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Abstract

Over the past decades, numerous loss functions have been been proposed for a variety of
supervised learning tasks, including regression, classification, ranking, and more generally
structured prediction. Understanding the core principles and theoretical properties un-
derpinning these losses is key to choose the right loss for the right problem, as well as to
create new losses which combine their strengths. In this paper, we introduce Fenchel-Young
losses, a generic way to construct a convex loss function for a regularized prediction func-
tion. We provide an in-depth study of their properties in a very broad setting, covering
all the aforementioned supervised learning tasks, and revealing new connections between
sparsity, generalized entropies, and separation margins. We show that Fenchel-Young losses
unify many well-known loss functions and allow to create useful new ones easily. Finally, we
derive efficient predictive and training algorithms, making Fenchel-Young losses appealing
both in theory and practice.

Keywords: loss functions, output regularization, convex duality, structured prediction

1. Introduction

Loss functions are a cornerstone of statistics and machine learning: They measure the
difference, or “loss,” between a ground truth and a prediction. As such, much work has
been devoted to designing loss functions for a variety of supervised learning tasks, including
regression (Huber, 1964), classification (Crammer and Singer, 2001), ranking (Joachims,
2002) and structured prediction (Lafferty et al., 2001; Collins, 2002; Tsochantaridis et al.,
2005), to name only a few well-known directions.

For the case of probabilistic classification, proper composite loss functions (Reid and
Williamson, 2010; Williamson et al., 2016) offer a principled framework unifying various
existing loss functions. A proper composite loss is the composition of a proper loss between
two probability distributions, with an invertible mapping from real vectors to probability
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distributions. The theoretical properties of proper loss functions, also known as proper
scoring rules (Grünwald and Dawid (2004); Gneiting and Raftery (2007); and references
therein), such as their Fisher consistency (classification calibration) and correspondence
with Bregman divergences, are now well-understood. However, not all existing losses are
proper composite loss functions; a notable example is the hinge loss used in support vec-
tor machines. In fact, we shall see that any loss function enjoying a separation margin, a
prevalent concept in statistical learning theory which has been used to prove the famous per-
ceptron mistake bound (Rosenblatt, 1958) and many other generalization bounds (Vapnik,
1998; Schölkopf and Smola, 2002), cannot be written in composite proper loss form.

At the same time, loss functions are often intimately related to an underlying statistical
model and prediction function. For instance, the logistic loss corresponds to the multi-
nomial distribution and the softmax operator, while the conditional random field (CRF)
loss (Lafferty et al., 2001) for structured prediction is tied with marginal inference (Wain-
wright and Jordan, 2008). Both are instances of generalized linear models (Nelder and
Baker, 1972; McCullagh and Nelder, 1989), associated with exponential family distribu-
tions. More recently, Martins and Astudillo (2016) proposed a new classification loss based
on the projection onto the simplex. Unlike the logistic loss, this “sparsemax” loss induces
probability distributions with sparse support, which is desirable in some applications for
interpretability or computational efficiency reasons. However, the sparsemax loss was de-
rived in a relatively ad-hoc manner and it is still relatively poorly understood. Is it one of
a kind or can we generalize it in a principled manner? Thorough understanding of the core
principles underpinning existing losses and their associated predictive model, potentially
enabling the creation of useful new losses, is one of the main quests of this paper.

This paper. The starting point of this paper are the notions of output regularization
and regularized prediction functions, which we use to provide a variational perspective on
many existing prediction functions, including the aforementioned softmax, sparsemax and
marginal inference. Based on simple convex duality arguments, we then introduce Fenchel-
Young losses, a new way to automatically construct a loss function associated with any
regularized prediction function. As we shall see, our proposal recovers many existing loss
functions, which is in a sense surprising since many of these losses were originally proposed
by independent efforts. Our framework goes beyond the simple probabilistic classification
setting: We show how to create loss functions over various structured domains, including
convex polytopes and convex cones. Our framework encourages the loss designer to think
geometrically about the outputs desired for the task at hand. Once a (regularized) pre-
diction function has been designed, our framework generates a corresponding loss function
automatically. We will demonstrate the ease of creating loss functions, including useful new
ones, using abundant examples throughout this paper.

Organization and contributions. The rest of this paper is organized as follows.

§2 We introduce regularized prediction functions, unifying and generalizing softmax, sparse-
max and marginal inference, among many others.

2



Learning with Fenchel-Young Losses

§3 We introduce Fenchel-Young losses to learn models whose output layer is a regularized
prediction function. We provide an in-depth study of their properties, showing that they
unify many existing losses, including unstructured and structured losses.

§4 We study Fenchel-Young losses for probabilistic classification. We show how to seam-
lessly create entire new families of losses from generalized entropies.

§5 We characterize which entropies yield sparse distributions and losses with a separation
margin, notions we prove to be intimately connected. Furthermore, we show that losses
that enjoy a margin and induce a sparse distribution are precisely the ones that cannot
be written in proper composite loss form.

§6 We study Fenchel-Young losses for positive measures (unnormalized probability distri-
butions), providing a new perspective on one-vs-all loss reductions.

§7 We study Fenchel-Young losses for structured prediction. We introduce the concepts of
probability distribution and mean regularizations, providing a unifying perspective on a
number of structured losses, including the conditional random field (CRF) loss and the
recently-proposed SparseMAP loss (Niculae et al., 2018). We illustrate these results by
deriving losses over various convex polytopes, including ranking losses.

§8 We present primal and dual algorithms for learning models with Fenchel-Young losses
defined over arbitrary domains. We derive new efficient algorithms to compute regular-
ized prediction functions and proximity operators, which are a core sub-routine for dual
training algorithms.

§9 We demonstrate the ability of Fenchel-Young losses to induce sparse distributions on
two tasks: label proportion estimation and dependency parsing.

§10 Finally, we review related work on proper (composite) losses and other losses proposed
in the literature, Fenchel duality, and approximate inference.

Previous papers. This paper builds upon two previously published shorter conference
papers. The first (Niculae et al., 2018) introduced Fenchel-Young losses in the structured
prediction setting but only provided a limited analysis of their properties. The second
(Blondel et al., 2019) provided a more in-depth analysis but focused on unstructured prob-
abilistic classification. This paper provides a comprehensive study of Fenchel-Young losses
across various domains. Besides a much more thorough treatment of previously covered
topics, this paper contributes entirely new sections, including §6 on losses for positive mea-
sures, §8 on primal and dual training algorithms, and §A.2 on loss “Fenchel-Youngization”.
We provide in §7 a new unifying view between structured predictions losses, and discuss at
length various convex polytopes, promoting a geometric approach to structured prediction
loss design; we also provide novel results in this section regarding structured separation
margins (Proposition 8), proving the unit margin of the SparseMAP loss. We demonstrate
how to use our framework to create useful new losses, including ranking losses, not covered
in the previous two papers.

Notation. We denote the (d−1)-dimensional probability simplex by4d := {p ∈ Rd+ : ‖p‖1 =
1}. We denote the convex hull of a set Y by conv(Y) and the conic hull by cone(Y). We
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denote the domain of a function Ω: Rd → R ∪ {∞} by dom(Ω) := {µ ∈ Rd : Ω(µ) < ∞}.
We denote the Fenchel conjugate of Ω by Ω∗(θ) := supµ∈dom(Ω) 〈θ,µ〉 − Ω(µ). We denote
the indicator function of a set C by

IC(µ) :=

{
0 if µ ∈ C
∞ otherwise

(1)

and its support function by σC(θ) := supµ∈C 〈θ,µ〉. We define the proximity operator (a.k.a.
proximal operator) of Ω by

proxΩ(η) := argmin
µ∈dom(Ω)

1

2
‖µ− η‖2 + Ω(µ). (2)

We denote the interior and relative interior of C by int(C) and relint(C), respectively. We
denote [x]+ := max(x,0), evaluated element-wise.

2. Regularized prediction functions

In this section, we introduce the concept of regularized prediction function (§2.1), which
is central to this paper. We then give simple and well-known examples of such functions
(§2.2) and discuss their properties in a general setting (§2.3,§2.4).

2.1 Definition

We consider a general predictive setting with input variables x ∈ X , and a parametrized
model fW : X → Rd (which could be a linear model or a neural network), producing a score
vector θ := fW (x) ∈ Rd. In a simple multi-class classification setting, the score vector is
typically used to pick the highest-scoring class among d possible ones

ŷ(θ) ∈ argmax
j∈[d]

θj . (3)

This can be generalized to an arbitrary output space Y ⊆ Rd by using instead

ŷ(θ) ∈ argmax
y∈Y

〈θ,y〉, (4)

where intuitively 〈θ,y〉 captures the affinity between x (since θ is produced by fW (x)) and
y. Therefore, (4) seeks the output y with greatest affinity with x. The support function
σY(θ) = maxy∈Y 〈θ,y〉 = 〈θ, ŷ(θ)〉 can be interpreted as the largest projection of any
element of Y onto the line generated by θ.

Clearly, (4) recovers (3) with Y = {e1, . . . , ed}, where ej is a standard basis vector, ej :=
[0, . . . 0, 1︸︷︷︸

j

, 0, . . . 0]. In this case, the cardinality |Y| and the dimensionality d coincide,

but this need not be the case in general. Eq. (4) is often called a linear maximization oracle
or maximum a-posteriori (MAP) oracle (Wainwright and Jordan, 2008). The latter name
comes from the fact that (4) coincides with the mode of the Gibbs distribution defined by

p(y;θ) ∝ exp 〈θ,y〉.
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Prediction over convex hulls. We now extend the prediction function (4) by replacing
Y with its convex hull conv(Y) := {Ep[Y ] : p ∈ 4|Y|} and introducing a regularization
function Ω into the optimization problem:

ŷΩ(θ) ∈ argmax
µ∈conv(Y)

〈θ,µ〉 − Ω(µ).

We emphasize that the regularization is w.r.t. predictions (outputs) and not w.r.t. model
parameters (denoted by W in this paper), as is usually the case in the literature. We
illustrate the regularized prediction function pipeline in Figure 1.

Unsurprisingly, the choice Ω = 0 recovers the unregularized prediction function (4). This
follows from the fundamental theorem of linear programming (Dantzig et al., 1955, Theorem
6), which states that the maximum of a linear form over a convex polytope is always achieved
at one of its vertices:

ŷ0(θ) ∈ argmax
µ∈conv(Y)

〈θ,µ〉 = argmax
y∈Y

〈θ,y〉.

Why regularize outputs? The regularized prediction function (5) casts computing a
prediction as a variational problem. It involves an optimization problem that balances
between two terms: an “affinity” term 〈θ,µ〉, and a “confidence” term Ω(µ) which should
be low if µ is “uncertain.” Two important classes of convex Ω are (squared) norms and, when
dom(Ω) is the probability simplex, generalized negative entropies. However, our framework
does not require Ω to be convex in general.

Introducing Ω(µ) in (5) tends to move the prediction away from the vertices of conv(Y).
Unless the regularization term Ω(µ) is negligible compared to the affinity term 〈θ,µ〉, a
prediction becomes a convex combination of several vertices. As we shall see in §7, we can
interpret this prediction as the mean under some underlying distribution. This contrasts
with (4), which always outputs the most likely vertex, i.e., the mode.

Prediction over arbitrary domains. Regularized prediction functions are in fact not
limited to convex hulls. We now state their precise definition in complete generality.

Definition 1 Prediction function regularized by Ω

Let Ω: Rd → R ∪ {∞} be a regularization function, with dom(Ω) ⊆ Rd. The prediction
function regularized by Ω is defined by

ŷΩ(θ) ∈ argmax
µ∈dom(Ω)

〈θ,µ〉 − Ω(µ). (5)

Allowing extended-real Ω permits general domain constraints in (5) via indicator functions.
For instance, choosing Ω = Iconv(Y), where IC is the indicator function defined in (1), recovers
the MAP oracle (4). Importantly, the choice of domain dom(Ω) is not limited to convex
hulls. For instance, we will also consider conic hulls, cone(Y), later in this paper.

Choosing Ω. Regularized prediction functions ŷΩ involve two main design choices: the
domain dom(Ω) over which Ω is defined and Ω itself. The choice of dom(Ω) is mainly
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X

Input space

x

Rd

Score space

θ

fW

conv(Y)

Output space

ŷ

ŷΩ

Figure 1: Illustration of the proposed regularized prediction framework over a
convex hull conv(Y). A parametrized model fW : X → Rd (linear model, neural
network, etc.) produces a score vector θ ∈ Rd. The regularized prediction func-
tion ŷΩ produces a prediction ŷ ∈ conv(Y). Regularized prediction functions are
not limited to convex hulls and can be defined over arbitrary domains (Def. 1).

dictated by the type of output we want from ŷΩ, such as dom(Ω) = conv(Y) for convex
combinations of elements of Y, and dom(Ω) = cone(Y) for conic combinations. The choice
of the regularization Ω itself further governs certain properties of ŷΩ, including, as we
shall see in the sequel, its sparsity or its use of prior knowledge regarding the importance
or misclassification cost of certain outputs. The choices of dom(Ω) and Ω may also be
constrained by computational considerations. Indeed, while computing ŷΩ(θ) involves a
potentially challenging constrained maximization problem in general, we will see that certain
choices of Ω lead to closed-form expressions. The power of our framework is that the user
can focus solely on designing and computing ŷΩ: We will see in §3 how to automatically
construct a loss function associated with ŷΩ.

2.2 Examples

To illustrate regularized prediction functions, we give several concrete examples enjoying a
closed-form expression.

When Ω = I4d , ŷΩ(θ) is a one-hot representation of the argmax prediction

ŷΩ(θ) ∈ argmax
p∈4d

〈θ,p〉 = argmax
y∈{e1,...,ed}

〈θ,y〉.

We can see that output as a probability distribution that assigns all probability mass on
the same class. When Ω = −Hs + I4d , where Hs(p) := −∑i pi log pi is Shannon’s entropy,
ŷΩ(θ) is the well-known softmax

ŷΩ(θ) = softmax(θ) :=
exp(θ)

∑d
j=1 exp(θj)

. (6)

See Boyd and Vandenberghe (2004, Ex. 3.25) for a derivation. The resulting distribution
always has dense support. When Ω = 1

2‖ · ‖2 + I4d , ŷΩ is the Euclidean projection onto
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the probability simplex

ŷΩ(θ) = sparsemax(θ) := argmin
p∈4d

‖p− θ‖2,

a.k.a. the sparsemax transformation (Martins and Astudillo, 2016). It is well-known that

argmin
p∈4d

‖p− θ‖2 = [θ − τ1]+, (7)

for some threshold τ ∈ R. Hence, the predicted distribution can have sparse support
(it may assign exactly zero probability to low-scoring classes). The threshold τ can be
computed exactly in O(d) time (Brucker, 1984; Duchi et al., 2008; Condat, 2016).

The regularized prediction function paradigm is, however, not limited to the probability
simplex: When Ω(p) = −∑iH

s([pi, 1− pi]) + I[0,1]d(p), we get

ŷΩ(θ) = sigmoid(θ) :=
1

1 + exp(−θ)
,

i.e., the sigmoid function evaluated coordinate-wise. We can think of its output as a positive
measure (unnormalized probability distribution).

