
Algorithms
and Data
Structures

(c) Marcin
Sydow

Algorithms and Data Structures

(1) Correctness of Algorithms

(c) Marcin Sydow

Algorithms
and Data
Structures

(c) Marcin
Sydow

Contact Info

dr hab. Marcin Sydow,

SIAM Department, PJATK

room: 311 (main building)

tel.: +48 22 58 44 571

Algorithms
and Data
Structures

(c) Marcin
Sydow

Organisation

15 lectures + 15 tutorials

tutorials: total of 60 points (max)

1 11 small entry tests 11 x 2 points = 22 points

2 2 tests 2 x 14 points = 28 points

3 activity, etc. = max of 10 points

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range [2, 5])

examples: 36p → 3+, 18p → 2, 52p → 5, etc.

exact math formula: grade = min(5,max(4, b score5 c)/2)

after passing tutorials: Exam

(must pass tutorials to take the exam)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Organisation

15 lectures + 15 tutorials

tutorials: total of 60 points (max)

1 11 small entry tests 11 x 2 points = 22 points

2 2 tests 2 x 14 points = 28 points

3 activity, etc. = max of 10 points

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range [2, 5])

examples: 36p → 3+, 18p → 2, 52p → 5, etc.

exact math formula: grade = min(5,max(4, b score5 c)/2)

after passing tutorials: Exam

(must pass tutorials to take the exam)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Organisation

15 lectures + 15 tutorials

tutorials: total of 60 points (max)

1 11 small entry tests 11 x 2 points = 22 points

2 2 tests 2 x 14 points = 28 points

3 activity, etc. = max of 10 points

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range [2, 5])

examples: 36p → 3+, 18p → 2, 52p → 5, etc.

exact math formula: grade = min(5,max(4, b score5 c)/2)

after passing tutorials: Exam

(must pass tutorials to take the exam)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Books:

General:

T.Cormen, C.Leiserson, R.Rivest et al.
�Introduction to Algorithms�, MIT Press an excellent
textbook for beginners and practitioners (also available in
Polish: �Wprowadzenie do Algorytmów, WNT 2000�)

�Algorithms and Datastructures. The Basic Toolbox�
(MS), K.Mehlhorn P.Sanders, Springer 2008

(in Polish) L.Banachowski, K.Diks, W.Rytter �Algorytmy i
Struktury Danych�, WNT 2001, (290 stron), zwi¦zªa
ksi¡»eczka, trudniejsza dla pocz¡tkuj¡cych

(Exercises in Polish) G.Mirkowska et al. �Algorytmy i
Struktury Danych - Zadania�, wydawnictwo PJWSTK,
2005 (zbiór zada« i ¢wicze«, cz¦±ciowo z rozwi¡zaniami)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Additional Examples of Books

N.Wirth �Algorithms + Data Structures = Programs� (also
in Polish)

A.Aho, J.Hopcroft, J.Ullman �Algorithms and Data
Structures� (also in Polish)

(in Polish) W.Lipski �Kombinatoryka dla Programistów�,
WNT 2004

For deeper studies:

D.Knuth �The Art of Computer Programming� 3 volumes,
detailed analyses (also in Polish)

Ch.Papadimitriou �Computational Complexity� more
mathematical (also in Polish)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Algorithm

What does �algorithm� mean?

A recipe (how to do something, list of actions, etc.)

According to historians the word is derived from the (arabic version of
the) name �al-Khwarizmi� of a Persian mathematician (A.D.
780-850)

Algorithmics is the heart of computer science
The role of algorithms becomes even more important nowadays
(growing data, Internet, search engines, etc.)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Algorithm

What does �algorithm� mean?

A recipe (how to do something, list of actions, etc.)

According to historians the word is derived from the (arabic version of
the) name �al-Khwarizmi� of a Persian mathematician (A.D.
780-850)

Algorithmics is the heart of computer science
The role of algorithms becomes even more important nowadays
(growing data, Internet, search engines, etc.)

