
xAPI
Implementation
Once you have a solid understanding of xAPI,
use this technical guide to develop your own
xAPI implementation.

PART 2

How do I implement xAPI?

A good way to document statement design is
by creating an example statement for each
event, plus supporting notes explaining the
properties used. Creating examples (rather
than listing properties in a table or some other
method) helps you think through all the

properties required and means you can use
your example statements as test data before
you complete your implementation. And you
need supporting notes because a single
example can’t illustrate the range of possible
values that might be used.

PART 2: Let's Get Technical

When you’re developing your own xAPI implementation, there are two streams of work—xAPI
statement design and API communication—which can be completed alongside one another. From
there, simply check your data to ensure a successful implementation. This technical guide is
separated into three parts:

1) xAPI Statement Design
2) API Communication
3) Check the Data

1) xAPI Statement Design

After you’ve identified the events and data to be captured, match them to the properties of an xAPI
statement. This task should be undertaken by somebody with an understanding of both the data
requirements of the implementation and of xAPI statement structure.

IMPORTANT: There are detailed guides explaining the structure of xAPI statements, and you should
work through these resources carefully before developing your own xAPI implementation.

References
Anatomy of a xAPI Statement
xAPI Specification Part 2

continued 2www.watershedlrs.com

What's xAPI? Learn more about xAPI before developing your
own implementation. Read Part 1 of this eBook series now.

https://www.watershedlrs.com/how-to-implement-xapi
https://www.watershedlrs.com/hubfs/CO/xAPI/eGuide,%20What's%20xAPI.pdf
https://experienceapi.com/statements
https://experienceapi.com/statements
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Data.md

Learner Identity
The learner identifier is important because
many of the benefits of learning analytics rely
on being able to follow an individual across
multiple systems.

This applies even if you're using anonymous
data and aren't interested in the actions of
individuals; to answer questions such as, “How
do successful people learn?”, for example, you
must be able to match learning data to
success data.

As part of designing xAPI statements, you
must consider two questions at an
organizational level:

1) How will you identify learners?
2) How will you structure activity IDs?

PART 2: Let's Get Technical

Employee IDs are often preferable because:

People in non-computer based jobs may not have email addresses, or they share an email
address between a group of people.

If an employee leaves a company and then another person with the same name is hired, the
email address of the original employee may reused. In this case, the former employee and
current employee effectively share the same email address (albeit, separated in time).

People can revise their email addresses after a name change (e.g., after getting married).

This means you either need to use the same identifier across all tracked systems, or you need to use
a collection of identifiers that can be associated together in your Learning Record Store (LRS).

While xAPI defines four types of identifier—mbox, account, mbox_sha1sum, and openid—most
implementations to date use either account identifiers or email addresses. There’s no good reason
why mbox_sha1sum (a hash generated from the learner’s email address) shouldn't be used, but it
normally isn't in practice.

Learners often don't have relevant openids to use. So, account identifiers, such as employee IDs, that
are used consistently across all systems are the preferred route. When no such employee IDs exist,
email addresses are a good secondary option because most people have them.

xAPI Best Practices

continued 3www.watershedlrs.com

https://www.watershedlrs.com/how-to-implement-xapi

PART 2: Let's Get Technical

Learner Identity

"actor": {

"name": "John Doe",

"account": {

"name": "12345",

"homePage": "https://hr.your-org.com"

}

}

Changes to email addresses can be handled relatively easily by associating both the old and new
email address to the learner. Shared email addresses are more problematic because it’s not possible
to distinguish people who share the same “unique” identifier. You should evaluate the significance of
these issues when choosing which identifier to use.

When using an account identifier, the actor will look something like this:

(continued)

The account name is simple: It’s John Doe’s employee ID that uniquely identifies him within your
organization. The xAPI actor is supposed to be universally unique, however. This protects you in
case you need to merge learning data (e.g., your organization merges with another one).

In this scenario, there could be another person with the same employee ID number as John, so
you must include something to identify this is John’s employee ID number as defined by your
organization rather than somebody else’s ID number.

