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Introduction

Trigonometry is a fascinating subject —— or, at least, it can be. It has lots of obvious practical uses, some of
which are actually taught in the usual trig course. And the computations aren't difficult, now that we have
calculators.

Would you believe that when | studied trig, back when dinosaurs ruled the earth (actually, in
the 1960s), to solve any problem we had to look up function values in long tables in the back
of the book, and then multiply or divide those five—place decimals by hand? The "better"
books even included tables of logs of the trig functions, so that we could save work by
adding and subtracting five—place decimals instead of multiplying and dividing them. My
College Outline Series trig book covered all of plane and spherical trigopnometry in 188
pages —— but then needed an additional 138 pages for the necessary tables!

So calculators have freed us from tedious computation. But there's still one big stumbling block in the way
many trig courses are taught: all those identities. They're just too much to memorize. (Many students despal
of understanding what's going on, so they just try to memorize everything and hope for the best at exam
time.) Is it tan2A + sec2A = 1 or tan2A = sec?A + 1? (Actually, it's neither —— see (14)!)

Fortunately, you don't have to memorize them. This paper shows you the few that you do need to memorize
and how you can produce the others as needed. I'll present some ideas of my oworatetfal insight by

W.W. Sawyer (You can reagome ideas of mine on the pros and cons of memarizing, if you like.)
Other math sites

There are a number of math sites out there: some are good, some less good. I've @altedadr so that
you may find useful.

About this document

| believe my notation should be self explanatory. But if you're puzzled, please take a loakatésngn
notation.

By the way, | love explaining things but sometimes | go on a bit too long. So I've put some interesting but
nonessential notes in a separate page and inserted hyperlinks to them at appropriate points. If you follow
them (and | hope you will), your browser's "back" command to return to the main text. Much as it pains me t
say so, if you're pressed for time you can still get all the essential points by ignoring those side notes. But
you'll miss some of the fun.

I'd be happy to hear your comments on the organization of this document, or anything else about it.

[to document contents]
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The Basic Two: Sine and Cosine

A picture is worth a thousand words (which is why it takes a thousand times as long to download). The trig
functions are nothing more than lengths of various sides of a right triangle combined in various ways.

B This is one of the conventional ways of showing
a right triangle. A key point is that the
lower—case letters a, b, ¢ are the sides opposite
to the angles marked with the corresponding
capital letters A, B, C.

sin A = opp/hyp = a/c
cos A = adj’hyp =Db/c

90°
A b C

The two fundamental definitions are marked in the diagram. These you must commit to memory, and in fact
they should become second nature to you, so that you recognize them no matter how the triangle is turned
around. Always, always, the sine of an angle is equal to the opposite side divided by the hypotenuse (opp/h
in the diagram). The cosine is equal to the adjacent side divided by the hypotenuse (adj/hyp).

memorize:

sine = (opposite side) / hypotenuse
cosine = (adjacent side) / hypotenuse

(1)

I'll number the important facts and results. The very few that you just have to memorize will
be marked "memorize".

Please don't memorize the others. The whole point of this page is to teach you how to derive
them as needed without memorizing them. If you can't think how to derive one, the boxes
should make it easy to find it. But then, please work through the explanation. | truly believe
that if you once thoroughly understand how all these identities hang together, you'll never
have to memorize them again. (It's worked for me since | first studied trig in 1965.)

What is the sine of B in the diagram? Remember opp/hyp: the opposite side is b and the hypotenuse is ¢, st
sin B = b/c. What about cos B? Remember adj/hyp: the adjacent side is a, so the cosine of B is a/c.

Do you notice that the sine of one angle is the cosine of the other? Since A+B+C = 180° for any triangle, an
C is 90°, A+B must equal 90°, so A = 90°-B and B = 90°-A. When two angles add to 90°, each is the
complement of the other, and the sine of each of the cosine of the other.
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sin A = cos(90°-A)

cos A =sin(90°-A) (2)

Expressions for lengths of sides

The definitions of sine and cosine can be rearranged a little bit to let you write down the lengths of the sides
For example, when we say that b/c = cos A , you can multiply through by c and get b = ¢ cos A. Can

you write another expression for length b, one that uses a sine instead of a cosine? Remember that opposit
over hypotenuse equals the sine, so b/c = sin B. Multiply through by ¢ and you have b = ¢ sin B.

Can you see how to write down two expressions for the length of side a? Please work from the definitions
and verify that a = ¢ sin A = c cos B.

One important special case comes up frequently. If the hypotenuse ¢ = 1, then you can see from the
paragraphs just above that a = sin A and b = cos A. In other words, in a unit right triangle the opposite

side will equal the sine and the adjacent side will equal the cosine of the angle. Try to draw this on your own
and then compare witlny diagram.

Can you see from your drawing what happens if you write down the Pythagorean theorem for a triangle
whose hypotenuse is 1? We'll explore that later.

Negative angles and supplementary angles

Some people have trouble remembering whether sine or cosine of a negative angle is negative. This diagral
should help.

{(—cosA, sinA) (cosA, sinA)

{(—cosA,—sinA) (cosA, —sinA)

Here you see four identical triangles with their angles A at the origin, arranged so that they're mirror images

4
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of each other. The hypotenuses form radii of the circle. Just to make things easy, I've drawn a circle of radiu
1. That means that the hypotenuse of each triangle is 1, so the other two sides will be sin A and cos A.
(Why? Remember that sine and cosine are defined in terms of sides divided by the hypotenuse. If the
hypotenuse is 1, the sides will be equal to the sine and cosine.)

From the diagram, you can see at once what the values of the functions are for angles of —A, 180°-A, and
180°+A.

If you don't immediately see why, for instance, cos(-A) = cos A but sin(-A) = - sin A,

let me give you a guided tour. Do you see that the two triangles on the right—hand side of the
origin must be identical? They have equal angles A and 90°, and the side between those
angles is shared, so they meet the side—angle—side requirement you learned in geometry.
That means their vertical sides must be the same length. What is that length? By definition,
sin A = opposite/hypotenuse. But the hypotenuse is 1, so the opposite sides must be equal
to sin A. But one triangle's vertical side goes up from the axis, so the sin A is positive; but
the other's goes down, so sin(-A) is negative.

The relations are summarized below. Don't memorize them! Just draw a diagram whenever you need
them —- it's easiest if you use a hypotenuse of 1. Soon you'll find that you can quickly visualize the triangles
in your mind and you won't even need to draw a diagram.

sin(-A) = -sin A cos(-A) =cos A
sin(180°-A) = sin A c0s(180°-A) = - cos A 3)
sin(180°+A) = - sin A c0s(180°+A) = - cos A

You should also see, since 360° brings you all the way around the circle, that an angle of 360°+A is the sar
as angle A, so function values are unchanged when you add 360° (or a multiple of 360°) to the angle. Also,
you move in the opposite direction for angle A, that's the same angle as 360°+(—A) or 360°-A, so the
function values of —A and 360°-A are the same.

[to document contents]

The Other Four:
Tangent, Cotangent, Secant, Cosecant

The other four functions have no real independent life of their own; they're just combinations of the first two.
You could do all of trigonometry without ever knowing more than sines and cosines. But knowing something
about the other four, especially the tangent, can often save you some steps in a calculation —— and your
teacher will expect you to know about them for exams.

| find it easiest to memorize (sorry!) the definition of the tangent in terms of the sine and cosine:

memorize:
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tan A = (sin A) / (cos A) (4)

You'll use the tangent (tan) very much more than the last three functions. (I'll get to them in a minute.)

There's an alternative way to remember the meaning of the tangent. Remember from the diagram that sin =
opposite/hypotenuse and cosdjacent/hypotenuse. Plug those into (4), the definition of tan, and you have
tan = (opposite/hypotenuse) / (adjacent/hypotenuse) or

tan = (opposite side) / (adjacent side) (5)

Notice this is not marked "memorize": you don't have to memorize it because it flows directly from the
definition (4), and in fact the two statements are equivalent. I've chosen to present them in this order to
minimize the jumble of opp, adj, and hyp among sin, cos, and tan. However, if you prefer you can memorize
(5) and then derive the equivalent identity (4) whenever you need it.

The other three trig functions —— cotangent, secant, and cosecant —— are defined in terms of the first three.
They're much less often used, but they do simplify some problems in calculus.

memorize:

cotA=1/(tan A)
sec A=1/(cos A) (6)
csc A=1/(sin A)

Guess what! That's the last trig identity you have to memorize.