We will see in §4 that the first three examples (argmax, softmax and sparsemax) are partic-
ular instances of a broader family of prediction functions, using the notion of generalized
entropy. The last example is a special case of regularized prediction function over positive
measures, developed in §6. Regularized prediction functions also encompass more complex
convex polytopes for structured prediction, as we shall see in §7.

2.3 Gradient mapping and dual objective

From Danskin’s theorem (Danskin, 1966) (see also Bertsekas (1999, Proposition B.25))
ŷΩ(θ) is a subgradient of Ω∗ at θ, i.e., ŷΩ(θ) ∈ ∂Ω∗(θ). If, furthermore, Ω is strictly
convex, then ŷΩ(θ) is the gradient of Ω∗ at θ, i.e., ŷΩ(θ) = ∇Ω∗(θ). This interpretation of
ŷΩ(θ) as a (sub)gradient mapping will play a crucial role in the next section for deriving a
loss function associated with ŷΩ(θ).

Viewing ŷΩ(θ) as the (sub)gradient of Ω∗(θ) is also useful to derive the dual of (5). Let
Ω := Ψ + Φ. It is well-known (Borwein and Lewis, 2010; Beck and Teboulle, 2012) that

Ω∗(θ) = (Ψ + Φ)∗(θ) = inf
u∈Rd

Φ∗(u) + Ψ∗(θ − u) =: (Φ∗�Ψ∗)(θ), (8)

where f�g denotes the infimal convolution of f with g. Furthermore, from Danskin’s
theorem, ŷΩ(θ) = ∇Ψ∗(θ − u?), where u? denotes an optimal solution of the infimum in
(8). We can think of that infimum as the dual of the optimization problem in (5). When
Ψ = Ψ∗ = 1

2‖ · ‖2, Ω∗(θ) is known as the Moreau envelope of Φ∗ (Moreau, 1965) and using
Moreau’s decomposition, we obtain ŷΩ(θ) = θ−proxΦ∗(θ) = proxΦ(θ). As another example,
when Ω = Ψ + IC , we obtain

Ω∗(θ) = inf
u∈Rd

σC(u) + Ψ∗(θ − u),

7
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argmax

sparsemax
softmax

sigmoid

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Figure 2: Examples of regularized prediction functions. The unregularized argmax
prediction always hits a vertex of the probability simplex, leading to a probability
distribution that puts all probability mass on the same class. Unlike, softmax
which always occurs in the relative interior of the simplex and thus leads to a dense
distribution, sparsemax (Euclidean projection onto the probability simplex) may
hit the boundary, leading to a sparse probability distribution. We also display
the sigmoid operator which lies in the unit cube and is thus not guaranteed to
output a valid probability distribution.

where we used I∗C = σC , the support function of C. In particular, when C = conv(Y), we have
σC(u) = maxy∈Y 〈u,y〉. This dual view is informative insofar as it suggests that regularized
prediction functions ŷΩ(θ) with Ω = Ψ + IC minimize a trade-off between maximizing
the value achieved by the unregularized prediction function σC(u), and a proximity term
Ψ∗(θ − u).

2.4 Properties

We now discuss simple yet useful properties of regularized prediction functions. The first
two assume that Ω is a symmetric function, i.e., that it satisfies

Ω(µ) = Ω(Pµ) ∀µ ∈ dom(Ω),∀P ∈ P,

where P is the set of d× d permutation matrices.

Proposition 1 Properties of regularized prediction functions ŷΩ(θ)

1. Effect of a permutation. If Ω is symmetric, then ∀P ∈ P: ŷΩ(Pθ) = P ŷΩ(θ).

2. Order preservation. Let µ = ŷΩ(θ). If Ω is symmetric, then the coordinates of
µ and θ are sorted the same way, i.e., θi > θj ⇒ µi ≥ µj and µi > µj ⇒ θi > θj.

3. Approximation error. If Ω is γ-strongly convex and bounded with L ≤ Ω(µ) ≤ U
for all µ ∈ dom(Ω), then 1

2‖ŷ(θ)− ŷΩ(θ)‖2 ≤ U−L
γ .
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4. Temperature scaling. For any constant t > 0, ŷtΩ(θ) ∈ ∂Ω∗(θ/t). If Ω is strictly
convex, ŷtΩ(θ) = ŷΩ(θ/t) = ∇Ω∗(θ/t).

5. Constant invariance. For any constant c ∈ R, ŷΩ+c(θ) = ŷΩ(θ;y).

The proof is given in Appendix B.1.

For classification, the order-preservation property ensures that the highest-scoring class
according to θ and ŷΩ(θ) agree with each other:

argmax
i∈[d]

θi = argmax
i∈[d]

(ŷΩ(θ))i .

Temperature scaling is useful to control how close we are to unregularized prediction func-
tions. Clearly, ŷtΩ(θ)→ ŷ(θ) as t→ 0, where ŷ(θ) is defined in (4).

3. Fenchel-Young losses

In the previous section, we introduced regularized prediction functions over arbitrary do-
mains, as a generalization of classical (unregularized) decision functions. In this section,
we introduce Fenchel-Young losses for learning models whose output layer is a regularized
prediction function. We first give their definitions and state their properties (§3.1). We
then discuss their relationship with Bregman divergences (§3.2) and their Bayes risk (§3.3).
Finally, we show how to construct a cost-sensitive loss from any Fenchel-Young loss (§3.4).

3.1 Definition and properties

Given a regularized prediction function ŷΩ, we define its associated loss as follows.

Definition 2 Fenchel-Young loss generated by Ω

Let Ω: Rd → R ∪ {∞} be a regularization function such that the maximum in (5)
is achieved for all θ ∈ Rd. Let y ∈ Y ⊆ dom(Ω) be a ground-truth label and θ ∈
dom(Ω∗) = Rd be a vector of prediction scores.

The Fenchel-Young loss LΩ : dom(Ω∗)× dom(Ω)→ R+ generated by Ω is

LΩ(θ;y) := Ω∗(θ) + Ω(y)− 〈θ,y〉. (9)

It is easy to see that Fenchel-Young losses can be rewritten as

LΩ(θ;y) = fθ(y)− fθ(ŷΩ(θ)),

where fθ(µ) := Ω(µ)−〈θ,µ〉, highlighting the relation with regularized prediction functions.
Therefore, as long as we can compute a regularized prediction function ŷΩ(θ), we can
automatically obtain an associated Fenchel-Young loss LΩ(θ;y). Conversely, we also have
that ŷΩ outputs the prediction minimizing the loss:

ŷΩ(θ) ∈ argmin
µ∈dom(Ω)

LΩ(θ;µ).

9
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Table 1: Examples of regularized prediction functions and their corresponding
Fenchel-Young losses. For multi-class classification, we assume Y = {ei}di=1 and
the ground-truth is y = ek, where ei denotes a standard basis (“one-hot”) vector.
For structured classification, we assume that elements of Y are d-dimensional
binary vectors with d � |Y|, and we denote by conv(Y) = {Ep[Y ] : p ∈ 4|Y|}
the corresponding marginal polytope (Wainwright and Jordan, 2008). We denote
by Hs(p) := −∑i pi log pi the Shannon entropy of a distribution p ∈ 4|Y|.

Loss dom(Ω) Ω(µ) ŷΩ(θ) LΩ(θ;y)

Squared Rd 1
2‖µ‖2 θ 1

2‖y − θ‖2

Perceptron 4|Y| 0 argmax(θ) maxi θi − θk
Logistic 4|Y| −Hs(µ) softmax(θ) log

∑
i exp θi − θk

Hinge 4|Y| 〈µ, ek − 1〉 argmax(1−ek+θ) maxi [[i 6= k]] + θi − θk
Sparsemax 4|Y| 1

2‖µ‖2 sparsemax(θ) 1
2‖y − θ‖2 − 1

2‖ŷΩ(θ)− θ‖2

Logistic (one-vs-all) [0, 1]|Y| −∑i H
s([µi, 1− µi]) sigmoid(θ)

∑
i log(1 + exp(−(2yi − 1)θi))

Structured perceptron conv(Y) 0 MAP(θ) maxy′ 〈θ,y′〉 − 〈θ,y〉
Structured hinge conv(Y) −〈µ, cy〉 MAP(θ + cy) maxy′ 〈cy,y′〉+ 〈θ,y′〉 − 〈θ,y〉
CRF conv(Y) min

p∈4|Y| : Ep[Y ]=µ
−Hs(p) marginals(θ) log

∑
y′ exp 〈θ,y′〉 − 〈θ,y〉

SparseMAP conv(Y) 1
2‖µ‖2 SparseMAP(θ) 1

2‖y − θ‖2 − 1
2‖ŷΩ(θ)− θ‖2

Examples of existing losses that fall into the Fenchel-Young loss family are given in Table 1.
Some of these examples will be discussed in more details in the sequel of this paper.

Properties. As the name indicates, this family of loss functions is grounded in the
Fenchel-Young inequality (Borwein and Lewis, 2010, Proposition 3.3.4)

Ω∗(θ) + Ω(µ) ≥ 〈θ,µ〉 ∀θ ∈ dom(Ω∗),µ ∈ dom(Ω). (10)

The inequality, together with well-known results regarding convex conjugates, imply the
following properties of Fenchel-Young losses.

Proposition 2 Properties of Fenchel-Young losses

1. Non-negativity. LΩ(θ;y) ≥ 0 for any θ ∈ dom(Ω∗) = Rd and y ∈ Y ⊆ dom(Ω).

2. Zero loss. If Ω is a lower semi-continuous proper convex function, then
minθ LΩ(θ;y) = 0, and LΩ(θ;y) = 0 ⇔ y ∈ ∂Ω∗(θ). If Ω is strictly convex, then
LΩ(θ;y) = 0⇔ y = ŷΩ(θ) = ∇Ω∗(θ) = argminθ∈Rd LΩ(θ;y).

3. Convexity & subgradients. LΩ is convex in θ and the residual vectors are its
subgradients: ŷΩ(θ)− y ∈ ∂LΩ(θ;y).
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y

Ω(y)

−Ω∗(θ)

LΩ(y;θ)

slope θ

ŷΩ(θ)

〈y,θ〉 − Ω∗(θ)

µ

Ω(µ)

Figure 3: Illustration of the Fenchel-Young loss LΩ(θ;y) = Ω∗(θ) + Ω(y) − 〈θ,y〉,
here with Ω(µ) = 1

2‖µ‖2 and dom(Ω) = Rd. Minimizing LΩ(θ;y) w.r.t. θ can be
seen as minimizing the duality gap, the difference between Ω(µ) and the tangent
µ 7→ 〈θ,µ〉 − Ω∗(θ), at µ = y (the ground truth). The regularized prediction
ŷΩ(θ) is the value of µ at which the tangent touches Ω(µ). When Ω is of Legendre
type, LΩ(θ;y) is equal to the Bregman divergence generated by Ω between y and
ŷΩ(θ) (cf. §3.2). However, we do not require that assumption in this paper.

4. Differentiability & smoothness. If Ω is strictly convex, then LΩ is differentiable
and ∇LΩ(θ;y) = ŷΩ(θ) − y. If Ω is strongly convex, then LΩ is smooth, i.e.,
∇LΩ(θ;y) is Lipschitz continuous.

5. Temperature scaling. For any constant t > 0, LtΩ(θ;y) = tLΩ(θ/t;y).

6. Constant invariance. For any constant c ∈ R, LΩ+c(θ;y) = LΩ(θ;y).

Remarkably, the non-negativity, convexity and constant invariance properties hold even if Ω
is not convex. The zero loss property follows from the fact that, if Ω is l.s.c. proper convex,
then (10) becomes an equality (i.e., the duality gap is zero) if and only if θ ∈ ∂Ω(µ). It
suggests that the minimization of Fenchel-Young losses attempts to adjust the model to
produce predictions ŷΩ(θ) that are close to the target y, reducing the duality gap. This is
illustrated with Ω = 1

2‖µ‖2 and dom(Ω) = Rd (leading to the squared loss) in Figure 3.

Domain of Ω∗. Our assumption that the maximum in the regularized prediction function
(5) is achieved for all θ ∈ Rd implies that dom(Ω∗) = Rd. This assumption is quite mild
and does not require dom(Ω) to be bounded. Minimizing LΩ(θ;y) w.r.t. θ is therefore an
unconstrained convex optimization problem. This contrasts with proper loss functions,
which are defined over the probability simplex, as discussed in §10.

3.2 Relation with Bregman divergences

Fenchel-Young losses seamlessly work when Y = dom(Ω) instead of Y ⊂ dom(Ω). For
example, in the case of the logistic loss, where −Ω is the Shannon entropy restricted to
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4d, allowing y ∈ 4d instead of y ∈ {ei}di=1 yields the cross-entropy loss, LΩ(θ;y) =
KL(y‖ softmax(θ)), where KL denotes the (generalized) Kullback-Leibler divergence

KL(y‖µ) :=
∑

i

yi log
yi
µi
−
∑

i

yi +
∑

i

µi.

This can be useful in a multi-label setting with supervision in the form of label proportions.

From this example, it is tempting to conjecture that a similar result holds for more general
Bregman divergences (Bregman, 1967). Recall that the Bregman divergence BΩ : dom(Ω)×
relint(dom(Ω))→ R+ generated by a strictly convex and differentiable Ω is

BΩ(y‖µ) := Ω(y)− Ω(µ)− 〈∇Ω(µ),y − µ〉. (11)

In other words, this is the difference at y between Ω and its linearization around µ. It
turns out that LΩ(θ;y) is not in general equal to BΩ(y‖ŷΩ(θ)). In fact the latter is not
necessarily convex in θ while the former always is. However, there is a duality relationship
between Fenchel-Young losses and Bregman divergences, as we now discuss.

A “mixed-space” Bregman divergence. Letting θ = ∇Ω(p) (i.e., (θ,p) is a dual pair),
we have Ω∗(θ) = 〈θ,p〉 − Ω(p). Substituting in (11), we get BΩ(y‖p) = LΩ(θ;y). In other
words, Fenchel-Young losses can be viewed as a “mixed-form Bregman divergence” (Amari,
2016, Theorem 1.1) where the argument p in (11) is replaced by its dual point θ. This
difference is best seen by comparing the function signatures, LΩ : dom(Ω∗)× dom(Ω)→ R+

vs. BΩ : dom(Ω)× relint(dom(Ω))→ R+. An important consequence is that Fenchel-Young
losses do not impose any restriction on their left argument θ: Our assumption that the
maximum in the prediction function (5) is achieved for all θ ∈ Rd implies dom(Ω∗) = Rd.
In contrast, a Bregman divergence would typically need to be composed with a mapping
from Rd to dom(Ω), such as ŷΩ, resulting in a possibly non-convex function.

Case of Legendre-type functions. We can make the relationship with Bregman di-
vergences further precise when Ω = Ψ + IC , where Ψ is restricted to the class of so-called
Legendre-type functions (Rockafellar, 1970; Wainwright and Jordan, 2008). We first recall
the definition of this class of functions and then state our results.

