A Tutorial on Model Selection

Enes Makalic and Daniel F. Schmidt

Centre for MEGA Epidemiology
The University of Melbourne

Work in Progress, 2011

Outline

- Introduction
 - Problem description
 - Example: linear regression
- Minimum Distance Estimation
 - General Idea
 - Model Selection Criteria
- Bayesian Model Selection
 - Introduction
 - BIC
- 4 Empirical Comparison
 - Polynomial Regression

Outline

- Introduction
 - Problem description
 - Example: linear regression
- Minimum Distance Estimation
 - General Idea
 - Model Selection Criteria
- Bayesian Model Selection
 - Introduction
 - BIC
- 4 Empirical Comparison
 - Polynomial Regression

- We have
 - Data points $\mathbf{y} = (y_1, y_2, \dots, y_n)'$, $y_i \in \mathbb{R}$, $(i = 1, 2, \dots, n)$
 - Probabilistic source p^*

$$\mathbf{y} \sim p^*$$

ullet Task: learn a good approximation to p^* using data ${f y}$

- We have
 - Data points $\mathbf{y}=(y_1,y_2,\ldots,y_n)'$, $y_i\in\mathbb{R}$, $(i=1,2,\ldots,n)$
 - Probabilistic source p^*

$$\mathbf{y} \sim p^*$$

ullet Task: learn a good approximation to p^* using data ${f y}$

- Determine a suitable model
 - Model structure
 - Model parameters
- Example: $\mathbf{y} = (10.26, 7.95, 4.59, 7.00, 10.17, 11.78)'$
 - Distribution? (e.g., Weibull, Log-Normal, Gamma)
 - Parameters? (e.g., scale and shape parameters)
- Task: learn a good approximation to p^* using data y
 - Not tractable, in general!

- Determine a suitable model
 - Model structure
 - Model parameters
- Example: $\mathbf{y} = (10.26, 7.95, 4.59, 7.00, 10.17, 11.78)'$
 - Distribution? (e.g., Weibull, Log-Normal, Gamma)
 - Parameters? (e.g., scale and shape parameters)
- Task: learn a good approximation to p^* using data y
 - Not tractable, in general!

- Determine a suitable model
 - Model structure
 - Model parameters
- Example: $\mathbf{y} = (10.26, 7.95, 4.59, 7.00, 10.17, 11.78)'$
 - Distribution? (e.g., Weibull, Log-Normal, Gamma)
 - Parameters? (e.g., scale and shape parameters)
- ullet Task: learn a good approximation to p^* using data ${f y}$
 - Not tractable, in general!

- Determine a suitable model
 - Model structure
 - Model parameters
- Example: $\mathbf{y} = (10.26, 7.95, 4.59, 7.00, 10.17, 11.78)'$
 - Distribution? (e.g., Weibull, Log-Normal, Gamma)
 - Parameters? (e.g., scale and shape parameters)
- ullet Task: learn a good approximation to p^* using data ${f y}$
 - Not tractable, in general!

- ullet Assumptions regarding unknown source p^*
 - ullet Can be approximated by a distribution from $p(\mathbf{y}|oldsymbol{ heta};\gamma)$
 - $\bullet \ \ \mathsf{Model} \ \gamma \in \Gamma$
 - Model structure $\Gamma \subset \mathbb{N}$
 - Parameter vector $m{ heta}=(heta_1, heta_2,\dots, heta_{k_{|\gamma|}})'\in\Theta_{\gamma}\subset\mathbb{R}^{k_{|\gamma|}}$
- Example: $\mathbf{y} = (10.26, 7.95, 4.59, 7.00, 10.17, 11.78)'$
 - $\Gamma = \{ \text{Weibull, Log-normal, Gamma} \}$
 - If $\gamma = \{\text{Log-normal}\}, \ \theta = (\mu, \sigma^2)', \text{ or }$
 - If $\gamma = \{ \text{Weibull} \}$, $\theta = (k, \lambda)'$