You'll probably find that you end up memorizing certain other identities without even
intending to, just because you use them frequently. But (6) are the last ones that you'll have
to sit down and make a point of memorizing just on their own.

Unfortunately, those definitions (6) aren't the easiest thing in the world to remember. Does the secant equal
over the sine or 1 over the cosine? Here are two helpful hints: Each of those definitions has a co—function ol
one and only one side of the equation, so you won't be tempted to think sec A = 1/(sin A). And secant and
cosecant go together just like sine and cosine, so you won't be tempted to write cot A = 1/(sin A).

You can immediately notice an important relation between tangent and cotangent. Each is the co—function c
the other, just like sine and cosine:

tan A = cot(90°-A) )
cot A =tan(90°-A)
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If you want to prove this, take the definition of tand use (2) to substitute cos (90°-A) for sin A and
sin (90°-A) for cos A. Tangent and cotangent are co—functions just like sine and cosine. By doing the same
sort of substitution, you can show that secant and cosecant are also co—functions:

sec A = csc(90°-A)

csc A = sec(90°-A) (8)

The formulas for negative angles of tangent and the other functions drop right out of the definitions (4) and
(6), since you already know the formulas (3) for sine and cosine of negative angles. For instance, tan(-A) =
sin(=A)/cos(—A) = — sinA / cosA.

tan(-A) =-tan A
cot(-A) = - cot A
sec(-A) =sec A

csc(-A) =-csc A

(9)
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Trig Functions of Special Angles

Certain angles come up frequently, and it's worth knowing the values of the functions of those angles. Thes
special angles are 30°, 45°, and 60° (pi/6, pi/4, and pi/3). The function values for those angles are easy to
derive. Even if you choose to memorize them because they're used so often, you should still know how to
derive them at need in case you aren't quite sure of your memory.

The method for all of them is the same: draw a right triangle whose hypotenuse (side c) is 1 and whose ang
A is the desired angle. Take a look at these two diagrams:

B_B
B

Look first at the diagram at the left. It's a 45-45-90° triangle, which means sides a and b are equal. By the
Pythagorean theorem, a2 + b2 = c2. Since a=b and c = 1, we have 2a2=1 or a = sqrt(2)/2. Buta =

sin 45°, so sin 45° = sqrt(2)/2. Also, b = cos 45° and b = a, so cos 45° = sqrt(2)/2. By definition_(4) or

(5) of the tangent, tan 45° = a/b = 1.

sin 45° = cos 45° = sqrt(2)/2
tan45°=1 (20)

Now look at the other diagram. I've drawn two 30-60-90° triangles back to back, so that the two 30° angles
are next to each other. Since 2x30° = 60°, the big triangle is a 60-60-60° equilateral triangle. Each of the
small triangles has hypotenuse 1, so the length 2b is also 1, which means that b = %. But b = cos 60°, so
cos 60° = %. We can find a, which is sin 60°, using the Pythagorean theorem: (*2)2 + a2 =c2=1, so

sin 60° = sqrt(3)/2.

Since we know the sine and cosine of 60°, we can easily use (2) sin A = cos(90°-A) to get the cosine and
sine of 30°. Therefore cos 30° = sin 60° = sqrt(3)/2, and sin 30° = cos 60° = Y.
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As before, we can use definition (4) of the tangent to find the tangents of 30° and 60° from the sines and
cosines:

tan 30° = (sin 30°) / (cos 30°) = %2/ (sqrt(3)/2) = 1 / sqrt(3) = sqrt(3)/3
and tan 60° = (sin 60°) / (cos 60°) = (sqrt(3)/2) / ¥2 = sqrt(3).

The values of the trig functions of 30° and 60° can be summarized like this:

sin 30° = %, sin 60° = sqrt(3)/2
cos 30° = sqrt(3)/2, cos 60° =% (11)
tan 30° = sqrt(3)/3, tan 60° = sqgrt(3)

Incidentally, the sines and cosines of 30°, 45°, and 60° display a pleasing pattern:

sin 30°, 45°, 60° = sqrt(1)/2, sqrt(2)/2, sqrt(3)/2

cos 30°, 45°, 60° = sqrt(3)/2, sqrt(2)/2, sqrt(1)/2 (12)

It's not surprising that the cosine pattern is a mirror image of the sine pattern, since sin(90°-A) = cos A.

[to document contents]

The "Squared" Identities

As | said earlier, | think the problem with the identities is that students are expected to memorize all of them.
But really you don't have to, because they're all just forms of the two or three basic identities.

For example, let's start with the really basic identity:

Sin?2A + cos?A =1 (13)

That one's easy to remember: it involves only the basic sine and cosine, and you can't get the order wrong
unless you try.

But you don't even have to remember it, since it's really just another form of the Pythagorean theorem. (You
do remember that, | hope?) Just think about the basic triangle with a hypotenuse of one unit.
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sin A

90°

A
cos A

First convince yourself that the figure is right, and that there's no magic to it. The basic definition is sin A =
opposite/hypotenuse; but if the hypotenuse is 1 then sin A equals the opposite side. Similar reasoning show
that cos A equals the adjacent side. Now write down the Pythagorean theorem for this triangle. Voila!

What's nice is that you can get the other "squared" identities from this one, and you don't have to memorize
any of them.

For example, what about the riddle we started with, the relation between tanz and sec?? Take sin2A +
cos?A = 1. If you want taA, remember the definition (4) of the tangent. For tan2 you need (sin/cos)2 or
sin?/co8. So divide (13) through by cos2A to get

[(sin A)/(cos A)]?2 + [(cos A)/(cos A)J? = [1/(cos A)J?

or, using_(4) tan A=sin A/cos A and (6) sec A = 1/cos A,

tan2A + 1 = sec?A (14)

You should be able to work out the third identity (involving cot? and csc?) easily enough. You can either start
with (14) above and use the co—function rulesd@yl_(8) or start with (13) and divide by something
appropriate. Either way, check to make sure that you get

COt?A+1=csc?A (15)

[to document contents]

Sums and Differences of Angles

Formulas for cos(A+B), sin(A—B), and so on are important but hard to remember. It's possible to derive then
by strictly trigopnometric means, but such means are lengthy, too hard to reproduce when you're in the middl
of an exam or of some long calculation.

This brings us to W.W. Sawyer's marvelous idea, as expressed in chapter 15 of Mathematician's
Delight (1943; reprinted by Penguin Books, 1991). He shows how you can derive the sum and difference

10
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formulas by ordinary algebra and one simple formula.

The ordinary algebra is simply the rules for combining powers:

xaxb = ya+b

(Xa)b - Xab (16)

Euler's formula
You may already know the "simple formula" that | mentioned above. It's

memorize:

cos X +isinx =& a7

The formula is not Sawyer's, by the way; it's commonly called Euler's formula. | don't even know whether the
idea of using Euler's formula to get the sine and cosine of sum and difference is original with Sawyer. But I'n
going to give him credit, since his explanation is simple and clear and I've never seen it explained in this wa
anywhere else.

I've marked Euler's formula (17memarize". Although it's not hard to derive (and Sawyer ddesifew
steps by means of power series), you have to start somewhere. And that formula has so many other
applications that it's well worth committing to memaory. For instance, you can use it to geitthef a

complex numbeand thdogarithm of a negative number.
Sine and cosine of a sum

Okay, back to Sawyer's idea. What happens if you substituteHB in (17) above? You get
cos(A+B) + i sin(A+B) = é+B
Hmmm, this looks interesting, because it involves exactly what we're looking for, cos(A+B) and sin(A+B).
Can you simplify the right-hand side? Use (&6y then (17) to rewrite it:
gA+iB = A @B = (cos A + i sin A)(cos B + i sin B)
Now multiply that out and set it equal to the original left-hand side:
cos(A+B) + i sin(A+B) = (cosA cosB - sinA sinB) + i(sinA cosB + cosA sinB)

But if two complex numbers a+bi and c+di are equal, the real and imaginary parts must be separately equal
(a=c and b=d). So the above equation is actually two equations, neither of them involving i:

cos(A+B) = cosA cosB - sinA sinB

sin(A+B) = sinA cosB + cosA sinB (18)

11
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In just a few short steps, the formulas for cos(A+B) an@hsiB) flow right from Euler's equation (17) for
€X. No more need to memorize which one has the minus sign and how all the sines and cosines fit on the
right-hand side: all you have to do is a couple of substitutions and a multiply.