The account homePage provides that uniqueness. It’s a URL owned by your organization, so it won’t
be used by anybody else. This doesn’t have to be a live URL, it just has to be a domain that you own
and control.

In some cases, you may find that you need to use different identifiers for different systems and then
link those identifiers together in your LRS. This is relatively common and supported by most good
LRSs.

continued 4www.watershedlrs.com

https://www.watershedlrs.com/how-to-implement-xapi

Activity IDs

PART 2: Let's Get Technical

continued 5www.watershedlrs.com

An activity ID is a unique identifier for a particular activity. In xAPI, an activity could be anything you
want to measure (i.e., taking a quiz, filling out a survey, watching a video, etc.).

A common—and often problematic—mistake with xAPI implementations is getting the activity ID
wrong. There are three ways people make this mistake:

1) The ID format is incorrect.
2) Multiple IDs are used when a single ID should be used.
3) A single ID is used when multiple IDs should be used.

Recommended Reading: Check out our detailed guide, “Get the Activity ID Right” for
more about these issues, including helpful examples.

Organizations should create an internal system to ensure that activity IDs are unique and consistent.
For example, this could include:

An internal registry of activity IDs, perhaps in the form of a shared document or intranet page

Quality control processes to ensure good activity IDs are used

A naming convention for structuring activity IDs Different base URLs used by different teams, so
each team can be responsible for the uniqueness of their own IDs

An organization (example.com) might create activity IDs using a structure such as:

Activity ID Example

https://example.com/team-code/name-of-authoring-tool/name-of-course/unqiue-course-id

Each team would be responsible for ensuring the uniqueness of activity IDs starting with
their team codes.

https://www.watershedlrs.com/how-to-implement-xapi
https://watershedlrs.zendesk.com/hc/en-us/articles/214880383-Get-the-Activity-ID-Right

PART 2: Let's Get Technical

continued 6www.watershedlrs.com

Batch statements for maximum
performance
It's good practice to collect and send xAPI
statements in batches for maximum
performance.

If sending a high volume of statements, no more
than 500 statements per batch is recommended.

With smaller volumes of statements, you may
wish to send smaller batches to avoid too much
of a delay between when the data is generated
and when it appears in your LRS.

2) API Communication

In addition to designing the xAPI statements, you also need to make the connection between your
application and your LRS to send the statements.

This more technical side of xAPI is in some ways more straightforward than statement design
because there are existing code libraries for all the major programming languages. Simply download
the code library and configure your application with xAPI endpoint and authentication details.

In the rare event that you're using a programming language that isn't covered, or you need to
contribute a change to a code library, the xAPI Specification Part 3: Communication explains the
requirements of communication between the LRS and client.

Server-side tracking, best tracking
If you have a choice between sending the data from the learner’s browser using client-side
JavaScript versus sending the data server side from a web server, server-side code is always the
best option. Server-side tracking is less vulnerable to both security and connectivity issues.

https://www.watershedlrs.com/how-to-implement-xapi
http://experienceapi.com/libraries/
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Communication.md

PART 2: Let's Get Technical

continued 7www.watershedlrs.com

Handle error codes appropriately

For a robust xAPI implementation, build your implementation to handle failed requests (e.g.,
resending the request as individual statements to identify the problem statement, logging the error, or
alerting a human). Error codes in the 400 range normally require human intervention, whereas errors
in the 500 range may be resolved by trying again later.

Have code in place to keep statements and resend them later to avoid losing data in case of a
connection error or LRS downtime. In particular, your application should be built to handle the
following error codes when sending statements.

200 OK or 204 No Content. This indicates a successful request.

400 Bad Request. There’s something wrong with the structure of one or more of the statements or with
the request package itself. Normally, the response will state the issue.

401 Unauthorized. The authorization header doesn't match an authorized set of credentials.

403 Forbidden. The credentials match, but those credentials are not authorized to make that request.

404 Not Found. Most likely, the endpoint is configured incorrectly. Or, there's a poor internet connection
or other network issue.