Definition 3 Essentially smooth and Legendre type functions

A function Ψ is essentially smooth if

• dom(Ψ) is non-empty,

• Ψ is differentiable throughout int(dom(Ψ)),

• and limi→∞∇Ψ(µi) = +∞ for any sequence {µi} contained in dom(Ψ), and
converging to a boundary point of dom(Ψ).

A function Ψ is of Legendre type if

• it is strictly convex on int(dom(Ψ))

12
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• and essentially smooth.

For instance, Ψ(µ) = 1
2‖µ‖2 is Legendre-type with dom(Ψ) = Rd, and Ψ(µ) =

∑
i µi logµi

is Legendre-type with dom(Ψ) = Rd+. However, Ω(µ) = 1
2‖µ‖2 + IRd+

(µ) is not Legendre-

type, since the gradient of Ω does not explode everywhere on the boundary of Rd+. The
Legendre-type assumption crucially implies that

∇Ψ(∇Ψ∗(θ)) = θ for all θ ∈ dom(Ψ∗).

We can use this fact to derive the following results, proved in Appendix B.2.

Proposition 3 Relation with Bregman divergences

Let Ψ be of Legendre type with dom(Ψ∗) = Rd and let C ⊆ dom(Ψ) be a convex set.
Let Ω be the restriction of Ψ to C ⊆ dom(Ψ), i.e., Ω := Ψ + IC.

1. Bregman projection. The prediction function regularized by Ω, ŷΩ(θ), reduces to
the Bregman projection of ŷΨ(θ) onto C:

ŷΩ(θ) = argmax
µ∈C

〈θ,µ〉 −Ψ(µ) = argmin
µ∈C

BΨ(µ‖ŷΨ(θ)).

2. Difference of divergences. For all θ ∈ Rd and y ∈ C:

LΩ(θ;y) = BΨ(y‖ŷΨ(θ))−BΨ(ŷΩ(θ)‖ŷΨ(θ)).

3. Bound. For all θ ∈ Rd and y ∈ C:

0 ≤ BΨ(y‖ŷΩ(θ))︸ ︷︷ ︸
possibly non-convex in θ

≤ LΩ(θ;y)︸ ︷︷ ︸
convex in θ

with equality when the loss is minimized

ŷΩ(θ) = y ⇔ LΩ(θ;y) = 0⇔ BΨ(y‖ŷΩ(θ)) = 0.

4. Composite form. When C = dom(Ψ), i.e., Ω = Ψ, we have equality for all θ ∈ Rd

LΩ(θ;y) = BΩ(y‖ŷΩ(θ)).

We illustrate these properties using Ψ = 1
2‖ · ‖2 as a running example. From the first

property, since ŷΨ(θ) = θ and BΨ(y‖µ) = 1
2‖y − µ‖2, we get

ŷΩ(θ) = argmin
µ∈C

BΨ(µ‖ŷΨ(θ)) = argmin
µ∈C

BΨ(µ‖θ) = argmin
µ∈C

‖µ− θ‖2,

recovering the Euclidean projection onto C. The reduction of regularized prediction func-
tions to Bregman projections (when Ψ is of Legendre type) is useful because there exist
efficient algorithms for computing the Bregman projection onto various convex sets (Ya-
sutake et al., 2011; Suehiro et al., 2012; Krichene et al., 2015; Lim and Wright, 2016).
Therefore, we can use these algorithms to compute ŷΩ(θ) provided that ŷΨ(θ) is available.
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From the second property, we obtain for all θ ∈ Rd and y ∈ C

LΩ(θ;y) =
1

2
‖y − θ‖2 − 1

2
‖ŷΩ(θ)− θ‖2.

This recovers the expression of the sparsemax loss given in Table 1 with C = 4d.

From the third claim, we obtain for all θ ∈ Rd and y ∈ C
1

2
‖y − ŷΩ(θ)‖2 ≤ LΩ(θ;y).

This shows that LΩ(θ;y) provides a convex upper-bound for the possibly non-convex com-
posite function BΨ(y‖ŷΩ(θ)). In particular, when C = 4d, we get 1

2‖y− sparsemax(θ)‖2 ≤
LΩ(θ;y). This suggests that the sparsemax loss is useful for sparse label proportion esti-
mation, as confirmed in our experiments (§9).

Finally, from the last property, if Ω = Ψ = 1
2‖ · ‖2, we obtain LΩ(θ;y) = 1

2‖y − θ‖2, which
is indeed the squared loss given in Table 1.

3.3 Expected loss, Bayes risk and Bregman information

In this section, we discuss the relation between the pointwise Bayes risk (minimal achievable
loss) of a Fenchel-Young loss and Bregman information (Banerjee et al., 2005).

Expected loss. Let Y be a random variable taking values in Y following the distribution
p ∈ 4|Y|. The expected loss (a.k.a. expected risk) is then

Ep[LΩ(θ;Y )] =
∑

y∈Y
p(y)LΩ(θ;y)

=
∑

y∈Y
p(y)(Ω∗(θ) + Ω(y)− 〈θ,y〉)

= Ep[Ω(Y )] + Ω∗(θ)− 〈θ,Ep[Y ]〉
= LΩ(θ; Ep[Y ]) + IΩ(Y ;p). (12)

Here, we defined the Bregman information of Y by

IΩ(Y ;p) := min
µ∈dom(Ω)

Ep[BΩ(Y ‖µ)] = Ep [BΩ(Y ‖Ep[Y ])] = Ep[Ω(Y )]− Ω(Ep[Y ]).

We refer the reader to Banerjee et al. (2005) for a detailed discussion as to why the last
two equalities hold. The r.h.s. is exactly equal to the difference between the two sides of
Jensen’s inequality E[Ω(Y )] ≥ Ω(E[Y ]) and is therefore non-negative. For this reason, it is
sometimes also called Jensen gap (Reid and Williamson, 2011).

Bayes risk. From Proposition 2, we know that minθ LΩ(θ;y) = 0 for all y ∈ dom(Ω).
Therefore, the pointwise Bayes risk coincides precisely with the Bregman information of Y ,

min
θ∈Rd

Ep[LΩ(θ;Y )] = min
θ∈Rd

LΩ(θ; Ep[Y ]) + IΩ(Y ;p) = IΩ(Y ;p), (13)
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provided that Ep[Y ] ∈ dom(Ω). A similar relation between Bayes risk and Bregman infor-
mation exists for proper losses (Reid and Williamson, 2011). We can think of (13) as a
measure of the “difficulty” of the task. Combining (12) and (13), we obtain

Ep[LΩ(θ;Y )]− min
θ∈Rd

Ep[LΩ(θ;Y )] = LΩ(θ; Ep[Y ]),

the pointwise “regret” of θ ∈ Rd w.r.t. p ∈ 4|Y|. If Y = {ei}di=1, LΩ(θ; Ep[Y ]) = LΩ(θ;p).

3.4 Cost-sensitive losses

Fenchel-Young losses also include the hinge loss of support vector machines. Indeed, from
any classification loss LΩ, we can construct a cost-sensitive version of it as follows. Define

Ψ(µ;y) := Ω(µ)− 〈cy,µ〉,

where cy ∈ R|Y|+ is a fixed cost vector that may depend on the ground truth y. For example,
cy = 1− y corresponds to the 0/1 cost and can be used to impose a margin. Then, LΨ is
a cost-sensitive version of LΩ, which can be written as

LΨ(·;y)(θ;y) = LΩ(θ + cy;y) = Ω∗(θ + cy) + Ω(y)− 〈θ + cy,y〉.

This construction recovers the multi-class hinge loss (Crammer and Singer (2001); Ω = 0),
the softmax-margin loss (Gimpel and Smith (2010); Ω = −Hs), and the cost-augmented
sparsemax (Shalev-Shwartz and Zhang (2016, Eq. (13)), Niculae et al. (2018); Ω = 1

2‖ · ‖2).
It is easy to see that the associated regularized prediction function is

ŷΨ(θ) = ŷΩ(θ + cy).

For the 0/1 cost cy = 1− y and y = ek, we have

argmax
i∈[d]

(ŷΨ(θ))i = k =⇒ argmax
i∈[d]

(ŷΩ(θ))i = k,

justifying the use of ŷΩ at prediction time.

4. Probabilistic prediction with Fenchel-Young losses

In the previous section, we presented Fenchel-Young losses in a broad setting. We now
restrict to classification over the probability simplex. More precisely, we restrict to the
case Y = {ei}di=1, (i.e., unstructured multi-class classification), and assume that dom(Ω) ⊆
conv(Y) = 4d. In this case, the regularized prediction function (5) becomes

ŷΩ(θ) ∈ argmax
p∈4d

〈θ,p〉 − Ω(p),

where θ ∈ Rd is a vector of (possibly negative) prediction scores produced by a model fW (x)
and p ∈ 4d is a discrete probability distribution. It is a generalized exponential family
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distribution (Grünwald and Dawid, 2004; Frongillo and Reid, 2014) with natural parameter
θ ∈ Rd and regularization Ω. Of particular interest is the case where ŷΩ(θ) is sparse,
meaning that there are scores θ for which the resulting ŷΩ(θ) assigns zero probability to
some classes. As seen in §2.2, this happens for example with the sparsemax transformation,
but not with the softmax. Later, in §5, we will establish conditions for the regularized
prediction function to be sparse and will connect it to the notion of separation margin.

We first discuss generalized entropies and the properties of the Fenchel-Young losses they
induce (§4.1). We then discuss their expected loss, Bayes risk and Fisher consistency (§4.2).
We then give examples of generalized entropies and corresponding loss functions, several
of them new to our knowledge (§4.3). Finally, we discuss the binary classification setting,
recovering several examples of commonly-used loss functions (§4.4).

4.1 Fenchel-Young loss generated by a generalized entropy

Generalized entropies. A natural choice of regularization function Ω over the proba-
bility simplex is Ω = −H, where H is a generalized entropy (Grünwald and Dawid, 2004),
also called uncertainty function by DeGroot (1962): a concave function over 4d, used to
measure the “uncertainty” in a distribution p ∈ 4d.

Assumptions: We will make the following assumptions about H.

A.1. Zero entropy: H(p) = 0 if p is a delta distribution, i.e., p ∈ {ei}di=1.

A.2. Strict concavity: H
(
(1− α)p+ αp′

)
> (1− α)H(p) + αH(p′), for p 6= p′, α ∈ (0, 1).

A.3. Symmetry: H(p) = H(Pp) for any P ∈ P.

Assumptions A.2 and A.3 imply that H is Schur-concave (Bauschke and Combettes, 2017),
a common requirement in generalized entropies. This in turn implies assumption A.1, up
to a constant (that constant can easily be subtracted so as to satisfy assumption A.1). As
suggested by the next result, proved in §B.3, together, these assumptions imply that H can
be used as a sensible uncertainty measure.

Proposition 4 If H satisfies assumptions A.1–A.3, then it is non-negative and uniquely
maximized by the uniform distribution p = 1/d.

That is, assumptions A.1-A.3 ensure that the uniform distribution is the maximum entropy
distribution. A particular case of generalized entropies satisfying assumptions A.1–A.3 are
uniformly separable functions of the form H(p) =

∑d
j=1 h(pj), where h : [0, 1] → R+ is a

non-negative strictly concave function such that h(0) = h(1) = 0. However, our framework
is not restricted to this form.

Induced Fenchel-Young loss. If the ground truth is y = ek and assumption A.1 holds,
the Fenchel-Young loss definition (9) becomes

L−H(θ; ek) = (−H)∗(θ)− θk. (14)
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This form was also recently proposed by Duchi et al. (2018, Proposition 3). By using the
fact that Ω∗(θ + c1) = Ω∗(θ) + c for all c ∈ R if dom(Ω) ⊆ 4d, we can further rewrite it as

L−H(θ; ek) = (−H)∗(θ − θk1). (15)

This expression shows that Fenchel-Young losses over 4d can be written solely in terms
of the generalized “cumulant function” (−H)∗. Indeed, when H is Shannon’s entropy, we
recover the cumulant (a.k.a. log-partition) function (−Hs)∗(θ) = log

∑d
i=1 exp(θi). When H

is strongly concave over 4d, we can also see (−H)∗ as a smoothed max operator (Nesterov,
2005; Niculae and Blondel, 2017; Mensch and Blondel, 2018) and hence L−H(θ; ek) can be
seen as a smoothed upper-bound of the perceptron loss (θ; ek) 7→ maxi∈[d] θi − θk.
It is well-known that minimizing the logistic loss (θ; ek) 7→ log

∑
i exp θi − θk is equivalent

to minimizing the KL divergence between ek and softmax(θ), which in turn is equivalent to
maximizing the likelihood of the ground-truth label, softmax(θ)k. Importantly, this equiv-
alence does not carry over for generalized entropies H: minimizing L−H(θ; ek) is not in
general equivalent to minimizing B−H(ek, ŷ−H(θ)) or maximizing ŷ−H(θ)k. In fact, maxi-
mizing the likelihood is generally a non-concave problem. Fenchel-Young losses can be seen
as a principled way to construct a convex loss regardless of H.

4.2 Expected loss, Bayes risk and Fisher consistency

Let Y be a random variable taking values in Y = {ei}di=1. If H satisfies assumption A.1,
we can use (14) to obtain simpler expressions of the expected loss and pointwise Bayes risk
than the ones derived in §3.3.

Expected loss. Indeed, the expected loss (risk) for all p ∈ 4d simplifies to:

Ep[L−H(θ;Y )] =
d∑

i=1

piL−H(θ; ei) =
d∑

i=1

pi((−H)∗(θ)− θj) = (−H)∗(θ)− 〈p,θ〉. (16)

Bayes risk and entropy. The pointwise (conditional) Bayes risk thus becomes

min
θ∈Rd

Ep[L−H(θ;Y )] = min
θ∈Rd

(−H)∗(θ)− 〈p,θ〉 = H(p). (17)

Therefore, the pointwise Bayes risk is equal to the generalized entropy H generating L−H,
evaluated at p. This is consistent with (13), which states that the pointwise Bayes risk is
equal to the Bregman information of Y under p, because

I−H(Y ;p) = −IH(Y ;p) = H(Ep[Y ])− Ep[H(Y )] = H(p),

where we used Ep[Y ] = p and assumption A.1.

A similar relation between generalized entropies and pointwise (conditional) Bayes risk is
well-known in the proper loss (scoring rule) literature (Grünwald and Dawid, 2004; Gneiting
and Raftery, 2007; Reid and Williamson, 2010; Williamson et al., 2016). The main difference
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is that the minimization above is over Rd, while it is over 4d in that literature (§10.1). As
noted by Reid and Williamson (2011, §4.6), Bregman information can also be connected
the notion of statistical information developed by DeGroot (1962), the reduction between
prior and posterior uncertainty H, of which mutual information is a special case.

Fisher consistency. From (16), Ep[L−H(θ;Y )] = L−H(θ;p) + Ω(p). Combined with
Proposition 2, we have that the pointwise Bayes risk (17) is achieved if and only if ŷ−H(θ) =
p. Such losses are Fisher consistent estimators of probabilities (Williamson et al., 2016).

