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A New Understanding of Friendships in
Space: Complex Networks Meet Twitter
Won-Yong Shin, Bikash C. Singh, Jaehee Cho, and André M. Everett

Abstract

Studies on friendships in online social networks involvinggeographic distance have so far relied
on the city location provided in users’ profiles. Consequently, most of the research on friendships
have provided accuracy at thecity level, at best, to designate a user’s location. This study analyzes
a Twitter dataset because it provides the exact geographic distance between corresponding users.
We start by introducing a strong definition of “friend” on Twitter (i.e., a definition ofbidirectional
friendship), requiring bidirectional communication. Next, we utilize geo-tagged mentionsdelivered
by users to determine their locations, where “@username” iscontained anywhere in the body of
tweets. To provide analysis results, we first introduce a friend counting algorithm. From the fact
that Twitter users are likely to post consecutive tweets in the static mode, we also introduce a
two-stage distance estimation algorithm. As the first of ourmain contributions, we verify that the
number of friends of a particular Twitter user follows a well-known power-law distribution (i.e., a
Zipf’s distribution or a Pareto distribution). Our study also provides the following newly-discovered
friendship degree related to the issue of space: The number of friends according to distance follows a
double power-law(i.e., adouble Pareto law) distribution, indicating that the probability of befriending
a particular Twitter user is significantly reduced beyond a certain geographic distance between users,
termed theseparation point. Our analysis provides concrete evidence that Twitter can be a useful
platform for assigning a more accurate scalar value to the degree of friendship between two users.

Index Terms

Befriend, bidirectional friendship, complex network, double power-law, geo-tagged mention,
separation point, Twitter.
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I. INTRODUCTION

In recent years, research in the field of online social networks (OSNs) has grown dra-
matically with the evolution of technologies while harnessing Big Data. Focusing on the
relationships (edges) among users or profiles (vertices), OSN analysis has emerged as one
of the most popular and familiar approaches for examining interaction, information sharing,
and collaboration among online users [1]. Simultaneously,the field of complex networks
has emerged as an independent research area, with strong connections to random graph
theory from mathematics as well as to social network analysis by physicists, interested in
understanding the behaviors of large-scale interacting networks. Based on massive datasets of
large-scale real-world OSNs such as Twitter [2], Facebook [3], Flickr [4], and Foursquare [5],
extensive studies have validated that the small-world phenomenon (originally introduced
by Watts and Strogatz [6]) and scale-free degree distribution,1 which are the two most
representative features of complex networks, nearly hold in OSNs [7]. Twitter is one of the
most popular micro-blogs (or social media), allowing usersto “tweet” about any topic within
the 140-character limit and to “follow” others to receive their tweets. At the start of 2015,
Twitter played a vital role in facilitating social contacts, boasting 284 million active users per
month, publishing 500 million tweets daily from their web browsers and smart phones.2

A. Related Work

To understand the nature of friendships online with respectto geographic distance, some
efforts have focused on users’ online profiles that include their city of residence [8], [9].
In [8], experimental results based on the LiveJournal social network3 demonstrated a close
relationship between geographic distance and probabilitydistribution of friendship, where the
probability of befriending a particular user on LiveJournal is inversely proportional to the
positive power of the number of closer users. Contrary to [8], based on the data collected
from Tuenti,4 a Spanish social networking service, it was found in [9] thatsocial interactions
online are only weakly affected by spatial proximity, with other factors dominating.

However, the effect of distance on online social interactions has not yet been fully under-
stood. In the previous studies, the geographic location points only to the location of users
at a city scale. For this reason, the friendship degree distribution contains a background
probability that is independent of geography due to the city-scale resolution [8], [9]. On the
other hand,geo-located Twittercan provide high-precision location information down to 10
meters through the Global Positioning System (GPS) interface [10] of users’ smart phones
while offering comprehensive metadata with a gigantic sample of the whole population.

For this reason, there is extensive and growing interest among researchers to understand a
variety of social behaviors through geo-located Twitter, or, equivalently, geo-tagged tweets [11]–
[19]. Even if geo-tagged tweets account for approximately 1% of the total amount [20], thanks
to the increasing penetration of smart devices and mobile applications, the volume of geo-
located Twitter has grown constantly and now forms an invaluable register for understanding
human behavior and modelling the way people interact in space. In [11], along with geo-
locations for collected tweets, analysis included how geo-related factors such as physical
distance, frequency of air travel, national boundaries, and language differences affect forma-
tion of social ties on Twitter. In [12], it was found that the geo-locations of Twitter users across

1A “small-world” network is a type of mathematical graph in which two arbitrary nodes (people) are connected by a short
chain of intermediate links (friends), and a “scale-free” network is a network whose degree distribution follows a power-law.

2https://about.twitter.com/company
3https://www.livejournal.com
4https://www.tuenti.com
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different countries considerably impact their participation in Twitter, their connectivity with
other users, and the information that they exchange with each other. As another application,
the use of geo-tagged tweets was evaluated as a complementary source of information for
urban planning including i) a technique to determine land uses in a specific urban area based
on tweeting patterns and ii) a technique to identify urban points of interest at places with high
tweeting activity [13]. New approaches based on geo-taggedtweets were also proposed to find
top vacation spots for a particular holiday by applying indexing, spatio-temporal querying,
and machine learning techniques [14] and to detect unusual geo-social events by measuring
geographical regularities of crowd behaviors [15].

