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Abstract 
 

Inverse trigonometric functions arcsin(r) and arccos(r) are obtained by integrating 
the reciprocals of the root of the polynomial 1 − t2. Based on this analogy, the 
inverse lemniscate functions arcsl(r) and arccl(r) are created by integrating the 
reciprocal of the root of the polynomial 1 − t4. The lemniscate functions are then 
extended to the Jacobi elliptic functions, which in turn are improved using the theta 
functions. However, to the best of our knowledge, the integration of the reciprocals 
of the root of the polynomial 1 − t6 has never been published. The inverse functions 
based on 1 − t6 are defined as arcsleaf3(r) and arccleaf3(r), and they were 
determined to produce waves different from those of the trigonometric and 
lemniscate functions. This paper presents the addition formulas of the artificially 
created functions sleaf3(l) and cleaf3(l). These formulas were numerically verified 
through examples. 
 
Keywords: Leaf functions, Trigonometric functions, Lemniscatic elliptic functions, 
Inverse functions, Addition formulas 
 
1 Introduction 
 
   The second derivative of a function r(l) with respect to a variable l is equal to -n  
 



times the function raised to the 2n-1 power of r(l) using this definition, an ordinary 
differential equation is constructed. Graphs with the horizontal axis as the variable 
l and the vertical axis as the variable r(l) are created by numerically solving the 
ordinary differential equation. These graphs show several regular waves with a 
specific periodicity and waveform depending on the natural number n [1] [2]. 
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The definition of the arc leaf function arcsleafn(r) is obtained by the above equation. 
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In case of n=3, the above ordinary differential equations are as follows: 
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These equations are related in the nonlinear equations (Quintic Duffing equation) 

[3]. To obtain the solution accuracy, or to grasp behavior of the solution, the 
addition formula often be demanded in the solution process [4] [5] [6]. Historically, 
the trigonomic function (in n=1 of the Eq. (1.2)) and the lemniscatic elliptic 
function (in n=2 of the Eq. (1.2)) have been discussed [7] [8] [9] [10] [11]. However, 
in case of n=3, the integration of the reciprocals of the root of the polynomial 1− t6 
has never been published. 
The variable n represents a natural number. For n = 1, the above equation is written 

as follows: 
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The function arcsin(r) represents inverse trigonometric functions. The double angle 
and the addition formulas of the function sin(l) are well known, as follows: 
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For n = 2, Eq.(1.2) is rewritten as follows: 
 
 
 



    lrarcsl
t

dt
rarcsleaf

r



 0 42

1
      (1.7) 

 
Function arcsl(r) represents the inverse lemniscatic elliptic function [12] [13] [14]. 
The double angle and the addition formulas are as follows: 
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In this study, the double angles with respect to the leaf functions sleaf3(l) and 

cleaf3(l) were derived by using the analogous of the trigonometric functions and 
lemniscatic elliptic function. Next, the addition formulas of these leaf functions 
were derived. 
 
2 Double angle 
 
2.1 Leaf function: sleaf3(l) 
 
For n = 3, the double angle is derived. Variables l1 and l2 are defined as follows: 
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Variable l1 is related to variable r1 as follows: 
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Variable l2 is related to variable r2 as follows: 
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We try to find the relationship between r1 and r2 when the following relationship 
exists. 
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The following equation is obtained by using Eqs. (2.1), (2.2), and (2.5). 
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The relationship between r1 and r2 is obtained as the double angle formula of the 
leaf function: 
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By differentiating it with respect to variable r2, the following equation is obtained. 
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The following equation is transformed by using the variable r2. 
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The following equation is obtained by using Eqs. (2.8) and (2.9). 
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The following equation is derived from the above equation. 
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Eq. (2.6) satisfies the above equation. The double angle of the leaf function is 
obtained as follows: 
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(2) In case of an inequality 
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The differentiation of the leaf function sleaf3(l) is defined by the domain of the 
variable l. The sign is defined as follows [1] [2]. 
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(2) In case of the inequality 
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The sign of the term   631 lsleaf  depends on the domain of variable l. 

Because of change in sign, it is necessary to classify Eqs. (2.12) and (2.13). 
 
2.2 Leaf function: cleaf3(l) 

 
The leaf function sleaf3(l) is related to the leaf function cleaf3(l) as follows[1] [2]: 
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Variable l in the above equation is replaced by variable 2l. 
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By substituting Eq. (2.12) or Eq. (2.13) into Eq. (2.17), we get the following 

equation. 
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When the function cleaf3(2l) is derived from Eq. (2.17), both plus and minus signs 

occur in the function cleaf3(2l). We have to choose the plus sign so that the initial 
condition, namely, cleaf3(0) =1 [1] [2] is satisfied. 
 
