
Using Mathematica to study complex numbers (week 3)

ü Basics
Mathematica is set up to deal with complex numbers, although there are some tricks one has to learn. The simplest
way to enter i (square root of -1) is as I (upper case I).
z = 2 + 3 I

2 + 3 Â

Note that Mathematica writes I in lowercase in the output. Here's another example:
Sqrt@-4D

2 Â

Real & Imaginary parts, Magnitude (=absolute value) & Argument, and Complex Conjugate are obtained as follows:
Re@zD

2

Im@zD

3

Abs@zD

13

Arg@zD

ArcTanB
3

2
F

N@Arg@zDD

0.982794

zbar = Conjugate@zD

2 - 3 Â

Complex numbers can be added, subtracted, multiplied and divided as for reals:
z + zbar

4

(which is correct as the sum should be twice the real part of z)
z - zbar

6 Â

(again correct as the sum gives twice the imaginary part of z times I)
z zbar

13

(which is correct since it is the square of the magnitude of z)
z ê zbar

-
5

13
+
12 Â

13

8Abs@z ê zbarD, N@Arg@z ê zbarDD<

81, 1.96559<

(which is correct since, as seen in lectures, z/zbar has magnitude 1 and argument twice that of z)

Note that Mathematica’s convention for the argument is -p < Arg[z] § p
8Arg@1D, Arg@ID, Arg@-1D, Arg@-ID<

:0,
p

2
, p, -

p

2
>

Also, by convention, Arg[0]=0
Arg@0D

0

ü Simple examples of manipulating complex numbers
Example discussed previously in class: Result is displayed automatically in “x + i y” form.
z2 = H3 + IL ê H2 + IL

7

5
-

Â

5

To get result in polar form:
8r = Abs@z2D, theta = Arg@z2D<

: 2 , -ArcTanB
1

7
F>

One can also enter the complex number in polar form---all Mathematica functions take complex arguments.
z2polar = r Exp@I thetaD

2 ‰
-Â ArcTanB

1

7
F

To get back in Cartesian form use the useful function "ComplexExpand"
ComplexExpand@z2polarD

7

5
-

Â

5

Another example from previous lectures:
z3 = H5 - 2 IL ê H5 + 2 IL

21

29
-
20 Â

29
8Abs@z3D, Arg@z3D<

:1, -ArcTanB
20

21
F>

A final example
Abs@H2 + 3 IL ê H1 - ILD

13

2

2 ComplexAdditions.nb

ü Features of ComplexExpand
Mathematica usually assumes that numbers are complex. Thus in
z4 = Hx + I yL^2

Hx + Â yL2

it assumes that x and y are complex:
8Re@z4D, Im@z4D<

9ReAHx + Â yL2E, ImAHx + Â yL2E=

One nice feature of ComplexExpand is that it assumes that all variables are real (unless you tell it otherwise).
ComplexExpand@Hx + I yL^2D

x2 + 2 Â x y - y2

ü Roots
Mathematica does not automatically give all complex roots, e.g.
H1L^81 ê 3<

81<

To get all the roots we can use Solve.
(Note that we have to "Clear" z, since it was defined above.)
Clear@zD; Solve@z^3 ã 1, zD

98z Ø 1<, 9z Ø -H-1L1ê3=, 9z Ø H-1L2ê3==

To get the result in “x+iy” form use ComplexExpand:
root = ComplexExpand@Solve@z^3 ã 1, zDD

:8z Ø 1<, :z Ø -
1

2
-

Â 3

2
>, :z Ø -

1

2
+

Â 3

2
>>

Note that Mathematica gives the results as a list of assignments (which I have labeled "root"). We can use this list with
the following construction involving "/."
(Read this as "Evaluate z with the assignment rules in root, one at a time".)
z ê. root

:1, -
1

2
-

Â 3

2
, -

1

2
+

Â 3

2
>

In this way we can check that all 3 roots are really roots:
ComplexExpand@z^3 ê. rootD

81, 1, 1<

Here is one way to plot the roots

ComplexAdditions.nb 3

rootplot = ListPlot@8Re@zD, Im@zD< ê. root, PlotRange Ø 88-1.1, 1.1<, 8-1.1, 1.1<<,
AxesLabel Ø 8"ReHzL", "ImHzL"<, AspectRatio Ø 1, PlotStyle -> PointSize@0.03DD

-1.0 -0.5 0.5 1.0
ReHzL

-1.0

-0.5

0.5

1.0

ImHzL

Showing that the roots lie on the "unit circle"
Show@rootplot, Graphics@8Red, Circle@80, 0<, 1D<DD

-1.0 -0.5 0.5 1.0
ReHzL

-1.0

-0.5

0.5

1.0

ImHzL

Here is a plot of the fifth roots of -32 (which includes -2). Note the use of "Module" to package all the commands into
one unit. The initial parenthesis "{root,rootplot}" lists the local names that are used---these do not get defined outside
of the Module, and thus do not overwrite other values.

4 ComplexAdditions.nb

Module@8root, rootplot<, root = Solve@z^5 ã -32, zD;
rootplot = ListPlot@8Re@zD, Im@zD< ê. root, PlotRange Ø 88-2.1, 2.1<, 8-2.1, 2.1<<,

AxesLabel Ø 8"ReHzL", "ImHzL"<, AspectRatio Ø 1, PlotStyle -> PointSize@0.03DD;
Show@rootplot, Graphics@8Red, Circle@80, 0<, 2D<DDD

-2 -1 1 2
ReHzL

-2

-1

1

2

ImHzL

ü Complex Series
Everything that works for real series in Mathematica (and which we discussed before) was actually working all along
for complex series
Sum1@z_D = Sum@z^n ê Sqrt@nD, 8n, 1, Infinity<D

PolyLogB
1

2
, zF

The disk of convergence has radius 1 for this sum. On the boundary, the sum diverges at some point and converges at
others:
Sum1@1D

ComplexInfinity

N@Sum1@IDD

-0.427728 + 0.667691 Â

N@Sum1@-1DD

-0.604899

Mathematica infact knows how to "analytically continue" the function outside of its disk of convergence (something
we may discuss later), e.g.
N@Sum1@1 + IDD

-0.482402 + 1.43205 Â

ü Complex Functions
Here are some basic examples: everything works for complex arguments.

