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*
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Problem Description (1)

@ We have

o Data pointsy = (y1,¥2,---,4n), ¥ €R, (i =1,2,...,n)

e Probabilistic source p*
*

y~p

@ Task: learn a good approximation to p* using data y
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Problem Description (2)

@ Determine a suitable model

e Model structure
o Model parameters

o Example: y = (10.26,7.95,4.59,7.00,10.17,11.78)’

o Distribution? (e.g., Weibull, Log-Normal, Gamma)
o Parameters? (e.g., scale and shape parameters)

@ Task: learn a good approximation to p* using data y
o Not tractable, in general!
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@ Assumptions regarding unknown source p*

o Can be approximated by a distribution from p(y|6;~)

e Model y €T’
o Model structure I' C N
o Parameter vector @ = (01,02, ...,0k ) €0, C RFII
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Problem Description (3)

@ Assumptions regarding unknown source p*

o Can be approximated by a distribution from p(y|6;~)

e Model y €T’
o Model structure I' C N
o Parameter vector @ = (01,02, ...,0k ) €0, C RFII

e Example: y = (10.26,7.95,4.59,7.00,10.17,11.78)’
o I' = {Weibull, Log-normal, Gamma}
o If v = {Log-normal}, 8 = (u,0?)’, or
o If v = {Weibull}, 6 = (k, \)’
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Problem Description (4)

Parameter estimation: method of maximum likelihood

Choose 0 such that probability of observed y is maximised

A

0(y;v) = arg snax p(y|0;7)

Many attractive statistical properties

e May not be used for model selection!
o Talk will concentrate on inference of model structure v € T’
e Running example: linear regression model
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Linear Regression Model (1)

@ Linear regression model for explaining data y

y=XB+e, &~N(0,7I,)

o X = (x1,X2,...,Xq) is the full design matrix
o B =(B1,P2,...,04) are the unknown parameter coefficients
o £ =(e1,8e2,...,&,) are i.i.d. Gaussian variates
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Linear Regression Model (1)

@ Linear regression model for explaining data y

y=XB+e, &~N(0,7I,)

o X = (x1,X2,...,Xq) is the full design matrix
o B =(B1,P2,...,04) are the unknown parameter coefficients
o £ =(e1,8e2,...,&,) are i.i.d. Gaussian variates

@ Only a subset of covariates X is associated with y
@ Task: determine which covariates, if any, are associated with y
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Linear Regression Model (2)

e Let v C {1,2,...,q} denote which covariates are in design
submatrix X,

@ Linear model indexed by v € T’

y=X,8+¢e, e~N(0,,7L,)

Set of all candidate subsets I

X = (Xy,,Xy,5 -, Xy,) is the design sub-matrix

B = (B1,B2,...,B) is the unknown parameter vector
Total number of unknown parameters is k = |y| + 1
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Linear Regression Model (2)

e Let v C {1,2,...,q} denote which covariates are in design
submatrix X,

@ Linear model indexed by v € T’

y=X,8+¢e, e~N(0,,7L,)

Set of all candidate subsets I

X = (Xy,,Xy,5 -, Xy,) is the design sub-matrix

B = (B1,B2,...,B) is the unknown parameter vector
Total number of unknown parameters is k = |y| + 1

o Example
o ¢=10,v=1{2,3,6,10}, X, = (x2,X3, X6, X10)
ﬁ (61752363754)/ €O
e k=5



Introduction
Problem description
Example: linear regression

Linear Regression Model (3)

@ The set I' may be of nested or non-nested structure
o Nested structure

e Polynomial regression with (¢ = 3) covariates
o Constant term x7, linear term x5 and quadratic term x3

I ={0,{1},{1,2},{1,2,3}}

@ Non-nested structure
o All-subsets regression problem

[={0,{1},{2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}
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Linear Regression Model (4)

@ Maximum likelihood estimates

Bly;v) = (X[X,) ' Xy
#yiv) = %(y — X, B(y; ) (y — X,B(y;7))

@ Negative log-likelihood evaluated at maximum likelihood
estimates

A n n R
—logp(y|Xy, B, 757) = 5 log2m + 7 log 7(y;y) +

|3
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o How close is fitted model p(y\é(y);’y) to unknown p*(y)?
@ Require measure of distance between distributions
o Kullback-Leibler (KL) divergence
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Introduction (1)

o How close is fitted model p(y\é(y);’y) to unknown p*(y)?
@ Require measure of distance between distributions
o Kullback-Leibler (KL) divergence

