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This paper attempts to extend the Riemann Zeta function of a complex number to a function of

a matrix and/or a tensor A, namely

ζ(A) =

∞∑
n=1

1

nA
=

∞∑
n=1

n∑
k=1

λkA
k

and inverse

A =
∞∑

n=1

n∑
k=1

µ(n)λkζ(A
k)

where µ(n) is the Möbius function, A is a complex matrix or tensor with any order, and λk is

eigenvalue of the matri/tensor A. This kind of calculations on the Riemann Zeta function has never

been seen in the literature. Some examples are provided.
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I. THE RIEMANN ZETA FUNCTION AND THE

RIEMANN HYPOTHESIS

Natural numbers form the basis of our arithmetic, with

various operations defined among these numbers. All of

us learn to use four basic operations: addition, subtrac-

tion, multiplication and division. The latter, division,

hides one of the most enigmatic internal structures of the

set of the natural numbers, namely that there are special

numbers, the primes, among the natural numbers which

cannot be divided by any other natural number, other

than unity and themselves, without a remainder. Euclid

of Alexandria proved that there are infinitely many such

numbers. Later, Eratosthenes of Cyrene gave a theoret-

ical algorithm, a sieve, for finding these primes amongst

the natural numbers. Despite all efforts in the last two

thousand years, the efficient determination as to whether

a given number is prime or not still proves a remarkable

challenge [1–3].

The Riemann zeta function ζ(s) is a function of a com-

plex variable s = σ+ it. (The notation s, σ and t is used

traditionally in the study of the zeta function, following

Riemann.) The following infinite series converges for all

complex numbers s with real part greater than 1, and

defines ζ(s) in this case:

ζ(s) =
∞∑

n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+· · · σ = Re(s) > 1. (1)
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Via analytic continuation, one can show that: ζ(−1) =

− 1
12 , ζ(0) = − 1

2 , ζ(1) = ∞, and ζ(2) = π2

6 .

Bernhard Riemann, who was the first to apply the tools

of complex analysis to this function in Eq.(1), proved that

the function defined by the infinite summation (Riemann,

1859) can be analytically continued over the complex s

plane, except for s = 1. This analytic continuation of

the function is called the Riemann-zeta function. Here we

follow the traditional notation, with s denoting a complex

number, s = σ + it, where σ and t are real numbers and

i is the usual imaginary unit. Riemann also derived a

functional equation, containing the ζ(s) function, which

is valid for all complex s and exhibits mirror symmetry

around the σ = 1/2 vertical line, called the critical line.

Figure 1 depicts the pole and zero structure of ζ(s) on

the complex s plane including the possible zeros off the

critical line.

So far the statements about the zeros ofζ(s) and their

locations on the complex plain were simple. However the

distribution of the non-trivial zeros holds one of the most

intriguing and enigmatic mathematical mysteries of the

last century and a half. It is embarrassingly easy to pose

Riemann’s conjecture:

The Riemann Conjecture All non-trivial zeros of

ζ(s) have the form σ = 1/2+it, where t is a real number.

In other words all non-trivial zeros lie on the critical

line. In 1900 Hilbert nominated the Riemann Hypothe-

sis as the eighth problem on his famous list of compelling

problems in mathematics (Hilbert, 1902). Since then not

just professional mathematicians but mathematical sol-

diers of fortune tried, and still try, to verify its validity.
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FIG. 1: The Riemann Zeta On Complex Plane

The stakes are high. Whoever proves or disproves this

hypothesis engraves his name in the tablets of the history

of mathematics, and may also receive one million dollars

from the Clay Mathematics Institute [4].

II. CAYLEY–––HAMILTON THEOREM

In linear algebra, the Cayley–Hamilton theorem

(named after the mathematicians Arthur Cayley and

William Rowan Hamilton) states that every square ma-

trix over a commutative ring (such as the real or complex

field) satisfies its own characteristic equation.

Consider a square matrixA with dimension n and with

a characteristic polynomial

△(λ) = |A− λI| = λn + cn−1λ
n−1 + · · ·+ c0. (2)

and define a corresponding matrix polynomial, formed

by substituting A for λ above

△(A) = An + cn−1A
n−1 + · · ·+ c0. (3)

where I is the identity matrix. The Cayley-Hamilton

theorem states that every matrix satisfies its own char-

acteristic equation, that is

△(A) = An + cn−1A
n−1 + · · ·+ c0 = [0]. (4)

where [0] is the null matrix.