413 Request Entity Too Large. The request was larger than allowed by the LRS. Try breaking the
statements into smaller batches.

429 Too Many Requests. Your application has sent too many requests in a short span of time. Try
sending statements in batches.

500 Internal Server Error. These responses may happen in response to bad requests that are wrong in
ways that your LRS’s validation has missed.

503 Service Unavailable. Indicates a period of downtime or overloaded servers.

504 Gateway Timeout. Indicates a period of downtime or overloaded servers.

Error Codes

https://www.watershedlrs.com/how-to-implement-xapi

PART 2: Let's Get Technical

continued 8

Handle error codes appropriately.

As a rule of thumb, an error code starting in 4 suggests an issue on the client side. An error code
starting in 5 suggests an issue on the LRS side. These codes should be accompanied by helpful error
messages. Different LRSs provide different levels of detail in error messages and testing with multiple
LRSs can be helpful when debugging an issue. Some LRSs also include functionality to log errors.

Implementing xAPI in your authoring tool

The following guidelines apply across many authoring tools when implementing xAPI. Guides by
authoring tool vendors, LRS vendors, and e-learning consultants also exist for various types of tools.

(continued)

References
Code Libraries
xAPI Specification Part 3

When viewing tracking data, it's more insightful to
know the learner interacted with the slide titled
“Implementing xAPI in your authoring tool,” rather
than “Slide 14.”

Similarly, it’s more insightful to know the learner
dragged the photo of the cat to the Furry Animals
Dropzone than knowing they dragged Picture 8 to
Dropzone 4.

Therefore, use descriptive names for course
slides and objects so you can easily see what’s
going on later. Detailed names can also help
benefit visually impaired learners who may rely
on them.

Use the latest version.
Many authoring tools regularly update and
enhance their xAPI-tracking capabilities.
Make sure you're patched to the latest version
of the tool to ensure that your courses benefit
from these fixes.

Using the latest versions also means you
have fixes and enhancements for other
features of the tool unrelated to xAPI
tracking.

If you're using a cloud-based tool, you should
receive automatic upgrades to the latest
versions—whereas you’ll need to manually
upgrade desktop software.

www.watershedlrs.com

Give slides and objects good names.

https://www.watershedlrs.com/how-to-implement-xapi
http://experienceapi.com/libraries/
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Communication.md

PART 2: Let's Get Technical

continued 9www.watershedlrs.com

Implementing xAPI in your authoring tool (continued)

Publish for “xAPI” or “Tin Can.”
When you publish the course, it’s important to
select the xAPI option from the authoring
tool’s publish settings, rather than SCORM or
AICC. In some cases, the xAPI option may be
called “Tin Can” instead.

Some tools may have additional settings that
need to be configured as well; see your
authoring tool’s documentation for details.

Complete the course information.
The tool usually asks you to complete the
course name and description, as well as enter
an activity ID—and you should complete all of
these fields. The activity ID is most important
field (Read the section on activity IDs under
xAPI Best Practices).

Some tools automatically add “http://” to your
entry in the activity ID field. If your tool does
this, remove it when you enter your activity ID
to avoid having “http://” appear twice in
statements.

If the authoring tool always adds “http://” at
the start, it’s not possible to have your activity
IDs start with “https://” when using
these tools.

If you need to revise a course after learners
have started using it, you should:

Edit carefully after release.

back up your project file before making
any changes,
make changes carefully, and
test the new version with your reports
before releasing it to learners.

Deleting and recreating slides and objects
could result in their respective identifiers
accidentally changing, which could adversely
affect your data and reports.

Test your courses.
You should always test the tracking data from
your courses before releasing them to learners.

You will need to either launch the course from a
Learning Management System (LMS) that can
support xAPI and send the data to your LRS, or
use a launch wrapper.

https://www.watershedlrs.com/how-to-implement-xapi
https://github.com/WatershedLRS/xAPI-launch

PART 2: Let's Get Technical

continued 10www.watershedlrs.com

Implementing xAPI in your authoring tool (continued)

Implement custom tracking.
In some cases, you might want to extend the tracking included in your authoring tool with additional
tracking. You can do this in two simple steps:

1) Incorporate TinCanJS in your package.