3 Additional formulas 
 
3.1 Leaf function: sleaf3(l1+l2) 
 
With respect to arbitrary variables l1 and l2, the following equation is satisfied. 
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The above equation is set as follows: 
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For Eqs. (3.4)–(3.6), the following equations are obtained by differentiating with 
respect to variable l1. 
 

          51323
2

23

1

13

1

211 3
,

lsleaflsleaf
l

lsleaf

l

lsleaf

l

llp












      (3.7) 

 
             

          
1

132
23

2
1323

1

133
23

1

13
23

2
13

1

212

3

3
,

l

lsleaf
lsleaflsleaflsleaf

l

lsleaf
lsleaf

l

lsleaf
lsleaflsleaf

l

llp


















      (3.8) 

 
                

             
1

132
23

2
13

2
2313

1

134
2313

1

132
23

3
13

1

213

28

816
,

l

lsleaf
lsleaflsleaflsleaflsleaf

l

lsleaf
lsleaflsleaf

l

lsleaf
lsleaflsleaf

l

llp


















 (3.9) 
 
The following equation is substituted into Eq. (3.7). 
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For Eqs. (3.4)–(3.6), the following equations are obtained by differentiating with 
respect to variable l2. 
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For Eq. (3.2), the following equation is obtained by differentiating with respect to 
variable l1. 
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Using Eqs. (3.7)–(3.9), the numerator of Eq. (3.14) is expanded as follows (see 
Appendix B): 
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On the other hand, for Eq. (3.2), the following equation is obtained by 
differentiating with respect to variable l2. 
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Using Eqs. (3.11)–(3.13), the numerator of Eq. (3.16) is expanded as follows: 
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Using the above equation, the following equation is derived. 
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The following equation that satisfies Eq. (3.18) (see Appendix A) is derived. 
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Using the initial condition sleaf3(0)=0 and ∂sleaf3(0)/∂l=1, the function g(l1+l2, 0) 
is written as follows: 
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Using Eqs. (3.19) and (3.20), the following equation is obtained. 
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The differentiation ∂sleaf3(l1)/dl1 and ∂sleaf3(l2)/dl2 depends on the domains of 

variables l1 and  l2. It is necessary to classify domains. The additional formulas can 
be summarized as follows. 
 
 
(i) In case both (4m-1)π3/2≦l1≦(4m+1)π3/2 and (4k-1)π3/2≦l2≦(4k+1)π3/2  
or both (4m+1)π3/2≦l1≦(4m+3)π3/2 and (4k+1)π3/2≦l2≦(4k+3)π3/2 (Variables 
m and k represent integers; for the constant π3, see [1][2].) 
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(ii) In case both (4m+1)π3/2≦l1≦(4m+3)π3/2 and (4k-1)π3/2≦l2≦(4k+1)π3/2  
or both (4m-1)π3/2≦l1≦(4m+1)π3/2 and (4k+1)π3/2≦l2≦(4k+3)π3/2 (Variables 
m and k represent integers) 
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3.2 Leaf function: cleaf3(l1+l2) 
 
With respect to arbitrary variables l1 and l2, the following equation is satisfied. 
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The additional formulas of the leaf function cleaf3(l1 + l2) can be similarly proved 

as described in section 3.1. The differentials ∂cleaf3(l1)/dl1 and ∂cleaf3(l2)/dl2 
depend on the domains of variables l1 and l2. It is necessary to classify domains. 
The additional formulas can be summarized as follows. 
 
(i) In case both 2kπ3≦l1≦(2k+1)π3 and (4m-1)π3/2≦l2≦(4m+1)π3/2 or 
(2k+1)π3≦l1≦(2k+2)π3 and (4m+1)π3/2≦l2≦(4m+3)π3/2 (Variables m and k 
represent integers) 
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(ii) In case both (2k+1)π3≦l1≦(2k+2)π3 and (4m-1)π3/2≦l2≦(4m+1)π3/2  
or 2kπ3≦l1≦(2k+1)π3 and (4m+1)π3/2≦l2≦(4m+3)π3/2  (Variables m and k 
represent integers) 
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4 Numerical example 
 
The numerical data of the leaf functions sleaf3(l) and cleaf3(l) are presented in 

Table 1. Using Eqs. (3.22), (3.23), (3.25), and (3.26), the values of sleaf3(l1+ l2) and 
cleaf3(l1+l2) can be calculated by using the values of sleaf3(l1), sleaf3(l2), cleaf3(l1), 
and cleaf3(l2). As an example, consider l1 = 0.2 and l2 = 0.3. 