Algorithms
and Data
Structures

(c) Marcin
Sydow

1 level above programming languages

Pseudocode

an abstract notation of algorithm

looks similar to popular programming languages (Java,
C/C++, Pascal)

plays rather informative role than formal (relaxed syntax
formalism)

literals (numbers, strings, null)

variables (no declarations, but must be initialized)

arrays ([] operator) - we assume that arrays are indexed from 0

operators (assignment =, comparison (e.g. ==), arithmetic (e.g. +, ++,
+=), logic (e.g. !)

functions (including recursion), the return instruction

conditional statement (IF), loops (FOR, WHILE).

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example of pseudocode usage:

Task: compute sum of numbers in an array of length len:

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

(it is not any particular programming language but precisely expresses the

algorithm

For conveniece, sometimes the '.' (dot) operator will be used (object
access operator - the same as in Java, C++, etc.)
For example:

if ((node.left != null) && (node.value == 5)) node.updateLeft()

Algorithms
and Data
Structures

(c) Marcin
Sydow

What is this course about?

Topics:

1 Algorithm Design

2 Algorithm Analysis

3 Data Structures

Algorithms
and Data
Structures

(c) Marcin
Sydow

Algorithm Design

There is a computational task to be performed on computer.

First, the algorithm should be designed

Then, the algorithm should be implemented (with some
programming language)

Algorithm design (and analysis) is
a necessary step before programming

Algorithms
and Data
Structures

(c) Marcin
Sydow

Algorithm Speci�cation

How to express the task �to be done� in algorithmics?

Speci�cation expresses the task. Speci�cation consists of:

(optional) name of algorithm and list of its arguments

initial condition (it speci�es what is �correct� input data
to the problem)

�nal condition (it speci�es what is the desired result of
the algorithm)

The conditions could be expressed in words, assuming it is
precise

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example of a task and its speci�cation

Assuming the task: �given the array and its length compute
the sum of numbers in this array�

the corresponding Speci�cation could be:
name: sum(Arr, len)

input: (initial condition)
Algorithm gets 2 following arguments (input data):

1 Arr - array of integer numbers

2 len - length of Arr (natural number)

output:(�nal condition)
Algorithm must return:

sum - sum of the �rst len numbers in the array Arr

(integer number)

(any algorithm satisfying the above will be regarded as �correct�)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Total Correctness of Algorithm

correct input data is the data which satis�es the initial
condition of the speci�cation

correct output data is the data which satis�es the �nal
condition of the speci�cation

De�nition

An algorithm Is called totally correct for the given speci�cation
if and only if for any correct input data it:

1 stops and

2 returns correct output

Notice the split into 2 sub-properties in the de�nition above.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Partial Correctness of Algorithm

Usually, while checking the correctness of an algorithm it is
easier to separately:

1 �rst check whether the algorithm stops

2 then checking the �remaining part�. This �remaining part�
of correctness is called Partial Correctness of algorithm

De�nition

An algorithm is partially correct if satis�es the following
condition: If the algorithm receiving correct input data stops
then its result is correct

Note: Partial correctness does not make the algorithm stop.

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example of partially correct algorithm

(computing the sum of array of numbers)

sum(array, len){

sum = 0

i = 0

while(i < len)

sum += array[i]

return sum

}

Is this algorithm partially correct?
Is it also totally correct?

Algorithms
and Data
Structures

(c) Marcin
Sydow

The �Stop Property�

A proof of total correctness of an algorithm usually assumes
2 separate steps:

1 (to prove that) the algorithm always stops for correct input
data (stop property)

2 (to prove that) the algorithm is partially correct

(Stop property is usually easier to prove)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property?

It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data

Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property? It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data

Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property? It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data

Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property? It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data

Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property? It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data

Algorithms
and Data
Structures

(c) Marcin
Sydow

Stop property - an example

sum(array, len){

sum = 0

i = 0

while(i < len){

sum += array[i]

i++

}

return sum

}

How to easily prove that this algorithm has stop property? It is
enough to observe that:

1 the algorithm stops when the value of variable i is greater or
equal than len

2 value of len is a constant and �nite natural number (according
to the speci�cation of this algorithm)

3 value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after �nite number of
iterations for any input correct data

Algorithms
and Data
Structures

(c) Marcin
Sydow

Proving Partial Correctness - Invariants

Proving the stop property of an algorithm is usually easy.
Proving the �remaining part� of its total correctness (i.e. partial
correctness) needs usually more work and sometimes invention,
even for quite simple algorithms.