Some authoring tools may already include TinCanJS as standard. If not, you’ll need to include TinCanJS
in your published packages. You can download the latest version of TinCanJS from GitHub and drop
tincan- min.js from the build folder into the root directory of the published package.

You’ll also need to link to TinCanJS from the published HTML file (this might be called something such as
index.html or story.html) by adding the following code:

<script src="tincan-min.js"></script>

2) Embed statement sending code in your course.

Many authoring tools include functionality to execute JavaScript when certain events trigger in the course.
Drop the following JavaScript into that feature:

var tincan = new TinCan ({url: window.location.href});

tincan.sendStatement(

{

verb: {

id: "http://example.com/verbs/some-verb"

},

object: {

id: "http://your-organizations.website/tincanapi/activities/unique-id-for-action"

}

}

);

https://www.watershedlrs.com/how-to-implement-xapi
http://experienceapi.com/share-statements-between-courses/libraries
http://rusticisoftware.github.io/TinCanJS/

PART 2: Let's Get Technical

continued 11www.watershedlrs.com

Implementing xAPI in your authoring tool (continued)

Replace the statement in this code with the statement you design. (See xAPI Statement Design.) Note
the statement doesn't include the actor property—it'll be added by TinCanJS based on the launch
parameters used to launch the course. When using custom tracking, review the JSON statements as
described in Reviewing xAPI Statements, even if the authoring tool used is a certified data source.

References
Get started with xAPI in my content

Launching xAPI content packages

A history of launch in xAPI
xAPI defines the communication of learning
records to and from an LRS. Unlike previous
learning standards such as SCORM and AICC,
xAPI doesn't define a mechanism for packaging
content. That’s because many xAPI
applications don't have anything to do with
packaged e-learning content. Rather, many use
server-side tracking to record experiences of
learners interacting with web applications.

Rustici Software, the authors of the original “Tin
Can API” draft specification, however, created a
companion document titled Incorporating a
TinCan LRS into an LMS. It describes a process
for packaging “Tin Can” content and launching it
from a system, such as an LMS, with a similar
user experience to how SCORM courses were
previously loaded into LMSs.

This method of packaging and launching was
intended to be temporary until a formal
specification was created. It doesn’t have a
name, so we’ll call it “Tin Can Launch." The
expected formal specification, which became

known as cmi5, took time to arrive. In the
meantime, the “temporary” packaging and launch
method became widely adopted amongst both
authoring tools and LMSs that adopted xAPI.

cmi5 was released in July 2016, more than three
years after Tin Can Launch was published. It’s
built on top of the Tin Can Launch process with
changes and additional features, and is
considered more robust than Tin Can Launch. It's
implementation also is more involved because of
these extra features. Because adoption of cmi5 is
low compared to Tin Can Launch, it's usually
more useful to implement Tin Can Launch first
and then extend and adapt that implementation to
support cmi5.

The rest of this section relates to the Tin Can
Launch method rather than cmi5. See the cmi5
specification for implementation requirements.

References
Incorporating a TinCan LRS into an LMS
cmi5 specification

https://www.watershedlrs.com/how-to-implement-xapi
http://experienceapi.com/content/
https://github.com/RusticiSoftware/launch/blob/master/lms_lrs.md
https://github.com/AICC/CMI-5_Spec_Current/releases/download/Quartz/cmi5-quartz-release-1st-edition.pdf
https://github.com/AICC/CMI-5_Spec_Current/releases/download/Quartz/cmi5-quartz-release-1st-edition.pdf
https://github.com/RusticiSoftware/launch/blob/master/lms_lrs.md
https://github.com/AICC/CMI-5_Spec_Current/releases/download/Quartz/cmi5-quartz-release-1st-edition.pdf

PART 2: Let's Get Technical

continued 12www.watershedlrs.com

Launching xAPI content packages (continued)

Packaging
When you select the Tin Can or xAPI publish options in most e-learning course authoring tools, they will
produce a ZIP package following the process outlined in the Tin Can Launch document. This means
that they contain a tincan.xml file in the root directory of the package. This file contains metadata about
the course and a URL to launch the course. If you’re using an authoring tool, you shouldn’t need to edit
the tincan.xml file.

