ARM Assembly Programming Using
Raspberry Pi

1 Introduction

The Raspberry Pi is an inexpensive credit-card sized Linux computer. At its core is an ARMv6 CPU. The
free download Raspbian package (from NOOBS http://www.raspberrypi.org/help/noobs-setup/)
contains all the software necessary for ARM assembly language programming.

The downloaded package includes Raspbian operating system and several programming language
supports. Among them is the GNU Compiler Collection (GCC) which supports programming in C, C++ and
assembly languages.

In this document, we will use the commands as (assembler), Id (link loader), and gdb (GNU debugger)
from GCC. These are command of command line interface that can be executed from the command
prompt. If you are using the graphic user interface (GUI), the command prompt is available from
LXTerminal which is part of the Raspbian software package.

We will assume the reader is comfortable using the command line interface of the Raspberry Pi. The
Raspbian software package comes with two command line text editors: nano editor and vi that may be
used to enter and edit the assembly source code. If you prefer to use a GUI text editor, Leafpad is
available. For more text editor options , please visit
http://www.raspberrypi.org/documentation/linux/usage/text-editors.md

Lastly, the screenshots in this document were captured remotely using Tera Term terminal emulator.
The content should look identical to the console display of the Raspberry Pi.

Below are the versions of the assembler and linker used in this document.

192.168.1.17:22 - pi@raspberrypi: ~/asm/printf VT = = “

L
ile Edit Setup Control Window Help

Ei
pi®raspberrypi ““Zasm/printf % as -v

GNU assembler version 2.24.51 (arm-linux-gnueabihf) using BFD version (GNU Binut
i

ey

s for Debian) 2.24.51.20148425

i “/asm/printf $ ld -v
inutils for Debiaa) 2.24.51.20140425

pi®raspberrypi ~“Zasm/printf

Figure 1: Display of version numbers for as and Id used in this document

2 The Differences

The example programs in the book were developed using Keil MDK-ARM and uVision IDE. These
programs are intended to be stand-alone programs in an embedded ARM microcontroller. Programs
developed using GCC tools in Raspberry Pi are applications running under the Raspbian OS. Here are
some of the major differences:

1o0f 23

http://www.raspberrypi.org/help/noobs-setup/
http://www.raspberrypi.org/documentation/linux/usage/text-editors.md

1. The code and data of the program are all loaded in the RAM allocated by the OS using virtual

memory addressing. The virtual memory address is the address that the program sees. From a

programmer’s perspective, it should make no difference unless you are attempting to

read/write the hardware registers.

2. The program is running under Raspbian OS. The OS provides services such as console read/write

or file I/0O.

The syntax for the assembly source file is different. GCC was developed to support many

different processors. With the recent version of GCC assembler (v2.24), ARM instructions are

kept the same as Keil MDK-ARM, the other parts of the syntax are slightly different.

a. Comments are preceded by ‘@’ instead of ‘;’. The assembler also accepts C++ style
comment enclosed with ‘/* */"and ‘//’.
b. Labels must be followed by a ‘.

c. The syntaxes of the directives are different but the mappings are straightforward. Below

is a comparison table of the frequently used directives:

GCC Directive

Keil MDK-ARM Directive

Explanation

text TEXT Signifies the beginning of code or
constant

.data DATA Signifies the beginning of read/write
data

.global label GLOBAL or EXPORT Makes the label visible to linker

.extern label

EXTERN

label is declared outside of this file

.byte byte [,byte, byte, ...] DCB Declares byte (8-bit) data

.hword hw [,hw, hw, ...] DCW Declares halfword (16-bit) data

.word word [,word, word, ...] | DCD Declares word (32-bit) data

float float [,float, float, ...] DCFS Declares single precision floating
point (32-bit) data

.double double [,double, DCFD Declares double precision floating

double, ...]

point (64-bit) data

.space #bytes [filll

SPACE or FILL

Declares memory (in bytes) with
optional fill

.alignn

ALIGN

Aligns address to <2 to the power of
n> byte

.ascii “ASCllI string”

DCB “ASClI string”

Declares an ASCII string

.asciz “ASCll string”

DCB “ASCll string”, O

Declares an ASCII string with null
termination

.equ symbol, value EQU Sets the symbol with a constant value
.set variable, value SETA Sets the variable with a new value
.end END Signifies the end of the program

Table 1: Comparison of GCC directives and Keil MDK-ARM directives

3 Sample Program Conversion
Below is Program 2-1 from the book that was written in Keil MDK-ARM syntax.

20f23

Program 2-1 Using Keil MDK-ARM syntax
; ARM Assembly Language Program To Add Some Data and Store the SUM in R3.

