);

ASTBase *root = NULL;
p.parser->start_rule(&root);

}

AST Support Functions

The following PCCTS_AST members are not needed by ANTLR or SORCERER, but are
support functions available to both; they are useful in SORCERER applications

void addChild(PCCTS_AST *t);
Add a child t of this.

PCCTS_AST *ast_find_all(PCCTS_AST *t,
PCCTS_AST *u,
PCCTS_AST **cursor);

Find all occurrences of u in t. The cursor must be initialized to NULL before
calling this function and is used to keep track of where in t the function left
off between function calls. Returns NULL when no more occurrences are
found. Useful for iterating over every occurrence of a particular subtree.

int match(PCCTS_AST *t,PCCTS_AST *u);
Returns true if t and u have the same structure (the trees have the same tree
structure and token type fields.) If both trees are NULL, true is returned.

Intermediate-Form Tree Construction

Language Translation Using PCCTS and C++ 123

void insert_after(PCCTS_AST *a,PCCTS_AST *b);
Add b immediately after a as its sibling. If b is a sibling list at its top level,
then the last sibling of b points to the previous right sibling of a. Inserting a
NULL pointer has no effect.

void append(PCCTS_AST *a, PCCTS_AST *b);
Add b to the end of the sibling list for a. Appending a NULL pointer is illegal.

PCCTS_AST *tail(PCCTS_AST *a);
Find the end of the sibling list for a and return a pointer to it.

PCCTS_AST *bottom(PCCTS_AST *a);
Find the bottom of the child list for a (going straight "down".)

PCCTS_AST *cut_between(PCCTS_AST *a, PCCTS_AST *b);
Unlink all siblings between a and b and return a pointer to the first element of
the sibling list that was unlinked. This routine makes a point to b and makes
sure that the tail of the sibling list, which was unlinked, does not point to b.
The routine ensures that a and b are (perhaps indirectly) connected.

void tfree(PCCTS_AST *t);
Recursively walk t, deleting all the nodes in a depth-first order.

int nsiblings(PCCTS_AST *t);
Returns the number of siblings of t.

PCCTS_AST *sibling_index(PCCTS_AST *t, int i);
Return a pointer to the ith sibling where the sibling to the right of t is the first.
An index of 0, returns t.

The following ASTBase members are specific to ANTLR:

static ASTBase *tmake(ASTBase *, ...);
See the #(...) in “Interpretation of C/C++ Actions Related to ASTs” on
page 125.

ASTBase *dup();
Duplicate the current tree.

void preorder();
Perform a preorder walk of the tree using the following member functions.

void preorder_action();
What to do in each node as you do a preorder walk. Typically, preorder() is
used to print out a tree in lisp-like notation. In that case, it is sufficient to
redefine this function alone.

void preorder_before_action();
What to print out before walking down a tree.

ANTLR Reference

124 Language Translation Using PCCTS and C++

void preorder_after_action();
What to print out after walking down a tree.

Operators

ANTLR grammars may be annotated with AST construction operators. The operators are
sufficient to describe all but the strangest tree structures.

Consider the "root" operator "^." The token modified by the root operator is considered the
root of the currently-built AST. As a result, the rule

add : INT PLUS^ INT ;

results in an AST of the form:

The way to "read" rule add with regards to AST building is to say

"Make a node for INT and add it to the sibling list (it is a parent-less only
child now). Make a node for PLUS and make it the root of the current tree
(which makes it simply the parent of the only child). Make a node for the
second INT and add it to the sibling list."

Think of the AST operators as actions that are executed as they are encountered not as
something that specifies a tree structure known at ANTLR analysis time. For example, what
if a looping subrule is placed in the rule?

add : INT (PLUS^ INT)* ;

Input "3+4+5" would yield:

After the "3+4" has been read, the current tree for rule add would be:

PLUS

INT INT

+

+

3 4

5

+

3 4

Intermediate-Form Tree Construction

Language Translation Using PCCTS and C++ 125

just as before. However, because the (...)* allows you to match another addition term,
two more nodes are added to the tree for add, one of which is a root node. After the
recognition of the second + in the input, the tree for add would look like this:

because the + was made the root of the current tree due to the root operator. The 5 is a simple
leaf node (since it was not modified with either ^ or !) and is added to the current sibling
list. The addition of the new root changes the current sibling list from the 3 and 4 list to the
first + that was added to the tree; i.e., the first child of the new root. Hence, the 5 is added to
the second level in the tree and we arrive at the final tree structure.

Subrules merely modify the tree being built for the current rule, whereas each rule has its
own tree. For example, if the (...)* in add were moved to a different rule:

add : INT addTerms
;

addTerms
: (PLUS^ INT)*
;

then the following, very different, tree would be generated for input "3+4+5:"

While this tree structure is not totally useless, it is not as useful as the previous structure
because the + operators are not at the subtree roots.

Interpretation of C/C++ Actions Related to ASTs

Actions within ANTLR grammar rules may reference expression terms that are not valid C
or C++ expressions, but are understood and translated by ANTLR. These terms are useful,
for example, when you must construct trees too complicated for simple grammar annotation,
when nodes must be added to the trees built by ANTLR, or when partial trees must be
examined.

+

+

3 4

3 +

+

4

5

ANTLR Reference

126 Language Translation Using PCCTS and C++

Consider how one might build an AST for an if statement. A useful tree may quickly and
easily be constructed via grammar annotations:

if : IF^ expr THEN! stat { ELSE! stat } ;

Here, the IF is identified as the root of the tree, the THEN and ELSE are omitted as
unnecessary, and the trees constructed by expr and stat are linked in as children of the IF
node:

TABLE 10. C/C++ Interface Interpretation of AST Terms in Actions

Symbol Meaning

#0 A pointer to the result tree of the enclosing rule

(l-value).

#i A pointer to the AST built (or returned from) the
ith element of the enclosing alternative. You
should really use the #label instead.

#label A pointer to the AST built (or returned from) the
element labeled with label. Translated to
label_ast.

#[args] Tree node constructor. Translated to a call to
zzmk_ast(zzastnew(), args) in C where
zzastnew() allocates and returns a pointer to a
new, initialized AST node. You must define
zzmk_ast() if this term is used.

In C++, translated to “new AST(args)”.

#[] Empty tree node constructor. Translated to a call
to zzastnew() in C and to “new AST” in C++.

#(root child1, ...,
childn)

Tree constructor. If root is NULL, then a sibling
list is returned. The childi arguments are
added to the sibling list until the first NULL
pointer (not counting the root pointer) is
encountered .

#() NULL.

IF

expr stat stat

Predicates

Language Translation Using PCCTS and C++ 127

To construct the same tree structure manually, the following grammar is sufficient:

if! : IF e:expr THEN st:stat { ELSE el:stat }
<<#if = #(#[IF], #e, #st, #el);>>

;

where the ‘!’ in the rule header indicates that no automatic tree construction should be done
by ANTLR. The “#[IF]” term constructs a tree node via "new AST(IF)" (assuming you
have defined an AST constructor taking a ANTLRTokenType argument) and the “#(...)”
tree constructor puts the IF node above the children matched for the conditional and
statements. The el label is initialized to NULL and contributes nothing to the resulting tree if
an else clause is not found on the input.

Predicates

Predicates are used to recognize difficult language constructs such as those that are context-
sensitive or those that require unbounded lookahead to recognize. This section provides a
brief description of how predicates are defined and used to alter the normal LL(k) parsing
strategy.

Semantic Predicates

Semantic predicates alter the parse based upon run-time information. Generally, this
information is obtained from a symbol table and is used to recognize context-sensitive
constructs such as those that are syntactically identical but semantically very different; e.g.,
variables and type names are simple identifiers, but are used in completely different
contexts.

The basic semantic predicate takes the form of an action suffixed with the "?" operator:
"<<...>>?." No white space is allowed between the ">>" and the "?." Predicates must be
boolean expressions and may not have side effects (i.e., they should not modify variables.)
Alternatives without predicates are assumed to have a predicate of "<<1>>?." Also, because
predicates can be "hoisted," out of rules as we will see shortly, predicates that refer to rule
parameters or local variables are often undesirable.

Validating Semantic Predicates

All semantic predicates behave at least as validating predicates. That is, all predicates must
evaluate to true as the parser encounters them during the parse or a semantic error occurs.
For example in,

ANTLR Reference

128 Language Translation Using PCCTS and C++

typename
: <<isTypeName(LT(1)->getText())>>? ID
;

When typename is invoked, the predicate is tested before attempting to match the ID token
reference; where isTypeName() is some user-defined boolean function. If the first symbol
of lookahead is not a valid type name, ANTLR generates an error message indicating that
the predicate failed.

A fail action may be specified by appending a "[...]" action; this action is executed upon
failure of the predicate when acting as a validating predicate:

typename
: <<isTypeName(LT(1)->getText())>>?[dialogBox(BadType)] ID
;

where we can presume that dialogBox(BadType) is a user-defined function that opens a
dialog box to display an error message. ANTLR generates code similar to the following:

void Parser::typename(void)
{

if (!(isTypeName(LT(1)->getText()))) dialogBox(BadType) ;
zzmatch(ID);
consume();
return;

}

using the C++ interface.

Disambiguating Semantic Predicates

When ANTLR finds a syntactic ambiguity in your grammar, ANTLR attempts to resolve the
ambiguity with semantic information. In other words, ANTLR searches the grammar for any
predicates that provide semantic information concerning the tokens in the lookahead buffer.
A predicate that is tested during the parse to make a parsing decision (as opposed to merely
checking for validity once a decision has been made) is considered a disambiguating
predicate. We say that disambiguating predicates are hoisted into a parsing decision from a
rule or rules. A predicate that may be hoisted into a decision is said to be visible to that
decision. In this section, we describe which predicates are visible, how multiple predicates
are combined, and how visible predicates are incorporated into parsing decisions.

ANTLR searches for semantic predicates when a syntactically ambiguous parsing decision
is discovered. The set of visible predicates is collected and tested in the appropriate
prediction expression. We say that predicate p is visible to an alternative (and, hence, may
be used to predict that alternative) if p can be evaluated correctly without consuming another
input token and without executing a user action. Generally, visible predicates reside on the

Predicates

Language Translation Using PCCTS and C++ 129

left edge of productions; predicates not on the left edge usually function as validating
predicates only. For example,

a : <<p1>>? ID
| b
;

b : <<p2>>? ID
| <<action>> <<p3>>? ID
| INT <<p4>>? ID
| { FLOAT } <<p5>>? ID
;

First we observe that a lookahead of ID predicts both alternatives of rule a. ANTLR searchs
for predicates that potentially disambiguate the parsing decision. Here, we see that p1 may
be used to predict alternative one because it can be evaluated without being hoisted over a
grammar element or user action. Alternative two of rule a has no predicate, but the
alternative references rule b which has two predicates. Predicate p2 is visible, but p3 is not
because p3 would have to be executed before action, which would change the action
execution order. Predicate p4 is not visible because an INT token would have to be
consumed before p4 could be evaluated in the correct context. Predicate p5 is not visible
because a FLOAT token may have to be consumed to gain the correct context. Rule a could
be coded something like the following:

a()
{

if (LA(1)==ID && (p1)) {
MATCH(ID);
consume();

}
else (LA(1)==ID && (p2)) {

b();
}

}

Predicates may be hoisted over init-actions because init-actions are assumed to contain
merely local variable allocations. For example,

a : <<init-action>>// does not affect hoisting
<<p1>>? ID

| b
;

Care must be taken so that predicates do not refer to local variables or rule parameters if the
predicate could be hoisted out of that rule. In this example,

a : b | ID
;

ANTLR Reference

130 Language Translation Using PCCTS and C++

b[int ctx]
: <<ctx>>? ID
;

predicate ctx is hoisted into rule a, resulting in a C or C++ compilation error because ctx
exists only in rule b.

Alternatives without predicates are assumed to be semantically valid; hence, predicates on
some alternatives are redundant. For example,

a : <<flag>>? ID
| <<!flag>>?ID
;

The predicate on the second alternative is unnecessary because if flag evaluates to false,
!flag is redundant.

A predicate used to help predict an alternative may or may not apply to all lookahead
sequences predicting that alternative. We say that the lookahead must be consistent with the
context of the predicate for it to provide useful information. Consider the following example.

a : (var | INT)
| ID
;

var : <<isVar(LATEXT(1))>>? ID
;

Because ID predicts both alternatives of rule a, ANTLR hoists the predicate isVar() into
the prediction expression for the first alternative. However, both INT and ID predict the first
alternative—evaluating isVar() when the lookahead is INT would be incorrect as it would
return false when in fact no semantic information is known about INTs. The first alternative
of rule a would never be able to match an INT.

When hoisting a predicate, ANTLR computes and then carries along the context under
which the predicate was found (with "-prc on" command-line option). The required depth,
k, for the predicate context is determined by examining the actual predicate to see what
lookahead depths are used; predicates that do not reference LT(k) or LATEXT(k) are
assumed to have k=1. Normally, k=1 as predicates usually test only the next lookahead
symbol.

Predicates

Language Translation Using PCCTS and C++ 131

The third predicate in the table provides context information for the ID following the
LPAREN; hence, the context is LPAREN followed by ID. The other two examples require a
lookahead depth of k=1.

Predicates normally apply to exactly one lookahead sequence. ANTLR will give you a
warning for any predicate that applies to more than one sequence.

There are situations when you would not wish ANTLR to compute the lookahead context of
predicates:

• When ANTLR would take too long to compute the context and

• When the predicate applies only to a subset of the full context computed by
ANTLR

In these situations, a predicate context-guard is required, which allows you to specify the
syntactic context under which the predicate is valid. The form of a context-guarded
predicate is

(context-guard)? => <<semantic-predicate>>?

Where the context-guard can be any grammar fragment that specifies a set of k-
sequences where k is the depth referenced in semantic-predicate. For example,

cast_expr
: (LPAREN ID)? => <<isTypeName(LT(2))>>?

LPAREN abstract_type RPAREN
;

This predicate dictates that when the lookahead is LPAREN followed by ID, then the
isTypeName() predicate provides semantic information and may be evaluated. Without the
guard, ANTLR assumes that the lookahead was LPAREN followed by all tokens that could
begin an abstract_type.

Multiple lookahead k-sequences can also be specified inside the context guard:

a : (ID | KEYWORD)? => <<predicate>>? b ;

TABLE 11. Sample Predicates and Their Lookahead Contexts

Predicate Context

a : <<p(LT(1))>>? ID ; ID

a : <<p(LT(1))>>? b ;

b : ID | INT ;

ID, INT

a : <<p(LT(2))>>? LPAREN ID ; LPAREN ID

ANTLR Reference

132 Language Translation Using PCCTS and C++

The use of EBNF looping-constructs such as (...)* are not valid in context-guards.

Because there may be more than one predicate visible to an alternative, ANTLR has rules
for combining multiple predicates.

• Predicates or groups of predicates taken from alternative productions are ||’d
together.

• Predicates or groups of predicates taken from the same production are &&’d
together.

For example,

decl
: typename declarator ";"
| declarator ";"
;

declarator
: ID
;

typename
: classname
| enumname
;

classname
: <<isClass(LATEXT(1))>>? ID
;

enumname
: <<isEnum(LATEXT(1))>>? ID
;

The decision for the first alternative of rule decl would hoist both predicates and test them
in a decision similar to the following:

if (LA(1)==ID && (isClass(LATEXT(1)||isEnum(LATEXT(1))) { ...

Adding a predicate to rule decl:

decl
: <<flag>>? typename declarator ";"
| declarator ";"
;

would result in flag being &&’d with the result of the combination of the other two
predicates:

if (LA(1)==ID && (flag&&(isClass(LATEXT(1)||isEnum(LATEXT(1)))) { ...

Predicates

Language Translation Using PCCTS and C++ 133

In reality, ANTLR inserts code to ensure that the predicates are tested only when the parser
lookahead is consistent with the context associated with each predicate; here, all predicates
have ID as their context, and the redundant tests have been removed for clarity.

Semantic Predicates Effect upon Syntactic Predicates

During the evaluation of a syntactic predicate, semantic predicates that have been hoisted
into prediction expressions are still evaluated. Success or failure of these disambiguating
predicates simply alters the parse and does not directly cause syntax errors.

Validation predicates (those that have not been hoisted) are also still evaluated. However, a
failed validation predicate aborts the current syntactic predicate being evaluated whereas,
normally, a failure causes a syntax error.

Syntactic Predicates

Just as semantic predicates indicate when a production is valid, syntactic predicates also
indicate when a production is a candidate for recognition. The difference lies in the type of
information used to predict alternative productions. Semantic predicates employ
information about the meaning of the input (e.g., symbol table information), whereas
syntactic predicates employ structural information like normal LL(k) parsing decisions.
Syntactic predicates specify a grammatical construct that must be seen on the input stream to
make a production valid. Moreover, this construct may match input streams that are
arbitrarily long; normal LL(k) parsers are restricted to using the next k symbols of
lookahead.

Syntactic Predicate Form and Meaning

Syntactic predictions have the form

(α)? β

or, the shorthand form

(α)?

which is identical to

(α)? α

where α and β are arbitrary Extended BNF (EBNF) grammar fragments that do not define
new nonterminals. The meaning of the long form syntactic predicate is:

“If α is matched on the input stream, attempt to recognize β.”

Note the similarity to the semantic predicate

ANTLR Reference

134 Language Translation Using PCCTS and C++

<<α>>? β

which means

“If α evaluates to true at parser run-time, attempt to match β.”

Syntactic predicates may occur only at the extreme left edge of alternatives because they are
only useful during the prediction of alternatives—not during the subsequent recognition of
the alternatives.

Alternative productions that are syntactically unambiguous, but non-LL(k), should be
rewritten, left-factored, or modified to use syntactic predicates. Consider the following rule:

type : ID
| ID
;

The alternatives are syntactically ambiguous because they can both match the same input.
The rule is a candidate for semantic predicates, not syntactic predicates. The following
example is unambiguous. It is just not deterministic to a normal LL(k) parser.

Consider a small chunk of the vast C++ declaration syntax. Can you tell exactly what type of
object f is after having seen the left parenthesis?

int f(

The answer is "no." Object f could be an integer initialized to some previously defined
symbol a:

int f(a);

or a function prototype or definition:

int f(float a) {...}

The following is a greatly simplified grammar for these two declaration types:

decl: type ID "\(" expr_list "\)" ";"
| type ID "\(" arg_decl_list "\)" func_def
;

Left-factoring “type ID "\("” would be trivial because our grammar is so small and the
left-prefixes are identical:

decl: type ID
"\("

(expr_list "\)" ";"
| arg_decl_list
)

"\)" func_def
;

Predicates

Language Translation Using PCCTS and C++ 135

However, if a user action were required before recognition of the reference to rule type,
left-factoring would not be possible:

decl
: <<// dummy init action; next action isn’t init action>>

 <<printf("var init\n");>>
type ID "\(" expr_list "\)" ";"

| <<printf("func def\n");>>
type ID "\(" arg_decl_list "\)" func_def

;

The solution to the problem involves looking arbitrarily ahead (type could be arbitrarily
big, in general) to determine what appears after the left parenthesis. This problem is easily
solved implicitly by using a syntactic predicate:

decl
: (<<//dummy action>>

<<printf("var init\n");>>
type ID "\(" expr_list "\)" ";"

)?
| <<printf("func def\n");>>

type ID "\(" arg_decl_list "\)" func_def
;

The (...)? indicates that it is impossible to decide from the left edge of rule decl with a
finite amount of lookahead, which production to predict. Any grammar construct inside a
(...)? block is attempted and, if it fails, the next alternative production that could match
the input is attempted. This represents selective backtracking and is similar to allowing
ANTLR parsers to guess without being "penalized" for being wrong. Note that the first
action of any block is considered an init-action and hence, because it may define local
variables it cannot be gated out with an if -statement. (Local variables would not be visible
outside the if -statement.)

Modified Parsing Strategy

Decisions that are not augmented with syntactic predicates are parsed deterministically with
finite lookahead up to depth k as is normal for ANTLR-generated parsers. When at least one
syntactic predicate is present in a decision, rule recognition proceeds as follows:

1. Find the first viable production (i.e., the first production in the alternative list
predicted by the current finite lookahead) according to the associated finite-
lookahead prediction-expression.

2. If the first grammar element in that production is not a syntactic predicate, predict
that production and go to Step 3 else attempt to match the predicting grammar
fragment of the syntactic predicate.

ANTLR Reference

136 Language Translation Using PCCTS and C++

3. If the predicting grammar fragment is matched, predict the associated production
and go to Step 4 else find the next viable production and go to Step 2.

4. Proceed with the normal recognition of the production predicted in
Steps 2 or 3.

For successful predicates, both the predicting grammar fragment and the remainder of the
production are actually matched: hence, the short form, (α)?, actually matches α twice—
once to predict and once to apply α normally, executing any embedded actions.

Nested Syntactic Predicate Invocation

Because syntactic predicates may reference any defined nonterminal and because of the
recursive nature of grammars, it is possible for the parser to return to a point in the grammar
that had already requested backtracking. This nested invocation poses no problem from a
theoretical point of view, but it can cause unexpected parsing delays in practice.

Efficiency

The order of alternative productions in a decision is significant. Productions in an ANTLR
grammar are always attempted in the order specified. For example, the parsing strategy
outline above indicates that the following rule is most efficient when foo is less complex
than bar.

a : (foo)?
| bar
;

because they testing the simplest possibility first is faster.

Any parsing decisions made inside a (..)? block are made deterministically unless they
themselves are prefixed with syntactic predicates. For example,

a : ((A)+ X | (B)+ X)?
| (A)* Y
;

specifies that the parser should attempt to match the nonpredicated grammar fragment

((A)+ X
| (B)+ X
)

using normal the normal finite-lookahead parsing strategy. If a phrase recognizable by this
grammar fragment is found on the input stream, the state of the parser is restored to what it
was before the predicate invocation and the grammar fragment is parsed again. If not, if the
grammar fragment failed to match the input, apply the next production in the outer block:

(A)* Y

Parser Exception Handlers

Language Translation Using PCCTS and C++ 137

Effect of Syntactic Predicates on Actions and Semantic Predicates

While evaluating a syntactic predicate, user actions, such as adding symbol table entries, are
not executed because in general, they cannot be "undone"; this conservative approach avoids
affecting the parser state in an irreversible manner. Upon successful evaluation of a syntactic
predicate, actions are once again enabled—unless the parser was in the process of evaluating
another syntactic predicate.

Because semantic predicates are restricted to side-effect-free expressions, they are always
evaluated when encountered. However, during syntactic predicate evaluation, the semantic
predicates evaluated must be functions of values computed when actions were enabled. For
example, if your grammar has semantic predicates that examine the symbol table, all
symbols needed to direct the parse during syntactic predicate evaluation must be entered into
the table before this backtracking phase has begun.

Because init-actions are always executed, it is possible to make ANTLR into actually
executing an action during the evaluation of a syntactic predicate by simply enclosing the
action in a subrule:

(<<action>>)

Syntactic Predicates effect upon Grammar Analysis

ANTLR constructs normal LL(k) decisions throughout predicated parsers, only resorting to
arbitrary lookahead predictors when necessary. Calculating the lookahead sets for a full
LL(k) parser can be quite expensive in terms of (time and space), so by default, ANTLR
uses a linear approximation to the lookahead and only uses full LL(k) analysis when
required. When ANTLR encounters a syntactic predicate, it generates the instructions for
selective backtracking as you would expect, but also generates an approximate decision.
Although no finite lookahead decision is actually required (the arbitrary lookahead
mechanism will accurately predict the production without it) the approximate portion of the
decision reduces the number of times backtracking is attempted without hope of a successful
match. An unexpected, but important, benefit of syntactic predicates is that they provide a
convenient method for preventing ANTLR from attempting full LL(k) analysis when doing
so would cause unacceptable analysis delays.

Parser Exception Handlers

Parser exception handlers provide a more sophisticated alternative to the automatic error
reporting and recovery facility provided by ANTLR. The notion of throwing and catching
parser error signals is similar to C++ exception handling: however, our implementation
allows both the C and C++ interface to use parser exception handling. This section provides
a short description of the syntax and semantics of ANTLR exceptions.

ANTLR Reference

138 Language Translation Using PCCTS and C++

When a parsing error occurs, the parser throws an exception. The most recently encountered
exception handler that catches the appropriate signal is executed. The parse continues after
the exception by prematurely returning from the rule that handled the exception. Generally,
the rule that catches the exception is not the rule that throws the exception; e.g., a
statement rule may be a better place to handle an error than the depths of an expression
evaluator as the statement rule has unambiguous context information with which to
generate a good error message and recover.

Exception handlers may be specified:

• After any alternative. These handlers apply only to signals thrown while
recognizing the elements of that alternative.

• After the ‘ ;’ of a rule definition . These handlers apply to any signal thrown while
recognizing any alternative of the rule unless the handler references a element
label, in which case the handler applies only to recognition of that rule element.
Non-labeled handlers attached to a rule catch signals not caught by handlers
attached to an alternative.

• Before the list of rules. These global exception handlers apply when a signal is
not caught by a handler attached to a rule or alternative. Global handlers behave
slightly differently in that they are always executed in the rule that throws the
signal; the rule is still prematurely exited.

Exception Handler Syntax

The syntax for an exception group is as follows:

exception_group
: "exception" { "\[" ID "\]" } (exception_handler)*

{ "default" ":" ACTION }
;

exception_handler
: "catch" SIGNAL ":" { ACTION }
;

where SIGNAL is one of:

Parser Exception Handlers

Language Translation Using PCCTS and C++ 139

A "default :" clause may also be used in your exception group to match any signal that
was thrown. Currently, you cannot define your own exception signals.

You can define multiple signals for a single handler. For example,

exception
catch MismatchedToken :
catch NoViableAlt :
catch NoSemViableAlt :

<<
printf("stat:caught predefined signal\n");
consumeUntil(DIE_set);
>>

If a label attached to a rule reference is specified for an exception group, that group may be
specified after the end of the ‘;’ rule terminator. Because element labels are unique for each
rule, ANTLR can still uniquely identify the appropriate rule reference to associate the
exception group. It often makes a rule cleaner to have most of the exception handlers at the
end of the rule. For example,

a : A t:expr B
| ...
;
exception[t]

catch ...
catch ...

The NoViableAlt signal only makes sense for labeled exception groups and for rule
exception groups.

TABLE 12. Predefined Parser Exception Signals

Signal Name Description

NoViableAlt Exception thrown when none of the alternatives in a
pending rule or subrule were predicted by the current
lookahead.

NoSemViableAlt Exception thrown when no alternatives were predicted
in a rule or subrule and at least one semantic predicate
(for a syntactically viable alternative) failed.

MismatchedToken Exception thrown when the pending token to match
did not match the first symbol of lookahead.

ANTLR Reference

140 Language Translation Using PCCTS and C++

Exception Handler Order of Execution

Given a signal, S, the handler that is invoked is determined by looking through the list of
enabled handlers in a specific order. Loosely speaking, we say that a handler is enabled
(becomes active) and pushed onto an exception stack when it has been seen by the parser on
its way down the parse tree. A handler is disabled and taken off the exception stack when the
associated grammar fragment is successfully parsed. The formal rules for enabling are:

• All global handlers are enabled upon initial parser entry.

• Exception handlers specified after an alternative become enabled when that
alternative is predicted.

• Exception handlers specified for a rule become enabled when the rule is invoked.

• Exception handlers attached with a label to a particular rule reference within an
alternative are enabled just before the invocation of that rule reference.

Disabling rules are:

• All global handlers are disabled upon parser exit.

• Exception handlers specified after an alternative are disabled when that alternative
has been (successfully) parsed completely.

• Exception handlers specified for a rule become disabled just before the rule
returns.

• Exception handlers tied to a particular rule reference within an alternative are dis-
abled just after the return from that rule reference.

Upon an error condition, the parser with throw an exception signal, S. Starting at the top of
the stack, each exception group is examined looking for a handler for S. The first S handler
found on the stack is executed. In practice, the run time stack and hardware program counter
are used to search for the appropriated handler. This amounts to the following:

1. If there is an exception specified for the enclosing alternative, then look for S in
that group first.

2. If there is no exception for that alternative or that group did not specify an S
handler, then look for S in the enclosing rule’s exception group.

3. Global handlers are like macros that are inserted into the rule exception group for
each rule.

4. If there is no rule exception or that group did not specify an S handler, then return
from the enclosing rule with the current error signal still set to S.

5. If there is an exception group attached (via label) to the rule that just returned,
check that exception group for S.

6. If an exception group attached to a rule reference does not have an S handler, then
look for S in the enclosing rule’s exception group.

Parser Exception Handlers

Language Translation Using PCCTS and C++ 141

This process continues until an S handler is found or a return instruction is executed in
starting rule. When either happens, the start symbol would have a return-parameter set to S.

These guidelines are best shown in an example:

a : A c B
exception /* 1 */

catch MismatchedToken : <<ACTION1>>
| C t:d D

exception /* 2 */
catch MismatchedToken :<<ACTION2>>
catch NoViableAlt : <<ACTION3>>

;
exception[t] /* 3 */

catch NoViableAlt : <<ACTION4>>
exception /* 4 */

catch NoViableAlt : <<ACTION5>>

c : E ;
d : e ;
e : F | G

;
exception /* 5 */

catch MismatchedToken : <<ACTION6>>

Table 13 on page 141 summarizes the sequence in which the exception groups are tested.

Note that action 4 is never executed because rule d has no tokens to mismatch and
mismatched tokens in rule e are caught in that rule.

TABLE 13. Sample Order of Search for Exception Handlers

Input Exception group search sequence Action Executed

D E B 4 5

A E D 1 1

A F B 1 1

C F B 2 2

C E D 5, 2 3

ANTLR Reference

142 Language Translation Using PCCTS and C++

The global handlers are like macro insertions. For example:

exception catch NoViableAlt : <<blah blah>>
a : A

;
exception

catch MismatchedToken : <<ack;>>
b : B

;

This grammar fragment is functionally equivalent to:

a : A
;
exception

catch MismatchedToken : <<ack;>>
catch NoViableAlt : <<blah blah>>

b : B
;
exception

catch NoViableAlt : <<blah blah>>

Modifications to Code Generation

The following items describe the changes to the output parser C or C++ code when at least
one exception handler is specified:

• Each rule reference acquires a signal parameter that returns 0 if no error occurred
during that reference or it returns a nonzero signal S.

• The MATCH() macro throws MismatchedToken rather than calling zzsyn(), the
standard error reporting and recovery function.

• When no viable alternative is found, NoViableAlt is signaled rather than calling
the zzsyn() routine.

• The parser no longer resynchronizes automatically.

Semantic Predicates and NoSemViableAlt

When the input stream does not predict any of the alternatives in the current list of possible
alternatives, NoViableAlt is thrown. However, what happens when semantic predicates
are specified in that alternative list? There are cases where it would be very misleading to
just throw NoViableAlt when in fact one or more alternatives were syntactically viable;
i.e., the reason that no alternative was predicted was due to a semantic invalidity and a
different signal must be thrown in such a case. For example,

Parser Exception Handlers

Language Translation Using PCCTS and C++ 143

expr : <<P1>>? ID ... /* function call */
| <<P2>>? ID ... /* array reference */
| INT
;
exception

catch NoViableAlt :
<<no ID or INT was found>>

catch NoSemViableAlt :
<<an ID was found, but it was not valid>>

Typically, you would want to give very different error messages for the two different
situations. Specifically, reporting a message such as

syntax error at ID missing { ID INT }

would be very misleading (i.e., wrong).

The rule for distinguishing between NoViableAlt and NoSemViableAlt is:

If NoViableAlt would be thrown and at least one semantic
predicate (for a syntactically viable alternative) failed, signal
NoSemViableAlt instead of NoViableAlt.

(Semantic predicates that are not used to predict alternatives do not yet throw signals. You
must continue to use the fail-action attached to individual predicates in these cases.)

Resynchronizing the Parser

When an error occurs while parsing rule R, the parser will generally not be able to continue
parsing anywhere within that rule. It will return immediately after executing any exception
code. The one exception is for handlers attached to a particular rule reference. In this case,
the parser knows exactly where in the alternative you would like to continue parsing from—
immediately after the rule reference.

After reporting an error, your handler must resynchronize the parser by consuming zero or
more tokens. More importantly, this consumption must be appropriate given the point where
the parser will attempt to continue parsing. For example, given when an error occurs during
the recognition of the conditional of an if-statement, a good way to recover would be to
consume tokens until the then is found on the input stream.

stat : IF e:expr THEN stat
;
exception[e]

default : <<print error; consumeUntilToken(THEN);>>

The parser will continue with the parse after the expr reference (because we attached the
exception handler to the rule reference) and look for the then right away.

ANTLR Reference

144 Language Translation Using PCCTS and C++

To allow this type of manual resynchronization of the parser, two functions are provided:

For example,

#tokclass RESYNCH { A C }
a : b A

| b C
;

b : B
;
exception

catch MismatchedToken : // consume until FOLLOW(b)
<<print error message; zzconsumeUntil(RESYNCH_set);>>

You may also use function set_el(T, TC_set) (prefix with "zz" in C interface) to test
token type T for membership in a token class TC. For example,

<<if (zzset_el(LA(1), TC_set)) blah blah blah;>>

The @ Operator

You may suffix any token reference with the @ operator, which indicates that if that token is
not seen on the input stream, errors are to be handled immediately rather than throwing a
MismatchedToken exception. In particular, [for the moment] the macros
zzmatch_wdfltsig() or zzsetmatch_wdfltsig() is called in both C and C++ mode
for simple token or token class references. In C++, you can override functions
ANTLRParser member functions _match_wdfltsig() and _setmatch_wdfltsig().

The @ operator may also be placed at the start of any alternative to indicate that all token
references in that alternative (and enclosed subrules) are to behave as if they had been
suffixed with the ‘@’ operator individually. Consider the following grammar:

TABLE 14. Resynchronization Functions

Function Description

consumeUntil(X_set) Consume tokens until a token in the token class X
is seen. Recall that ANTLR generates a packed bit-
set called X_set for each token class X. The C inter-
face prefixes the function name with "zz".

consumeUntilToken(T) Consume tokens until token T is seen. The C inter-
face prefixes the function name with "zz".

ANTLR Command Line Arguments

Language Translation Using PCCTS and C++ 145

stat
:@ "if" INT "then" stat { "else" stat }

<<printf("found if\n");>>
| id:ID@ "="@ INT@ ";"@

<<printf("found assignment to %s\n", $id->getText());>>
;

The @ on the front of alternative one indicates that each token reference in the alternative is
to be handled without throwing an exception. The match routine will catch the error. The
second alternative explicitly indicates that each token is to be handled locally without
throwing an exception.

ANTLR Command Line Arguments

ANTLR understands the following command line arguments:

-CC Generate C++ output from ANTLR.

-ck n Use up to n symbols of lookahead when using compressed (linear approxima-
tion) lookahead. This type of lookahead is very cheap to compute and is
attempted before full LL(k) lookahead, which is of exponential complexity in
the worst case. In general, the compressed lookahead can be much deeper (e.g,
-ck 10) than the full lookahead (which usually must be less than 4).

-cr Generate a cross-reference for all rules. For each rule, print a list of all other
rules that reference it.

-e1 Ambiguities/errors shown in low detail (default).

-e2 Ambiguities/errors shown in more detail.

-e3 Ambiguities/errors shown in excruciating detail.

-fe f File Rename err.c to f.

-fh f File Rename stdpccts.h header (turns on -gh) to f.

-fl f File Rename lexical output, parser.dlg, to f.

-fm f File Rename file with lexical mode definitions, mode.h, to f.

-fr f File Rename file which remaps globally visible symbols, remap.h, to f.

-ft f File Rename tokens.h to f.