Benefiting from the increasing availability of location information from geo-tagged tweets,
there has been a steady push to understand individual human mobility [16]–[19], which is
of fundamental importance for many applications to human and electronic virus prediction
and traffic and population forecasting. Recent effort has focused on the studies of human
mobility using tracking technologies such as mobile phones[21]–[24], GPS receivers [25],
WiFi logging [26], Bluetooth [27], and RFID devices [28] as well as location-based social
network check-in data [29], but these technologies involveprivacy concerns or data access
restrictions. In contrast, geo-tagged tweets can capture much richer features of human mobility.
For example, in [16], global human mobility patterns were widely revealed, and a comparative
study on the mobility characteristics of different countries was conducted. Furthermore, it was
found in [17] that the geo-located Twitter data for Australia reveals multiple modes of human
mobility from intra-site to metropolitan and inter-city movements. As another point of view,
in [18], it was reported that in Australia, the gravity law isapplicable for estimating human
mobility by showing that mobility between an origin and its destination is proportional to
the product of populations of these two places and is inversely proportional to the power-law
of distance between them. In [19], the problem of labelling the places of a city based on
collected spatio-temporal data was addressed, including i) to infer whether a place belongs to
a certain category or not and ii) to choose the category of a place among a set of categories.

B. Main Contributions

In our work, we utilizegeo-tagged mentionson Twitter, sent by users, to identify their
exact location information. A ‘mention’ in Twitter consists of inclusion of “@username”
anywhere in the body of tweets. From the fact that we tend to interact offline with people
living very near to us, we derive as a natural extension the question whether geography and
social relationships are inextricably intertwined on Twitter. Our research significantly differs
from a variety of studies on human mobility in the literature[16]–[19], [21]–[29] since it is
interested in how a pair of users interacts. To the best of ourknowledge, such an attempt
to analyze one-to-one friendship based on geo-located tweets (or mentions) has not yet been
described in the literature.

As people normally spend a substantial amount of time online, data regarding these two
dimensions (i.e., geography and online social relationships) are becoming increasingly precise,
thus motivating us to build more reliable models to describesocial interactions [30]. Previous
studies have employed large amounts of data from diverse sources, such as smart devices
and web-based applications, to examine how social data resources (e.g., photos on Flickr) are
processed with tagging [31], [32]. Both a co-clustering approach [31] and a spatial ranking
approach [32] have been introduced to discover meaningful relationships between a set of
relevant resources and a set of tags. This paper goes beyond past research to determine how
friendship patterns are geographically represented by Twitter, analyzing a single-source dataset
(to avoid potential confounds) that contains a huge number of geo-tagged mentions from users
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in i) the state of California in the United States (US) and LosAngeles (the most populous
city in the state) and ii) the United Kingdom (UK) and London (the most populous city in the
UK). These two location sets were selected as demographically comparable, yet distinct and
geographically separated, leading adopters of Twitter with sufficient data to enable meaningful
comparative analysis for our intentionally exploratory study (which will be specified in Section
II). In this dataset, each mention record has a geo-tag (spatial information) and a timestamp
(temporal information) indicating from where, when, and bywhom the mention was sent. We
propose and apply the following new framework, which establishes a more accurate friendship
degree on Twitter, and a method to enable analysis based on geographic distance:

• To fully take into account the intensity of communication between users, we start our
analysis by introducing a rather strong definition of “friend” on Twitter, i.e., a definition of
bidirectional friendship, instead of naı̈vely considering the set of followers and followees
(unidirectional terms). This definition requires bidirectional communication within a
designated time frame to constitute a friendship.

• Using the above definition, we introduce a friend counting algorithm, which computes
the distribution of the number of friends for each Twitter user.

• By showing that almost all Twitter users are likely to post consecutive tweets in the static
mode, we propose a two-stage distance estimation method, where the geographic distance
between two befriended users (denoted by Usersu and v) based on our definition of
bidirectional friendship is estimated by sequentially measuring the two senders’ locations.
More specifically, the location of Useru is recorded at the moment when Useru sends
a mention to Userv, while the location of Userv can also be recorded when Userv
sends a replied mention to Useru at the next closest time, enabling estimation of the
distance between Usersu andv.

Note that the above definition is suitable for evaluating one-to-one bidirectional social
interactions on Twitter since Twitter users tend to personally interact with only a few of their
followers/followees by sending and receiving direct mentions. We would like to synthetically
analyze how the geographic distance between Twitter users affects their interaction, based on
our new framework. Our main contributions are as follows:

• Based on the definition of bidirectional friendship, we firstverify that the number of
friends of one useron Twitter follows a power-law distribution (i.e., a Zipf’sdis-
tribution [33] or a Pareto distribution [34]) even on Twitter, which is known to be
asymptotically equivalent to the degree distribution of scale-free networks. This finding
is consistent with the earlier results in other OSNs.

• Next, more interestingly, we characterize a newly-discovered probability distribution
of the number of friends according togeographic distance, which does not follow a
homogeneous power-law but, instead, adouble power-law(i.e., adouble Pareto law[35]).
From this new finding, we identify not only two fundamentallyseparate regimes, termed
the intra-city and inter-city regimes, which are characterized by two different power-laws
in the distribution, but also theseparation pointbetween these regimes.

C. Organization

The rest of this paper is organized as follows. Section II describes the dataset, and Section
III explains our analysis methodology. In Section IV, experimental results are presented by
analyzing the number of friends of a particular user and the number of friends with respect
to distance. Finally, we summarize the paper with some concluding remarks in Section V.
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II. DATASET

We use a dataset collected from crawling the Twitter networkvia Twitter Streaming Appli-
cation Programming Interface (API),5 which returns tweets matching a query provided by the
Streaming API user. Although the Twitter Streaming API onlyreturns at most a 1% sample
of all the tweets produced at a given moment, it constitutes avalid representation of users’
activity on Twitter when more specific parameter sets such asdifferent users, geographic
bounding boxes, and keywords are created (thereby enablingextraction of more data from
the Streaming API) [20], [36]. It was found that the Streaming API returns an almost complete
set ofgeo-taggedtweets despite sampling [20]. Thus, there is no doubt that this research is
working with an almost complete sample of geo-located Twitter data.

