Using Mathematica to study complex numbers (week 3)

Basics

Mathematica is set up to deal with complex numbers, although there are some tricks one has to learn. The simplest way to enter i (square root of -1) is as I (upper case I).

```
z = 2 + 3 I
```

2 + 3 i

Note that *Mathematica* writes I in lowercase in the output. Here's another example:

Sqrt[-4]

2 i

Real & Imaginary parts, Magnitude (=absolute value) & Argument, and Complex Conjugate are obtained as follows:

Re[z]

2

Im[z]

3

Abs[z]

$$\sqrt{13}$$

Arg[z]

$$ArcTan \left[\frac{3}{2} \right]$$

N[Arg[z]]

0.982794

zbar = Conjugate[z]

2 – 3 i

Complex numbers can be added, subtracted, multiplied and divided as for reals:

z + zbar

4

(which is correct as the sum should be twice the real part of z)

z – zbar

6 i

(again correct as the sum gives twice the imaginary part of z times I)

z zbar

13

(which is correct since it is the square of the magnitude of z)

z / zbar

$$-\frac{5}{13} + \frac{12 i}{13}$$

{Abs[z/zbar], N[Arg[z/zbar]]}

(which is correct since, as seen in lectures, z/zbar has magnitude 1 and argument twice that of z)

Note that *Mathematica*'s convention for the argument is $-\pi < \text{Arg}[z] \le \pi$

$$\left\{0, \frac{\pi}{2}, \pi, -\frac{\pi}{2}\right\}$$

Also, by convention, Arg[0]=0

Arg[0]

0

■ Simple examples of manipulating complex numbers

Example discussed previously in class: Result is displayed automatically in "x + i y" form.

$$z2 = (3 + I) / (2 + I)$$

To get result in polar form:

$${r = Abs[z2], theta = Arg[z2]}$$

$$\left\{\sqrt{2}, -ArcTan\left[\frac{1}{7}\right]\right\}$$

One can also enter the complex number in polar form---all Mathematica functions take complex arguments.

z2polar = r Exp[I theta]

$$\sqrt{2} e^{-i \operatorname{ArcTan}\left[\frac{1}{7}\right]}$$

To get back in Cartesian form use the useful function "ComplexExpand"

ComplexExpand[z2polar]

$$\frac{7}{5} - \frac{i}{5}$$

Another example from previous lectures:

$$z3 = (5 - 2I) / (5 + 2I)$$

$$\frac{21}{29} - \frac{20 i}{29}$$

$$\left\{1, -ArcTan\left[\frac{20}{21}\right]\right\}$$

A final example

$$\sqrt{\frac{13}{2}}$$

Mathematica usually assumes that numbers are complex. Thus in

$$z4 = (x + Iy)^2$$

$$(x + i y)^2$$

it assumes that x and y are complex:

$$\left\{ \text{Re} \left[(x + i y)^{2} \right], \text{Im} \left[(x + i y)^{2} \right] \right\}$$

One nice feature of ComplexExpand is that it assumes that all variables are real (unless you tell it otherwise).

ComplexExpand[
$$(x + Iy)^2$$
]

$$x^2 + 2 i x y - y^2$$

■ Roots

Mathematica does not automatically give all complex roots, e.g.

{1}

To get all the roots we can use Solve.

(Note that we have to "Clear" z, since it was defined above.)

$$Clear[z]; Solve[z^3 = 1, z]$$

$$\left\{\left.\left\{\,z\,\rightarrow\,1\right\}\,\text{, }\left\{\,z\,\rightarrow\,-\,\left(\,-\,1\,\right)^{\,1/\,3}\,\right\}\,\text{, }\left\{\,z\,\rightarrow\,\left(\,-\,1\,\right)^{\,2/\,3}\,\right\}\,\right\}$$

To get the result in "x+iy" form use ComplexExpand:

root = ComplexExpand[Solve[z^3 == 1, z]]

$$\left\{ \left\{ \, z \, \to \, 1 \, \right\} \, \text{, } \left\{ \, z \, \to \, - \, \frac{1}{2} \, - \, \frac{\dot{\mathbb{1}} \, \sqrt{3}}{2} \, \right\} \, \text{, } \left\{ \, z \, \to \, - \, \frac{1}{2} \, + \, \frac{\dot{\mathbb{1}} \, \sqrt{3}}{2} \, \right\} \right\}$$

Note that *Mathematica* gives the results as a list of assignments (which I have labeled "root"). We can use this list with the following construction involving "/."