-gc Indicates that antlr should generate no C code, i.e., only perform analysis on
the grammar.

ANTLR Reference

146 Language Translation Using PCCTS and C++

-gd C/C++ code is inserted in each of the ANTLR generated parsing functions to
provide for user-defined handling of a detailed parse trace. The inserted code
consists of calls to the user-supplied macros or functions called zzTRACEIN
and zzTRACEOUT in C and calls to ANTLRParser::tracein() and tra-
ceout() in C++. The only argument is a char * pointing to a C-style string,
which is the grammar rule recognized by the current parsing function. If no
definition is given for the trace functions upon rule entry and exit, a message is
printed indicating that a particular rule as been entered or exited.

-ge Generate an error class for each rule.

-gh Generate stdpccts.h for non-ANTLR-generated files to include. This file
contains all defines needed to describe the type of parser generated by ANTLR
(e.g. how much lookahead is used and whether or not trees are constructed)
and contains the header action specified by the user. If your main() is in
another file, you should include this file in C mode. C++ can ignore this
option.

-gk Generate parsers that delay lookahead fetches until needed. Without this
option, ANTLR generates parsers which always have k tokens of lookahead
available. This option is incompatible with semantic predicates and renders
references to LA(i) invalid as one never knows when the ith token of looka-
head will be fetched. [This is broken in C++ mode.]

-gl Generate line info about grammar actions in the generated C/C++ code of the
form
line "file.g"

which makes error messages from the C/C++ compiler more sensible because
they point into the grammar file, not the resulting C/C++ file. Debugging is
easier too, because you will step through the grammar, not C/C++ file.

-gs Do not generate sets for token expression lists; instead generate a "||"-sepa-
rated sequence of LA(1)==token_number. The default is to generate sets.

-gt Generate code for Abstract Syntax Trees.

-gx Do not create the lexical analyzer files (dlg-related). This option should be
given when you need to provide a customized lexical analyzer. It may also be
used in make scripts to cause only the parser to be rebuilt when a change not
affecting the lexical structure is made to the input grammars.

-k n Set k of LL(k) to n; i.e., set the number of tokens of look-ahead (default==1).

-o dir Directory where output files should go (default="."). This keeps the source
directory clear of ANTLR and DLG spawn.

ANTLR Command Line Arguments

Language Translation Using PCCTS and C++ 147

-p The complete grammar, collected from all input grammar files and stripped of
all comments and embedded actions is listed to stdout. This enables viewing
the entire grammar as a whole and eliminates the need to keep actions con-
cisely stated so that the grammar is easier to read.

-pa This option is the same as -p except that the output is annotated with the first
sets determined from grammar analysis.

-prc on Turn on the computation of predicate context (default is not to compute the
context).

-prc off Turn off the computation and hoisting of predicate context (default case).

-rl n Limit the maximum number of tree nodes used by grammar analysis to n.
Occasionally, ANTLR is unable to analyze a grammar. This rare situation
occurs when the grammar is large and the amount of lookahead is greater than
one. A nonlinear analysis algorithm is used by PCCTS to handle the general
case of LL(k) parsing. The average complexity of analysis, however, is near
linear due to some fancy footwork in the implementation which reduces the
number of calls to the full LL(k) algorithm. An error message will be dis-
played, if this limit is reached, which indicates the grammar construct being
analyzed when ANTLR hit a nonlinearity. Use this option if ANTLR seems to
go out to lunch and your disk start thrashing; try n=80000 to start. Once the
offending construct has been identified, try to remove the ambiguity that antlr
was trying to overcome with large lookahead analysis. The introduction of
(...)? backtracking predicates eliminates some of these problems—antlr
does not analyze alternatives that begin with (...)? (it simply backtracks, if
necessary, at run time).

-w1 Set low warning level. Do not warn if semantic predicates and/or (...)? blocks
are assumed to cover ambiguous alternatives.

-w2 Ambiguous parsing decisions yield warnings even if semantic predicates or
(...)? blocks are used. Warn if predicate context computed and semantic predi-
cates incompletely disambiguate alternative productions.

- Read grammar from standard input and generate stdin.c as the parser file.

ANTLR Reference

148 Language Translation Using PCCTS and C++

DLG Command Line Arguments

These are the command line arguments understood by DLG (normally, you can ignore these
and concentrate on ANTLR):

-CC Generate C++ output. The output file is not specified in this case.

-Clevel Where level is the compression level used. 0 indicates no compression, 1
removes all unused characters from the transition from table, and 2 maps
equivalent characters into the same character classes. Using level -C2 signifi-
cantly reduces the size of the DFA produced for lexical analyzer.

-m f Produces the header file for the lexical mode with a name other than the default
name of mode.h.

-i An interactive, or as interactive as possible, scanner is produced. A character is
obtained only when required to decide which state to go to. Some care must be
taken to obtain accept states that do not require look ahead at the next character
to determine if that is the stop state. Any regular expression with a "e*" at the
end is guaranteed to require another character of lookahead.

-cl class Specify a class name for DLG to generate. The default is DLGLexer.

-ci The DFA will treat upper and lower case characters identically. This is accom-
plished in the automaton; the characters in the lexical buffer are unmodified.

-cs Upper and lower case characters are treated as distinct. This is the default.

-o dir Directory where output files should go (default=”.”). This is very nice for
keeping the source directory clear of ANTLR and DLG spawn.

-Wambiguity

Warns if more than one regular expression could match the same character sequence. The
warnings give the numbers of the expressions in the DLG lexical specification file. The
numbering of the expressions starts at one. Multiple warnings may be print for the same
expressions.

- Used in place of file names to get input from stdin or send output to stdout.

C Interface

Language Translation Using PCCTS and C++ 149

C Interface

(The C interface gradually evolved from a simplistic attributed-parser built in 1988.
Unfortunately for backward compatibility reasons, the interface has been augmented but not
changed in any significant way.)

The C interface parsing model assumes that a scanner (normally built by DLG) returns the
token type of tokens found in the input stream when it is asked to do so by the parser. The
parser provides attributes that are computed from the token type and text of the token, to
grammar actions to facilitate translations. The line and column information are directly
accessed from the scanner. The interface requires only that you define what an attribute
looks like and how to construct one from the information provided by the scanner. Given
this information, ANTLR can generate a parser that will correctly compile and recognize
sentences in the prescribed language.

The type of an attribute must be called Attrib; the function or macro to convert the text and
token type of a token to an attribute is called zzcr_attr().

This chapter describes the invocation of C interface parsers, the definition of special
symbols and functions available to grammatical actions, the definition of attributes, and the
definition of AST nodes.

Invocation of C Interface Parsers

C interface parsers are invoked via the one of the macros defined in Table 15 on page 149.

TABLE 15. C Interface Parser Invocation Macros

Macro Description

ANTLR(r,f) Begin parsing at rule r, reading characters from stream f.

ANTLRm(r,f,m) Begin parsing at rule r, reading characters from stream f;
begin in lexical class m.

ANTLRf(r,f) Begin parsing at rule r, reading characters by calling func-
tion f for each character.

ANTLRs(r,s) Begin parsing at rule r, reading characters from string s.

ANTLR Reference

150 Language Translation Using PCCTS and C++

The rule argument must be a valid C function call, including any parameters required by the
starting rule. For example, to read an expr from stdin:

ANTLR(expr(), stdin);

To read an expr from string buf:

char buf[] = "3+4";
ANTLRs(expr(), buf);

To read an expr and build an AST:

char buf[] = "3+4";
AST *root;
ANTLRs(expr(&root), buf);

To read an expr and build an AST where expr has a single integer parameter:

#define INITIAL 0
char buf[] = "3+4";
AST *root;
ANTLRs(expr(&root,INITIAL), buf);

A simple template for a C interface parser is the following:

#header <<
#include "charbuf.h"
>>
#token "[\ \t]+" <<zzskip();>>
#token "\n" <<zzskip(); zzline++;>>
<<
main() { ANTLR(start(), stdin); }
>>

start : ;

C Interface

Language Translation Using PCCTS and C++ 151

Functions and Symbols in Lexical Actions

Table 16 on page 151 describes the functions and symbols available to actions that are
executed upon the recognition of an input token (In rare cases, however, these functions
need to be called from within a grammar action).

TABLE 16. C Interface Symbols Available to Lexical Actions

Symbol Description

zzreplchar(char c) Replace the text of the most recently matched
lexical object with c.

zzreplstr(char c) Replace the text of the most recently matched
lexical object with c.

int zzline The current line number being scanned by DLG.
This variable must be maintained by the user;
this variable is normally maintained by incre-
menting it upon matching a newline character.

zzmore() This function merely sets a flag that tells DLG to
continue looking for another token; future char-
acters are appended to zzlextext.

zzskip() This function merely sets a flag that tells DLG to
continue looking for another token; future char-
acters are not appended to zzlextext.

zzadvance() Instruct DLG to consume another input charac-
ter. zzchar will be set to this next character.

int zzchar The most recently scanned character.

char *zzlextext The entire lexical buffer containing all characters
matched thus far since the last token type was
returned. See zzmore() and zzskip().

NLA To change token type to t, do “NLA = t;”. This
feature is not really needed anymore as semantic
predicates are a more elegant means of altering
the parse with run time information.

NLATEXT To change token type text to foo, do

“strcpy(NLATEXT,foo);”.

This feature sets the actual token lookahead
buffer, not the lexical buffer zzlextext.

ANTLR Reference

152 Language Translation Using PCCTS and C++

char *zzbegexpr Beginning of last token matched.

char *zzendexpr End of last token matched.

ZZCOL Define this preprocessor symbol to get DLG to
track the column numbers.

int zzbegcol The column number starting from 1 of the first
character of the most recently matched token.

int zzendcol The column number starting from 1 of the last
character of the most recently matched token.
Reset zzendcol to 0 when a newline is encoun-
tered. Adjust zzendcol in the lexical action
when a character is not one print position wide
(e.g., tabs or non-printing characters). The col-
umn information is not immediately updated if a
token’s action calls zzmore().

void (*zzerr)(char *) You can set zzerr to point to a routine of your
choosing to handle lexical errors (e.g., when the
input does not match any regular expression).

zzmode(int m) Set the lexical mode (i.e., lexical class or autom-
aton) corresponding to a lex class defined in an
ANTLR grammar with the #lexclass directive.

int zzauto What automaton (i.e., lexical mode) is DLG in?

zzrdstream(FILE *) Specify that the scanner should read characters
from the stream argument.

zzclose_stream() Close the current stream.

zzrdstr(zzchar_t *) Specify that the scanner should read characters
from the string argument.

zzrdfunc(int (*)()) Specify that the scanner should obtain characters
by calling the indicated function.

zzsave_dlg_state(

struct zzdlg_state *)

Save the current state of the scanner. This is use-
ful for scanning nested includes files, etc...

zzrestore_dlg_state(

struct zzdlg_state *)

Restore the state of the scanner from a state
buffer.

TABLE 16. (Continued) C Interface Symbols Available to Lexical Actions

Symbol Description

C Interface

Language Translation Using PCCTS and C++ 153

Attributes Using the C Interface

Attributes are objects that are associated with all tokens found on the input stream.
Typically, attributes represent the text of the input token, but may include any information
that you require. The type of an attribute is specified via the Attrib type name, which you
must provide. A function zzcr_attr() is also provided by you to inform the parser how to
convert from the token type and text of a token to an Attrib. [In early versions of ANTLR,
attributes were also used to pass information to and from rules or subrules. Rule arguments
and return values are a more sophisticated mechanism and, hence, in this section, we will
pretend as if attributes are only used to communicate with the scanner.]

Attribute Definition and Creation

The attributes associated with input tokens must be a function of the text and the token type
associated with that lexical object. These values are passed to zzcr_attr() which
computes the attribute to be associated with that token. The user must define a function or
macro that has the following form:

void zzcr_attr(attr, type, text)
Attrib *attr; /* pointer to attribute associated with this lexeme */
int type; /* the token type of the token */
char *text; /* text associated with lexeme */
{

/* *attr = f(text,token); */
}

Consider the following Attrib and zzcr_attr() definition.

typedef union {
int ival; float fval;

} Attrib;

zzcr_attr(Attrib *attr, int type, char *text)
{

switch (type) {
case INT : attr->ival = atoi(text); break;
case FLOAT : attr->fval = atof(text); break;

}
}

The typedef specifies that attributes are integer or floating point values. When the regular
expression for a floating point number (which has been identified as FLOAT) is matched on
the input, zzcr_attr() converts the string of characters representing that number to a C
float. Integers are handled analogously.

ANTLR Reference

154 Language Translation Using PCCTS and C++

You can specify the C definition or #include statements the file needed to define Attrib
(and zzcr_attr() if it is a macro) using the ANTLR #header directive. The action
associated with #header is placed in every C file generated from the grammar files. Any C
file created by the user that includes antlr.h must once again define Attrib before using
#include antlr.h. A convenient way to handle this is to use the -gh ANTLR command
line option to have ANTLR generate the stdpccts.h file and then simply include
stdpccts.h.

Attribute References

Attributes are referenced in user actions as $label where label is the label of a token
referenced anywhere before the position of the action. For example,

#header <<
typedef int Attrib;
#define zzcr_attr(attr, type, text) *attr = atoi(text);
>>
#token "[\ \t\n]+"<<zzskip();>> /* ignore whitespace */

add : a:"[0-9]+" "\+" b:"[0-9]+"
<<printf("addition is %d\n", a+b);>>
;

If Attrib is defined to be a structure or union, then $label.field is used to access the
various fields. For example, using the union example above,

#header <<
typedef union { ... };
>>
void zzcr_attr(...) { ... };
#token "[\ \t\n]+"<<zzskip();>> /* ignore whitespace */

add : a:INT "\+" b:FLOAT
<<printf("addition is %f\n", $a.ival+$b.fval);>>

;

For backward compatibility reasons, ANTLR still supports the notation $i and $i.j, where i
and j are a positive integers. The integers uniquely identify an element within the currently
active block and within the current alternative of that block. With the invocation of each new
block, a new set of attributes becomes active and the previously active set is temporarily
inactive. The $i and $i.j style attributes are scoped exactly like local stack-based variables in
C. Attributes are stored and accessed in stack fashion. With the recognition of each element
in a rule, a new attribute is pushed on the stack. Consider the following simple rule:

C Interface

Language Translation Using PCCTS and C++ 155

a: B | C ;

Rule a has 2 alternatives. The $i refers to the ith rule element in the current block and within
the same alternative. So, in rule a, both B and C are $1.

Subrules are like code blocks in C—a new scope exists within the subrule. The subrules
themselves are counted as a single element in the enclosing alternative. For example,

b : A (B C <<action1>> | D E <<action2>>) F <<action3>>
| G <<action4>>
;

Table 17 on page 155 describes the attributes that are visible to each action.

Attribute destruction

You may elect to "destroy" all attributes created with zzcr_attr(). A macro called
zzd_attr(), is executed once for every attribute when the attribute goes out of scope.
Deletions are done collectively at the end of every block. The zzd_attr() is passed the
address of the attribute to destroy. This can be useful when memory is allocated with
zzcr_attr() and needs to be free()ed; make sure to NULL the pointers. For example,
sometimes zzcr_attr() needs to make copies of some lexical objects temporarily. Rather
than explicitly inserting code into the grammar to free these copies, zzd_attr() can be
used to do it implicitly. This concept is similar to the constructors and destructors of C++.
Consider the case when attributes are character strings and copies of the lexical text buffer
are made which later need to be deallocated. This can be accomplished with code similar to
the following.

#header <<
typedef char *Attrib;
#define zzd_attr(attr) {free(*(attr));}
>>
<<
zzcr_attr(Attrib *attr, int type, char *text)

TABLE 17. Visibility and Scoping of Attributes

Action Visible Attributes

action1 B as $1 (or $2.1), C as $2 (or $2.2), A as $1.1

action2 D as $1, E as $2, A as $1.1

action3 A as $1, F as $3

action4 G as $1

ANTLR Reference

156 Language Translation Using PCCTS and C++

{
if (type == StringLiteral) {

*attr = malloc(strlen(text)+1);
strcpy(*attr, text);

}
}
>>

Standard Attribute Definitions

Some typical attribute types are defined in the PCCTS include directory. These standard
attribute types are contained in the following include files:

• charbuf.h. Attributes are fixed-size text buffers, each 32 characters in length. If a
string longer than 31 characters (31 + 1 ‘\0’ terminator) is matched for a token, it
is truncated to 31 characters. You can change this buffer length from the default 32
by redefining ZZTEXTSIZE before the point where charbuf.h is included. The
text for an attribute must be referenced as $i.text.

• int.h. Attributes are int values derived from tokens using the atoi() function.

• charptr.h, charptr.c. Attributes are pointers to dynamically allocated
variable-length strings. Although generally both more efficient and more flexible
than charbuf.h, these attribute handlers use malloc() and free(), which are
not the fastest library functions. The file charptr.c must be used with
#include, or linked with the C code ANTLR generates for any grammar using
charptr.h.

Interpretation of Symbols in C Actions

Language Translation Using PCCTS and C++ 157

Interpretation of Symbols in C Actions

AST Definitions

AST nodes using the C interface always have the following structure:

struct _ast {
struct _ast *right, *down;
user_defined_fields

};

where you must fill in user_defined_fields using the AST_FIELDS #define and
must be provided in the #header action or in an include file included by the #header
action. Only the user-defined fields should be modified by the user as right and down are

TABLE 18. C Interface Interpretation of Attribute Terms in Actions

Symbol Meaning

$j The attribute for the jth element of the current
alternative. The attribute counting includes
actions. Subrules embedded within the alterna-
tive are counted as one element.

$i.j The attribute for the jth element of ith level start-
ing from the outermost (rule) level at 1.

$0 The result attribute of the immediately enclosing
subrule or rule. (l-value)

$$ The result attribute of the enclosing rule.

(l-value)

$arg The rule argument labeled arg.

$rule The result attribute of the enclosing rule; this is
the same as $$. (l-value)

$rv The rule return result labeled rv. (l-value)

$[token_type,text] Attribute constructor; this is translated to a call to
zzconstr_attr(token,text).

$[] An empty, initialized attribute; this is translated
to a call to zzempty_attr().

ANTLR Reference

158 Language Translation Using PCCTS and C++

handled by the code generated by ANTLR. The type of an AST is provided by ANTLR and
is always called AST.

You must define what the AST nodes contain and also how to fill in the nodes. To
accomplish this, you supply a macro or function to convert from the attribute, text, and token
type of an input token to a tree node. ANTLR calls the function

zzcr_ast(AST *ast, Attrib *attr, int token_type, char *text);

to fill in tree node ast by calling

zzcr_ast(zzastnew(), attrib-of-current-token, LA(0), LATEXT(0))

The following template can be used for C interface tree building:

#header <<
#define AST_FIELDS what-you-want-in-the-AST-node
#define zzcr_ast(ast,attr,ttype,text)ast->field(s) = ... ;
>>.

TABLE 19. C Interface AST Support Functions

Function Description

zzchild(AST *t) Return the child of t.

zzsibling(AST *t) Return the next sibling to the right of t.

zzpre_ast(AST *t,

 FuncPtr n,

 FuncPtr before,

 FuncPtr after)

Do a depth-first walk of the tree applying
n to each node, before before each sub-
tree, and after after each subtree.

zzfree_ast(AST *t) Free all AST nodes in the tree. Calls zzt-
free() on each node before free()ing.

AST *zztmake(AST *t, ...) Build and return a tree with t as the root
and any other arguments as children. A
NULL argument (except for t) terminates
the list of children. Arguments other than
the root can themselves be trees.

AST *zzdup_ast(AST *t) Duplicate the entire tree t using zzast-
new() for creating new nodes.

zztfree(AST *t) If macro zzd_ast() is defined, invokes
zzd_ast() on t and then frees t.

Interpretation of Symbols in C Actions

Language Translation Using PCCTS and C++ 159

The invocation of the start symbol must pass the address of a NULL-initialized tree pointer
because ANTLR passes the address of the tree to fill in to each rule when the -gt option is
turned on:

main()
{

AST *root=NULL;
ANTLR(starting_rule(&root), stdin);

}

After the parse has completed, root will point to the tree constructed by
starting_rule.

zzdouble_link(AST *t,

 AST *up,

 AST *left)

Set the up and left pointers of all nodes
in t. The initial call should have up and
left as NULL.

AST *zzastnew(void) Use calloc() to create an AST node.

TABLE 19. (Continued) C Interface AST Support Functions

Function Description

Language Translation Using PCCTS and C++ 161

 4 SORCERER Reference

SORCERER is a simple tree-parser and translator generator that has the notation and the
"flavor" of ANTLR. It accepts a collection of rules that specifies the contents and structure
of your trees and generates a top-down, recursive-descent program that will walk trees of the
indicated form. Semantic actions may be interspersed among the rule elements to effect a
translation—either by constructing an output tree (from the input tree) or by generating
output directly. SORCERER has some pretty decent tree rewriting and miscellaneous
support libraries.

This chapter describes how to construct tree parsers via SORCERER grammars, how to
interface a tree parser to a programmer’s application, how to insert actions to generate
output, and how to perform tree transformations. Unless otherwise specified, actions and
other source code is C++.

(Aaron Sawdey, Ph.D. candidate at University of MN, and Gary Funck of Intrepid
Technology are coauthors of SORCERER.)

Introductory Examples

It is often best to introduce a language tool with a simple example that illustrates its primary
function. We consider the task of printing out a simple expression tree in both postfix and
infix notation. Assuming that expression trees have operators at subtree parent nodes and
operands are children, the expression "3+4" could be represented with the tree structure:

SORCERER Reference

162 Language Translation Using PCCTS and C++

where the 3 and 4 children nodes (of token type INT) are operands of the addition parent
node. We will also assume that INT type nodes have a field called val that contains the
integer value associated with the node.

expr : #(PLUS expr expr) <<printf(" +");>>
| i:INT <<printf(" %d",i->val);>>
;

The labeled element "i:INT" specifies that an INT node is to be matched and a pointer
called i is to be made available to embedded actions within that alternative. Given the
indicated expression tree, this rule would generate "3 4 +".

To construct an infix version, all we have to do is move the action, thus changing the
sequence of action executions. Naturally, the structure of the tree has not changed and the
grammar itself is no different.

expr : #(PLUS expr <<printf(" +");>> expr)
| i: INT <<printf(" %d",i->val);>>
;

The output generated by expr is now "3 + 4" for the same input tree.

Constructing tree walkers by hand to perform the same tasks is simple as well, but becomes
more difficult as the tree structure becomes more complicated. Further, a program is harder
to read, modify, and maintain than a grammar. The following C function is equivalent to the
postfix grammar.

expr(SORAST *t)
{

if (t->token==PLUS) {
MATCH(PLUS);
expr(t->down);
expr(t->down->right);
printf(" +");

}
else {

MATCH(INT);
printf(" %d",i->val);

}
}

This hand-built function is not as robust as the SORCERER generated function, which
would check for NULL trees and for trees that did not have PLUS or INT as root nodes.

+

3 4

C++ Programming Interface

Language Translation Using PCCTS and C++ 163

SORCERER is suitable for rewriting input trees as well as generating output via embedded
actions. Consider how one might swap the order of the operands for the same expression tree
given above. Having to manipulate child-sibling tree pointers manually is tedious and error
prone. SORCERER supports tree rewriting via a few library functions, grammar element
labels, and a tree constructor. Again, because our tree structure has not changed, our
grammar remains the same; but the actions are changed from generating text output to
generating a slightly modified tree.

expr :! #(a:PLUS b:expr c:expr) <<#expr=#(a,c,b);>>
| i:INT
;

SORCERER is informed that a tree transformation is desired via the -transform command
line option. In transform mode, SORCERER generates an output tree for every input tree
and by default copies the input tree to the output tree unless otherwise directed. The first
alternative in our example is annotated with a “!” to indicate that SORCERER should not
generate code to construct an output tree as our embedded action will construct the output
tree. Action

#expr=#(a,c,b);

indicates that the output tree of rule expr has the same root, the node pointed to by a, and
the same children, but with the order reversed. Given the input tree for "3+4", the output tree
of expr would be

C++ Programming Interface

SORCERER generates parsers that can walk any tree that implements a simple interface.
You must specify:

1. The type of a tree node, called SORAST (derived from class SORASTBase and given
in the #header action)

2. How to navigate a tree with member functions down() and right()

3. And how to distinguish between different nodes via member function type()
which returns the token type associated with a tree node

If you wish to perform tree rewrites, you must also specify how to construct new trees via
setDown(), setRight(), and shallowCopy() where t->shallowCopy() returns a
duplicate of node t. If you refer to #[...] in an action, you must also define a constructor
with the appropriate arguments.

+

4 3

SORCERER Reference

164 Language Translation Using PCCTS and C++

For example, the most natural implementation of a child-sibling tree conforming to the
SORCERER tree interface (transform or nontransform mode) and can be used is the
following:

class SORCommonAST : public SORASTBase {
protected:

SORCommonAST *_right, *_down;
int _type;

public:
PCCTS_AST *right() { return _right; }
PCCTS_AST *down() { return _down; }
int type() { return _type; }
void setRight(PCCTS_AST *t) { _right = (SORCommonAST *)t; }
void setDown(PCCTS_AST *t) { _down = (SORCommonAST *)t; }
PCCTS_AST *shallowCopy()

{
SORCommonAST *p = new SORCommonAST;
if (p==NULL) panic();
*p = *this;
p->setDown(NULL);
p->setRight(NULL);
return (PCCTS_AST *)p;

}
};
This definition is also satisfactory for performing tree rewrites as SORCERER knows how
to set the pointers and the token type and knows how to duplicate a node.

A SORCERER grammar contains a class definition that results in a C++ class derived from
STreeParser. For example,

class MyTreeParser {
some-actions
some-rules
}

Each of the rules defined within the class definition will become public member functions of
MyTreeParser. Any actions defined within the class definition must contain valid C++
member declarations or definitions.

Invoking a tree parser is a simple matter of creating an instance of the parser and calling one
of the rules with the address of the root of the tree you wish to walk and any arguments you
may have defined for that rule; for example.,

C++ Programming Interface

Language Translation Using PCCTS and C++ 165

main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
myparser.some_rule((SORASTBase **)&some_tree);

}

The cast on the input tree is required because SORCERER must generate code for
some_rule that can walk any kind of conformant tree:

void MyTreeParser::some_rule(SORASTBase **_root);

Unfortunately, without the cast you get a compiler error complaining that "SORASTBase
**" is not the same as "SORAST **".

If some_rule had an argument and return value such as

some_rule[int i] > [float j] : ... ;

the invocation would change to

main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
float result=myparser.some_rule((SORASTBase **)&some_tree, 34);

}

Table 20 on page 165 describes the files generated by SORCERER from a tree description
in file(s) f1.sor ... fn.sor.

TABLE 20. Files Written by SORCERER For C++ Interface

File Description

f1.cpp ... fn.cpp Definition of rules specified in f1.sor ... fn.sor.

Parser.h Declaration of class Parser where Parser is defined in
the SORCERER grammar. All grammar rules become
member functions.

Parser.cpp Definition of support member functions of class
Parser.

SORCERER Reference

166 Language Translation Using PCCTS and C++

There are no global variables defined by SORCERER for the C++ interface and, hence,
multiple SORCERER tree parsers may easily be linked together; e.g., C++ files generated
by SORCERER for different grammars can be compiled and linked together without fear of
multiply-defined symbols. This also implies that SORCERER parsers are "thread-safe" or
"re-entrant."

C++ Class Hierarchy

Trees walked by SORCERER are all derived directly or indirectly from PCCTS_AST so that
ANTLR and SORCERER both have access to the same member functions through the same
C++ object vtables:

The classes are described as follows:

• PCCTS_AST. SORCERER and ANTLR trees must be derived from the same base
class if they both are to manipulate the same trees; i.e., both tools must have access
to a common object virtual table for the tree nodes. The standard SORCERER
public interface is described in PCCTS_AST:

virtual PCCTS_AST *right();
virtual PCCTS_AST *down();
virtual void setRight(PCCTS_AST *t);
virtual void setDown(PCCTS_AST *t);
virtual int type();
virtual PCCTS_AST *shallowCopy();

• SORASTBase. This is currently typedef’d to PCCTS_AST so that the return type
of the C++ tree library routines can be SORASTBase rather than PCCTS_AST,
which could cause some confusion for those using SORCERER without ANTLR.

• SORAST. You must define this type name as the type of tree node that SORCERER
should walk or transform.

• SORCommonAST. This class is useful when ANTLR is not used to construct the
input trees of the tree parser. It defines a typical child-sibling implementation.

SORASTBase

SORAST SORCommonAST

PCCTS_AST

Token Type Definitions

Language Translation Using PCCTS and C++ 167

The parser class defined in your SORCERER grammar description is constructed as a
derived class of STreeParser:

which defines the standard SORCERER tree parser behavior.

Token Type Definitions

SORCERER generates a parser that recognizes both the structure and a portion of the
contents of a tree node. Member type() is the only information used to determine the
contents of a node; however, semantic predicates can be used to alter the parse depending on
other node information. SORCERER-generated parsers test the content of a node with an
expression of the form "_t->type()==T". For the SORCERER output to compile, token
type T must have been defined.

SORCERER-generated translators can use either user-defined token types or can have
SORCERER assign token types to each terminal referenced in the grammar description. The
"-def-tokens file" option is used to generate a file with #defines for each referenced
token. When folding a SORCERER parser into an existing application, the token types will
already be defined. These definitions can be explicitly included via a C or C++ action, or the

TABLE 21. C++ Files

File Defines

h/PCCTSAST.h, lib/
PCCTSAST.cpp

Class PCCTS_AST (which contains the standard
ANTLR/SORCERER tree interface).

h/SASTBase.h SORASTBase. Currently this is only a typedef to
PCCTS_AST.

h/SCommonAST.h SORCommonAST.

h/SList.h, lib/
SList.cpp

SList class.

h/STreeParser.h,lib/
STreeParser.cpp

STreeParser class.

h/config.h Configuration information for the various platforms.

STreeParser

YourParser

SORCERER Reference

168 Language Translation Using PCCTS and C++

file containing the token types can be specified with a #tokdefs directive. The file may
only contain the definitions, but may be in the form of #defines or an enum. For example,

<<enum TokenType { A=1, B=2 };>>
a : A B;

or,

#tokdefs "mytokens.h"
a : A B;

To use the range operator, T1..T2, the #tokdefs directive must be used because the actual
value of the token types must be known to verify the pred-LL(1) nature of a programmer’s
grammar.

A token type of 0 is illegal.

Using ANTLR and SORCERER Together

To have ANTLR construct trees and have SORCERER walk them, do the following:

1. Define a type() field in the AST definition for ANTLR. E.g.,
#include "ATokPtr.h"
class AST : public ASTBase {
protected:

int _type;
public:
AST(ANTLRTokenPtr t) { _type = t->getType(); }
AST() { _type = 0; }
int type() { return _type; }
};

2. Construct trees via ANTLR as you normally would. Ensure that any token type
that you will refer to in the SORCERER grammar has a label in the ANTLR
grammar. For example,

#token ASSIGN "="

3. In your SORCERER description, include the AST definition you gave to ANTLR
and define SORAST to be AST. For example,

#header <<
#include "AST.h" /* include your ANTLR tree def */
typedef AST SORAST;
>>

SORCERER Grammar Syntax

Language Translation Using PCCTS and C++ 169

4. Create a main program that calls both ANTLR and SORCERER routines.
#include "tokens.h"
#include "TextParser.h"
typedef ANTLRCommonToken ANTLRToken;
#include "TreeParser.h"
#include "DLGLexer.h"
#include "PBlackBox.h"
main()
{

ParserBlackBox<DLGLexer,
TextParser,
ANTLRToken> lang(stdin);

AST *root=NULL;
TreeParser tparser;
lang.parser()->stat((ASTBase **)&root);
tparser.start_symbol((SORASTBase **)&root);

}

SORCERER Grammar Syntax

Just as ANTLR grammars specify a sequence of actions to perform for a given input
sentence, SORCERER descriptions specify a sequence of actions to perform for a given
input tree. The only difference between a conventional text language parser and a tree parser
is that tree parsers have to recognize tree structure as well as grammatical structure. For this
reason, the only significant difference between ANTLR input and SORCERER input is that
SORCERER grammar productions can use an additional grouping construct—a construct to
identify the elements and structure of a tree. This section summarizes SORCERER input
syntax.

A SORCERER description is a collection of rules in Extended BNF (EBNF) form and user-
defined actions preceded by a header action where the programmer defines the type of a
SORCERER tree:

#header <<header action>>
actions
rules
actions

where actions are enclosed in European quotes <<...>> and rules are defined as
follows:

SORCERER Reference

170 Language Translation Using PCCTS and C++

rule : alternative1
| alternative2
...
| alternativen
;

Each alternative production is composed of a list of elements where an element can be one
of the items in Table 22 on page 170. The "..." within the grouping constructs can
themselves be lists of alternatives or items. C and C++ style comments are ignored by
SORCERER

TABLE 22. SORCERER Description Elements

Item Description Example

leaf Token type ID

T1..T2 Token range OPSTART..OPEND

. Wild card #(FUNC ID (.)*)

rule-name Reference to another rule expr

label:elem Label an element id:ID

#(...) Tree pattern #(ID expr slist slist)

<<...>> User-defined semantic action <<printf("%d",i->val);>>

(...) Subrule (STRING | ID | FLOAT)

(...)* Zero-or-more closure subrule args : (expr)* ;

(...)+ One-or-more positive closure slist: #(SLIST (stat)+)

{...} Optional subrule #(IF expr stat {stat})

<<...>>? Semantic predicate id : <<isType()>>? ID

(...)? Syntactic predicate (#(MINUS expr expr)?

| #(MINUS expr)

)

SORCERER Grammar Syntax

Language Translation Using PCCTS and C++ 171

Rule Definitions: Arguments and Return Values

All rules begin with a lowercase letter and may declare arguments and a return value in a
manner similar to C and C++:

rule[arg1, arg2, ..., argn] > [return-type id] : ... ;

which declares a rule to have n arguments and a return value; either may be omitted. For
example, consider

a[int a, int b] > [int r]
: some-tree <<r=a+b;>>
;

which matches some-tree and returns the sum of the two arguments passed to the rule.
The return value of a rule is set by assigning to the variable given in the return block [...].

The invocation of rule a would be of this form:

b : <<int local;>>
blah a[3,4] > [local] foo

;
The result of 7 will be stored into local after the invocation of rule a. Note that the syntax
of rule return value assignment is like UNIX I/O redirection and mirrors the rule declaration.

As a less abstract example, consider that it is often desirable to pass a value to an expression
rule indicating whether it is on the left or right hand side of an assignment:

<<enum SIDE { LHS, RHS };>>
stat : #(ASSIGN expr[LHS] expr[RHS])

| ...
;

expr[SIDE s] : ...
;

Return values are also very useful. The following example demonstrates how the number of
arguments in a function call can be returned and placed into a local variable of the invoking
rule.

SORCERER Reference

172 Language Translation Using PCCTS and C++

expr
: ID
| FLOAT
|<<int n;>>

fc > [n]
<<printf("func call has \%d arguments\\n", n);>>

;
fc > [int nargs]

: <<int i=0;>> #(FUNC ID (. <<i++;>>)*)
<<nargs = i;>>

;

Special Actions

The first action of any production is considered an init-action and can be used to declare
local variables and perform some initialization code before recognition of the associated
production begins. The code is executed only if that production is predicted by the look
ahead of the tree parser. Even when normal actions are shut off during the execution of a
syntactic predicate, (...)?, init-actions are executed. They cannot be enclosed in curly-
braces because they define local variables that must be visible to the entire production—not
just that action.

Actions suffixed with a “?” are semantic predicates and discussed below.