4.3 Examples

We now give examples of generalized entropies over the simplex 4d (we omit the indicator
function I4d from the definitions since there is no ambiguity). We illustrate them together
with the regularized prediction function and loss they produce in Figure 4. Several of the
resulting loss functions are new to our knowledge.

Shannon entropy (Shannon and Weaver, 1949). This is the foundation of informa-
tion theory, defined as

Hs(p) := −
d∑

j=1

pj log pj .

As seen in Table 1, the resulting Fenchel-Young loss L−Hs corresponds to the logistic loss.
The associated distribution is the classical softmax, Eq. (6).

Tsallis α-entropies (Tsallis, 1988). These entropies are defined as

Ht
α(p) := k(α− 1)−1


1−

d∑

j=1

pαj


 ,

where α ≥ 0 and k is an arbitrary positive constant. They arise as a generalization of
the Shannon-Khinchin axioms to non-extensive systems (Suyari, 2004) and have numerous
scientific applications (Gell-Mann and Tsallis, 2004; Martins et al., 2009a). For convenience,
we set k = α−1 for the rest of this paper. Tsallis entropies satisfy assumptions A.1–A.3 and
can also be written in separable form:

Ht
α(p) :=

d∑

j=1

hα(pj) with hα(t) :=
t− tα
α(α− 1)

. (18)

The limit case α → 1 corresponds to the Shannon entropy. When α = 2, we recover the
Gini index (Gini, 1912), a popular “impurity measure” for decision trees:

Ht
2(p) =

1

2

d∑

j=1

pj(1− pj) =
1

2
(1− ‖p‖22) ∀p ∈ 4d. (19)
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Using the constant invariance property in Proposition 2, it can be checked that L−Ht
2

re-
covers the sparsemax loss (Martins and Astudillo, 2016) (cf. Table 1).

Another interesting case is α→ +∞, which gives Ht
∞(p) = 0, hence L−Ht

∞ is the perceptron
loss in Table 1. The resulting “argmax” distribution puts all probability mass on the top-
scoring classes. In summary, the prediction functions for α = 1, 2,∞ are respectively
softmax, sparsemax, and argmax. Tsallis entropies can therefore be seen as a continuous
parametric family subsuming these important cases.

Norm entropies. An interesting class of non-separable entropies are entropies generated
by a q-norm, defined as

Hn
q (p) := 1− ‖p‖q. (20)

We call them norm entropies. By the Minkowski inequality, q-norms with q > 1 are
strictly convex on the simplex, so Hn

q satisfies assumptions A.1–A.3 for q > 1. The resulting
norm entropies differ from Tsallis entropies in that the norm is not raised to the power of q:
a subtle but important difference. The limit case q →∞ is particularly interesting: in this
case, we obtain Hn

∞ = 1 − ‖ · ‖∞, recovering the Berger-Parker dominance index (Berger
and Parker, 1970), widely used in ecology to measure species diversity. We surprisingly
encounter Hn

∞ again in Section 5, as a limit case for the existence of separation margins.

Squared norm entropies. Inspired by Niculae and Blondel (2017), as a simple extension
of the Gini index (19), we consider the generalized entropy based on squared q-norms:

Hsq
q (p) :=

1

2
(1− ‖p‖2q) =

1

2
− 1

2




d∑

j=1

pqj




2
q

.

The constant term 1
2 , omitted by Niculae and Blondel (2017), ensures satisfaction of A.1.

For q ∈ (1, 2], it is known that the squared q-norm is strongly convex w.r.t. ‖·‖q (Ball et al.,
1994), implying that (−Hsq

q )∗, and therefore L−Hsq
q

, is smooth. Although ŷ−Hsq
q

(θ) cannot
to our knowledge be solved in closed form for q ∈ (1, 2), efficient iterative algorithms such
as projected gradient are available.

Rényi β-entropies. Rényi entropies (Rényi, 1961) are defined for any β ≥ 0 as:

Hr
β(p) :=

1

1− β log

d∑

j=1

pβj .

Unlike Shannon and Tsallis entropies, Rényi entropies are not separable, with the exception
of β → 1, which also recovers Shannon entropy as a limit case. The case β → +∞ gives
Hr
β(p) = − log ‖p‖∞. For β ∈ [0, 1], Rényi entropies satisfy assumptions A.1–A.3; for β > 1,

Rényi entropies fail to be concave. They are however pseudo-concave (Mangasarian, 1965),
meaning that, for all p, q ∈ 4d, 〈∇Hr

β(p), q − p〉 ≤ 0 implies Hr
β(q) ≤ Hr

β(p). This implies,

among other things, that points p ∈ 4d with zero gradient are maximizers of 〈p,θ〉+Hr
β(p),

which allows us to compute the predictive distribution ŷ−Hr
β

with gradient-based methods.
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Figure 4: Examples of generalized entropies (left) along with their prediction distri-
bution (middle) and Fenchel-Young losses (right) for the binary case, where
p = [t, 1 − t] ∈ 42 and θ = [s, 0] ∈ R2. Except for softmax, which never exactly
reaches 0, all distributions shown on the center can have sparse support.
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4.4 Binary classification case

When d = 2, the convex conjugate expression simplifies and reduces to a univariate maxi-
mization problem over [0, 1]:

Ω∗(θ) = max
p∈42

〈θ,p〉 − Ω(p) = max
p∈[0,1]

θ1p+ θ2(1− p)− Ω([p, 1− p]) = φ∗(θ1 − θ2) + θ2,

where we defined φ(p) := Ω([p, 1 − p]). Likewise, it is easy to verify that we also have
Ω∗(θ) = φ∗(θ2 − θ1) + θ1. Let us choose θ = [s,−s] ∈ R2 for some s ∈ R. Since the ground
truth is y ∈ {e1, e2}, where e1 and e2 represent positive and negative classes, from (15),
we can write

LΩ(θ; ej) = Ω∗(θ − θj1) =

{
Ω∗([0,−s]) = φ∗(−s) if j = 1

Ω∗([s, 0]) = φ∗(s) if j = 2
.

This can be written concisely as φ∗(−ys) where y ∈ {+1,−1}. Losses that can be written in
this form are sometimes called margin losses (Reid and Williamson, 2010). These are losses
that treat the positive and negative classes symmetrically. We have thus made a connection
between margin losses and the regularization function φ(p) := Ω([p, 1− p]). Note, however,
that this is different from the notion of margin we develop in §5.

Examples. Choosing φ(p) = −Hs([p, 1− p]) leads to the binary logistic loss

φ∗(−ys) = log(1 + exp(−ys)).

Choosing φ(p) = −Ht
2([p, 1− p]) = p2 − p leads to

φ∗(u) =





0 if u ≤ −1

u if u ≥ 1
1
4(u+ 1)2 o.w.

.

The resulting loss, φ(−ys), is known as the modified Huber loss in the literature (Zhang,
2004). Hence, the sparsemax loss is the multiclass extension of the modified Huber loss, as
as already noted in (Martins and Astudillo, 2016).

Finally, we note that the modified Huber loss is closely related to the smoothed hinge loss
(Shalev-Shwartz and Zhang, 2016). Indeed, choosing φ(p) = 1

2p
2 − p (notice the 1

2 factor),
we obtain

φ∗(u) =





0 if u ≤ −1

u+ 1
2 if u ≥ 0

1
2(1 + u)2 o.w.

.

It can be verified that φ∗(−ys) is indeed the smoothed hinge loss.
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5. Separation margin of Fenchel-Young losses

In this section, we are going to see that the simple assumptions A.1–A.3 about a generalized
entropy H are enough to obtain results about the separation margin associated with L−H.
The notion of margin is well-known in machine learning, lying at the heart of support vector
machines and leading to generalization error bounds (Vapnik, 1998; Schölkopf and Smola,
2002; Guermeur, 2007). We provide a definition and will see that many other Fenchel-Young
losses also have a “margin,” for suitable conditions on H. Then, we take a step further, and
connect the existence of a margin with the sparsity of the regularized prediction function,
providing necessary and sufficient conditions for Fenchel-Young losses to have a margin.
Finally, we show how this margin can be computed analytically.

Definition 4 Separation margin

Let L(θ; ek) be a loss function over Rd × {ei}di=1. We say that L has the separation
margin property if there exists m > 0 such that:

θk ≥ m+ max
j 6=k

θj ⇒ L(θ; ek) = 0. (21)

The smallest possible m that satisfies (21) is called the margin of L, denoted margin(L).

Examples. The most famous example of a loss with a separation margin is the multi-
class hinge loss, L(θ; ek) = max{0,maxj 6=k 1 + θj − θk}, which we saw in Table 1 to be a
Fenchel-Young loss: it is immediate from the definition that its margin is 1. Less trivially,
Martins and Astudillo (2016, Prop. 3.5) showed that the sparsemax loss also has the
separation margin property. On the negative side, the logistic loss does not have a margin,
as it is strictly positive. Characterizing which Fenchel-Young losses have a margin is an
important question which we address next.

Conditions for existence of margin. To accomplish our goal, we need to characterize
the gradient mappings ∂(−H) and ∇(−H)∗ associated with generalized entropies (note that
∂(−H) is never single-valued: if θ is in ∂(−H)(p), then so is θ+ c1, for any constant c ∈ R).
Of particular importance is the subdifferential set ∂(−H)(ek). The next proposition, whose
proof we defer to §B.4, uses this set to provide a necessary and sufficient condition for the
existence of a separation margin, along with a formula for computing it.

Proposition 5 Let H satisfy A.1–A.3. Then:

1. The loss L−H has a separation margin iff there is a m > 0 such that mek ∈
∂(−H)(ek).

2. If the above holds, then the margin of L−H is given by the smallest such m or,
equivalently,

margin(L−H) = sup
p∈4d

H(p)

1− ‖p‖∞
. (22)
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Reassuringly, the first part confirms that the logistic loss does not have a margin, since
∂(−Hs)(ek) = ∅. A second interesting fact is that the denominator of (22) is the generalized
entropy Hn

∞(p) introduced in §4: the∞-norm entropy. As Figure 4 suggests, this entropy
provides an upper bound for convex losses with unit margin. This provides some intuition
to the formula (22), which seeks a distribution p maximizing the entropy ratio between
H(p) and Hn

∞(p).

Relationship between sparsity and margins. The next result, proved in §B.5, char-
acterizes more precisely the image of ∇(−H)∗. In doing so, it establishes a key result in this
paper: a sufficient condition for the existence of a separation margin in L−H is
the sparsity of the regularized prediction function ŷ−H ≡ ∇(−H)∗, i.e., its ability to
reach the entire simplex, including the boundary points. If H is uniformly separable, this is
also a necessary condition.

Proposition 6 Relationship between margin losses and sparse predictive probabilities

Let H satisfy A.1–A.3 and be uniformly separable, i.e., H(p) =
∑d

i=1 h(pi). Then the
following statements are all equivalent:

1. ∂(−H)(p) 6= ∅ for any p ∈ 4d;

2. The mapping ∇(−H)∗ covers the full simplex, i.e., ∇(−H)∗(Rd) = 4d;

3. L−H has the separation margin property.

For a general H (not necessarily separable) satisfying A.1–A.3, we have (1) ⇔ (2) ⇒
(3).

Let us reflect for a moment on the three conditions stated in Proposition 6. The first two
conditions involve the subdifferential and gradient of −H and its conjugate; the third con-
dition is the margin property of L−H. To provide some intuition, consider the case where H
is separable with H(p) =

∑
i h(pi) and h is differentiable in (0, 1). Then, from the concavity

of h, its derivative h′ is decreasing, hence the first condition is met if limt=0+ h′(t) < ∞
and limt=1− h

′(t) > −∞. This is the case with Tsallis entropies for α > 1, but not Shan-
non entropy, since h′(t) = −1 − log t explodes at 0. As stated in Definition 3, functions
whose gradient “explodes” in the boundary of their domain (hence failing to meet the first
condition in Proposition 6) are called “essentially smooth” (Rockafellar, 1970). For those
functions, ∇(−H)∗ maps only to the relative interior of4d, never attaining boundary points
(Wainwright and Jordan, 2008); this is expressed in the second condition. This prevents
essentially smooth functions from generating a sparse y−H ≡ ∇(−H)∗ or (if they are sepa-
rable) a loss L−H with a margin, as asserted by the third condition. Since Legendre-type
functions (Definition 3) are strictly convex and essentially smooth, by Proposition 3, loss
functions for which the composite form L−H(θ;y) = B−H(y‖ŷ−H(θ)) holds, which is the
case of the logistic loss but not of the sparsemax loss, do not enjoy a margin and cannot
induce a sparse probability distribution. This is geometrically visible in Figure 4.

Margin computation. For Fenchel-Young losses that have the separation margin prop-
erty, Proposition 5 provided a formula for determining the margin. While informative,
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formula (22) is not very practical, as it involves a generally non-convex optimization prob-
lem. The next proposition, proved in §B.6, takes a step further and provides a remarkably
simple closed-form expression for generalized entropies that are twice-differentiable. To
simplify notation, we denote by ∇jH(p) ≡ (∇H(p))j the jth component of ∇H(p).

Proposition 7 Assume H satisfies the conditions in Proposition 6 and is twice-differ-
entiable on the simplex. Then, for arbitrary j 6= k:

margin(L−H) = ∇jH(ek)−∇kH(ek). (23)

In particular, if H is separable, i.e., H(p) =
∑|Y|

i=1 h(pi), where h : [0, 1] → R+ is
concave, twice differentiable, with h(0) = h(1) = 0, then

margin(L−H) = h′(0)− h′(1) = −
∫ 1

0
h′′(t)dt. (24)

The compact formula (23) provides a geometric characterization of separable entropies and
their margins: (24) tells us that only the slopes of h at the two extremities of [0, 1] are
relevant in determining the margin.

Example: case of Tsallis and norm entropies. As seen in §4, Tsallis entropies are
separable with h(t) = (t− tα)/(α(α− 1)). For α > 1, h′(t) = (1−αtα−1)/(α(α− 1)), hence
h′(0) = 1/(α(α− 1)) and h′(1) = −1/α. Proposition 7 then yields

margin(L−Ht
α
) = h′(0)− h′(1) = (α− 1)−1.

Norm entropies, while not separable, have gradient∇Hn
q (p) = −(p/‖p‖q)q−1, giving∇Hn

q (ek) =
−ek, so

margin(Hn
q ) = ∇jHn

q (ek)−∇kHn
q (ek) = 1,

as confirmed visually in Figure 4, in the binary case.

6. Positive measure prediction with Fenchel-Young losses

In this section, we again restrict to classification and Y = {ei}di=1 but now assume that
dom(Ω) ⊆ cone(Y) = Rd+, where cone(Y) is the conic hull of Y. In this case, the regularized
prediction function (5) becomes

ŷΩ(θ) ∈ argmax
m∈Rd+

〈θ,m〉 − Ω(m),

where θ ∈ Rd is again a vector of prediction scores and m ∈ Rd+ can be interpreted as a
discrete positive measure (unnormalized probability distribution).