- ullet Assumptions regarding unknown source p^*
 - ullet Can be approximated by a distribution from $p(\mathbf{y}|oldsymbol{ heta};\gamma)$
 - Model $\gamma \in \Gamma$
 - Model structure $\Gamma \subset \mathbb{N}$
 - Parameter vector $m{ heta}=(heta_1, heta_2,\dots, heta_{k_{|\gamma|}})'\in\Theta_{\gamma}\subset\mathbb{R}^{k_{|\gamma|}}$
- Example: $\mathbf{y} = (10.26, 7.95, 4.59, 7.00, 10.17, 11.78)'$
 - $\Gamma = \{ \text{Weibull, Log-normal, Gamma} \}$
 - If $\gamma = \{\text{Log-normal}\}$, $\boldsymbol{\theta} = (\mu, \sigma^2)'$, or
 - If $\gamma = \{ \text{Weibull} \}$, $\boldsymbol{\theta} = (k, \lambda)'$

- Parameter estimation: method of maximum likelihood
- ullet Choose $oldsymbol{ heta}$ such that probability of observed \mathbf{y} is maximised

$$\hat{\boldsymbol{\theta}}(\mathbf{y}; \gamma) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\gamma}} p(\mathbf{y}|\boldsymbol{\theta}; \gamma)$$

- Many attractive statistical properties
 - May not be used for model selection!
- ullet Talk will concentrate on inference of model structure $\gamma \in \Gamma$
 - Running example: linear regression model

Linear Regression Model (1)

ullet Linear regression model for explaining data y

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathrm{N}(\mathbf{0}_n, \tau \mathbf{I}_n)$$

- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_q)$ is the full design matrix
- $oldsymbol{eta}=(eta_1,eta_2,\ldots,eta_q)'$ are the unknown parameter coefficients
- $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)'$ are i.i.d. Gaussian variates
- Only a subset of covariates X is associated with y
- Task: determine which covariates, if any, are associated with y

Linear Regression Model (1)

ullet Linear regression model for explaining data y

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathrm{N}(\mathbf{0}_n, \tau \mathbf{I}_n)$$

- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_q)$ is the full design matrix
- $oldsymbol{eta}=(eta_1,eta_2,\dots,eta_q)'$ are the unknown parameter coefficients
- $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)'$ are i.i.d. Gaussian variates
- ullet Only a subset of covariates ${f X}$ is associated with ${f y}$
- ullet Task: determine which covariates, if any, are associated with ${f y}$

Linear Regression Model (2)

- Let $\gamma \subset \{1,2,\dots,q\}$ denote which covariates are in design submatrix \mathbf{X}_γ
- $\bullet \ \ {\rm Linear \ model \ indexed \ by \ } \gamma \in \Gamma$

$$\mathbf{y} = \mathbf{X}_{\gamma} \boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathrm{N}(\mathbf{0}_n, \tau \mathbf{I}_n)$$

- ullet Set of all candidate subsets Γ
- ullet $\mathbf{X}=(\mathbf{x}_{\gamma_1},\mathbf{x}_{\gamma_2},\ldots,\mathbf{x}_{\gamma_{|\gamma|}})$ is the design sub-matrix
- $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_{|\gamma|})^r$ is the unknown parameter vector
- \bullet Total number of unknown parameters is $k=|\gamma|+1$
- Example
 - q = 10, $\gamma = \{2, 3, 6, 10\}$, $\mathbf{X}_{\gamma} = (\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_{10})$
 - $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)' \in \Theta_{\gamma}$
 - k = 5

Linear Regression Model (2)

- Let $\gamma\subset\{1,2,\ldots,q\}$ denote which covariates are in design submatrix \mathbf{X}_{γ}
- $\bullet \ \ {\rm Linear \ model \ indexed \ by \ } \gamma \in \Gamma$

$$\mathbf{y} = \mathbf{X}_{\gamma} \boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathrm{N}(\mathbf{0}_n, \tau \mathbf{I}_n)$$