An(p*,pe,) = / *(x) log o ‘(0 )dx
= Eyopr {log (p
"(x

= Exp [logp

“(x)
16;7)
)] + Expr [~ log p(x[60;7)]
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Introduction (2)

@ Examples
o KL divergence between X; ~ N(uq,71) and Xa ~ N(ua2, 72)

_ 2 1
Av(X1, Xo) = M+§ (ﬁ_l_logﬁ>

o KL divergence between X; ~ Exp(A;) and X5 ~ Exp(A2)

A A
Al(Xl,XQ) = /\7? —10g§ -1
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Introduction (3)

@ lIdeally, want to choose model v € T" is
D . * .
¥ = argmin {An"pp,) }

e Example: y ~ Weibull(k = 5,\ = 0.3), (n = 100)
o I' = {Weibull, Log-normal, Gamma}
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Introduction (4)
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Introduction (5)

@ Ranking based on KL divergence A”(p*’péw)

o Requires knowledge of p*.
o Not possible!
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Takeuchi Information Criterion (TIC) (1)

e Takeuchi noted — log p(y|@;~) is a downwardly biased
estimator of

Ex~p+ [~ log p(x|0;7)]

@ Exact bias adjustment generally not computable
e Asymptotic adjustment possible
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Takeuchi Information Criterion (TIC) (2)

@ Model selection criterion

TIC(y:y) = —2logp(yld,) + 2t (27 (1:9)Z (3 y))

where
9%logp(y|6;7)
Q(v: — __Z Toi\IT T/
(Y7 7) 9000’ s
/
" [ dlog p(yi|0;~ Olog p(y:|0;~
2(y;7) = Z<) A><(§0|) A
i=1 0=0, 6=6-
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Takeuchi Information Criterion (TIC) (3)

@ To use TIC for model selection, choose
Atic(y) = argmin {TIC(v;y)} .
el

@ Model with smallest TIC score
o Closest to p* in KL divergence

@ TIC is asymptotically unbiased estimate of KL divergence!
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Akaike Information Criterion (AIC) (3)

@ TIC can be simplified
e Assume p* is contained in model ~y

@ Akaike Information Criterion (AIC)
AIC(y;y) = —2logp(y|6,) + 2k

where k is dimensionality of 8 € ©,
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Akaike Information Criterion (AIC) (4)

@ AIC is an asymptotically unbiased estimator of the KL
divergence
@ Excellent estimate when

e Sample size n is large
o Number of parameters k is small
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e Sample size n is small, or
o Number of parameter k is large relative to n
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Small Sample Correction to AIC (1)

@ AIC should not be used if

e Sample size n is small, or
o Number of parameter k is large relative to n

@ A small-sample correction for AIC

2kn

AIC.(y;y) = —21 6,) + ———
(;y) ogp(yl0y) + ——
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Small Sample Correction to AIC (2)

@ AIC, derived for linear regression setting
@ As n — oo, AlIC, is equivalent to regular AIC

@ Empirical evidence

e AIC, performs better at model selection than AIC
o Largely true, irrespective of the problem
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The Kullback Information Criterion (KIC) (1)

o KL divergence is an asymmetric measure

@ Symmetric KL can be used to derive new criteria

Jn(p*: po,) = Expr {log (]Z:(;’)’y)} + Ex-a, {log p(;|(exa)’7)}
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The Kullback Information Criterion (KIC) (1)

@ The symmetric Kullback information criterion (KIC)

KIC(vy;y) = —2logp(y|8,) + 3k

@ Small sample correction (KIC,)

n
+nlog —

2

—k+1
KIC,(v:y) = AIC.(7;y) — ni ("*)

2
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Example: Linear Regression

@ Total number of parameters is k = |y| + 1

@ Model selection criteria

AIC(v;y) = nlog(2n7(y;7)) +n + 2k
AIC,(r;y) = nlog (2mi(y;)) +n o+~
KIC(v;y) = mnlog(2n7(y;7)) +n+ 3k
KIC.(v;y) = AlCc(v;y) — (n—12<;+1>
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Model Selection Criteria