Special Node References

The simplest node specifier is a token, which begins with an uppercase letter. To specify that
any token may reside in a particular node position, the wildcard "." is used.

The wildcard sometimes behaves in a strange, but useful, manner as the "match anything
else" operator. For example,

a : A | . ;

matches A in the first production and anything else in the second. This effect is caused by
SORCERER’s parsing strategy. It tries the productions in the order specified. Any non-A
node will be bypassed by the first production and matched by the second.

SORCERER Grammar Syntax

Language Translation Using PCCTS and C++ 173

Wildcards cannot be used to predict two different productions; that is,

a : .
| .
| A
;

results in a warning from SORCERER:

f.sor, line 1: warning: alts 1 and 2 of (...) nondeterministic upon {.}

To indicate that a specific range of tokens is to be matched, the range operator “T1..T2” is
used. For example,

<<
#define Plus 1
#define Minus 2
#define Mult 3
#define Div 4
#define INT 10
#define OpStart Plus
#define OpEnd Div
>>
expr

: #(OpStart..OpEnd expr expr)
| INT
;

matches any expression tree comprised of integers and one of the four arithmetic operators.

For the range operator to work properly, T1 ≤ T2 must hold and all values from T1 ,and T2
inclusively must be valid token types. Furthermore, the #tokdefs directive must be used to
provide SORCERER with the actual token type values.

Tree Patterns

Tree patterns are specified in a LISP-like notation of the form:

#(root-item item ... item)

where the "#" distinguishes a parenthetical expression from the EBNF grouping construct,
(...), and root-item is a leaf node identifier such as ID, the wildcard, or a token range.
For example, consider the tree specification and graphical-representation pairs given in
Table 23 on page 174.

SORCERER Reference

174 Language Translation Using PCCTS and C++

Flat trees (lists of items without parents) are of the form:

item ... item

Rule references and subrules may not be tree roots because they may embody more than a
single node. By definition, the root of a tree must be a single node.

EBNF Constructs in the Tree-Matching Environment

A tree without any EBNF subrules is a tree with fixed structure. When tree patterns contain
EBNF subrule specifications, the structure of the tree language may be difficult to see for
humans. This section provides numerous examples that illustrate the types of trees that can
be matched with EBNF constructs and the tree specifier, #(...). Table 24 on page 175,
Table 25 on page 175, Table 24 on page 175, and Table 24 on page 175 illustrate the various
EBNF constructs and the tree structures the constructs match. One final note: EBNF
constructs may not be used as subtree roots..

TABLE 23. Sample Tree Specification and Graphical Representation Pairs

Tree Description Tree Structure

#(A B C D E)

#(A #(B C D) E)

#(A #(B C) #(D E))

A

B C D E

A

B

C D

E

A

B

C

D

E

SORCERER Grammar Syntax

Language Translation Using PCCTS and C++ 175

TABLE 24. EBNF Subrules

Tree Description Possible Tree Structures

#(DefSub (Subr|Func) slist)

or

TABLE 25. EBNF Optional Subrules

Tree Description Possible Tree Structures

#(If expr slist {slist})

or

DefSub

Subr slist

DefSub

Func slist

If

expr slist

If

expr slist slist

SORCERER Reference

176 Language Translation Using PCCTS and C++

TABLE 26. EBNF Zero-Or-More Subrules

Tree Description Possible Tree Structures

#(Call Subr (expr)*)

or

or

etc...

TABLE 27. EBNF One-Or-More Subrules

Tree Description Possible Tree Structures

#(SLIST (stat)+)

or

etc...

Call

Subr

Call

Subr expr

Call

Subr expr expr

SLIST

stat

SLIST

stat stat

SORCERER Grammar Syntax

Language Translation Using PCCTS and C++ 177

Element Labels

Rule elements can be labeled with an identifier (any uppercase or lowercase string), which is
automatically defined (and initialized to NULL) as a SORAST node pointer, that can be
referenced by user actions. The syntax is:

t:element

where t may be any upper or lower case identifier and element is either a token reference,
rule reference, the wild-card, or a token range specification.

Subtrees may be labeled by labeling the root node. The following grammar fragment
illustrates a typical use of an element labels.

a : #(DO u:ID expr expr #(v:SLIST (stat)*))
<<
printf("induction var is %s\n", u->symbol());
analyze_code(v);
>>

;

where symbol() is some member function that the user has defined as part of a SORAST.
These labels are pointers to the nodes associated with the referenced element and are only
available after the recognition of the associated tree element; the one exception is a labeled
rule reference, whose label is available for use as an argument to the referenced rule; e.g.,

a : p:b[p->symbol()] ;

Labels have rule scope—they are defined at the rule level and are not local to a particular
subrule or alternative.

Labels can be used to test for the presence of an optional element. Therefore, in:

expr_list: oprnd:expr { Comma oprnd:expr } ;

variable oprnd will have the value of the second operand if the Comma is present and the
first operand if not. It can also be used to track the last element added to a list:

expr_list: oprnd:expr (Comma oprnd:expr)* ;

Note that there are no $-variables such as there are in ANTLR.

In transform mode, label refers to the output node associated with the labeled grammar
element. To access the associated input node use label_in.

SORCERER Reference

178 Language Translation Using PCCTS and C++

@-Variables

Local stack-based variables are convenient because a new instance is created upon each
invocation of a function. However, unlike global variables, the symbol is only visible within
that function (or SORCERER rule). Another function cannot access the variable. A stack-
based variable that had global scope would be extremely useful; it would also be nice if that
variable did not require the use of any “real” global variables. We have created just such
creatures and called them @-variables for lack of a better name (the concept was derived
from NewYacc). (@-variables are mainly useful with the C interface because the C++
interface allows you to define tree-parser class member variables.)

An @-variable is defined like a normal local variable, but to inform SORCERER of its
existence, you must use a special syntax:

@(simple-type-specifier id = init-value)

To reference the variable, you must also inform SORCERER with @id. For example,

a : <<@(int blah)>> /* define reference var: "int blah;" */
 <<@blah = 3;>> /* set blah to 3 */
 b
 <<printf("blah = %d\n", @blah);>> /* prints "blah = 5 */
 ;
b : c ;
c : d ;
d : A
 <<
 printf("blah = %d\n", @blah); /* prints "blah = 3 */
 @blah = 5;
 >>
 ;

where the output should be

blah = 3
blah = 5

The notation @id is used just like plain id; i.e., as the object of an assignment or as part of
a normal C/C++ expression.

As another example, consider a grammar that provides definitions for implicitly defined
scalars.

routine
 : #(DefSub ID slist)
 ;
slist
 : <<@(AST * defs)>>

@-Variables

Language Translation Using PCCTS and C++ 179

 #(SLIST
 (v:vardef <<define(v);>>)*
 <<@defs=v;>>
 (stat)*
)
 ;
vardef
 : #(Type ID)
 ;
stat: #(Assign scalar:ID INT)
 <<if (scalar is-not-defined)
 ast_append(@defs, #(#[Type,"real"], #[ID,id->symbol]));
 >>
 ;

An @-variable is saved upon entry to the rule that defines it and restored upon exit from the
rule. To demonstrate this stack-oriented nature, consider the following example,

proc: #(p:PROC <<printf("enter proc %s\n", p->symbol);>>
 ID (decl|proc)* (stat)*
) <<printf("exit proc %s\n", p->symbol);>>
 ;
decl: <<@(AST * lastdecl)>>
 #(VAR d:ID INT) <<@lastdecl = d;
 printf("def %s\n", d->symbol);>>
 ;
stat: BLAH <<printf("last decl is %s\n", @lastdecl->symbol;>>
 ;

Given some input such as:

procedure p;
var a : integer;
 procedure q;
 var b : integer;
 begin
 blah;
 end;
begin
 blah;
end;

with the intermediate form structure:

SORCERER Reference

180 Language Translation Using PCCTS and C++

The output for this is

enter proc
def a
enter proc
def b
last decl is b
exit proc
last decl is a
exit proc

If you want the functionality of a normal C/C++ global variable but do not want the
problems associated with a global variable, @-variables should also be used. When an @-
variable definition is prefixed with static, it is never save or restored like other @-
variables. For example,

a : <<@(static int blah)>> ... b ... ;
b : ... <<@blah = 3;>> ... ;

Essentially, @blah is a global variable; there just happens to be a new copy for every
STreeParser that you define.

While @-variables, strictly speaking, provide no more functionality than passing the address
of local variables around, @-variables are much more convenient.

When using the C++ interface, simple parser member variables are functionally equivalent
to static @-variables.

PROC

ID[p] VAR

ID[a] INT

PROC

ID[q] VAR

ID[b] INT

BLAH

BLAH

Embedding Actions For Translation

Language Translation Using PCCTS and C++ 181

Embedding Actions For Translation

In many cases, translation problems are simple enough that a single pass over an
intermediate form tree is sufficient to generate the desired output. This type of translation is
very straightforward and is the default mode of operation.

Translations of this type are done with a series of print statements sprinkled around the
SORCERER grammar. For example, consider how one might convert function prototypes
from K&R C to ANSI C (assuming the arguments and the declarations are in the same
order):

void f(i,j)
int i;
float j;

would be converted to

void f(int i, float j);

in source form. Graphically, a prototype could be structured as follows:

where Proto and ARGS are imaginary tokens (tokens with no corresponding input symbol)
used to structure the intermediate form tree. The ID directly under the Proto node is the
function name.

The following tree grammar fragment could be used to reconize these simplified C
prototypes:

proto
: #(Proto Type ID #(ARGS (ID)*) (decl)*)
;

decl
: #(Type ID)
;

To perform the transformation, the grammar could be augmented with actions in the
following manner:

Proto

Type ID ARGS

ID ID

Type

ID

Type

ID

SORCERER Reference

182 Language Translation Using PCCTS and C++

proto
: #(Proto t:Type f:ID

<<printf("%s %s(", t->symbol(), f->symbol());>>
#(ARGS (ID)*)
(d:decl <<if (d->right()!=NULL) printf(",");>>
)* <<printf(");\n");>>

)
 ;

decl
: #(t:Type id:ID)

<<printf("%s %s", t->symbol(), id->symbol());>>
;

where symbol() is a member that returns the textual representation of the type or function
name.

Embedding Actions for Tree Transformations

While the syntax-directed scheme presented in the previous section is sometimes enough to
handle an entire translation, it will not handle translations requiring multiple passes. In fact,
if the translation can be handled with a simple syntax-directed translation from the
intermediate form, it could probably be handled as a syntax-directed translation directly
from the original, text input. Why even discuss syntax-directed translation for intermediate
forms? Because a programmer can rewrite a tree innumerable times but must eventually
convert the intermediate form to an output form.

This section describes the support available to the programmer in rewriting portions of an
intermediate form. We provide information about how SORCERER rewrites trees, about the
tree library, and about the other support libraries.

When tree transformations are to be made, the command-line option -transform must be
used. In transform mode, SORCERER makes the following assumptions:

1. An input tree exists from which an output tree is derived.

2. If given no instructions to the contrary, SORCERER automatically copies the input
tree to the output tree.

3. Each rule has a result tree, and the result tree of the first rule called is considered
the final, transformed tree. This added functionality does not affect the normal rule
argument and return value mechanism.

Embedding Actions for Tree Transformations

Language Translation Using PCCTS and C++ 183

4. Labels attached to grammar elements are generally referred to as label, where
label refers to the input tree subtree in nontransform mode.

The output tree in transform mode is referred to as label. The input node, for
token references only, can be obtained with label_in. The input subtree
associated with rule references is unavailable after the rule has been matched.
The tree pointer points to where that rule left off parsing. Input nodes in
transform mode are not needed very often.

5. A C/C++ variable exists for any labeled token reference even if it is never set by
SORCERER.

6. The output tree of a rule can be set and/or referenced as #rule.

The following sections describe the three types of tree manipulations.

Deletion

When portions of a SORCERER tree are to be deleted, the programmer has only to suffix the
items to delete with a "!"; this effectively filters which nodes of the input tree are copied to
the output tree. For example, if all exponent operators were to be removed from an
expression tree, something similar to the following grammar could be used:

expr: #(Plus expr expr)
| #(Mult expr expr)
|! #(Exp expr expr)
;

where a "!" appended to an alternative operator "!" indicates that the entire alternative
should not be included in the output tree. Token and rule references can also be individually
deleted. The functionality of previous example, can be specified equivalently as:

expr: #(Plus expr expr)
| #(Mult expr expr)
| #(Exp! expr! expr!)
;

No output tree nodes are constructed for the token references in the examples above.
However, a labeled token reference always results in the generation of an output tree node
regardless of the "!" suffixes. If you do not link the output node into the result tree or delete
it explicitly in an action, a "memory leak" will exist.

SORCERER Reference

184 Language Translation Using PCCTS and C++

Modification

To rewrite a portion of a tree, you specify that the nodes of the tree are not to be
automatically linked into the output tree via an appropriately-placed "!" operator. It is then
up to you to describe the tree result for the enclosing rule. For example, let’s assume that we
want to translate assignments of the form

expr -> var

to

var := expr

Assuming that the AST transformation was from

to

the following grammar fragment could perform this simple operation:

assign
:! #(a:Assign e:expr id:ID) <<#assign = #(a, id, e);>>
;

The "#(a, id, e)" is a tree constructor that behaves exactly like it does in an ANTLR
grammar. a is the root of a tree with two children: id (a pointer to a copy of the input node
containing ID) and e (the result returned by expr).

You must be careful not to refer to the same output node more than once. Cycles can appear
in the output tree, thus making it a graph not a tree. Also, be careful not to include any input
tree nodes in the output tree.

Augmentation

The result tree of a rule can be augmented as well as rearranged. This section briefly
describes how the tree library routines (illustrated in the next section) can be used to add
subtrees and nodes to the output tree.

Assign

expr var

Assign

var expr

Embedding Actions for Tree Transformations

Language Translation Using PCCTS and C++ 185

Consider the task of adding variable definitions for implicitly defined scalars in FORTRAN.
Let’s assume that the tree structure of a simple FORTRAN subroutine with scalar definitions
and assignments such as:

subroutine t
real a
a = 1
b = 2
end

looks like

We would like the tree to be rewritten as follows

where ID[a] represents an ID node with a symbol field of a. In other words, we would like
to add definitions before the statement list for implicitly defined scalars.

The following grammar fragment could be used to recognize implicitly defined scalars and
add a definition for it above in the tree after the last definition.

class FortranTranslate {
<<

SORAST *defs; // instance var tracking variable definitions
public:

FortranTranslate() { defs=NULL; }
>>

routine

DefSub

ID[t] SLIST

Type

ID[a]

Assign

ID[a] INT

Assign

ID[b] INT

DefSub

ID[t] SLIST

Type

ID[a]

Type

ID[b]

Assign

ID[a] INT

Assign

ID[b] INT

SORCERER Reference

186 Language Translation Using PCCTS and C++

 : #(DefSub ID slist)
 ;
slist
 : #(SLIST
 (v:vardef)* <<defs=v; define(v);>>
 (stat)*
)
 ;
vardef
 : #(Type ID)
 ;
stat: #(Assign scalar:ID INT)
 <<if (is-not-defined(scalar))
 ast_append(defs,#(#[Type,"real"],#[ID,scalar->symbol()]));
 >>
 ;
}

where the notation “#[args]” is a node constructor and is translated to

new SORAST(args)

(or function ast_node(args) using the C interface). For example, in our case, you would
define

class SORAST : public SORASTBase {
...

SORAST(int token_type, char *sym);
...
};

The tree constructor

 #(#[Type,"real"], #[ID,id->symbol()])

builds a tree like

The ast_append(defs,tree) function call adds tree to the end of the sibling list
pointed to by defs.

Type[real]

ID[b]

C++ Support Classes and Functions

Language Translation Using PCCTS and C++ 187

C++ Support Classes and Functions

SORCERER ASTs are defined by a class called SORAST that must be derived from
SORASTBase, which inherits the following member functions (defined in lib/
PCCTAST.C):

addChild
void addChild(t). Add t to the list of children for this.

append
void append(b). Add b to the end of the sibling list. Appending a NULL
pointer is illegal.
bottom

SORASTBase *bottom(). Find the bottom of the child list (going straight
"down").

cut_between
SORASTBase *cut_between(a,b).
Unlink all siblings between a and b and return a pointer to the first element of
the sibling list that was unlinked. Basically, all this routine does is to make b a
sibling of a and make sure that the tail of the sibling list, which was unlinked,
does not point to b. The routine ensures that a and b are (perhaps indirectly)
connected to start with. This routine returns NULL if either of a or b are NULL or
if a and b are not connected.

insert_after
void insert_after(b).
Add subtree b immediately after this as its sibling. If b is a sibling list at its top
level, then the last sibling of b points to the previous right-sibling of this. If b
is NULL, nothing is done. Inserting a NULL pointer has no effect.

ast_find_all
SORASTBase *ast_find_all(u, cursor).
Find all occurrences of u in the tree pointed to by this.cursor (a pointer to a
SORAST pointer) must be initialized to this. It eventually returns NULL when
no more occurrences of u are found. This function is useful for iterating over
every occurrence of a particular subtree. For example,
/* find all scalar assignments withing a statement list */
SORAST *scalar_assign = #(#[Assign], #[Var]);
PCCTS_AST *cursor = slist;
SORAST *p;
while ((p=(SORAST *)slist->ast_find_all(scalar_assign,&cursor)))
{

 /* perform an operation on ’p’ */
}

SORCERER Reference

188 Language Translation Using PCCTS and C++

where assignments are structured as

This function does not seem to work if you make nested calls to it; i.e., a
loop containing an ast_find_all() that contains a call to another
find_all().

tfree
void tfree(). Recursively walk a tree delete’ing all the nodes in a depth-
first order.

make
static SORASTBase *make(root,child1,..., childn,NULL). Create
a tree with root as the root of the specified n children. If root is NULL, then a
sibling list is constructed. If childi is a list of sibling, then childi+1 will be
attached to the last sibling of childi. Any NULL childi results in childi-1
being the last sibling. The root must not have children to begin with. A
shorthand can be used in a description read by SORCERER:
#(root, child1, ..., childn)

match
int match(u). Returns true if this and u are the same (the trees have the
same tree structure and token types); else it returns false. If u is NULL, false is
returned.

nsiblings
int nsiblings(). Returns the number of siblings.

ast_scan
int ast_scan(template, labelptr1, ..., labelptrn). This
function is analogous to scanf. It tries to match tree this against template
and return the number of labels that were successfully mapped. The template
is a string consisting of a SORCERER tree description with an optional set of
node labels. For every label specified in template, the address of a SORAST
pointer must be passed. Upon return from ast_scan(), the pointers will point
to the requested nodes in this. This function can only be conveniently used
from within a SORCERER description file and requires the use of the
#tokdefs directive; it can be used in non-transform mode.

Consider the following example.
n = t->ast_scan("#(%1:A %2:B %3:C)", &x, &y, &z);

which SORCERER converts to before the call to ast_scan()}:
n = t->ast_scan("#(%1:7 %2:8 %3:9)", &x, &y, &z);

Assign

Var expr

Error Detection and Reporting

Language Translation Using PCCTS and C++ 189

where the token types of A, B, and C are 7, 8, and 9, respectively. After the call,
pointers x, y, and z will point to the root, the first child and the second child,
respectively; n will be 3.

sibling_index
SORASTBase *sibling_index(i). Return a pointer to the ith sibling where
the first sibling to the right is the index 2. An index of i==0, returns NULL and
i==1 returns this.

tail
SORASTBase *tail(). Find the end of the sibling list and return a pointer to
it.

Error Detection and Reporting

The following STreeParser member functions are called for the various possible parsing
errors:

mismatched_token
mismatched_token(int looking_for, AST *found). The parser was
looking for a particular token that was not matched.

mismatched_range
mismatched_range(int lower, int upper, AST *found). The parser
was looking for a token in a range and did not find one.

missing_wildcard()
missing_wildcard(). The parser was looking for any tree element or
subtree and found a NULL pointer.

no_viable_alt
no_viable_alt(char *which_rule, AST *current_root). The parser
entered a rule for which no alternative’s lookahead predicted that the input
subtree would be matched.

sorcerer_panic
sorcerer_panic(char *err). This is called explicitly by you or by the
support code when something terrible has happened.

SORCERER Reference

190 Language Translation Using PCCTS and C++

Command Line Arguments

The basic form of a SORCERER command line is

sor [options] file1.sor ... filen.sor

where file1 is the only one that may begin with a #header directive and options may be
taken from:

-CPP
Turn on C++ output mode. You must define a class around your grammar rules. An
".h" and ".C" file are created for the class definition as well as the normal ".C" file
for the parser your grammar rules.

-def-tokens
[C++ mode only] For each token referenced in the grammar, generate an enum
STokenType definition in the class definition file. This should not be used with the
#tokdefs directive, which specifies token types you’ve already defined.

-def-tokens-file file
[C mode only] For each token referenced in the grammar, generate a #define
in the specified file. This should not be used with the #tokdefs directive, which
specifies token types you’ve already defined.

-funcs style
Specify the style of the function headers and prototypes to be generated by
SORCERER. style must be one of ANSI (the default), KR, or both..

-inline
Only generate actions and functions for the given rules. Do not generate header
information in the output. The usefulness of this option for anything but
documentation has not been established.

-out-dir style
Directory where all output files go; the default is “.”.

-prefix s
Prefix all globally visible symbols with s , including the error routines. Actions that
call rules must prefix the function with s as well. This option can be used to link
multiple SORCERER-generated parsers together by generating them with different
prefixes. This is not useful in C++ mode.

C Programming Interface

Language Translation Using PCCTS and C++ 191

-proto-file file
Put all prototypes for rule functions in this file.

-transform
Assume that a tree transformation will take place.

-
Take input from stdin rather than a file.

C Programming Interface

Invocation of C Interface SORCERER Parsers

As with the C++ interface, the C interface requires that you specify the type of a tree node,
how to navigate the tree, and the type of a node:

1. You must define tree node type SORAST in the #header action. SORAST must
contain the fields in point 2 and 3.

2. Your trees must be in child-sibling form; i.e., the trees must have fields down
(points to the first child) and right (points to the next sibling).

3. Your tree must have a token field, which is used to distinguish between tree
nodes. (To be consistent with ANTLR and the SORCERER C++ interface, this
field should be called type, but we have left it as token for backward
compatibility reasons. The C interface of SORCERER is well enough
established that changing it would invalidate too many grammars).

A conforming tree using the C interface is the following:

typedef struct _node {
 struct _node *right, *down;
 int token;
 /* add fields you need here */
 } SORAST;

Table 28 on page 192 describes the files generated by SORCERER from a tree description
in file(s) f1.sor ... fn.sor.

SORCERER Reference

192 Language Translation Using PCCTS and C++

Using the C interface, SORCERER may also be used as a filter from stdin, in which case,
the parser functions are written to stdout and no files are written (unless "-def-tokens-
file tokens.h" is specified).

There are no global variables defined by SORCERER for the C interface, so multiple
SORCERER tree parsers may easily be linked together; e.g., C files generated by
SORCERER for different grammars can be compiled and linked together without fear of
multiply defined symbols. This is accomplished by simulating a this pointer. The first
argument of every parser function is a pointer to an STreeParser structure containing all
variables needed to by the parser. Having a parser structure that is passed around from rule
to rule implies that SORCERER parsers are "thread-safe" or "re-entrant."

You may add variables to the STreeParser structure by defining _PARSER_VARS; e.g.,

#define _PARSER_VARSint value; Sym *p;

Invoking a tree parser is a matter of creating an STreeParser variable, initializing it, and
calling one of the parsing functions created from the rules. Parsing functions are called with
the address of the parser variable, the address of the root of the tree you wish to walk, and
any arguments you may have defined for that rule; e.g.,

main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
STreeParserInit(&myparser);
rule(&myparser, &some_tree);

}

If rule had an argument and return value such as

rule[int i] > [float j] : ... ;

the invocation would change to

TABLE 28. Files Written by SORCERER for C Interface

File Description

f1.C ... fn.C Definition of rules specified in f1.sor ... fn.sor.

tokens.h If SORCERER command-line option “-def-tokens-file
tokens.h” is specified, this file contains a series of #defines
for token types assigned by SORCERER for all node references
in the grammar.

C Programming Interface

Language Translation Using PCCTS and C++ 193

main()
{

MyTreeParser myparser;
SORAST *some_tree = ... ;
float result;
STreeParserInit(&myparser);
result = rule(&myparser, &some_tree, 34);

}

C Types

The following types are used with C interface (see Figure on page 189):

SORAST
You must provide the definition of this type, which represents the type of tree
nodes that SORCERER is to walk or transform.

SIntStack
A simple stack of integers.

SList
A simple linked list of void pointers.

SStack
A simple stack of void pointers.

STreeParser
This type defines the variables needed by a tree walker. The address of one of
these objects is passed to every parser function as the first argument.

C Files

The following files are used with the C interface.

h/astlib.h, lib/astlib.c
Define the SORCERER AST library routines.

lib/CASTBase.h
This is only used to compile the library routines. You can force them to compile
with your SORAST definition if you want; that way, the order of the fields is
irrelevant.

h/config.h
Defines configuration information for the various platforms.

h/sorcerer.h, lib/sorcerer.c
Define STreeParser and the support functions needed by SORCERER.

h/sorlist.h,lib/sorlist.c
The SList manager.

SORCERER Reference

194 Language Translation Using PCCTS and C++

h/sintstack.h, lib/sintstack.c
The SIntStack manager.

h/sstack.h, lib/sstack.c
The SStack manager.

lib/errsupport.c
Defines error support code for SORCERER parser that you can link in, includes
mismatched_range(), missing_wildcard(), mismatched_token(),
no_viable_alt(), and sorcerer_panic().

Combined Usage of ANTLR and SORCERER

To get SORCERER to walk an ANTLR-generated tree using the C interface is
straightforward:

1. Define a token field in the AST definition for ANTLR in your ANTLR grammar
file. For example,

#define AST_FIELDSchar text[50]; int token;

2. Have your ANTLR parser construct trees as you normally would. Ensure that any
token type that you will refer to in the SORCERER grammar has a label in the
ANTLR grammar. For example,

#token ASSIGN "="

3. In your SORCERER description, include the AST definition you gave to ANTLR
and define SORAST to be AST. If you have used the ANTLR -gh option, you can
simply include stdpccts.h. For example,

#header <<
#include "stdpccts.h" /* define AST and ANTLR token types */
typedef AST SORAST;
>>

4. A main program that calls both ANTLR and SORCERER routines looks like this:
main()
{

AST *root=NULL;
STreeParser tparser;
STreeParserInit(&tparser);
/* get the tree to walk with SORCERER */
ANTLR(stat(&root), stdin);
printf("input tree:"); lisp(root); printf("\n");
/* walk the tree */
start_symbol(&tparser, &root);

}

C Programming Interface

Language Translation Using PCCTS and C++ 195

C Support Libraries

Tree Library

The AST tree library, in lib/astlib.c, is used in transform mode to perform tree
rewriting, although some of them may be useful in nontransform mode.

ast_append
void ast_append(a,b). Add b to the end of a’s sibling list. Appending a
NULL pointer is illegal.

*ast_bottom
AST *ast_bottom(a). Find the bottom of a’s child list (going straight down).

*ast_cut_between
AST *ast_cut_between(a,b). Unlink all siblings between a and b and
return a pointer to the first element of the sibling list that was unlinked.
Basically, all this routine does is to make a point to b and make sure that the tail
of the sibling list, which was unlinked, does not point to b. The routine ensures
that a and b are (perhaps indirectly) connected to start with.

ast_insert_after
void ast_insert_after(a,b). Add subtree b immediately after a as its
sibling. If b is a sibling list at its top level, then the last sibling of b points to the
previous right sibling of a.Inserting a NULL pointer has no effect.

*ast_find_all
AST *ast_find_all(t, u, cursor). Find all occurrences of u in t.
cursor (a pointer to an AST pointer) must be initialized to t. It eventually
returns NULL when no more occurrences of u are found. This function is useful
for iterating over every occurrence of a particular subtree. For example,
/* find all scalar assignments withing a statement list */
AST *scalar_assign = #(#[Assign], #[Var]);
AST *cursor = statement_list;
while ((p=ast_find_all(statement_list, scalar_assign, &cursor)))
{

 /* perform an operation on ’p’ */
}

where ast_node() (the function invoked by references to #[])
is assumed to take a single argument—a token type—and
assignments are structured as:

Assign

Var expr

SORCERER Reference

196 Language Translation Using PCCTS and C++

This function does not seem to work if you make nested calls to it; i.e., a loop
containing an ast_find_all() which contains another call to
ast_find_all().

ast_free
void ast_free(t). Recursively walk t, freeing all the nodes in a depth-first
order. This is perhaps not very useful because more than a free() may be
required to properly destroy a node.

*ast_make
AST *ast_ make(root, child1, ..., childn, NULL). Create a tree
with root as the root of the specified n children. If root is NULL, then a sibling
list is constructed. If childi is a list of sibling, then childi+1 will be attached to
the last sibling of childi. Any NULL childi results in childi-1 being the last sibling.
The root must not have children to begin with.
A shorthand can be used in a description read by SORCERER:

 #(root, child_1, ..., child_n) }

ast_match
int ast_match(t,u). Returns true if t and u are the same (the trees have the
same tree structure and token SORAST fields); else it returns false. If both trees
are NULL, true is returned.

ast_match_partial
int ast_match_partial(t,u). Returns true if u matches t (beginning at
root), but u can be smaller than t (i.e., a subtree of t).

ast_nsiblings
int ast_nsiblings(t). Returns the number of siblings of t.

ast_scan
int ast_scan(template, t, labelptr1, ..., labelptrn). This
function is analogous to scanf. It tries to match tree t against template and
return the number of labels that were successfully mapped. The template is a
string consisting of a SORCERER tree description with an optional set of node
labels. For every label specified in template, the address of a SORAST pointer
must be passed. Upon return from ast_scan(), the pointers will point to the
requested nodes in t. This function can only be conveniently used from within a
SORCERER description file and requires the use of the #tokdefs directive; it
can be used in nontransform mode. Consider the following example.
 n = ast_scan("#(%1:A %2:B %3:C)", t, &x, &y, &z);

which SORCERER converts to before the call to ast_scan()}:
 n = ast_scan("#(%1:7 %2:8 %3:9)", t, &x, &y, &z);

where the token types of A, B, and C are 7, 8, and 9, respectively. After the call,
pointers x, y, and z will point to the root, the first child and the second child,
respectively; n will be 3.

C Programming Interface

Language Translation Using PCCTS and C++ 197

The order of label specification in template is not significant.

*ast_sibling_index
AST *ast_sibling_index(t,i). Return a pointer to the ith sibling where
the sibling to the right of t is i==2. A index of i==1, returns t.

*ast_tail
AST *ast_tail(a). Find the end of a’s sibling list and return a pointer to it.

*ast_to_slist
SList *ast_to_slist(t). Return a list containing the siblings of t. This
can be useful for walking a list of subtrees without having to parse it. For
example,
<<SList *stats;>>
slist

 : (stat)* <<stats = ast_to_list(_root);>>
 ;

where _root is the argument passed to every function that points to the input
tree node. In this case, the variable stats will be a list with an element
(SORAST *) for each statement in the statement list.

*slist_to_ast
AST *slist_to_ast(list). Return a tree composed of the elements of
list with a sibling for each element in list.

List Library

The SORCERER list library, lib/sorlist.c, is a simple linked-list manager that makes
lists of pointers. The pointer for a new list must be initialized to NULL as any non-empty list
has a sentinel node whose elem field pointer is really a pointer to the last element.

*slist_iterate
void *slist_iterate(list,cursor). Iterate over a list of elements in
list; return a pointer to a new element in list upon every call and NULL when
no more are left. It can be used like this:
cursor = mylist;
while ((p=slist_iterate(mylist,\&cursor))) {

 /* place with element p */
}

Lists can also be traversed with
SList *p;
for (p = list->next; p!=NULL; p=p->next)
{

 /* process (MyElement *)p->elem */
}

SORCERER Reference

198 Language Translation Using PCCTS and C++

slist_add
void slist_add(list, e). Add element e to list . Any non-empty list
has a sentinel node whose elem pointer is really a pointer to the last element.
Elements are appended to the list. For example,
SList *Strings = NULL;
list_add(&Strings, "hi");
list_add(&Strings, "there");

slist_free
void slist_free(list). Free a list (frees all of the nodes used to hold
pointers to actual elements). It does not effect the elements tracked by the list.

Stack Library

The SORCERER stack library, lib/sstack.c, is a simple linked-list style stack of
pointers. There is no sentinel node, and a pointer for a stack must be initialized to NULL
initially.

sstack_push
void sstack_push(st,e). Push element e on stack st where e can be a
pointer to any object. For example,
SStack *st = NULL;
sstack_push(&st, "I push");
sstack_push(&st, "therefore, I’m a stack");

*sstack_pop
void *sstack_pop(st). Pop the top element off of stack st and return it.
For example,
SStack *st = NULL;
char *s;
sstack_push(&st, "over the edge");
s = sstack_pop(&st);
printf("%s\n", s);

should print "over the edge".

Integer Stack Library

The SORCERER SIntStack library, lib/sintstack.c, is a simple array-based stack of
integers. Stacks of integers are common (such as saving the scope/level of programming
language); hence, we have constructed a stack which is much easier to use and faster than
the normal stack routines. Overflow and underflow conditions are trapped.

*sint_newstack
SIntStack *sint_newstack(size). Make a new stack with a maximum
depth of size and return a pointer to it.

C Programming Interface

Language Translation Using PCCTS and C++ 199

sint_freestack
void sint_freestack(SIntStack *st). Destroys a stack created by
sint_newstack().

sint_push
void sint_push(st, i). Push integer i onto stack st. For example,
SIntStack *st = sint_newstack(100);
sint_push(st, 42);
sint_push(st, 3);

sint_pop
int sint_pop(st). Pop the top integer off the stack and return it.
SIntStack *st = sint_newstack(10);
sint_push(st, 3);
printf("%d\n", sint_pop(st));

would print "3".

sint_stacksize
int sint_stacksize(st). Returns the number of integers currently on the
stack.

sint_stackreset
void sint_stackreset(st). Remove all integers from the stack.

sint_stackempty
int sint_stackempty(st). Returns true if there are no integers on stack st.

sint_top
int sint_top(st). Return the top integer on the stack without affecting the
state of the stack.

Language Translation Using PCCTS and C++ 201

 5 ANTLR Warning and

Error Messages

This chapter describes error and warning messages that can be generated by ANTLR. They
are organised by categories of ANTLR functionality.The actual messages displayed by
ANTLR are shown in bold and are followed by a brief description.

Token and Lexical Class Definition Messages

Warnings

redefinition of token t; ignored
Token t was previously seen in either a #token directive or rule.

token label has no associated rexpr: t
A token type is associated with token t, but no regular expression has been
provided; i.e., no input character sequence will result in this token type.

token name t and rexpr re already defined; ignored
t and re were previously attached to other regular expressions or tokens,
respectively. For example:

#token T “foo”
#token U
#token U “foo”

ANTLR Warning and Error Messages

202 Language Translation Using PCCTS and C++

no regular expressions found in grammar
You did not specify even one input character sequence to combine into a token.
This is an uninteresting grammar.

lexclass name conflicts with token/errclass label ‘ t’
A lexclass definition tried to reuse a previously defined symbol t.

Errors

redefinition of token t; ignored
Another definition of t was seen previously.

action cannot be attached to a token name (t); ignored
Actions can only be attached to regular expressions. If only a token label is
specified, an action is meaningless.

redefinition of action for re; ignored
An action has already been attached to regular expression re.