- ullet Set of all candidate subsets Γ
- ullet $\mathbf{X}=(\mathbf{x}_{\gamma_1},\mathbf{x}_{\gamma_2},\ldots,\mathbf{x}_{\gamma_{|\gamma|}})$ is the design sub-matrix
- $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_{|\gamma|})'$ is the unknown parameter vector
- Total number of unknown parameters is $k = |\gamma| + 1$
- Example
 - q = 10, $\gamma = \{2, 3, 6, 10\}$, $\mathbf{X}_{\gamma} = (\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_{10})$
 - $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)' \in \Theta_{\gamma}$
 - k = 5

Linear Regression Model (3)

- ullet The set Γ may be of nested or non-nested structure
- Nested structure
 - Polynomial regression with (q = 3) covariates
 - ullet Constant term ${f x}_1$, linear term ${f x}_2$ and quadratic term ${f x}_3$

$$\Gamma = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}\}\$$

- Non-nested structure
 - All-subsets regression problem

$$\Gamma = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Linear Regression Model (4)

Maximum likelihood estimates

$$\begin{split} \hat{\boldsymbol{\beta}}(\mathbf{y};\gamma) &= (\mathbf{X}'_{\gamma}\mathbf{X}_{\gamma})^{-1}\mathbf{X}'_{\gamma}\mathbf{y} \\ \hat{\tau}(\mathbf{y};\gamma) &= \frac{1}{n}(y-\mathbf{X}_{\gamma}\hat{\boldsymbol{\beta}}(\mathbf{y};\gamma))'(y-\mathbf{X}_{\gamma}\hat{\boldsymbol{\beta}}(\mathbf{y};\gamma)) \end{split}$$

Negative log-likelihood evaluated at maximum likelihood estimates

$$-\log p(\mathbf{y}|\mathbf{X}_{\gamma}, \hat{\boldsymbol{\beta}}, \hat{\tau}; \gamma) = \frac{n}{2}\log 2\pi + \frac{n}{2}\log \hat{\tau}(\mathbf{y}; \gamma) + \frac{n}{2}$$

Outline

- Introduction
 - Problem description
 - Example: linear regression
- Minimum Distance Estimation
 - General Idea
 - Model Selection Criteria
- Bayesian Model Selection
 - Introduction
 - BIC
- 4 Empirical Comparison
 - Polynomial Regression

Introduction (1)

- How close is fitted model $p(\mathbf{y}|\hat{\boldsymbol{\theta}}(\mathbf{y});\gamma)$ to unknown $p^*(\mathbf{y})$?
- Require measure of distance between distributions
 - Kullback-Leibler (KL) divergence

$$\Delta_{n}(p^{*}, p_{\theta_{\gamma}}) = \int p^{*}(\mathbf{x}) \log \frac{p^{*}(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta}; \gamma)} d\mathbf{x}$$

$$= \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\log \frac{p^{*}(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta}; \gamma)} \right]$$

$$= \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\log p^{*}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[-\log p(\mathbf{x}|\boldsymbol{\theta}; \gamma) \right]$$

Introduction (1)

- How close is *fitted* model $p(y|\hat{\theta}(y); \gamma)$ to unknown $p^*(y)$?
- Require measure of distance between distributions
 - Kullback-Leibler (KL) divergence

$$\Delta_{n}(p^{*}, p_{\theta_{\gamma}}) = \int p^{*}(\mathbf{x}) \log \frac{p^{*}(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta}; \gamma)} d\mathbf{x}$$

$$= \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\log \frac{p^{*}(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta}; \gamma)} \right]$$

$$= \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\log p^{*}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[-\log p(\mathbf{x}|\boldsymbol{\theta}; \gamma) \right]$$

Introduction (2)

- Examples
 - KL divergence between $X_1 \sim \mathrm{N}(\mu_1, \tau_1)$ and $X_2 \sim \mathrm{N}(\mu_2, \tau_2)$

$$\Delta_1(X_1, X_2) = \frac{(\mu_1 - \mu_2)^2}{2\tau_2} + \frac{1}{2} \left(\frac{\tau_1}{\tau_2} - 1 - \log \frac{\tau_1}{\tau_2} \right)$$