We first demonstrate how Fenchel-Young losses over positive measures allow to recover
one-vs-all reductions (§6.1), theoretically justifying this popular scheme. We then give
examples of loss instantiations (§6.2).
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6.1 Uniformly separable regularizers and one-vs-all loss functions

A particularly simple case is that of uniformly separable Ω, i.e., Ω(m) =
∑d

j=1 φ(mj) +
IRd+

(m), for some φ : R+ → R. In that case the regularized prediction function can be

computed in a coordinate-wise fashion:

(ŷΩ(θ))j = argmax
m∈R+

mθj − φ(m).

As we shall later see, this simplified optimization problem often enjoys a closed-form solu-
tion. Intuitively, (ŷΩ(θ))j can be interpreted as the “unnormalized probability” of class j.
Likewise, the corresponding Fenchel-Young loss is separable over classes:

LΩ(θ;y) = Ω∗(θ) + Ω(y)− 〈θ,y〉 =

d∑

j=1

φ∗(θj) + φ(yj)− θjyj =

d∑

j=1

Lφ(θj ; yj),

where yj ∈ {1, 0} indicates membership to class j. The separability allows to train the
model producing each θj in an embarrassingly parallel fashion.

Let us now consider the case φ(p) = −H([p, 1 − p]), where H is a generalized entropy and
φ is restricted to [0, 1]. From §4.4, we know that φ∗(s) = φ∗(−s) + s for all s ∈ R. If H
further satisfies assumption A.1, meaning that φ(1) = φ(0) = 0, then we obtain

Lφ(s; 1) = φ∗(s) + φ(1)− s = φ∗(−s) and Lφ(s; 0) = φ∗(s) + φ(0) = φ∗(s).

Combining the two, we obtain

LΩ(θ;y) =
d∑

j=1

φ∗(−(2yi − 1)θi),

where we used that (2yi − 1) ∈ {+1,−1}. Fenchel-Young losses thus recover classical
one-vs-all loss functions. Since Fenchel-Young losses satisfy LΩ(θ;y) = 0 ⇔ ŷΩ(θ) = y,
our framework provides a theoretical justification for one-vs-all, a scheme that works well
in practice (Rifkin and Klautau, 2004). Further, our framework justifies using ŷΩ(θ) as
a measure of class membership, as commonly implemented (with post-normalization) in
software packages (Pedregosa et al., 2011; Buitinck et al., 2013).

Finally, we point out that in the binary case, choosing θ = [s,−s], we have the relationship

LΩ(θ; e1) = 2φ∗(−s) and LΩ(θ; e2) = 2φ∗(s).

Thus, we recover the same loss as in §4.4, up to a constant 2 factor (i.e., learning over the
simplex 4d or over the unit cube [0, 1]d is equivalent for binary classification).

6.2 Examples

Recall that Ω(m) =
∑d

j=1 φ(mj) + IRd+
(m). Choosing φ(p) = 1

2p
2 gives

ŷΩ(θ) = [θ]+ and LΩ(θ;y) =

d∑

i=1

1

2
[θi]

2
+ +

1

2
y2
i − θiyi.
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Choosing φ(p) = −Hs([p, 1− p]) + I[0,1](p) leads to

ŷΩ(θ) = sigmoid(θ) :=
1

1 + exp(−θ)
, and LΩ(θ;y) =

d∑

i=1

log(1 + exp(−(2yi − 1)θi))

the classical sigmoid function and the one-vs-all logistic function. Note that −Ω(p) =∑
j H

s([pj , 1− pj ]) = −∑j pj log pj + (1− pj) log(1− pj) is sometimes known as the Fermi-
Dirac entropy (Borwein and Lewis, 2010, Commentary of Section 3.3).

Choosing φ(p) = −Ht
2([p, 1− p]) + I[0,1](p) = p2 − p+ I[0,1](p) leads to

(ŷΩ(θ))j = (φ∗)′(sj) =





0 if u ≤ −1

1 if u ≥ 1
1
2(u+ 1) o.w.

∀j ∈ [d].

We can think of this function as a “sparse sigmoid”.

7. Structured prediction with Fenchel-Young losses

In this section, we now turn to prediction over the convex hull of a set Y of structured objects
(sequences, trees, assignments, etc.), represented as d-dimensional vectors, i.e. Y ⊆ Rd. In
this case, the regularized prediction function (5) becomes

ŷΩ(θ) = argmax
µ∈conv(Y)

〈µ,θ〉 − Ω(µ).

Typically, |Y| will be exponential in d, i.e., d� |Y|. Because ŷΩ(θ) =
∑
y∈Y p(y)y = Ep[Y ]

for some p ∈ 4|Y|, ŷΩ(θ) can be interpreted as the expectation under some (not necessarily
unique) underlying distribution.

We first discuss the concepts of probability distribution regularization (§7.1) and mean regu-
larization (§7.2), and the implications in terms of computational tractability and identifiabil-
ity (note that in the unstructured setting, probability distribution and mean regularizations
coincide). We then give several examples of polytopes and show how a Fenchel-Young loss
can seamlessly be constructed over them given access to regularized prediction functions
(§7.3). Finally, we extend the notion of separation margin to the structured setting (§7.4).

7.1 Distribution regularization, marginal inference and structured sparsemax

In this section, we discuss the concept of probability distribution regularization. Our
treatment follows closely the variational formulations of exponential families (Barndorff-
Nielsen, 1978; Wainwright and Jordan, 2008) and generalized exponential families (Grünwald
and Dawid, 2004; Frongillo and Reid, 2014) but adopts the novel viewpoint of regularized
prediction functions. We discuss two instances of that framework: the structured counter-
part of the softmax, marginal inference, and a new structured counterpart of the sparsemax,
structured sparsemax.

26



Learning with Fenchel-Young Losses

Let us start with a probability-space regularized prediction function

ŷ−H(sθ) = argmax
p∈4|Y|

〈p, sθ〉+ H(p),

where H is a generalized entropy and sθ := (〈θ,y〉)y∈Y ∈ R|Y| is a vector that contains the
scores of all possible structures. The above optimization problem is defined over a space
of size |Y| and is thus intractable in the general case. The regularized prediction function
outputs a probability distribution over structures and from Danskin’s theorem, we have

ŷ−H(sθ) = ∇sθ(−H)∗(sθ) = p?.

Using the chain rule, differentiating w.r.t. θ instead of sθ gives

∇θ(−H)∗(sθ) = Ep? [Y ] ∈ conv(Y).

Therefore, the gradient w.r.t. θ corresponds to the mean under p?. This can be equivalently
expressed under our framework by defining a regularization function directly in mean space.
Let us define the regularization function Ω over conv(Y) as

−Ω(µ) := max
p∈4|Y|

H(p) s.t. Ep[Y ] = µ. (25)

That is, among all distributions satisfying the first-moment matching condition Ep[Y ] = µ,
we seek the distribution p? with maximum (generalized) entropy. This allows to make the
underlying distribution unique and identifiable. With this choice of Ω, simple calculations
show that the corresponding regularized prediction function is precisely the mean under
that distribution:

ŷΩ(θ) = ∇∗Ω(θ) = Ep? [Y ] ∈ conv(Y).

Similar results hold for higher order moments: If Ω∗ is twice-differentiable, the Hessian
corresponds to the second moment under p?:

covp? [Y ] = ∇2Ω∗(θ).

The relation between these various maps is summarized in Figure 5.

Marginal inference. A particular case of (25) is

−Ω(µ) = max
p∈4|Y|

Hs(p) s.t. Ep[Y ] = µ, (26)

where Hs is the Shannon entropy. The distribution achieving maximum Shannon entropy,
which is unique, is the Gibbs distribution p(y;θ) ∝ exp(〈θ,y〉).
As shown in Table 1, the resulting loss LΩ is the CRF loss (Lafferty et al., 2001) and the
resulting regularized prediction function ŷΩ is known as marginal inference in the literature
(Wainwright and Jordan, 2008):

ŷΩ(θ) = marginals(θ) :=
∑

y∈Y
exp(〈θ,y〉)y

/
Z(θ),

where Z(θ) :=
∑
y∈Y exp(〈θ,y〉) is the partition function (normalization constant) of the

Gibbs distribution. Although marginal inference is intractable in general, we will see in
§7.3 that it can be computed exactly and efficiently for specific polytopes. The conjugate
of Ω(µ), Ω∗(θ), corresponds to the log partition function: Ω∗(θ) = logZ(θ).
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θ ∈ Rd µ ∈ conv(Y)
∇Ω

ŷΩ ≡ ∇Ω∗

s ∈ R|Y|

s·

p ∈ 4|Y|

∇(−H)

ŷ−H ≡ ∇(−H)∗

E·[Y ]

Figure 5: Summary of maps between spaces. We define Ω over conv(Y) using a gener-
alized maximum entropy principle: −Ω(µ) := maxp∈4|Y| H(p) s.t. Ep[Y ] = µ (cf.

§7.1). We also define sθ := (〈θ,y〉)y∈Y ∈ R|Y|, the vector that contains the scores
of all possible structures, a linear map from Rd to R|Y|. Note that the diagram is
not necessarily commutative.

Structured sparsemax. From the above perspective, it is tempting to define a sparse-
max counterpart of the CRF loss and of marginal inference by replacing Shannon’s entropy
Hs with the Gini index Ht

2 (see (19) for a definition) in (26):

−Ω(µ) = max
p∈4|Y|

Ht
2(p) s.t. Ep[Y ] = µ.

This is equivalent to seeking a distribution p? with minimum squared norm

Ω(µ) +
1

2
= min
p∈4|Y|

1

2
‖p‖2 s.t. Ep[Y ] = µ.

The corresponding ŷΩ(θ) is then ŷΩ(θ) = Ep? [Y ]. Recalling that p? = ŷ−Ht
2
(sθ), a naive

approach would be to first compute the score vector sθ = (〈θ,y〉)y∈Y ∈ R|Y| and then to
project that vector on the simplex to obtain p?. Unfortunately, sθ could be exponentially
large and p? could be arbitrarily dense in the worst case, making that approach intractable
in general. As also noted by Pillutla et al. (2018), we can approximate the problem by
further imposing an upper-bound on the sparsity of the distribution, ‖p‖0 ≤ k. Since the
optimal k-sparse distribution solely depends on the top-k elements of sθ (Kyrillidis et al.,
2013), we can first use a k-best oracle to retrieve the top-k elements of sθ and project them
onto the simplex. A disadvantage of that approach is that k-best oracles are usually more
complex than MAP oracles and k could be arbitrarily large in order to guarantee an exact
solution to the original problem. For shortest path problems over a directed acyclic graph,
an alternative approximation is to smooth the maximum operator directly in the dynamic
programming recursion (Mensch and Blondel, 2018).

7.2 Mean regularization and SparseMAP

Marginal inference is computationally tractable only for certain polytopes and structured
sparsemax requires approximations, even for polytopes for which exact marginal inference
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is available. In this section, we discuss an alternative approach which only requires ac-
cess to a MAP oracle, broadening the set of applicable polytopes. The key idea is mean
regularization: We directly regularize the mean µ rather than the distribution p.

The mean regularization counterpart of marginal inference is

ŷ−Hs(θ) = argmax
µ∈conv(Y)

〈θ,µ〉+ Hs(µ) = argmin
µ∈conv(Y)

KL(µ‖eθ−1).

It has been used for specific convex polytopes, most importantly in the optimal transport
literature (Cuturi, 2013; Peyré and Cuturi, 2017) but also for learning to predict permuta-
tion matrices (Helmbold and Warmuth, 2009) or permutations (Yasutake et al., 2011; Ailon
et al., 2016). The mean regularization counterpart of sparsemax is known as SparseMAP
(Niculae et al., 2018):

ŷΩ(θ) = SparseMAP(θ) := argmax
µ∈conv(Y)

〈θ,µ〉 − 1

2
‖µ‖2 = argmin

µ∈conv(Y)
‖µ− θ‖2.

The main advantage of mean regularization is computational. Indeed, computing ŷΩ(θ)
now simply involves a d-dimensional optimization problem instead of a |Y|-dimensional one
and can be cast as a Bregman projection onto conv(Y)(§3.2). For specific polytopes, that
projection can often be computed directly (§7.3). More generally, it can always be computed
to arbitrary precision given access to a MAP oracle

argmax
y∈conv(Y)

〈θ,y〉 = argmax
y∈Y

〈θ,y〉 =: MAP(θ),

thanks to conditional gradient algorithms (§8.3). Since MAP inference is a cornerstone of
structured prediction, efficient algorithms have been developed for many kinds of structures
(§7.3). In addition, as conditional gradient algorithms maintain a convex combination of
vertices, they can also return a (not necessarily unique) distribution p ∈ 4|Y| such that
ŷΩ(θ) = Ep[Y ]. From Carathéodory’s theorem, the support of p contains at most d� |Y|
elements. This ensures that ŷΩ(θ) can be written as a “small” number of elementary
structures. The price to pay for this computational tractability is that the underlying
distribution p is not necessarily unique.

7.3 Examples

Deriving loss functions for structured outputs can be challenging. In this section, we give
several examples of polytopes conv(Y) for which efficient computational oracles (MAP,
marginal inference, projection) are available, thus allowing to obtain a Fenchel-Young loss
for learning over these polytopes. A summary is given in Table 7.3.

Sequences. We wish to tag a sequence (x1, . . . ,xn) of vectors in Rp (e.g., word represen-
tations) with the most likely output sequence (e.g., entity tags) s = (s1, . . . , sn) ∈ [m]n. It
is convenient to represent each sequence s as a n×m×m binary tensor y ∈ Y, such that
yt,i,j = 1 if y transitions from node j to node i on time t, and 0 otherwise. The potentials θ
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Table 2: Examples of convex polytopes and computational cost of the three main
computational oracles: MAP, marginal inference and projection (in the Eu-
clidean distance sense or more generally in the Bregman divergence sense). For
polytopes for which direct marginal inference or projection algorithms are not
available, we can always use conditional gradient algorithms to compute an opti-
mal solution to arbitrary precision — see §8.3.

Polytope Vertices Dim. MAP Marginal Projection

Probability simplex Basis vectors d O(d) O(d) O(d)
Sequences nm2 O(nm2) O(nm2) N/A

Arborescence Spanning trees n(n− 1) O(n2) O(n3) N/A
Alignments nm O(nm) O(nm) N/A

Permutahedron Permutations d O(d log d) N/A O(d log d)
Birkhoff Permutation matrices n2 O(n3) #P-complete O(n2/ε)

can similarly be organized as a n×m×m real tensor, such that θt,i,j = φt(xt, i, j), where φt
is a potential function. Using the above binary tensor representation, the Frobenius inner
product 〈θ,y〉 is equal to

∑n
t=1 φt(xt, st, st−1), the cumulated score of s.

MAP inference, argmaxy∈Y 〈y,θ〉, seeks the highest-scoring sequence and can be computed
using Viterbi’s algorithm (Viterbi, 1967) in O(nm2) time. Marginal inference can be com-
puted in the same cost using the forward-backward algorithm (Baum and Petrie, 1966) or
equivalently using backpropagation (Eisner, 2016; Mensch and Blondel, 2018).