If you do need to edit the file or create your own, a full schema for the xml file can be found here and
examples can be found in the prototypes hosted on experienceapi.com.

Here’s the file from the Golf Course prototype, which you can use as the basis of your own packages.

<?xml version="1.0" encoding="utf-8" ?>

<tincan xmlns="http://projecttincan.com/tincan.xsd">

<activities>

<activity id="http://id.tincanapi.com/activity/tincan-prototypes/golf-example"

type="http://adlnet.gov/expapi/activities/course">

<name>Tin Can Golf Example</name>

<description lang="en-US">An overview of the sport of golf.</description>

<launch lang="en-us">index.html</launch>

</activity>

</activities>

</tincan>

You should edit the activity ID, activity type, name, description, and launch fields with your own values.
See the xAPI Statement Design section for more information about choosing the right values for
these fields, especially the activity ID. The information included in this file should match the activity ID
and definition sent in statements by your course.

The launch URL can be a relative URL pointing to a file inside the package, or an absolute URL pointing
to a file hosted elsewhere; it’s perfectly valid for the package to contain only the tincan.xml file with all
other files served from another site.

https://www.watershedlrs.com/how-to-implement-xapi
http://projecttincan.com/tincan.xsd
http://experienceapi.com/download-prototypes/

PART 2: Let's Get Technical

continued 13www.watershedlrs.com

Launching xAPI content packages (continued)

Launch
xAPI packages also should collect data about the learner and LRS from the system launching the
package. Systems launching xAPI packages, such as LMSs, need to provide this data. The learner
and LRS information is passed via a querystring. This is detailed in the Launch section of
Incorporating a TinCan LRS into an LMS. The resulting URL looks like this (expect without line breaks
and the values should be URL encoded):

http://example.com/

?endpoint=https://example.lrs.com/xapi/

&auth=Basic QWxhZGRpbjpPcGVuU2VzYW1l

&actor={ "name" : "Example Learner", "mbox" : "mailto:email@example.com" }

®istration=dbccef44-e4bf-47b4-a3f6-179889ea35d0

&activity_id=http://example.com/activity

The endpoint is the endpoint of the LRS to send the data to.

The auth is a Base 64 encoded version of the string key:secret where the key and secret are the
credentials provided by your LRS.

The actor is a JSON-encoded, xAPI-conformant actor object representing the learner. Note that the
example in Incorporating a TinCan LRS into an LMS conforms to an old pre-release version of xAPI
and should not be copied.

The registration parameter is optional. It contains a UUID representing a registration or session for
the course. Some courses will save bookmarking data against a particular registration, so using the
same registration UUID the next time the content is launched will cause the learner to return where
they left off; using a new registration UUID will give them a clean start. If not included, some courses
will still store bookmarking data against a blank registration UUID, and the learner will always be
returned to where they left off.

The activity_id parameter also is technically optional but is required by some popular authoring
tools. It defines the activity ID of the course and can be read directly from the tincan.xml file (where
one exists).

https://www.watershedlrs.com/how-to-implement-xapi
https://github.com/RusticiSoftware/launch/blob/master/lms_lrs.md
https://github.com/RusticiSoftware/launch/blob/master/lms_lrs.md

PART 2: Let's Get Technical

continued 14www.watershedlrs.com

Launching xAPI content packages (continued)

To help with launching content, you can use this xAPI launch tool that plays the role of an LMS but
without any authentication or security. Rather than logging in, learners simply enter their names and
email addresses, and the tool trusts they are who they claim. Unless you trust everybody with access to
the course, this tool should be used only for testing or as a reference example when developing a more
secure launch implementation in an LMS or similar.