AREA PROG 2 1, CODE, READONLY

ENTRY

MOV R1, #0x25 ; Rl = 0x25

MOV R2, #0x34 ; R2 = 0x34

ADD R3, R2, R1 ; R3 = R2 + R1
HERE B HERE ; stay here forever

END

The same program in GCC syntax for Raspberry Pi is below.

Program 2-1p Using GCC as version 2.24 syntax
@P2_1.s ARM Assembly Language Program To Add Some Data and Store the SUM in R3.

.global _start

_start: MOV R1l, #0x25 @ Rl = 0x25

MOV R2, #0x34 @ R2 = 0x34

ADD R3, R2, R1 @ R3 = R2 + R1
HERE: B HERE @ stay here forever

The changes are:

1. Comments either use C-style /* */ or are preceded with ‘@’.

2. Labels are followed by “:’.

3. GCClinker is expecting a label “_start” for the entry point of the program. This label also must
be made global so that it is visible to the linker.

Technically the code of the program is marked by .text directive at the beginning and the end of the
program should have the directive “.end”. However, GCC does not enforce either one.

4 How to Assemble, Link and Run the Program
In this example, we enter the program above into a file name p2_1.s in the SHOME/asm directory,
assemble, link, and execute the program.

First we make a directory with the name asm, change the current directory to asm and launch the editor
vi for the file p2_1.s. We are showing the use of editor vi here but you may use any text editor you

prefer.

3of 23

192.168.1.17:22 - pi@raspberrypi: ~/asm VT

¥

L
inux raspberrypi

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in Zusr/share/doc/%/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

ermitted by applicable law.

ast login: Fri Nov 14 ©8:19:05 2014 from 192.168.1.9
pi@®raspberrypi ~ % mkdir asm

piB®raspberrypi ~ $ cd asm

pi®raspberrypi “Zasm $% vi p2_1.s

Figure 2: make asm directory, change to asm directory and launch editor vi
After typing in the program in vi, the file is saved.

192.168.1.17:22 - pi@raspberrypi: ~/asm VT

w

File Edit Setup Control Window Help
@P2_1.5 ARM assembly language program to add some data and store the sum in R3

.global _start

R1, #O@x25
EZ, #0x 34

HERE here forever

224 characters written

Figure 3: the sample program viewed in editor vi

The program is assembled using command “as —o p2_1.0 p2_1.s".In thiscommand, “as” is the
name of the assembler, “-o p2_1.0" tells the assembler to create the output object file with the name

p2_1l.0,and lastly, “p2_1.s" is the assembly source file name (see below).

~ % cd asm
~/asm % vi p2_1.s
~/asm $ as -o p2_l.o0 p2_1.s

pi®raspberrypi ~“/asm

Figure 4: the assemble command

Like many Unix! programs, it produces no output to the console when the program ran without errors.

! Raspbian is ported from Debian which derived from Linux and Linux is derived from Unix. All of them are very
similar. In this document we will use Unix as a generic term for these operating system.

4 of 23

Linker takes one or more object files and creates an executable file. To run the linker, use command
“ld —o p2_1 p2_1.0".In this command, “1d” is the name of the linker program, “—o p2_1" tells the
linker to produce the output executable file with the name p2_1, and lastly, “p2_1.0" is the input

object file name.

pi@raspberrypi -

pi@raspberrypi

Figure 5: the linker command
Again, the linker produces no output to the console when there were no errors.

To execute the program, type the command “. /p2_1" at the prompt. It tells the shell to execute the

program named p2_1 at the current directory.

pi@raspberrypi -

Figure 6: the command to execute the program p2_1

Recall the last instruction in the program is an infinite loop. After executing the first three instructions,
the program is stuck at the infinite loop that consumes 100% of the CPU time. An infinite loop is typical
for a program in a simple embedded system without an operating system. For now, type Ctrl-C to

terminate the program and get the prompt back.

~ % cd asm
i ~“/asm i
i ~“/asm

~/asm

~/asm

“/asm

Figure 7: Ctrl-C to terminate the program

5 Program Termination
As an application running under a multitasking operating system, the program should be terminated
when done. Otherwise, the program running a dummy infinite loop will consume the CPU time and slow

down all the other programs.

To terminate a program, replace the dummy infinite loop at the end of the program “HERE: B HERE”

by:
MOV R7, #1
svC 0

5 0of 23

The number 1 placed in Register 7 tells the operating system to terminate this program. The instruction
“svc 0" is the system call, that transfers the program execution to the operating system. If you place
a different number in R7, the operating system will perform a difference service. We will visit a system
call to write to the console later.

After replacing the dummy infinite loop with the system call to end the program, run the assembler and
linker again. This time after you execute the program, the program will terminate by itself and the
prompt reappears immediately without user intervention.

6 Using GDB

A computer without output is not very interesting like the previous example program. We will see how
to generate output from a program in the next section, but for most of the programs in this book, they
demonstrate the manipulations of data between CPU registers and memory without any output. GDB
(GNU Debugger) is a great tool to use to study the assembly programs. You can use GDB to step through
the program and examine the contents of the registers and memory.