When Ω is defined over conv(Y) as in (26), the Fenchel-Young loss corresponds to a linear-
chain conditional random field loss (Lafferty et al., 2001). In recent years, this loss has
been used to train various end-to-end natural language pipelines based on neural networks
(Collobert et al., 2011; Lample et al., 2016).

Alignments. Let A ∈ Rm×p and B ∈ Rn×p be two time-series of lengths m and n,
respectively. We denote by ai ∈ Rp and bj ∈ Rp their ith and jth observations. Our goal
is to find an alignment between A and B, matching their observations. We define θ as a
m× n matrix, such that θi,j is the similarity between observations ai and bj . Likewise, we
represent an alignment y as a m× n binary matrix, such that yi,j = 1 if ai is aligned with
bj , and 0 otherwise. We write Y the set of all monotonic alignment matrices, such that the
path that connects the upper-left (1, 1) matrix entry to the lower-right (m,n) one uses only
↓,→,↘ moves.

In this setting, MAP inference, argmaxy∈Y 〈y,θ〉, corresponds to seeking the maximal sim-
ilarity (or equivalently, minimal cost) alignment between the two time-series. It can be
computed in O(mn) time using dynamic time warping, DTW (Sakoe and Chiba, 1978).
Marginal inference can be computed in the same cost by backpropagation, if we replace
the hard minimum with a soft one in the DTW recursion. This algorithm is known as
soft-DTW (Cuturi and Blondel, 2017; Mensch and Blondel, 2018).
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Structured SVMs were combined with DTW to learn to predict music-to-score alignments
(Garreau et al., 2014). Our framework easily enables extensions of this work, such as
replacing DTW with soft-DTW, which amounts to introducing entropic regularization w.r.t.
the probability distribution over alignments.

Spanning trees. When Y is the set of possible directed spanning trees (arborescences)
of a complete graph G with n vertices, the convex hull conv(Y) ⊂ Rn(n−1) is known as the
arborescence polytope (Martins et al., 2009b) (each y ∈ Y is a binary vector which indicates
which arcs belong to the arborescence). MAP inference may be performed by maximal ar-
borescence algorithms (Chu and Liu, 1965; Edmonds, 1967) in O(n2) time (Tarjan, 1977),
and the Matrix-Tree theorem (Kirchhoff, 1847) provides an O(n3) marginal inference algo-
rithm (Koo et al., 2007; Smith and Smith, 2007). Spanning tree structures are often used
in natural language processing for (non-projective) dependency parsing, with graph edges
corresponding to dependencies between the words in a sentence. (McDonald et al., 2005;
Kiperwasser and Goldberg, 2016).

Permutations. We view ranking as a structured prediction problem. Let Y be the set
of d-permutations of a prescribed vector w ∈ Rd, i.e., Y = {[wπ1 , . . . , wπd ] ∈ Rd : π ∈ Π},
where Π denotes the permutations of (1, . . . , d). We assume without loss of generality that
w is sorted in descending order, i.e., w1 ≥ · · · ≥ wd. MAP inference seeks the permutation
of w whose inner product with θ is maximized:

max
y∈Y
〈θ,y〉 = max

y∈Y

d∑

i=1

θiyi = max
π∈Π

d∑

i=1

θiwπi = max
π∈Π

d∑

i=1

θπiwi.

Since w is assumed sorted, an optimal solution π? of the last optimization problem is a
permutation sorting θ in descending order. The function θ 7→∑d

i=1 θπ?i wi is called ordered
weighted averaging (OWA) operator (Yager, 1988) and includes the mean and max operator
as special cases. MAP inference over Y can be seen as the variational formulation of the
OWA operator. An optimal solution y? is simply w sorted using the inverse permutation
of π?. The overall computational cost is therefore O(d log d), for sorting θ.

The convex hull of Y, conv(Y), is known as the permutahedron when w = [d, . . . , 1]. For
arbitrary w, we follow Lim and Wright (2016) and call conv(Y) the permutahedron induced
by w. Its vertices correspond to permutations of w.

We can define mean-regularized ranking prediction functions ŷΩ(θ) if we choose w such
that each wi represents the “preference” of being in position i. Intuitively, the score vector
θ ∈ Rd should be such that each θi is the score of instance i (e.g., a document or a label).
We give several examples below.

• Choosing w = [1, 0, . . . , 0], conv(Y) is equal to 4d, the probability simplex. We thus
recover probabilistic classification as a natural special case.

• Choosing w = 1
k [1, . . . , 1︸ ︷︷ ︸

k times

, 0, . . . , 0], conv(Y) is equal to {p ∈ 4d : ‖p‖∞ ≤ 1
k}, sometimes

referred to as the capped probability simplex (Warmuth and Kuzmin, 2008; Lim and
Wright, 2016). This setting corresponds to predicting k-subsets.
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[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Figure 6: Examples of instances of permutahedron induced by w. Round circles
indicate vertices of the permutahedron, permutations ofw. Choosingw = [1, 0, 0]
recovers the probability simplex (red) while choosing w = [1

2 ,
1
2 , 0] recovers the

capped probability simplex (blue). The other two instances are obtained by
w = [2

3 ,
1
3 , 0] (gray) and w = [1

2 ,
1
3 ,

1
6 ] (green). Euclidean projection onto these

polytopes can be cast as isotonic regression. More generally, Bregman projection
reduces to isotonic optimization.

• Choosing w = 2
d(d+1) [d, d− 1, . . . , 1] corresponds to predicting full rankings.

• Choosing w = 2
k(k+1) [k, k−1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

d−k−1 times

] corresponds to predicting partial rankings.

The corresponding polytopes are illustrated in Figure 6. In all the examples above, w ∈ 4d,
implying conv(Y) ⊆ 4d. Therefore, ŷΩ(θ) outputs a probability distribution.

As discussed in §3.2, computing the regularized prediction function ŷΩ(θ) is equivalent to a
Bregman projection when Ω = Ψ+IC , where Ψ is Legendre type. The Euclidean projection
onto C = conv(Y) reduces to isotonic regression (Zeng and Figueiredo, 2015; Negrinho and
Martins, 2014). The computational cost is O(d log d). More generally, Bregman projections
reduce to isotonic optimization (Lim and Wright, 2016). This provides a unified way to
compute ŷΩ(θ) efficiently, regardless of w.

The generated Fenchel-Young loss LΩ(θ;y), is illustrated in Figure 7 for various choices of
Ω. When Ω = 0, as expected, the loss is zero as long as the predicted ranking is correct.
Note that in order to define a meaningful loss, it is necessary that y ∈ Y or more generally
y ∈ conv(Y). That is, y should belong to the convex hull of the permutations of w.

Permutahedra have been used to derive online learning to rank algorithms (Yasutake et al.,
2011; Ailon et al., 2016) but it is not obvious how to extract a loss from these works. Ordered
weighted averaging (OWA) operators have been used to define related top-k multiclass
losses (Usunier et al., 2009; Lapin et al., 2015) but without identifying the connection
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Ω = 0

Ω = 1
2‖ · ‖2
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Figure 7: Ranking losses generated by restricting dom(Ω) to the permutahedron induced
by w = [3, 2, 1]. We set the ground-truth y = [2, 1, 3], i.e., a permutation of w.
We set θ = y and inspect how the loss changes when varying each θi. When
Ω = 0, the loss is zero as expected when θ1 ∈ [1, 3], θ2 ∈ (−∞, 2] and θ3 ∈ [2,∞),
since the ground-truth ranking is still correctly predicted in these intervals. When
Ω = 1

2‖·‖2 and Ω = −Hs, we obtain a smooth approximation. Although not done
here for clarity, if w is normalized such that w ∈ 4d, then ŷΩ(θ) ∈ 4d as well.

with permutahedra. Our construction follows directly from the general Fenchel-Young loss
framework and provides a novel geometric perspective.

Permutation matrices. Let Y ⊂ {0, 1}n×n be the set of n × n permutation matrices.
MAP inference is the solution of the linear assignment problem

max
y∈Y
〈θ,y〉 = max

π∈Π

n∑

i=1

θi,πi ,

where Π denotes the permutations of (1, . . . , n). The problem can be solved exactly in
O(n3) time using the Hungarian algorithm (Kuhn, 1955) or the Jonker-Volgenant algo-
rithm (Jonker and Volgenant, 1987). Noticeably, marginal inference is known to be #P-
complete (Valiant, 1979; Taskar, 2004, Section 3.5). This makes it an open problem how to
solve marginal inference for this polytope.

In contrast, projections on the convex hull of Y, the set of doubly stochastic matrices known
as Birkhoff polytope (Birkhoff, 1946), can be computed efficiently. Since the Birkhoff poly-
tope is a special case of transportation polytope, we can leverage algorithms from the
optimal transport literature to compute the mean-regularized prediction function. When
Ω(µ) = 〈µ, logµ〉, ŷΩ(θ) can be computed using the Sinkhorn algorithm (Sinkhorn and
Knopp, 1967; Cuturi, 2013). For other regularizers, we can use Dykstra’s algorithm (Des-
sein et al., 2016) or dual approaches (Blondel et al., 2018). The cost of obtaining an
ε-approximate solution is typically O(n2/ε).

The Birkhoff polytope has been used to define continuous relaxations of non-convex ranking
losses (Adams and Zemel, 2011). In contrast, the Fenchel-Young loss over the Birkhoff poly-
tope (new to our knowledge) is convex by construction. Although working with permutation
matrices is more computationally expensive than working with permutations, it brings dif-
ferent modeling power, since it allows to take into account similarity between instances
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(e.g., text documents) through the similarity matrix θ. It also enables other applications,
such as learning to match.

7.4 Structured separation margins

We end this section by extending some of the results in §5 for the structured prediction case,
showing that there is also a relation between structured entropies and margins.
In the sequel, we assume that structured outputs are contained in a sphere of radius r,
i.e., ‖y‖ = r for any y ∈ Y. This holds for all the examples above (sequences, alignments,
spanning trees, permutations of a given vector, and permutation matrices). In particular,
it holds whenever outputs are represented as binary vectors with a constant number of
entries set to 1; this includes overcomplete parametrizations of discrete graphical models
(Wainwright and Jordan, 2008).

Definition 5 Structured separation margin

Let L(θ;y) be a loss function over Rd×Y. We say that L has the structured separation
margin property if there exists m > 0 such that, for any y ∈ Y:

〈θ,y〉 ≥ max
y′∈Y

(
〈θ,y′〉+

m

2
‖y − y′‖2

)
⇒ L(θ;y) = 0. (27)

The smallest possible m that satisfies (27) is called the margin of L, denoted margin(L).

Note that this definition generalizes the unstructured case (Definition 4), which is recovered
when Y = {ei}di=1. Note also that, when outputs are represented as binary vectors, the
term ‖y − y′‖2 is a Hamming distance, which counts how many bits need to be flipped
to transform y′ into y. The most famous example of a loss with a structured separation
margin in the structured hinge loss used in structured support vector machines (Taskar,
2004; Tsochantaridis et al., 2005).

The next proposition extends Proposition 5. We defer its proof to §B.7.

Proposition 8 Assume Ω is convex and Y is contained in a sphere of radius r. Then:

1. The loss LΩ has a structured separation margin iff there is a m > 0 such that, for
any y ∈ Y, my ∈ ∂Ω(y).

2. If the above holds, then the margin of LΩ is given by the smallest such m or,
equivalently,

margin(LΩ) = sup
µ∈conv(Y),y∈Y

Ω(y)− Ω(µ)

r2 − 〈y,µ〉 . (28)

Unit margin of the SparseMAP loss. We can invoke Proposition 8 to show that the
SparseMAP loss of Niculae et al. (2018) has a structured margin of 1, a novel result that
follows directly from our construction. Indeed, from (28), we have that, for Ω(µ) = 1

2‖µ‖2:

margin(LΩ) = sup
µ∈conv(Y),y∈Y

1
2r

2 − 1
2‖µ‖2

r2 − 〈y,µ〉 = 1− inf
µ∈conv(Y),y∈Y

1
2‖y − µ‖2
〈y,y − µ〉 ≤ 1,
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ŷ(θ) ∈ argmax
µ∈C

〈θ,µ〉

ŷ(θ) ∈ argmax
y∈Y

〈θ,y〉

C = conv(Y)

ŷΩ(θ) ∈ argmax
µ∈dom(Ω)

〈θ,µ〉 − Ω(µ)

ŷΩ(θ) = argmin
µ∈C

BΨ(µ||ŷΨ(θ))

Ω := Ψ + IC

proxΩ(θ) = argmin
µ∈dom(Ω)

1

2
‖µ− θ‖2 + Ω(µ)

proxΩ(θ) = argmin
µ∈C

1

2
‖µ− θ‖2 + Ψ(µ)

Ω := Ψ + IC

LMO

MAP oracle

Regularized prediction function

Bregman projection

Proximity operator

Proximity operator constrained to C

Figure 8: Summary of computational oracles: ŷ(θ) is used to compute unregularized
predictions or as a linear maximization oracle in conditional gradient algorithms;
ŷΩ(θ) is used to compute regularized predictions, loss values LΩ(θ;y) = fθ(y)−
fθ(ŷΩ(θ)), where fθ(µ) := Ω(µ)−〈θ,µ〉, and loss gradients ∇LΩ(θ;y) = ŷΩ(θ)−
y; finally, proxΩ(θ) is used by training algorithms, in particular block coordinate
ascent algorithms. In the above, we assume Ψ is Legendre-type and C ⊆ dom(Ψ).

where the last inequality follows from the fact that both the numerator and denominator in
the second term are non-negative, the latter due to the Cauchy-Schwartz inequality. We now

show that, for any y ∈ Y, we have infµ∈conv(Y)

1
2
‖y−µ‖2
〈y,y−µ〉 = 0. Choosing µ = ty′ + (1− t)y,

for an arbitrary y′ ∈ Y \ {y}, and letting t→ 0+, we obtain
1
2
‖y−µ‖2
〈y,y−µ〉 =

1
2
t‖y−y′‖2
〈y,y−y′〉 → 0.

8. Algorithms for learning with Fenchel-Young losses

In this section, we present generic primal (§8.1) and dual (§8.2) algorithms for training
predictive models with a Fenchel-Young loss LΩ for arbitrary Ω. In doing so, we obtain
unified algorithms for training models with a wealth of existing and new loss functions. We
then discuss algorithms for computing regularized prediction functions (§8.3) and proximity
operators (§8.4). We summarize these “computational oracles” in Figure 8.

8.1 Primal training

Let fW : X → Rd be a model parametrized by W . To learn W from training data
{(xi,yi)}ni=1, (xi,yi) ∈ X × Y, we minimize the regularized empirical risk

min
W

F (W ) +G(W ) :=

n∑

i=1

LΩ(fW (xi);yi) +G(W ), (29)

where G is a regularization function w.r.t. parameters W . Typical examples are Tikhonov
regularization, G(W ) = λ

2‖W‖2F , and elastic net regularization, G(W ) = λ
2‖W‖2F+λρ‖W‖2,

for some λ > 0 and ρ ≥ 0.

