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Abstract: This paper aims to present a survey on some recent results about
one of the first problems in the calculus of variations, namely Newton’s prob-
lem of minimal resistance. Many variants of the problem can be studied, in
relation to the various admissible classes of domains under consideration and
to the different constraints that can be imposed. Here we limit ourselves es-
sentially to the convex case. Other presentations in the workshop will deal
with other kinds of domains.

1 Introduction

Finding the profile of a body that gives the minimal (aerodinamic or hydro-
dynamic) resistance to the motion is one of the first problems in the theory
of the calculus of variations. In 1685 Sir Isaac Newton studied this problem
presenting a very simple model to compute the resistance of a body mov-
ing through an inviscid and incompressible medium. In his words (from his
Principia Mathematica):

If in a rare medium, consisting of equal particles freely disposed at equal
distances from each other, a globe and a cylinder described on equal diameter
move with equal velocities in the direction of the axis of the cylinder, (then)
the resistance of the globe will be half as great as that of the cylinder. . . . I
reckon that this proposition will be not without application in the building of
ships.

The history of this problem is well documented for instance in the book by
Goldstine [12], and the problem can be roughly described as follows. Suppose
a body moves with a given constant velocity through a fluid and suppose that
the body covers a prescribed maximal cross section (orthogonal to the velocity
vector) at its rear end: find the shape of the body which provides the minimal
resistance.
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Of course, the solution depends on how we define the resistance of a body:
the assumptions that Newton made in order to simplify the problem were the
following:

• the fluid is composed by particles that are mutually independent and that
move at a constant speed and velocity parallel to the stream direction;

• the resistance is only due to the shock interactions between the fluid par-
ticles and the surface of the body, and these shocks obey to the usual laws
governing perfectly elastic shocks;

• all other effects as tangential friction, vorticity, turbulence are neglected.

The assumptions above make the Newton’s model a rather crude approx-
imation to real physics; however it appears to provide good results in the
following situations: for a body in a rarefied gas with low speed, for bodies
which move in an ideal gas with high Mach number, and for slender bodies.

The reader can find in Miele [21] a deep discussion about the conditions
under which the assumptions above are fulfilled for realistic aerodynamical
problems, as well as several variants of the Newton optimal profile problem
(see also Hayes and Probstein [14] for applications to hypersonic aerodynam-
ics).

Under the assumptions above it is easy to deduce the so-called Newtonian
sine-squared pressure law which states that the pressure coefficient is propor-
tional to sin2 ϑ, being ϑ the inclination of the body contour with respect to
the free-stream direction (see Figure 1).

P sin θ2
P sin θ

P

θ

Fig. 1. The Newtonian sine-squared pressure law

If we denote by Ω the maximal cross section (orthogonal to the free-stream
direction that we assume to be vertical downwards) and describe the front
end of the body by a function u(x), with x ∈ Ω, we obtain that the shock
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occurring at the point
(
x, u(x)

)
provides a momentum, which slows the body

down, proportional to (1+|∇u(x)|2)−1. If we further assume that each particle
hits the body only once after some easy calculations we obtain that the total
resistance functional can be expressed as

ρv2

∫
Ω

1
1 + |∇u|2

dx

where ρ is the density of the fluid and v its velocity. Introducing the integral
functional

F (u) =
∫

Ω

1
1 + |Du|2

dx

we are then reduced to study the minimization problem

min
{
F (u) : u admissible

}
. (1)

Note that the integral functional F above is neither convex nor coercive.
Therefore, obtaining an existence theorem for minimizers via the usual direct
methods of the calculus of variations, based on weak lower semicontinuity and
coercivity, may fail.

The determination of the admissible classes for problem (1) is a delicate
issue. First of all we notice that without any contraint on the admissible
functions u the problem above is meaningless: indeed, if we consider for every
integer n the profiles given by the functions

un(x) = n dist(x, ∂Ω),

we easily deduce that
lim

n→∞
F (un) = 0

and so no minimizer may exist because this would imply inf F = 0, while the
functional F only assumes strictly positive values.

Therefore a constraint on the maximal height, like 0 ≤ u ≤ M , has to be
added. However, without extra geometric assumptions, even this constraint
does not provide the existence of an optimal profile. In fact, the sequence of
functions

un(x) = M sin2(n|x|)

satisfies the constraint 0 ≤ un ≤M but we still have

lim
n→+∞

F (un) = 0,

and by the same argument used before we may conclude that again the resis-
tance functional F does not admit any minimizer in the considered class.