Sine and cosine of a difference

What about the formulas for the differences of angles? You can write them down at once from (18) by
substituting —B for B and using (3). Or, if you prefer, you can get them by substituting x = A-B in
(17) above. Either way, you get

CO0S(A-B) = cosA cosB + sinA sinB

sin(A—B) = sinA cosB - cosA sinB (19)

Some geometric proofs

| personally find the algebraic reasoning given above very easy to follow, though you do have to remember
Euler's formula. If you prefer geometric derivations of sin(A+B) and cos(A£B), there is a good set at
http://saturn.math.uaa.alaska.edu/~smiley/trigproofs.html. (Thanks to Phil Kenny

for the URL.)

Tangent of a sum or difference

Sometimes (not very often) you have to deal with the tangent of the sum or difference of two angles. | have
only a vague idea of the formula, but it's easy enough to work out "on the fly":

tan(A+B) = sin(A+B) / cos(A+B) = (sinA cosB + cosA sinB) / (cosA cosB — sinA sinB)
What a mishmash! There's no way to factor that and remove common terms —— or is there? Suppose you st
with a vague idea that you'd like to know tan(A+B) in terms of tan A and tan B rather than all those sines
and cosines. The numerator and denominator contain sines and cosines, so if you divide by cosines you'd
expect to end up with sines or perhaps sines over cosines. But sine/cosine is tangent, so this seems a
promising line of attack. Since you've got cosines of angles A and B to contend with, try dividing the
numerator and denominator of the fraction by cosA cosB. This gives

tan(A+B) = (sinA/cosA + sinB/cosB) / (1 — sinAsinB/cosAcosB)

Hmmm, looks like this is the right track. Simplify it using the definition (4) of tgrand you have

tan(A+B) = (tanA + tanB) / (1 - tanA tanB) (20)

And if you replace B with —B, you have the formula for tan(A-B). (Take a minute to review why tan(-x) =
—tan(x).)

tan(A-B) = (tanA - tanB) / (1 + tanA tanB) (21)

12
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Double Angles and Half Angles

Once you have the formulas (1a8)d_(20) for sums of angles, you can easily write down the formulas for
double angles, simply by replacing B with A so that you have A+A or 2A.

Sine and cosine of a double angle

Start with the sine. You have
sin(2A) = sin(A+A) = sinA cosA + cosA sinA = 2 sinA cosA

The cosine formula is just as easy:
€0s(2A) = cos(A+A) = coSACOoSA — sinA sinA = c0s?A — sinzA
Though this is valid, it's not satisfying. It would be nice if we had a formula for cos(2A) in terms of just a
sine or just a cosine. Fortunately, we can use sin2 + cos2 = 1 to eliminate either the sine or the cosine from
that formula:
c0s(2A) = cos?A - sin?A = cos?A — (1 — cos?A) =2 cos?A -1
c0s(2A) = cos?A — sin?A = (1 - sin?A) — sinfA =1 - 2 sin?A

On different occasions you'll have occasion to use all three forms of the formula for cos(2A). Don't worry too
much about where the minus signs and 1s go; just remember that you can always transform any of them int
the others by using good old sinz + cos2 = 1.

Sin(2A) = 2 sinA cosA

CcoS(2A) = Cc0s?A —sin?A = 2c0s,A -1 = 1 -2sin?A (22)

There'sa very cool second proof these formulas, usirfawyer's marvelous idea.
Tangent of a double angle

To get the formula for t§@A), you can either take (20) and put B = A to get @A), or use_(22) for
sin(2A) / cos(2A) and then divide the result through by cos2A/cos2A. Either way, you get

tan(2A) = 2 tanA / (1 - tanzA) (23)
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Sine and cosine of half angles

What about the formulas for sine, cosine, and tangent of half an angle? Since A = (2A)/2, we'd expect the
double—angle formulas (22nd_(23) to be some use. And indeed they are, though you have to pick carefully.

For instance, sin(2A) isn't much help. Put B = A/2 and you have
sin B = 2 sin(B/2) cos(B/2)
It's true enough, but there's no easy way to solve for sin(B/2) or cos(B/2).

There's much more help in the formulas (22) for cos(2A). Put B = A/2 and you get
cos B = cos?(B/2) —sin3(B/2) = 2cos?3(B/2) -1 = 1 - 2sin¥B/2)
Use just the first and last parts of that:
cos B =1 -2 sin3(B/2)
Rearrange a bit:
sin(B/2)=(1-cosB)/2
and take the square root
sin(B/2) = £ sqrt[(1 — cos B) / 2]

You need the plus or minus sign because sin(B/2) may be positive or negative, depending on B. For any
given B (or B/2) there will be only one correct sign, which you already know from the diagram. For instance,
if B = 280°, then B/2 = 140°, and you know that sin 140° is positive.

To find cos(B/2), start with a different piece of the(@é9 formula_(22):
cos(2A) =2 costA -1
and put B = A/2 to get
cosB=2cos?3B/2) -1
Rearrange and solve for cos(B/2):
cos?(B/2) =1 +cos B
cos(B/2) = + sqrt[(1 + cos B) / 2]

You have to pick the correct sign for cos(B/2) depending on the value of B/2, just as you did with sin(B/2).
But of course the sign of the sine is not always the sign of the cosine.

sin(B/2) = + sqrt[(1 - cos B)/2]

cos(B/2) = = sqrt[(1 + cos B)/2] (24)

Tangent of a half angle

Finally, you can find ta(B/2) in the usual way, dividing sine by cosine from (24):
tan(B/2) = sin(B/2)/cos(B/2) = + sqrt[(1 — cos B)/(1 + cos B)]

In the sine and cosine formulas you can't avoid the square root, but in the tangent formula you can eliminate
it. Multiply top and bottom by (1 + cosB) and then use (13) good old sin2 + cos? = 1:

sqrt[(1 — cos B) / (1 + cos B)] = sqrt[(1 — cosB)(1 + cos B) / (1 + cos B)?q] =

sqrt(1 — cos2B) / (1 + cos B) = sqrt(sin?B) / (1 + cos B) =sin B/ (1 + cos B)
If instead you multiply top and bottom by 1 — cos B, you get

sqrt[(1 — cos B) / (1 + cos B)] = sqrt[(1 — cos B)2/ (1 + cos B)(1 — cos B)] =

(1 —cos B) /sqgrt(1 — cos?B) = (1 — cos B) / sqgrt(sin?B) = (1 — cos B) / sin B
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We can summarize the half-angle tangent formulas like this:

tan(B/2) = (L -cosB)/sinB = sinB/ (1 + cos B) (25)

You may wonder what happened to the plus or minus sign in tan(B/2). Fortuitously, it drops out. Since cos E
is always between -1 and +1, (1 — cos B) and (1 + cos B) are both positive for any B. And the sine of
any angle always has the same sign as the tangent of the corresponding half-angle.

Don't take my word for that last statement, please. There are only four possibilities, and they're easy enougt
to work out in a table:

B/2 >0°<90° | >90° <180° >180°, < 270° > 270°, < 360°

tan(B/2) + - + -

> 360°, < 540° > 540°, < 720°

B > 07, <180°%| > 1807 <360 same as 0° to 180f same as 180° to 360°

sin B + - + -

Of course, you can ignore the whole matter of the sign of the sine and just assign the proper sign when you
the computation.

Another question you may have about formula (25): what happens if cos B = -1, so that (1 +

cos B) = 0? Don't we have division by zero then? Well, take a little closer look at those circumstances. The
angles B for which cos B = -1 are £180°, £540°, and so on. But in this case the half angles B/2 are £90°,
+270°, and so on: angles for which the tangent is not defined anyway. So the problem of division by zero
never arises.

And in the other formula, sin B = 0 is not a problem. Excluding the cases where cos B = -1, this
corresponds to B = 0°, £360°, £720°, etc. But the half angles B/2 are 0°, +180°, +360°, and so on. For all of
them, tariB/2) = 0, as you can verify from the second half of formula (25).
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Solving Triangles

So far we've talked about only right triangles. But in the real world, triangles don't always have 90° angles. I
many contexts, you'll know some of the sides and angles of an oblique triangle and need to find one or more
of the other sides or angles. This is known as "solving" the triangle.