In the following example, we will demonstrate how to control the execution of the program using GDB
and examine the register and memory content.

6.1 Preparation to Use GDB

When a program is assembled, the executable machine code is generated. To ease the task of debugging,
you add a flag “~g” to the assembler command line then the symbols and line numbers of the source
code will be preserved in the output executable file and the debugger will be able to link the machine
code to the source code line by line. To do this, assemble the program with the command (‘S’ is the
prompt):

$ as -g o p2_l.0p2 1.s
The linker command stays the same:
$1d -op2_1p2 1l.0

To launch the GNU Debugger, type the command gdb followed by the executable file name at the
prompt:

$ gdb p2_1

After displaying the license and warranty statements, the prompt is shown as (gdb). See Figure 8 below.

6 of 23

pi®raspberrypi ~“7asm % as -g -o pZ_1.
pi®raspberrypi “7asm % ld -c p2_1 p2_ 1.0
pi@raspberrypi ~“asm % adb p2Z_1

GNU odb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL wversion 3 or later <http:/“gnu.crg/licenses/gpl.html)>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "arm-linux-gnueabihf".
For bug reporting instructions, please see:

<h t/7www . anu. orassof twares/gadb/bugs /> . ..
%eaaing symbols from /ﬁome/pi/asm/p%_I...done.

tt
gdb)

Figure 8: assemble with debug option and launch of gdb

6.2 Exit GDB

GDB has a wealth of commands. We will only touch a few here. At the gdb prompt, you only need to
type the minimal number of characters to be distinctive for the command. We will show the full
command but underscore the minimal required characters.

To exit GDB, the command is “quit”.

6.3 List source code

To list the source code, the command is “1ist”. The list command displays 10 lines of the source code
with the line number in front of each line. To see the next 10 lines, just hit the Enter key.

192.168.1.17:22 - pi@raspberrypi: ~/asm VT = B n

[l

ile Edit Setup Control Window Help

i “Zasm % gdb pZ2_1
.4.1-debian
(C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL wversion 3 or later <http://anu.ocrga/licenses/gapl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "arm-linux-gnueabihf".
For bug reporting instructions, please see:
http://www.gnu.org/sof tware/gdb-/bugs~>. ..
?egb%n? symbols from Zhome/pi/asm/pZ_1...done.
g

R3

@P2_1.5s ARM assembly language program to add some data and store the sum

2
2 _start

5 R1, #@x25
& RZ, #0x34
7 R3. R2,
? HERE

~<ununn

here forever

Figure 9: use gdb command list to display source code with line number

6.4 Setbreakpoint
To be able to examine the registers or memory, we need to stop the program in its execution. Setting a
breakpoint will stop the program execution before the breakpoint. The command to set breakpoint is

7 of 23

“break” followed by line number. The following command sets a breakpoint at line 6 of the program.
When we run the program, the program execution will stop right before line 6 is executed.

$bé6

GDB will provide a confirmation of the breakpoint.

ADD R3. RZ, R1 R3 = R2 + R1
EERE: B HERE @ stay here forever

point 1 at Bx8058: file p2_1.s, line 6.

Figure 10: set a breakpoint at line 6 of the source code

6.5 Run the program

To start the program, use command “run”. Program execution will start from the beginning until it hits
the breakpoint. The line just following where the breakpoint was set will be displayed. Remember, this
instruction has not been executed yet.

_start:
R1, #Bx25
R2, #Bx34
R3

HERE : HERE
db) b 6
eakpoint 1 at Ox8858: file p2_1.s5, line 6.

g

=

gdb) r

tarting program: shomes/pi/asm/p2_1

reakpoint 1, _start () at p2_1.s5:6
) MOV R2, #Dx34 @ RZ = Ox34

Figure 11: run the program and it stops at the breakpoint

6.6 Examine the CPU registers

With the program stopped before line 6, the last instruction on line 5 moved a literal value 0x25 into
Register 1. We can verify that by using command “info registers”. The display consists of three
columns: the register name, the contents in hexadecimal, and the contents in decimal. The registers
holding addresses such as SP or PC will not display decimal values.

8 of 23

Y 192.168.1.17:22 - pi@raspberrypi: ~/asm VT
ile Edit Setup Control Window Help

I

_start () at p2 1.5:6
MOV Gx34 @ RZ = @x34

~l

QARG

Bxbef f f 860
Ox8058 (_start+4>
16

Figure 12: display register contents using info register command

6.7 Disassemble machine code

GDB has the ability of disassembling the machine code back to assembly instructions. The command is
“disassemble”. Because the assembler does more than translating the source code to machine
instructions, the disassembled result may differ from the original source code. For example, a pseudo-
instruction entered as “1dr R5, =0x1234" in the source code may have the disassembled output as
“ldr r5, [PC, #32]1".