ComplexAdditions.nb 5

N@Sin@1 + 2 IDD

3.16578+ 1.9596 Â

ComplexExpand@Sin@x + I yDD

Cosh@yD Sin@xD + Â Cos@xD Sinh@yD

For Logs and powers Mathematica makes standard choices to resolve the ambiguity in the argument of the logarithm.
Note that the N[] (for numerically evaluate) is need to get an actual numerical result. Note that //N after a command
has the same effect.
Log@3 + ID

Log@3 + ÂD

N@Log@3 + IDD

1.15129+ 0.321751 Â

Log@3 + ID êê N

1.15129 + 0.321751 Â

H1 + 2 IL^H3 + IL

H1 + 2 ÂL3+Â

N@H1 + 2 IL^H3 + ILD

-2.0442 - 3.07815 Â

ü Plotting Complex Functions
Complex valued function can be difficult to visualize due to depending on multiple variables and functions behaving
differently along the imaginary axis. Using Mathematica’s 2D plots separately for the real and imaginary parts,
contour plots and 3D plots can greatly help. The following are a few examples.
Looking at the exponential function ez for a purely imaginary argument
Plot@8Re@Exp@I * xDD, Im@Exp@I * xDD, Abs@Exp@I * xDD<,
8x, -10, 10<, PlotStyle Ø 88Thick, Blue<, 8Thick, Red<, 8Thick, Green<<D

-10 -5 5 10

-1.0

-0.5

0.5

1.0

We can see the real part (blue) is a Cos[] whereas the imaginary part (red) is a Sin[] and the magnitude stays a constant
value of 1.
Here is a contour plot with a general complex argument.

6 ComplexAdditions.nb

ContourPlot@Re@Exp@x + I * yDD, 8x, -10, 10<, 8y, -10, 10<,
Contours Ø 20, ContourShading Ø Automatic, ColorFunction Ø "Rainbow"D

The more red the the region is, the larger the function is, the more blue, the smaller.

You can see the same plot but with a third dimension showing the value of the function using Plot3D
Plot3D@8Re@Exp@x + I * yDD<, 8x, -10, 10<, 8y, -10, 10<,
PlotStyle Ø Blue, PlotRange Ø 8-10, 10<, AxesLabel Ø AutomaticD

As you would expect, the imaginary part looks the same but shifted by a p/2 phase

ComplexAdditions.nb 7

Plot3D@8Im@Exp@x + I * yDD<, 8x, -10, 10<, 8y, -10, 10<,
PlotStyle Ø Red, PlotRange Ø 8-10, 10<, AxesLabel Ø AutomaticD

Here they are together.
Plot3D@8Re@Exp@x + I * yDD, Im@Exp@x + I * yDD<, 8x, -10, 10<, 8y, -10, 10<,
PlotStyle Ø 8Blue, Red<, PlotRange Ø 8-10, 10<, AxesLabel Ø AutomaticD

These sorts of plots can be especially useful for visualizing branch cuts, such as the one along the negative real line for
the Log[] function.
Please note that Mathematica chooses to put the discontinuity in the imaginary part of the Logarithm between -p and
+p, rather than between 0 and 2p, as discussed in class. This moves the “branch cut” to the negative real axis.

8 ComplexAdditions.nb

ContourPlot@Re@Log@x + I * yDD, 8x, -10, 10<, 8y, -10, 10<,
ContourShading Ø Automatic, ColorFunction Ø "Rainbow", Contours Ø 20D

ContourPlot@Im@Log@x + I * yDD, 8x, -10, 10<, 8y, -10, 10<,
ContourShading Ø Automatic, ColorFunction Ø "Rainbow", Contours Ø 30D

ComplexAdditions.nb 9

Plot3D@Re@Log@x + I * yDD, 8x, -10, 10<, 8y, -10, 10<, PlotStyle Ø Blue, AxesLabel Ø AutomaticD

Plot3D@Im@Log@x + I * yDD, 8x, -10, 10<, 8y, -10, 10<, PlotStyle Ø Red, AxesLabel Ø AutomaticD

Here is another example with z which also has a branch cut along the negative real line.

10 ComplexAdditions.nb

ContourPlotBReB x + I * y F, 8x, -10, 10<, 8y, -10, 10<, AxesLabel Ø Automatic,

ContourShading Ø Automatic, ColorFunction Ø "Rainbow", Contours Ø 20F

ContourPlotBImB x + I * y F, 8x, -10, 10<, 8y, -10, 10<, AxesLabel Ø Automatic,

ContourShading Ø Automatic, ColorFunction Ø "Rainbow", Contours Ø 20F

ComplexAdditions.nb 11

Plot3DBReB x + I * y F, 8x, -10, 10<, 8y, -10, 10<, PlotStyle Ø Blue, AxesLabel Ø AutomaticF

Plot3DBImB x + I * y F, 8x, -10, 10<, 8y, -10, 10<, PlotStyle Ø Red, AxesLabel Ø AutomaticF

12 ComplexAdditions.nb