• KL divergence between $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$

$$\Delta_1(X_1, X_2) = \frac{\lambda_2}{\lambda_1} - \log \frac{\lambda_2}{\lambda_1} - 1$$

Introduction (3)

 \bullet Ideally, want to choose model $\gamma \in \Gamma$ is

$$\hat{\gamma} = \arg\min_{\gamma \in \Gamma} \left\{ \Delta_n(p^*, p_{\hat{\theta}_{\gamma}}) \right\}$$

- Example: $\mathbf{y} \sim \text{Weibull}(k=5, \lambda=0.3)$, (n=100)
 - $\Gamma = \{ \text{Weibull, Log-normal, Gamma} \}$

Introduction (4)

Weibull Fit

Wbl(5.8, 0.3)

0.05 0.15 0.25 0.35

0.15

0.25

0.35

0.05

Gamma Fit

Introduction (5)

- \bullet Ranking based on KL divergence $\Delta_n(p^*,p_{\hat{\pmb{\theta}}_{\gamma}})$
 - Requires knowledge of p^* .
 - Not possible!

Takeuchi Information Criterion (TIC) (1)

• Takeuchi noted $-\log p(\mathbf{y}|\hat{\pmb{\theta}};\gamma)$ is a downwardly biased estimator of

$$\mathrm{E}_{\mathbf{x} \sim p^*} \left[-\log p(\mathbf{x}|\boldsymbol{\theta};\gamma) \right]$$

- Exact bias adjustment generally not computable
 - Asymptotic adjustment possible

Takeuchi Information Criterion (TIC) (2)

Model selection criterion

$$TIC(\gamma; \mathbf{y}) = -2\log p(\mathbf{y}|\hat{\boldsymbol{\theta}}_{\gamma}) + 2\operatorname{tr}\left(\boldsymbol{\Omega}^{-1}(\gamma; \mathbf{y})\boldsymbol{\Sigma}(\gamma; \mathbf{y})\right)$$

where

$$\Omega(\mathbf{y}; \gamma) = -\frac{\partial^2 \log p(\mathbf{y}|\boldsymbol{\theta}; \gamma)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\gamma}} \\
\Sigma(\mathbf{y}; \gamma) = \sum_{i=1}^{n} \left(\frac{\partial \log p(y_i|\boldsymbol{\theta}; \gamma)}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\gamma}} \right) \left(\frac{\partial \log p(y_i|\boldsymbol{\theta}; \gamma)}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\gamma}} \right)'$$

Takeuchi Information Criterion (TIC) (3)

• To use TIC for model selection, choose

$$\hat{\gamma}_{\mathrm{TIC}}(\mathbf{y}) = \arg\min_{\gamma \in \Gamma} \left\{ \mathrm{TIC}(\gamma; \mathbf{y}) \right\}.$$

- Model with smallest TIC score
 - Closest to p^* in KL divergence
- TIC is asymptotically unbiased estimate of KL divergence!

Akaike Information Criterion (AIC) (3)

- TIC can be simplified
 - Assume p^* is contained in model γ
- Akaike Information Criterion (AIC)

$$AIC(\gamma; \mathbf{y}) = -2 \log p(\mathbf{y}|\hat{\boldsymbol{\theta}}_{\gamma}) + 2k$$

where k is dimensionality of $oldsymbol{ heta} \in \Theta_{\gamma}$

Akaike Information Criterion (AIC) (4)

- AIC is an asymptotically unbiased estimator of the KL divergence
- Excellent estimate when
 - ullet Sample size n is large
 - ullet Number of parameters k is small

Small Sample Correction to AIC (1)

- AIC should not be used if
 - \bullet Sample size n is small, or
 - ullet Number of parameter k is large relative to n
- A small-sample correction for AIC

$$AIC_c(\gamma; \mathbf{y}) = -2\log p(\mathbf{y}|\hat{\boldsymbol{\theta}}_{\gamma}) + \frac{2kn}{n-k-1}$$

Small Sample Correction to AIC (1)