In cases such as testing or where access to the course is secure, these files can be used to create a
standalone self-launching course. In this instance, you’ll need to drop the files into the folder with your
package and either use an existing tincan.xml file contained in the package or update the example.

LRS details should be configured in the top of the launch.js file. You can then link the users to the
launch.html file to enter their names and email addresses. You can customize the launch.html with your
brand styling, imagery, and instructions as required.

References
Incorporating a TinCan LRS into an LMS
xAPI Launch Tool

When using packaged e-learning content, it’s important to be aware that all content is downloaded to
the learners’ computers in addition to the JavaScript running any assessments and sending the data to
the LRS/LMS is running on their computers.

This means whatever you do, ultimately, a tech-savvy learner (or a hacker who has compromised your
organization’s computers) could take control of the course and the tracking data. There’s potential this
type of user could access test answers, send false data, or pull back data from the LRS.

This risk applies to xAPI as much as to older e-learning standards, such as SCORM and AICC. It also
potentially applies just as much to content launched from the LMS as to the zero security
launchwrapper mentioned in the previous section. There are three potential responses you can take
with this risk, each with pros and cons:

LRS Credentials

https://www.watershedlrs.com/how-to-implement-xapi
https://github.com/watershedlrs/xapi-launch
https://github.com/RusticiSoftware/launch/blob/master/lms_lrs.md
https://github.com/watershedlrs/xapi-launch

PART 2: Let's Get Technical

continued 15www.watershedlrs.com

Launching xAPI content packages (continued)

OPTION 1: Accept the Risk.

This may sound shocking at first; but, in cases
where the learners and assessments
aren't high stakes, this may be the best option.
It requires minimal work and doesn’t prevent
you from using the rich features of e-learning
authoring tools that you’re used to. Many
organizations have been using SCORM for
years without a single recorded case of a
learner hacking the course package to fake his
or her score.

However, most learning professionals have
heard stories of executives getting their
administrative assistants to complete courses
for them or of teams emailing a cheatsheet of
correct answers. There’s easier ways to cheat
at e-learning that don’t require learners to be
learning technologies interoperability
standards experts. To put it another way:
there’s no point upgrading the locks on your
doors if there’s a great big hole in your wall.

OPTION 2: Restrict the scope of credentials
used to limit the risk.

This option is a middle road. It doesn’t remove
the risk of someone accessing LRS credentials,
but, by restricting the credentials' scope, you
can limit the potential damage.

This option is really a spectrum of options with
increasingly restricted credentials

reducing the scope of any compromised
credentials at the cost of increased work to
implement. At a simple level, any created
credentials should be configured with the
LRS access setting to “isolated.” This is the
default value and restricts the credentials to
only have access to data they stored. This
means if credentials are compromised, the rest
of the data in your LRS can't be accessed.

To further restrict credentials, you can
decrease the scope across which each set of
credentials is used. You can use a different set
of credentials per course, or even use a
different set of credentials each time a learner
launches a course. For example, an LMS can
be integrated with an LRS on the server side so
it generates a new set of credentials each time
a learner launches a course. These credentials
can then be deleted via the same API after a
configured number of minutes. So, if the
credentials are compromised, they can only be
used to access data about that session and
only during a certain period of time before
they're deleted.

This approach is more work to implement and
still doesn't completely remove the risk. It
does, however, have the benefit of reducing the
potential risk consequences, while at the same
time allowing you to continue to use the
authoring tools you know and love. Talk to your
LMS and LRS providers to see if such an
integration is possible with their products.

https://www.watershedlrs.com/how-to-implement-xapi

PART 2: Let's Get Technical

continued 16www.watershedlrs.com

Launching xAPI content packages (continued)

This option foregoes all packaged e-learning content in lieu of tracking and marking assessments on
the server, rather than the learner’s computer.

We include the marking of assessments here because there’s little benefit sending the tracking data
server side if a hacker can already interfere with the process before the tracking data is generated.
Server-side tracking is not only more secure, but more reliable as you’re not dependent on the
learner’s internet connection.