(gdb) disas
of assembler code for function
@x@@998954 {+@>: mowv
=> OxDPRE8AS8 {+4): mowv
DxPEER8E5Sc <+8>: add

End of assembler dump.
db)

Figure 13: disassemble the machine code

In the disassembled display, the breakpoint instruction is marked by an arrow at the left margin.

The disassemble command also takes a pair of starting address and ending address separated by a
comma such as:

$ disas 0x8054, 0x806c

Note in the example in Figure 14 that although the last instruction of the program is at address
0x00008060, the disassembled output continued until the specified address was met.

9 of 23

nd of assembler dump.
(gdb) disas Ox8054, Ox806&c
Dump of assembler code from @x8054 to POx806c:
x0RR8ES4 {_start+@)>: mov rl, #37 ; @x25
=> SXGGGGSGSS {_start+4>: mov r2, #52 ; x34

X 805c start+8>: add r3, r2, r
PDx 02860 <(HERE+@>: b Ox806@ <HERE>
Dx0DRRBBE4: andeq rl, r@, rl, asr #
QxPOOR8DE8: cmnvs r5, r@, lsl #2

End of assembler dump.
(adb)

Figure 14: disassemble the machine code between address 0x8054 and 0x806C

6.8 Step through the instructions

When the program execution is halted by the breakpoint, we may continue by stepping one instruction
at a time by using command “stepi”. The step instruction command may also take a numeric argument
to step more than one instruction at a time. For example, “stepi 5” will execute the five instructions
or until another breakpoint is hit.

In the example below in Figure 15, we stepped two instructions and examined the register contents.

(gdb) stepi

7 ADD R3, RZ, R1 @ R3 = R2Z + R1
(Edb) stepi

8

RE () at p2_1.5:8
HERE: B HERE @ stay here forever

(gdb) ir

r

rl

r2
r3
r4
rS
ré

Figure 15: step instruction twice and examine the register content

6.9 Continue program execution
When the program execution is stopped, you may continue from where execution was halted by

command “continue”.

In this example as seem in Figure 16, if we continue program execution and there are no more
breakpoints left, the program will run without stopping and we have no gdb prompt to issue a command.

To stop program execution, hit Ctrl-C.

(gdb) cont
Continuing.
~C

PPOEP?? received ?ignal SIGINT, Interrupt.

HER
8
(gdb)

a _1l.s:
HERE: B HERE @ stay here forever

Figure 16: continue the program execution and terminated by Ctrl-C

6.10 Examine the memory

The command to examine the memory is “x” followed by options and the starting address. This
command has options of length, format, and size (see Table 2: options for examine memory command).
With the options, the command looks like “x/nfs address”.

10 of 23

Options Possible values
Number of items | any number

Format octal, hex, decimal, unsigned decimal, bit, float,
address, instruction, char, and string
Size byte, halfword, word, giant (8-byte)

Table 2: options for examine memory command

For the example in Figure 1Figure 17 to display eight words in hexadecimal starting at location 0x8054,
the command is “x/8xw 0x8054”.

(9db) x/8xw Ox8054
x8054 {_start)>: Pxe3ad1025 Dxe3al2034 Dxe@823001

.F
?538?4: DxRRR1341 Px 61656100 Dx 1006962 Dx RO

Figure 17: example of examine memory command

7 Floating Point
The Raspberry Pi has hardware floating point support (VFP). You may write 32-bit or 64-bit floating point
instructions in the assembly program.

To assemble a program with floating point instructions, you need to let the assembler know that you are
using the VFP instructions by adding the command line option “-mfpu=vfp”. A sample command will be:

$ as -mfpu=vfp -g -o p.o p.s
The linker command remains the same.

In GDB, you may examine the VFP registers using command “info float”. The registers are displayed
in 64-bit mode and 32-bit mode with floating point output and hexadecimal output. The content of the
VFP status register fpscr is also displayed.

8 Program Output

8.1 Program Return Value

Although most of the programs in the book manipulate data internal to the processor and memory, it is
still convenient to generate output to be observed outside of the debugger. Recall in section 5 we
discussed terminating a program using system call #1. Following the Unix convention, when a program
terminates, it should return an exit code. In an assembly program the exit code should be left in Register
0 before the exit system call is made. After the program exit, the user may retrieve the exit code by
reading the shell variable “$?”. This is a simple method for a single integer output of a program.