- AIC should not be used if
 - Sample size n is small, or
 - ullet Number of parameter k is large relative to n
- A small-sample correction for AIC

$$AIC_c(\gamma; \mathbf{y}) = -2\log p(\mathbf{y}|\hat{\boldsymbol{\theta}}_{\gamma}) + \frac{2kn}{n-k-1}$$

Small Sample Correction to AIC (2)

- AIC_c derived for linear regression setting
- As $n \to \infty$, AIC $_c$ is equivalent to regular AIC
- Empirical evidence
 - AIC_c performs better at model selection than AIC
 - Largely true, irrespective of the problem

The Kullback Information Criterion (KIC) (1)

- KL divergence is an asymmetric measure
- Symmetric KL can be used to derive new criteria

$$J_n(p^*, p_{\theta_{\gamma}}) = \mathbb{E}_{\mathbf{x} \sim p^*} \left[\log \frac{p^*(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta}; \gamma)} \right] + \mathbb{E}_{\mathbf{x} \sim \theta_{\gamma}} \left[\log \frac{p(\mathbf{x}|\boldsymbol{\theta}; \gamma)}{p^*(\mathbf{x})} \right]$$

The Kullback Information Criterion (KIC) (1)

• The symmetric Kullback information criterion (KIC)

$$KIC(\gamma; \mathbf{y}) = -2\log p(\mathbf{y}|\hat{\boldsymbol{\theta}}_{\gamma}) + 3k$$

• Small sample correction (KIC $_c$)

$$\mathrm{KIC}_c(\gamma; \mathbf{y}) = \mathrm{AIC}_c(\gamma; \mathbf{y}) - n\psi\left(\frac{n-k+1}{2}\right) + n\log\frac{n}{2}$$

Example: Linear Regression

- ullet Total number of parameters is $k=|\gamma|+1$
- Model selection criteria

$$AIC(\gamma; \mathbf{y}) = n \log (2\pi \hat{\tau}(\mathbf{y}; \gamma)) + n + 2k$$

$$AIC_c(\gamma; \mathbf{y}) = n \log (2\pi \hat{\tau}(\mathbf{y}; \gamma)) + n + \frac{2kn}{n - k - 1}$$

$$KIC(\gamma; \mathbf{y}) = n \log (2\pi \hat{\tau}(\mathbf{y}; \gamma)) + n + 3k$$

$$KIC_c(\gamma; \mathbf{y}) = AIC_c(\gamma; \mathbf{y}) - n\psi \left(\frac{n - k + 1}{2}\right)$$

Summary

- ullet All examined distance criteria derived for nested Γ
- Consistency
 - None of the examined distance based criteria are consistent!
 - Avoid using if the aim is to do model selection
- Efficiency
 - AIC and KIC, and corrected variants, are asymptotically efficient
 - Good prediction performance

Summary

- ullet All examined distance criteria derived for nested Γ
- Consistency
 - None of the examined distance based criteria are consistent!
 - Avoid using if the aim is to do model selection
- Efficiency
 - AIC and KIC, and corrected variants, are asymptotically efficient
 - Good prediction performance

Summary

- ullet All examined distance criteria derived for nested Γ
- Consistency
 - None of the examined distance based criteria are consistent!
 - Avoid using if the aim is to do model selection
- Efficiency
 - AIC and KIC, and corrected variants, are asymptotically efficient
 - Good prediction performance

Outline

- Introduction
 - Problem description
 - Example: linear regression
- Minimum Distance Estimation
 - General Idea
 - Model Selection Criteria
- Bayesian Model Selection
 - Introduction
 - BIC
- 4 Empirical Comparison
 - Polynomial Regression

Basic Idea (1)

- Uncertainty about models and parameters is defined in terms of probability
- Need a prior distribution $\pi_{\theta}(\theta; \gamma)$ over parameters $\theta \in \Theta_{\gamma}$
 - ullet Quantifies uncertainty about $oldsymbol{ heta} \in \Theta_{\gamma}$
 - Subjective priors, objective priors

Basic Idea (1)