In our work, we examined data from all possible devices (sources) that indicate the user’s
location information at the time that they access Twitter. The statistics based on our dataset
demonstrate that a large majority of the Twitter users in oursample posted geo-tagged tweets
through smart phones rather than web browsers on a desktop orlaptop computer.6 This reveals
that our dataset is much more inclined toward geo-tagged tweets (more rigorously, geo-tagged
mentions) transmitted through the GPS interface.

The dataset consists of a huge amount of geo-tagged mentionsrecorded from Twitter users
from September 22, 2014 to October 23, 2014 (about one month)in the following four large
regions: California, Los Angeles, the UK, and London. Note that this short-term (one month)
dataset is sufficient to examine how closely one user has recently interacted with another
online (i.e., a personal online relationship between two users). The four regions in our dataset
were selected since they are quite comparable at both the macro (state or country) and micro
(city) scales in terms of i) area, ii) population density, and iii) Twitter popularity (e.g., the
number of Twitter accounts or the number of posted tweets). The comparison between location
sets for the aforementioned three representative attributes is summarized in TABLE I, divided
according to the types of two geographic scales.7

The representative statistics of the collected dataset, such as the total number of mentions
and the total number of senders, are also summarized by regional group in TABLE II. In this
dataset, each mention record has a geo-tag and a timestamp indicating from where, when,
and by whom the mention was sent. Based on this information, we are able to construct a
user’s location history denoted by a sequenceL = (xki, yki, ti), wherexki andyki are thex-
andy-coordinates of Userk at timeti, respectively. The location information provided by the
geo-tag is denoted by latitude and longitude, which are measured in degrees, minutes, and
seconds.

Each mention on Twitter contains a number of entities that are distinguished by their
attributed fields. For data analysis, we adopted the following five essential fields from the

5https://dev.twitter.com/decs/streaming-apis
6We note that smart devices and mobile applications enable usto provide high-precision location information through

the built-in GPS interface. On the other hand, with the Geo-location API, web browsers can detect the users’ approximate
location information inferred from network signals such asIP address, WiFi, Bluetooth, MAC address, and GSM/CDMA
cell ID, which are not guaranteed to return the users’ actuallocation. Based on our dataset, it is found that 77.84% and
82.21% of Twitter users tend to post geo-tagged tweets in California and the UK, respectively, via iPhone and Android
Phone, which are the smart phone types using the two most popular mobile platforms among all devices. It is also found
that 90.52% and 81.14% of posted geo-tagged tweets tend to berecorded in California and the UK, respectively, via iPhone
and Android Phone.

7http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/UnitedKingdom
http://en.wikipedia.org/wiki/LosAngeles
http://en.wikipedia.org/wiki/London
http://semiocast.com/publications/201207 30 Twitter reacheshalf a billion accounts140m in the US

http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/Los_Angeles
http://en.wikipedia.org/wiki/London
http://semiocast.com/publications/2012_07_30_Twitter_reaches_half_a_billion_accounts_140m_in_the_US
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TABLE I
COMPARISON OF THE LOCATION SETS.

(a) California versus UK (state scale or country scale)

Attribute California UK

Area (km2) 423,970 243,610
Population density (population/km2) 95.0 225.6

Global ranking among countries 1st (US as whole country) 4th
by the number of Twitter accounts

(b) Los Angeles versus London (city scale)

Attribute Los Angeles London

Area (km2) 1,302 1,572
Population density (population/km2) 3,198 5,354

Global ranking among cities 8th 3rd
by the number of posted tweets (June 2012)

TABLE II
STATISTICS OF THE DATASET: THE NUMBER OF MENTIONS AND UNIQUE USERS IN EACH REGION.

Region Number of mentions Number of users (senders)

California 2,349,901 217,439
Los Angeles 918,360 51,625

UK 3,721,716 612,368
London 614,045 58,046

metadata of mentions:8

• user id str: string representation of the sender ID
• in reply to user id str: string representation of the receiver ID
• lat: latitude of the sender
• lon: longitude of the sender
• created at: UTC/GMT time when the mention is delivered, i.e., the timestamp
Note that the two location fields,lat andlon, corresponds to spatial (geo-tagged) information

while the last field,created at, represents temporal (time-stamped) information.

III. RESEARCH METHODOLOGY

We start by introducing the following definition of “bidirectional friendship” on Twitter.
Definition 1 (Bidirectional friendship in Twitter):If two users send/receive direct mentions

to/from each other (i.e., bidirectional personal communication occurs) within a designated
amount of time, then they form a bidirectional friendship with each other.

Note that our definition differs from the conventional definition of “friend” on Twitter,
which is referred to as a followee and thus represents aunidirectional relation [37], [38].9

8https://dev.twitter.com/overview/api/tweets
9Twitter shows a low level of reciprocity; 77.9% of user pairswith any link between a Twitter user and his/her follower

are connected one-way, and only 22.1% exhibit a reciprocal relationship between them (i.e., two-way links) [2].
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Sender Receiver

Time

Fig. 1. One example that illustrates how geo-tagged mentions are delivered from senders to receivers according to time
sequence, whereu(t)

Tx andu(t)
Rx denote the transmitter and the corresponding receiver at time t ∈ {0, 1, · · · }. In this example,

three pairs of friends,(u0, u2), (u1, u2), and(u1, u3), are made among four usersu0, u1, u2, andu3.

Since friendship relations in the offline world and on other OSNs such as Facebook [39]
are generally not unidirectional, our intention is to formulate abidirectional friendship that
can be directly applicable to offline relationships. This strong definition enables exclusion of
inactive friends(or passive friends) who have been out of contact online for along designated
amount of time (e.g., about one month in our work) and to countthe number ofactive friends
who have recently communicated with each other.