In order to fulfill the physical assumption that the fluid particles hit the
body only once we restrict the analysis only to convex bodies, which turns
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out to consider as admissible the functions u which are bounded and concave
on Ω. More precisely, we study the minimization problem

min
{
F (u) : 0 ≤ u ≤M, u concave on Ω

}
. (2)

We shall see in Section 3 that the concavity constraint on u is strong enough
to provide an extra compactness which implies the existence of a minimizer.
On the other hand, from the physical point of view, a motivation for this
constraint is that, thinking of the fluid as composed by many independent
particles, each particle hits the body only once. If the body is not convex, it
could happen that a particle hits the body more that once, but since F (u)
was constructed to measure only the resistance due to the first shock, it would
no longer reflect the total resistance of the body.

Other kinds of constraints different from the bound on the maximal height
0 ≤ u ≤M can be imposed on the class of nonnegative concave functions: for
instance, we may consider a bound on the surface area of the body, like∫

Ω

√
1 + |∇u|2 dx+

∫
∂Ω

u dHn−1 ≤ c,

or on its volume, like ∫
Ω

u dx ≤ c.

We refer to some recent papers [1, 15, 28] for a detailed analysis on these other
classes of convex bodies.

On the other hand, it is interesting to study the optimization of aerody-
namical profiles also in a nonconvex framework; several classes of nonconvex
bodies have been considered in the literature, with a different expression of
the total resistance functional, and we refer to [4, 9, 10, 22] for all the relative
details.

We may also define the relative resistance of a profile u, dividing the re-
sistance F (u) by the measure of the cross section Ω:

C0(u) =
F (u)
|Ω|

.

It is clear that we always have 0 ≤ C0(u) ≤ 1 and C0(u) = 1 only if u is
constant, that is the profile is flat. In particular, if the body is a half-sphere
of radius R we have u(x) =

√
R2 − |x|2 and an easy calculation gives the

relative resistance

C0(u) =
F (u)
πR2

= 0.5

as predicted by Newton in 1685. Other bodies with the same value of C0 are
illustrated in Figures 2 and 3.

In the next sections we analyze several issues about the optimization prob-
lem (2) together with a list of still open questions.
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1

1

Fig. 2. (a) half-sphere, (b) cone.

1 1

Fig. 3. (c) pyramid 1, (d) pyramid 2.

2 Radially symmetric profiles

The most studied case of the Newton problem of profile with minimal resis-
tance is when the competing functions are supposed a priori with a radial
symmetry, that is the cross section Ω is a two-dimensional disk of radius R
and the functions u which describe the profile only depend on the radial vari-
able r = |x|. This is the case considered by Newton in 1685 and studied in
many classical treatises in the calculus of variations (see for instance Funk [11],
Kneser [16], Tonelli [26]). In this case, after integration in polar coordinates,
the functional F can be written in the form

F (u) = 2π
∫ R

0

r

1 + |u′(r)|2
dr
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so that the resistance minimization problem becomes

min
{∫ R

0

r

1 + |u′(r)|2
dr : u concave, 0 ≤ u ≤M

}
. (3)

Several facts about the radial Newton problem can be shown; here we simply
list them by referring to the several papers on the subject (see References) for
all details.

• It is possible to show that the minimization problem (3) admits a solution
u which satisfies the conditions u(0) = M and u(R) = 0; moreover the
optimal radial solution is unique.

• The minimum in (3) does not change if we minimize over the larger class
of decreasing functions. Therefore problem (3) can also be written in the
form

min
{∫ R

0

r

1 + |u′(r)|2
dr : u decreasing, u(0) = M, u(R) = 0

}
. (4)

Notice that, when the function u is not absolutely continuous, the symbol
u′ under the integral in (4) stands for the absolutely continuous part of u′.

• By using the functions v(t) = u−1(M − t), problem (4) can be rewritten
in the more traditional form

min
{∫ M

0

vv′
3

1 + v′2
dr : v increasing, v(0) = 0, v(M) = R

}
. (5)

Again, when v is a general increasing function, v′ is a nonnegative measure,
and (5) has to be intended in the sense of BV functions, as∫ M

0

vv′a
3

1 + v′a
2 dt+

∫
[0,M ]

vv′s =
R2

2
−

∫ M

0

vv′a
1 + v′a

2 dt. (6)

where v′a and v′s are respectively the absolutely continuous and singular
parts of the measure v′ with respect to Lebesgue measure. The equality in
(6) has been obtained by replacing the product vv′s by vv′ − vv′a.