For instance, suppose you have a triangle where one side has a length of 180, an adjacent angle is 42°, an
the opposite angle is 31°. You're asked to find the other angle and the other two sides.

It's always a good idea to draw a rough

sketch, like this one. Not only does it help

you to organize your solution process better,

but it can help you check your work. For 180
instance, since the 31° angle is the smallest,

you know that the opposite side must also be

the shortest. If you were to come up with an

answer of, say, 110 for one of the other 31° 42°
sides, you'd know at once that you had made
a mistake somewhere.

How would you go about solving that triangle? It's not immediately obvious, | agree. But maybe we can get
some help from some useful general techniques in problem solving:

» Can you draw a diagram?

« Can you use what you already know to solve a piece of this problem, or a related problem?

« If you have a specific case, can you solve a more general problem? (Sometimes it works the other
way, too, where taking a specific example points out a good technique for solving a general
problem.)

We've already got the diagram, but let's see if those other techniques will be helpful. (By the way, they're no
original with me, but are frora terrific book on problem-solving technigues that | think you should know
about.

"Can you use what you already know to solve a piece of this problem?" For example, if this were a right
triangle you'd know right away how to write down thegths of sides in terms of sines or cosines. But it's

not a right triangle, alas. Is there any way to turn it into a right triangle? Not exactly, but if you construct a
line at right angles to one side and passing through the opposite vertex, you'll have two right triangles. Mayt
solving those right triangles will show how to solve the triangle you're really interested in.
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This diagram shows the same triangle after |
C drew just such a perpendicular. I've also
used another principle ("Can you solve a
more general problem?") and replaced the
specific numbers with the usual letters for
sides and angles. Dropping perpendicular
CD in the diagram divides the big triangle
a0° (which you don't know how to solve) into
A B two right triangles ACD and BCD, with a
D common side CD. And you can solve those
right triangles.

We're going to use this simple diagram to develop two important tools for solving triangles: the law of sines
and the law of cosines. Just drawing this one perpendicular line will show you how to solve not just the
triangle we started with, but any triangle. (Some trig courses teach other laws like the law of tangents and th
law of segments. I'm going to ignore them because you can solve triangles just fine without them.)

[to document contents]

Law of sines

The law of sines is simple and beautiful and easy to derive. It's useful when you know two angles and any
side of a triangle, or sometimes when you know two sides and one angle.

Let's start by writing down things we know that relate the sides and angles of the two right triangles. You
remember how to write down thengths of the legs of a right triangle? The leg is always equal to the
hypotenuse times either the cosine of the adjacent angle or the sine of the opposite angle. (If that looks like
just empty words to you, or even if you're not 100% confident about it, please go baekiandthe

diagram and text until you feel confident.)

In the diagram above, look at triangle ADC at the left: the right angle is at D and the hypotenuse is b. We
don't know how much of original angle C is in this triangle, so we can't use C to find the lengths of any sides
What can we write down using angle A? By using its cosine and sine we can write the lengths of both legs ¢
the triangle:

AD =bcos A and CD=bsinA
By the same reasoning, in the other triangle you have

DB =acosB and CD=asinB

This is striking: you see two different expressions for the length CD. But things that are equal to the same
thing are equal to each other. So

bsinA=asinB
Divide through by sinA and you have the solution, b = a sinB / sinA. In this case, plugging in the numbers
tells you that b = 180 x sin 42° / sin 31°, or about 234.

What about the third angle, C, and the third side, c? Well, when you have two angles of a triangle you can
find the third one easily by using A+B+C = 180°, or C = 180°-A-B. This gives C = 107°.

As for the third side, there are a couple of ways to go. You wrote expressions above for AD and DB, and yol
know that c = AD+DB, so you could compute ¢c = b cos A + a cos B. But that's two multiplies and an

add, a bit more complicated than the one multiply and one divide to find side b. I'm lazy, and | like to reduce
the amount of tapping | do on my calculator. Is there an easier way, even if just slightly easier?
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Yes, there is. Go back a step, to a sin B = b sin A. Divide through by sinA sinB to get

a/sinA =b/sinB
But there's nothing special about the two angles A and B. You could just as well have dropped a
perpendicular from A to BC or from B to AC. (For this particular triangle, C > 90°, so the other
perpendiculars would be outside the original triangle rather than inside, but all the algebra would still be the
same.)

Once again, this is the same triangle. But
here I've dropped a perpendicular from B to
the extension of side AC. Here the two right
triangles ABD and CBD are overlapping,
but they still share the side BD. By the way,
the angle in triangle CBD is not C but
180°-C, the supplement of C. Angle C
belongs to the original triangle ABC.

B

A

You can write the length of the common side as BD = a sin(180-C) = ¢ sinA. But sin(180-C) = sin C,
so you have a sin C =c sin A.

It's nice that the derivation doesn't take into account obtuse versus acute triangles. As you see, when an
obtuse angle is involved some dropped perpendicular will lie outside the original triangle, and in that case th
derivation uses 180° minus an angle of the original triangle. But since sigsin(180°-x), you end up with

the same form of the law whether the perpendicular is inside or outside the triangle, whether all three angles
are acute or one is obtuse.

Divide through by sinA sinC and you have
al/sinC = c/sinA
But from above, you already know that
al/sinA = b/sinB
Once again, things that are equal to the same thing are equal to each other, so you have the standard form
the law of sines:

a/sinA = b/sinB = c/sinC (26)

This is very simple and beautiful: for any triangle, if you divide any of the three sides by the sine of the
opposite angle, you'll get the same result. This law is valid for any triangle.

The law of sines is sometimes given upside down:
sinA/a = sinB/b = sinC/c

Of course that's the same law, just as 2/3 = 6/9 and 3/2 = 9/6 are the same statement. Work
with it either way and you'll come up with the same answers.
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You can derive the law of sines at need, so | don't specifically recommend memorizing it. But it's so simple
and beautiful that it's pretty hard not to memorize if you use it at all. It's also pretty hard to remember it
wrong: there are no alternating plus and minus signs or combinations of different functions.

Be careful with the law of sines in the angle—side—side case, where you know two sides and an angle other
than the one between them. In the other cases you use the law of sines to find lengths of sides, and you get
unique solution. But with angle-side-side, you use the law of sines to find the sine of an angle. Since

sin A = sin(180°-A), there could be two angles A for any given value of sin A. So in the angle-side-side
case, there may be two different triangles that fit the facts. Please see the discussion and example below, a
the table in the section @olving triangles.

[to document contents]

Law of cosines

The law of sines is fine when you can relate sides and angles. But suppose you know three sides of the
triangle and have to find the three angles? The law of sines is no good for that because it relates two sides :
their opposite angles. If you don't know any angles, you have an equation with two unknowns and you can't
solve it.

But a triangle can be solved when you know
C all three sides; you just need a different tool.
And knowing me, you can be sure I'm going
to help you develop one! It's called the law
b of cosines.

90°
A B
D

Suppose the three sides are a = 180, b = 238, ¢ = 340.

You may remember that when we first looked at this picture, we pulled out information using both the sine
and the cosine of the two angles. We used the sine information to develop the law of sines, but we never we
anywhere with the cosine information, which was

AD =bcos A and DB =acosB

Let's see where that can lead us. You remember that the way we came up with the law of sines was to write
two equations that featured the length of the construction line CD, and then combine the equations to
eliminate CD. Can we do anything like that here?

Well, we know the other two sides of those right triangles, so we can write an expression for the height CD
using the Pythagorean theorem —— actually, two expressions, one for each triangle.
a2 = (CD)? + (BD)?
b2 = (CD)2 + (AD)?
Solving each of them for (CD)?2 and setting them equal, we have
a2 - (BD)2 = b2 — (AD)?
Substitute the known values of BD and AD in terms of angles and sides of the original triangle, and you hav
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a2 — b2cos?A = b? — a2cos?B
Bzzt! No good! That uses two sides and two angles, but we need an equation in three sides and one angle,
that we can solve for that angle. Let's back up a step, to
az - (BD)? = b2 - (AD)?,
and see if we can go in a different direction.