Summary

@ All examined distance criteria derived for nested I'

@ Consistency
e None of the examined distance based criteria are consistent!
e Avoid using if the aim is to do model selection

o Efficiency

e AIC and KIC, and corrected variants, are asymptotically
efficient
e Good prediction performance
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@ Uncertainty about models and parameters is defined in terms
of probability
o Need a prior distribution mg(@;y) over parameters 6 € O,

o Quantifies uncertainty about 6 € O,
e Subjective priors, objective priors
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Basic Idea (2)

@ Parameter estimation
e Posterior distribution

p(y10;7)70(0;7)
m(y;7y)

m(y;y) = /p(yw;’v)ﬂe(&v)d(?

4

p(Bly;y) =

e Marginal distribution m(y;~)
e Posterior mean, posterior mode, posterior maximum?
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Basic Idea (3)

@ Example: Parameter estimation
o Likelihood, y; ~ Exp(N), (i =1,2,...,n)
o Prior density, A ~ Ga(a, 3)
o Posterior density, Aly ~ Ga(a+n,8+ > ., y;)
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Basic Idea (4)

e How do we choose 7 from p(80|y;~)?
@ Posterior distribution over models
o Define a prior density 7., (y) over models y € T

m(y; )7y ()
el m(y; 7)777 (7)

p(Vly) = 5

@ Model selection
o Choose the model that maximises

m(y; )7 ()
> er My )Ty (7)

q = arg max
A(y) gmay {
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Basic Idea (5)

@ Posterior odds in favour of model 1 over g

m(y; ’Y1)7T7(71)

BEO0) = o (o)
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Basic Idea (5)

@ Posterior odds in favour of model 1 over g

m(y;y1)m
BF (v1,70) = M
m(y; o) (70)
e Computational complexity regarding m(y; )

e Difficult to compute
o No closed-form solution in general!
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Bayesian Information Criterion (1)

@ BIC approach to model selection
e Assume certain regularity conditions, e.g., n — oo and

J1(0;7v) = lim 7;[”(9;7)

n—oo n
o Use Laplace approximation to the integral in m(y;~)

A k
~10g | p(16:7)70(6:7)d0 = ~ logp(y|6:7)+ logn+0(1)

o,
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Bayesian Information Criterion (2)

@ Model selection with BIC
e Compute criterion for all v € T’

. k
BIC(v;y) = —logp(y|0;7) + 5 logn — log 7+ (7)

o Choose model with smallest BIC score

A(y) = arg min{BIC(v;y)}
~yer
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Properties of BIC

Derived for both nested and non-nested model selection

Independent of prior density g (6;7)

BIC is asymptotically consistent!

e Under certain assumptions
e Important for model selection

Strong empirical performance
o If generating process has a small number of strong effects
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Example: Linear Regression

e Total number of parameters is k = |y| + 1

@ Bayesian Information Criterion (BIC)

BIC(v;y) = nlog (2n7(y;7)) + n + klogn
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Polynomial Regression

Empirical Comparison

Simulation (1)

@ Simulation procedure

o Generate z; € (—1,1), (i=1,2,...,n)

Create matrix of covariates X = (x%,x2,...,x!%)

Generate targets y = X3 + N,,(0,71,,)

Ask each criterion to nominate the best model given (X,y)
Repeat each test 10% times

Performance metrics

e Squared prediction error (SPE)
@ Polynomial order
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Empirical Comparison

Simulation (2)

Test Function (1): y = 1 — x + 322




Polynomial Regression

Empirical Comparison

Simulation (3)

Test Function (2): y = 1 + 22 + 222 + 223




Polynomial Regression

Empirical Comparison

Simulation (4)

Test Function (3): y =1 — 22 + 2% — 2% — 3%




Polynomial Regression

Empirical Comparison

Simulation (5)

Test Function (4): y =1+ + 2% — 723 + 2% + 72°
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Empirical Comparison

Simulation (6)

Test Function (1), n =20, SNR =1
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Polynomial Regression

Empirical Comparison

Simulation (7)

Test Function (1), n = 2000, SNR =1
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Empirical Comparison

Simulation (8)

Test Function (4), n =20, SNR =1
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Polynomial Regression

Empirical Comparison

Simulation (9)

Test Function (4), n = 2000, SNR =1
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