- Uncertainty about models and parameters is defined in terms of probability
- Need a *prior* distribution $\pi_{\theta}(\theta; \gamma)$ over parameters $\theta \in \Theta_{\gamma}$
 - ullet Quantifies uncertainty about $oldsymbol{ heta} \in \Theta_{\gamma}$
 - Subjective priors, objective priors

Basic Idea (1)

- Uncertainty about models and parameters is defined in terms of probability
- Need a *prior* distribution $\pi_{\theta}(\theta; \gamma)$ over parameters $\theta \in \Theta_{\gamma}$
 - ullet Quantifies uncertainty about $oldsymbol{ heta} \in \Theta_{\gamma}$
 - Subjective priors, objective priors

Basic Idea (2)

- Parameter estimation
 - Posterior distribution

$$p(\boldsymbol{\theta}|\mathbf{y};\gamma) = \frac{p(\mathbf{y}|\boldsymbol{\theta};\gamma)\pi_{\boldsymbol{\theta}}(\boldsymbol{\theta};\gamma)}{m(\mathbf{y};\gamma)}$$
$$m(\mathbf{y};\gamma) = \int_{\Theta_{\gamma}} p(\mathbf{y}|\boldsymbol{\theta};\gamma)\pi_{\boldsymbol{\theta}}(\boldsymbol{\theta};\gamma)d\boldsymbol{\theta}$$

- Marginal distribution $m(\mathbf{y}; \gamma)$
- Posterior mean, posterior mode, posterior maximum?

Basic Idea (3)

- Example: Parameter estimation
 - Likelihood, $y_i \sim \text{Exp}(\lambda), (i = 1, 2, \dots, n)$
 - Prior density, $\lambda \sim \operatorname{Ga}(\alpha, \beta)$
 - Posterior density, $\lambda | \mathbf{y} \sim \operatorname{Ga}(\alpha + n, \beta + \sum_{i=1}^{n} y_i)$

Basic Idea (4)

- How do we choose γ from $p(\theta|\mathbf{y};\gamma)$?
- Posterior distribution over models
 - Define a prior density $\pi_{\gamma}(\gamma)$ over models $\gamma \in \Gamma$

$$p(\gamma|\mathbf{y}) = \frac{m(\mathbf{y}; \gamma)\pi_{\gamma}(\gamma)}{\sum_{\gamma \in \Gamma} m(\mathbf{y}; \gamma)\pi_{\gamma}(\gamma)}$$

- Model selection
 - Choose the model that maximises

$$\hat{\gamma}(\mathbf{y}) = \arg \max_{\gamma \in \Gamma} \left\{ \frac{m(\mathbf{y}; \gamma) \pi_{\gamma}(\gamma)}{\sum_{\gamma \in \Gamma} m(\mathbf{y}; \gamma) \pi_{\gamma}(\gamma)} \right\}$$

Basic Idea (5)

ullet Posterior odds in favour of model γ_1 over γ_0

$$BF(\gamma_1, \gamma_0) = \frac{m(\mathbf{y}; \gamma_1) \pi_{\gamma}(\gamma_1)}{m(\mathbf{y}; \gamma_0) \pi_{\gamma}(\gamma_0)}$$

- Computational complexity regarding $m(\mathbf{y}; \gamma)$
 - Difficult to compute
 - No closed-form solution in general!

Basic Idea (5)

• Posterior odds in favour of model γ_1 over γ_0

$$BF(\gamma_1, \gamma_0) = \frac{m(\mathbf{y}; \gamma_1) \pi_{\gamma}(\gamma_1)}{m(\mathbf{y}; \gamma_0) \pi_{\gamma}(\gamma_0)}$$

- ullet Computational complexity regarding $m(\mathbf{y};\gamma)$
 - Difficult to compute
 - No closed-form solution in general!