A. Counting Number of Friends of a Particular User

In this subsection, we explain how to count the number of friends of each user who sent
at least one geo-tagged mention. Suppose that there are fourTwitter users, denoted byu0,
u1, u2, andu3, who sent or received at least one geo-tagged mention according to temporal
event sequences, as illustrated in Figure 1. Here,u

(t)
Tx andu(t)

Rx denote the transmitter and the
corresponding receiver sequentially at time instancet ∈ {0, 1, · · · }. In this example, according
to the aforementioned definition, three pairs of friends(u0, u2), (u1, u2), and(u1, u3) are found
out of the above user set. Moreover, one can find that the number of friends of each user
u0, u1, u2, andu3 is given by 1, 2, 2, and 1, respectively. In our framework, if bidirectional
communication between two certain users occurs at least once, then their friendship degree is
set to one. Otherwise, it is set to zero, i.e., no friendship between the two users is created. That
is, even with more than two bidirectional communications between two users, their friendship
degree is maintained at one in this binary or Boolean evaluation. In our sample space, we
exclude the user set whose friendship degree is zero since including such users will lead to
scaling down the probability distribution of the nonzero number of friends.

The overall procedure of the friend counting algorithm (Algorithm 1) is described in
TABLE III, where nu denotes the number of friends of Useru ∈ {u0, u1, · · · , uI−1} who
sent a geo-tagged mention to Userv ∈ {v0, v1, · · · , vJ−1}, andI andJ are the total number
of senders and receivers in a dataset, respectively.
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TABLE III
THE OVERALL PROCEDURE OF THE FRIEND COUNTING ALGORITHM.

Algorithm 1 Friend counting algorithm

Input: u(t)
Tx andu(t)

Rx for t = 0, 1, · · · , T − 1, u ∈ {u0, u1, · · · , uI−1}

andv ∈ {v0, v1, · · · , vJ−1}

Output: nu for all u
Initialization: cuv ← 0 andnu ← 0 for all u andv
00: for t← 0 to T − 1 do
01: Find the user indicesu andv for u(t)

Tx andu(t)
Rx, respectively

02: for s← t+ 1 to T − 1 do
03: if (u(s)

Tx == u
(t)
Rx) then

04: if (u(s)
Rx == u

(t)
Tx) then

05: cuv ← 1

06: break (go back to line 00)
07: end if
08: end if
09: end for
10: end for
11: for all u andv do
12: nu ← nu + cuv
13: end for

B. Finding Friend Distribution With Respect to Distance

In this subsection, let us turn to characterizing the friendship degree of individuals regarding
geography by analyzing their sequencesL = (xui, yui, ti) of geo-tagged mentions, where only
the senders’ location information is recorded. We propose atwo-stage method to estimate the
geographic distance between Twitter friends. If Useru sends a mention to Userv, then the
location information of Useru is recorded (the first stage). In order to find the location of
Userv, we need to wait for the moment at which Userv sends a mention back to Useru (the
second stage). That is, after bidirectional communicationbetween two Twitter users occurs,
the location of each user can be identified.

It is not possible to evaluate the geographic distance between two Twitter users through a
one-shot process due to the fact that the location information of only the sender is recorded at a
given instance when a geo-tagged mention is sent. Moreover,because of the users’ movements,
it is, however, not straightforward to measure the exact distance. In this subsection, we
introduce a two-stage distance estimation method, where the geographic distance between
two befriended users is estimated by sequentially measuring the two senders’ locations.

Before describing the estimation algorithm, let us first focus on the time interval between
the following two events for a befriended pair: a mention andits replied mention at the next
closest time. We count only the events with a time duration between a mention and its replied
mention, or inter-mention interval, ofless than one hourto exclude certain inaccurate location
information that may occur due to users’ movements.10 Figure 2 illustrates the instance for
which Useru, originally placed at(xu0, yu0, t0), sent a mention to Userv at (xv0, yv0, t0), and

10Note that inter-mention interval of one hour may be shortened, but this will lead to a reduction in the available dataset.
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Estimated 

distance:

Actual 

distance at:

Fig. 2. User movement in which Userk ∈ {u, v} changes location from(xk0, yk0, t0) to (xk1, yk1, t1) between sending
a geo-tagged mention and receiving a corresponding repliedmention.

then received a replied mention at the location(xu1, yu1, t1) from Userv placed at(xv1, yv1, t1).
Here, the single solid arrows indicate the actual distancesat time instancest0 andt1 while the
double solid arrow indicates the estimated distance. The distance that users moved between
the two moments in timet0 and t1 (i.e., inter-mention interval) is indicated as the dashed
arrows in the figure. From these two consecutive mention events, it is possible to estimate
the geographic distance based on the two sequences(xu0, yu0, t0) and (xv1, yv1, t1). In our
framework, by assuming that the Earth is spherical, we deal with the shortest path between
two users’ locations measured along the surface of the Earth, instead of the rather naı̈ve
straight-line Euclidean distance. Following an approach similar to that employed in [40],
[41], the distance between two locations on the Earth’s surface can be computed according
to the spherical law of cosines.11 Then, when we denote the distance between the two users
measured from(xu0, yu0, t0) and (xv1, yv1, t1) by d

(0)
uv , we obtain12

d(0)uv = R cos−1 (sin xu0 sin xv1 + cosxu0 cosxv1 cos (yv1 − yu0)) , (1)

where R [in kilometers (km)] denotes the Earth’s radius and is givenas 6,371, and the
superscript 0 ind(0)uv represents the time slot. Here, for notational convenience, it is assumed
that thex- andy-coordinates represent the latitude and longitude, respectively.

While the estimated distance (double solid arrow in Figure 2) may differ from the actual
distance (single solid arrow in Figure 2) between Usersu andv at timet1, it is worth noting
that people tend to send/receive multiple consecutive tweets from the same location to convey
a series of ideas [17], [18]. To validate this user mobility argument, we turn our attention to
analyze the distribution of the number of tweets (i.e., the tweet frequency) with respect to
user velocity.