Maybe the problem is in treating BD and AD as separate entities when actually they're parts of the same line
Since BD+AD = ¢, we can write BD = c—AD = ¢ — b cosA. Notice this brings in the third side, c, and
stops using one of the angles B. Substituting, we now have
a2 — (c — b cosA)? = b2 - (b cosA)?
This looks worse than the other one, but actually it's better because it's what we're looking for: an equation
for the three sides and one angle. We can solve it with a little algebra:
a2 — c2 + 2bc cosA - b?cos?A = b? - b? cos?A
a2 — c2 + 2bc cosA = b?
2bc cos A =b2+c? - a?
cos A= (b?+c?2-a?)/2bc

We were a long time getting there, but finally we made it. now we can plug in the lengths of the sides and
come up with a value for cos A, which in turn will tell us angle A. Do the same thing to find the second
angle (or use the law of sines, since it's less work), then subtract the two known angles from 180° to find the
third angle.

If we had substituted AD = c-BD instead of the other way around, we would have obtained the same law bu
for a different angle:

cos B=(c?2+az-Db?/2ac
And if we'd picked one of the other two perpendiculars to start the whole process, we'd have got the law of
cosines for angle C:

cos C=(az+b%2-c?)/2ab
Just for fun, let's plug in the known sides and find angle C.

cos C = (1802 + 2382 — 340?) / 2x180%x238 = - 0.309944

Don't be surprised at the negative number. Remembertfreniagram that cos A 0 when A is between
90° and 180°. Because the cosine has unique values all the way from 0° to 180°, you never have to worry
about multiple solutions of a triangle when you use the law of cosines. In this case, C is about 108°.

There's another well-known form of the law of cosines, which may be a bit easier to remember. Start with
the above form, multiply through by 2ab, and isolate ¢ on one side to get

c2=a?+bh2-2abcosC
Notice the arrangement: side c is opposite angle C in the triangle, and they're at opposite ends of this
equation. Sides a and b are adjacent to angle C both in the triangle and in the equatiagnotddwveughts

on remembering the law of cosines.

Depending on how you're using it, you may need the law of cosines in either of the two forms that we've
obtained, the first form for finding an angle and the second form for finding a side. Here's a summary of botf
forms:

cosC=(az+b2-c?)/2ab

c2=a2+b2-2abcosC (27)
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Detective work: solving all types of triangles

If you've got the law of sines and the law of cosines under your belt, you can solve any triangle that can be
solved. (Some sets of givens lead to an impossible situation, like a "triangle" with sides 3—-4-9.)

In this section I'll run down the various possibilities and give you some pointers. I'll just reprint the law of
sines and both forms of the law of cosines here so we'll have them in one place:

al/sinA =Db/sinB =c/sinC (28)
cosC=(az+b2-c?)/2ab (29)
c2=a?+h2-2abcosC (30)

Now whenever you have to solve a triangle, think about what you have and then think about which formula
you can use to get what you need. (When you have two angles, you can always find the third by A+B+C =
180°, so I'm not going to mention that.)

I'm not presenting the following table for you to memorize. Instead, what | hope to do is show you that
between the law of sines and the law of cosines you can solve any triangle, and that you simply pick which
law to use based on which one has just one unknown and otherwise uses information you already have. Yo
should see from working with the formulas that

« if you have a side and its opposite angle (plus any other angle or side) you can use the law of sines:
find the next piece of information; but

« if you have two sides and the included angle, or three sides and no angles, you need to use a form c
the law of cosines.

The table is just an exhaustive elaboration of those two principles, so you probably don't even need to read
<grin>

If you know this... You can solve the triangle this way...
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three angles

There's not enough information. Without at least one side you have the shape
triangle, but no way to scale it correctly. For example, the same angles could ¢
you a triangle with 7/12/13, 35/60/65, or any multiple.

of the
ve

two angles and a
non-included side
(angle—angle-side

If the side is not between the angles it must be opposite one of them, so you ¢
the law of sines (28) to find a second side, then find the third angle and use th
of sines again to find the third side.

AN use
b law

two angles and theg
included side
(angle-side—angle

Always use the law of sines (28) if you can, because it uses fewer operations than

the law of cosines. You need an opposite angle to a known side, so first find th
third angle and then use (28) twice to find the other two sides.

e

two sides and the
included angle
(side—angle-side)

This is tailor made for the second form (30) of the law of cosines, because the
right-hand side works with two sides and the included angle. Use it to find the
side. Now you have three sides and an angle opposite one of them, so you ca
either the law of sines (28 the law of cosines (29) to find the second angle.

third
N use

If the angle is not between the two known sides then it must be opposite one g

angle.

them. Whenever you have an angle and an opposite side, the law of sines (28) is
: likely to be your easiest route. You can use it twice, once to get a second angle and
two sides and a N
. once to get the third side.

non-included angle

(angle—side-side) BuL..
This case may have no solutions, one solutions, or two solutions. See more dgtails
after the table.
With the first form_(29) of the law of cosines you use all the sides to compute gne

three sides angle. Use that angle and its opposite side in the law of sines (28) to find the second

Special note: angle-side-side

This case can be tricky, as the

diagram shows. Suppose you know
angle B and sides a and b. The
given facts fit two different
triangles. Why? because when you

C

use the law of sines to find sin A,

there are two possible solutions for
angle A, one being 180° minus theA

B A B

other. The same is true for angle C.

If the known angle is >= 90°, the other two angles must be < 90°, so you have a unique solution to the

triangle. But if the known angle is < 90°, like angle B in the picture, you have enough information only to
narrow the triangle down to two possibilities.

Has thdaw of sines failed? No, the problem is that the two angles C in the picture have the same sine, and
the two angles A have the same sine. (Remember (3): sin(180°-A) = sin A.) To solve this triangle you need
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some more information: specifically, you need to know which is the largest angle, either because you're told
it explicitly or because it's implied by other facts you know. For instance, if you know angle B and sides a
and b, and b > a (which is not true in the picture), then you would know angle B > angle A, so A 90°; once
you got A you could find C = 180°-A-B and then find side c. But in this particular case all you can do is
give both possible solutions, because there's not enough information to choose between them.

Short and sweet advice: always draw a picture. If you can draw two pictures that both fit all the available
facts, you have two legitimate solutions. If only one picture fits all the facts, it will show you which angle (if
any) is > 90°.

[to document contents]
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Inverse Functions

Sometimes you have a sine or cosine or tangent and need to find the associated angle. For instance, this
happens whenever ya@olve a triangle. When you have a sine function value and find the corresponding
angle, you are finding the arc sine or inverse sine of that value, and similarly for the other functions.

Different books use different notation: sin with a superscript —1, or arcsin. | prefer the "arc" forms because
the superscript —1 looks too much like an exponent.

[to document contents]

Principal values

What is arcsi0.5)? You probably recognize that 0.5 is ¥2, and it must be a sine of onespétti@ angles.
In fact (11), sin(30°) = %. So you can say that arcsin(0.5) = 30° or pi/6.

But wait, there's more! You know from equations (3) that
sin(30°) = sin(150°) = sin(390°) = sin(-210°)
and so on; they all equal Y.
In fact,
sin(30° + 360°k) = sin(150° + 360°k) = 0.5 for all integer k
So which of this infinite number of values is the arc sine?

To make an arc sine function, we have to restrict the range so that each number has at most one arc sine. (
don't say "one and only one arc sine." The sine of any angle is between -1 and +1 inclusive; therefore only
those numbers have arc sines.) The arc sine is defined so that its range is the interval [—pi/2;+pi/2], which is
the same as [-90°;+90°]. The capital letter (Arcsin) distinguishes this function from the multi-valued relation
(arcsin). So we could say

arcsin(0.5) = pi/6+2k*pi or 5pi/6+2k*pi for all integer k
but

Arcsin(0.5) = pi/6

Why the particular range —pi/2 to +pi/2? To start with, it seems tidy that any arc function of a positive
number should fall in Quadrant I, [0;+pi/2]. So the only real question is arc functions of negative numbers. If
we prefer the numerically smallest values for the arc sine function, then Arcsin(-0.5) = —30° = —pi/6 fits

that rule, and a negative number's arc sine (and arc tangent, too) will be in Quadrant IV, [-pi/2;0].

What about the arc cosine? The cosine is positive in both Quadrant | and Quadrant IV, so the arc cosine of
negative number must fall in Quadrant Il or Quadrant Ill. Thomas (Calculus and Analytic Geometry, 4th
edition) resolves this in a neat way. Remember (2) that

cos A =sin(pi/2 - A)
It makes a nice symmetry to write

Arccos x = pi/2 — Arcsin X
And that is how Thomas defines the inverse cosine function. Since the range ofsttesinlosed
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interval [-pi/2;+pi/2], the range of Arccos is [O;pi].