The Cayley-Hamilton theorem can be used to reduce

the Order of a polynomial in a matrix/tensor, and to

determine analytic functions of a matrix/tensor. Clearly,

for a n order matrix A, who has n eigenvalues, namely

λn, f(A), the function of the matrix A, can be expressed

as follows:

f(A) =
n∑

k=1

λkA
k. (5)

Example : Find esA, where A =

[
0 1

−1 0

]
For A, △(λ) = |A − λI| = λ2 + 1 = 0, giving λ0 = i

and λ1 = −i. Since A is the 2nd order matrix, then

esA = α0I + α1A, thus

eis = α0 + iα1, (6)

e−is = α0 − iα1. (7)

Notice eis = cos(s) + i sin(s), we obtain α0 = cos(s) and

α1 = sin(s). Then

esA = I cos(s) +A sin(s) =

[
cos s sin s

− sin s cos s

]
. (8)

III. THE RIEMANN ZETA FUNCTION OF A

MATRIX OR A TENSOR

The Riemann Zeta function of a matrix/tensor can be

defined as follows ζ(s) in this case:

ζ(A) =
∞∑

n=1

1

nA
=

1

1A
+

1

2A
+

1

3A
+ · · · . (9)

From the Cayley-Hamilton theorem, every term of the

above function can be expressed as follows

1

nA
=

n∑
k=1

λkA
k (10)

where A is a n × n matrix and λk is eigenvalue of the

matrix. Therefore, we have the Riemann Zeta function

of a matrix

ζ(A) =
∞∑

n=1

1

nA
=

∞∑
n=1

n∑
k=1

λkA
k. (11)

If we know ζ(:) and looking for the matrixA, the above

relations can simplify be inverse as to follows

A =
∞∑

n=1

n∑
k=1

µ(n)λkζ(A
k). (12)

where the Möbius function µ(n) is defined as follows:

µ(1) = 1; µ(n) = 0 if n has a square divisor; and

µ(p1p2 · · · pk) = (−1)k if all pi,s are different. Thus

µ(2) = −1 and µ(12) = µ(22×3) = 0, µ(21) = µ(3×7) =

(−1)2 = 1, for more info please see Ref.[3, 5].
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IV. APPLICATIONS

In this section, we will demonstrate some applications

of solution (10).

Pronlem 1 Find nsA, where A =

[
0 1

−1 0

]
For A, △(λ) = |A − λI| = λ2 + 1 = 0, giving λ0 = i

and λ1 = −i. Since A is the 2nd order matrix, then

nsA = α0I + α1A, thus

nis = α0 + iα1, (13)

n−is = α0 − iα1. (14)

Notice nis = cos(s lnn) + i sin(s lnn), we obtain α0 =

cos(s lnn) and α1 = sin(s lnn). Then

nsA = I cos(s lnn)−A sin(s lnn) (15)

=

[
cos(s lnn) sin(s lnn)

− sin(s lnn) cos(s lnn)

]
.

Pronlem 2 Find nsA, where A = 1
lnn

[
0 1

−1 0

]
For A, △(λ) = |A − λI| = λ2 + ( 1

lnn )
2 = 0, giving

λ0 = i/(lnn) and λ1 = −i/(lnn). Since A is the 2nd

order matrix, then nsA = α0I + α1A, thus

nis = α0 + iα1, (16)

n−is = α0 − iα1. (17)

Notice nis/(lnn) = cos(s)+i sin(s), we obtain α0 = cos(s)

and α1 = (lnn) sin(s). Then

nsA = I cos(s)−A(lnn) sin(s) (18)

=

[
cos(s) sin(s)

− sin(s) cos(s)

]
.

Pronlem 3 Find n1/2+iA, where A =

[
0 1

−1 0

]
For A, △(λ) = |A − λI| = λ2 + 1 = 0, giving λ0 = i

and λ1 = −i. Since A is the 2nd order matrix, then

niA = α0I + α1A, thus

n−1 = α0 + iα1, (19)

n = α0 − iα1. (20)

we obtain α0 = (n+n−1)/2 and α1 = i(n−n−1)/2. Then

n1/2+iA = n1/2[
1

2
(n+ n−1)I − 1

2
i(n− n−1)A] (21)

=
1

2
n1/2

[
n(I − iA) + n−1(I + iA)

]
=

1

2
n1/2

[
n+ n−1 −i(n− n−1)

i(n− n−1) n+ n−1

]

=
1

2
n−1/2

[
n2 + 1 −i(n2 − 1)

i(n2 − 1) n2 + 1

]
.