#token definition ‘t’ not allowed with #tokdefs; ignored
When the #tokdefs directive is used, all tokens are assumed to be defined
inside the specified file. New token labels may not be introduced in the
grammar specificatiion, however, regular expressions may be attached to the
token labels.

implicit token definition not allowed with #tokdefs
When the #tokdefs directive is used, all tokens are assumed to be defined
inside the specified file. New token labels may not be introduced in the
grammar specification, however, regular expressions may be attached to the
token labels via the #token directive.

#token requires at least token name or rexpr
A lone #token directive is meaningless (even if an action is given).

redefinition of action for expr re; ignored
Regular expression re already has an attached action.

redefinition of expr re; ignored
Regular expression re has already been defined.

Grammatical Messages

Language Translation Using PCCTS and C++ 203

Grammatical Messages

Warnings

rule r not defined
Rule r was referenced in your grammar, but you have not defined it.

alts i and j of decision-type ambiguous upon k-seqs
The specified alternatives (counting from 1) of the decision cannot be
distinguished. At least one input sequence of length k could be matched by
both alternatives. For example, the following rule is ambiguous at k=1 upon
tokens {A,B}:

a : A B | A C ;

It is not ambiguous at k=2. The following rule is ambiguous upon 2-sequence
AB (or, as ANTLR would print it out: {A},{B}):

a : A B C | A B ;

This is only a warning, but some decisions are inherently ambiguous like the
proverbial dangling else clause:

stat : IF expr THEN stat { ELSE stat } | ...;

The optional clause is ambiguous upon ELSE.

optional/exit path and alt(s) of decision-type ambiguous upon k-seqs
The same interpretation applies to this message as for the previous message.
The difference lies in that no alternative number can be associated with the exit
path of a loop. For example,

a : (A B)* A C ;

is ambiguous upon A for k=1, but unambiguous at k=2.

ANTLR Warning and Error Messages

204 Language Translation Using PCCTS and C++

Errors

infinite left-recursion to rule a from rule b
Without consuming a token of input, the parser may return to a previously
visited state. Naturally, your parser may never terminate. For example,

a : A | b ;
b : c B ;
c : a | C ;

All rules in this grammar can cause infinite recursion.

only one grammar class allowed in this release
Only one grammar class may be specified. To include rules from multiple files
in one class, repeat the class header in each file.

file 1: class T { some rules }

file 2: class T { more rules }

Implementation Messages

action buffer overflow; size n
One of your actions was too long for an internal buffer. Increase
ZZLEXBUFSIZE in pccts/antlr/generic.h and recompile ANTLR. Or,
break up your action into two actions.

predicate buffer overflow; size n
One of your semantic predicates was too long for an internal buffer. Increase
ZZLEXBUFSIZE in pccts/antlr/generic.h and recompile ANTLR. Or,
break up your predicate into two actions.

parameter buffer overflow; size n
One of your actions was too long for an internal buffer. Increase
ZZLEXBUFSIZE in pccts/antlr/generic.h and recompile ANTLR. Or,
break up your action into two actions.

#$%%*&@# internal error: error
[complain to nearest government official or send hate-mail to
parrt@parr-research.com; please pray to the ‘‘bug’’ gods that there is a

Action, Attribute, and Rule Argument Messages

Language Translation Using PCCTS and C++ 205

trival fix.]
Something bad happened. Send in a bug report.

hit analysis resource limit while analyzing alts i and j of decision-type
ANTLR was busily computing the lookahead sets needed construct your
parser, but ran out of resources (you specify a resource cap with -rl command
line option). For large grammars, this indicates what decision was taking so
long to handle. You can simplify the decision, reduce the size of the grammar
or lookahead, or use syntactic predicates.

out of memory while analyzing alts i and j of decision-type
ANTLR tried to call malloc(), which failed.

Action, Attribute, and Rule Argument Messages

Warnings

$t not parameter, return value, or element label
You referenced $t within an action, but it is not a parameter or return value of
the enclosing rule nor is it a label on a rule or token.

invalid parameter/return value: ‘ param-or-ret-val-definition’
Your parameter or return value definition was poorly formed C or C++; e.g.,
missing argument name.

rule r accepts no parameter(s)
You specified parameters to r in some rule of your grammar, but r does not
accept parameters.

rule r requires parameter(s)
You specified no parameters to r in some rule of your grammar, but r accepts
at least one parameter.

rule r yields no return value(s)
You specified a return value assignment from r in some rule of your grammar,
but r does not return any values.

ANTLR Warning and Error Messages

206 Language Translation Using PCCTS and C++

rule r returns a value(s)
You specified no return value assignment from r in some rule of your
grammar, but r returns at least one value.

Errors

$$ use invalid in C++ mode
$$ can only be used in C mode. C++ mode does not have attributes. Use return
arguments or return values.

$[] use invalid in C++ mode
$[] can only be used in C mode. C++ mode does not have attributes.

cannot mix old-style $i with new-style labels
You cannot reference $i for some integer i in your actions and $label for some
label attached to a rule or token reference.

one or more $i in action(s) refer to non-token elements
In C++ mode, $i for some integer i variables do not exist for rules since
attributes are not defined. Use return arguments or return values.

cannot mix with new-style labels with old-style $i
You referenced $label at this point, but previously referenced $i for some
integer i in your actions.

label definition clashes with token/tokclass definition: ‘t’
You attached a label to a rule or token that is already defined as a token or
token class.

label definition clashes with rule definition: ‘t’
You attached a label to a rule or token that is already defined as a rule.

label definitions must be unique per rule: ‘t’
You attached a label to a rule or token that is already defined as a label within
that rule.

Action, Attribute, and Rule Argument Messages

Language Translation Using PCCTS and C++ 207

Command-Line Option Messages

Warnings

#parser meta-op incompatible with -CC; ignored
#parser directive can only be used in C mode. Use a class definition in C++
mode.

#parser meta-op incompatible with ‘-gp prefix’; ‘-gp’ ignored
#parser directive should be used instead of -gp, but we left it in for
backward compatibility reasons. Use a class definition in C++ mode.

-gk option could cause trouble for <<...>>? predicates
The -gk option delays the fetching of lookahead, hence, predicates that refer to
future lookahead values may be referring to unfetched values.

-gk incompatible with semantic predicate usage; -gk turned off
See previous.

-gk conflicts with -pr; -gk turned off
See previous.

analysis resource limit (# of tree nodes) must be greater than 0
You have not specified a value or specified a negative number for the -rl
option.

must have at least one token of look-ahead (setting to 1)
You have not specified a value or specified a negative number for the -k
option.

must have compressed lookahead >= full LL(k) lookahead (setting -ck to -k)
You have not specified a value or specified a negative number for the -ck
option.

Errors

class meta-op used without C++ option
You cannot give grammar class definitions without the -CC option.

ANTLR Warning and Error Messages

208 Language Translation Using PCCTS and C++

Token and Error Class Messages

default errclass for ‘t’ would conflict with token/errclass/tokclass
ANTLR cannot create an error class for rule t because the error class would
conflict with a known symbol. Default error class names are created from rule
names by capitalizing the first letter of the rule name.

errclass name conflicts with regular expression ‘t’
The specified error class conflicts with a previously-defined regular
expression.

redefinition of errclass or conflict w/token or tokclass ‘t’; ignored
You have defined an error class with the same name as a previously-defined
symbol.

undefined rule ‘t’ referenced in errclass ‘t’; ignored
You referenced a rule in your error class that does not have a definition.

self-referential error class ‘t’; ignored
Your error class refers to itself directly or indirectly (through another error
class).

undefined token ‘t’ referenced in errclass ‘t’; ignored
Your error class refers to a token that has not been defined.

redefinition of tokclass or conflict w/token ‘t’; ignored
Your token class name conflicts with a previously-defined token label.

redefinition of #tokclass ‘t’ to #token not allowed; ignored
You have redefined token class t.

Predicate Messages

Warnings

alt i of decision-type has no predicate to resolve ambiguity
With options -w2 and -prc on ANTLR warns you that one of the lookahead
sequences predicts more than one alternative and that you have specified a

Exception Handling Messages

Language Translation Using PCCTS and C++ 209

predicate to resolve the ambiguity for one of the alternatives, but not the other.
For example,

a : <<f(LT(1))>>? ID | ID ;

will result in

stdin, line 2: warning: alt 2 of the rule itself has no predicate to resolve
ambiguity

cannot compute context of predicate in front of (..)? block
You used option -prc on and used a <<...>>? in front of a (...)? for
which lookahead cannot be computed. For example,

a : <<blah>>? (UGH)? | ICK ;

(...)? as only alternative of block is unnecessary
You specified something like:

a : (foo)? ;

which is the same as

a : foo ;

Errors

(...)? predicate must be first element of production
You specified a syntactic predicate with a grammar element in front of it. All
syntactic predicates must be the first element of a production in order to predict
it.

Exception Handling Messages

duplicate exception handler for label ‘t’
You specified more than one handler for a single label t.

unknown label in exception handler: ‘t’
You specified a handler for an unknown label t.

Language Translation Using PCCTS and C++ 211

 6 SORCERER Warning and

Error Messages

This chapter describes error and warning messages that can be generated by SORCERER.
We have broken the descriptions into categories rather than grouping them into error and
warning sections. The actual messages displayed by SORCERER are shown in bold and are
followed by a brief description.

Syntax Messages

Warnings

unknown meta-op: m
Meta-operation #m is not valid.

missing #header statement
You forgot a #header statement in C mode.

extra #header statement
You have more than one #header statement.

extra #tokdef statement
You have more than one #tokdef statement.

SORCERER Warning and Error Messages

212 Language Translation Using PCCTS and C++

Errors

Missing /*; found dangling */
You forgot to start your comment with a /*.

Missing <<; found dangling >>”
You forgot to start your action or predicate with a <<.

Missing /*; found dangling */ in action
You forgot to start your comment with a /* in an action.

missing class definition for trailing ‘}’
The end of the class definition was seen, but the header was missing.

rule definition clashes with r definition: ‘ t’
You have defined a rule that has the same name as a previously defined
symbol such as a label.

rule multiply defined: ‘ r’
You have defined a rule with this name already.

label definition clashes with t definition: ‘ u’
Label u classes with a previously defined symbol such as a rule name.

cannot label this grammar construct
You can only label rule and token references (including the wildcard).

redefinition of token t; ignored
You have already defined token t.

token definition clashes with symbol-type definition: ‘ t’
The definition of token t clashes with a predefined symbol.

Action Messages

Language Translation Using PCCTS and C++ 213

Action Messages

Warnings

eoln found in string
You did not terminate your string on the same line as your started it.

eoln found in string (in user action)
You did not terminate your string on the same line as your started it.

eoln found in char literal (in user action)
You did not terminate your character literal on the same line as your started it.

Errors

Reference variable clashes with t: ‘ v’
You have defined an @-variable that clashes with a previously-defined symbol
such as a rule name.

#id used in action outside of rule; ignored
#id is only valid as the result or input tree of a rule. Placing a reference to
#id outside of a rule makes no sense.

Grammatical Messages

infinite recursion from rule a to rule b
Rule a can reach rule b without having moved anywhere in the tree.
Naturally, infinite-recursion can result.

rule not defined: ‘ r’
You have referenced rule r, but not defined it in your grammar.

alts i and j of (...) nondeterministic upon tree-node
Alternatives i and j both begin with the same root node or sibling node.

SORCERER Warning and Error Messages

214 Language Translation Using PCCTS and C++

(...)? predicate in block with one alternative; will generate bad code
A syntactic predicate in a rule or subrule with only one alternative makes no
sense because the tree-walker will not have to guess which alternative to
choose.

predicate not at beginning of alternative; ignored
A predicate not at the left-edge of a production cannot aid in the prediction of
that alternative.

Implementation Messages

action buffer overflow; size n
One of your actions was too long for an internal buffer. Increase
ZZLEXBUFSIZE in sorcerer/sor.g and recompile SORCERER. Or
break up your action into two actions.

parameter buffer overflow; size n
One of your actions was too long for an internal buffer. Increase
ZZLEXBUFSIZE in sorcerer/sor.g and recompile ANTLR. Or break
up your action into two actions.

Command-Line Option Messages

Warnings

-def-tokens valid with C++ interface only; ignored
-def-tokens-file not valid with C++ interface; ignored

C++ mode SORCERER generates a list of token definitions (unless
#tokdef) is used in the output class definition file.

-def-tokens-file conflicts with -inline; ignored
Cannot generate a token definition file if the output of SORCERER will be
inline.

don’t you want filename with that -def-tokens-file?; ignored
You forgot to specify a file name.

Command-Line Option Messages

Language Translation Using PCCTS and C++ 215

-prefix conflicts with C++ interface; ignored
C++ does not need to prefix symbols with a prefix because of the information
hiding capabilities of C++.

don’t you want string with that -prefix?; ignored
You forgot to specify a string.

don’t know how to generate ‘t’ style functions; assuming ANSI
You gave an invalid or missing -funcs argument

-proto-file not valid with C++ interface; ignored
Prototypes are placed in the parser class definition file in C++ mode.

don’t you want filename with that -proto-file?; ignored
You forgot a file name.

‘-’ (stdin) ignored as files were specified first
You specified both inline mode and some grammar files.

‘-’ (stdin) cannot be used with C++ interface; ignored
C++ requires a bunch of output that cannot be just concatenated together.

-inline conflicts with -def-tokens; ignored
Cannot generate token definitions when output is inline.

-inline conflicts with C++ interface; ignored
C++ requires a bunch of output that cannot be just concatenated together.

tokens file not generated; it conflicts with use of #tokdefs
If a token definition file is used to specify token type values, you cannot write
another version of this file out.

Can’t open prototype file ‘f’; ignored
For some reason, file f could not be open for writing.

invalid parameter/return value: ‘ r’
You provided a poorly formed C/C++ parameter or return value.

SORCERER Warning and Error Messages

216 Language Translation Using PCCTS and C++

Errors

-funcs option makes no sense in C++ mode; ignored
Functions are always prototyped in C++.

class meta-op used without C++ option
You had a parser class definition, but forgot to turn on C++ option.

file ‘ f’ ignored as ‘-’ (stdin option) was specified first
You specified stdin mode and then a file name.

Token Definition File Messages

cannot write token definition file f
For some reason, file f could not be open for writing.

cannot open token defs file ‘f’
File f could not be found.

range operator is illegal without #tokdefs directive
In order to use the range operator, you must tell SORCERER what the token
type values are for all your tokens. The only to do this is to use #tokdef.

implicit token definition of ‘ t’ not allowed with #tokdefs
Token t was not defined in the token definition file. Its token type is therefore
unknown.

Language Translation Using PCCTS and C++ 217

 7 Templates and Quick

Reference Guide

In this chapter, we provide a collection of examples and summaries that illustrate the major
features of ANTLR and DLG; we include an example linking ANTLR and SORCERER.
Much of the code is taken from the testcpp directory in the PCCTS distribution.

Templates

This section provides templates for using ANTLR in C++ mode when not using trees, when
using trees and when using ANTLR with SORCERER.

Basic ANTLR Template

#header <<
// put things here that need to be defined in all output files
>>

<<
#include "DLGLexer.h"
typedef ANTLRCommonToken ANTLRToken;
#include "PBlackBox.h"

class MyVersionOfParser : public Parser {
// override triggers declared in actual parser class def below

Templates and Quick Reference Guide

218 Language Translation Using PCCTS and C++

public:
MyVersionOfParser(ANTLRTokenBuffer *input) : Parser(input)
{

printf("start parse\n");
}
~MyVersionOfParser()
{

printf("end parse\n");
}

};

int main()
{

ParserBlackBox<DLGLexer, MyVersionOfParser, ANTLRToken> p(stdin);
p.parser()->startrule();
return 0;

}
>>

/* Ignore whitespace */
#token "[\ \t]+" <<skip();>>
#token "\n" <<skip(); newline();>>

class Parser {

<< Define member functions (triggers) and variables here;
or, in subclass above.

>>

startrule
: alternative 1
| alternative 2
| ...
;

}

// Sample tokens that normally appear at the end of a grammar
#token INT "[0-9]+"
#token ID "[a-zA-Z_][a-zA-Z0-9_]*"

Templates

Language Translation Using PCCTS and C++ 219

Using ANTLR With ASTs

<<
typedef ANTLRCommonToken ANTLRToken;
#include "DLGLexer.h"
#include "PBlackBox.h"

// ASTs are simply smart pointers to input token objects
class AST : public ASTBase {

ANTLRTokenPtr token;
public:

AST(ANTLRTokenPtr t) { token = t; }
void preorder_action() { // what to print out at each node

char *s = token->getText();
printf(" %s", s);

}
PCCTS_AST *shallowCopy() { define if you use dup or deepCopy }

};

int main()
{

ParserBlackBox<DLGLexer, Parser, ANTLRToken> p(stdin);
ASTBase *root = NULL;
p.parser()->start(&root); // parse and build trees
root->preorder(); // print out the tree in LISP form
printf("\n");
root->destroy(); // delete the nodes
return 0;

}
>>

// token definitions

class Parser {

start
: ...
;

}

Templates and Quick Reference Guide

220 Language Translation Using PCCTS and C++

Using ANTLR With SORCERER

This section contains a number of files representing a complete ANTLR/SORCERER
application that reads in expressions and generates a simple stack code.

File: lang.g

<<
typedef ANTLRCommonToken ANTLRToken;
#include "AST.h"
>>

#token "[\ \t]+" <<skip();>>
#token "\n" <<newline(); skip();>>
#token ASSIGN "="
#token ADD "\+"
#token MULT "*"

class SimpleParser {

stat:ID "="^ expr ";"!
;

expr:mop_expr ("\+"^ mop_expr)*
;

mop_expr
: atom ("*"^ atom)*
;

atom:ID
| INT
;

}
#token ID "[a-z]+"
#token INT "[0-9]+"

File: AST.h

#include "ASTBase.h"
#include "AToken.h"

#define AtomSize 20

Templates

Language Translation Using PCCTS and C++ 221

#include "ATokPtr.h"

class AST : public ASTBase {
protected:

char text[AtomSize+1];
int _type;

public:
AST(ANTLRTokenPtr t)

{ _type = t->getType(); strcpy(text, t->getText()); }
AST() { _type = 0; }
int type() { return _type; }
char *getText() { return text; }
void preorder_action() { printf(" %s", text); }

};

typedef AST SORAST; // define the type of a SORCERER tree

File: gen.sor

#header <<
#include "tokens.h"
#include "AST.h"
>>

class SimpleTreeParser {

gen_stat
: #(ASSIGN t:ID gen_expr)

<<printf("\tstore %s\n", t->getText());>>
;

gen_expr
: #(ADD gen_expr gen_expr) <<printf("\tadd\n");>>
| #(MULT gen_expr gen_expr) <<printf("\tmult\n");>>
| t:ID <<printf("\tpush %s\n", t->getText());>>
| t:INT <<printf("\tpush %s\n", t->getText());>>
;

}

File: main.cpp

#include "tokens.h"
#include "SimpleParser.h" // define the parser

Templates and Quick Reference Guide

222 Language Translation Using PCCTS and C++

typedef ANTLRCommonToken ANTLRToken;
#include "SimpleTreeParser.h" // define the tree walker
#include "DLGLexer.h" // define the lexer
#include "PBlackBox.h"

main()
{

ParserBlackBox<DLGLexer, SimpleParser, ANTLRToken> lang(stdin);
AST *root=NULL, *result;
SimpleTreeParser tparser;

lang.parser()->stat((ASTBase **)&root); // get the tree to walk
// printf("input tree:"); root->preorder(); printf("\n");

tparser.gen_stat((SORASTBase **)&root); // walk tree
}

File: makefile

This makefile was modified from the original created with the genmk command indicated in
the makefile comment.

#
PCCTS makefile for: lang.g
#
Created from: /circle/s13/parrt/PCCTS/bin/genmk -CC -class \
SimpleParser -project t4 -trees lang.g
#
PCCTS release 1.33
Project: t
C++ output
DLG scanner
ANTLR-defined token types
#
TOKENS = tokens.h
#
The following filenames must be consistent with ANTLR/DLG flags
DLG_FILE = parser.dlg
ERR = err
HDR_FILE =
SCAN = DLGLexer
PCCTS = /usr/local/pccts
ANTLR_H = $(PCCTS)/h
SOR_H = ../../h
SOR_LIB = ../../lib
BIN = $(PCCTS)/bin
ANTLR = $(BIN)/antlr
DLG = $(BIN)/dlg

Templates

Language Translation Using PCCTS and C++ 223

SOR = ../../sor
CFLAGS = -I. -I$(ANTLR_H) -I$(SOR_H) -I$(SOR_LIB) -g
AFLAGS = -CC -gt
DFLAGS = -C2 -i -CC
GRM = lang.g
SRC = lang.cpp main.cpp test4.cpp $(SOR_LIB)/STreeParser.cpp \
 SimpleParser.cpp \
 SimpleTreeParser.cpp \
 $(ANTLR_H)/AParser.cpp $(ANTLR_H)/DLexerBase.cpp \
 $(ANTLR_H)/ASTBase.cpp $(ANTLR_H)/PCCTSAST.cpp \
 $(ANTLR_H)/ATokenBuffer.cpp $(SCAN).cpp
OBJ = lang.o main.o test4.o STreeParser.o \
 SimpleParser.o \
 SimpleTreeParser.o \
 AParser.o DLexerBase.o \
 ASTBase.o PCCTSAST.o \
 ATokenBuffer.o $(SCAN).o
ANTLR_SPAWN = lang.cpp SimpleParser.cpp \
 SimpleParser.h $(DLG_FILE) $(TOKENS)
DLG_SPAWN = $(SCAN).cpp $(SCAN).h
CCC=g++
CC=$(CCC)

t : $(OBJ) $(SRC)
$(CCC) -o t4 $(CFLAGS) $(OBJ)

main.o : main.cpp SimpleTreeParser.h SimpleParser.h
$(CCC) -c $(CFLAGS) main.cpp

lang.o : $(TOKENS) $(SCAN).h lang.cpp
$(CCC) -c $(CFLAGS) -o lang.o lang.cpp

SimpleParser.o : $(TOKENS) $(SCAN).h SimpleParser.cpp SimpleParser.h
$(CCC) -c $(CFLAGS) -o SimpleParser.o SimpleParser.cpp

SimpleTreeParser.o : $(TOKENS) $(SCAN).h SimpleTreeParser.cpp tokens.h
$(CCC) -c $(CFLAGS) SimpleTreeParser.cpp

test4.cpp SimpleTreeParser.h SimpleTreeParser.cpp : test4.sor
$(SOR) -CPP test4.sor

test4.o : test4.cpp
$(CCC) -c $(CFLAGS) test4.cpp

STreeParser.o : $(SOR_LIB)/STreeParser.cpp
$(CCC) -o STreeParser.o -c $(CFLAGS) $(SOR_LIB)/STreeParser.cpp

Templates and Quick Reference Guide

224 Language Translation Using PCCTS and C++

$(SCAN).o : $(SCAN).cpp $(TOKENS)
$(CCC) -c $(CFLAGS) -o $(SCAN).o $(SCAN).cpp

$(ANTLR_SPAWN) : $(GRM)
$(ANTLR) $(AFLAGS) $(GRM)

$(DLG_SPAWN) : $(DLG_FILE)
$(DLG) $(DFLAGS) $(DLG_FILE)

AParser.o : $(ANTLR_H)/AParser.cpp
$(CCC) -c $(CFLAGS) -o AParser.o $(ANTLR_H)/AParser.cpp

ATokenBuffer.o : $(ANTLR_H)/ATokenBuffer.cpp
$(CCC) -c $(CFLAGS) -o ATokenBuffer.o $(ANTLR_H)/ATokenBuffer.cpp

DLexerBase.o : $(ANTLR_H)/DLexerBase.cpp
$(CCC) -c $(CFLAGS) -o DLexerBase.o $(ANTLR_H)/DLexerBase.cpp

ASTBase.o : $(ANTLR_H)/ASTBase.cpp
$(CCC) -c $(CFLAGS) -o ASTBase.o $(ANTLR_H)/ASTBase.cpp

PCCTSAST.o : $(ANTLR_H)/PCCTSAST.cpp
$(CCC) -c $(CFLAGS) -o PCCTSAST.o $(ANTLR_H)/PCCTSAST.cpp

clean:
rm -f *.o core t4

scrub:
rm -f *.o core t4 $(ANTLR_SPAWN) $(DLG_SPAWN) test4.cpp

Defining Your Own Tokens

In an action before the grammar, you may specify or include the definition of ANTLRToken
rather than use the predefined ANTLRCommonToken.

class ANTLRToken : public ANTLRRefCountToken {
protected:

ANTLRTokenType _type; // what’s the token type of the token object
int _line; // track line info for errors
ANTLRChar _text[30]; // hold the text of the input token

public:
ANTLRToken(ANTLRTokenType t, ANTLRChar *s)

Defining Your Own Scanner

Language Translation Using PCCTS and C++ 225

: ANTLRRefCountToken(t,s)
{ setType(t); _line = 0; setText(s); }

// Your derived class MUST have a blank constructor.
ANTLRToken()

{ setType((ANTLRTokenType)0); _line = 0; setText(""); }

// how to access the token type and line number stuff
ANTLRTokenType getType() { return _type; }
void setType(ANTLRTokenType t) { _type = t; }
virtual int getLine() { return _line; }
void setLine(int line) { _line = line; }

ANTLRChar *getText() { return _text; }
void setText(ANTLRChar *s) { strncpy(_text, s, 30); }

// WARNING: you must return a stream of distinct tokens
// This function will disappear when we can use templates
virtual ANTLRAbstractToken *makeToken(ANTLRTokenType tt,

 ANTLRChar *txt,
int line)

{
ANTLRAbstractToken *t = new ANTLRToken(tt,txt);
t->setLine(line);
return t;

}
};

Defining Your Own Scanner

To use your own scanner with an ANTLR grammar, you must define a subclass of
ANTLRTokenStream and then include that definition in the grammar file within an action
(instead of the usual “#include "DLGLexer.h"”. Here is a sample lexer definition:

#include "config.h"
#include "tokens.h" // let’s say it defines DIGIT, PUNCT
typedef ANTLRCommonToken ANTLRToken;
#include ATOKENBUFFER_H
#include <ctype.h>

class MyLexer : public ANTLRTokenStream {
private:

int c;
public:

Templates and Quick Reference Guide

226 Language Translation Using PCCTS and C++

MyLexer() { c = getchar(); }
virtual ANTLRAbstractToken *getToken()

{
char buf[2];
buf[0] = c;
if (isdigit(c)) return new ANTLRToken(DIGIT,buf);
if (ispunct(c)) return new ANTLRToken(PUNCT,buf);
return NULL;

}
};

The genmk Program

The genmk program is provided so that most makefiles for ANTLR can be automatically
generated. To begin most projects, you only need provide a parser class name, decide
whether you are going to build trees, decide on the name of the project (the executable), and
decide on the grammar file name. For example, the most common genmk line is:

genmk -CC -class MyParser -project myproj file.g > makefile

This line creates a makefile that uses ANTLR with the C++ interface, with parser class
MyParser, and with a resulting executable called myproj; your grammar file is file.g. The
following lines in the makefile need to be modified to suit your environment:

PCCTS = . # normally something like /usr/local/src/pccts
#CCC=g++ # uncomment and define to your C++ compiler

If you will be using trees, use the -tree option with genmk also.

Rules

Rule With Multiple Alternatives

rule
: alternative1
| alternative2
...
| alternativen
;

EBNF Constructs

Language Translation Using PCCTS and C++ 227

Rule With Arguments and Return Values

rule[arg1,...,argn] > [retval1,...,retvalm] : ... ;

where the arguments and return values are well-formed C++ definitions such as “int i” or “char
*p”.

EBNF Constructs

Subrule

(alternative1 | alternative2 ... | alternativen)

Optional Subrule

{ alternative1 | alternative2 ... | alternativen }

Zero Or More Subrule

(alternative1 | alternative2 ... | alternativen)*

One Or More Subrule

(alternative1 | alternative2 ... | alternativen)+

Alternative Elements

Token References

1. Token identifiers. Identifiers begin with an uppercase letter; e.g., ID, INT.

2. Regular expressions enclosed in double-quotes; e.g. "[a-z]+", "begin".

3. Token class references; e.g.,

#tokclass Operators { Plus Minus }

e : e2 (Operators e2)* ;

Templates and Quick Reference Guide

228 Language Translation Using PCCTS and C++

4. Token type ranges—two tokens separated by two dots;

FirstOperator .. LastOperator

5. “Not” operator—match any token except end-of-file or TOKEN; e.g.,
~TOKEN.

Rule References

Rule references invoke other rules possibly with arguments and return values. For example,
“b[34] > [i]” invokes rule b with one argument, 34, and stores the return value of b in
some variable i.

Labels

Rule and token references may be labeled with an identifier (either upper or lower case);
e.g.,

rule : label:ID ;

Labels are referenced in user actions as $label.

Labels are useful for:

1. Accessing the token object associated with the referenced token.

2. Attaching a parser exception handler to the invocation of either a rule or token
reference.

Actions

Actions are enclosed in double angle-brackets; e.g., <<action>>. If the first element of any
subrule or rule is an action, that action is an init-action; e.g.,

rule : <<int i=3;>> id:ID <<i=atoi($id->getText());>> ;

An action placed immediately after the terminating ‘;’ on a rule is considered a fail-action.
Fail-actions are executed upon syntax error before ANTLR prints out a message and before
the rule is exited.

Alternative Elements

Language Translation Using PCCTS and C++ 229

Predicates

Semantic Predicates

Semantic predicates are actions followed by ‘?’. For example,

typename : <<isTypeName(LT(1)->getText())>>? ID ;

The LT(1) is the trigger to ANTLR that only one symbol of context is needed for this
predicate when the -prc command line option is used.

Syntactic Predicates

Syntactic predicates are subrules followed by a ‘?’. For example,

statement
: (decl)?
| expr
;

Generalized Predicate

Sometimes it is necessary to specify the context under which a semantic predicate is valid
manually rather than allowing ANTLR to compute the context. The following predicate
form can be used to specify a semantic predicate with specific syntactic context:

(context)? => <<predicate>>?

For example,

(ID)? => <<qualifiedItemIs()==Constructor>>?

This generalized predicate indicates that the semantic predicate should only be evaluated if
ID is the next symbol of lookahead. You may use only simple strings of tokens inside the
context “guard” (e.g., (A B | C D)? => <<blah>>?).

Tree operators

token-reference!

Do not create an AST node in the output tree for this reference.

rule-reference!

Templates and Quick Reference Guide

230 Language Translation Using PCCTS and C++

Do not link in the AST created by the referenced rule into the current out-
put tree.

token-reference^

Create an AST node in the output tree for this token reference. It becomes
the root of the tree being built for the enclosing rule.

Lexical Directives

#token LABEL "regular-expression" <<action>>
where any of the items may be omitted. However, actions may only be tied
to regular expressions and at least one item must be specified.

#lexclass LCLASS
start a new automaton or lexical class in your grammar.

#tokclass TCLASS { T1 T2 ... Tn }
Define TCLASS as a set of tokens.

#tokdefs "file"
Specify a file containing #defines or an enum of all token labels for
ANTLR to use.

Parser Exception Handling

Rule With Exception Handlers

rule
: alternative1

exception
catch ... <<...>>

exception[label]
catch ... <<...>>

| alternative2
...
| alternativen
;
exception

catch ... <<...>>
catch ... <<...>>
default : <<...>>

exception[label1]

Parser Exception Handling

Language Translation Using PCCTS and C++ 231

...
exception[label2]

...
where label, label1, and label2 are labels attached to either rule or token references within
the alternatives; specifically, label must be contained within alternative1.

Token Exception Operator

stat
:@ "if" INT "then" stat { "else" stat }

<<printf("found if\n");>>
| id:ID@ "="@ INT@ ";"@

<<printf("found assignment to %s\n", $id->getText());>>
;

The @ on the front of alternative one indicates that each token reference in the alternative is
to be handled without throwing an exception—the match routine will catch the error. The
second alternative explicitly indicates that each token is to be handled locally without
throwing an exception.

Language Translation Using PCCTS and C++ 233

 8 History

The PCCTS project began as a parser-generator project for a graduate course at Purdue
University in the Fall of 1988 taught by Hank Dietz--“translator-writing systems”. Under the
guidance of Professor Dietz, the parser generator, ANTLR (originally called YUCC),
continued after the termination of the course and eventually became the subject of Terence
Parr’s Master’s thesis. Originally, lexical analysis was performed via a simple scanner
generator which was soon replaced by Will Cohen’s DLG in the Fall of 1989 (DFA-based
lexical-analyzer generator, also an offshoot of the graduate translation course).

The alpha version of ANTLR was totally rewritten resulting in 1.00B. Version 1.00B was
released via an internet newsgroup (comp.compilers) posting in February of 1990 and
quickly gathered a large following. 1.00B generated only LL(1) parsers, but allowed the
merged description of lexical and syntactic analysis. It had rudimentary attribute handling
similar to that of YACC and did not incorporate rule parameters or return values; downward
inheritance was very awkward. 1.00B-generated parsers terminated upon the first syntax
error. Lexical classes (modes) were not allowed and DLG did not have an interactive mode.

Upon starting his Ph.D. at Purdue in the Fall of 1990, Terence Parr began the second total
rewrite of ANTLR. The method by which grammars may be practically analyzed to generate
LL(k) lookahead information was discovered in August of 1990 just before Terence’s return
to Purdue. Version 1.00 incorporated this algorithm and included the AST mechanism,
lexical classes, error classes, and automatic error recovery; code quality and portability were
higher. In February of 1992 1.00 was released via an article in SIGPLAN Notices. Peter
Dahl, then Ph.D. candidate, and Professor Matt O’Keefe (both at the University of
Minnesota) tested this version extensively. Dana Hoggatt (Micro Data Base Systems, Inc.)
tested 1.00 heavily.

History

234 Language Translation Using PCCTS and C++

Version 1.06 was released in December 1992 and represented a large feature enhancement
over 1.00. For example, rudimentary semantic predicates were introduced, error messages
were significantly improved for k>1 lookahead and ANTLR parsers could indicate that
lookahead fetches were to occur only when necessary for the parse (normally, the lookahead
“pipe” was constantly full). Russell Quong joined the project in the Spring of 1992 to aid in
the semantic predicate design. Beginning and advanced tutorials were created and released
as well. A makefile generator was included that sets up dependencies and such correctly for
ANTLR and DLG. Very few 1.00 incompatibilities were introduced (1.00 was quite
different from 1.00B in some areas).

Version 1.10 was released on August 31, 1993 after Terence’s release from Purdue and
incorporated bug fixes, a few feature enhancements and a major new capability--an arbitrary
lookahead operator (syntactic predicate), “(α)?β”. This feature was codesigned with
Professor Russell Quong also at Purdue. To support infinite lookahead, a preprocessor flag,
ZZINF_LOOK, was created that forced the ANTLR() macro to tokenize all input prior to
parsing. Hence, at any moment, an action or predicate could see the entire input sentence.
The predicate mechanism of 1.06 was extended to allow multiple predicates to be hoisted;
the syntactic context of a predicate could also be moved along with the predicate.

In February of 1994, SORCERER was released. This tool allowed the user to parse child-
sibling trees by specifying a grammar rather than building a recursive-descent tree walker by
hand. Aaron Sawdey at The University of Minnesota became a second author of
SORCERER after the initial release.

On April 1, 1994, PCCTS 1.20 was released. This was the first version to actively support
C++ output. It also included important fixes regarding semantic predicates and (..)+
subrules. This version also introduced token classes, the “not” operator, and token ranges.

On June 19, 1994, SORCERER 1.00B9 was released. Gary Funck of Intrepid Technology
joined the SORCERER team and provided very valuable suggestions regarding the
“transform” mode of SORCERER.