If you're using server-side tracking as a way to ensure learners don’t cheat, remember what we said
earlier about learners sharing answers with one another or having others take a course on their
behalf. If you really want to make your assessments secure, you need to consider both the
technological and social methods for getting around security checkpoints.

The downside of server-side tracking for content is that none of the major e-learning rapid authoring
tools support it, heavily restricting your options in terms of creating content. Existing options for
authoring server-side tracked content often lock you into that solution, preventing you from taking
your content with you if you change tools.

OPTION 3: Don’t use packaged e-learning content; mark the assessments and track the learning
interactions server side.

Choosing the best approach for your organization is a balance with pros and cons of each approach;
there’s no one right answer. Instead, you’ll need to consider the costs in effort and restrictions of
implementing a more secure solution versus the likelihood and severity of the risks.

3) Check the Data
Take some time to explore your data for accuracy. This applies not only to xAPI statements you design
internally, but also to statements created by others. If you haven’t already, use the following xAPI
Statement Review questions to make sure your statements are good.

Don’t stop there, though. Use reports to probe at the data. If your reports look wrong, there’s a good
chance the underlying data is wrong.

https://www.watershedlrs.com/how-to-implement-xapi

PART 2: Let's Get Technical

continued 17www.watershedlrs.com

Review the JSON statements.

As a first step in checking your data, check for syntax errors in the statements. Make sure the right
properties have been used and check that statements are well populated with data. Look at the xAPI
statements themselves (rather than reports at this stage) and use the questions in the following
checklist to identify potential common mistakes:

Does the overall stream of statements make
sense and tell a whole story? Does the data
show you what the learner did?

Are statements only sent once (i.e., the same
statement should not be sent multiple times
with the same ID)?

Is the timestamp different from the stored
value? If they are the same, this indicates
that the timestamp has been set by the LRS;
in most cases it's more accurate for the
application sending the data to set the
timestamp. Is the timestamp accurate?

Do statement properties contain any empty
arrays or objects? If so, it's better not to
include the property at all.

Are the verb and object properly separated?
That is, does the verb only describe the
action and not the thing being acted on, and
does the object only describe the thing being
acted on and not the action taken?

General
Is the actor.name property used? (Note: If a
person’s name is planned to be brought in
from another data source, such as an HR
system, the person’s name may not be
required.)

Is the correct identifier used for the actor?
See xAPI best practices above.

Does the actor have the correct structure?
(e.g., People may incorrectly populate an
email address in the actor.account property
or generate a fake email from an account.)

Actor

Is the verb ID listed at
https://registry.tincanapi.com/#home/verbs?

Does the verb ID accurately represent the
action? For innovative projects, an appropriate
verb ID may not exist, but you can register an
account on https://registry.tincanapi.com and
submit a new verb ID.

Are generic verb IDs avoided? (e.g.,
‘http://adlnet.gov/expapi/verbs/experienced’)

Is the verb display property populated?

Verb

https://www.watershedlrs.com/how-to-implement-xapi
https://registry.tincanapi.com/#home/verbs
https://registry.tincanapi.com/
http://adlnet.gov/expapi/verbs/experienced

PART 2: Let's Get Technical

continued 18

Review the JSON statements.

Is the object activity ID correct? See xAPI best
practices above.

Is the object activity name populated? Does it
clearly identify the activity so a user could
easily chose it from a list?

Is the object activity description populated with
something sensible?

Is the object activity type populated with an
identifier from https://registry.tincanapi.com/
#home/activityTypes? This is a common issue,
but there's no reason not to populate the
activity type in every statement.

Are all properties of the object definition,
including extensions, the same across all
statements sharing the same activity ID?

This is key because changes in values can
affect reports; some reporting tools use the
canonical definition of activities.

Object

Is the context object used? Context should
be included for all statements.

Is context registration used? This should be
used where possible and appropriate.

Are context activities used? These should be
used where appropriate.

Are context activity definitions populated
(see object above)? Note: You may not need
to populate a context activity definition if the
data is sent in another statement.

Is a source context activity included? See
Finding the Source for more information.