In our experiments, we use the same dataset collected from the Twitter users as shown in
Section II, but focus on the two populous metropolitan areas, Los Angeles and London. To ex-
clude certain inaccurate location information that may exist due to users’ movements, we take
into account only the case only where two consecutive geo-tagged tweet events occurwithin

11When Sinnott published the haversine formula [42], computational precision was limited. Nowadays, JavaScript (and
most modern computers and languages) uses IEEE 754 64-bit floating-point numbers, which provide 15 significant digits of
precision. With this precision, the simple spherical law ofcosines formula gives well-conditioned results down to distances
as small as around 1 meter. In view of this, it is probably worth, in most situations, using the simpler law of cosines in
preference to the haversine formula.

12http://mathworld.wolfram.com/SphericalTrigonometry.html
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Fig. 3. Probability distribution of the tweet frequency with respect to user velocity (log-linear plot).

one hour. When the location history for two consecutive geo-tagged tweets of Userk at time
slotsti andti+1 is expressed as sequences(xki, yki, ti) and(xk(i+1), yk(i+1), ti+1), respectively,
the average velocityv(i)k of the user within this time interval is given byv(i)k = d

(i)
k /(ti+1− ti),

whered(i)k is the distance that Userk moved during the interval[ti, ti+1] and thus is given
by d(i)k = R cos−1

(

sin xki sin xk(i+1) + cosxki cosxk(i+1) cos
(

yk(i+1) − yki
))

(refer to equation

(1) for more details). From the set of average velocities
{

v
(0)
k , v

(1)
k , · · · , v

(T−1)
k

}

obtained from
all users in the dataset, the tweet frequency can be categorized according to the user velocity.

Figure 3 shows the log-linear plot of the distribution of thenumber of tweets (i.e., the
tweet frequency) versus the user velocity [km/h], which is obtained from empirical data. As
illustrated in Figure 3, most of the Twitter users (approximately 90%) in the two metropoli-
tan areas are likely to post consecutive tweets in thestatic mode whose average velocity
ranges from 0 to 2 km/h. Our experiments also demonstrate that Twitter users in large scale
geographic areas (e.g., state scale (California) or country scale (the UK)) are more likely to
post consecutive tweets in the static mode than city-scale users, even if the results are not
presented in Figure 3. Although the inter-tweet interval may show a different pattern from
that of the inter-mention interval (i.e., the time durationbetween a mention and its replied
mention from another user), we believe that the above results are sufficient to support our
analysis methodology.

Now, we are ready to present our distance estimation algorithm (Algorithm 2). The
overall procedure of the proposed algorithm is described inTABLE IV, where duv de-
notes the estimated geographic distance between user pairu ∈ {u0, u1, · · · , uI−1} and v ∈
{v0, v1, · · · , vJ−1}, and I andJ are the total number of senders and receivers in a dataset,
respectively. Note that as shown in lines 14–18 of the table,the estimated distance for one
pair is obtained by taking the average of all distance valuescomputed over the available
inter-mention intervals, each of which is less than one hour.

IV. A NALYSIS RESULTS

In this section, we first verify whether a Zipf’s power-law holds for the Twitter network
along with the definition of bidirectional friendship. Next, we show a newly-discovered
distribution of the number of friends with respect to the geographic distance and then identify
the two fundamentally separated regimes in the distribution.
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TABLE IV
THE OVERALL PROCEDURE OF DISTANCE ESTIMATION ALGORITHM.

Algorithm 2 Distance estimation algorithm

Input: u(t)
Tx andu(t)

Rx for t = 0, 1, · · · , T − 1, u ∈ {u0, u1, · · · , uI−1}

andv ∈ {v0, v1, · · · , vJ−1}

Output: duv for all u andv

Initialization: c(t)uv ← 0 andduv ← 0 for all u andv
00: for t← 0 to T − 1 do
01: Find the user indicesu andv for u(t)

Tx andu(t)
Rx, respectively

02: for s← t+ 1 to T − 1 do
03: if (u(s)

Tx == u
(t)
Rx) then

04: if (u(s)
Rx == u

(t)
Tx) then

05: if (time interval betweent ands < 1 hour) then

06: Computed(c
(t)
uv)

uv in equation (1)

07: c
(t)
uv ← c

(t)
uv + 1

08: break (go back to line 00)
09: end if
10: end if
11: end if
12: end for
13: end for
14: for all u andv do
15: for l ← 0 to c

(t)
uv do

16: duv ← duv + d
(l)
uv/c

(t)
uv

17: end for
18: end for

A. Number of Friends of a Particular User

We first find that the probability distributionPN(N = n) of the number of friends for an
individual, denoted byn, on Twitter fits into a single power-law functionPN(N = n) ∼ n−α

for α > 0. Figure 4 shows the log-log plot of the distributionPN(N = n) obtained from
empirical data, logarithmically binned data, and fitting function, where the fitting is applied
to the binned data. As depicted in the figure, statistical noise exists in the tail where the
number of friends is very large. Such noise can be eliminatedby applying logarithmic binning,
which averages out the data that fall in specific bins [43].13 We use the traditional least
squares estimation to obtain the fitting function. In TABLE V, the value of the exponent of
PN(N = n), α, is summarized for each region. From Figure 4 and TABLE V, thefollowing
interesting comparisons are performed according to types of regions:

• Comparison between the city-scale and state-scale/country-scale results: Figures 4(a)
and 4(b) illustrate that the exponentα is 3.48 and 2.29 in California and Los Angeles,
respectively, which implies that Twitter users in populousmetropolitan areas are more

13It is also verified that this binning procedure does not fundamentally change the underlying power-law exponent of the
distributionPN (N = n).
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Fig. 4. Probability distributionPN (N = n) of the number of friends of a particular user (log-log plot).