On August 8, 1994, PCCTS 1.21 was released. It mainly cleaned up the C++ output and
included a number of bug fixes.

From the 1.21 release forward, the maintenance and support of all PCCTS tools was picked
up by Parr Research Corporation.

A sophisticated error handling mechanism called “parser exception handling” was released
for version 1.30. 1.31 fixed a few bugs.

Release 1.33 is the version corresponding to this initial book release.

Language Translation Using PCCTS and C++ 235

APPENDIX Notes for New Users of
PCCTS

Thomas H. Moog
Polhode, Inc.
tmoog@polhode.com

These notes are based on my own experiences and a year of observing the PCCTS mailing
list and the omp.compilers.tools.pccts news group. These notes have an emphasis on C++
mode. Those who are using C mode may wish to consult the first version of these notes
mentioned prior to Item #1. The Notes consist of a table of contents and the Notes
themselves. If an entry in the table-of-contents contains a dash ("–") instead of a page
number than the title is the entire item, so there’s no point in referring to another page for
additional information. The code mentioned in the section of examples can be obtained via
web browser or FTP from the site mentioned prior to Item #1 and at most PCCTS archive
sites.

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 237

Where is
#1. These notes, related examples, and an earlier version with an emphasis on

C mode, are available on the net. 247
#2. FTP sites for the Purdue Compiler Construction Tool Set (PCCTS). 247
#3. The FAQ is maintained by Michael T. Richter (mtr@globalx.net) and is

available at the FTP site. 247
#4. Archive sites for MS-DOS programs for unpacking .tar and .gzip files

 (the format of the PCCTS distribution kit). 247
#5. Example grammars for C++, ANSI C, Java, Fortran 77, and Objective C. 248
#6. Parr-Research web page: http://www.parr-research.com/~parrt/prc –

Basics
#7. Invoke ANTLR or DLG with no arguments to get a switch summary –
#8. Tokens begin with uppercase characters, rules begin with lowercase characters –
#9. Even in C mode you can use C++ style comments in the non-action portion

of ANTLR source code 248
#10. In #token regular expressions spaces and tabs which are not escaped are ignored 248
#11. Never choose names which coincide with compiler reserved words or

library names 248
#12. Write <<predicate>>? not <<predicate semi-colon>>? (semantic predicates

go in "if" conditions) –
#13. Some constructs which cause warnings about ambiguities and optional paths 248

Checklist
#14. Locate incorrectly spelled #token symbols using ANTLR –w2 switch or

by inspecting parserClassName.C 249
#15. Duplicate definition of a #token name is not reported 249
#16. Use ANTLR cross-reference option –cr to detect orphan rules when

ambiguities are reported –
#17. LT(i) and LATEXT(i) are magical names in semantic predicates —

punctuation is critical 249

#token
#18. To match any single character use: "~[]", to match everything to a newline use:

"~[\n]*" –
#19. To match an "@" in your input text use "\@", otherwise it will be interpreted

 as the end-of-file symbol –
#20. The escaped literals in #token regular expressions are: \t \n \r \b

 (not the same as ANSI C) –
#21. In #token expressions " \12 " is decimal " \012 " is octal, and " \0x12 " is hex

 (not the same as ANSI C) –

Notes for New Users of PCCTS

238 Language Translation Using PCCTS and C++

#22. DLG wants to find the longest possible string that matches 249
#23. When two regular expressions of equal length match a regular expression

the first one is chosen 249
#24. Inline regular expression are no different than #token statements 250
#25. Watch out when you see ~[list-of-characters] at the end of a regular expression 251
#26. Watch out when one regular expression is the prefix of another 251
#27. DLG is not able to backtrack 251
#28. The lexical routines mode(), skip(), and more() have simple, limited use! 252
#29. lextext() includes strings accumulated via more() — begexpr()/

endexpr() refer only to the last matched RE –
#30. Use "if (_lextext != _begexpr) {...}" to test for RE being

appended to lextext using more() 252
#31. #token actions can access protected variables of the DLG base class

 (such as _line) if necessary –
#32. Replace semantic routines in #token actions with semantic predicates. 252
#33. For 8 bit characters in DLG, make char variables unsigned by default

 (g++ option –funsigned-char). 253
#34. The maximum size of a DLG token is set by an optional argument of the

 ctor DLGLexer() — default is 2000. 253
#35. If a token is recognized using more() and its #lexclass ignores end-of-file,

 then the very last token will be lost. 253

#tokclass
#36. #tokclass provides an efficient way to combine reserved words into reserved

 word sets 254
#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenType is in

a #tokclass 254

#lexclass
#38. Inline regular expressions are put in the most recently defined lexical class 254
#39. Use a stack of #lexclass modes in order to emulate lexical subroutines 255
#40. Sometimes a stack of #lexclass modes isn’t enough 255

Lexical Lookahead
#41. One extra character of lookahead is available to the #token action routine in

ch (except in interactive mode) 256
#42. The lex operators "^" and "$" (anchor pattern to start/end of line) can

sometimes be simulated by DLG 256
#43. When the first non-blank token on a line may have a special interpretation 257
#44. For more powerful forms of lexical lookahead one can use Vern Paxson’s flex 258

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 239

Line and Column Information
#45. If you want column information for error messages (or other reasons) use

 C++ mode –
#46. If you want accurate line information even with many characters of

lookahead use C++ mode –
#47. Call trackColumns() to request that DLG maintain column information –
#48. To report column information in syntax error messages override

ANTLRParser::syn() — See Example #6 –
#49. Call newline() and then set_endcol(0) in the #token action when a newline

 is encountered –
#50. Adjusting column position for tab characters 258
#51. Computing column numbers when using more() with strings that include

 tab characters and newlines 259

C++ Mode
#52. The destructors of base classes should be virtual in almost all cases 259
#53. Why must the AST root be declared as ASTBase rather than AST ? 259
#54. ANTLRCommonToken text field has maximum length fixed at compile time

 – but there’s an alternative 260
#55. C++ Mode makes multiple parsers easy. 260
#56. Use DLGLexerBase routines to save/restore DLG state when multiple

parsers share a token buffer. 261
#57. Required AST constructors: AST(), AST(ANTLRToken), and AST(X x,Y y)

 for #[X x,Y y] –
#58. In C++ Mode ASTs and ANTLRTokens do not use stack discipline as they

 do in C mode. 261
#59. Summary of Token class inheritance in file AToken.h. 261
#60. Diagram showing relationship of major classes. 262
#61. Tokens are supplied as demanded by the parser. They are "pulled" rather than

"pushed". 262
#62. Because tokens are "pulled" it is easy to access downstream objects but

 difficult to access upstream objects 262
#63. Additional notes for users converting from C to C++ mode 262

ASTs
#64. To enable AST construction (automatic or explicit) use the ANTLR –gt switch –
#65. Use symbolic tags (rather than numbers) to refer to tokens and ASTs in rules 263
#66. Constructor AST(ANTLRToken *) is automatically called for terminals

 when ANTLR –gt switch is used 263
#67. If you use ASTs you have to pass a root AST to the parser 263
#68. Use ast–>destroy() to recursively descend the AST tree and free all sub-trees –

Notes for New Users of PCCTS

240 Language Translation Using PCCTS and C++

#69. Don’t confuse #[...] with #(...) 263
#70. The make-a-root operator for ASTs ("^") can be applied only to terminals

(#token, #tokclass, #tokdef) 264
#71. An already constructed AST tree cannot be the root of a new tree 264
#72. Don’t assign to #0 unless automatic construction of ASTs is disabled

using the "!" operator on a rule 264
#73. The statement in Item #72 is stronger than necessary 264
#74. A rule that constructs an AST returns an AST even when its caller uses

the "!" operator –
#75. (C++ Mode) In AST mode a token which isn’t incorporated into an AST

will result in lost memory 265
#76. When passing #(...) or #[...] to a subroutine it must be cast

 from "ASTBase *" to "AST *" 265
#77. Some examples of #(...) notation using the PCCTS list notation 265
#78. A rule which derives epsilon can short circuit its caller’s explicitly

 constructed AST 265
#79. How to use automatic AST tree construction when a token code depends

 on the alternative chosen 266
#80. For doubly linked ASTs derive from class ASTDoublyLinkedBase and

call tree–>double_link(0,0). 266
#81. When ASTs are constructed manually the programmer is responsible for

deleting them on rule failure. 266

Rules
#82. To refer to a field of an ANTLRtOKEN within a rule’s action use

<<... mytoken($x)->field...>> 267
#83. Rules don’t return tokens values, thus this won’t work:rule: r1:rule1

<<...$r1...>> 267
#84. A simple example of rewriting a grammar to remove left recursion 267
#85. A simple example of left-factoring to reduce the amount of ANTLR lookahead 268
#86. ANTLR will guess where to match "@" if the user omits it from the start rule 268
#87. To match any token use the token wild-card expression "." (dot) 268
#88. The "~" (tilde) operator applied to a #token or #tokclass is satisfied when the

 input token does not match 268
#89. To list the rules of the grammar grep parserClassName.h for "_root" or edit

 the output from ANTLR –cr –
#90. The ANTLR –gd trace option can be useful in sometimes unexpected ways 269
#91. Associativity and precedence of operations is determined by nesting of rules 269
#92. #tokclass can replace a rule consisting only of alternatives with terminals

(no actions) 269
#93. Rather than comment out a rule during testing, add a nonsense token which never

matches — See Item #96 –

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 241

Init-Actions
#94. Don’t confuse init-actions with leading-actions (actions which precede a rule). 270
#95. An empty sub-rule can change a regular action into an init-action. 271
#96. Commenting out a sub-rule can change a leading-action into an init-action. 271
#97. Init-actions are executed just once for sub-rules: (...)+, (...)*, and {...}271

Inheritance
#98. Downward inherited variables are just normal C arguments to the function

which recognizes the rule 272
#99. Upward inheritance returns arguments by passing back values 272
#100. ANTLR –gt code will include the AST with downward inheritance values in

the rule’s argument list –

Syntactic Predicates
#101. Regular actions are suppressed while in guess mode because they have

side effects –
#102. Automatic construction of ASTs is suppressed during guess mode because

it is a side effect –
#103. Syntactic predicates should not have side-effects 273
#104. How to use init-actions to create side-effects in guess mode (despite Item #103) 273
#105. With values of k>1 or infinite lookahead mode one cannot use feedback

from parser to lexer. 274
#106. Can’t use interactive scanner (ANTLR –gk option) with ANTLR

infinite lookahead. –
#107. Syntactic predicates are implemented using setjmp/longjmp — beware

 C++ objects requiring destructors. –

Semantic Predicates
#108. (Bug) Semantic predicates can’t contain string literals 274
#109. (Bug) Semantic predicates can’t cross lines without escaped newline 274
#110. Semantic predicates have higher precedence than alternation: <<>>? A|B

means (<<>>? A)|B –
#111. Any actions (except init-actions) inhibit the hoisting of semantic predicates 274
#112. Semantic predicates that use local variables or require init-actions must

 inhibit hoisting –
#113. Semantic predicates that use inheritance variables must not be hoisted 274
#114. A semantic predicate which is not at the left edge of a rule becomes a

 validation predicate 275
#115. Semantic predicates are not always hoisted into the prediction expression 275
#116. Semantic predicates can’t be hoisted into a sub-rule: "{x} y" is not

exactly equivalent to "x y | y" 275

Notes for New Users of PCCTS

242 Language Translation Using PCCTS and C++

#117. How to change the reporting of failed semantic predicates 276
#118. A semantic predicate should be free of side-effects because it may be

evaluated multiple times. 276
#119. There’s no simple way to avoid evaluation of a semantic predicate for

validation after use in prediction. –
#120. What is the "context" of a semantic predicate ? 276
#121. Semantic predicates, predicate context, and hoisting 277
#122. Another example of predicate hoisting 282

Debugging Tips for New Users of PCCTS
#123. A syntax error with quotation marks on separate lines means a problem

with newline 283
#124. Use the ANTLR –gd switch to debug via rule trace –
#125. Use the ANTLR –gs switch to generate code with symbolic names for

 token tests –
#126. How to track DLG results 283

Switches and Options
#127. Use ANTLR –gx switch to suppress regeneration of the DLG code and

 recompilation of DLGLexer.C –
#128. Can’t use an interactive scanner (ANTLR –gk option) with ANTLR

 infinite lookahead –
#129. To make DLG case insensitive use the DLG –ci switch 284

Multiple Source Files
#130. To see how to place main() in a .C file rather than a grammar file (".g")

see pccts./testcpp/8/main.C 284
#131. How to put file scope information into the second file of a grammar with

 two .g files 284

Source Code Format
#132. To place the C right shift operator ">>" inside an action use "\>>" 285
#133. One cannot continue a regular expression in a #token statement across lines 285
#134. A #token without an action will attempt to swallow an action which

immediately follows it 285

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 243

Miscellaneous
#135. Given rule[A a,B b] > [X x] the proto is X rule

(ASTBase* ast,int* sig,A a,B b) 285
#136. To remake ANTLR changes must be made to the makefile as

currently distributed 286
#137. ANTLR reports "... action buffer overflow ..." 286
#138. Exception handling uses status codes and switch statements to unwind

 the stack rule by rule –
#139. For tokens with complex internal structure add #token expressions to

match frequent errors 286
#140. See pccts/testcpp/2/test.g and testcpp/3/test.g for examples of how to

intergrate non-DLG lexers with PCCTS –
#141. Ambiguity, full LL(k), and the linear approximation to LL(k) 287
#142. What is the difference between "(...)? <<...>>? x" and "

(...)? => <<...>>? x" ? 289
#143. Memory leaks and lost resources 289
#144. Some ambiguities can be fixed by introduction of new #token numbers 289
#145. Use "#pragma approx" to replace full LL(k) analysis of a rule with the

 linear approximation 290

(C Mode) LA/LATEXT and NLA/NLATEXT
#146. Do not use LA(i) or LATEXT(i) in the action routines of #token 290
#147. Care must be taken in using LA(i) and LATEXT(i) in interactive mode

(ANTLR switch –gk) 290

(C Mode) Execution-Time Routines
#148. Calls to zzskip() and zzmore() should appear only in #token actions

 (or in subroutines they call) –
#149. Use ANTLRs or ANTLRf in line-oriented languages to control the

prefetching of characters and tokens 291
#150. Saving and restoring parser state in order to parse other objects (input files) 291

(C Mode) Attributes
#151. Use symbolic tags (rather than numbers) to refer to attributes and ASTs in rules 292
#152. Rules no longer have attributes:rule : r1:rule1

 <<...$r1...;>> won’t work 292
#153. Attributes are built automatically only for terminals 292
#154. How to access the text or token part of an attribute 292
#155. The $0 and $$ constructs are no longer supported — use inheritance

instead (Item #99) –

Notes for New Users of PCCTS

244 Language Translation Using PCCTS and C++

#156. If you use attributes then define a zzd_attr() to release resources (memory)
when an attribute is destroyed –

#157. Don't pass automatically constructed attributes to an outer rule or sibling
rule — they’ll be out of scope 293

#158. A charptr.c attribute must be copied before being passed to a calling rule 293
#159. Attributes created in a rule should be assumed not valid on entry to a fail action 293
#160. Use a fail action to destroy temporary attributes when a rule fails 293
#161. When you need more information for a token than just token type, text, and

line number 294
#162. About the pipeline between DLG and ANTLR (C Mode) 294

(C Mode) ASTs
#163. Define a zzd_ast() to recover resources when an AST is deleted –
#164. How to place prototypes for routines using ASTs in the #header 295
#165. To free an AST tree use zzfree_ast() to recursively descend the AST tree

 and free all sub-trees 295
#166. Use #define zzAST_DOUBLE to add support for doubly linked ASTs 295

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 245

Extended Examples and Short Descriptions of Distributed Source Code
#1. Modifications to pccts/dlg/output.c to add member functions and data

to DLGLexer header 296
#2. DLG definitions for C and C++ comments, character literals, and string literals 296
#3. A simple floating point calculator implemented using PCCTS attributes

and inheritance 296
#4. A simple floating point calculator implemented using PCCTS ASTs and

C++ virtual functions 296
#5. An ANTLRToken class for variable length strings allocated from the heap 296
#6. How to extend PCCTS C++ classes using the example of adding column

 information 296
#7. How to pass whitespace through DLG for pretty-printers 297
#8. How to prepend a newline to the DLGInputStream via derivation from

 DLGLexer 297
#9. How to maintain a stack of #lexclass modes 297
#10. Changes to pccts/h/DLexer.C to aid in debugging of DLG lexers as outlined

 in Item #126 297
#11. AT&T Cfront compatible versions of some 1.32b6 files 297
#12. When you want to change the token type just before passing the token

 to the parser 297
#13. Rewriting a grammar to remove left recursion and perform left factoring 297
#14. Using the GNU gperf (generate perfect hashing function) with PCCTS 298
#15. Processing counted strings in DLG 300
#16. How to convert a failed validation predicate into a signal for treatment

by parser exception handling 301
#17. How to use Vern Paxson’s flex with PCCTS in C++ mode by inheritance

from ANTLRTokenStream 301

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 247

Where is
#1. These notes, related examples, and an earlier version with an emphasis on C mode, are

available on the net.

Primary Site:

web browser: http://www.mcs.net/~tmoog/pccts.html
anonymous ftp: ftp://ftp.mcs.net/mcsnet.users/tmoog/*

Europe:

anonymous ftp: ftp://ftp.th-darmstadt.de/pub/programming/languages/compiler-
compiler/pccts/notes.newbie/*

#2. FTP sites for the Purdue Compiler Construction Tool Set (PCCTS).

Primary Site:

Node: ftp.parr-research.com (Parr Research, Inc.)
ftp-mount.ee.umn.edu [128.101.146.5] (University of Minnesota)

Files: The PCCTS distribution kit: /pub/pccts/latest-version/pccts.tar.Z
and pccts.tar.gz

FAQ comp.compilers.tools.pccts /pub/pccts/documentation/FAQ
Contributed files: /pub/pccts/contrib/*
Pre-built binaries for PCCTS: /pub/pccts/binaries/PC

/pub/pccts/binaries/SGI
etc.

Note: There is no guarantee that these binaries will be up-to-date. They are
contributed by users of these machines rather than thePCCTS developers.

Europe:
Node: ftp.th-darmstadt.de [130.83.55.75]
Directory: /pub/programming/languages/compiler-compiler/pccts

(This is updated weekly on Sunday.)

Also:
Node: ftp.uu.net [192.48.96.9]
Directory: languages/tools/pccts

#3. The FAQ is maintained by Michael T. Richter (mtr@globalx.net) and is available at the
FTP site.

#4. Archive sites for MS-DOS programs for unpacking .tar and .gzip files (the format of the
PCCTS distribution kit).

Node: oak.oakland.edu (Oakland University in Rochester,
Michigan)
File: simtel/msdos/archiver/tar4dos.zip
File: simtel/msdos/compress/gzip124.zip

Notes for New Users of PCCTS

248 Language Translation Using PCCTS and C++

Node: wuarchive.wustl.edu (Washington University in St. Louis,
Missouri)

File: /archive/systems/ibmpc/simtel/msdos/archiver/tar4dos.zip
File: /archive/systems/ibmpc/simtel/msdos/compress/gzip124.zip

Contributed by Bill Tutt
(rassilon@cs.simpson.edu)

#5. Example grammars for C++, ANSI C, Java, Fortran 77, and Objective C.

All the above mentioned grammars are located at the FTP site in /pub/pccts/contrib/*

The C++ grammar (FTP file pccts/contrib/cplusplus.tar), written in C++ mode, is the best
demonstration available of the use of PCCTS capabilities. The desire to handle the C++
grammar in an elegant fashion led to a number of improvements in PCCTS.

The Fortran 77 grammar (C mode) by Ferhat Hajdarpasic (ferhath@ozemail.com.au)
includes Sorcerer routines.

#6. Parr-Research web page: http://www.parr-research.com/~parrt/prc

Basics
#7. Invoke ANTLR or DLG with no arguments to get a switch summary

#8. Tokens begin with uppercase characters, rules begin with lowercase characters

#9. Even in C mode you can use C++ style comments in the non-action portion of ANTLR
source code

Inside an action you have to obey the comment conventions of your compiler.

#10. In #token regular expressions spaces and tabs which are not escaped are ignored

This makes it easy to add white space to a regular expression:
#token Symbol "[a-z A-Z] [a-z A-Z 0-9]*"

#11. Never choose names which coincide with compiler reserved words or library names

You’d be surprised how often someone has done something like one of the following:
#token FILE "file"
#token EOF "@"
const: "[0-9]*" ;

#12. Write <<predicate>>? not <<predicate semi-colon>>? (semantic predicates go in "if"
conditions)

#13. Some constructs which cause warnings about ambiguities and optional paths
rule : a { (b | c)* } ;
rule : a { b } ;
b : (c)* ;
rule : a c* ;
a : b { c } ;
rule : a { b | c | } ;

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 249

Checklist
#14. Locate incorrectly spelled #token symbols using ANTLR –w2 switch or by inspecting

parserClassName.C

If a #token symbol is spelled incorrectly ANTLR will assign it a new #token number
which, of course, will never be matched.

#15. Duplicate definition of a #token name is not reported

ANTLR will simply use the later definition and forget the earlier one. Using the ANTLR –
w2 option does not help

#16. Use ANTLR cross-reference option –cr to detect orphan rules when ambiguities are
reported

#17. LT(i) and LATEXT(i) are magical names in semantic predicates — punctuation is critical

ANTLR wants to determine the amount of lookahead required for evaluating a semantic
predicate. It does this by searching in C++ mode for strings of the form "LT(" and in C
mode for strings of the form "LATEXT(". If there are spaces before the open "(" it
won’t make a match. It evaluates the expression following the "(" under the assumption
that it is an integer literal (e.g."1"). If it is something like "LT(1+i)" then you’ll have
problems. With ANTLR switch –w2 you will receive a warning if ANTLR doesn’t find at
least one LT(i) in a semantic predicate.

#token
See also #8, #10, #14, #15, #22, #133, #134.

#18. To match any single character use: "~[]", to match everything to a newline use:
"~[\n]*"

#19. To match an "@" in your input text use "\@", otherwise it will be interpreted as the end-
of-file symbol

#20. The escaped literals in #token regular expressions are: \t \n \r \b (not the same
as ANSI C)

#21. In #token expressions " \12 " is decimal " \012 " is octal, and " \0x12 " is hex (not the
same as ANSI C)

Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

#22. DLG wants to find the longest possible string that matches

The regular expression "~[]*" will cause problems. It will gobble up everything to the
end-of-file.

#23. When two regular expressions of equal length match a regular expression the first one is
chosen

Thus more specific regular expressions should appear in the grammar file before more
general ones:

Notes for New Users of PCCTS

250 Language Translation Using PCCTS and C++

#token HELP "help" /* should appear before "symbol" */
#token Symbol "[a-z A-Z]*" /* should appear after keywords */

Some of these may be caught by using the DLG switch –Wambiguity. In the following
grammar the input string "HELP" will never be matched:

#token WhiteSpace "[\ \t]" <<skip();>>
#token ID "[a-z A-Z]+"
#token HELP "HELP"

statement
: HELP "@" <<printf("token HELP\n");>> /* a1 */
| "inline" "@" <<printf("token inline\n");>> /* a2 */
| ID "@" <<printf("token ID\n");>> /* a3 */
;

The best advice may be to follow the practice of TJP: place "#token ID" at the end of
the grammar file.

#24. Inline regular expression are no different than #token statements

PCCTS code does not check for a match to "inline" (Item #23 line a2) before attempting a
match to the regular expressions defined by #token statements. The first two alternatives
("a1" and "a2") will never be matched. All of this will be clear from examination of the
file "parser.dlg" (the name does not depend on the parser’s class name).

Another way of looking at this is to recognize that the conversion of character strings to
tokens takes place in class DLGLexer, not class ANTLRParser, and that all that is
happening with an inline regular expression is that ANTLR is allowing you to define a
token's regular expression in a more convenient fashion — not changing the
fundamental behavior.

If one builds the example above using the DLG switch –Wambiguity one gets the
message:
dlg warning: ambigious regular expression 3 4
dlg warning: ambigious regular expression 3 5

The numbers which appear in the DLG message refer to the assigned token numbers.
Examine the array _token_tbl in parserClassName.C to find the regular expression
which corresponds to the token number reported by DLG:
ANTLRChar *Parser::_token_tbl[]={

/* 00 */ "Invalid",
/* 01 */ "@",
/* 02 */ "WhiteSpace",
/* 03 */ "ID",
/* 04 */ "HELP",
/* 05 */ "inline"

};

Well, there is one important difference for those using Sorcerer. With in-line regular
expressions there is no symbolic name for the token, hence it can’t be referenced in a
Sorcerer rule. Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 251

#25. Watch out when you see ~[list-of-characters] at the end of a regular expression

What the user usually wants to express is that the regular expression should stop before
the list-of-characters. However the expression will include the complement of that list
as part of the regular expression. Often users forget about what happens to the
characters which are in the complement of the set.

Consider for example a #lexclass for a C style comment:
/* C-style comment handling */
#lexclass COMMENT /* a1 */
#token "*/" << mode(START); skip();>> /* a2 */
#token "~[*]+" << skip();>> /* a3 */
#token "*~[/]" << skip(); >> /* WRONG*/ /* a4 */
 /* Should be "*" */ /* a5 */
 /* Correction due to Tim Corringham */ /* a6 */
 /* tim@ramjam.demon.co.uk 20-Dec-94 */ /* a7 */

The RE at line a2 accepts "*/" and changes to #lexclass START. The RE at line a4
accepts a "*" which is not followed by a "/". The problem arises with comments of the
form:

/* this comments breaks the example **/

The RE at line a4 consumes the "**" at the end of the comment leaving nothing to be
matched by " */ ".

This is a relatively efficient way to span a comment. However it is not the simplest. A
simpler description is:

#token "*/" << mode(START); skip(); >> /* b1 */
#token "~[]" << skip(); >> /* b2 */

This works because b1 ("*/") is two characters long while b2 is only one character long
— and DLG always prefers the longest expression which matches.

For those who are concerned with the efficiency of scanning:
#token "[\n\r]" <<skip();newline();>>
#token "*/" <<mode(START);skip();>>
#token "*" <<skip();>>
#token "~[*\n\r]+" <<skip();>>

Contributed by Brad Schick (schick@interaccess.com)

#26. Watch out when one regular expression is the prefix of another

If the shorter regular expression is followed by something which can be the first
character of the suffix of the longer regular expression, DLG will happily assume that it
is looking at the longer regular expression. See Item #41 for one approach to this
problem.

#27. DLG is not able to backtrack

Consider the following example:
#token "[\ \t]*" <<skip();>>
#token ELSE "else"

Notes for New Users of PCCTS

252 Language Translation Using PCCTS and C++

#token ELSEIF "else [\ \t]* if"
#token STOP "stop"

with input:
else stop

When DLG gets to the end of "else" it realizes that the space will allow it to match a
longer string than "else" by itself. So DLG accept the spaces. Everything is fine until
DLG gets to the initial "s" in "stop". It then realizes it has no match — but it can't
backtrack. It passes back an error status to ANTLR which (normally) prints out
something like:

invalid token near line 1 (text was ’else ’) ...

There is an "extra" space between the "else" and the closing single quote mark.

This problem is not detected by the DLG option –Wambiguity.

For this particular problem "else" and "if" can be treated as separate tokens. For more
difficult cases work-arounds are (a) to push the problem onto the parser by using
syntactic predicates or (b) to use Vern Paxson’s lexical analyzer "flex" which has
powerful backtracking capabilities. See Item #44 and Example #17.

#28. The lexical routines mode(), skip(), and more() have simple, limited use!

All they do is set status bits or fields in a structure owned by the lexical analyzer and
then return immediately. Thus it is OK to call these routines anywhere from within a
lexical action. You can even call them from within a subroutine called from a lexical
action routine.

#29. lextext() includes strings accumulated via more() — begexpr()/endexpr() refer only to
the last matched RE

#30. Use "if (_lextext != _begexpr) {...}" to test for RE being appended to
lextext using more()

To track the line number of the start of a lexical element that may span several lines I
use the following test:

if (_lextext == _begexpr) {startingLine=_line;}//user-defined var

#31. #token actions can access protected variables of the DLG base class (such as _line) if
necessary

#32. Replace semantic routines in #token actions with semantic predicates.

In early versions on PCCTS it was common to change the token code based on semantic
routines in the #token actions. With semantic predicates this technique is now frowned
upon:

Old style:
#token TypedefName
#token ID "[a-z A-Z]*"

<<if (isTypedefName(lextext)) return TypedefName;>>

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 253

New Style C Mode:
#token ID "[a-z A-Z]*"
typedefName : <<isTypedefName(LATEXT(1))>>? ID;

The old technique is appropriate for making lexical decisions based on the input; for
instance, treating a number appearing in columns 1 through 5 as a statement label rather
than a number. The new style is important because of the buffer between the lexer and
parser introduced by large amounts of lookahead, especially syntactic predicates. For
instance a declaration of a type may not have been entered into the symbol table by the
parser by the time the lexer encounters a declaration of a variable of that type. An
extreme case is infinite lookahead in C mode: parsing doesn’t even begin until the
entire input has been processed by the lexer. See Item #121 for an extended discussion
of semantic predicates. Example #12 shows how some semantic decisions can be
moved from the lexer to the token buffer.

#33. For 8 bit characters in DLG, make char variables unsigned by default (g++ option –
funsigned-char).

For Unix systems this should be combined with a call to setlocale(LC_ALL,"")
to replace the default locale of "C" with the user's native locale. Contributed by Ulfar
Erlingsson (ulfarerl@rhi.hi.is).

#34. The maximum size of a DLG token is set by an optional argument of the ctor DLGLexer()
— default is 2000.

The maximum size of a character string stored in an ANTLRToken is independent of the
maximum size of a DLG token. See Item #54 and Example #5.

#35. If a token is recognized using more() and its #lexclass ignores end-of-file, then the very
last token will be lost.

When a token is recognized in several pieces using more(), an end-of-file may have
been detected before the entire token is recognized. Without treatment of this special
case, the portions of the token already recognized will be ignored and the error of a
lexically incomplete token will be ignored. Since all appearances of the regular
expression "@", regardless of #lexclass, are mapped to the same #token value, proper
handling requires some work-arounds.

Suppose you want to recognize C style comments using:
#lexclass START
#token Comment_Begin "/*" <<skip();mode(LC_Comment);more();>>
#token Eof "@"
...
#lexclass LC_Comment
#token Unexpected_Eof "@" <<mode(START);>>
#token Comment_End "*/" <<skip();mode(START);>>
#token "~[]" <<skip();more()>>
...

Notes for New Users of PCCTS

254 Language Translation Using PCCTS and C++

The token code "Unexpected_Eof" will never be seen by the parser. The result is that C
style comments which omit the trailing "*/" can swallow all the input to the end-of-file
and not give any error message. My solution to this problem is to fool PCCTS by using
the following definition:
#token Unexpected_Eof "@@" <<mode(START);>>

This exploits a characteristic of DLG character streams: once they reach end-of-file they
must return end-of-file to every request for another character until explicitly reset.

Another example of this pitfall, with more serious implications, is the recognition of C
style strings.

#tokclass
See also #41, #87, #88, #92.

#36. #tokclass provides an efficient way to combine reserved words into reserved word sets
#token Read "read"
#token Write "write"
#token Exec "exec"
#token ID "[a-z A-Z] [a-z A-Z 0-9 \@]*"
#tokclass Any {ID Read Write Exec}
#tokclass Verb {Read Write Exec}
command: Verb Any ;

#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenType is in a #tokclass

To test whether a token "t" is in the #tokclass "Verb":
if (set_el(t->getType(),Verb_set)) {...}

There are several variations of this routine in the ANTLRParser class.

#lexclass
See also #41, #56.

#38. Inline regular expressions are put in the most recently defined lexical class

If the most recently defined lexical class is not START you may be surprised:
#lexclass START
...
#lexclass LC_Comment
...
inline_example: symbol "=" expression ;

This will place "=" in the #lexclass LC_Comment (where it will never be matched)
rather than the START #lexclass where the user meant it to be. Since it is okay to
specify a #lexclass in several pieces it might be a good idea when using #lexclass to
place "#lexclass START" just before the first rule — then any inline definitions of
tokens will be placed in the START #lexclass automatically:

#lexclass START
...
#lexclass COMMENT

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 255

...
#lexclass START

#39. Use a stack of #lexclass modes in order to emulate lexical subroutines

Consider a grammar in which lexical elements have internal structure. An example of
this is C strings and character literals which may contain elements like:

escaped characters \" and \’
symbolic codes \t
numbers \xff \200 \0

Rather than implementing a separate #lexclass to handle these sequences for both
character literals and string literals it would be possible to have a single #lexclass which
would handle both. To implement such a scheme one needs something like a subroutine
stack to remember the previous #lexclass. See Example #9 for a set of such routines.

#40. Sometimes a stack of #lexclass modes isn’t enough

Consider a log file consisting of clauses, each of which has its own #lexclass and in
which a given word is reserved in some clauses and not others:

#1;1-JAN-94 01:23:34;enable;forge bellows alarm;move to station B;
#2;1-JAN-94 08:01:56;operator;john bellows;shift change at 08:00;
#3;1-JAN-94 09:10:11;move;old pos=5.0 new pos=6.0;operator request;
#4;1-JAN-94 10:11:12;alarm;bellows;2-JAN-94 00:00:01;

If the item is terminated by a separator, there is a problem because the separator will be
consumed in the recognition of the most nested item — with nothing left over to be
consumed by other elements which end at the separator. The problem appears when it is
necessary to leave a #lexclass and return more than one level. To be more specific, a
#token action can only be executed when one or more characters is consumed.
Therefore, to return through three levels of #lexclass calls would appear to require the
consumption of at least three characters. In the case of balanced constructs like "..."
and ’...’ this is not a problem since the terminating character can be used to trigger
the #token action. However, if the scan is terminated by a separator such as the semi-
colon above (;), you cannot use the same technique. Once the semi-colon is consumed,
it is unavailable for the other #lexclass routines on the stack to see.

One solution is to allow the user to specify (during the call to pushMode) a "lookahead"
routine to be called when the corresponding element of the mode stack is popped. At
that point the "lookahead" routine can examine ch to determine whether it also wants to
pop the stack, and so on up the mode stack. The consumption of a single character can
result in popping multiple modes from the mode stack based on a single character of
lookahead.

If your approach is more complicated than this, you might as well write a second parser
just to handle the so-called lexical elements.

Continuing with the example of the log file (above): each statement type has its fields in
a specific order. When the statement type is recognized, a pointer is set to a list of the

Notes for New Users of PCCTS

256 Language Translation Using PCCTS and C++

#lexclasses which is in the same order as the remaining fields of that kind of statement.
An action is attached to every #token which recognizes a semi-colon (";") advances a
pointer in the list of #lexclasses and then changes the #lexclass by calling mode() to set
the #lexclass for the next field of the statement.

Lexical Lookahead
#41. One extra character of lookahead is available to the #token action routine in ch (except

in interactive mode)

In interactive mode (DLG switch –i) DLG fetches a character only when it needs it to
determine if the end of a token has been reached. In non-interactive mode the content of
ch is always valid. The debug code described in Item #126 can help debug problems
with interactive lookahead.

For the remainder of this discussion assume that DLG is in non-interactive mode.

Consider the problem of distinguishing floating point numbers from range expressions
such as those used in Pascal:

 range: 1..23 float: 1.23

As a first effort one might try:
#token Int "[0-9]+"
#token Range ".."
#token Float "[0-9]+.[0-9]*"

The problem is that "1..23" looks like the floating point number "1." with an illegal "."
at the end. DLG always takes the longest matching string, so "1." will always look more
appetizing than "1". What one needs to do is to look at the character following "1." to
see if it is another ".", and if it is to assume that it is a range expression. The flex lexer
has trailing context, but DLG doesn't — except for the single character in ch.