Thomas defines the arc secant and arc cosecant functions using the reciprocal relationships (6):
sec x = 1/(cosx) ==> Arcsec x = Arccos(1/x)
csc x =1/(sinx) ==> Arccsc x = Arcsin(1/x)

This means that Arcsec and Arccsc have the same ranges as Arccos and Arcsin.

The arc cotangent could be defined as
cotx =1/(tanx) ==>  Arccot x = Arctan(1/x)
which makes Arcct® range the messy union of twpen intervals (—pi/2;0) and (0;+pi/2). But most authors
define it as
cotx =tan(pi/2—-x) ==> Arccot x = pi/2 — Arctan X
which gives the single open interval (O;pi) as the range.

Here are the domains and ranges of all six inverse trig functions:

function derived from domain range
Arcsin inverse of sine function [-1;+1] [-pi/2;+pi/2]
Arccos | Arccos x = pi/2 — Arcsin x | [-1;+1] [0;pi]
Arctan | inverse of tangent function| all reals (—pi/2;+pil2)
Arccot | Arccot x = pi/2 — Arctan x | all reals (O;pi)
Arcsec | Arcsec x = Arccos(1/x) reals except (-1;+1] [O;pi]
Arccsc | Arcesc x = Arcsin(1/x) reals except (—1;+1) [-pi/2;+pi/2]

Remember that the relations are many—valued, not limited to the above ranges of the functions. If you see tl
capital A in the function name, you know you're talking about the function; otherwise you have to depend on
context.

[to document contents]

Functions of arc functions

Sometimes you have to evaluate expressions like

cos( Arctan x )
That looks scary, but actually it's a piece of cake. You can simplify any trig function of any inverse function
in a few easy steps, using the method in the following examplesindnary of the method follows the
examples.)

Example 1: cos(Arctan x)
It may be helpful to read the expression out in words: "the cosine of Arctan x." Doesn't help much? Well,
remember what Arctan x is. It's the (principal) angle whose tangent is X. So what you have to find reads as

"the cosine of the angle whose tangent is x." And that suggests your plan of attack: first identify that angle,

26


#Contents

Part 5 of Trig without Tears

then find its cosine.

Let's give a name to that "angle whose". Call it A:
A = Arctan x
from which you know that
tan A =X
So now all you have to do is find cos A, and that's easy if you draw a little picture.

Start by drawing a right triangle, and mark one acute angle as A.

Using the definition of A, write down the lengths of two sides of the triangle.

Since tan A = x, and the definition of tangent is opposite side over adjacent

A side, the simplest choice is to label the opposite side x and the adjacent side
1 1. Then, by definition, tan A = x/1 = x.

X

The next step is to find the third side. Here you know the two legs, so you

use the theorem of Pythagoras to find the hypotenuse, sqrt(1+x32). (For some 5
problems, you'll know one leg and the hypotenuse, and you'll use the 1+x
theorem to find the other leg.)

A

Once you have all three sides' lengths, you can write down the value of any function of A. In this case you
need cos A, which is adjacent side over hypotenuse.
cos A = 1/sqrt(1+x?)
But cos A = cos(Arctan x), and therefore
cos( Arctan x ) = 1/sqrt(1+x?)
and there's your answer.

Example 2: cos(Arcsin u)

Read this as "the cosine of the angle A whose sine is u". To start, draw your triangle, and label A. (Please
take a minute and make the drawing.) You know that

sin A = u = opposite/hypotenuse
and so you label the opposite side u and the hypotenuse 1.

Next, solve for the third side, which is sqrt(1-u?), and write that down. Now you need cos A, which is the
adjacent side over the hypotenuse, which is sqgrt(1-u?)/1, so
cos( Arcsin u ) = sgrt(1-u?)
There you go: quick and painless.
Example 3: cos(Arctan(1/x))

This looks similar t&example 1, but as you'll see there's an additional wrinkle. (Thanks to Brian Scott, who
raised the issue ian article he posted 12 Dec 2000 to alt.algebra.help.)
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Proceed in the regular way: draw your triangle, and since A = Arctan(1/x),
or tan A = 1/x, you make 1 the length of the opposite side and x the length 2
of the adjacent side. The hypotenuse is then sqrt(1+x3). 1+x 1

A

Now you can write down cos A, which is adjacent over hypotenuse:

cos A = x/ sqrt(1+x?)
But suppose x is negative, say —sqrt(3)? Then A = Arctan(—1/sqrt(3)) = —pi/6, and cos(—pi/6) = +sqrt(3)/2.
But the above formula x/sqrt(1+x2) yields —sqrt(3)/sqrt(1+3) = —sqrt(3)/2, which has the wrong sign.

What went wrong? The trouble is that Arctan always yields values in (—pi/2;+pi/2), which is Quadrants IV

and |. But the cosine is always positive on that interval, so cos(Arctan x) must yield a positive result.

Remember alsg (3) that cos(—A) = cos A. To ensure this, use the absolute value sign, and the final answer i
cos( Arctan(1/x) ) = | x| / sqrt(1+x?)

Why doesn't every example have this problem? The earlier examples involved only the square of a variable,
which is naturally nonnegative. Only here, where we have an odd power, does it matter.

Summary of the method
This will work for any trig function of any arc function (36 permutations).

1. Draw a right triangle and label one acute angle A.

2. Label two sides for the given function value of A, the "angle whose".
3. Find the third side using Pythagoras' theorem.

4. Read off the desired function value.

5. If there are any odd powers of variables, check sigrarfiple 3).

[to document contents]

Arc functions of functions
(for the hard-core trig fan)

You may be wondering about the inside—out versions, taking the arc function of a function. Some of these
expressions can be solved algebraically, on a restricted domain anyway, but some cannot. (I am grateful to
David Cantrell for help with analysis of these problems in generataadhple 6 in particular.)

We can say at once that there will be no pure algebraic equivalent to an arc function of a trig function. Why?
The six trig functions are all periodic, and therefore any function of any of them must also be periodic. But n
algebraic functions are periodic, except trivial ones like f(x) = 2, and therefore no function of a trig function
can be represented by purely algebraic operations. As we will see, some can be represented if we add
non-algebraic functions like mod and floor.

Example 4: Arccos(sin u)

This is the angle whose cosine is sin u. To come up with a simpler form, set x equal to the desired
expression, and solve the equation by taking cosine of both sides:
X = Arccos(sinu)
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cosx=sinu
This could be solved if we could somehow transform it to sin(something) = sin(u) or cos(x) =
cogsomething else). In fact, we can use equation (2) to do that. It tells us that
sin u = cos(90°-u),
and combining that with the above we have
cos X =cos(90° - u)
Now if x is in Quadrant I, the interval [O;pi/2], then u will be in Quadrant | also, and we can write
X = 90°-u (or pi/2—u)
and therefore
Arccos( sin u) = 90°-u (or pi/2-u) for u in Quadrant |
But this solution does not work for all quadrants. For instance,
Arccos(sin 5pi/6) = Arccos(¥2) = pi/6,
which is certainly not equal to pi/2 — 5pi/6. Try graphing Arccos(sin(x)) and pi/2—x and you'll see the
problem: one is a sawtooth and the other is a straight line.

Sparing you the gory details, pi/2-u is right only in Quadrants IV and I. We have to "decorate" it rather a lot
to make it match Arccos(sin u) in the other quadrants, and also to account for the repetition of values every
2pi. The first modification is not too hard: On the interval [-pi/2;+3pi/2], the absolute-value expression
|[pi/2—u| matches the sawtooth graph of Arccos(sin u). The repetition every 2pi is harder to reflect, but this
manages it:

Arccos(sin u) = | pi/2 — u + 2pi*floor[(u+pi/2)/2pi] |
where "floor" means the greatest integer less than or equal to. Messy, eh? (Note also that "floor" is not an
algebraic function.) It could be made a bit shorter with mod (which is also not algebraic):

Arccos(sin u) = | pi — mod(u+pi/2,2pi) |
where mod(a,b) is the nonnegative remainder when a is divided by b.