TABLE V
THE VALUE OF α FOR EACH REGION.

Region α

California 3.48
Los Angeles 2.29

UK 2.54
London 2.01

likely to contact a higher number of friends within a given period (e.g., one month).
From Figures 4(c) and 4(d), the same trend is also observed bycomparing the results for
the UK and London, withα values of 2.54 and 2.01, respectively. That is, urban people
are likely to bilaterally interact with more friends by sending and receiving directed
geo-tagged mentions, compared on average to people in larger regions that include local
small towns.

• Comparison between the results in the two cities (Los Angeles and London): From
Figures 4(b) and 4(d), one can see that the exponentα is 2.29 and 2.01 in Los Angeles and
London, respectively. This reveals that Twitter users in London tend to contact a slightly
higher number of friends within a given period, compared to users in Los Angeles. There
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may be many explanations for this phenomenon, including that i) London is one of the
world’s most famous tourist destinations, which would attract relatively more visitors
to use Twitter to send/receive direct mentions to/from their friends in the city and ii)
London has a relatively higher population density than thatof Los Angeles (refer to
TABLE I for more details).

B. Number of Friends With Respect to Distance

The most interesting characteristic in friendship degreesis how friends of a user are
distributed with respect to the geographic distance between the Twitter user and his/her friend.
In this subsection, similarly as in [8], [9], we also verify whether Twitter users establish more
relationships with friends who are living in geographic proximity to each other. As mentioned
before, in our experiments, we use geo-tagged mentions to identify the location information
of a user when he/she sent a mention to his/her friend. To detect his/her friend’s location, we
then observerepliedgeo-tagged mentions that were sent at the next closest time.Using these
bidirectional mentions, we characterize the probability distributionPD(D = d) of the number
of friends according to the distanced, whered [km] is the geographic distance between a
user and his/her friend.

Unlike the earlier work in [8], the heterogeneous shape ofPD(D = d) for the entire interval
cannot be captured by a single commonly-used statistical function such as a homogeneous
power-law using the approach of parametric fitting. Interestingly, as our main result, we
observe that for the distanced ∈ [dmin, dmax], PD(D = d) can be described as adouble
power-lawdistribution, which is given as:

PD(D = d) ∼

{

d−γ1 if dmin ≤ d < ds (intra-city regime)
d−γ2 if ds ≤ d ≤ dmax (inter-city regime),

(2)

where γ1 and γ2 denote the exponents for each individual power-law andds is the sep-
aration point. This finding indicates that the friendship degree can be composed of two
separate regimescharacterized by two different power-laws, termed theintra-city and inter-
city regimes. Figure 5 shows the log-log plot of the distributionPD(D = d) from empirical
data, logarithmically binned data, and fitting function, where the fitting is applied to the
binned data. As in Section IV-A, we also use the traditional least squares estimation to obtain
the fitting function.14 In TABLE VI, the value of the exponents ofPN(N = n), γ1 andγ2, is
summarized for each region.

Unlike the earlier studies in [8], [9] that do not capture thefriendship patterns in the intra-
city regime, our analysis exhibits two distinguishable features with respect to distance. More
specifically, in each regime, the following interesting observations are made:

• In the intra-city regime, the distributionPD(D = d) decays slowly with distanced,
which means that geographic proximity weakly affects the number of intra-city friends
with which one user interacts. That is, in this regime, the geographic distance is less
relevant for determining the number of friends. This findingreveals that more active
Twitter users tend to preferentially interact overshort-distanceconnections.

• In the inter-city regime,PD(D = d) depends strongly on the geographic distance, where
there exists a sharp transition in the distributionPD(D = d) beyond the separation point
ds. Thus,long-distancecommunication is made occasionally.

14Using maximum likelihood estimation to fit a mixture function (e.g., a double power-law function) is not easy to
implement and the performance of mixture functions has not been well understood.
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Fig. 5. Probability distributionPD(D = d) of the number of friends with respect to distance (log-log plot).

TABLE VI
THE VALUE OF γ1 AND γ2 FOR EACH REGION.

Region γ1 γ2

California 0.60 1.39
Los Angeles 0.60 6.23

UK 0.69 1.47
London 0.38 7.13

The above argument stems from the fact that the separation point ds is closely related
to the length and width of the city in which a user resides. From these observations, we
may conclude that within a given period, the individual is much more likely to contact online
mostly friends who are in location-based communities that range from the local neighborhood,
suburb, village, or town up to the city level. In addition, the following interesting comparisons
are performed according to types of regions:

• Comparison between the city-scale and state-scale/country-scale results: We observe
that the separation pointds in populous metropolitan areas is much greater than that
in larger regions that include local small towns (such as at the state or country level).
For example, from Figures 5(a) and 5(b), we see thatds is approximates 8 km and
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22 km in California and Los Angeles, respectively. From Figures 5(c) and 5(d), the
same trend is observed by comparing the results for the UK andLondon (18 km and
21 km, respectively). This finding reveals that Twitter users in populous metropolitan
areas (e.g., Los Angeles and London) have a stronger tendency to contact friends on
Twitter who are geographically away from their location (i.e., interacting over long-
distance connections). This is because the average size (referred to as the land area) of
the considered metropolitan cities is relatively bigger than that of cities in larger regions
including small towns. Furthermore, it is seen that the exponent in the inter-city regimes
(i.e., γ2) in metropolitan areas is significantly higher than that in larger regions. Unlike
the state-scale/country-scale results, this finding implies that the distributionPD(D = d)
sharply drops off beyondds in huge metropolitan areas.

• Comparison between the results in the two cities (Los Angeles and London): From
Figures 5(b) and 5(d), one can see thatγ1 is 0.60 and 0.38 andγ2 is 6.23 and 7.13
in Los Angeles and London, respectively. Thus, in the intra-city regime, the geographic
distance is less relevant in London for determining the number of friends. However, in
the inter-city regime, the distributionPD(D = d) in London shows a bit steeper decline.