Pronlem 4 Find n−1/2I+iA, where A =

[
0 1

−1 0

]

Set B = −1/2I + iA =

[
−1/2 i

−i −1/2

]
.

For B, △(λ) = |B−λI| = (−1/2−λ)2−1 = 0, giving

λ0 = 1/2 and λ1 = −3/2. Since B is the 2nd order

matrix, then nB = α0I + α1B, thus

n−1 = α0 + iα1, (22)

n = α0 − iα1. (23)

we obtain α0 = 1
4 (3n

1/2 + n−3/2) and α1 = 1
2 (n

1/2 −
n−3/2). Then

n−1/2+iA (24)

=
1

4
(3n1/2 + n−3/2)I +

1

2
(n1/2 − n−3/2)B

=
1

4
(3n1/2 + n−3/2)

[
1 0

0 1

]

− 1

4
(n1/2 − n−3/2)

[
1 −2i

2i 1

]

=
1

2

[
n1/2 + n−3/2 i(n1/2 − n−3/2)

−i(n1/2 − n−3/2) n1/2 + n−3/2

]
.

Pronlem 5 Find n−1/2I+iσz , where the Pauli matrix

σz =

[
1 0

0 −1

]

Set B = −1/2I + iσz =

[
i− 1/2 0

0 −i− 1/2

]
.

For B, △(λ) = |B−λI| = (i−1/2−λ)(−i−1/2−λ) =

0, giving λ0 = i− 1/2 and λ1 = −i− 1/2. Since B is the

2nd order matrix, then nB = α0I + α1B, thus

ni−1/2 = α0 + (i− 1/2)α1, (25)

n−i−1/2 = α0 + (−i− 1/2)α1. (26)

we obtain α0 = n−i−1/2−ni−1/2 and α1 = n−i−1/2+(i+
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1/2)n−i−1/2 − ni−1/2. Then

n−1/2I+iσz (27)

=
1

2

[
(1 + +2i)(n−i−1/2 − ni−1/2) 0

0 n−i−1/2

]
.

Pronlem 6 Calculate
∑∞

n=1 n
−1/2I+iσz , where the

Pauli matrix σz =

[
1 0

0 −1

]
From problem 5, we have

∞∑
n=1

n−1/2I+iσz (28)

=
1

2

∞∑
n=1

[
(1 + 2i)( 1

n1/2+i − 1
n1/2−i ) 0

0 1
n1/2+i

]

=
1

2

[
(1 + 2i)[ζ(1/2 + i)− ζ(1/2− i)] 0

0 ζ(1/2 + i)

]
.

From Maple, we can get ζ(1/2 + i) = 0.1439364271 −
0.7220997435i and ζ(1/2 − i) = 0.1439364271 +

0.7220997435i, thus we have

∞∑
n=1

n−1/2I+iσz (29)

=

[
1.444− 0.722i 0

0 0.0719− 0.361i

]
.

Pronlem 7 Calculate
∑∞

n=1 n
−1/2I+iσz , where the u-

nit tensor I = e1 ⊗ e1 + e2 ⊗ e2 and the Pauli tensor

σz = e1 ⊗ e1 − e2 ⊗ e2, in which e1, e2 are the base

vectors.

From problem 6, we have

∞∑
n=1

n−1/2I+iσz (30)

=
1

2

∞∑
n=1

[(1 + 2i)(
1

n1/2+i
− 1

n1/2−i
)e1 ⊗ e1

+
1

n1/2+i
e2 ⊗ e2]

thus we have

∞∑
n=1

n−1/2I+iσz (31)

= (1.444− 0.722i)e1 ⊗ e1 + (0.0719− 0.361i)e2 ⊗ e2.

V. CONCLUSIONS

Any function of a matrix and tensor can be simpli-

fied by using the Cayley-Hamilton theorem, namely the

spectrum representation of a this kind function can al-

ways be done if we can obtain the eigenvalue of the ma-

trix/tensor. The study of the Riemann Zeta function of

a matrix/tensor may help to understand the Riemann

Hypothesis in the future.
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