Using the last sample program, we will send the result of the addition to output. We do so by placing
the result in RO before making the exit system call. The end of the program will look like this:

MOV RO, R3

11 of 23

MOV R7, #1
svc 0

After the program exit, at the prompt type command “echo $?” and the result 89 (decimal) will be
displayed.

i®raspberrypi ~““asm % cat p2_1.s
P2_1.s ARM assembly language program to add some data and store the sum in R3

.global _start

R1
R2
R
R

3, R2 +

B, R3 return value in R3
57, exit system call
i ~“7asm

i ~“7asm

i ~“/asm

i ~/asm

i ~“/asm
Figure 18: an example of producing a program output number

9 Assembly Programming with GUI
So far, we have been using command line interface for programming and debugging. The rest of this
document will describe the use of a graphic user interface, Code::Blocks IDE, for assembly programming.

Code::Blocks (http://www.codeblocks.org/) is an open source C, C++ and Fortran IDE licensed under the
term of GNU General Public License version 3. Although Code::Blocks is not intended for assembly
language programming, with GNU GCC compiler and GNU GDB debugger plug-ins, it can handle
assembly language programming.

Code::Blocks IDE does not support an assembly language only project so we need to start a C project
then replace the “main.c” with an assembly language source file. (I will support a project with both C
language source files and assembly language source files but that is beyond the scope of this document.)
As a C language project, the C start-up code will be automatically linked into the executable code but
this will be mostly transparent to the assembly programmer (or C programmer for that matter). We will
describe the differences it causes later.

9.1 Install Code::Blocks IDE
To install Code::Blocks IDE, use the following command at the command prompt and all the required
software will be installed.

$ sudo apt-get install codeblocks

You do need Internet connection to download and install the software package and it will take several
minutes to complete.

12 of 23

9.2 Start Code::Blocks IDE

To start the Code::Blocks IDE, click the start button (at the lower left corner of the Desktop), select
Programming then Code::Blocks IDE. (To bring up the Desktop from command line interface, type
command “startx”.)

OCR Resources

& Accessories
sl Education
£ Graphics
o Internet

'« Office
& other
R

B3 Sound & Video » @ DLE
. SysternTools » @ pLE3
%, Scratch
@_ Squeak

vy v v v v v

Preferences 4

Run

& Logout

Figure 19: start Code::Blocks IDE

The first time you launch Code::Blocks IDE, it will ask you to confirm the compiler plug-ins. Unless you
have installed other compiler tools, it should detect only the GNU GCC compiler.

9.3 Create a Code::Blocks Project

9.4 Using Project Wizard to Create a Project
After the IDE is launched, it displays the “Start here” window. Click on “Create a new project” link and a
window with the title “New from template” pops up.

Keep the default wizard type as “Project” and click select “Console application” wizard then click the “Go”
button (see Figure 20).

13 of 23

SLFW project Lightfeather project QT4 project

[4| 1'

NViewas———
(@) Largeicons

O List

TIP: Try right-clicking an tem

1 Select a wizard type first on the left
2. Select a spacfic wizard from the main window (filter by categories if needead)

"'W-komn to Code::Blocks!

3. Press Go

Start here - Coden:Blocks 10.05 -0x
File Edt View Search Project Buld Debug Tools Plugins Settings Help
R E b | Q ®) | | Build target: |~ o U T 3, Py | 3 &
Nemagumars B [starthere ®
| Projects | Symbols |~
Code::Blocks
The opyn source. cross-plattesom JE
tarprtwww codedlocks onge
1
|
Release 10 08 rev 0 (Lnk dake Linuwjunicods - 32
S
i9 <
@ Category. <Al categories> | Go
g 2
Fles o
I GLUT
Custom @ @ @, a oga"‘e'
User termplates =
ARM Project D appication GLUT project Ogre project
2 | & =2 -
AVR Project Empty project GTK+ project OpenGL project
T T
3 -
T 2Blocks plugin FLTK project Irrlicht project PowerPC Project —g
- GLEW 7
A Code::Blocks =

Figure 20: create a new project using “Console application” wizard

The window will be replaced by “Console application” wizard. First it will ask for the selection of
programming language. Select “C” then click “Next>" button (See Figure 21).

14 of 23

Console application

; Please select the language you want to use.
& Console

Ples a selection

—————

Figure 21: select C language for the project

The next window asks for the project title and the folder where the project will be created. The wizard
creates a folder with the project name under the folder you specified and put all the project files and
folders in it. For example, we selected a folder “/home/pi/asm” and a project title “p2_1" (See Figure

22). A folder “/home/pi/asm/p2_1" will be created and all the files and folders of this project will be
placed in it.

Console application -

Please select the folder where you want the new project
to be created as well as its tile

Foldsrfo craate pfojod: n:
[homedpdasm

Project filenama:

p2_l.cbp

Resulting filename:
Jhomelpdasmip2_Lp2_1.cbp

Figure 22: specify project title and project folder location

Click “Next>" button and the next window is used to select compiler and configuration. Take the default
selections as in Figure 23 then click “Finish” button.