(Read this as "Evaluate z with the assignment rules in root, one at a time".)

z /. root

$$\left\{1, -\frac{1}{2} - \frac{i\sqrt{3}}{2}, -\frac{1}{2} + \frac{i\sqrt{3}}{2}\right\}$$

In this way we can check that all 3 roots are really roots:

ComplexExpand[z^3 /. root]

Here is one way to plot the roots

Showing that the roots lie on the "unit circle"

Show[rootplot, Graphics[{Red, Circle[{0, 0}, 1]}]]

Here is a plot of the fifth roots of -32 (which includes -2). Note the use of "Module" to package all the commands into one unit. The initial parenthesis "{root,rootplot}" lists the local names that are used---these do not get defined outside of the Module, and thus do not overwrite other values.

■ Complex Series

Everything that works for real series in *Mathematica* (and which we discussed before) was actually working all along for complex series

$$Sum1[z_] = Sum[z^n / Sqrt[n], \{n, 1, Infinity\}]$$

PolyLog
$$\left[\frac{1}{2}, z\right]$$

The disk of convergence has radius 1 for this sum. On the boundary, the sum diverges at some point and converges at others:

Sum1[1]

ComplexInfinity

N[Sum1[I]]

-0.427728 + 0.667691 i

N[Sum1[-1]]

-0.604899

Mathematica infact knows how to "analytically continue" the function outside of its disk of convergence (something we may discuss later), e.g.

■ Complex Functions

Here are some basic examples: everything works for complex arguments.

```
N[Sin[1+2I]]
3.16578+1.9596 i
ComplexExpand[Sin[x + I y]]
Cosh[y] Sin[x] + i Cos[x] Sinh[y]
```

For Logs and powers *Mathematica* makes standard choices to resolve the ambiguity in the argument of the logarithm. Note that the N[] (for numerically evaluate) is need to get an actual numerical result. Note that //N after a command has the same effect.

```
Log[3+I]
Log[3 + i]
N[Log[3+I]]
1.15129+0.321751 i
Log[3+I] // N
1.15129 + 0.321751 i
(1 + 2 I)^{(3 + I)}
(1 + 2 i)^{3+i}
N[(1+2I)^{(3+I)}]
-2.0442 - 3.07815 i
```

■ Plotting Complex Functions

Complex valued function can be difficult to visualize due to depending on multiple variables and functions behaving differently along the imaginary axis. Using *Mathematica*'s 2D plots separately for the real and imaginary parts, contour plots and 3D plots can greatly help. The following are a few examples.

Looking at the exponential function e^z for a purely imaginary argument

```
Plot[{Re[Exp[I * x]], Im[Exp[I * x]], Abs[Exp[I * x]]},
 \{x, -10, 10\}, PlotStyle \rightarrow \{\{Thick, Blue\}, \{Thick, Red\}, \{Thick, Green\}\}\}
-10
```

We can see the real part (blue) is a Cos[] whereas the imaginary part (red) is a Sin[] and the magnitude stays a constant

Here is a contour plot with a general complex argument.

The more red the the region is, the larger the function is, the more blue, the smaller.

You can see the same plot but with a third dimension showing the value of the function using Plot3D

$$\label{eq:plot3D} \begin{split} &\text{Plot3D}[\left\{\text{Re}\left[\text{Exp}\left[\textbf{x}+\textbf{I}*\textbf{y}\right]\right]\right\},\;\left\{\textbf{x},\;-10,\;10\right\},\;\left\{\textbf{y},\;-10,\;10\right\},\\ &\text{PlotStyle} \rightarrow &\text{Blue},\;\text{PlotRange} \rightarrow \left\{-10,\;10\right\},\;\text{AxesLabel} \rightarrow &\text{Automatic}] \end{split}$$

As you would expect, the imaginary part looks the same but shifted by a $\pi/2$ phase

 $Plot3D[{Im[Exp[x+I*y]]}, {x, -10, 10}, {y, -10, 10},$ PlotStyle \rightarrow Red, PlotRange \rightarrow {-10, 10}, AxesLabel \rightarrow Automatic]

Here they are together.