The objective in (29) is very broad and allows to learn, e.g., linear models or neural networks
using Fenchel-Young losses. Since LΩ is convex, if fW is a linear model and G is convex,
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then (29) is convex as well. Assuming further that Ω is strongly convex, then LΩ is smooth
and (29) can be solved globally using proximal gradient algorithms (Wright et al., 2009;
Beck and Teboulle, 2009; Defazio et al., 2014). From Proposition 2, the gradient of LΩ(θ;y)
w.r.t. θ is the residual vector

∇LΩ(θ;y) = ŷΩ(θ)− y ∈ Rd.

Using the chain rule, the gradient of F w.r.t. W is

∇F (W ) =

n∑

i=1

D>fW (xi)
∇LΩ(fW (xi);yi),

where DfW (xi) is the Jacobian of fW (xi) w.r.t. W , a linear map from the space of W to Rd.
For linear models, we set θi = fW (xi) = Wxi, where W ∈ Rd×p and xi ∈ Rp, and thus get

∇F (W ) = (ŶΩ − Y )>X,

where ŶΩ, Y and X are matrices whose rows gather ŷΩ(Wxi), yi and xi, for i = 1, . . . , n.

In summary, the two main computational ingredients to solve (29) are ŷΩ and the proximity
operator of G (when G is non-differentiable). This separation of concerns results in very
modular implementations.

Remark on temperature scaling. When fW is a linear model and G is a homogeneous
function, it is easy to check that the temperature scaling parameter t > 0 from Proposition
2 and the regularization strength λ > 0 above are redundant. Hence, we can set t = 1 at
training time, without loss of generality. However, at test time, using ŷtΩ(θ) and tuning t
can potentially improve accuracy. For sparse prediction functions, t also gives control over
sparsity (the smaller, the sparser).

8.2 Dual training

We now derive dual training of Fenchel-Young losses. Although our treatment follows closely
Shalev-Shwartz and Zhang (2016), it is different in that we put the output regularization
Ω at the center of all computations, leading to a new perspective.

Dual objective. For linear models fW (x) = Wx, where W ∈ Rd×p, it can sometimes be
more computationally efficient to solve the corresponding dual problem, especially in the
n� p setting. From Fenchel’s duality theorem (see for instance Borwein and Lewis (2010,
Theorem 3.3.5)), we find that the dual problem of (29) is

max
α∈Rn×d

−
n∑

i=1

L∗Ω(−αi;yi)−G∗
(
α>X

)
,

and where L∗Ω is the convex conjugate of LΩ in its first argument.
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We now rewrite the dual problem using the specific form of LΩ. Using L∗Ω(−α;y) =
Ω(y −α)− Ω(y) and using the change of variable µi := yi −αi, we get

max
µ∈Rn×d

−D(µ) s.t. µi ∈ dom(Ω) ∀i ∈ [n], (30)

where we defined

D(µ) :=
n∑

i=1

Ω(µi)− Ω(yi) +G∗(V (µ)) and V (µ) := (Y − µ)>X.

This expression is informative as we can interpret each µi as regularized predictions, i.e.,
µi should belong to dom(Ω), the same domain as ŷΩ. The fact that G∗(V (µ)) is a function
of the predictions µ is similar to the value regularization framework of Rifkin and Lippert
(2007). A key difference with the regularization Ω, however, is that G∗(V (µ)) depends on
the training data X through V (µ). When G(W ) = λ

2‖W‖2F ⇔ G∗(V ) = 1
2λ‖V ‖2F , we obtain

G∗(V (µ)) = 1
2λTrace((Y − µ)>K(Y − µ)), where K := XX> is the Gram matrix.

Primal-dual relationship. Assuming G is a λ-strongly convex regularizer, given an
optimal dual solution µ? to (30), we may retrieve the optimal primal solution W ? by

W ? = ∇G∗(V (µ?)).

Coordinate ascent. We can solve (30) using block coordinate ascent algorithms. At
every iteration, we pick i ∈ [n] and consider the following sub-problem associated with i:

argmin
µi∈dom(Ω)

Ω(µi) +G∗(V (µ)). (31)

Since this problem could be hard to solve, we follow Shalev-Shwartz and Zhang (2016,
Option I) and consider instead a quadratic upper-bound. If G is λ-strongly convex, G∗ is
1
λ -smooth w.r.t. the dual norm ‖ · ‖ and it holds that

G∗(V (µ)) ≤ G∗(V (µ̄)) + 〈∇G∗(V (µ̄)), V (µ)− V (µ̄)〉+
1

2λ
‖V (µ)− V (µ̄)‖2,

where µ̄ denotes the current iterate of µ. Using V (µ)− V (µ̄) =
∑n

i=1(µ̄i − µi)x>i , we get

G∗(V (µ)) ≤ G∗(V (µ̄)) +

n∑

i=1

〈∇G∗(V (µ̄))xi, µ̄i − µi〉+
σi
2
‖µ̄i − µi‖2,

where σi := ‖xi‖2
λ . Substituting G∗(V (µ)) by the above upper bound into (31) and ignoring

constant terms, we get the following approximate sub-problem:

argmin
µi∈dom(Ω)

Ω(µi)− µ>i vi +
σi
2
‖µi‖2 = prox 1

σi
Ω

(
vi
σi

)
, (32)

where vi := ∇G∗(V (µ̄))xi + σiµ̄i. Note that when G∗ is a quadratic function, (32) is an
optimal solution of (31).
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Examples of parameter regularization G. We now give examples of G∗(W ) and
∇G∗(W ) for two commonly used regularization: squared `2 and elastic-net regularization.

When G(W ) = λ
2‖W‖2F , we obtain

G∗(V ) =
1

2λ
‖V ‖2F and ∇G∗(V ) =

1

λ
V.

When G(W ) = λ
2‖W‖2F + λρR(W ), for some other regularizer R(W ), we obtain

∇G∗(V ) = argmax
W

〈W,V 〉 − λ

2
‖W‖2F − λρR(W )

= argmin
W

1

2

∥∥∥∥W −
V

λ

∥∥∥∥
2

F

+ ρR(W )

= proxρR(V/λ).

The conjugate is equal to G∗(V ) = 〈∇G∗(V ), V 〉 −G(∇G∗(V )).

For instance, if we choose R(W ) = ‖W‖1, then G(W ) is the elastic-net regularization and
proxρR is the well-known soft-thresholding operator

proxρR(V ) = sign(V )[|V | − ρ]+,

where all operations above are performed element-wise.

Summary. To summarize, on each iteration, we pick i ∈ [n] and perform the update

µi ← prox 1
σi

Ω(vi/σi),

where we defined vi := ∇G∗(V (µ))xi + σiµi and σi := ‖xi‖2
λ . This update does not require

choosing any learning rate. Interestingly, if proxτΩ is sparse, then so are the dual vari-
ables {µi}ni=1. Sparsity in the dual variables is particularly useful when kernelizing models,
as it makes computing predictions more efficient.

When i is picked uniformly at random, this block coordinate ascent algorithm is known to
converge to an optimal solution W ?, at a linear rate if LΩ is smooth (i.e., if Ω is strongly
convex) (Shalev-Shwartz and Zhang, 2016). When dom(Ω) is a compact set, another option
to solve (30) that does not involve proximity operators is the block Frank-Wolfe algorithm
(Lacoste-Julien et al., 2012).

8.3 Regularized prediction functions

The regularized prediction function ŷΩ(θ) does not generally enjoy a closed-form expression
and one must resort to generic algorithms to compute it. In this section, we first discuss two
such algorithms: projected gradient and conditional gradient methods. Then, we present a
new more efficient algorithm when dom(Ω) ⊆ 4d and Ω is uniformly separable.
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Generic algorithms. In their greater generality, regularized prediction functions involve
the following optimization problem

min
µ∈dom(Ω)

fθ(µ) := Ω(µ)− 〈θ,µ〉. (33)

Assuming Ω is convex and smooth (differentiable and with Lipschitz-continuous gradient),
we can solve this problem to arbitrary precision using projected gradient methods. Un-
fortunately, the projection onto dom(Ω), which is needed by these algorithms, is often as
challenging to solve as (33) itself. This is especially the case when dom(Ω) is conv(Y), the
convex hull of a combinatorial set of structured objects.

Assuming further that dom(Ω) is a compact set, an appealing alternative which sidesteps
these issues is provided by conditional gradient (a.k.a. Frank-Wolfe) algorithms (Frank and
Wolfe, 1956; Dunn and Harshbarger, 1978; Jaggi, 2013). Their main advantage stems from
the fact that they access dom(Ω) only through the linear maximization oracle
argmaxy∈dom(Ω) 〈θ,y〉. CG algorithms maintain the current solution as a sparse convex com-
bination of vertices of dom(Ω). At each iteration, the linear maximization oracle is used to
pick a new vertex to add to the combination. Despite its simplicity, the procedure converges
to an optimal solution, albeit at a sub-linear rate (Jaggi, 2013). Linear convergence rates
can be obtained using away-step, pairwise and full-corrective variants (Lacoste-Julien and
Jaggi, 2015). When Ω is a quadratic function (as in the case of SparseMAP), an approx-
imate correction step can achieve finite convergence efficiently. The resulting algorithm is
known as the active set method (Nocedal and Wright, 1999, chapters 16.4 & 16.5), and
is a generalization of Wolfe’s min-norm point algorithm (Wolfe, 1976). See also Vinyes
and Obozinski (2017) for a more detailed discussion on these algorithms and Niculae et al.
(2018) for an instantiation, in the specific case of SparseMAP.

Although not explored in this paper, similar algorithms have been developed to minimize
a function over conic hulls (Locatello et al., 2017). Such algorithms allow to compute a
regularized prediction function that outputs a conic combination of elementary structures,
instead of a convex one. It can be seen as the structured counterpart of the regularized
prediction function over positive measures (§6).

Reduction to root finding. When Ω is a strictly convex regularization function over
4d and is uniformly separable, i.e., Ω(p) =

∑d
i=1 g(pi) for some strictly convex function g,

we now show that ŷΩ(θ) can be computed in linear time.

Proposition 9 Reduction to root finding

Let g : [0, 1]→ R+ be a strictly convex and differentiable function. Then,

ŷΩ(θ) = argmax
p∈4d

〈p,θ〉 −
d∑

j=1

g(pj) = p(τ?)

where
p(τ) := (g′)−1(max{θ − τ, g′(0)})
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and where τ? is a root of φ(τ) := 〈p(τ),1〉 − 1.

Moreover, τ? belongs to the tight search interval [τmin, τmax], where

τmin := max(θ)− g′(1) and τmax := max(θ)− g′ (1/d) .

The equation of p(τ) can be seen as a generalization of (7). An approximate τ such that
|φ(τ)| ≤ ε can be found in O(1/log ε) time by, e.g., bisection. The related problem of Bregman
projection onto the probability simplex was recently studied by Krichene et al. (2015) but
our derivation is different and more direct (cf. §B.8).

For example, when Ω is the negative α-Tsallis entropy −Ht
α, which we saw can be written

in separable form in (18), we obtain

g(t) =
tα − t
α(α− 1)

, g′(t) =
tα−1 − 1

α− 1
and (g′)−1(s) =

(
1 + (α− 1)s

) 1
α−1 ,

yielding

p(τ) =
(
1 + (α− 1) max(θ − τ,−1/α−1)

) 1
α−1 .

From the root τ? of φ(τ) = 〈p(τ),1〉 − 1, we obtain ŷ−Ht
α
(θ) = p(τ?).

8.4 Proximity operators

Computing the proximity operator proxτΩ(η), defined in (2), usually involves a more chal-
lenging optimization problem than ŷΩ(θ). For instance, when Ω is Shannon’s negative
entropy over 4d, ŷΩ enjoys a closed-form solution (the softmax) but not proxΩ. How-
ever, we can always compute proxτΩ(η) by first-order gradient methods given access to ŷΩ.
Indeed, using the Moreau decomposition, we have

proxτΩ(η) = η − proxΩ∗
τ

(η/τ).

Since dom(Ω∗) = Rd, computing proxΩ∗
τ

(η/τ) only involves an unconstrained optimization

problem, argminθ∈Rd
1
2‖θ − η/τ‖2 + 1

τΩ∗(θ). Since ∇Ω∗ = ŷΩ, that optimization problem
can easily be solved by any first-order gradient method given access to ŷΩ. For specific
choices of Ω, proxτΩ(η) can be computed directly more efficiently, as we now discuss.

Closed-form expressions. We now give examples of commonly-used loss functions for
which proxτΩ enjoys a closed-form expression.

For the squared loss, we choose Ω(µ) = 1
2‖µ‖2. Hence:

proxτΩ(η) = argmin
µ∈Rd

1

2
‖µ− η‖2 +

τ

2
‖µ‖2 =

η

τ + 1
.

For the perceptron loss (Rosenblatt, 1958; Collins, 2002), we choose Ω = I4d . Hence:

proxτΩ(η) = argmin
p∈4d

1

2
‖p− η‖2.

40



Learning with Fenchel-Young Losses

For the sparsemax loss (Martins and Astudillo, 2016), we choose Ω = 1
2‖ · ‖2 + I4d . Hence:

proxτΩ(η) = argmin
p∈4d

1

2
‖p− η‖2 +

τ

2
‖p‖2 = argmin

p∈4d

1

2

∥∥∥∥p−
η

τ + 1

∥∥∥∥
2

.

For the cost-sensitive multiclass hinge loss, we choose Ω = I4d − 〈·, cy〉. Hence:

proxτΩ(η) = argmin
p∈4d

1

2
‖p− η‖2 − τ〈p, cy〉 = argmin

p∈4d

1

2
‖p− (η + τcy)‖2.

Choosing cy = 1 − y, where y ∈ {ei}di=1 is the ground-truth label, gives the proximity
operator for the usual multiclass hinge loss (Crammer and Singer, 2001).

For the Shannon entropy and 1.5-Tsallis entropy, we show that prox−H reduces to root
finding in Appendix A.1.

9. Experiments

In this section, we demonstrate one of the key features of Fenchel-Young losses: their
ability to induce sparse probability distributions. We focus on two tasks: label proportion
estimation (§9.1) and dependency parsing (§9.2).

9.1 Label proportion estimation experiments

As we saw in §4, α-Tsallis entropies generate a family of losses, with the logistic (α → 1)
and sparsemax losses (α = 2) as important special cases. In addition, they are twice
differentiable for α ∈ [1, 2), produce sparse probability distributions for α > 1 and are
computationally efficient for any α ≥ 1, thanks to Proposition 9. In this section, we
demonstrate their effectiveness on the task of label proportion estimation and compare
different solvers for computing the regularized prediction function ŷ−Ht

α
.

Experimental setup. Given an input vector x ∈ X ⊆ Rp, where p is the number of
features, our goal is to estimate a vector of label proportions y ∈ 4d, where d is the number
of classes. If y is sparse, we expect the superiority of Tsallis losses over the conventional
logistic loss on this task. At training time, given a set of n pairs (xi,yi), we estimate a
matrix W ∈ Rd×p by minimizing the convex objective

R(W ) :=

n∑

i=1

LΩ(Wxi;yi) +
λ

2
‖W‖2F .