15 of 23

- Console application -0x

Please select the compiler to use and which configurations

@. Co nso Ie you want enabled in your project

Compiler:
GNU GCC Compiler v

Oreate "Debug” configuration: | Debug

“Debug" options
Output dr.: birVD ebug/

Objects output dir: objyDebug/
% Create "Raelease” configuration: Release

"Release” options
Output dr.: bin/Releass/

Objects output dir: objRelease/

< Back o ogancel

Figure 23: select compiler and configurations

9.5 Replace the C File with an Assembly File

When we created a project for C language, the project wizard put in a template C source file called
“main.c”. We will remove it and replace it with an assembly source file.

Expand the project tree in the left panel and right click on “main.c” then select “Remove file from
project” (See Figure 24).

main.c [p2_1] - Codei:Blocks 10.05

File Edt View Search Project Buld Debug Tools Plugins Settings Help

A E N~ BlIABR: TP S Build target: Debug EEE T T P =
Nanayemmmn i main.c (¥
Projects = Symbols 1 #include <stdio h>
2 #include <stdlib. h>
4 O\h’orkspacq 3
4 int i
- q 92_1 s a tn maini)
v B Sources 6 printf{ "Hello world!\n"),;
7 return O,
8 H
Save main.c
Close main.c

Open with >

Format this file [AStyle)

Properties...

Figure 24: remove main.c from the project

Now, add an empty file to the project from menu File->New->Empty file (See Figure 25).

16 of 23

[p2_1] - Code::Blocks 10.05

m Edt View Search Project Buld Debug Tools Plugins Settings Help

_ ol R i B O ¢
> Open... Ctel+0 Class...
Project...
Open default workspace 2
Recent projects > B.uldtargot.,.
Recart fles > File...
Custom...
Import project » From template...
Save file Ctrl+S
Save fle a5
Figure 25: add an empty file to the project
Click “Yes” button to confirm adding this file to the project (See Figure 26).
- *Untitledl - CodenBlocks 10.05 =T
File Edt View Search Project Buld Debug Tools Plugins Settings Help
B O . B QA3 > $ S) |sudtaget: Debug JERCEE | 3
Managermere B | suntitledr 3]
Projects = Symbols »‘ 1
v O
’ p2_1 - Add file to project

N Do you want to add this new file in the
/ - i’\‘ active project (has to be saved first)?

Figure 26: click "Yes" to add the file to the project

In order to add a file to the project, the file needs to be saved. The “Save file” window will pop up. Enter
a file name (for example, p2_1.s) and click “Save” button (See). The file needs an extension of “.s” to be

recognized as an assembly language source file.

17 of 23

File Edt View Search Project Buld Debug Tools

*Untitledl - Code::Blocks 10,05
Plugins Settings Help

B9 B A® G P> & 1 |suldtarget: Debug BE o =
ORI B | Juntitled1 %
Projects | Symbols |
v QN
v Bgp21
Save file -0Ox
-
. [n
Savein folder: 4 | /1‘ piasm [pz_l Create Fo|der
|Blaces | Name v | sie Modiﬁedg_f
«, Search £ mainc 107 bytes 15:26
| (5) Recently Used
~a
W Deskiop
. File System
e

The next window pops up will ask you to select the targets for this file (See Figure 28). Make sure

C/C++files

-

Figure 27: save the file with a file name

“Debug” is selected before clicking on the “Ok” button.

Once the empty file is added to the project, we may type in the code. We will reuse the program

A Multiple selection - 0%
Select the targets this file should belong to:
(W] Debug Wikicard select
(M Release l
Toggle selection
Select All
Deselect All

Selected: 2

G-

Figure 28: select target for the file

example from the early command line interface with a small change.

18 of 23

Program 2-1g Using GCC as version 2.24 syntax
@P2_1.s ARM Assembly Language Program To Add Some Data and Store the SUM in R3.

.global main

main: MOV R1, #0x25 @ Rl = 0x25

MOV R2, #0x34 @ R2 = 0x34

ADD R3, R2, R1 @ R3 = R2 + R1
HERE: B HERE @ stay here forever

Recall the GCC linker is expecting a label “_start” as the entry point of the program. That’s why we used
it in the previous program. The difference here is that we are borrowing a C language project for our
assembly program. When GCC is linking a C program, it includes the C startup code at the beginning of
the program. The C startup code has the label “_start” as the entry point and the program execution
starts there. At the end of the C startup code, the program branches to a label “main” so we need to use
“main” as the label of the entry point of our program.