 $Plot3D[{Re[Exp[x+I*y]], Im[Exp[x+I*y]]}, {x, -10, 10}, {y, -10, 10},$ PlotStyle \rightarrow {Blue, Red}, PlotRange \rightarrow {-10, 10}, AxesLabel \rightarrow Automatic]

These sorts of plots can be especially useful for visualizing branch cuts, such as the one along the negative real line for the Log[] function.

Please note that *Mathematica* chooses to put the discontinuity in the imaginary part of the Logarithm between $-\pi$ and $+\pi$, rather than between 0 and 2π , as discussed in class. This moves the "branch cut" to the negative real axis.

$$\begin{split} & \texttt{ContourPlot[Im[Log[x+I*y]], \{x, -10, 10\}, \{y, -10, 10\},} \\ & \texttt{ContourShading} \rightarrow \texttt{Automatic, ColorFunction} \rightarrow "\texttt{Rainbow}", \texttt{Contours} \rightarrow 30] \end{split}$$

 $\texttt{Plot3D}[\texttt{Re}[\texttt{Log}[\texttt{x}+\texttt{I}*\texttt{y}]]\,,\,\{\texttt{x},\,-\texttt{10},\,\texttt{10}\}\,,\,\{\texttt{y},\,-\texttt{10},\,\texttt{10}\}\,,\,\,\texttt{PlotStyle} \rightarrow \texttt{Blue},\,\,\texttt{AxesLabel} \rightarrow \texttt{Automatic}]$

 $\texttt{Plot3D[Im[Log[x+I*y]], \{x, -10, 10\}, \{y, -10, 10\}, PlotStyle} \rightarrow \texttt{Red, AxesLabel} \rightarrow \texttt{Automatic]}$

Here is another example with \sqrt{z} which also has a branch cut along the negative real line.

 $\texttt{ContourPlot}\Big[\texttt{Re}\Big[\sqrt{\texttt{x}+\texttt{I}*\texttt{y}}\;\Big]\,,\;\{\texttt{x},\;-\texttt{10},\;\texttt{10}\}\,,\;\{\texttt{y},\;-\texttt{10},\;\texttt{10}\}\,,\;\texttt{AxesLabel}\to \texttt{Automatic},\;$ $\texttt{ContourShading} \rightarrow \texttt{Automatic, ColorFunction} \rightarrow \texttt{"Rainbow", Contours} \rightarrow \texttt{20} \\ \boxed{}$

 $\texttt{ContourPlot}\Big[\texttt{Im}\Big[\sqrt{\texttt{x}+\texttt{I}*\texttt{y}}\;\Big]\,,\;\{\texttt{x},\;-\texttt{10},\;\texttt{10}\}\,,\;\{\texttt{y},\;-\texttt{10},\;\texttt{10}\}\,,\;\texttt{AxesLabel}\to \texttt{Automatic}\,,$ ContourShading \rightarrow Automatic, ColorFunction \rightarrow "Rainbow", Contours \rightarrow 20

 $\texttt{Plot3D}\Big[\texttt{Re}\Big[\sqrt{\texttt{x}+\texttt{I}\star\texttt{y}}\;\Big]\,,\;\{\texttt{x},\;-\texttt{10},\;\texttt{10}\}\,,\;\{\texttt{y},\;-\texttt{10},\;\texttt{10}\}\,,\;\texttt{PlotStyle}\to\texttt{Blue},\;\texttt{AxesLabel}\to\texttt{Automatic}\Big]$

 $\texttt{Plot3D}\Big[\texttt{Im}\Big[\sqrt{\texttt{x}+\texttt{I}\star\texttt{y}}\;\Big],\;\{\texttt{x},\;-\texttt{10},\;\texttt{10}\},\;\{\texttt{y},\;-\texttt{10},\;\texttt{10}\},\;\texttt{PlotStyle}\to \texttt{Red},\;\texttt{AxesLabel}\to \texttt{Automatic}\Big]$