Bayesian Information Criterion (1)

- BIC approach to model selection
 - \bullet Assume certain regularity conditions, e.g., $n\to\infty$ and

$$\mathbf{J}_1(\boldsymbol{\theta}; \gamma) = \lim_{n \to \infty} \frac{\mathbf{J}_n(\boldsymbol{\theta}; \gamma)}{n}$$

 \bullet Use Laplace approximation to the integral in $m(\mathbf{y};\gamma)$

$$-\log \int_{\Theta_{\gamma}} p(\mathbf{y}|\boldsymbol{\theta}; \gamma) \pi_{\boldsymbol{\theta}}(\boldsymbol{\theta}; \gamma) d\boldsymbol{\theta} = -\log p(\mathbf{y}|\hat{\boldsymbol{\theta}}; \gamma) + \frac{k}{2} \log n + O(1)$$

Bayesian Information Criterion (2)

- Model selection with BIC
 - \bullet Compute criterion for all $\gamma \in \Gamma$

$$\mathrm{BIC}(\gamma; \mathbf{y}) = -\log p(\mathbf{y}|\hat{\boldsymbol{\theta}}; \gamma) + \frac{k}{2}\log n - \log \pi_{\gamma}(\gamma)$$

Choose model with smallest BIC score

$$\hat{\gamma}(\mathbf{y}) = \mathop{\arg\min}_{\gamma \in \Gamma} \{ \mathrm{BIC}(\gamma; \mathbf{y}) \}$$

- Derived for both nested and non-nested model selection
- Independent of prior density $\pi_{m{ heta}}(m{ heta};\gamma)$
- BIC is asymptotically consistent!
 - Under certain assumptions
 - Important for model selection
- Strong empirical performance
 - If generating process has a small number of strong effects

- Derived for both nested and non-nested model selection
- Independent of prior density $\pi_{\theta}(\theta; \gamma)$
- BIC is asymptotically consistent!
 - Under certain assumptions
 - Important for model selection
- Strong empirical performance
 - If generating process has a small number of strong effects

- Derived for both nested and non-nested model selection
- Independent of prior density $\pi_{\theta}(\theta; \gamma)$
- BIC is asymptotically consistent!
 - Under certain assumptions
 - Important for model selection
- Strong empirical performance
 - If generating process has a small number of strong effects

- Derived for both nested and non-nested model selection
- Independent of prior density $\pi_{\theta}(\theta; \gamma)$
- BIC is asymptotically consistent!
 - Under certain assumptions
 - Important for model selection
- Strong empirical performance
 - If generating process has a small number of strong effects

Example: Linear Regression

- Total number of parameters is $k = |\gamma| + 1$
- Bayesian Information Criterion (BIC)

$$BIC(\gamma; \mathbf{y}) = n \log (2\pi \hat{\tau}(\mathbf{y}; \gamma)) + n + k \log n$$

Outline

- Introduction
 - Problem description
 - Example: linear regression
- 2 Minimum Distance Estimation
 - General Idea
 - Model Selection Criteria
- Bayesian Model Selection
 - Introduction
 - BIC
- 4 Empirical Comparison
 - Polynomial Regression

Simulation (1)

- Simulation procedure
 - Generate $x_i \in (-1,1), (i = 1,2,\ldots,n)$
 - Create matrix of covariates $\mathbf{X} = (\mathbf{x}^0, \mathbf{x}^2, \dots, \mathbf{x}^{15})$
 - Generate targets $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + N_n(0, \tau \mathbf{I}_n)$
 - Ask each criterion to nominate the best model given (X, y)
 - \bullet Repeat each test 10^4 times
 - Performance metrics
 - Squared prediction error (SPE)
 - Polynomial order

Simulation (2)

Test Function (1): $y = 1 - x + 3x^2$

Simulation (3)

Test Function (2):
$$y = 1 + 2x + 2x^2 + 2x^3$$

Simulation (4)

Test Function (3):
$$y = 1 - 2x + x^2 - x^3 - 3x^4$$

Simulation (5)

Test Function (4):
$$y = 1 + x + x^2 - 7x^3 + x^4 + 7x^5$$

Simulation (6)

Test Function (1), n = 20, SNR = 1

Simulation (7)

Test Function (1), n=2000, ${\rm SNR}=1$

Simulation (8)

Test Function (4), n = 20, SNR = 1

Simulation (9)

Test Function (4), n=2000, ${\rm SNR}=1$