Observation: most of activity of algorithms can be expressed in
the form of �WHILE loop�. Thus, a tool for examining the
correctness of loops would be highly useful.

Invariant of a loop is such a tool.

De�nition

A loop invariant is a logical predicate such that:
IF it is satis�ed before entering any single iteration of the loop
THEN it is also satis�ed after that iteration.

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example of a typical task in algorithmics:

What does the following algorithm �do� (prove your answer):
(the names of variables are purposely obscure :))
input: Arr - an array of integers, len > 0 - length of array

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Easy? OK. But now it is also necessary to prove the answer.
More precisely, the proof of total correctness is needed.

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example of a typical task in algorithmics:

What does the following algorithm �do� (prove your answer):
(the names of variables are purposely obscure :))
input: Arr - an array of integers, len > 0 - length of array

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Easy? OK.

But now it is also necessary to prove the answer.
More precisely, the proof of total correctness is needed.

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example of a typical task in algorithmics:

What does the following algorithm �do� (prove your answer):
(the names of variables are purposely obscure :))
input: Arr - an array of integers, len > 0 - length of array

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Easy? OK. But now it is also necessary to prove the answer.
More precisely, the proof of total correctness is needed.

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy.

Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

An example - proving total correctness, cont.

2 steps are needed (what steps?)

1 proving the stop property of algorithm

2 proving the partial correctness of algorithm

Stop property?

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

It was easy. Now, partial correctness...

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - partial correctness

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

we would like to show that �x is a maximum in Arr�

in
mathematical notation it would look like:
(∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - partial correctness

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

we would like to show that �x is a maximum in Arr� in
mathematical notation it would look like:

(∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - partial correctness

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

we would like to show that �x is a maximum in Arr� in
mathematical notation it would look like:
(∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - partial correctness

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

we would like to show that �x is a maximum in Arr� in
mathematical notation it would look like:
(∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - partial correctness

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

we would like to show that �x is a maximum in Arr� in
mathematical notation it would look like:
(∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))
What do we get? In conjuction with the stop condition of
the loop (i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))

What do we get? In conjuction with the stop condition of
the loop (i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))
What do we get?

In conjuction with the stop condition of
the loop (i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))
What do we get? In conjuction with the stop condition of
the loop

(i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))
What do we get? In conjuction with the stop condition of
the loop (i == len)

we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))
What do we get? In conjuction with the stop condition of
the loop (i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len))

⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

Example continued - application of invariant

Target: (∀0≤j<len x ≥ Arr [j]) ∧ (∃0≤j<len(x == Arr [j]))

algor1(Arr, len){

i = 1

x = Arr[0]

while(i < len)

if(Arr[i] > x){

x = Arr[i]

}

i++

return x

}

Invariant: ∀0≤j<i x ≥ Arr [j] ∧ (∃0≤j<len(x == Arr [j]))
What do we get? In conjuction with the stop condition of
the loop (i == len) we got the proof!
((∀0≤j<i x ≥ Arr [j]) ∧ (i == len)) ⇒ (∀0≤j<len x ≥ Arr [j])

Algorithms
and Data
Structures

(c) Marcin
Sydow

What you should know after this lecture:

1 Organisation and Passing Rules of this course :)

2 What is speci�cation

3 What does �correct input data� mean

4 De�nition of Total Correctness of algorithm

5 De�nition of Partial Correctness of algorithm

6 What is stop property of an algorithm

7 Be able to give example of a partially correct algorithm
which is not totally correct

8 Be able to prove stop property of simple algorithms

9 De�nition of invariant of a loop

10 Be able to invent good invariant for a given loop

11 Be able to prove total correctness for simple algorithms

Algorithms
and Data
Structures

(c) Marcin
Sydow

Thank you for your attention

	Organisation
	Introduction
	Specification
	Correctness
	The Stop Property
	Invariants
	Summary