Our geo-tagged Twitter data provides position resolution at up to 10 meters, compared to
the typical city-scale resolution in previous studies on friendship [8], [9], thus allowing much
more fine-grained validation of these heterogeneous behaviors in terms of distance.

V. CONCLUDING REMARKS

The present work has developed a novel framework for analyzing the degree of bidirectional
online friendship via Twitter, while not only utilizing geo-tagged mentions but also introducing
a definition of bidirectional friendship. To provide analysis results, we first introduced two new
algorithms, the first for counting friends and the second fora two-stage distance estimation
algorithm. We verified that the homogeneous power-law model, also known as Zipf’s law,
holds on Twitter in terms of the number of friends of one user.More interestingly, we compre-
hensively demonstrated that the number of friends according to geographic distance follows a
double power-law distribution, or equivalently, a double Pareto law distribution, where there
exists a strict separation point in distance that distinguishes the intra-city regime from the inter-
city regime. Our analysis sheds light on a new understandingof social interaction/relationships
online with regard to small-scale space as well as large-scale space.

Characterization of the degree of friendship in space alongwith a greater variety of
city/state/country-scale data on Twitter remains for future work. Suggestions for further re-
search in this area also include analyzing a new friendship in the temporal domain (time) by
utilizing geo-located Twitter.

REFERENCES

[1] Wilson C, Boe B, Sala A, Puttaswamy KPN, and Zhao BY. User interactions in social networks and their implications.
In: Proceedings of the 4th ACM European Conference on Computer Systems (EuroSys’09), Nuremberg, Germany,
March/April 2009, pp. 205–218.

[2] Kwak H, Lee C, Park H, and Moon S. What is Twitter, a social network or a news media?. In:Proceedings of the
19th International World Wide Web Conference (WWW2010), Raleigh, NC USA, April 2010, pp. 591–600.

[3] Viswanath B, Mislove A, Cha M, and Gummadi KP. On the evolution of user interaction in Facebook. In:Proceedings
of the 2nd ACM Workshop on Online Social Networks (WOSN2009), Barcelona, Spain, August 2009, pp. 37–42.

[4] Mislove A, Koppula HS, Gummadi KP, Druschel P, and Bhattacharjee B. Growth of the Flickr social network. In:
Proceedings of the 1st ACM Workshop on Online Social Networks (WOSN2008), Seattle, WA USA, August 2008, pp.
25–30.

[5] Chen Y, Zhuang C, Cao Q, and Hui P. Understanding cross-site linking in online social networks. In:Proceedings of
the 8th ACM Workshop on Social Network Mining and Analysis (SNAKDD2014), New York City, NY USA, August
2014.



JOURNAL OF INFORMATION SCIENCE 16

[6] Watts DJ and Strogatz SH. Collective dynamics of ‘small-world’ networks.Nature1998; 393:440–442.
[7] Svenson P. Complex networks and social network analysisin information fusion. In:Proceedings of the 9th International

Conference on Information Fusion (Fusion2006), Florence, Italy, July 2006, pp. 1–7.
[8] Liben-Nowell D, Novak J, Kumar R, Raghavan P, and TomkinsA. Geographic routing in social networks.Proceedings

of the National Academy of Sciences of the United States of America (PNAS)2005; 102: 11623–11628.
[9] Kaltenbrunner A, Scellato S, Volkovich Y, Laniado D, Currie D, Jutemar EJ, and Mascolo C. Far from the eyes, close

on the web: Impact of geographic distance on online social interactions. In:Proceedings of the 5th ACM Workshop
on Online Social Networks (WOSN’12), Helsinki, Finland, August 2012, pp. 19–24.

[10] Jurdak R, Corke P, Cotillon A, Dharman D, Crossman C, andSalagnac G. Energy-efficient localization: GPS duty
cycling with radio ranging.ACM Transactions on Sensor Networks (TOSN)2013; 9: A:1–A:32.

[11] Takhteyev Y, Gruzd A, and Wellman B. Geography of Twitter networks.Social Networks2012; 34: 73–81.
[12] Kulshrestha J, Kooti F, Nikravesh A, and Gummadi KP. Geographic dissection of the Twitter network. In:Proceedings

of the 6th International AAAI Conference on Weblogs and Social Media (ICWSM-12), Dublin, Ireland, June 2012, pp.
202–209.

[13] Frias-Martinez V, Soto V, Hohwald H, and Frias-Martinez E. Characterizing urban landscapes using geolocated tweets.
In: Proceedings of the 4th ASE/IEEE International Conference on Social Computing (SocialCom2012) and the 4th
ASE/IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT2012), Amsterdam, The Netherlands,
September 2012, pp. 239–248.

[14] Alowibdi JS, Ghani S, and Mokbel MF. VacationFinder: A tool for collecting, analyzing, and visualizing geotagged
Twitter data to find top vacation spots. In:Proceedings of the 6th ACM SIGSPATIAL International Workshop on
Location-Based Social Networks (LBSN2014), Dallas, TX USA, November 2014.

[15] Lee R and Sumiya K. Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event
detection. In:Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location-Based Social Networks
(LBSN2010), San Jose, CA USA, November 2010, pp. 1–10.

[16] Hawelka B, Sitko I, Beinat E, Sobolevsky S, Kazakopoulos P, and Ratti C. Geo-located Twitter as proxy for global
mobility patterns.Cartography and Geographic Information Science (CaGIS)2014; 41: 260–271.

[17] Jurdak R, Zhao K, Liu J, AbouJaoude M, Cameron M, and Newth D. Understanding human mobility from Twitter.
Preprint, [Online]. Available: http://arxiv.org/abs/1412.2154.