Context

(continued)

Is the result object appropriately used? This is
optional, but all the result properties should be
used wherever they are appropriate.

Is result data sent multiple times? (e.g.,
sending the same duration in multiple
statements can lead to double counting)

Does the duration use a sensible structure?
(e.g., P32.054S is preferable to
P0D0H0M32.054S)

Result

https://registry.tincanapi.com/#home/activityTypes
http://experienceapi.com/finding-source/

PART 2: Let's Get Technical

continued 19www.watershedlrs.com

Review the JSON statements.

Where extensions are used:

Extensions

(continued)

Is there a non-extension property that can be used instead or in addition to? Often, first-time
implementers use extensions in cases where they're unaware of a less popular xAPI statement
property. Check the xAPI specification carefully.

Has the extension been registered at https://registry.tincanapi.com/#home/extensions? Or, has an
existing registry extension been used?

Does the extension value match the expected value based on the registry description?

Is the data structure of the extension value sensible? For example, composite values or JSON-
encoded values are bad values because they're difficult to interpret. Unencoded objects/arrays and
simple strings/numbers/booleans are good values because they're easy to interpret.

Is the same data structure used every time the extension is used? For instance, if an extension
contains an array in one statement, it should contain an array when used elsewhere.

Is the extension in the right place? Extensions relating to the activity should be included in the activity
definition and should always be the same value for every learner and every statement using that
activity ID. Extensions relating to the overall experience belong in either the result or context,
depending on if they relate to the context or result of the experience.

Does the extension location match the expected location per the registry description (if specified)?

Note: These questions are guidelines. There may be some situations where an expert
might choose to deviate from the guidance implied by some of these questions.

The previous questions aren't exhaustive and even the best of us will miss things when reviewing a
batch of raw JSON statements by sight. Once the statements pass the raw JSON review, move onto
testing statements with reports. The reports and data used for testing should be as representative of
the final reports and data as possible.

Test the data with reports.

https://www.watershedlrs.com/how-to-implement-xapi
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI-Data.md#statement-properties
https://registry.tincanapi.com/#home/extensions

PART 2: Let's Get Technical

continued 20www.watershedlrs.com

Test the data with reports.

As you look at reports, ask yourself if the data seems reliable. Does it make sense intuitively? Is the data clean
and well structured? Do different data sources use similar xAPI statement structures, and is their data
represented in the same way in reports? Are the metrics consistent with expectations? If possible, compare
what you see to any existing reports. Do the reports from your LRS data give you the same results?

If your data doesn’t line up with expectations and/or with existing reports, some possible reasons include:

(continued)

You’re looking at a slightly different population
of learners. Are you filtering out inactive
learners?
Measures and averages are being calculated
slightly differently than previous reports.
Some data isn’t being reported, or is being
reported multiple times due to a bug.

Take the time you need to figure out where and why the data doesn’t match expectations and then adjust
the data (or expectations) as needed. To give an idea of the process involved, the following graphic
illustrates the kinds of checks you might make when reviewing statements from a typical e-learning course
quiz using a report on that data.

Data is inaccurate due to a bug in translation.
The original data from the data source is
inaccurate.
You’ve made an error configuring the reports.
Learners are behaving in a way you didn’t
expect (i.e., The data is right. You’re wrong.)

https://www.watershedlrs.com/how-to-implement-xapi

About the Author

With a background in instructional design and development, Andrew Downes creates
learning platforms and experiences in academic and corporate environments. Now a
learning and interoperability consultant with Watershed, Andrew is an expert in
Evidence-Driven Learning and Learning Technologies Interoperability.

As an author and top contributor of xAPI (Experience API) and the majority of material
on experienceapi.com, Andrew is a recognized xAPI expert who has delivered
presentations, webinars, and training sessions across the globe.

Andrew Downes
Learning & Operability

Watershed

www.watershedLRS.com

Copyright © 2019 by Watershed Systems, Inc. All rights reserved. This eBook or any portion thereof
may not be reproduced or used in any manner without the express written permission of the publisher.

www.watershedLRS.com