• The minimization problem (4) admits the following Euler-Lagrange equa-
tion in its integrated form:

ru′ = C
(
1 + u′

2)2 on {u′ 6= 0} (7)

for a suitable constant C < 0. From (7) the solution u can actually be
explicitly computed in the parametric form, obtaining u(r) = M on the
interval [0, r0] and r(t) =

r0
4t

(1 + t2)2

u(t) = M − r0
4

(
− 7

4
+

3
4
t4 + t2 − ln t

) ∀t ∈ [1, T ].
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Here the quantities r0 and T are defined through the strictly increasing
function

f(t) =
t

(1 + t2)2

(
−7

4
+

3
4
t4 + t2 − ln t

)
∀t ≥ 1

by setting:

T = f−1(M/R), r0 =
4RT

(1 + T 2)2
.

Notice that |u′(r)| > 1 for all r > r0 and that |u′(r+0 )| = 1; in particular,
the derivative |u′| never belongs to the interval ]0, 1[.

• The optimal relative resistance C0 of a radial body is then given by

C0 =
2
R2

∫ R

0

r

1 + u′2
dr

where u is the optimal solution above. We have C0 ∈ [0, 1] and it is easy
to see that C0 depends on M/R only. Some approximate calculations give

M/R = 1 M/R = 2 M/R = 3 M/R = 4
r0/R 0.35 0.12 0.048 0.023
C0 0.37 0.16 0.082 0.049

• The following asymptotic estimates as M/R→ +∞ hold:

r0/R ≈ 27
16 (M/R)−3 as M/R→ +∞

C0 ≈ 27
32 (M/R)−2 as M/R→ +∞.

(8)

• Some optimal radial shapes for different values of the ratio M/R are shown
in Figures below.

• It is interesting to notice that the optimal frustum cone, that is the frus-
tum cone with height M , cross section radius R, and minimal resistance,
is only slightly less performant than the optimal radial body computed
above. Indeed, its top radius r̂0 and its relative resistance Ĉ0 can be easily
computed, and we find:

Ĉ0 =
r̂0
R

= 1− (M/R)2

2
(√

1 + 4(M/R)−2 − 1
)
,

with asymptotic behaviour

Ĉ0 ≈ (M/R)−2 as M/R→ +∞.
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1

Fig. 4. The optimal radial shape for M = R.

2

Fig. 5. The optimal radial shape for M = 2R.

1-
2

Fig. 6. The optimal radial shape for M = R/2.
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3 The existence result

We shall see here that in the case of a general cross section Ω it is still possible
to show the existence of an optimal profile, even if little is known about its
qualitative behaviour. We shall see that a necessary condition of optimality
is that the optimal profile must be flat, in the sense that detD2u identically
vanishes where u is of class C2. In particular, when Ω is a disk, this excludes
the radial Newton solution and so the optimal solution cannot be radial. This
also shows that the solution is not unique in general. Up to now it is not
known if optimal solutions always have a flat nose and if they always assume
the value zero at the boundary.

Denoting then by CM (Ω) the class of concave functions on Ω that fulfill
the inequalities 0 ≤ u ≤M and by F the functional

F (u) =
∫

Ω

1
1 + |∇u|2

dx,

we are concerned with the minimization problem

min
{
F (u) : u ∈ CM (Ω)

}
. (9)

Note that, since every bounded concave function is locally Lipschitz contin-
uous in Ω, the functional F in (9) is well defined on CM . Moreover, as a
consequence of Fatou’s lemma, the functional F is lower semicontinuous with
respect to the strong convergence of every Sobolev space W 1,p(Ω) or also
W 1,p

loc (Ω).
The proof of the existence theorem for problem (9) relies on the following

compactness result for the class CM (Ω) (see [20]).

Lemma 1. For every M > 0 and every p < +∞ the class CM (Ω) is compact
with respect to the strong topology of W 1,p

loc (Ω).

This allows us to apply successfully the direct methods of the calculus of
variations and to obtain the following general result.

Theorem 1. Let f : Ω × R× RN → R be a function such that
(i) f is nonnegative and measurable for the σ-algebra LN ⊗ B ⊗ BN ;
(ii) for a.e. x ∈ Ω the function f(x, ·, ·) is lower semicontinuous on R× RN .
Then for every M > 0 the minimum problem

min
{∫

Ω

f(x, u,∇u) dx : u ∈ CM (Ω)
}

(10)

admits at least a solution.

