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Organisation

15 lectures + 15 tutorials

tutorials: total of 60 points (max)

1 11 small entry tests 11 x 2 points = 22 points

2 2 tests 2 x 14 points = 28 points

3 activity, etc. = max of 10 points

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range [2, 5])

examples: 36p → 3+, 18p → 2, 52p → 5, etc.

exact math formula: grade = min(5,max(4, b score5 c)/2)

after passing tutorials: Exam

(must pass tutorials to take the exam)
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Books:

General:

T.Cormen, C.Leiserson, R.Rivest et al.
�Introduction to Algorithms�, MIT Press an excellent
textbook for beginners and practitioners (also available in
Polish: �Wprowadzenie do Algorytmów, WNT 2000�)

�Algorithms and Datastructures. The Basic Toolbox�
(MS), K.Mehlhorn P.Sanders, Springer 2008

(in Polish) L.Banachowski, K.Diks, W.Rytter �Algorytmy i
Struktury Danych�, WNT 2001, (290 stron), zwi¦zªa
ksi¡»eczka, trudniejsza dla pocz¡tkuj¡cych

(Exercises in Polish) G.Mirkowska et al. �Algorytmy i
Struktury Danych - Zadania�, wydawnictwo PJWSTK,
2005 (zbiór zada« i ¢wicze«, cz¦±ciowo z rozwi¡zaniami)
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Additional Examples of Books

N.Wirth �Algorithms + Data Structures = Programs� (also
in Polish)

A.Aho, J.Hopcroft, J.Ullman �Algorithms and Data
Structures� (also in Polish)

(in Polish) W.Lipski �Kombinatoryka dla Programistów�,
WNT 2004

For deeper studies:

D.Knuth �The Art of Computer Programming� 3 volumes,
detailed analyses (also in Polish)

Ch.Papadimitriou �Computational Complexity� more
mathematical (also in Polish)
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Algorithm

What does �algorithm� mean?

A recipe (how to do something, list of actions, etc.)

According to historians the word is derived from the (arabic version of
the) name �al-Khwarizmi� of a Persian mathematician (A.D.
780-850)

Algorithmics is the heart of computer science
The role of algorithms becomes even more important nowadays
(growing data, Internet, search engines, etc. )
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1 level above programming languages

Pseudocode

an abstract notation of algorithm

looks similar to popular programming languages (Java,
C/C++, Pascal)

plays rather informative role than formal (relaxed syntax
formalism)

literals (numbers, strings, null)

variables (no declarations, but must be initialized)

arrays ([ ] operator) - we assume that arrays are indexed from 0

operators (assignment =, comparison (e.g. ==), arithmetic (e.g. +, ++,
+=), logic (e.g. !)

functions (including recursion), the return instruction

conditional statement (IF), loops (FOR, WHILE).
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An example of pseudocode usage:

Task: compute sum of numbers in an array of length len:

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

(it is not any particular programming language but precisely expresses the

algorithm

For conveniece, sometimes the '.' (dot) operator will be used (object
access operator - the same as in Java, C++, etc.)
For example:

if ((node.left != null) && (node.value == 5)) node.updateLeft()
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What is this course about?

Topics:

1 Algorithm Design

2 Algorithm Analysis

3 Data Structures
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Algorithm Design

There is a computational task to be performed on computer.

First, the algorithm should be designed

Then, the algorithm should be implemented (with some
programming language)

Algorithm design (and analysis) is
a necessary step before programming
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Algorithm Speci�cation

How to express the task �to be done� in algorithmics?

Speci�cation expresses the task. Speci�cation consists of:

(optional) name of algorithm and list of its arguments

initial condition (it speci�es what is �correct� input data
to the problem)

�nal condition (it speci�es what is the desired result of
the algorithm)

The conditions could be expressed in words, assuming it is
precise
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Example of a task and its speci�cation

Assuming the task: �given the array and its length compute
the sum of numbers in this array�

the corresponding Speci�cation could be:
name: sum(Arr, len)

input: (initial condition)
Algorithm gets 2 following arguments (input data):

1 Arr - array of integer numbers

2 len - length of Arr (natural number)

output:(�nal condition)
Algorithm must return:

sum - sum of the �rst len numbers in the array Arr

(integer number)

(any algorithm satisfying the above will be regarded as �correct�)
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Total Correctness of Algorithm

correct input data is the data which satis�es the initial
condition of the speci�cation

correct output data is the data which satis�es the �nal
condition of the speci�cation

De�nition

An algorithm Is called totally correct for the given speci�cation
if and only if for any correct input data it:

1 stops and

2 returns correct output

Notice the split into 2 sub-properties in the de�nition above.
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Partial Correctness of Algorithm

Usually, while checking the correctness of an algorithm it is
easier to separately:

1 �rst check whether the algorithm stops

2 then checking the �remaining part�. This �remaining part�
of correctness is called Partial Correctness of algorithm

De�nition

An algorithm is partially correct if satis�es the following
condition: If the algorithm receiving correct input data stops
then its result is correct

Note: Partial correctness does not make the algorithm stop.
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An example of partially correct algorithm

(computing the sum of array of numbers)

sum(array, len){

sum = 0

i = 0

while(i < len)

sum += array[i]

return sum

}

Is this algorithm partially correct?
Is it also totally correct?
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The �Stop Property�

A proof of total correctness of an algorithm usually assumes
2 separate steps:

1 (to prove that) the algorithm always stops for correct input
data (stop property)

2 (to prove that) the algorithm is partially correct

(Stop property is usually easier to prove)



Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property?

It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data
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Proving Partial Correctness - Invariants

Proving the stop property of an algorithm is usually easy.
Proving the �remaining part� of its total correctness (i.e. partial
correctness) needs usually more work and sometimes invention,
even for quite simple algorithms.

Observation: most of activity of algorithms can be expressed in
the form of �WHILE loop�. Thus, a tool for examining the
correctness of loops would be highly useful.

Invariant of a loop is such a tool.

De�nition

A loop invariant is a logical predicate such that:
IF it is satis�ed before entering any single iteration of the loop
THEN it is also satis�ed after that iteration.
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An example of a typical task in algorithmics:

What does the following algorithm �do� (prove your answer):
(the names of variables are purposely obscure :) )
input: Arr - an array of integers, len > 0 - length of array

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Easy? OK. But now it is also necessary to prove the answer.
More precisely, the proof of total correctness is needed.
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An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...
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Example continued - partial correctness

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

we would like to show that �x is a maximum in Arr�

in
mathematical notation it would look like:
(∀0≤j<len x ≥ Arr [j ]) ∧ (∃0≤j<len(x == Arr [j ]))

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.
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Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j ]) ∧ (∃0≤j<len(x == Arr [j ]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j ] ∧ (∃0≤j<len(x == Arr [j ]))
What do we get? In conjuction with the stop condition of
the loop (i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j ]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j ])
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What you should know after this lecture:

1 Organisation and Passing Rules of this course :)

2 What is speci�cation

3 What does �correct input data� mean

4 De�nition of Total Correctness of algorithm

5 De�nition of Partial Correctness of algorithm

6 What is stop property of an algorithm

7 Be able to give example of a partially correct algorithm
which is not totally correct

8 Be able to prove stop property of simple algorithms

9 De�nition of invariant of a loop

10 Be able to invent good invariant for a given loop

11 Be able to prove total correctness for simple algorithms



Algorithms
and Data
Structures

(c) Marcin
Sydow

Thank you for your attention
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