Example 5: Arcsec(cos u)

This one, the angle whose secant is cp$as a very odd solution. Try the above solution method and you
get

x = Arcsec(cos u)

secx =cos u
But sec x = 1/(cos x), so we have

1/(cos x) =cos u

Now here's the thing: the cosine's values are all numerically <=1. So the only way one cosine can be the
reciprocal of another is if they're both equal to 1 or both equal to —1. That occurs only when x =u=a
multiple of pi. If u = 0, +2pi, +£4pi, etc., then cos u = 1 and Arcsec(1) = 0. On the other hand, if u = +pi,
+3pi, etc., then cos = -1 and Arcsec(-1) = pi. Therefore the solution is

Arcsec( cos u ) = 0 when u = 2k*pi for integer k

Arcsec( cos u ) = pi when u = (2k+1)pi for integer k
The graph of Arcsec(cos u) is rather curious, single points at the ends of an infinite sawtooth: ..., (-3pi,pi),

(=2pi,0), (=pi,pi), (0,0), (pi,pi), (2pi,0), (3pi,pi), ...
Example 6: Arctan(sin u)

Proceeding in the regular way, we have
X = Arctan(sinu)
tan x = sinu
The most likely approach is the one fr&xample 4: try to transform the above into tan(x) = tan(something)
or sin(something else) = sin(u). If there is any trig identity or combination that can be used to do that, it is
unknown to me. | suspect strongly that Arctan(sin u) can't be converted to an algebraic expression, even wit
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the use of mod or floor, but | can't prove it.

Summary for arcfunctions of functions

There's no nice regular method for these, as there fisrfotions of arcfunctions. When analyzing
arcfuncl(func2), you can usually come up with something if funcl and func2 are cofunctions or reciprocals,

and probably not otherwise.

[to document contents]
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Notation

I've tried to use standard notation (and standard HTML). In this section | list the usages that might be
confusing.

1. The following special characters have been part of RFC 1866 since at least 1995, according to
Michael Hannah's HTML Special Character Entity Names (internal document at Sandia Labs), so
most browsers should render them. If you have an older browser that doesn't, | apologize.

¢ the multiplication sign, x (&times;)

¢ the plus—or-minus sign, + (&plusmn;)

¢ the superscript 2 (squared sign), 2 (&sup2;)
¢ the fraction one half, ¥ (&frac12;)

¢ the degree sign, ° (&deg;)

2. I've made some compromises since many common math characters can't be displayed in a standart

way.
¢ pi is written that way, since the Greek letter is not available on most computers.
¢ sqrt is the square-root sign. The only way | could get it in formulas would be to turn them
into graphics, and to save bandwidth I've elected not to do that.
¢ For the same reason, fractions other than ¥ are written using the slash, a/b.

3. Please watch carefully for minus signs (=). In many fonts the minus sign is a tiny hyphen, easy to
miss. Microsoft Windows offers a true minus sign (—, &#150;), but computers that don't use that
character set will show a different symbol, or nothing.

Interval Notation

In talking about the domains and ranges of functions, it is handy to use interval notation. Thus instead of
saying that x is between 0 and pi, we can use the open interval (O;pi) if the endpoints are not included, or the
closed interval [0;pi] if the endpoints are included.

[to document contents]

The Problem with Memorizing

"Dad sighed. 'Kip, do you think that table was brought down from on high by an archangel?" Robert A.
Heinlein, in Have Space Suit —— Will Travel (1958)

It's not just that there are so many trig identities; they seem so arbitrary. Of course they're not really arbitrary
since all can be proved; but when you try to memorize all of them they seem like a jumble of symbols where
the right ones aren't more obviously right than the wrong ones. For example, is it sec2A = 1 + tan2A or

tan2A = 1 + sec?A ? | doubt you know off hand which is right; | certainly don't remember. Who can
remember a dozen or more like that, and remember all of them accurately?
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Too many teachers expect students to memorize the trig identities and be able to parrot them on demand,
much like a series of Bible verses. In other words, even if they're originally taught as a series of connected
propositions, they're remembered and used as a set of unrelated facts. And that, | think, is the problem. The
trig identities were not brought down by an archangel; they were developed by mathematicians, and it's well
within your grasp to re—develop them when you need to. With effort, we can remember a few key facts abot
anything. But it's much easier if we can fit them into a context, so that they work together as a whole.

Why bother? Well, of course it will make your life easier in trig class. But you'll also need the trig identities
in later math classes, especially calculus, and in physics and engineering classes. In all of those, you'll find
the going much easier if you're thoroughly grounded in trigonometry as a unified field of knowledge instead
of a collection of unrelated facts. This is why it's easier to remember almost any song than an equivalent
length of prose: the song gives you additional cues in the form rhythm, common patterns of emphasis, and
usually rhymes at the ends of lines. With prose you have only the general thought to hold it together, so that
you must memorize it as essentially a series of words. With the song there are internal structures that help
you, even if you're not aware of them.

If you're memorizing Lincoln's Gettysburg Address, you might have trouble remembering whether he said
"recall" or "remember" at a certain point; in a song, there's no possible doubt which of those words is right
because the wrong one won't fit in the rhythm.

On the other hand ...

I'm not against all memorization. Some things have to be memorized because they're a matter of definition.
Others you may choose to memorize because you use them very often, you're confident you can memorize
them correctly, and the derivation takes more time than you're comfortable with. Still others you may not set
out to memorize, but after using them many times you find you've memorized them without trying to ——
much like a telephone number that you dial often.

I'm not against all memorization; I'm against needless memorization used as a substitute for thought. If you

decide in particular cases that memory works well for you, | won't argue. But | do hope you see the need to

be able to re—derive things on the spot, in case your memory fails. Have you ever dialed a friend's telephone
number and found you couldn't quite remember whether it was 6821 or 86217 If you can't remember a phon
number, you have to look it up in the book. My goal is to free you from having to look up trig identities in the
book.

Thanks to David Dixon at margot@cnwil.igs.net for an illuminating exchange of notes on this topic.
He made me realize that | was sounding more more anti-memory than | intended to, and in consequence I
added this note. But he may not necessarily agree with what | say here.

| wrote this paper to show you how to make the trig identities "fit" as a coherent whole, so that you'll have nc
more doubt about them than you do about the words of a song you know well. The difference is that you
won't need to do it from memory. And you'll gain the sense of power that comes from mastering your subjec
instead of groping tentatively and hoping to strike the right answer by good luck.

[to document contents]

Proof of Euler's Formula

Euler's formula (17) is easily proved by means of power series. Start with the formulas cos x = SUM [
(L) (2n)!1 ] =1 = 2! + x4 - /6! + ...
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sin x = SUM [ (=19 x2"*1/ (2n+1)! ] = x — R/3! +>8/5! = X/[7! + ...
e=SUM[X/n!']=1+x+%2+x/3'+..wheren=0,1, 2, ... (These are how the function values are
actually calculated, by the way. If you want to know the valué,ofai just substitute 2 for x in the formula
and compute until the additional terms fall within your desired accuracy.)

Now we have to prove Euler's formula, which makes an assertion about the vélpeloée i = sqrt(-1).

Use the third formula to find*g by substituting ix for x in the formula. I'll write out eight terms so that you
can see the pattern. This will involve powers of i, which I'll simplify using i2 = —1. Finally I'll group the real
and imaginary terms separately.

X=SUM[%X/n!]=

1 + (ix) + (ix) 2121 + (ix)3/3! + (iX)H4! + (iX)5/5! + (iX)/6! + (iX)/7! + ... =
1+ix - X 2121 — X33l + XAl + XE/5) — XO/6) — X7V + ... =
[1 - X 2121 + X441 = 816 + ..] + i[x — ¥I3! + /5! — X/7! + ..]

Those should look familiar, because the first group of terms is just cos x and the second group is just sin X.
we have & = cos x + i sin x just as advertised!

You may wonder where the series for cos x, sin x, &odree from. The answer is that they are the Taylor
series expansions of the functions. Look up "Taylor series" in any decent calculus book and you'll find the
derivation.

[to document contents]

Roots of a Complex Number

One of the applications of Euler's formula (17) is finding any root of any complex number. (Sawyer doesn't
do this, or at least not in the same book.)

Square root of i

For instance, you know the square roots of -1 are i and —i, but what's the squarex&ingfly use (17),
(16). and_(17) again to solve.