 A solution in DLG is to write the #token Float action routine to look at what's been
accepted, and at ch, in order to decide what to do:

#token Float "[0-9]*.[0-9]*"
<<if (*endexpr() == ’.’ && /* might use more complex test */

ch == ’.’) {
mode(LC_Range); /* treat it like a range expression */

 return Int; /* looks like an int followed by ".."*/
 };
 >>

#lexclass LC_Range
#token Range "." <<mode(START);>> // consume second "."

of range

#42. The lex operators "^" and "$" (anchor pattern to start/end of line) can sometimes be
simulated by DLG

DLG doesn’t have operators to anchor a pattern match to the start or end of a line.
However, a requirement that a string start at column 1 can sometimes be simulated by a

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 257

combination of #lexclass and #token action routines. A requirement that the string end
at the end-of-line can sometimes be simulated in a #token action routine by testing
whether ch is a newline.

In the following example, a "*" in column 1 is treated as a different lexical element than
a "*" appearing elsewhere. This example depends on having column information
enabled by use of trackColumns():

#token Star_Col1
#token Star "*" <<if (get_endcol() == 1) {
 return Star_Col1;}

>>
#token WhiteSpace "[\ \t]" <<skip();>>
#token ID "[a-z A-Z]+"
#token NEWLINE "\n" <<newline(); set_endcol(0);>>

expr! : (Star <<printf ("\nThe * is NOT in column 1\n");>>
 | Star_Col1 <<printf ("\nThe * is in column 1\n");>>
 | ID <<printf ("\nFirst token is an ID\n");>>
)* "@" ;

#43. When the first non-blank token on a line may have a special interpretation

If the set of tokens which can appear at the start of a line is relatively small then code
the newline #token action to switch to another #lexclass where just the start-of-line
tokens will be recognized:

#lexclass START
#token NL "\n [\t\]*" <<newline();skip();mode(StartOfLine);>>
#token Number "[0-9]+"
#token Mult "*"

#lexclass StartOfLine
#token Label "[0-9]+" <<mode(START);>>
#token Comment "* ~[\n]*" <<mode(START);>>

If the regular expressions that can appear only at the start of a line is a subset of the
"anywhere" tokens then one can use a flag to determine which interpretation to assign to
the regular expression just matched. Checking for begcol()==0 could also serve as the
flag:

#lexclass START
#token NL "\n [\]*" <<newline();skip();firstTokenOnLine=1;>>
#token Number "[0-9]+" <<if (firstTokenOnLine) {return Label;};>>
#token Mult "*" <<if(firstTokenOnLine){
 skip();mode(LC_Comment);more();
 };>>
#lexclass LC_Comment
#token Comment "~[\n]*" <<skip();mode(START);>>

This requires that the flag "firstTokenOnLine" be cleared for every token but that of a
newline. This would be rather tedious to code for every token #action. It’s convenient
to put it in a class derived from DLGLexer or from ANTLRTokenBuffer. It would be
natural to put it in the makeToken routine, but it is difficult for makeToken to exchange
information with the #token action routines. See Item #62.

Notes for New Users of PCCTS

258 Language Translation Using PCCTS and C++

Another approach is to include the newline as part of the regular expression:
#lexclass START
#token Number "[0-9]+"
#token Label "\n [\]* [0-9]+"
#token Mult "*"
#token Comment "\n [\]* * ~[\n]*"

This requires that a newline be prepended to the input character stream and that the line
number be decremented by 1 at the start to compensate for the extra newline. The
problem is that a DLGInputStream doesn’t know how to adjust its caller’s line
information (Item #62). In any case, the line information in the 1.32b6 is a protected
variable. The result is that it is necessary to have a rather inelegant class derived from

DLGLexer in order to accomplish this. See Example #8.

#44. For more powerful forms of lexical lookahead one can use Vern Paxson’s flex

If more than one character of lookahead is necessary and it appears difficult to solve
using #lexclass, semantic predicates, or other mechanisms you might consider using flex
by Vern Paxson (University of California – Berkeley). Flex is a superset of lex. For an
example of how to use flex with ANTLR in C++ mode see Example #17. For C mode
visit the FTP site (Item #2) for file /pub/pccts/contrib/NOTES.flex.

See also #27, #42, #56, Example #15.

Line and Column Information
Most names in this section refer to members of class DLGLexerBase or DLGLexer

Before C++ mode the proper handling of line and column information was a large part of
these notes.

#45. If you want column information for error messages (or other reasons) use C++ mode

#46. If you want accurate line information even with many characters of lookahead use C++
mode

#47. Call trackColumns() to request that DLG maintain column information

#48. To report column information in syntax error messages override ANTLRParser::syn() —
See Example #6

#49. Call newline() and then set_endcol(0) in the #token action when a newline is
encountered

#50. Adjusting column position for tab characters

Assume that tabs are set every eight characters starting with column 9.

Computing the column position will be simple if you match tab characters in isolation:
#token Tab "\t" <<_endcol=((_endcol-1) & ~7) + 8;>>

This would be off by 1, except that DLG, on return from the #token action, computes the
next column using:

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 259

 _begcol=_endcol+1;

If you include multiple tabs and other forms of whitespace in a single regular
expression, the computation of _endcol by DLG must be backed out by subtracting the
length of the string. Then you can compute the column position by inspecting the string
character by character.

#51. Computing column numbers when using more() with strings that include tab characters
and newlines
/* what is the column and line position when the comment includes
 or is followed by tabs tab tab */ tab tab i++;

Note: This code excerpt requires a change to PCCTS 1.32b6 file pccts/
dlg/output.c in order to inject code into the DLGLexer class header.
The modified source code is distributed as part of the notes in file
notes/changes/dlg/output.c and output_diff.c An example of its use is
given in Example #7.

My feeling is that the line and column information should be updated at the same time
more() is called because it will lead to more accurate position information in messages.
At the same time one may want to identify the first line on which a construct begins
rather than the line on which the problem is detected: it’s more useful to know that an
unterminated string started at line 123 than that is was still unterminated at the end-of-
file.
void DLGLexer::tabAdjust () { // requires change to output.c
 char * p; // to add user code to DLGLexer
 if (_lextext == _begexpr) startingLineForToken=_line;
 _endcol=_endcol-(_endexpr-_begexpr)+1; // back out DLG

computation
 for (p=_begexpr;*p != 0; p++) {
 if (*p == ’\n’) { // newline() by itself

 newline();_endcol=0; // doesn’t reset column
 } else if (*p == '\t') {
 _endcol=((_endcol-1) & ~7) + 8; // traditional tab stops
 };
 _endcol++;
 };
 _endcol--; // DLG will compute begcol=endcol+1
}

See Example #7 for a more complete description.

See also #42, #56.

C++ Mode
#52. The destructors of base classes should be virtual in almost all cases

If you don’t know why, you should read Scott Meyers’ excellent book, Effective C++,
Fifty Specific Ways

#53. Why must the AST root be declared as ASTBase rather than AST ?

Notes for New Users of PCCTS

260 Language Translation Using PCCTS and C++

The functions which implement the rules of the grammar are declared with the
prototype:

void aRule(ASTBase ** _root) {...};

The underlying support code of ANTLR depends only on the behaviors of ASTBase.
There are two virtues to this design:

No recompilation of the underlying routines is necessary when the definition of
AST changes

The same object code can be used with multiple parsers in the same program each
with its own kind of AST

This is in contrast to C++ templates which are designed to provide source code reuse,
not object code reuse.

An "AST *" can be passed to an "ASTBase *" why not an "AST **" for an "ASTBase
**" ?

This is a C++ FAQ. Consider the following (invalid) code fragment:
struct B {}; /* a1 */
structD1:B {inti;}; /* a2 */
struct D2 : B {doubled;}; /* a3 */
void func(B ** ppB) {*ppB=new D2;}; /* WRONG */ /* a4 */
D1 * pD1=newD1; /* a5 */
func(&pD1); /* a6 */

At line a5, pD1 is declared to be a pointer to a D1. This pointer is passed to "func" at
line a6. The function body at line a4 replaces a pointer to a D1 with a pointer to a D2,
which violates the declaration at line a5.

The following is legal, although it may not do what is expected:
 void func2(B * pB) {D1d1;*pB=d1;}; /* b1 */
 func2(pD1); /* b2 */

The assignment at line b5 slices d1 and assigns only the B part of d1 to the object
pointed to by pB because the assignment operator chosen is that of class B, not class D1.

#54. ANTLRCommonToken text field has maximum length fixed at compile time – but there’s
an alternative

For ANTLRCommonToken the length of the text field is fixed by #define
ANTLRCommonTokenTEXTSIZE. The default is 100 characters. If you want an
already written routine which will handle tokens which are limited by the size of the
DLG token buffers look at the definition of ANTLRToken in Example #5 file varToken.*.

#55. C++ Mode makes multiple parsers easy.

 pccts/testcpp/5/test.g Uses multiple instances of a single parse class (thus a
single grammar)
 pccts/testcpp/6/main.C Program uses parsers for two different grammars (test.g
and test2.g)

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 261

If two parsers share the same DLG automaton it may be necessary to save DLG state. See
Item #56.

#56. Use DLGLexerBase routines to save/restore DLG state when multiple parsers share a
token buffer.

When the second parser "takes control" the DLGLexer doesn’t know about it and doesn’t
reset the state variables such as #lexclass, line number, column tracking, etc.

Use DLGLexerBase::saveState (DLGState *) and restoreState(DLGState *) to save and
restore DLG state.

#57. Required AST constructors: AST(), AST(ANTLRToken), and AST(X x,Y y) for
#[X x,Y y]

#58. In C++ Mode ASTs and ANTLRTokens do not use stack discipline as they do in C mode.

In C mode ASTs and ANTLRTokens are allocated on a stack. This is an efficient way to
allocates space for structs and is not a serious limitation because in C it is customary for
a structure to be of fixed size. In C++ mode it would be a serious limitation to assume
that all objects of a given type were of the same size because derived classes may have
additional fields. For instance one may have a "basic" AST with derived classes for
unary operators, binary operators, variables, and so on. As a result the C++ mode
implementation of symbolic tags for elements of the rule uses simple pointer variables.
The pointers are initialized to 0 at the start of the rule and remain well defined for the
entire rule. The things they point will normally also remained well defined, even objects
defined in sub-rules:

rule ! : a:rule2 {b:B} <<#0=#(#a,#[$b]);>> ; // OK only in C++ mode

This fragment is not be well defined in C mode because B would become undefined on
exit from "{...}".

#59. Summary of Token class inheritance in file AToken.h.
 ANTLRAbstractToken — (empty class) no virtual table
 |
 V
 ANTLRLightweightToken — (token type) no virtual table
 |
 V
 ANTLRTokenBase — (token type, text, line) virtual table
 |
 V
 DLGBasedToken — (token type, text, line) virtual table
 |
 +-- ANTLRCommonToken — (token type, text, line) virtual table
 | using fixed length text fields
 |
 +-- MyToken — (token type, text, line, ...) virtual table
 notes/var/varToken.h — variable length text fields
 notes/col/myToken.h — variable l ength text with

column info

Notes for New Users of PCCTS

262 Language Translation Using PCCTS and C++

#60. Diagram showing relationship of major classes.
 ANTLRTokenStream
 (ATokenStream.h)
 |
 V

ANTLRParser --> ANTLRTokenBuffer --> DLGLexerBase --> DLGInputStream
(AParser.h) (ATokenBuffer.h) (DLexerBase.h) |(DLexerBase.h)

| | | |
| V V +- DLGFileInput
| MyTokenBuffer DLGLexer |
| (ANTLR generated) |
V +- DLGStringInput

MyParser (generated by ANTLR from myFile.g)
 MyParser.h (class header)
 MyParser.C (static variable initialization)
 myFile.C (implementation code for rules)

#61. Tokens are supplied as demanded by the parser. They are "pulled" rather than "pushed".
ANTLRParser::consume()
--> ANTLRTokenBuffer::getToken()
--> ANTLRTokenBuffer::getANTLRToken()
--> DLGLexer::getToken()
--> MyToken::makeToken(ANTLRtokenType,lexText,line)

#62. Because tokens are "pulled" it is easy to access downstream objects but difficult to
access upstream objects

There is a pointer from the ANTLRParser to the ANTLRTokenBuffer, from the
ANTLRTokenBuffer to the DLGLexer, and from the DLGLexer to the DLGInputStream.
However if the DLGInputStream wants to reset the DLGLexer line number, there’s no
pointer in the DLGInputStream object which points to the "parent" DLGLexer object. The
linked list is one-way.

The user can may want to derive a class from DLGInputStream in which there is a
member function setParser() thereby changing a one-way linked-list into a circular list.

#63. Additional notes for users converting from C to C++ mode

 In general: zzname => name, _name, or name()
 example: zzlextext => _lextext, lextext()
 except for: zzchar => ch

 In DLGLexerBase: NLA=tokenCode => return tokenCode

 line++ => newline()

line=value => _line=value

zztokens[i] => parserClassName::tokenName(i)

The tokenName() function is promised for the
next release of PCCTS — or see Example #7 for
how to define your own tokenName function.

zzendcol => _endcol, set_endcol(),
get_endcol()

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 263

zzbegcol => _begcol, set_begcol(),
get_begcol()

ASTs
#64. To enable AST construction (automatic or explicit) use the ANTLR –gt switch

#65. Use symbolic tags (rather than numbers) to refer to tokens and ASTs in rules

prior to version 1.30: rule! : x y <<#0=#(#1,#2);>> ;

with version 1.30: rule! : xx:x yy:y <<#0=#(#xx,#yy);>> ;

The symbolic tags are implemented as pointers to ASTs. The pointers are initialized to
0 at the start of the rule and remain defined for the entire rule. See Item #58. Rules no
longer return pointers to tokens (Item #83

#66. Constructor AST(ANTLRToken *) is automatically called for terminals when ANTLR –gt
switch is used

This can be suppressed using the "!" operator.

#67. If you use ASTs you have to pass a root AST to the parser
ASTBase *root=NULL;
...
Parser.startRule(&root,otherArguments);
root->preorder();
root->destroy();

#68. Use ast–>destroy() to recursively descend the AST tree and free all sub-trees

#69. Don't confuse #[...] with #(...)

The first creates a single AST node using an AST constructor (which is usually based on
an ANTLRToken or an ANTLRTokenType). It converts lexical information to an AST.

The second creates an AST tree or list (usually more than a single node) from other
ASTs by filling in the "down" field of the first node in the list to create a root node, and
the "sibling" fields of each of the remaining ASTs in the lists. It combines existing
ASTs to create a more complex structure.

#token ID "[a-z]*"
#token COLON ":"
#token Stmt_With_Label

id! : name:ID <<#0=#[Stmt_With_Label,$name->getText()];>> ;
/*a1*/

The new AST (a single node) contains Stmt_With_Label in the token field, given a
traditional version of AST::AST(ANTLRTokenType,char *).

rule! : name:id COLON e:expr <<#0=#(#name,#e);>> ;
 /* a2 */

Creates an AST list with "name" at its root and "e" as its first (and only) child.

Notes for New Users of PCCTS

264 Language Translation Using PCCTS and C++

The following example (a3) is equivalent to a1, but more confusing, because the two
steps above have been combined into a single action:

rule! : name:ID COLON e:expr /* a3 */
<<#0=#(#[Stmt_With_Label,$name>getText()],#e);>> ;

#70. The make-a-root operator for ASTs ("^") can be applied only to terminals (#token,
#tokclass, #tokdef)

A child rule might return a tree rather than a single AST. Were this to happen it could
not be made into a root as it is already a root and the corresponding fields of the
structure are in use. To make an AST returned by a called rule a root use the
expression: #(root-rule, sibling1, sibling2, sibling3).

 addOp : "\+" | "\-";
 #tokclass AddOp { "\+" "\-"}

/* OK */ add ! expr ("\+"^ expr) ;
 /* Wrong */ addExpr ! : expr (addOp^ expr) ;
 /* OK */ addExpr ! : expr (AddOp^ expr);

#71. An already constructed AST tree cannot be the root of a new tree

An AST tree (unless it’s a trivial tree with no children) already has made use of the
"down" field in its structure. Thus one should be suspicious of any constructs like the
following:

rule! : anotherRule:rule2........ <<#0=#(#anotherRule,...);>> ;

#72. Don’t assign to #0 unless automatic construction of ASTs is disabled using the "!"
operator on a rule

a! : xx:x yy:y zz:z <<#0=#(#xx,#yy,#zz);>> ; // ok
a : xx:x yy:y zz:z <<#0=#(#xx,#yy,#zz);>> ; // NOT ok

The reason for the restriction is that assignment to #0 will cause any ASTs pointed to by
#0 to be lost when the pointer is overwritten.

#73. The statement in Item #72 is stronger than necessary

You can assign to #0 even when using automated AST construction if the old tree
pointed to by #0 is part of the new tree constructed by #(...). For example:

#token Comma ","
#token Stmt_List

stmt_list: stmt (Comma stmt)* <<#0=#(#[Stmt_List],#0);>> ;

The automatically constructed tree pointed to by #0 is just put at the end of the new list,
so nothing is lost. If you reassign to #0 in the middle of the rule, automatic tree
construction will result in the addition of remaining elements at the end of the new tree.
This is not recommended by TJP.

Special care must be used when combining the make-a-root operator (e.g. rule: expr
Op^ expr) with this transgression (assignment to #0 when automatic tree construction is
selected).

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 265

#74. A rule that constructs an AST returns an AST even when its caller uses the "!" operator

#75. (C++ Mode) In AST mode a token which isn’t incorporated into an AST will result in
lost memory

For a rule like the following:
rule : FOR^ lValue EQ! expr TO! expr BY! expr ;

the tokens "EQ", "TO", and "BY" are not incorporated into any AST. In C mode the
memory they occupied (they are called attributes in C mode) would be recovered on
rule exit. In C++ mode their memory will be lost unless special action is taken or the
user enables the ANTLR reference counting option. Another approach is to use the
NoLeakToken class from Example #5.

#76. When passing #(...) or #[...] to a subroutine it must be cast from "ASTBase *" to
"AST *"

Most of the PCCTS internal routines are declared using ASTBase rather than AST
because they don’t depend on behavior added by the user to class AST. Usually PCCTS
hides this by generating explicit casts, but in the case of subroutine arguments the hiding
fails and the user needs to code the cast manually. See also Item #135.

#77. Some examples of #(...) notation using the PCCTS list notation

See page 45 of the 1.00 manual for a description of the PCCTS list notation.
a: A ;
b: B ;
c: C ;

#token T_abc

r : a b c <<;>> ;/* AST list (0 A B C) without root */
r!: a b c <<#0=#(0,#1,#2,#3);>> ;/* AST list (0 A B C) without

root */
r : a! b! c! <<#0=#(0,#1,#2,#3);>> ;/* AST list (0 A B C) without

root */
r : a^ b c ;/* AST tree (A B C) with root A */
r!: a b c <<#0=#(#1,#2,#3);>> ;/* AST tree (A B C) with

root A */
r!: a b c <<#0=#(#[T_abc],#1,#2,#3);>>
 ;/* AST tree (T_abc_node A B C) */
 /* with root T_abc_node */
r : a b c <<#0=#(#[T_abc],#0);>> ; /* the same as above */
r : a! b! c! <<#0=#(#[T_abc],#1,#2,#3);>> ; /* the same as above */

#78. A rule which derives epsilon can short circuit its caller’s explicitly constructed AST

When a rule derives epsilon it will return an AST value of 0. As the routine which
constructs the AST tree (ASTBase::tmake) has a variable length argument list which is
terminated by 0, this can cause problem with #(...) lists that have more than two
elements:

rule ! : DO body:loop_body END_DO <<#0=#(#[DO],#body,#[END_DO];>> ;
loop_body : { statement_list } ; /* can return 0 on DO END_DO */

Notes for New Users of PCCTS

266 Language Translation Using PCCTS and C++

Although this particular example could be handled by automatic tree construction, the
problem is a real one when constructing a tree by adding more than one sibling at a
time. This problem does not exist for automatically constructed AST trees because those
trees are constructed one element at a time. Contributed by T. Doan (tdoan@bnr.ca).

#79. How to use automatic AST tree construction when a token code depends on the
alternative chosen

Suppose one wants to make the following transformation:
rule : lv:lhs ; => #(#[T_simple],#lv)
rule : lv:lhs rv:rhs ; => #(#[T_complex],#lv,#rv)

Both lhs and rhs considered separately may be suitable for automatic construction of
ASTs, but the change in token type from "T_simple" to "T_complex" appears to require
manual tree construction. Use the following idiom:

rule : lhs (
 () <<#0=#(#[T_simple],#0);>>
 | rhs <<#0=#(#[T_complex],#0);>>
) ;

Another solution:
rule : <<ANTLRTokenType t=T_simple;>>
 l:lhs { r:rhs <<t=T_complex;>> }

<<#0=#(#[t],#0);>> ;

#80. For doubly linked ASTs derive from class ASTDoublyLinkedBase and call tree–
>double_link(0,0).

The ASTDoublyLinkedBase class adds "up" and "left" fields to the AST definition, but
it does not cause them to be filled in during AST construction. After the tree is built call
tree->double_link(0,0) to traverses the tree and fill in the up and left fields.

#81. When ASTs are constructed manually the programmer is responsible for deleting them
on rule failure.

It is worth a little bit of extra trouble to let PCCTS construct the AST for a rule
automatically in order to obviate the need for writing a fail action for a rule. A safer
implementation might be to maintain a doubly linked list of all
ASTs from which an AST is removed when it is destroyed. See class NoLeakAST from
Example #6.

See also #100, #102.

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 267

Rules
#82. To refer to a field of an ANTLRtOKEN within a rule’s action use <<...

mytoken($x)->field...>>

ANTLR puts all "ANTLRToken*" variables in an ANTLRTokenPtr object in order to
maintain reference counts for tokens. When the reference counter goes to zero the token
is deleted (assuming that the ANTLRToken definition is derived from
ANTLRRefCountToken). One result of this is that rule actions which need to refer to a
real ANTLRToken field must first convert an ANTLRTokenPtr to an "ANTLRToken*"
using the macro "mytoken":

number: n:Number <<if (mytoken($n)->value < 0) {...};>>

#83. Rules don’t return tokens values, thus this won’t work:rule: r1:rule1
<<...$r1...>>

In earlier versions of PCCTS (C mode) it was accepted practice to assign an attribute to a
rule:

rule : rule1 <<$0=$1;>>

However, with the introduction of symbolic tags for labels (Item #65) this feature
became deprecated for C mode (Item #152) and is not even supported for C++ mode.
To return a pointer to a token (ANTLRToken *) from a rule use inheritance (See Item
#99):

statement
: <<ANTLRToken * t;>> rule > [t] ;

rule > [ANTLRToken *t]
: r1:rule1 <<$t=someAction($r1);>>

It’s still standard practice to pass back AST information using assignment to #0 and to
refer to such return values using labels on rules. It’s also standard practice to refer to
tokens associated with terminals:

rule : xx:X <<...$xx...>> // okay: "X" is a terminal (token)
rule : xx:x <<...$xx...>> // won’t work: "x" is a rule rather
x : xx:X <<$x=$xx;>> // than a terminal (token)

#84. A simple example of rewriting a grammar to remove left recursion

ANTLR can’t handle left-handed recursion. A rule such as:
expr : expr Op expr
 | Number
 | String
 ;

will have to be rewritten to something like this:
expr : Number (Op expr)*
 | String (Op expr)*
 ;

Notes for New Users of PCCTS

268 Language Translation Using PCCTS and C++

#85. A simple example of left-factoring to reduce the amount of ANTLR lookahead

Another sort of transformation required by ANTLR is left-factoring:
rule : STOP WHEN expr
 | STOP ON expr
 | STOP IN expr
 ;

These are easily distinguishable when k=2, but with a small amount of work it can be
cast into a k=1 grammar:

rule : STOP (WHEN expr
 | ON expr
 | IN expr
) ;

 or:
rule : STOP rule_suffix
 ;
rule_suffix : WHEN expr
 | ON expr
 | IN expr
 ;

An extreme case of a grammar requiring a rewrite is in Example #13.

#86. ANTLR will guess where to match "@" if the user omits it from the start rule

ANTLR attempts to deduce "start" rules by looking for rules which are not referenced by
any other rules. When it finds such a rule it assumes that an end-of-file token ("@")
should be there and adds one if the user did not code one. This is the only case,
according to TJP, when ANTLR adds something to the user’s grammar.

#87. To match any token use the token wild-card expression "." (dot)

This can be useful for providing a context dependent error message rather than the all
purpose message "syntax error".

if-stmt : IF "\(" expr "\)" stmt
 | IF . <<printf("If statement requires expression"

"enclosed in parenthesis");
 PARSE_FAIL; // user defined
 >>
 ;

This particular case is better handled by the parser exception facility.

A simpler example:
quoted : "quote" . ; // quoted terminal

#88. The "~" (tilde) operator applied to a #token or #tokclass is satisfied when the input
token does not match

anything : (~ Newline)* Newline ;

The "~" operator cannot be applied to rules. Use syntactic predicates to express the idea
"if this rule doesn’t match try to match this other rule".

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 269

#89. To list the rules of the grammar grep parserClassName.h for "_root" or edit the output
from ANTLR –cr

#90. The ANTLR –gd trace option can be useful in sometimes unexpected ways

For example, by suitably defining the functions ANTLRParser::tracein and
ANTLRParser::traceout one can accumulate information on how often each rule is
invoked. They could be used to provide a traceback of active rules following an error
provided that the havoc caused by syntactic predicates’ use of setjmp/longjmp is
properly dealt with.

#91. Associativity and precedence of operations is determined by nesting of rules

In the example below "=" associates to the right and has the lowest precedence.
Operators "+" and "*" associate to the left with "*" having the highest precedence.

expr0 : expr1 {"="^expr0}; /* a1 */
expr1 : expr2 ("\+"^ expr2)*; /* a2 */
expr2 : expr3 ("*"^ expr3)* ; /* a3 */
expr3 : ID; /* a4 */

The more deeply nested the rule the higher the precedence. Thus precedence is "*" >
"+" > "=". Consider the expression "x=y=z". Will it be parsed as "x=(y=z)" or as
"(x=y)=z" ? The first part of expr0 is expr1. Because expr1 and its descendants cannot
match an "=" it follows that all derivations involving a second "=" in an expression must
arise from the "{...}" term of expr0. This implies right association.

In the following samples the ASTs are shown in the root-and-sibling format used in
PCCTS documentation. The numbers in brackets are the serial number of the ASTs. This
was created by code from Example #6.

a=b=c=d
(= <#2> a <#1> (= <#4> b <#3> (= <#6> c <#5> d <#7>))

) NL <#8>
a+b*c
(+ <#2> a <#1> (* <#4> b <#3> c <#5>)) NL <#6>
a*b+c
(+ <#4> (* <#2> a <#1> b <#3>) c <#5>) NL <#6>

#92. #tokclass can replace a rule consisting only of alternatives with terminals (no actions)

One can replace:
addOp : "\+" | "\-" ;

with:
#tokclass AddOp { "\+" "\-" }

This replaces a modest subroutine with a simple bit test. A #tokclass identifier may be
used in a rule wherever a simple #token identifier may be used.

The other work-around is much more complicated:
expr1! : left:expr2 <<#0=#l;>>
 (op:addOp right:expr2 <<#0=#(#op,#left,#right);>>)* ;
addOp : "\+" | "\-" ;

Notes for New Users of PCCTS

270 Language Translation Using PCCTS and C++

The "!" for rule "expr1" disables automatic constructions of ASTs in the rule. This
allows one to manipulate #0 manually. If the expression had no addition operator then
the sub-rule "(addOp expr)*" would not be executed and #0 will be assigned the AST
constructed by #left. However if there is an addOp present then each time the sub-rule
is rescanned due to the "(...)*" the current tree in #0 is placed as the first of two
siblings underneath a new tree. This new tree has the AST returned by addOp as the
root. It is a left-leaning tree.

#93. Rather than comment out a rule during testing, add a nonsense token which never
matches — See Item #96

See also #8, #13,#16,#66, #92, #95, #116.

Init-Actions
#94. Don't confuse init-actions with leading-actions (actions which precede a rule).

If the first element following the start of a rule or sub-rule is an action it is always
interpreted as an init-action. An init-action occurs in a scope which includes the entire
rule or sub-rule. An action which is not an init-action is enclosed in "{" and "}" during
generation of code for the rule and has essentially zero scope — the action itself.

The difference between an init-action and an action which precedes a rule can be
especially confusing when an action appears at the start of an alternative. These appear
to be almost identical, but they aren't:
b : <<int i=0;>> b1 > [i] /* b1 <<...>> is an init-action*/
 | <<int j=0;>> b2 > [j] /* b2 <<...>> is part of the rule*/
 ; /* and will cause a compilation error*/

On line "b1" the <<...>> appears immediately after the beginning of the rule making
it an init-action. On line "b2" the <<...>> does not appear at the start of a rule or sub-
rule, thus it is interpreted as a leading action which happens to precede the rule.

This can be especially dangerous if you are in the habit of rearranging the order of
alternatives in a rule.

For instance, changing this:
 b : <<int i=0,j=0;>> <<i++;>> b1 > [i] /* c1 */
 | <<j++;>> b1 > [i] /* c2 */
 ;

to this:
 b : /* empty production */ /* d1 */
 | <<int i=0,j=0;>> <<i++;>> b1 > [i] /* d2 */
 | <<j++;>> b1 > [i]
 ;

or to this:
 b
 : <<j++;>> b1 > [i] /* e1 */
 | <<int i=0,j=0;>> <<i++;>> b1 > [i] /* e2 */
 ;

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 271

changes an init-action into a non-init action, and vice-versa.

#95. An empty sub-rule can change a regular action into an init-action.

A particularly nasty form of the init-action problem is when an empty sub-rule has an
associated action:

 rule!: name:ID (
 /* empty */
 <<#0=#[ID,$name];>>
 | ab:array_bounds
 <<#0=#[T_array_declaration,$name],#ab);>>
);

Since there is no reserved word in PCCTS for epsilon, the action for the empty arm of the
sub-rule becomes the init-action. For this reason it’s wise to follow one of the following
conventions

– Represent epsilon with an empty rule "()"

– Put the null rule as the last rule in a list of alternatives:
rule!: name:ID (
 () <<#0=#[ID,$name];>>
 | ab:array_bounds
 <<#0=#[T_array_declaration,$name],#ab);>>
);

The cost of using "()" to represent epsilon is small.

#96. Commenting out a sub-rule can change a leading-action into an init-action.

Suppose one comments out a rule in the grammar in order to test an idea:
 rule /* a1 */
 : <<init-action;> /* a2 */
 //// rule_a /* a3 */
 | rule_b /* a4 */
 | rule_c /* a5 */
 ;

In this case one only wanted to comment out the "rule_a" reference in line a3. The
reference is indeed gone, but the change has introduced an epsilon production, which
probably creates a large number of ambiguities. Without the init-action the ":" would
have probably have been commented out also, and ANTLR would report a syntax error —
thus preventing one from shooting oneself in the foot. See Item #93.

Commenting out a rule can create orphan rules, which can lead to misleading reports of
ambiguity in the grammar. To detect orphan rules use the ANTLR –cr (cross-reference)
switch.

#97. Init-actions are executed just once for sub-rules: (...)+, (...)*, and {...}

Consider the following example from section 3.6.1 (page 29) of the 1.00 manual:
 a : <<List *p=NULL;>> // initialize list
 Type
 (<<int i=0;>> // initialize index

Notes for New Users of PCCTS

272 Language Translation Using PCCTS and C++

 v:Var <<append(p,i++,$v);>>
)*
 <<OperateOn(p);>>
 ;

See also #104, #112, #116.

Inheritance
#98. Downward inherited variables are just normal C arguments to the function which

recognizes the rule

If you are using downward inheritance syntax to pass results back to the caller (really
upward inheritance !), then it is necessary to pass the address of the variable which will
receive the result.

#99. Upward inheritance returns arguments by passing back values

If the rule has more than one item passed via upward inheritance, then ANTLR creates a
struct to hold the result and then copies each component of the structure to the
upward inheritance variables.
#token T_int
#token T_real
#token T_complex

class P {
...
number : <<int useRadix=10;int iValue;double rValue;double

rPart,iPart;>>
 { radix > [useRadix] }
 intNumber [useRadix] > [iValue]
 | realNumber > [rValue]
 | complexNumber > [rPart,iPart]
;
complexNumber > [double rPart,double iPart] :
 "\[" realNumber > [$rPart] "," realNumber > [$iPart] "\]"
;
realNumber > [double result] :
 v:"[0-9]+.[0-9]*" <<$result=toDouble($v);>>
;
radix > [int i] : v:"%[0-9]+" <<$i=toInt($v);>>
;
intNumber [int radix] > [int result] :
 v:"[0-9]+" <<$result=toInt($v);>>
;
}

This example depends on the use of several constructors for ASTs and user defined
routines toInt() and toDouble().

#100. ANTLR –gt code will include the AST with downward inheritance values in the rule’s
argument list

See also #113.

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 273

Syntactic Predicates
The terms "infinite lookahead," "guess mode," and "syntactic predicate" all imply use of the
same facility in PCCTS to provide a limited amount of backtracking by the parser. In this
case we are not referring to backtracking in DLG or other lexers. The term "syntactic
predicate" emphasizes that it is handled by the parser. The term "guess mode" emphasizes
that the parser may have to backtrack. The term "guess mode" may also be used to
distinguish two mutually exclusive modes of operation in the ANTLR parser:

— Normal mode: A failure of the input to match the rules is a syntax error. The
parser executes actions, constructs ASTs, reports syntax errors it finds (or invokes
parser exception handling) and attempts automatic recovery from the syntax
errors. There is no provision for backtracking in this mode.

— Guess mode: The parser attempts to match a "(...)?" block and knows that
it must be able to backtrack if the match fails. In this case the parser does not
execute user-actions (except init-actions), nor does it construct ASTs. Failed
validation predicates do not result in backtracking even when in guess mode.

In C++ mode there lookahead using a sliding window of tokens whose initial size is
specified when the ANTLRTokenBuffer is constructed. In C mode the entire input is read,
processed, and tokenized by DLG before ANTLR begins parsing. The term "infinite
lookahead" derives from the initial implementation in ANTLR C mode.

#101. Regular actions are suppressed while in guess mode because they have side effects

#102. Automatic construction of ASTs is suppressed during guess mode because it is a side
effect

#103. Syntactic predicates should not have side-effects

If there is no match then the rule which uses the syntactic predicate won't be executed.

#104. How to use init-actions to create side-effects in guess mode (despite Item #103)

If you absolutely have to have side-effects from syntactic predicates one can use exploit
the fact that ANTLR always executes init-actions, even in guess mode:
rule : (prefix)? A
 | B
 ;
prefix : <<regular-init-action-that’s-always-executed>>
 A (<<init-action-for-empty-subrule>>) B
 ;

The init-actions in "prefix" will always be executed (perhaps several times) in guess-
mode. Contributed by TJP.

Notes for New Users of PCCTS

274 Language Translation Using PCCTS and C++

#105. With values of k>1 or infinite lookahead mode one cannot use feedback from parser to
lexer.

As infinite lookahead mode can cause large amounts of the input to be scanned by DLG
before ANTLR begins parsing one cannot depend on feedback from the parser to the lexer
to handle things like providing special token codes for items which are in a symbol table
(the "lex hack" for typedefs in the C language). Instead one must use semantic
predicates which allow for such decisions to be made by the parser or place such checks
in the ANTLRTokenBuffer routine getToken() which is called every time the parser
needs another token. See Example #12.