[18] Liu J, Zhao K, Khan S, Cameron M, and Jurdak R. Multi-scale population and mobility estimation with geo-tagged
tweets. Preprint, [Online]. Available: http://arxiv.org/abs/1412.0327.

[19] Falcone D, Mascolo C, Comito C, Talia D, and Crowcroft J.What is this place? Inferring place categories through user
patterns identification in geo-tagged tweets. In:Proceedings of the 6th International Conference on Mobile Computing,
Applications and Services (MobiCASE2014), Austin, TX USA, November 2014.

[20] Morstatter F, Pfeffer J, Liu H, and Carley KM. Is the sample good enough? Comparing data from Twitters’ Streaming
API with Twitter’s Firehose. In:Proceedings of the 7th International AAAI Conference on Weblogs and Social Media
(ICWSM-13), Boston, MA USA, July 2013, pp. 400–408.

[21] Gonzalez MC, Hidalgo CA, and Barabasi AL. Understanding individual human mobility patterns.Nature2008; 453:
779–782.

[22] Song C, Koren T, Wang P, and Barabasi AL. Modelling the scaling properties of human mobility.Nature Physics
2010; 6; 818–823.

[23] Jiang S, Fiore GA, Yang Y, Ferreira, Jr. J, Frazzoli E, and Gonzalez MC. A review of urban computing for mobile
phone traces: Current methods, challenges and opportunities. In:Proceedings of the 2nd ACM SIGKDD International
Workshop on Urban Computing (UrbComp2013), Chicago, IL USA, August 2013.

[24] Wang D, Pedreschi D, Song C, Giannotti F, and Barabasi A-L. Human mobility, social ties, and link prediction.
In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD2011), San Diego, CA USA, August 2011, pp. 1100–1108.

[25] Rhee I, Shin M, Hong S, Lee K, and Chong S. In the Levy-walknature of human mobility.IEEE/ACM Transactions
on Networking (TON)2011; 19: 630–643.

[26] Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, and Scott J. Impact of human mobility on opportunistic forwarding
algorithms.IEEE Transactions on Mobile Computing (TMC)2007; 6: 606–620.

[27] Hui P and Crowcroft J. Human mobility models and opportunistic communication system design.Philosophical
Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences2008; 366: 2005–2016.

[28] Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton J-F, and Vespignani A. Dynamics of person-to-person
interactions from distributed RFID sensor networks.PLOS ONE2010; 5: e11596.

[29] Cho E, Myers SA, and Leskovec J. Friendship and mobility: User movement in location-based social networks.
In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD2011), San Diego, CA USA, August 2011, pp. 1082–1090.

[30] Backstrom L, Sun E, and Marlow C. Find me if you can: Improving geographical prediction with social and spatial
proximity. In: Proceedings of the 19th International World Wide Web Conference (WWW2010), Raleigh, NC USA,
April 2010, pp. 61–70.

[31] Giannakidou E, Koutsonikola V, and Vakali A. Co-clustering tags and social data sources. In:Proceedings of the
9th International Conference on Web-Age Information Management (WAIM2008), Zhangjiajie, China, July 2008, pp.
317–324.

http://arxiv.org/abs/1412.2154
http://arxiv.org/abs/1412.0327


JOURNAL OF INFORMATION SCIENCE 17

[32] Nguyen TT and Jung JJ. Exploiting geotagged resources to spatial ranking by extending HITS algorithm.Computer
Science and Information Systems (ComSIS)2015; 12: 185–201.

[33] Manning C and Schutze H.Foundations of statistical natural language processing. Cambridge, MA: MIT Press, 1999.
[34] Newman MEJ. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics2005; 46: 323–351.
[35] Reed WJ. The Pareto law of income–an explanation and an extension.Physica A2003; 319: 469–486.
[36] Morstatter F, Pfeffer J, and Liu H, When is it biased? Assessing the representativeness of Twitter’s Streaming API.

In: Proceedings of the 23rd International World Wide Web Conference (WWW2013), Seoul, Korea, April 2014, pp.
555–556.

[37] Hodas NO, Kooti F, and Lerman K. Friendship paradox redux: Your friends are more interesting than you. In:
Proceedings of the 7th International AAAI Conference on Weblogs and Social Media (ICWSM-13), Boston, MA USA,
July 2013, pp. 1–8.

[38] Bastos MT, Travitzki R, and Puschmann C. What sticks with whom? Twitter follower-followee networks and news
classification. In:Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (ICWSM-12)
Workshop on the Potential of Social Media Tools and Data for Journalists in the News Media Industry, Dublin, Ireland,
June 2012, pp. 6–13.

[39] Ugander J, Karrer B, Backstrom L, and Marlow C. The anatomy of the Facebook social graph. Preprint, [Online].
Available: http://arxiv.org/abs/1111.4503.

[40] Huang Y, Shen C, and Contractor NS. Distance matters: Exploring proximity and homophily in virtual world networks.
Decision Support Systems2013; 55: 969–977.

[41] Ennis A, Chen L, Nugent C, Ioannidis G, and Stan A. High level geospatial information discovery and fusion for
geocoded multimedia.International Journal of Pervasive Computing and Communications (IJPCC)2013; 9: 367–382.

[42] Sinnott RW. Virtues of the haversine.Sky and Telescope1984; 68: 158.
[43] Milojevic S. Power-law distributions in information science: Making the case for logarithmic binning.Journal of the

American Society for Information Science and Technology (JASIST)2010; 61: 2417–2425.

http://arxiv.org/abs/1111.4503

	I Introduction
	I-A Related Work
	I-B Main Contributions
	I-C Organization

	II Dataset
	III Research Methodology
	III-A Counting Number of Friends of a Particular User
	III-B Finding Friend Distribution With Respect to Distance

	IV Analysis Results
	IV-A Number of Friends of a Particular User
	IV-B Number of Friends With Respect to Distance

	V Concluding Remarks
	References