Start by putting i into &form.
cos x =0 and sin x =1 when x = 90° or pi/2
Therefore by (17)
i =0 + 1i = cos(pi/2) + i sin(pi/2) = &2,
And by (16)
Sqrt(e Pi2) = (& Pi2) 12 = gi pil2)x(1/2) = ¢ pil4
Now apply_(17) again:
€ P4 = cos(pi/4) + i sin(pi/4) = (1+i)/sqrt(2).
The other square root is minus that, as usual.

Roots of other numbers

You can find any root of any other complex number in a similar way, but usually with one preliminary step.
For instance, suppose you want the cube roots of 3+4i. When you ask what angle has a cosine of 3and a s
of 4, of course you come up empty. What you need to do is separate the number into two parts, (i) a scale
factor and (ii) a part that will translate into the cosine of some angle plus i times of the sine of that angle. The
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first part is simply the absolute value of the complex number (sqrt(a2+b?) for a+bi); the second part will then
automatically be usable as a sine and cosine.

For our example, 3+4i, the absolute value is sqrt(32+42) = 5, so rewrite the number as 5x(0.6+0.8i). Now
you need to find an angle whose cosine is 0.6 and whose sine is 0.8. It doesn't come out exactly, but it's ab
53.13°, which I'll call @. So far we have
3+4i = 5%(0.6+0.8) = 5@ for g about 53.13°
To take a cube root of that, remember that the cube root of x is the sd#@ aherefore
cube root of (3+4i) = (83§13 = 513 x g2/3 = 5113 x [cos(@/3) + i sin(a/3)]
Angle g/3 is about 17.71°; the sine and cosine of that are about 0.30 and 0.95. The cube root of 5 is about
1.71. So we have
cube root of (3+4i) = about 1.71 x (cos 17.71 +isin 17.71) = about 1.63 + 0.52i

Other roots

You may have noticed that | talked about the "cube roots of 5" and "a cube root". Even with the square root
of i,  waved my hand and said that the "other" square root was minus the first one, "as usual”.

You already know that every positive real has two square roots. In fact, every complex number has n nth
roots.

How can you find them? Look back at Euler's formula,
€X=cos x +i sin x

What happens if you add 2pi or 360° to x? You have

gx+2p) = cos (x+2pi) + i sin (x+2pi)
Well, taking sine or cosine of 360° plus an angle is exactly the same as taking sine or cosine of the original
angle. So the right-hand side is equal to &osi sin x, which is equal to’e Therefore

g(x+2pi) = dx

In fact, you can keep adding 2pi or 360° to x as long as you like, and never change the value of the result.
Symbolically,

glx+2pin) = i for all integer n

When you take an nth root, you simply use that identity. So the three cube rddtwef e
gol3 io+360)/3 gn @o+720)3

or eiﬂ/3, éiz/3)+120’ and ée/2)+240
Compute those as cas+ i sin x in the usual way, and then multiply by the (principal) cube root of 5. | get
these three roots:

cube roots of 5 = about 1.63+0.52i, —1.26+1.15i, -0.36-1.67i

[to document contents]

Logarithm of a Negative Number

Another application flows from a famous special case of Euler's formula. Substityieox 180° in (17).
Since sin 180 = 0, the imaginary term drops out. And cos 180 = -1, so the formula

—1 = @pi
is the result.

It's also interesting to take the natural log of both sides:
In(-1) = In(&?))
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which gives
In(-1) =ipi

It's easy enough to find the logarithm of any other negative number. Since
In@b)=Ina+Inb
then for all a you have
In(ka)=In[ax-1]=lna+In(-1)=Ina+ipi

I don't honestly know whether all of this has any practical application. But if you've ever wondered about the
logarithm of a negative number, now you know.

[to document contents]

Cool Proof of Double-Angle Formulas

| can't resist pointing out something cool. You can als@@aseyer's marvelous idea. From Euler's formula
(17) for e you can immediately obtain the formulas for cos(2A) and sin(2A) without going through the
formulas for sums of angles. Here's how.

Remember that® = (x db. One important special case is th#t=x (x )2. Use that with Euler's formula (17).
cos(2A) + i sin(2A) = @M = (éA)2 = (cos A + i sin A)2 =
COS2A + 2i SinA COSA + i2sin2A = c0S?A + 2i SinA COSA — sin?A
Now set the original expression equal to the final expression, and collect real and imaginary parts:
C0s(2A) + i sin(2A) = (cos?A — sin2A) + i x (2sinA cosA)

Since the real parts on left and right must be equal, you have the formula for cos(2A). Since the imaginary
parts must be equal, you have the formula for sin(2A). That's all there is to it.

[to document contents]

Great Book on Problem Solving

I have to recommend a terrific little book, How To Solve It by G. Polya. Most teachers aren't very good at
teaching you how to solve problems and do proofs. They show you how they do them, and expect you to pic
up their techniques by a sort of osmosis. But most of them aren't very good at explaining the thought proces
that goes into doing a geometrical proof, or solving a dreaded "story problem".

Polya's book does a great job of teaching you how to solve problems. He shows you the kinds of questions
you should ask yourself when you see a problem. In other words, he teaches you how to get yourself over t
hum, past the floundering that most people do when they see an unfamiliar problem. And he does it with lot:
of examples, so that you can develop confidence in your techniques and compare your methods with his. Tt
technigues I've mentioned above are just three out of the many in his book.

There's even a handy checklist of questions you can ask yourself whenever you're stuck on a problem.

How To Solve It was published in 1945 and republished in 1979, and it's periodically in and out of print. If
you can't get it from your bookstore, go to the library and borrow a copy. You won't be sorry.
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Musings on the Law of Cosines
"l beg your pardon. | never promised you a rose garden." Dionne Warwick, in the song of that name

The law of cosines doesn't have the nice, neat form of the law of sines, unfortunately. It might even look like
just a chaotic jumble of symbols to you. Unfortunately, the law that's tougher to remember than most is also
tougher to derive than most: you have to drop a perpendicular from any vertex of the triangle to the opposite
side, write the Pythagorean theorem for the two right triangles formed, combine the two equations to
eliminate the term for the common side, and express one of the partial sides (like BD in the diagram) in terrr
of the whole side and the other partial (c—AD in the diagram).

But don't be overly intimidated. For one thing, don't think that there are three laws of cosines: all three are
just the same law, written from the perspective of each of the three sides (or angles) in turn. So whether you
decide to memorize or derive, you have only one law of cosines to deal with.

Try to focus on the geometry that's involved. The first form lets you solve for an angle if you know the three
sides. The side opposite the desired angle occurs only one place in the formula, and it occurs with the only
minus sign in the formula, as —c2. The other two sides are interchangeable as far as the formula is concerne
so really it's best to think of the cosine of the angle in terms of the two adjacent sides and, treated differently
the opposite side.

To remember the second form,

c2=a2+h2-2abcosC
notice that it looks a bit like the Pythagorean theorem, with a "correction term". Since you know the
Pythagorean theorem, the only thing new to remember is that correction term. If you try to remember this
form, it may help to think of it as just like the triangle: on one side you have one side, and on the other side
you have the opposite angle and its two adjacent sides.

Any way you slice it, the law of cosines is awkward. But you have to be able to use it, because there's no
other way to solve some triangles. You'll have to decide for yourself whether you'd rather memorize it (if
you're sure you can memorize it correctly) or know how to derive it.
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Revision History

» 2000-12-18:
+ refine the analysis of arcfunction(function(x))

+ rewrite the discussion g@irincipal values of the arc functions
¢ correct wrong analysis dfrcse¢cos u)

¢ add a section omterval notation
» 2000-12-15:
¢ add a nevghapter on the arc function® show how to findunctions of arc functions
¢ de-list Eric's Treasure Trove fror@ther math sites," since it no longer exists
¢ supply the hundreds of degree signs | previously left implicit
» 2000—-08-22: as suggested by Peter Karp,aad®F version with embedded graphics
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» 2000—06-05: Split table of contents into a separate page; add Oak Road Systems navigation bar to
every page; fix a broken link in the history

» 2000—-05-19: Move these trig pages to a separate directory as part of a general site overhaul; add
navigation arrows to every page; update link to Eric's Treasure Trove.

» 2000—-03-10: at Peter Karp's suggestion, package all parts of this document (with graphics) for easy
download in a ZIP file

* 1999-12-17: add a link ®ome geometric derivations $in(A+B) andcos(A+B)

* (intervening changes suppressed)

* 1997-02-19: new document
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