#106. Can’t use interactive scanner (ANTLR –gk option) with ANTLR infinite lookahead.

#107. Syntactic predicates are implemented using setjmp/longjmp — beware C++ objects
requiring destructors.

Semantic Predicates
#108. (Bug) Semantic predicates can’t contain string literals

 A predicate containing a string literal is incorrectly "string-ized" in the call to
zzfailed_predicate.

rule: <<containsCharacter("!@#$%^&*",LT(1)->getText()>>? ID ;
/* Will not work */

The work-around is to place the literal in a string constant and use the variable name.

#109. (Bug) Semantic predicates can’t cross lines without escaped newline
rule: <<do_test();\
 this_is_a_workaround)>>? x y z ; /*** Note escaped

newline ***/

#110. Semantic predicates have higher precedence than alternation: <<>>? A|B means
(<<>>? A)|B

#111. Any actions (except init-actions) inhibit the hoisting of semantic predicates

Here is an example of an empty leading action whose sole purpose is to inhibit hoisting
of semantic predicates appearing in rule2 into the prediction for rule1. Note the
presence of the empty init-action (See Item #94).

rule1 : <<;>> <<>> rule2
 | rule3
 ;
rule2 : <<semanticPred(LT(1)->getText())>>? ID ;

#112. Semantic predicates that use local variables or require init-actions must inhibit hoisting

#113. Semantic predicates that use inheritance variables must not be hoisted

You cannot use downward inheritance to pass parameters to semantic predicates which
are not validation predicates. The problem appears when the semantic predicate is
hoisted into a parent rule to predict which rule to call:

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 275

For instance:
 a : b1 [flag]
 | b2
 ;
 b1 [int flag]
 : <<flag && hasPropertyABC(LT(1)->getText())>>? ID ;
 b2 : ID ;

When the semantic predicate is evaluated within rule "a" to determine whether to call
b1, b2, or b3 the compiler will discover that there is no variable named "flag" for
procedure "a()". If you are unlucky enough to have a variable named "flag" in a(),
then you will have a very difficult-to-find bug.

#114. A semantic predicate which is not at the left edge of a rule becomes a validation
predicate

Decisions about which rule of a grammar to apply are made before entering the code
which recognizes the rule. If the semantic predicate is not at the left edge of the
production, then the decision has already been made and it is too late to change rules
based on the semantic predicate. In this case the semantic predicate is evaluated only to
verify that it is true and is termed a "validation predicate."

#115. Semantic predicates are not always hoisted into the prediction expression

Even if a semantic predicate is on the left edge, there is no guarantee that it will be part
of the prediction expression. Consider the following two examples:

 a : <<semantic-predicate>>? ID glob /* a1 */
 | ID glob /* a2 */
 ;
 b : <<semantic-predicate>>? ID glob /* b1 */
 | Number glob /* b2 */
 ;

With k=1 rule "a" requires the semantic predicate to disambiguate alternatives a1 and a2
because the rules are otherwise identical. Rule "b" has a token type of Number in
alternative b2 so it can be distinguished from b1 without evaluation of the semantic
predicate during prediction. In both cases the semantic predicate will be validated by
evaluation inside the rule.

#116. Semantic predicates can’t be hoisted into a sub-rule: "{x} y" is not exactly equivalent
to "x y | y"

Consider the following grammar extract:
class Expr {
 e1 : (e2)+ END ;
 xid: <<is_xid(LT(1)->getText())>>? ID ;
 yid: <<is_yid(LT(1)->getText())>>? ID ;

 /* Works */ e2: xid "." yid | yid ;/* a1 */
 /* Doesn’t work */ e2: {xid "."} yid ; /* a2 */
}

Notes for New Users of PCCTS

276 Language Translation Using PCCTS and C++

Alternatives a1 and a2 appear to be equivalent, but a1 works on input "abc" and a2
doesn’t because only the semantic predicate of xid is hoisted into production e1 (but not
the semantic predicate of yid).

Explanation by TJP: These alternatives are not really the same. The language
described however is the same. The rule:

e2: {xid "."} yid ;

is shorthand for:
e2: (xid "." | /* epsilon */) yid ;

Rule e2 has no decision to make here — hence, yid does not get its predicate hoisted.
The decision to be made for the empty alternative does not get the predicate from yid
hoisted because one can't hoist a predicate into a subrule from beyond the subrule. The
program might alter things in the subrule so that the predicate is no longer valid or
becomes valid.

Contributed by Kari Grano (grano@cc.Helsinki.fi).

#117. How to change the reporting of failed semantic predicates

To make a global change #define the macro zzfailed_predicate(string) prior to the
#include of pccts/h/AParser.h

One can change the handling on a case-by-case basis by using the "failed predicate"
action which is enclosed in "[" and "]" and follows immediately after the predicate:

 a : <<isTypedef(LT(1)->getText())>>?
 [{printf("Not a typedef\n");};] ID ;

Douglas Cuthbertson (Douglas_Cuthbertson.JTIDS@jtids_qmail.hanscom.af.mil) has
pointed out that ANTLR doesn’t put the fail action inside "{...}". This can lead to
problems when the action contains multiple statements.

For an example of conversion of a failed semantic predicate into a parser exception see
Example #16.

#118. A semantic predicate should be free of side-effects because it may be evaluated multiple
times.

Even in simple grammars semantic predicate are often evaluated twice: once in the
prediction expression for a rule and once inside the rule as a validation predicate to
make sure the semantic predicate is valid.

A semantic predicate may be hoisted into more than one prediction expressions.

A prediction expression may be evaluated more than once as part of syntactic predicates
(guess mode).

#119. There’s no simple way to avoid evaluation of a semantic predicate for validation after
use in prediction.

#120. What is the "context" of a semantic predicate ?

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 277

Answer according to TJP: The context of a predicate is the set of k-strings (comprised
of lookahead symbols) that can be matched following the execution of a predicate. For
example,

a : <<p>>? alpha ;

The context of "p" is Look(alpha) where Look(alpha) is the set of lookahead k-
strings for alpha.

class_name: <<isClass(LT(1)->getText())>>? ID ;

The context of <<isClass ...>>? is ID for k=1. Only k=1 is used since only
LT(1) is referenced in the semantic predicate. It is important to use "–prc on" for proper
operation. The old notation:

class_name: <<LA(1)==ID ? isClass(LT(1)->getText()) : 1>>? ID ;
 /* Obsolete notation incompatiable with -prc on */

shouldn’t be used for new grammars. It is not compatible with "–prc on". The only
reason "–prc on" is not the default is backward compatibility.

Here is an example that won't work because it doesn't have context check in the
predicates:

a : (class_name | Num)
 | type_name
 ;
class_name : <<isClass(LT(1)->getText())>>? ID ;
type_name : <<isType(LT(1)->getText())>>? ID ;

The prediction for production one of rule "a" is:
if (LA(1) in { ID, Num } && isClass(LT(1)->getText())) {...}

Clearly, Num will never satisfy isClass(), so the production will never match.

When you ask ANTLR to compute context, it can check for missing predicates. With –prc
on, for this grammar:
 a : b
 | <<isVar(LT(1)->getText())>>? ID
 | <<isPositive(LT(1)->getText()>>? Num
 ;
 b : <<isType(LT(1)->getText())>>? ID
 | Num
 ;

ANTLR reports:
warning alt 1 of rule itself has no predicate to resolve
ambiguity upon { Num }

#121. Semantic predicates, predicate context, and hoisting

The interaction of semantic predicates with hoisting is sometimes subtle. Hoisting
involves the evaluation of semantic predicates in a rule’s parent in order to determine
whether the rule associated with the semantic predicate is "viable". There are two ways
to generate code for semantic predicates which are "hoisted" into a parent rule. With "–
prc off", the default, the behavior of semantic predicates resembles gates which enable

Notes for New Users of PCCTS

278 Language Translation Using PCCTS and C++

or disable various productions. With "–prc on" the behavior of semantic predicates
resemble a token for which its token type is determined by run-tine information rather
than by purely lexical information. It is important to understand what "-prc on" does,
when to use semantic predicates, and when to choose an alternative method of using
semantic information to guide the parse. We start with a grammar excerpt which does
not require hoisting, then add a rule which requires hoisting and show the difference in
code with predicate context computation off (the default) and on.

statement
 : upper
 | lower
 | number
 ;
upper : <<isU(LT(1)->getText())>>? ID ;
lower : <<isL(LT(1)->getText())>>? ID ;
number : Number ;

The code generated (with one ambiguity warning) resembles:
if (LA(1)==ID && isU) {
 upper();
} else if (LA(1)==ID && isL) {
 lower();
} else if (LA(1)==Number) {
 number();
...

Now the need for a non-trivial prediction expression is introduced:
parent : statement
 | ID
 ;
statement
 : upper
 | number
 ;

Running ANTLR causes one ambiguity warning. The code for "statement" resembles:
if ((LA(1)==ID || LA(1)==Number) && isU) {
 statement();
} else if (LA(1)==ID) {
...

Even if LA(1) is a Number, the semantic predicate isU() will be evaluated. Depending
on the way that isU is written it may or may not be meaningful. This is exactly the
problem addressed by predicate computation. With "–prc on" one receives two
ambiguity warnings and the code for "statement" resembles:

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 279

The important thing to notice is the call to isU() is guarded by a test that insures that the
token is indeed an ID.

The following does not change anything because ANTLR already knows that the
lookahead context for the semantic predicates can only be "ID":

upper : (ID)? => <<isU(LT(1)->getText())>>? ID ;

Consider the following grammars excerpts all built with –k 2 and "–prc on":
#token X "x"
#token Y "y"
#token A_or_B "a | b"

class P {
statement : (ax_or_by | bx)* "@"
 ;
ax_or_by : aName X
 | bName Y
 ;
bx : bName X
 ;
aName : <<isa(LT(1)->getText())>>? A_or_B ;
bName : <<isb(LT(1)->getText())>>? A_or_B ;

With input "bx" the above example issues an error message when the semantic predicate
"aName" fails. The rule "statement" predicts "ax_or_by" because the gate "bName" is
true. In searching for a viable rule to call "statement" finds "ax_or_by" to be the first
alternative with a semantic predicate which is true (or with no semantic predicate). With

option "–prc off" this is the intended mode of operation. ANTLR doesn't realize that the
second token doesn't match because the second token isn't part of the semantic predicate.

Code –prc on Outline format –prc on

if ((LA(1)==ID ||
 LA(1)==Number) &&
 (!(LA(1)==ID) ||
 (LA(1)==ID && isU)) {
 statement();
} else if (LA(1)==ID) {
 ...

&&
 ||
 LA(1)==ID
 LA(1)==Number
 ||
 ! <===== not ...
 LA(1)==ID <===== an ID
 isU(LT(1)->getText())

Notes for New Users of PCCTS

280 Language Translation Using PCCTS and C++

If the semantic predicates are expanded inline one gets:
ax_or_by
 : <<isa(LT(1)->getText())>>? A_or_B X
 | <<isb(LT(1)->getText())>>? A_or_B Y
 ;
bx : <<isb(LT(1)->getText())>>? A_or_B X
 ;

One still gets a failure of the semantic predicate for "A_or_B X". By adding a reference
to LT(2) one lets ANTLR know that the context is two tokens:

ax_or_by : <<LT(2),isa(LT(1)->getText())>>? A_or_B X
 | <<LT(2),isb(LT(1)->getText())>>? A_or_B Y
 ;
bx : <<LT(2),isb(LT(1)->getText())>>? A_or_B X
 ;

This performs exactly as desired for the inputs "ax", "by", and "bx".

Outline format –prc off Outline format –prc on

Alternative ax_or_by

&&
 LA(1)==A_or_B
 ||
 LA(2)==X
 LA(2)==Y
 ||
 isa(LT(1)->getText())
 isb(LT(1)->getText())

Alternative ax_or_by

&&
 LA(1)==A_or_B
 ||
 LA(2)==X
 LA(2)==Y
 ||
 !
 ||
 LA(1)==A_or_B
 LA(1)==A_or_B
 ||
 &&
 LA(1)==A_or_B
 isa(LT(1)->getText())
 &&
 LA(1)==A_or_B
 isb(LT(1)->getText())

Alternative bx

&&
 LA(1)==A_or_B
 LA(2)==X
 isb(LT(1)->getText())

Alternative bx

&&
 LA(1)==A_or_B
 LA(2)==X
 ||
 !
 LA(1)==A_or_B
 isb(LT(1)->getText())

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 281

You can’t test more context than is available at the point of definition. The following
won’t work:

/* Wrong */ aName : <<LT(2),isa(LT(1)->getText())>>? A_or_B ;
/* Wrong */ bName : <<LT(2),isb(LT(1)->getText())>>? A_or_B ;

One can often avoid problems by rearranging the code:
ax_by_bx : aName X
 | bName Y
 | bName X
 ;

Outline format –prc off Outline format –prc on

Alternative ax_or_by

&&
 LA(1)==A_or_B
 ||
 LA(2)==X
 LA(2)==Y
 ||
 LT(2),isa(LT(1)-
>getText())
 LT(2),isb(LT(1)-
>getText())

Alternative ax_or_by

&&
 LA(1)==A_or_B
 ||
 LA(2)==X
 LA(2)==Y
 ||
 !
 ||
 &&
 LA(1)==A_or_B
 LA(2)==X
 &&
 LA(1)==A_or_B
 LA(2)==Y
 ||
 &&
 &&
 LA(1)==A_or_B
 LA(2)==X
 LT(2),isa(LT(1)->getText())
 &&
 &&
 LA(1)==A_or_B
 LA(2)==Y
 LT(2),isb(LT(1)->getText())

Alternative bx

&&
 LA(1)==A_or_B
 LA(2)==X
 LT(2),isb(LT(1)->getText())

Alternative bx

&&
 LA(1)==A_or_B
 LA(2)==X
 ||
 !
 &&
 LA(1)==A_or_B
 LA(2)==X
 LT(2),isb(LT(1)->getText())

Notes for New Users of PCCTS

282 Language Translation Using PCCTS and C++

or even:
bx_or_by : bName X
 | bName Y
 ;
ax : aName X
 ;

This code works without special effort because the semantic predicates in each
alternative of "statement" are mutually exclusive. Whether this matches what one
needs for translation is a separate question.

I consider semantic predicates and hoisting to be a part of ANTLR which requires some
vigilance. The ANTLR –w2 switch should be used and reports of ambiguities should be
checked.

The code used to format the "if" conditions of the semantic predicates is notes/diagram/
*.

See also #12, #17, #142, Example #12, Example #16.

#122. Another example of predicate hoisting

Consider the following grammar fragment which uses semantic predicates to
disambiguate an ID in rules ca and cb:

a : ({ b | X } Eol)* "@" ; /* a1 */
b : c ID ; /* a2 */
c : {ca} {cb} ; /* a3 */

ca: <<pa(LATEXT(1))>>? ID; /* a4 */
cb: <<pb(LATEXT(1))>>? ID; /* a5 */

The code generated for rule c resembles:
if (LA(1)==ID) && pa(LATEXT(1))) { /* b1 */
 ca(); /* b2 */
} else { /* b3 */
 goto exit; /* b4 */
}; /* b5 */

The test of "pb" does not even appear. The problem is that the element "{cb}" is not at
the left edge of rule c – even though "{ca}" is an optional element. Although "ca" may
match epsilon, its presence in rule c still blocks the hoisting of the predicate in rule cb.

A first effort to solve this problem is to rewrite rule c so as to place "cb" on the left edge
of the production:

c : () /* c1 */
 | ca {cb} /* c2 */
 | cb /* c3 */
 ; /* c4 */

The code generated for rule c now resembles:
if (LA(1)==ID) { /* d1 */
 ; /* d2 */
} else if (LA(1)==ID && pa(LATEXT(1))) {/* d3 */
 ... /* d4 */

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 283

It is clear that rules ca and cb are now unreachable because any ID will always match
the test at line d1. The order of alternatives should be changed to:

c : ca {cb} /* e1 */
 | cb /* e2 */
 | () /* e3 */
 ; /* e4 */

However our problems aren’t over yet. The code generate for the "(...)*" test in rule "a"
resembles:

while ((LA(1)==X || LA(1)==Eol || LA(1)==ID) && /* f1 */
 (pa(...) || pb(...)) { /* f2 */
 ... /*
f3 */

If both pa and pb are false then the body of the rule is never entered even though it
should match an X or and ID using the rule on line a2 when rule c derives epsilon. I
believe this is a problem in the handling of semantic predicates when confronted with
productions which can derive epsilon.

Contributed by Sigurdur Asgeirsson (sigurasg@meanandmice.is).

See also #12, #17, #142, Example #12, Example #16.

Debugging Tips for New Users of PCCTS

#123. A syntax error with quotation marks on separate lines means a problem with newline
line 1: syntax error at "
" missing ID

#124. Use the ANTLR –gd switch to debug via rule trace

#125. Use the ANTLR –gs switch to generate code with symbolic names for token tests

#126. How to track DLG results

If you can't figure out what the DLG lexer is doing, try inserting the following code in
class DLGLexerBase member nextToken() near line 140 of pccts/h/DLexer.C. This is
one of the code samples — please see Example #10.

Just below:
tk=(this->*actions[accepts[state]])();/* invokes action routine */

Add this:
#ifdef DEBUG_LEXER

 printf("\ntoken type=%s lextext=(%s) mode=%d",
 parserClassName::tokenName(tk),
 (_lextext[0]==’\n’ && _lextext[1]==0) ?
 "newline" : _lextext,
 automaton);
 if (interactive && !charfull) {
 printf(" char=empty");
 } else {
 if (ch==’\n’) {
 printf(" char=newline");

Notes for New Users of PCCTS

284 Language Translation Using PCCTS and C++

 } else {
 printf(" char=(%c)",ch);
 };
 };
 printf(" %s\n",
 (add_erase==1 ? "skip()" :
 add_erase==2 ? "more()" :
 ""));

#endif

tk: token number of the token just identified
lextext: text of the token just identified
ch: lookahead character
parserClassName: name of the user’s parser class

This must be "hard-coded". In 1.32b6 there is no
way for a DLGLexerBase object to determine the
parser which requested the token. See Item #62.

tokenName static member function of the parserClassName class

Promised for the next release of PCCTS — or see Example
#7 for how to define your own tokenName function.

Switches and Options
#127. Use ANTLR –gx switch to suppress regeneration of the DLG code and recompilation of

DLGLexer.C

#128. Can’t use an interactive scanner (ANTLR –gk option) with ANTLR infinite lookahead

#129. To make DLG case insensitive use the DLG –ci switch

The analyzer does not change the text, it just ignores case when matching it against the
regular expressions.

See also #7, #14, #16, #66, #90, #100, #106, #124, #125.

Multiple Source Files
#130. To see how to place main() in a .C file rather than a grammar file (".g") see pccts./

testcpp/8/main.C
#include "tokens.h"
#include "myParserClass.h"
#include "DLGLexer.h"

#131. How to put file scope information into the second file of a grammar with two .g files

If one did place a file scope action in the second file, ANTLR would interpret it as the fail
action of the last rule appearing in the first grammar file.

To place file scope information in the second file #include the generated file in yet
another file which has the file scope declarations.

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 285

Source Code Format
#132. To place the C right shift operator ">>" inside an action use "\>>"

If you forget to do this you’ll get the error message:
warning: Missing <<; found dangling >>

This doesn’t work with #lexaction or #header because the ">>" will be passed on to DLG
which has exactly the same problem as ANTLR. The only work-around I’ve found for
these special cases was to place the following in an #include file "shiftr.h":

#define SHIFTR >>

where it is invisible to ANTLR and DLG. Then I placed a #include "shiftr.h" in the
#lexaction.

No special action is required for the shift left operator.

#133. One cannot continue a regular expression in a #token statement across lines

If one tries to use "\" to continue the line DLG will think you are trying to match a
newline character. A workaround (not completely equivalent) is to break the regular
expression into several parts and use more() to combine them into a single token.

#134. A #token without an action will attempt to swallow an action which immediately
follows it

This is a minor problem when the #token is created for use with attributes or ASTs
nodes and has no regular expression:

#token CastExpr
#token SubscriptExpr
#token ArgumentList
<<
... Code related to parsing
>>

You'll receive the message:
warning: action cannot be attached to a token name
 (...token name...); ignored

See also #9, #164.

Miscellaneous
#135. Given rule[A a,B b] > [X x] the proto is X rule(ASTBase* ast,int*

sig,A a,B b)

The argument "sig" is the status value returned when using parser exception handling.

If automatic generation of ASTs is not selected, exceptions are not in use, or there are no
inheritance variables then the corresponding arguments are dropped from the argument
list. Thus with ASTs disabled, no parser exception support, and neither upward nor
downward inheritance variables the prototype of a rule would be:

void rule()

Notes for New Users of PCCTS

286 Language Translation Using PCCTS and C++

See also #53 and #76.

#136. To remake ANTLR changes must be made to the makefile as currently distributed

The first problem is that generic.h does not appear in the dependency lists. The second
problem is that the rebuild of antlr.c from antlr.g and of scan.c from parser.dlg have
been commented out so as to allow building ANTLR on a machine without ANTLR the
first time when there are problems with tar restoring modification dates for files.

#137. ANTLR reports "... action buffer overflow ..."

There are several approaches:

Usually one can bypass this problem with several consecutive action blocks.
Contributed by M.T. Richter (mtr@globalx.net).

One can place the code in a separate file and use #include. Contributed by Dave
Seidel (dave@numega.com or 75342.2034@compuserve.com).

One can change ANTLR itself. Change ZZLEXBUFSIZE near line 38 of pccts/
antlr/generic.h and re-make.

#138. Exception handling uses status codes and switch statements to unwind the stack rule
by rule

#139. For tokens with complex internal structure add #token expressions to match frequent
errors

Suppose one wants to match something like a floating point number, character literal, or
string literal. These have a complex internal structure. It is possible to describe them
exactly with DLG. But is it wise to do so ? Consider:

’\ff’ for ’\xff’ or "\mThe result is: " for "\nThe result
is: "

If DLG fails to tolerate small errors like the ones above the result could be dozens of
error messages as it searches for the closing quotation mark or apostrophe.

One solution is to create additional #token definitions which recognize common errors
and either generates an appropriate error message or return a special #token code such
as "Bad_String_Const". This can be combined with a special #lexclass which scans (in
a very tolerant manner) to the end of the construct and generates no additional errors.
This is the approach used by John D. Mitchell (johnm@alumni.eecs.berkely.edu) in the
recognizer for C character and string literals in Example #2.

Another approach is to try to scan to the end of the token in the most forgiving way
possible and then to validate the token’s syntax in the DLG action routine.

#140. See pccts/testcpp/2/test.g and testcpp/3/test.g for examples of how to intergrate non-DLG
lexers with PCCTS

The examples were written by Ariel Tamches (tamches@cs.wisc.edu).

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 287

#141. Ambiguity, full LL(k), and the linear approximation to LL(k)

It took me a while to understand in an intuitive way the difference between full LL(k)
lookahead given by the ANTLR –k switch and the linear approximation given by the
ANTLR –ck switch. Most of the time I run ANTLR with –k 1 and –ck 2. Because I didn't
understand the linear approximation I didn't understand the warnings about ambiguity. I
couldn't understand why ANTLR would complain about something which I thought was
obviously parse-able with the lookahead available. I would try to make the messages go
away totally, which was sometimes very hard. If I had understood the linear
approximation I might have been able to fix them easily or at least have realized that
there was no problem with the grammar, just with the limitations of the linear
approximation.

I will restrict the discussion to the case of "–k 1" and "–ck 2".

 Consider the following example:
rule1 : rule2a | rule2b | rule2c ;
rule2a : A X | B Y | C Z ;
rule2b : B X | B Z ;
rule2c : C X ;

It should be clear that with the sentence being only two tokens this should be parseable
with LL(2).

Instead, because k=1 and ck=2 ANTLR will produce the following messages:
/pccts120/bin/antlr -k 1 -gs -ck 2 -gh example.g
ANTLR parser generator Version 1.20 1989-1994
example.g, line 23: warning: alts 1 and 2 of the rule itself
 ambiguous upon { B }, { X Z }
example.g, line 23: warning: alts 1 and 3 of the rule itself
 ambiguous upon { C }, { X }

The code generated resembles the following:
if (LA(1)==A || LA(1)==B || LA(1)==C) &&
 (LA(2)==X || LA(2)==Y || LA(2)==Z) then rule2a()
else if (LA(1)==B) &&
 (LA(2)==X || LA(2)==Z) then rule2b()
else if (LA(1)==C) &&
 (LA(2)==X) then rule3a()
 ...

This might be called "product-of-sums". There is an "or" part for LA(1), an "or" part for
LA(2), and they are combined using "and". To match, the first lookahead token must be
in the first set and the second lookahead token must be in the second set. It doesn't
matter that what one really wants is:

 if (LA(1)==A && LA(2)==X) ||
 (LA(1)==B && LA(2)==Y) ||
 (LA(1)==C && LA(2)==Z) then rule2a()
 else if (LA(1)==B && LA(2)==X) ||
 (LA(1)==B && LA(2)==Z) then rule2b()
 else if (LA(1)==C && LA(2)==X) then rule2c()

Notes for New Users of PCCTS

288 Language Translation Using PCCTS and C++

This happens to be "sums-of-products" but the real problem is that each product
involves one element from LA(1) and one from LA(2) and as the number of possible
tokens increases the number of terms grows as N2. With the linear approximation the
number of terms grows (surprise) linearly in the number of tokens.

ANTLR won’t do this with k=1 (it would for k=2). It will only do "product-of-sums".
However, all is not lost — you simply add a few well chosen semantic predicates which
you have computed using your LL(k>1), mobile, water-resistant, all purpose, guaranteed-
for-a-lifetime, carbon based, analog computer.

The linear approximation selects for each branch of the "if" a set which may include
more than what is wanted but never selects a subset of the correct lookahead sets. We
simply insert a hand-coded version of the LL(2) computation. It's ugly, especially in
this case, but it fixes the problem. In large grammars it may not be possible to run
ANTLR with k=2, so this fixes a few rules which cause problems. The generated parser
may run faster because it will have to evaluate fewer terms at execution time.

 <<
 int use_rule2a() {
 if (LA(1)==A && LA(2)==X) return 1;
 if (LA(1)==B && LA(2)==Y) return 1;
 if (LA(1)==C && LA(2)==Z) return 1;
 return 0;
 }
 >>

 rule1 :
 <<use_rule2a()>>? rule2a | rule2b | rule2c ;
 rule2a : A X | B Y | C Z ;
 rule2b : B X | B Z ;
 rule2c : C X ;

Correction due to Monty Zukowski
(monty@tbyte.com)

The real cases I've coded have shorter code sequences in the semantic predicate. I
coded this as a function to make it easier to read and because there is a bug in ANTLR
1.3x which prevents semantic predicates from crossing lines. Another reason to use a
function (or macro) is to make it easier to read the generated code to determine when
your semantic predicate is being hoisted too high. It's easy to find references to a
function name with the editor — but difficult to locate a particular sequence of "LA(1)"
and "LA(2)" tests. Predicate hoisting is a separate issue which is described in Item #121.

In some cases of reported ambiguity it is not necessary to add semantic predicates
because no valid token sequence could get to the wrong rule. If the token sequence were
invalid it would be detected by the grammar eventually, although perhaps not where one
might wish. In other cases the only necessary action is a reordering of the ambiguous
rules so that a more specific rule is tested first. The error messages still appear, but one
can ignore them or place a trivial semantic predicate (i.e. <<1>>?) in front of the later

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 289

rules. This makes ANTLR happy because it thinks you’ve added a semantic predicate
which fixes things.

#142. What is the difference between "(...)? <<...>>? x" and "(...)? => <<...>>?
x" ?

The first expression is a syntactic predicate followed by a semantic predicate. The
syntactic predicate can perform arbitrary lookahead and backtracking before committing
to the rule. However it won’t encounter the semantic predicate until already committed
to the rule — this makes the semantic predicate merely a validation predicate. Not a
very useful semantic predicate.

The second expression is a semantic predicate with a convenient notation for specifying
the look-ahead context. The context expression is used to generate an "if" condition
similar to that used to predict which rule to invoke. It isn’t any more powerful than the
grammar analysis implied by the values you’ve chosen for the ANTLR switches –k and –
ck. It doesn’t have any of the machinery of syntactic predicates and does not allow
arbitrarily large lookahead.

#143. Memory leaks and lost resources

Syntactic predicates use setjmp/longjmp and can cause memory leaks (Item #107).
Delete temporary attributes on rule failure and exceptions (Item #156).
Delete temporary ASTs on rule failure and exceptions (Item #81).
A rule that constructs an AST returns an AST even when its caller uses the "!" operator
(Item #74).
(C++ Mode) A rule which applies "!" to a terminal loses the token (Item #75) unless the
ANTLR reference counting option is enabled.
(C Mode) Define a zzd_ast() routine if you define a zzcr_ast() or zzmk_ast() (Item
#163).

#144. Some ambiguities can be fixed by introduction of new #token numbers

For instance in C++ with a suitable definition of the class "C" one can write:
C a,b,c /* a1 */
a.func1(b); /* a2 */
a.func2()=c; /* a3 */
a = b; /* a4 */
a.operator =(b); /* a5 */

Statement a5 happens to place an "=" (or any of the usual C++ operators) in a token
position where it can cause a lot of ambiguity in the lookahead. set. One can solve this
particular problem by creating a special #lexclass for things which follow "operator"
with an entirely different token number for such operator strings — thereby avoiding the
whole problem.

 //
 // C++ operator sequences (somewhat simplified for these

notes)
 //

Notes for New Users of PCCTS

290 Language Translation Using PCCTS and C++

 // operator <type_name>
 // operator <special characters>
 //
 // There must be at least one non-alphanumeric character

 // between "operator" and operator name - otherwise they
 // would be run together - ("operatorint" instead of
 // "operator int")
 //

 #lexclass LEX_OPERATOR
 #token FILLER_C1 "[\ \t]*"
 <<skip();
 if(isalnum(ch)) mode(START);
 >>
 #token OPERATOR_STRING "[\+\-*\/%\^\&\|\~\!\=\<\>]*"
 <<mode(START);>>
 #token FILLER_C2 "\(\) | \[\] "
 <<mode(START);return OPERATOR_STRING;>>

#145. Use "#pragma approx" to replace full LL(k) analysis of a rule with the linear
approximation

To be supplied.

(C Mode) LA/LATEXT and NLA/NLATEXT
#146. Do not use LA(i) or LATEXT(i) in the action routines of #token

To refer to the token code (in a #token action) of the token just recognized use NLA.
NLA is an lvalue (can appear on the left hand side of an assignment statement). To
refer to the text just recognized use zzlextext (the entire text) or NLATEXT. One can
also use zzbegexpr/zzendexpr which refer to the last regular expression matched. The
char array pointed to by zzlextext may be larger than the string pointed to by zzbegexpr
and zzendexpr because it includes substrings accumulated through the use of zzmore().

#147. Care must be taken in using LA(i) and LATEXT(i) in interactive mode (ANTLR switch –
gk)

In interactive mode ANTLR doesn't guarantee that it will fetch lookahead tokens until
absolutely necessary. It is somewhat safer to refer to lookahead information in semantic
predicates, but care is still required.

In this table the entries "prev" and "next" means that the item refers to the token which
precedes (or follows) the action which generated the output. For semantic predicate
entries think of the following rule:

rule : <<semantic-predicate>>? Next NextNext ;

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 291

For rule-action entries think of the following rule:
rule : Prev <<action>> Next NextNext;

 k=1 k=1 k=3 k=3 k=3
 standard infinite standard interactive infinite

for a semantic predicate

 LA(0) Next Next -- -- --
 LA(1) Next Next Next Next Next
 zzlextext Next Next Next -- Next
 ZZINF_LA(0) Next Next
 ZZINF_LA(1) NextNext
NextNext

for a rule action

 LA(0) Prev Prev -- Prev --
 LA(1) Prev Prev Prev Next Prev
 zzlextext Prev Prev Prev -- Prev
 ZZINF_LA(0) Prev Prev
 ZZINF_LA(1) Next Next

(C Mode) Execution-Time Routines
#148. Calls to zzskip() and zzmore() should appear only in #token actions (or in subroutines

they call)

#149. Use ANTLRs or ANTLRf in line-oriented languages to control the prefetching of
characters and tokens

Write your own input routine and then use ANTLRs (input supplied by string) or ANTLRf
(input supplied by function) rather than plain ANTLR which is used in most of the
examples.

#150. Saving and restoring parser state in order to parse other objects (input files)

Suppose one wants to parse files that "include" other files. The code in ANTLR (antlr.g)
for handling #tokdefs statements demonstrates how this may be done:
 grammar: ...
 | "#tokdefs" QuotedTerm
 <<{
 zzantlr_state st; /* defined in antlr.h */
 struct zzdlg_state dst; /*defined in dlgdef.h */
 FILE *f;
 UserTokenDefsFile = mystrdup(LATEXT(1));
 zzsave_antlr_state(&st);
 zzsave_dlg_state(&dst);
 f = fopen(StripQuotes(LATEXT(1)),"r");
 if (f==NULL) {
 warn(eMsg1("cannot open token defs file ’%s’",
 LATEXT(1)+1));}
 else {

Notes for New Users of PCCTS

292 Language Translation Using PCCTS and C++

 ANTLRm(enum_file(), f, PARSE_ENUM_FILE);
 UserDefdTokens = 1;
 }
 zzrestore_antlr_state(&st);
 zzrestore_dlg_state(&dst);
 }>>

The code uses zzsave_antlr_state() and zzsave_dlg_state() to save the state of the
current parse. The ANTLRm macro specifies a starting rule for ANTLR of "enum_file"
and starts DLG in the PARSE_ENUM_FILE state rather than the default state (which is the
current state — whatever it might be). Because enum_file() is called without any
arguments it appears that enum_file() does not use ASTs nor pass back any attributes.
Contributed by TJP.

(C Mode) Attributes
#151. Use symbolic tags (rather than numbers) to refer to attributes and ASTs in rules

prior to version 1.30: rule : X Y <<printf("%s %s",$1,$2);>> ;

 with version 1.30: rule : xx:X yy:Y<<printf("%s

%s",$xx,$yy);>> ;

#152. Rules no longer have attributes:rule : r1:rule1 <<...$r1...;>> won’t work

Actually this still works if one restricts oneself to C mode and uses numeric labels like
$1 and $2. However numeric labels are a deprecated feature, can’t be used in C++
mode, and can’t be used in the same source file as symbolic labels, so it’s best to avoid
them.

#153. Attributes are built automatically only for terminals

To construct attributes under any other circumstances one must use
$[TokenCode,...] or zzcr_attr().

#154. How to access the text or token part of an attribute

The way to access the text, token, (or whatever) part of an attribute depends on the way
the attribute is stored. If one uses the PCCTS supplied routine "pccts/h/charbuf.h" then:

id : "[a-z]+" <<printf("Token is %s\n",$1.text);>> ;

If one uses the PCCTS supplied routine "pccts/h/charptr.c" and "pccts/h/charptr.h" then:
id : "[a-z]+" <<printf("Token is %s\n",$1);>> ;

If one uses the PCCTS supplied routine "pccts/h/int.h" (which stores numbers only) then:
number : "[0-9]+" <<printf ("Token is %d\n",$1);>> ;

(Note the use of "%d" rather than "%s" in the printf() format).

#155. The $0 and $$ constructs are no longer supported — use inheritance instead (Item #99)

#156. If you use attributes then define a zzd_attr() to release resources (memory) when an
attribute is destroyed

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 293

#157. Don't pass automatically constructed attributes to an outer rule or sibling rule — they’ll
be out of scope

The PCCTS generated variables which contain automatically generated attributes go out
of scope at the end of the rule or sub-rule that contains them. Of course you can copy
the attribute to a variable that won’t go out of scope. If the attribute contains a pointer
which is copied (e.g. pccts/h/charptr.c) then extra caution is required because of the
actions of zzd_attr(). See Item #158.