9.6 Assemble the program
To run the assembler and linker, click the “Build” button (Figure 29).

*p2_1.s [p2_1] - Code::Blocks 10.05

File Edit View Search Project Build Debug Tools Plugins Settings Help

@QB & ‘_TQ ‘%@5 @' ‘%@ | Build target: Debug |- lElE ?} 3 i.
Management ® *p2.1s X
Projects = Symbols 1 @P2_1.s ARM Assembly Language Program To Add Some Data and Store the SUM in R3.
2
- OWorkspace 3 .global main
e 4 main: MOV Rl, #0x25 @ Rl = 0x25
SHe21 5 MoV R2, #0x34 @ R2 = 0x34
¥ = ASM Sources 6 ADD R3, R2, Rl @R3 = R2 + RL
% - 7 HERE: B HERE @ stay here forever
| 8

Figure 29: click "Build" button to assemble and link the program

The “Build log” window will show at the lower part of the window. Make sure there are no errors nor
warnings (See Figure 30).

A Code::Blocks 'Q) Search results Q Build log %] G Build messages

e Build: Debug in p2_1 --------cnnunnn
‘Conr::.ling: p2.1l.s .

Linking console executable: bin/Debug/p2_1

Output size 1s 5.43 KB

Process teminated with status 0 (0 minutes, 2 seconds)
0 errors, 0 warnings

| context) \ UTF-8 Line 1, Column 2

Figure 30: Build log display

9.7 Breakpoint and Launch of the Debugger
Before we launch the debugger, it is a good idea to set a breakpoint. Otherwise, the debugger will run all
the way to the end of the program. To set a breakpoint, click at the margin just to the right of the line

19 of 23

number in the source editor window and a red stop sign will show. To remove a breakpoint, click on the
red stop sign and the breakpoint will be removed.

With the breakpoint set, click “Debug / Continue” button to launch the debugger (See Figure 31).

p2_1.s [p2_1] - Code::Blocks 10.05

File Edt View Search Project Buld Debug Tools Plugins Settings Help

L‘"f B E @ @ \E »% @5 \',5} > @ <& Build target: Debug - -~ i 3 J
z < ¢ J M ebug / Continud]
Management (3] p2ls X
Projects | Symbols 1 @P2_1.s ARM Assembly Language Program To Add Some Data and Store the SUM in R3.
2
v OWorkspace 3 .global main
- main: MOV R1, #0x25 @ R1 = 0x25
21 MoV R2, #0x34 @ R2 = 0x34
> B3 ASM Sources ADD R3, R2, Rl @R3=R2 + RL
- 7 HERE: B HERE @ stay here forever
8

Figure 31: breakpoint and “Debug” button

The debugger changes the perspective of IDE then run the program until a breakpoint is hit. In our
program with the breakpoint on line 5, the program executes until right before the instruction on line 5

is executed.
p2_Ls %

1 @P2_1.5 ARM Assembly Language Program To Add Some Data and Store the SUM in R3,

2

3 1 .global main

v main: MOV Rl, #0x25 @ Rl = 0x25

O | MOV R2, #0x34 @ R2 = 0x34

ot ADD R3, R2, Rl @R3=FR2+RL

; U HERE: B HERE @ stay here forever
Regis Hex Integer Functior:
0 0 1 = Frame start: Oxbefff968
1 27 —! Px8324 mev rl, #37
N (O eses o ez 42
r3 0x83ed 33764
rd 0x0 L]
5 020 0
r6 0x8338 33892
r7 0x0 0
re 0x0 9
9 010 0
rlo 0xbEFFFO00 3070226432
rll 0x0 L]
rl2 0xbGeS6000 3068485632
=p 0xbeFFFI68 3204446568
ir 0xbEd4181c 3067353116
pe 0x83e2 33768 vl

!

1 »

Figure 32: the debugger stops before the breakpoint line is executed

From Figure 32 above, you may see that there is a yellow triangle superimposed on the stop sign on line
5 denotes that the program execution is halted and the program counter is pointing to the instruction
on line 5. The same is shown in the Disassembly window. The CPU Register window shows that r1 has
the content of 0x25 as the result of the instruction on line 4.

20 of 23

If Register window or Disassembly window is not visible, you may enable them from menu
“Debug->Debugging windows”.

9.8 Stepping the Instruction

When the program execution is halted, the “Next instruction” button may be used to step the program
one instruction at a time ().

p2 1.5 [p2 1] - Code:Blocks 10.05

File Edt View Search Project Buld Debug Tools Plugins Settings Help ,
‘PeE® <« | B Q@S P> $ S | suldtarget: Debug .|
Management X pi_]..s %
Projects | Symbols | | 1 @P2_1.5 ARN Assembly Language Program To Add Some Data ard Store the SUM in R3,
- O : giotst amin
b 4 nain: MOV Rl, #0x25 @ Rl = 0x25
1 P21 so0l | MOV R2, #0x34 @ R2 = 0x34
6 ADD R3, R2, Rl @R3=R2 +
7 HERE: B HERE @ stay here forever
8