Remark 1. It is interesting to notice that in the existence theorem above no
convexity assumptions with respect to ∇u on the integrand f are made. This
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is because the convexity is related to the lower semicontinuity of the cost
functional F for the weak convergence of Sobolev spaces (see for instance
Buttazzo [3]), while in our case, thanks to Lemma 1, we may work with the
strong convergence. This approach can be used in different situations and a
similar result can be obtained (see [4]), even if less justified physically, in the
larger class of superharmonic functions:

EM (Ω) =
{
u ∈ H1

loc(Ω) : 0 ≤ u ≤M, ∆u ≤ 0 in Ω
}
.

Remark 2. As already mentioned, other constraints than prescribing the max-
imal height M of the body are possible, still keeping the convexity of the
admissible bodies as a general requirement. For instance, if we prescribe a
bound V on the volume of the body, we deal with the admissible class

CV (Ω) =
{
u : Ω → R : u concave , u ≥ 0,

∫
Ω

u dx ≤ V
}
.

Alternatively, we can prescribe a bound S on the side surface of the body, so
that the admissible class becomes

C(S,Ω) =
{
u : Ω → R : u concave , u ≥ 0,

∫
Ω

√
1 + |∇u|2 dx ≤ S

}
.

In both cases we have a compactness result similar to the one of Lemma 1
and consequently an existence result similar to the one of Theorem 1. Indeed,
if u is concave its sup-norm can be estimated in terms of its integral, as it is
easily seen by comparing the body itself with the cone of equal height:

V ≥
∫

Ω

u dx ≥ (supu) meas(Ω)
N + 1

.

Then the volume class CV (Ω) is included in the height class CM (Ω) where
M = V (N + 1)/meas(Ω) and the corresponding compactness result follows
from the one of Lemma 1.
The case of surface bound is similar: indeed, the sup-norm of a concave func-
tion can be estimated in terms of the surface of its graph, as it is easily seen
by comparing again the body itself with the cone of equal height:

S ≥
∫

Ω

√
1 + |∇u|2 dx ≥ (supu)HN−1(∂Ω)

N
.

Then the surface class C(S,Ω) is included in the height class CM (Ω) where
M = SN/HN−1(∂Ω) and the corresponding compactness result again follows
from the one of Lemma 1.

Once obtained the existence result above we deal now with the question
of deducing some necessary conditions of optimality. As in the radial case, it
is possible to show that the slope |∇u| of the solution is never in ]0, 1[.
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Theorem 2. Let u be a solution of problem (9). Then for a.e. x ∈ Ω we have
that |∇u|(x) /∈]0, 1[.

The usual Euler-Lagrange equation gives the following first order necessary
condition of optimality, in the case of a general integrand f(x, s, z).

Theorem 3. Let u be a solution of problem (10); we assume that in an open
set ω ⊂ Ω the function u is smooth and belongs to the interior of the admissible
class, that is
(a) u is of class C2(ω);
(b) the maximal value M of u is not attained in ω;
(c) u is strictly concave in the sense that its Hessian matrix is positive definite.
We also assume that the integrand f(x, s, z) appearing in (10) is sufficiently
smooth. Then we have

−div
(
fz(x, u,∇u)

)
+ fs(x, u,∇u) = 0 in ω.

In the case of Newton functional we have f(x, s, z) = (1 + |z|2)−1 and the
equation above becomes

div
( ∇u

(1 + |∇u|2)2
)

= 0 in ω.

Under the assumptions of Theorem 3 we can also perform the second variation;
this gives for every test function φ∫

ω

[
fzz(x, u,∇u)∇φ∇φ+ 2fsz(x, u,∇u)φ∇φ+ fss(x, u,∇u)φ2

]
dx ≥ 0.

In particular, for the Newton functional we obtain for every φ∫
ω

2
(1 + |∇u|2)3

(
4(∇u∇φ)2 − (1 + |∇u|2)|∇φ|2

)
dx ≥ 0. (11)

Assume now for simplicity N = 2, the cross section Ω a disk of radius R
and let u be the optimal radial solution of the Newton problem computed in
Section 2; we have seen that, outside a circle of radius r0 where u ≡ M , the
function u is smooth, strictly concave, and does not attain the maximal value
M . We are then in the conditions of Theorem 3 and then, using in (11) a test
function φ of the form η(r)ψ(θ) with spt η ⊂]r0, R[, we obtain∫ R

r0

r dr

∫ 2π

0

[4|u′(r)η′(r)ψ(θ)|2(
1 + |u′(r)|2

)3 − |η′(r)ψ(θ)|2 + |η(r)ψ′(θ)|2r−2(
1 + |u′(r)|2

)2

]
dθ ≥ 0.