#158. A charptr.c attribute must be copied before being passed to a calling rule

The pccts/h/charptr.c routines use a pointer to a string. The string itself will go out of
scope when the rule or sub-rule is exited. Why ? The string is copied to the heap when
ANTLR calls the routine zzcr_attr() supplied by charptr.c — however ANTLR also calls
the charptr.c supplied routine zzd_attr() (which frees the allocated string) as soon as the
rule or sub-rule exits. The result is that in order to pass charptr.c strings to outer rules
via inheritance it is necessary to make an independent copy of the string (using strdup
for example) or else by zeroing the original pointer to prevent its deallocation.

#159. Attributes created in a rule should be assumed not valid on entry to a fail action

Fail action are "... executed after a syntax error is detected but before a message is
printed and the attributes have been destroyed. However, attributes are not valid here
because one does not know at what point the error occurred and which attributes even
exist. Fail actions are often useful for cleaning up data structures or freeing memory."
(Page 29 of 1.00 manual)

Example of a fail action:
 a : <<List *p=NULL;>>
 (v:Var <<append(p,$v);>>)+
 <<operateOn(p);rmlist(p);>>
 ; <<rmlist(p);>>
 ^^^^^^^^^^^^^^ <--- Fail Action

#160. Use a fail action to destroy temporary attributes when a rule fails

If you construct temporary, local, attributes in the middle of the recognition of a rule,
remember to deallocate the structure should the rule fail. The code for failure goes after
the ";" and before the next rule. For this reason it is sometimes desirable to defer some
processing until the rule is recognized rather than the most convenient place:

 #include "pccts/h/charptr.h"
 ;statement!
 : <<char *label=0;>>
 {name:ID COLON <<label=MYstrdup($name);>> }
 s:statement_without_label
 <<#0=#(#[T_statement,label],#s);
 if (label!=0) free(label);
 >>
 ;<<if (label !=0) free(label);>>

Notes for New Users of PCCTS

294 Language Translation Using PCCTS and C++

In the above example attributes are handled by charptr.* (see the warning, Item #158).
The call to MYstrdup() is necessary because $name will go out of scope at the end of
the subrule "{name:ID COLON}". The routine written to construct ASTs from attributes
(invoked by #[int,char *]) knows about this behavior and always makes a copy of
the character string when it constructs the AST. This makes the copy created by the
explicit call to MYstrdup redundant once the AST has been constructed. If the call to
"statement_without_label" fails then the temporary copy must be deallocated.

#161. When you need more information for a token than just token type, text, and line number

Passing accurate column information along with the token in C mode when using
syntactic predicates requires workarounds. P.A. Keller (P.A.Keller@bath.ac.uk) has
worked around this limitation of C mode by passing the address of a user-defined struct
(rendered as text using format codes "%p" or "%x") along with (or instead) of the
token’s actual text. This requires changes in syntax error routines and other places
where the token text might be displayed.

#162. About the pipeline between DLG and ANTLR (C Mode)

I find it helpful to think of lexical processing by DLG as a process which fills a pipeline
and of ANTLR as a process which empties a pipeline. (This relationship is exposed in
C++ mode because of the ANTLRTokenBuffer class).

With LL_K=1 the pipeline is only one item deep, trivial, and invisible. It is invisible
because one can make a decision in ANTLR to change the DLG #lexclass with zzmode()
and have the next token (the one following the one just parsed by ANTLR) parsed
according to the new #lexclass.

With LL_K>1 the pipeline is not invisible. DLG will put a number of tokens into the
pipeline and ANTLR will analyze them in the same order. How many tokens are in the
pipeline depends on options one has chosen.

Case 1: Infinite lookahead mode ("(...)?"). The pipeline is as huge as the input
since the entire input is tokenized by DLG before ANTLR even begins analysis.

Case 2: Demand lookahead (interactive mode). There is a varying amount of
lookahead depending on how much ANTLR thinks it needs to predict which rule to
execute next. This may be zero tokens (or maybe it’s one token) up to k tokens.
Naturally, it takes extra work by ANTLR to keep track of how many tokens are in
the pipe and how many are needed to parse the next rule.

Case 3: Normal mode. DLG stays exactly k tokens ahead of ANTLR. This is a half-
truth. It rounds k up to the next power of 2 so that with k=3 it actually has a
pipeline of 4 tokens. If one says "-k 3" the analysis is still k=3, but the pipeline
size is rounded up because TJP decided it was faster to use a bit-wise "and" to
compute the next position in a circular buffer rather than (n+1) mod k.

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 295

(C Mode) ASTs
#163. Define a zzd_ast() to recover resources when an AST is deleted

#164. How to place prototypes for routines using ASTs in the #header

Add #include "ast.h" after the #define AST_FIELDS and before any references to AST:
 #define AST_FIELDS int token;char *text;
 #include "ast.h"
 #define zzcr_ast(ast,attr,tok,astText) \
 create_ast(ast,attr,tok,text)
 void create_ast (AST *ast,Attr *attr,int tok,char *text);

#165. To free an AST tree use zzfree_ast() to recursively descend the AST tree and free all
sub-trees

The user should supply a routine zzd_ast() to free any resources used by a single node
— such as pointers to character strings allocated on the heap.

#166. Use #define zzAST_DOUBLE to add support for doubly linked ASTs

There is an option for doubly linked ASTs in the module ast.c. It is controlled by
#define zzAST_DOUBLE. Even with zzAST_DOUBLE only the right and down fields
are filled while the AST tree is constructed. Once the tree is constructed the user must
call the routine zzdouble_link(tree,0,0) to traverse the tree and fill in the left and up
fields.

Notes for New Users of PCCTS

296 Language Translation Using PCCTS and C++

Extended Examples and Short Descriptions of Distributed Source Code
Examples mentioned in these notes are available as .tar files at the sites mentioned in Item
#1. In keeping with the restrictions in PCCTS, I have used neither templates nor multiple
inheritance in these examples.

All these examples use AST classes and token classes which are derived from NoLeakAST
and NoLeakToken respectively. These classes maintain a doubly-linked list of all ASTs (or
tokens) which have been created but not yet deleted making it possible to recover memory
for these objects.

#1. Modifications to pccts/dlg/output.c to add member functions and data to DLGLexer
header

See files notes/changes/dlg/output*.c

This modification to output.c adds the following code to the DLGLexer class header:
#ifdef DLGLexerIncludeFile
#include DLGLexerIncludeFile
#endif

#2. DLG definitions for C and C++ comments, character literals, and string literals

See files in notes/cstuff/cstr.g (C mode) or notes/cstuff/cppstr.g (C++ mode).
Contributed by John D. Mitchell (johnm@alumni.eecs.berkeley.edu).

#3. A simple floating point calculator implemented using PCCTS attributes and inheritance

This is the PCCTS equivalent of the approach used in the canonical yacc example. See
notes/calctok/*.

#4. A simple floating point calculator implemented using PCCTS ASTs and C++ virtual
functions

See notes/calcAST/*.

In this example an expression tree is built using ASTs. For each operator in the tree
there is a different class derived from AST with an operator specific implementation of
the virtual function "eval()". Evaluation of the expression is performed by calling eval()
for the root node of the AST tree. Each node invokes eval() for its children nodes,
computes its own operation, and passed the result to its parent in a recursive manner.

#5. An ANTLRToken class for variable length strings allocated from the heap

See files in notes/var/varToken.*

#6. How to extend PCCTS C++ classes using the example of adding column information

See files in notes/col/*

This demonstrates how to add column information to tokens and to produce syntax error
messages using this information. This example derives classes from ANTLRToken and

ANTLRTokenBuffer.

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 297

#7. How to pass whitespace through DLG for pretty-printers

See files in notes/ws/*

This demonstrates how to combine several separate DLG tokens (whitespace for this
example) into a single ANTLR token. It also demonstrates careful processing of tab
characters to generate accurate column information even within comments or other
constructs which use more().

#8. How to prepend a newline to the DLGInputStream via derivation from DLGLexer

See files in notes/prependnl/*

This demonstrates how to derive from DLGLexer in order to replace a user-supplied
DLGInputStream routine with another which can perform additional processing on the
input character stream before the characters are passed to DLG. In this case a single
newline is prepended to the input. This is done to make it easier to treat the first non-
blank token on a line as a special case, even when it appears on the very first line of the
input file.

#9. How to maintain a stack of #lexclass modes

See files in notes/modestack/*

This is based on routines written by David Seidel (dave@numega.com or
75342.2034@compuserve.com) which allow the user to pass a a routine to be executed
when the mode is popped from the stack.

#10. Changes to pccts/h/DLexer.C to aid in debugging of DLG lexers as outlined in Item #126

See files in notes/changes/h/DLexer*.C

#11. AT&T Cfront compatible versions of some 1.32b6 files

See files in notes/changes/h/PCCTSAST*.*

#12. When you want to change the token type just before passing the token to the parser

See files in notes/predbuf/*

This program shows how to reassign token codes to tokens at the time they are fetched
by the parser by deriving from class ANTLRTokenBuffer and changing the behavior of
getToken().

#13. Rewriting a grammar to remove left recursion and perform left factoring

The original grammar:
 command := SET var BECOMES expr
 | SET var BECOMES QUOTE QUOTE
 | SET var BECOMES QUOTE expr QUOT
 | SET var BECOMES QUOTE command QUOTE

 expr := QUOTE anyCharButQuote QUOTE
 | expr AddOp expr
 | expr MulOp expr

Notes for New Users of PCCTS

298 Language Translation Using PCCTS and C++

The repetition of "SET var BECOMES" for command would require k=4 to get to the
interesting part. The first step is to left-factor "command":

 command := SET var BECOMES
 (expr
 | QUOTE QUOTE
 | QUOTE expr QUOTE
 | QUOTE command QUOTE
)

The definition of expr uses left recursion which must be eliminated when using ANTLR:
 op := AddOp
 | MulOp
 expr := QUOTE anyCharButQuote QUOTE (op expr)*

Since expr begins with QUOTE and all the alternatives of the sub-rule of command also
start with QUOTE. This too can be left-factored:

 command := SET var BECOMES QUOTE
 (expr_suffix
 | QUOTE
 | expr QUOTE
 | command QUOTE
)
 expr_suffix := anyCharButQuote QUOTE (op expr)*
 expr := QUOTE expr_suffix

The final grammar can be built by ANTLR with k=2.
#token Q "\""
#token SVB "svb" // "SET var BECOMES"
#token Qbar "[a-z A-Z]*"
#token AddOp "\+"
#token MulOp "*"
#token WS "\ " <<zzskip();>>
#token NL "\n" <<zzskip();>>

repeat : (command)+ "@";
command : SVB Q (expr_suffix
 | expr Q
 | Q <<printf("null command\n");>>
 | command Q <<printf("command\n");>>
);
expr_suffix : Qbar Q <<printf("The Qbar expr is (%s)\n",$1.text);>>
 { op expr };
expr : Q expr_suffix;
op : AddOp | MulOp ;

#14. Using the GNU gperf (generate perfect hashing function) with PCCTS

The scanner generated by DLG can be very large. For grammars which contain a large
number of keywords it might make sense to the use of the GNU program "gperf". The
gperf programs attempts to generate a "minimal perfect hash function" for testing
whether an argument is among a fixed set of strings such as those used in the reserved
words of languages. It has a large number of options to specify space/time trade-offs

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 299

and the style of the code generated (e.g. C++ vs. C, case sensitivity, arrays vs. case
statements, etc.).

As a test I found that a grammar with 25 keywords caused DLG to generate a file
DLGLexer.C with 22,000 characters. Changing the lexical analysis code to use gperf
resulted in a file DLGLexer.C that was 2,800 characters. The file generated by gperf
was about 3,000 characters.

The gperf program was originally written by Douglas C. Schmidt. It is based on an
algorithm developed by Keith Bostic. The gperf program is covered by the GNU
General Public License. I do not know what restrictions there are on the output of gperf.
The source code can be found in comp.sources.unix, volume 20.

Among the many FTP sites with comp.sources.unix here are two:

ftp.cis.ohio-state.edu/pub/comp.sources.unix/Volume20/gperf
ftp.informatik.tu-muenchen.de/pub/comp/usenet/comp.sources.unix/gperf

File: keywords.h
#ifndef KEYWORDS_H
#define KEYWORDS_H

#include "tokens.h"

struct Keywords {
 char * name;
 ANTLRTokenType tokenType;
};

Keywords * in_cli_word_set(const char *,int);

#endif

File: clikeywords.gperf:
%{
/*
 gperf -a -k 1,3 -H cliHash -N in_cli_word_set -ptT >clikeywords.C

 a - ansi prototypes
 k - character positions to use in hash
 H - override name of hash function
 N - override namae of in_word_set function
 p - return pointer to struct or 0
 t - use structure type declaration
 T - don’t copy struct definition to output
*/

#include <string.h>
#include "keywords.h"

%}
Keywords;
%%
char, CHAR

Notes for New Users of PCCTS

300 Language Translation Using PCCTS and C++

string, STRING
...
void, VOID

File: main grammar
...
#lexaction <<

#include "keywords.h"
#include <string.h>

Keywords * pKeyword;
>>

#token Eof "@"
#token CHAR "char"
#token STRING "string"
...
#token VOID "void"
#token ID "[a-z A-Z]+"
 <<pKeyword=in_cli_word_set(lextext(),strlen(lextext()));
 if (pKeyword != 0) return pKeyword->tokenType;
 >>

class P {
...
}

#15. Processing counted strings in DLG

Sometimes literals are preceded by a count field.
3abc identifier 4defg

This example works by storing the count which precedes the string in a local variable
and then switching to a #lexclass which accepts characters one at a time while
decrementing a counter. When the counter reaches zero (or a newline in this example)
the DLG routine switches back to the usual #lexclass.

...
#lexaction <<static int count;>>

#token HOLLERITH "[0-9]*"
 <<count=atoi(lextext());
 printf("Count is %d\n",count);
 mode(COUNT);
 >>
#token Eof "@"
#token ID "[a-z]*"<<printf("ID is %s\n",lextext());>>
#token WS "\ " <<skip();>>
#token NL "\n"

#lexclass COUNT
#token STRING "~[]"
 <<count--;
 if (count == 0) {
 mode(START);

Notes for New Users of PCCTS

Language Translation Using PCCTS and C++ 301

 printf ("Hollerith string is \"%s\"\n",lextext());
 } else if (ch == ’\n’) {
 mode(START);
 printf("Hollerith string %s terminated by newline\n",
 lextext());
 } else {
 more();
 };
 >>
class P {
 statement : ((HOLLERITH STRING | ID)* NL)+ "@";
}

See files in notes/hollerith/*

#16. How to convert a failed validation predicate into a signal for treatment by parser
exception handling

See files notes/sim/*

This program intercepts a failed validation predicate in order to pass a signal back up the
call tree. The example includes code which takes the signal returned by the start rule
and invokes the default handler

This example is not as clean as I would like because of the difficulty of adding new
behavior to a parser class.

#17. How to use Vern Paxson’s flex with PCCTS in C++ mode by inheritance from
ANTLRTokenStream

See files example.flex and flexLexer.* in notes/flex/*

Notes for New Users of PCCTS

302 Language Translation Using PCCTS and C++

Language Translation Using PCCTS and C++ 303

Index

Symbols
! operator 55, 90, 125, 163, 183, 184
#ast-identifier 107, 126
#errclass 101
#header 83, 154, 163
#lexaction 100
#lexclass 99
#parser 83
#tokclass 88
#tokdefs 96, 98, 168
#token 91, 201
$token-identifier 106
@ end of file 92
@ Operator 144
@ variable 178
^ operator 55, 90, 124
^ polynomial operator 41
~ operator 88, 98
~ operator, lexical 95

A
Abstract syntax trees, see AST
Action 104–108
#ast-identifier 126
#lexaction directive 100
$token-identifier 106
@ variable 178
accessing token objects from 108
argument(s) 105
buffer 204
embedded 87, 170, 181, 182
embedded within ANTLRParser class 109
fail-action 87, 105, 108

init-action 86, 107, 172
init-action, hoisting over 129
interpretation of 105, 125
lexical 100
placement 104
return value(s) 105
sensitivity to placement 31
syntactic predicate’s effect upon137, 172
time of execution105
warnings and errors concerning205

addChild 122, 187
advance 93
Alternative, see Rule
Ambiguous decision128

ANTLR warning message203
term definition 27

ANTLR 24, 30, 81
ANTLRAbstractToken 112, 113
ANTLRCommonToken 108
ANTLRParser 84, 112, 117
ANTLRRefCountToken 108
ANTLRToken 112
ANTLRTokenBuffer 112, 116
ANTLRTokenPtr 112, 113
ANTLRTokenStream 116
ANTLRTokenType 127
append 123, 187
Arbitrary lookahead, see Syntactic predicate
Argument(s)85, 105, 165
Argument(s), see also Rule
AST 52, 121–127, 150, 157
! operator 55, 90, 125, 163, 183, 184
^ operator 55, 90, 124
C interface definitions 157
child-sibling 34, 163, 191
class (C++) hierarchy 119, 166

Index

304 Language Translation Using PCCTS and C++

command line option, -gt 146
construction 121
constructor 184
node constructor 75
operators 90, 124
parser 35
pattern 170, 173
pattern matching 31
sample tree contents 162
support functions 122
transformation 32, 163, 182

augmentation 184
deletion 183
modification 184

AST 122
ast_append 186
AST_FIELDS 158
ast_find_all 122, 187
ast_scan 188
ASTBase 120, 122
ASTDoublyLinkedBase 120
Attrib 149, 153
Attribute 153–157
$attribute-identifier 89
comparison to token objects 108
creation 153
definition 153
destruction 155
references 154
standard definitions 156
type name (C) 149

B
Backtracking, see also Syntactic predicate 135
Backus-Naur Form, see Grammar
begcol 93
begexpr 93
BNF, see Grammar
bottom 123, 187
Bottom-up 29
bufferedToken 116

C
C

AST interface 157
files 193

interface 149, 191
types, summary 193

C++ declaration syntax 134
C++ interface 109
catch 138
Child-sibling 191
Child-sibling tree 34
Class hierarchy 112

AST 119
parser 117, 164
SORCERER 166
SORCERER support 187
SORCERER trees 166
token 112
token buffer 116
token stream 115
tree 119

Command line arguments
ANTLR 145
DLG 148
SORCERER 190

Comments 83
Common prefix 27
config.h 167
Constructing trees 56
consume 118
consumeUntil 97, 118, 144
consumeUntilToken 118, 143, 144
Context-free languages 30
Context-sensitive languages 30
cut_between 123, 187

D
Depth-first walk 53
destroy 120
Deterministic Finite Automata, see DFA
DFA 99, 148
Differentiating polynomials 41
DLG 91
DLGchar 93
DLGFileInput 112
DLGInputStream 112
DLGLexer 112, 148
DLGLexerBase 112
double_link 120
down 119, 163, 191

Index

Language Translation Using PCCTS and C++

dup 120, 123

E
EBNF 87, 94, 169

AST-matching environment 174
edecode 118
Element, see Rule
End of file, @ 92
endcol 93
endexpr 93
Error

classes 101–103
consuming tokens 143
errstd 93
fail-action 104, 108
recovery 137
reporting 137, 189
resynchronization 97, 144
semantic 127
syn 118
token class, relationship to 97

errstd 93
Exception handler 137–145
@ operator 144
code generation changes 142
global 138, 142
non-labeled 138
NoSemViableAlt 142
order of execution 140
semantic predicate and NoSemViableAlt 142
signals, predefined 139
syntax 138
warnings and errors concerning 209

Extended BNF, see Grammar

F
Fail-action 87, 104, 105, 108
Finite lookahead 137
FIRST 27, 102
FOLLOW 27
FORTRAN 185

G
garbageCollectTokens 118

getLine 108, 113
getText 108
getToken 115
Global exception handler 138
Grammar

analysis 137
FIRST 102
FOLLOW 27
lookahead set 26
resource limits 147
syntactic predicate effect upon 137

ANTLR description 81
ANTLR input description 82
ANTLR, accepted by 30
AST operators 124
C++ 31
class, error concerning 204
combined ANTLR and SORCERER 168, 194
combined lexical and syntactic

specification 30
comparison, LR(k), LL(k) and pred-LL(k) 29
context-free 30
context-sensitive 30

disambiguation 128
EBNF 30
element, see Rule
embedded action 104, 181
fragment

semantic predicate 131
syntactic predicate 133

label 89, 177
LALR(k) 29
left factoring 44
LL(1) 26
LL(k) 27
LR(0) 29
parser class (C++) associated with 109, 117,

164
polynomial 45
polynomial tree patterns 74
pred-LL(k) 28
regular expression syntax 94
rule, see Rule
sensitivity to action placement 31
SORCERER description 161
SORCERER, accepted by 31
start symbol 112
term definition 26
tree pattern 31
warnings and errors concerning 203

Index

306 Language Translation Using PCCTS and C++

Guessing, see also Syntactic predicate 105

H
Hoisting, see also Semantic predicate 128

I
init 112, 117
Init-action 47, 86, 87, 104, 107, 129, 135, 172
insert_after 123, 187

L
LA 117, 146
Labels 89, 177
LALR(k) 29
Language

context-free 30
context-sensitive 30
term definition 26
theory 25

LATEXT 130
left 120
Left factoring 44, 134
Left recursion, error concerning 204
Lexeme, see Token
Lexical

ambiguity 95
analyzer 26, 111
class 99
lexclass, warning concerning 202

lextext 93
line 92
Line and column information 149
begcol 93
endcol 93
getLine 113
line 92
newline 92
set_begcol 93
set_endcol 93
trackColumns 93
zzbegcol 152
zzendcol 152
zzline 151

Linear approximation 137, 145

LL(1) 26
LL(k) 27, 88
LL(k) 146
Lookahead 26

arbitrary 137
backtracking 135
computing 205, 209
computing, resource limit 205
context for semantic predicate 130
context, samples 131
context-guard 131
context-guard syntax 88
context-guard, use of 131
delay 146, 207
finite 135, 137
infinite 135
LA 117
linear approximation 137, 145
set 26, 137
token buffer 116
tree mismatch 189

LR(k) 29
LT 117, 130

M
make 188
makeToken 108, 113
MATCH 142
match 122, 188
MismatchedToken 139
mode 94
more 92
Multiple SORCERER Phases 68

N
newline 92
NLA 151
NLATEXT 151
node constructor 186
noGarbageCollectTokens 118
Nondeterministic decision 27
Non-LL(k) 28
Nontransform mode 77
NoSemViableAlt 139, 142
Not operator 88, 98

Index

Language Translation Using PCCTS and C++

Not operator, lexical 95
NoViableAlt 139
nsiblings 123, 188

O
One-or-more 87, 170
Optional 87, 170
Output

ANTLR
class (C++) generated by 84, 109, 111
constructing trees 121
files generated by 109
prefixing symbols 83

SORCERER
class (C++) generated by 164
files (C) generated by 191
files generated by 165
tree transformations 163, 182
types generated by 167

P
Panic 119
panic 118
Parse tree 34
Parser 23, 26, 117

ambiguous decision, term definition 27
ANTLRParser 117
bottom-up 29
class (C++) associated with grammar 84, 164
common prefix 27
disambiguating predicate 128
efficiency, related to syntactic predicate 136
error classes 101–103
error reporting and recovery, see Error 137
exception handler, see Exception handler
guessing 105, 133, 137
hand built 28
invocation of 111
invoking 111
LALR(k) 29
LL(1) 26
LL(k) 27
LR(k) 29
nondeterministic 27
non-LL(k) 28
pred-LL(k) 28

recursive descent 26
semantic predicate 127

context-guard 131
SORCERER, introductory example 161
syntactic predicate 133

modified parsing strategy 135
token buffer 116
token type 91
top-down 26
tree matching 32
validating predicate 127
viable production 135

parser.dlg 91
Parsing, see Parser 25
PCCTS 24
PCCTS_AST 119, 122, 166
Predicate, see Syntactic and Semantic predicate
Predicates 127
Pred-LL(k) 28, 29
preorder 120, 123
preorder_action 120, 123
preorder_after_action 120, 124
preorder_before_action 120, 123
Production, see also Rule production 85
Production, term definition 26

R
Range operator 88, 98, 170, 173
Recognizer, see Parser
Recursive-descent parser 26
Reducing 29
Regular expression 45, 201

ambiguity detection 148
avoiding conflict, lexical classes 99
syntax 94
token definitions and 91
token type assignment 99

remap.h 84
replchar 92
replstr 92
restoreState 94
Resynchronization, see also Error 143
Return value(s) 105, 165
Return value(s), see Rule
right 119, 163
Rule

Index

308 Language Translation Using PCCTS and C++

alternative, see production
argument(s) 105
definition 85
element 85, 87, 170
embedded action 104, 181, 182
error string 86
fail-action 87, 104, 105, 108
init-action 86, 104, 107, 172
label 89
labeled reference 177
production 85, 170

viable 135
reference to 89
return value(s) 105
starting 82
subrule 170
term definition 26
warnings and errors concerning 203

S
saveState 94
Scanner, term definition 26
Semantic predicate 28, 88, 127–133

ambiguity 128
buffer overflow 204
combining multiple 132
context 130, 147
context, computing 131
context-guard 131
disambiguating 128
effect upon syntactic predicate 133
exception handler 142
fail action 128
hoisting 128
init-action, hoisting over 129
side effects 137
syntax 127, 170
use with -gk option 207
validating 127
visible 128
warnings and errors related to 208

set_begcol 93
set_endcol 93
setDown 119, 163
setEofToken 117
setInputStream 94
setRight 119, 163
setToken 112

setType 119
shallowCopy 70, 119, 163
Shifting 29
sibling_index 123, 189
Side effects 137
skip 92
SList 167
Smart pointer 114
SORAST 163, 166, 177, 191
SORASTBase 164, 166
SORCERER 24
SORCommonAST 164, 166
START 99
stdpccts.h 146, 154
STreeParser 167, 192
Subrule, see Rule
syn 118
Syntactic predicate 28, 88, 105, 133–137

backtracking 135
effect upon actions and semantic

predicates 137
effect upon grammar analysis 137
efficiency 136
infinite lookahead 135
init-action, evaluation of 135
modified parsing strategy 135
nested 136
reducing grammar analysis time 205
syntax 133, 170
viable production 135
warnings and errors related to 208

Syntax, term definition 26
Syntax-directed translation 181

T
tail 123, 189
tfree 123, 188
tmake 120, 123
Token
#ast-identifier 107
#lexclass directive 99
#tokclass directive 88
#tokdefs directive 98
#token directive 91
$token-identifier 106
ANTLRCommonToken 108
ANTLRRefCountToken 108

Index

Language Translation Using PCCTS and C++

attributes 108
buffer 111, 116
class hierarchy 112
classes 88, 97
creating an AST node from 122
definition Files 96
definitions 91
end of file, @ 92
error classes 101
garbage collection 113
identifiers 91
labeled reference 89, 170, 177
lexical class 99
not operator, ~ 88, 98
objects, referencing from actions 108
operators 88
order and ambiguities 95
range operator 88, 98, 170, 173
references 88
regular expression 91, 94
term definition 26
token_tbl 99
type 91, 99
#tokdefs directive 96, 168
C interface 149
component of ANTLRToken 112
consistency between ANTLR and

SORCERER 168, 194
definition 167
end of file, setting 117
generating 190
lexical classes and 99
not operator 98
range operator 98, 173
sample tree contents 162
user defined 96
warning concerning no associated regular

expression 201
warnings and errors concerning 201, 208
wild card 97, 170, 172

token 191
token_tbl 99
Top-down parser 26
tracein 118, 146
traceout 118, 146
trackColumns 93
-transform 182, 191
Transform mode 69
Transform mode, defining shallowCopy 119
Tree

default construction 56
matching 32
parser 35
pattern 170
transformation 42, 68

Tree, see also AST
Trigger function 49, 62
type 119, 163, 167

U
up 120

V
Viable production 135
Visible 128
Vocabulary symbol, see Token

W
Wild card 97, 170, 172

Z
Zero-or-more 87, 170
zzadvance 151
zzastnew 126
zzauto 152
zzbegcol 152
zzbegexpr 152
zzchar 151
zzclose_stream 152
ZZCOL 152
zzcr_ast 158
zzcr_attr 149
zzd_attr 108, 155
zzendcol 152
zzendexpr 152
zzerr 152
ZZLEXBUFSIZE 204, 214
zzlextext 151
zzline 151
zzmatch_wdfltsig 144
zzmk_ast 126

Index

310 Language Translation Using PCCTS and C++

zzmode 152
zzmore 151
zzrdfunc 152
zzrdstr 152
zzrdstream 152
zzreplchar 151
zzreplstr 151
zzrestore_dlg_state 152
zzsave_dlg_state 152
zzsetmatch_wdfltsig 144
zzskip 151
zzsyn 142

	Language Translation Using PCCTS and C++
	A Completely Serious, No-Nonsense, Startlingly-Accurate Autobiography

	Table of Contents
	Foreword
	Preface
	Introduction
	A Tutorial
	ANTLR Reference
	SORCERER Reference
	ANTLR Warning and Error Messages
	SORCERER Warning and Error Messages
	Templates and Quick Reference Guide
	History
	Notes for New Users of PCCTS

	Tables
	Foreword
	Preface
	1.- Introduction
	About this book
	Exactly 1800 Words On Languages and Parsing
	Bottom-up Parsers
	ANTLR
	SORCERER
	Intermediate Representations and Translation
	SORCERER Versus Hand-Coded Tree Walking
	What Is SORCERER Good At and Bad At?
	How Is SORCERER Different Than a Code-Generator Generator?

	2.- A Tutorial
	Evaluating and Differentiating Polynomials
	Language Recognition and Syntax-Directed Interpretation
	Syntax
	Vocabulary
	Semantic Actions
	Constructing and Walking ASTs
	AST Design
	Constructing ASTs
	Describing ASTs With SORCERER
	Adding Actions to Compute Polynomial Values
	Tree Transformations and Multiple SORCERER Phases
	Tree Definition
	Building Trees For Differentiation
	Differentiation Phase
	Simplification Phase
	Printing Phase
	Makefile

	3.- ANTLR Reference
	ANTLR Descriptions
	Rule Elements
	Actions
	Semantic Predicate
	Syntactic Predicate
	Tokens, Token Classes and Token Operators
	Rule References
	Labels
	AST Operators
	Exception Operator

	Multiple ANTLR Description Files
	Comments
	Parser Classes
	Rules
	Subrules (EBNF Descriptions)

	Lexical Directives
	Token Definitions
	Regular Expressions
	Token Order and Lexical Ambiguities
	Token Definition Files (#tokdefs)
	Token Classes
	Lexical Classes
	Multiple grammars, multiple lexical analyzers
	Single grammar, multiple lexical analyzers

	Lexical Actions
	Error Classes
	How ANTLR Uses Error Classes

	Actions
	Placement
	Time of Execution
	Interpretation of Action Text
	Init-Actions
	Fail Actions
	Accessing Token Objects From Grammar Actions

	C++ Interface
	The Utility of C++ Classes in Parsing
	Invoking ANTLR Parsers
	ANTLR C++ Class Hierarchy
	Token Classes
	Token Object Garbage Collection
	Scanners and Token Streams
	Token Buffer
	Parsers
	AST Classes

	Intermediate-Form Tree Construction
	Required AST Definitions
	AST Support Functions
	Operators
	Interpretation of C/C++ Actions Related to ASTs

	Predicates
	Semantic Predicates
	Validating Semantic Predicates
	Disambiguating Semantic Predicates
	Semantic Predicates Effect upon Syntactic Predicates

	Syntactic Predicates
	Syntactic Predicate Form and Meaning
	Modified Parsing Strategy
	Nested Syntactic Predicate Invocation
	Efficiency
	Effect of Syntactic Predicates on Actions and Semantic Predicates
	Syntactic Predicates effect upon Grammar Analysis

	Parser Exception Handlers
	Exception Handler Syntax
	Exception Handler Order of Execution
	Modifications to Code Generation
	Semantic Predicates and NoSemViableAlt
	Resynchronizing the Parser
	The @ Operator

	ANTLR Command Line Arguments
	DLG Command Line Arguments
	C Interface
	Invocation of C Interface Parsers
	Functions and Symbols in Lexical Actions
	Attributes Using the C Interface
	Attribute Definition and Creation
	Attribute References
	Attribute destruction
	Standard Attribute Definitions

	Interpretation of Symbols in C Actions
	AST Definitions

	4.- SORCERER Reference
	Introductory Examples
	C++ Programming Interface
	C++ Class Hierarchy

	Token Type Definitions
	Using ANTLR and SORCERER Together
	SORCERER Grammar Syntax
	Rule Definitions: Arguments and Return Values
	Special Actions
	Special Node References
	Tree Patterns
	EBNF Constructs in the Tree-Matching Environment
	Element Labels

	@-Variables
	Embedding Actions For Translation
	Embedding Actions for Tree Transformations
	Deletion
	Modification
	Augmentation

	C++ Support Classes and Functions
	Error Detection and Reporting
	Command Line Arguments
	C Programming Interface
	Invocation of C Interface SORCERER Parsers
	C Types
	C Files

	Combined Usage of ANTLR and SORCERER
	C Support Libraries
	Tree Library
	List Library
	Stack Library
	Integer Stack Library

	5.- ANTLR Warning and Error Messages
	Token and Lexical Class Definition Messages
	Warnings
	Errors

	Grammatical Messages
	Warnings
	Errors

	Implementation Messages
	Action, Attribute, and Rule Argument Messages
	Warnings
	Errors

	Command-Line Option Messages
	Warnings
	Errors

	Token and Error Class Messages
	Predicate Messages
	Warnings
	Errors

	Exception Handling Messages

	6.- SORCERER Warning and Error Messages
	Syntax Messages
	Warnings
	Errors

	Action Messages
	Warnings
	Errors

	Grammatical Messages
	Implementation Messages
	Command-Line Option Messages
	Warnings
	Errors

	Token Definition File Messages

	7.- Templates and Quick Reference Guide
	Templates
	Basic ANTLR Template
	Using ANTLR With ASTs
	Using ANTLR With SORCERER
	File: lang.g
	File: AST.h
	File: gen.sor
	File: main.cpp
	File: makefile

	Defining Your Own Tokens
	Defining Your Own Scanner
	The genmk Program
	Rules
	Rule With Multiple Alternatives
	Rule With Arguments and Return Values

	EBNF Constructs
	Subrule
	Optional Subrule
	Zero Or More Subrule
	One Or More Subrule

	Alternative Elements
	Token References
	Rule References
	Labels
	Actions
	Predicates
	Semantic Predicates
	Syntactic Predicates
	Generalized Predicate
	Tree operators

	Lexical Directives
	Parser Exception Handling
	Rule With Exception Handlers
	Token Exception Operator

	8.- History
	Appendix - Notes for New Users of PCCTS
	Where is
	Basics
	Checklist
	#token
	#tokclass
	#lexclass
	Lexical Lookahead
	Line and Column Information
	C++ Mode
	ASTs
	Rules
	Init-Actions
	Inheritance
	Syntactic Predicates
	Semantic Predicates
	Debugging Tips for New Users of PCCTS
	Switches and Options
	Multiple Source Files
	Source Code Format
	Miscellaneous
	(C Mode) LA/LATEXT and NLA/NLATEXT
	(C Mode) Execution-Time Routines
	(C Mode) Attributes
	(C Mode) ASTs
	Extended Examples and Short Descriptions of Distributed Source Code

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