Figure 33: the "Next instruction" button

When the “Next instruction” button is pressed, the yellow arrow moves to the next instruction (line 6 in
Figure 34). Also as the result of instruction on line 5, register r2 has the content changed to 0x34..

p2_Ls (¥
@P2_1.5 ARM Assembly Language Program To Add Some Data and Store the SUM in R3,

.global main
main: MOV RL, #0x25 @ RL = 0x25
MoV R2, #0x34 @ R2 = 0x34
ADD R3, R2, R1 @R3=R2 +RL
HERE: B HERE @ stay here forever
I
J dl |
Regid Hex Integer | Function:
i) oxl 1 =1 Frame start: Oxbefif978
f : a || lraprooes mev 2, ¥52 |
%8328 mov r2, ; 0x34
r2 52 ®x33ec add r3, r2, rl
3 0x83e 33764 !
rd 0x0 L]
5 010 0
ré 0x8338 33592
-1 AR "

Figure 34: the result of "Next instruction"

9.9 Examine Memory

The memory window can be enabled from menu “Debug->Debugging windows->Examine memory”
(Figure 35).

21 of 23

p2_ 1.5 [p2_1] - Coder:Blocks 10.05

File Edt View Search Project Buld |51 "0 Tools Plugins Settings Help

PeEM & D { 4 stan ra | B
n.,..,.m p:' 0 Stop debugger ‘ z;
- Brolets = symb?k - 1@ Corttinue Ctri+F7 d Some Data ard Store the SUM
~ O— '{? Next lne £7
b M2 . Nextinstruction A7 |
P} Step into shift+r7 forever
{¥ stepout Shift+CtrHE7

Toggle breakpoint . ®

. Function:
Remove al breakpoints | . | poreer s
‘E Run to cursor F4 “ 0x83c4
0x83e8
Add symbol file | P ox83ec
T) (! Breakpoints
Information * | [call stack
Edit watches... [5] CPU Registers

Attach to process.. | 0 Dlsasqmbly
=Res | W Examine memory |
| Ll Running threads k
Send user command to debugger | [watches
r12 0:hGeSGO00 3062495622 ‘ I

Figure 35: enable Examine memory window

9.10 Floating Point Registers
The floating point registers can be examined from menu “Debug->Information->FPU status” (Figure 36).

p2_ 1.2 [p2_1] - Codei:Blocks 10.05

File Edt View Search Project Buld |51 7' Tools Pluginsg Settings Help
H ¢ | 1 | |
DQ ‘BQ ! I;._S_t.qrt Falg | » |
[® o €3 stop debugger ' e
Projects | Symbols " -”_:: Continue ctri+f7 d Some Data and Store the SUM
v O eigie T Nextine £
b 2_1 :
! Pa- ?, Next instruction Alt+F7 R
&y Stepinto shift+r7 | forever
£ Stepout Shift+CtrHF7
Toggle breakpoint Fs | :!?if,‘l .
. Function:
R al br nk: |)
emove eakpoints :_] o
‘E Run to cursor F4 0x83e4
0x83e8
Add symbol file P 6x83ec
Debugging windows > |
Currant stack frama
Edit watches... ‘ Loaded lbranes
S acHite e ocs Targets and fies
Atactie proces [FPO staus.
Letac . .
\ Signal handling
Send user cormmand to debugger
rl2 0xbGeS56000 2068485632
p 0:befFFO68 3204446568

Figure 36: display FPU status

22 of 23

Bear in mind, the information displays are modal (when one of them is opened, you may not interact
with the debugger until it is closed).

9.11 Stop the Debugger
To stop the debugger and return to Edit/Build perspective of IDE, click “Stop debugger” button (Figure
37).

p2_1.s [p2_1] - CodesBlocks 10.05

Buld Debug Tools Plugins Settings Help
BIQAR[IG P> $ O 0| subtape: ok Jeevrnde)
p2_Ls (X [Stop debugger
1 @P2_1.5 ARM Assambly Language Program To Add Some Data and Store the SUM in R3,
2
3 .global main
4 main: HOV R1, #0x25 @ Rl = 0x25
5@ MoV R2, #0x34 @ R2 = 0x34
6 ADD R3, R2, Rl @R3=FR2+RL
7P HERE: B HERE @ stay here forever
8

Regis Hex Integer ‘ Functior:
0 oxl 1 a| Frame start: Oxbefff968
— 0x83e4 mov rl, #37
0 7
'12 ol:i :2 0x83e8 mov r2, #52 |
s x P 0x83ec add 3, v2; rk
r3 0x59 &3

rd 0x0 9

Figure 37: Stop debugger button

10 Conclusion
This document described how to use GCC tools to write assembly programs in a Raspberry Pi. It also
discussed the use of GDB debugger. Lastly, the use of Code::Blocks IDE as the GUI is introduced.

23 of 23