The same can be done using ψ(kθ) instead of ψ(θ), where k is an integer. In
this case the previous inequality becomes∫ R

r0

r dr

∫ 2π

0

[4|u′(r)η′(r)ψ(θ)|2(
1 + |u′(r)|2

)3 − |η′(r)ψ(θ)|2 + k2|η(r)ψ′(θ)|2r−2(
1 + |u′(r)|2

)2

]
dθ ≥ 0.

Letting k → +∞ gives then a contradiction and, by consequence, the following
result.
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Theorem 4. Let Ω be a circle. Then an optimal solution of the Newton prob-
lem

min
{∫

Ω

1
1 + |∇u|2

dx : u ∈ CM

}
(12)

cannot be radial.

Remark 3. An immediate consequence of the nonradiality of the optimal New-
ton solutions is that problem (12) does not have a unique solution. In fact,
rotating any nonradial solution u provides still a solution, as it is easy to
verify, and therefore the number of solutions of problem (12) is infinite. It is
not clear if a lack of symmetry in the domain Ω provides the uniqueness of
the optimal solution u.

The fact that optimal profiles with circular cross section do not need to
be radially symmetric can be also proved by exhibiting nonsymmetric pro-
files which are more performant than the optimal radial one. This was first
discovered by Guasoni in [13], who considered a body of the form

0

2

Fig. 7. A nonradial profile better than the optimal radial one.

obtained as the convex envelope of the set (Ω × {0}) ∪ (S × {M}) where S
is a segment. Choosing in a suitable way the length of the segment S which
represents the set {u = M}, we can compute the resistance of the profile and
we have, taking into account the asymptotic estimates (8) seen in Section 2,
that as M/R→ +∞

F (u) ≈ 0.77(M/R)−2 <
27
32

(M/R)−2 ≈ F (urad).
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Therefore, as M/R is large enough (larger than 2 in the Guasonio computa-
tion) the body above has a better performance than the optimal radial one,
hence the optimal profile cannot be radially symmetric.

It remains to identify the optimal solutions. Surprisingly, we have that the
optimal profiles have to be “flat” in the sense that the Hessian of optimal
solutions u vanishes. More precisely, the following result holds.

Theorem 5. Assume that u is an optimal solution for the Newton problem
(9) which is of class C2 in an open set ω ⊂ Ω and that u < M in ω. Then we
have

det∇2u ≡ 0 in ω. (13)

The proof of the result above can be easily obtained by contradiction. In
fact, if the conclusion does not hold in a point x0 ∈ ω, since u is concave and
of class C2 we must have that the Hessian matrix ∇2u is negative definite in a
neighbourhood U of x0. We may then perform the second variation argument,
obtaining ∫

U

2
[
4(∇u · ∇φ)2 − (1 + |∇u|2)|∇φ|2

]
(1 + |∇u|2)3

dx ≥ 0

for every test function φ with support in U . If a is a unitary vector orthogonal
to ∇u(x0), we choose a test function of the form

φ(x) = η(x) sin(ka · x)

where k is an integer and η is a smooth function supported in a small neigh-
bourhood of x0. Since

∇φ(x) = sin(ka · x)∇η(x) + ka cos(ka · x)η(x)

passing to the limit as k → +∞ we obtain∫
U

2
[
4(a · ∇u)2 − (1 + |∇u|2)

]
η2(x)

(1 + |∇u|2)3
dx ≥ 0

for every η. Letting now the support of η shrink to {x0} we find a contradic-
tion, since a · ∇u(x0) = 0.

Remark 4. The result of Theorem 5 gives once more the nonradiality of all
optimal solutions. Indeed, the optimal radial functions urad do not satisfy the
flatness condition (13).

The characterization of optimal Newton profiles is still an open question;
the convexity constraint makes numerical computations rather difficult. In
particular it is not clear if the upper region {u = M} has dimension two
or it reduces to a segment, and if the optimal solutions u are regular in the
region {u < M}. The numerical computations below (taken from [17]) seem
to disprove this last fact, but a rigorous proof is still missing.
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Fig. 8. A rather high optimal profile.

Fig. 9. A lower optimal profile.

Fig. 10. A still lower optimal profile.
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Fig. 11. A rather low optimal profile.
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