     
 
 



Then, sleaf3(0.2+0.3) can be obtained. We have to choose Eq. (3.22) for the 
inequalities -π3/2≦0.2≦π3/2 and -π3/2≦0.3≦π3/2. By substituting l1= 0.2 and l2 
= 0.3 into Eq. (3.22), we get the following equation: 
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Therefore, the value of sleaf3(0.5) is obtained as follows: 
 

     49944.02494431.05.03.02.0 33  sleafsleaf     (4.2)  

 
Table 1 Numerical data of leaf functions sleaf3(l) and cleaf3(l) 

l sleaf3(l) cleaf3(l) l sleaf3(l) cleaf3(l) 
0.0 0.000000 1.000000 2.1 0.328621 -0.856490 
0.1 0.100000 0.985184 2.2 0.228649 -0.926290 
0.2 0.199999 0.942810 2.3 0.128651 -0.975670 
0.3 0.299984 0.878184 2.4 0.028651 -0.998770 
0.4 0.399883 0.797825 2.5 -0.071350 -0.992410 
0.5 0.499443 0.707632 2.6 -0.171350 -0.957500 
0.6 0.598009 0.611979 2.7 -0.271340 -0.898590 
0.7 0.694183 0.513647 2.8 -0.371280 -0.822090 
0.8 0.785387 0.414176 2.9 -0.470980 -0.734190 
0.9 0.867486 0.314304 3.0 -0.569930 -0.639750 
1.0 0.934768 0.214324 3.1 -0.667000 -0.541980 
1.1 0.980708 0.114325 3.2 -0.759970 -0.442740 
1.2 0.999692 0.014325 3.3 -0.845200 -0.342940 
1.3 0.989090 -0.085670 3.4 -0.917390 -0.242970 
1.4 0.950393 -0.185670 3.5 -0.970090 -0.142980 
1.5 0.888560 -0.285660 3.6 -0.997240 -0.042980 
1.6 0.810064 -0.385580 3.7 -0.995140 0.057024 
1.7 0.720972 -0.485220 3.8 -0.964110 0.157024 
1.8 0.625896 -0.583990 3.9 -0.908270 0.257019 
1.9 0.527828 -0.680640 4.0 -0.833880 0.356971 
2.0 0.428461 -0.772770 4.1 -0.747280 0.456727 

 
 
 



5 Conclusions 
  
By using the analogy of the inverse trigonometric and lemniscate functions, higher 

order of functions were artificially created as leaf functions. The following 
conclusions can be drawn from this study: 
 
・The artificially created leaf function r = sleaf3(l) corresponds to r = sin(l) and r 
= sl(l), whereas the artificially created leaf function r = cleaf3(l) corresponds to r = 
cos(l) and r = cl (l). The waves obtained from the trigonometric functions sin(l) and 
cos(l) have a periodicity of  6.28… and an amplitude of 1, while the waves obtained 
from the lemniscate functions have a periodicity of  5.24… and an amplitude of 1. 
The artificially created functions sleaf3(l) and cleaf3(l) also produce regular waves 
with 4.85…  periodicity and amplitude of 1. These functions produce waves 
different from those of both the trigonometric and lemniscate functions. The prefix 
“s” and “c” of these functions are classified by the following initial conditions: r(0) 
= 0, dr(0)/dl = 1 and r(0) = 1, dr(0)/dl = 0. 
 
・Additional formulas of leaf functions sleaf3(l1 +l2) and cleaf3(l1 +l2) were also 
derived. 
 
・The values of the leaf functions sleaf3(l1 +l2) can be numerically obtained using 
the values of sleaf3(l1), sleaf3(l2), while those of cleaf3(l1 +l2) can be obtained using 
values of sleaf3(l1), sleaf3(l2), cleaf3(l1), and cleaf3(l2) through the additional 
formulas. 
 
This study will be the first step in clarifying solution behaviors of nonlinear 
equations consisting of both the second-order differentials and the higher order 
polynomials. 
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Appendix A 
 
Let g(l1, l2) be a differentiable function. The necessary and sufficient condition for 

satisfying g(l1, l2) = g(l1+l2,0) is that    
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  holds. Function h(x,y) is 

defined as follows: 
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By differentiating the above equation with respect to y, we obtain the following 
equation. 
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Therefore, if the equation ∂g/∂l1=∂g/∂l2 holds, the following equation holds. 
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From the above equation, we find that h(x,y) is a function of x, not a function of y. 

Therefore, the following equation holds for any constants a and b. 
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Here, we set the following equation: 
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From the above two equations, the following equation is obtained. 
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The following equation is obtained by using Eqs. (A.6), (A.9), and (A.10). 
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Conversely, if the above equation holds, the following relational expression can 

be obtained by using Eqs. (A.1) and (A.11). 
 
     0,2,, xgyxyxgyxh       (A.12)

  
 
We differentiate the above equation with y. Because g(2x, 0) is a function of x and 
not a function of y, the following equation is obtained. 
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Therefore, the following equation is obtained. 
 

   
21

,,

l

yxyxg

l

yxyxg








      (A.15)

  
 
Here, we use the following equation: 
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Using Eq. (A.15), we obtain the following equation: 
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Appendix B 
 
The first term of the Eq. (3.15) is transformed as follows: 
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The following equation is applied [1] [2]. 
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