We optimize the loss using L-BFGS (Liu and Nocedal, 1989). From Proposition 2 and using
the chain rule, we obtain the gradient expression ∇R(W ) = (ŶΩ − Y )>X + λW , where ŶΩ,
Y and X are matrices whose rows gather ŷΩ(Wxi), yi and xi, for i = 1, . . . , n. At test
time, we predict label proportions by p = ŷ−Ht

α
(Wx).
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Table 3: Dataset statistics
Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 2
Cal500 Music 376 126 101 68 174 25

Emotions Music 293 98 202 72 6 2
Mediamill Video 22,353 7,451 12,373 120 101 5

Scene Images 908 303 1,196 294 6 1
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2

Yeast Micro-array 1,125 375 917 103 14 4

Real data experiments. We ran experiments on 7 standard multi-label benchmark
datasets — see Table 3 for dataset characteristics1. For all datasets, we removed sam-
ples with no label, normalized samples to have zero mean unit variance, and normalized
labels to lie in the probability simplex. We chose λ ∈ {10−4, 10−3, . . . , 104} and α ∈
{1, 1.1, . . . , 2} against the validation set. We report the test set mean Jensen-Shannon diver-
gence, JS(p,y) := 1/2 KL(p‖p+y

2 )+ 1/2 KL(y‖p+y
2 ), and the mean squared error 1/2 ‖p−y‖2

in Table 4. As can be seen, the loss with tuned α achieves the best averaged rank overall.
Tuning α allows to choose the best loss in the family in a data-driven fashion.

Synthetic data experiments. We follow Martins and Astudillo (2016) and generate
a document x ∈ Rp from a mixture of multinomials and label proportions y ∈ 4d from
a multinomial. The number of words in x and labels in y is sampled from a Poisson
distribution — see Martins and Astudillo (2016) for a precise description of the generative
process. We use 1200 samples as training set, 200 samples as validation set and 1000
samples as test set. We tune λ ∈ {10−6, 10−5, . . . , 100} and α ∈ {1.0, 1.1, . . . , 2.0} against
the validation set. We report the Jensen-Shannon divergence in Figure 10. Results using
the mean squared error (MSE) were entirely similar. When the number of classes is 10,
Tsallis and sparsemax losses perform almost exactly the same, both outperforming softmax.
When the number of classes is 50, Tsallis losses outperform both sparsemax and softmax.

Brent Bisect FISTA

10−1

100

101

102

ti
m
e
(m

s)

d = 10

d = 100

d = 1000

Figure 9: Solver comparison.

Solver comparison. We also compared bisection (bi-
nary search) and Brent’s method for solving (5) by root
finding (Proposition 9). We focus on Ht

1.5, i.e. the
1.5-Tsallis entropy, and also compare against using a
generic projected gradient algorithm (FISTA) to solve
(5) naively. We measure the time needed to reach a
solution p with ‖p − p?‖2 < 10−5, over 200 samples
θ ∈ Rd ∼ N (0, σI) with log σ ∼ U(−4, 4). Median
and 99% CI times reported in Figure 9 reveal that root
finding scales better, with Brent’s method outperforming
FISTA by one to two orders of magnitude.

1. The datasets can be downloaded from http://mulan.sourceforge.net/datasets-mlc.html and https:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 4: Test-set performance of Tsallis losses for various α on the task of sparse
label proportion estimation: average Jensen-Shannon divergence (left) and
mean squared error (right). Lower is better.

α = 1 (logistic) α = 1.5 α = 2 (sparsemax) tuned α

Birds 0.359 / 0.530 0.364 / 0.504 0.364 / 0.504 0.358 / 0.501
Cal500 0.454 / 0.034 0.456 / 0.035 0.452 / 0.035 0.456 / 0.034

Emotions 0.226 / 0.327 0.225 / 0.317 0.225 / 0.317 0.224 / 0.321
Mediamill 0.375 / 0.208 0.363 / 0.193 0.356 / 0.191 0.361 / 0.193

Scene 0.175 / 0.344 0.176 / 0.363 0.176 / 0.363 0.175 / 0.345
TMC 0.225 / 0.337 0.224 / 0.327 0.224 / 0.327 0.217 / 0.328
Yeast 0.307 / 0.183 0.314 / 0.186 0.314 / 0.186 0.307 / 0.183

Avg. rank 2.57 / 2.71 2.71 / 2.14 2.14 / 2.00 1.43 / 1.86
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Figure 10: Jensen-Shannon divergence between predicted and true label proportions, when
varying document length, of various losses generated by a Tsallis entropy.

9.2 Dependency parsing experiments

We next compare Fenchel-Young losses for structured output prediction, as formulated in §7,
for non-projective dependency parsing. The application consists of predicting the directed
tree of grammatical dependencies between words in a sentence (Jurafsky and Martin, 2018,
Chapter 14). We tackle it by learning structured models over the arborescence polytope,
using the structured SVM, CRF, and SparseMAP losses (Niculae et al., 2018), which we
saw to all be instances of Fenchel-Young loss. Training data, as in the CoNLL 2017 shared
task (Zeman et al., 2017), comes from the Universal Dependency project (Nivre et al.,
2016). To isolate the effect of the loss, we use the provided gold tokenization and part-of-
speech tags. We follow closely the bidirectional LSTM arc-factored parser of Kiperwasser
and Goldberg (2016), using the same model configuration; the only exception is not using
externally pretrained embeddings. Parameters are trained using Adam (Kingma and Ba,
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Table 5: Unlabeled attachment accuracy scores for dependency parsing, using a bi-LSTM
model (Kiperwasser and Goldberg, 2016). For context, we include the scores of
the CoNLL 2017 UDPipe baseline (Straka and Straková, 2017).

Loss en zh vi ro ja

Structured SVM 87.02 81.94 69.42 87.58 96.24
CRF 86.74 83.18 69.10 87.13 96.09

SparseMAP 86.90 84.03 69.71 87.35 96.04

UDPipe baseline 87.68 82.14 69.63 87.36 95.94

2015), tuning the learning rate on the grid {.5, 1, 2, 4, 8} × 10−3, expanded by a factor of 2
if the best model is at either end.

We experiment with 5 languages, diverse both in terms of family and in terms of the amount
of training data (ranging from 1,400 sentences for Vietnamese to 12,525 for English). Test
set results (Table 5) indicate that SparseMAP outperforms the CRF loss and is competitive
with the structured SVM loss, outperforming it substantially on Chinese. The Fenchel-
Young perspective sheds further light onto the empirical results, as the SparseMAP loss
and the structured SVM (unlike the CRF) both enjoy the margin property with margin 1,
while both SparseMAP and the CRF loss (unlike structured SVM) are differentiable.

10. Related work

10.1 Proper losses (proper scoring rules)

Proper losses, a.k.a. proper scoring rules, are a well-studied object in statistics (Grünwald
and Dawid (2004); Gneiting and Raftery (2007); references therein) and more recently in
machine learning (Reid and Williamson, 2010; Williamson et al., 2016). A loss `(p;y),
between a ground truth y ∈ 4d and a probability forecast p ∈ 4d, where d is the number
of classes, is said to be proper if it is minimized when estimating the true y. Formally, a
proper loss ` satisfies

`(y;y) ≤ `(p;y) ∀p,y ∈ 4d.

It is strictly proper if the inequality is strict when p 6= y, implying that it is uniquely
minimized by predicting the correct probability. Strictly proper losses induce Fisher con-
sistent estimators of probabilities (Williamson et al., 2016). A key result, which dates
back to Savage (1971) (see also Gneiting and Raftery (2007)), is that given a regularization
function Ω: 4d → R, the function `Ω : 4d ×4d → R+ defined by

`Ω(p;y) := 〈∇Ω(p),y − p〉 − Ω(p)

is proper. It is easy to see that `Ω(p;y) = BΩ(y‖p)−Ω(y), which recovers the well-known
Bregman divergence representation of proper losses. For example, using the Gini index
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H(p) = 1− ‖p‖2 generates the Brier score (Brier, 1950)

`−H(p; ek) =
d∑

i=1

([[k = i]]− pi)2,

showing that the sparsemax loss and the Brier score share the same generating function.

More generally, while a proper loss `Ω is related to a primal-space Bregman divergence,
a Fenchel-Young loss LΩ can be seen as a mixed-space Bregman divergence (§3). This
difference has a number of important consequences. First, `Ω is not necessarily convex
in p (Williamson et al. (2016, Proposition 17) show that it is in fact quasi-convex). In
contrast, LΩ is always convex in θ. Second, the first argument is constrained to 4d for
`Ω, while unconstrained for LΩ.

In practice, proper losses are often composed with an invertible link function ψ−1 : Rd →
4d. This form of a loss, `Ω(ψ−1(θ);y), is sometimes called composite (Buja et al., 2005;
Reid and Williamson, 2010; Williamson et al., 2016). Although the decoupling between loss
and link has merits (Reid and Williamson, 2010), the composition of `Ω(·;y) and ψ−1(θ)
is not necessarily convex in θ. The canonical link function (Buja et al., 2005) of `Ω is a
link function that ensures the convexity of `Ω(ψ−1(θ);y) in θ. It also plays a key role in
generalized linear models (Nelder and Baker, 1972; McCullagh and Nelder, 1989). Following
Proposition 3, when Ω is Legendre type, we obtain

LΩ(θ;y) = BΩ(y‖ŷΩ(θ)) = `Ω(ŷΩ(θ);y) + Ω(y).

Thus, in this case, Fenchel-Young losses and proper composite losses coincide up to the con-
stant term Ω(y) (which vanishes if y = ek and Ω satisfies assumption A.1), with ψ−1 = ŷΩ

the canonical inverse link function. Fenchel-Young losses, however, require neither invertible
link nor Legendre type assumptions, allowing to express losses (e.g., hinge or sparsemax)
that are not expressible in composite form. Moreover, as seen in §5, a Legendre-type Ω
precisely precludes sparse probability distributions and losses enjoying a margin.

Other related losses. Nock and Nielsen (2009) proposed a binary classification loss
construction. Technically, their loss is based on the Legendre transformation (a subset of
Fenchel conjugate functions), precluding non-invertible mappings. Masnadi-Shirazi (2011)
studied the Bayes consistency of related binary classification loss functions. Duchi et al.
(2018, Proposition 3) derived the multi-class loss (14), a special case of Fenchel-Young
loss over the probability simplex, and showed (Proposition 4) that any strictly concave
generalized entropy generates a classification-calibrated loss. Amid and Warmuth (2017)
proposed a different family of losses based on the Tsallis divergence, to interpolate between
convex and non-convex losses, for robustness to label noise. Finally, several works have
explored connections between another divergence, the f -divergence (Csiszár, 1975), and
surrogate loss functions (Nguyen et al., 2009; Reid and Williamson, 2011; Garcia-Garcia
and Williamson, 2012; Duchi et al., 2018).
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10.2 Fenchel duality in machine learning

In this paper, we make extensive use of Fenchel duality to derive loss functions. Fenchel
duality has also played a key role in several machine learning studies before. It was used
to provide a unifying perspective on convex empirical risk minimization and representer
theorems (Rifkin and Lippert, 2007). It was also used for deriving regret bounds (Shalev-
Shwartz and Singer, 2007; Shalev-Shwartz and Kakade, 2009), risk bounds (Kakade et al.,
2009), and unified analyses of boosting (Shen and Li, 2010; Shalev-Shwartz and Singer,
2010; Telgarsky, 2012). However, none of these works propose loss functions, as we do. More
closely related to our work are smoothing techniques (Nesterov, 2005; Beck and Teboulle,
2012), which have been used extensively to create smoothed versions of existing losses
(Shalev-Shwartz and Zhang, 2016). However, these techniques were applied on a per-loss
basis and were not connected to an induced probability distribution. In contrast, we propose
a generic loss construction, with clear links between smoothing / regularization and the
probability distribution produced by regularized prediction functions.

10.3 Approximate inference with conditional gradient algorithms

In this paper, we suggest conditional gradient (CG) algorithms as a powerful tool for com-
puting regularized prediction functions and Fenchel-Young losses over potentially complex
output domains. CG algorithms have been used before to compute an approximate solu-
tion to intractable marginal inference problems (Belanger et al., 2013; Krishnan et al., 2015)
or to sample from an intractable distribution so as to approximate its mean (Bach et al.,
2012; Lacoste-Julien et al., 2015). When combined with reproducing kernel Hilbert spaces
(RKHS), these ideas are closely related maximum mean discrepancy (Gretton et al., 2012).

11. Conclusion

We showed that the notion of output regularization and Fenchel duality provide simple
core principles, unifying many existing loss functions, and allowing to create useful new
ones easily, on a large spectrum of tasks. We characterized a tight connection between
sparse distributions and losses with a separation margin, and showed that these losses are
precisely the ones that cannot be written in proper composite loss form. We established the
computational tools to efficiently learn with Fenchel-Young losses, whether in unstructured
or structured settings. We expect that this groundwork will enable the creation of many
more novel losses in the future, by exploring other convex polytopes and regularizers.
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A. Additional materials

A.1 Computing proximity operators by root finding

In this section, we first show how the proximity operator of uniformly separable general-
ized entropies reduces to unidimensional root finding. We then illustrate the case of two
important entropies. The proximity operator is defined as

prox− 1
σ
H(x) = argmin

p∈4d

σ

2
‖p− x‖2 − H(p)

= argmax
p∈4d

〈p,x〉+
1

σ
H(p)− 1

2
‖p‖2

= argmax
p∈4d

〈p,x〉 −
d∑

i=1

g(pi),

where

g(t) :=
1

2
t2 − 1

σ
h(t).

Note that g(t) is strictly convex even when h is only concave. We may thus apply Propo-
sition 9 to compute prox− 1

σ
H. The ingredients necessary for using Algorithm 1 are g′(t) =

t− 1
σh
′(t), and its inverse (g′)−1(x). We next derive closed-form expressions for the inverse

for two important entropies.

Shannon entropy. We have

g(t) :=
t2

2
+
t log t

σ
and g′(t) = t+

1 + log t

σ
.

To compute the inverse, (g′)−1 (x) = t, we solve for t satisfying

1 + log t

σ
+ t = x.

Making the change of variable s := σt gives

s+ log s = σx− 1 + log σ ⇐⇒ s = ω(σx− 1 + log σ).

Therefore, (g′)−1 (x) = 1
σω(σx− 1 + log σ), where ω denotes the Wright omega function.

Tsallis entropy with α = 1.5. Up to a constant term, we have

g(t) =
t2

2
+

4

3σ
t
3/2 and g′(t) = t+

2

σ

√
t.
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To obtain the inverse, (g′)−1 (x) = t we seek t satisfying

2

σ

√
t+ t = x ⇐⇒

√
t =

σ

2
(x− t) .

If t > x there are no solutions, otherwise we may square both sides, yielding

σ2t2

4
− t
(
σ2x

2
+ 1

)
+
σ2x2

4
= 0.

The discriminant is
∆ = 1 + σ2x > 0,

resulting in two solutions

t± = x+
2

σ2

(
1±

√
1 + σ2x

)
.

However, t+ > x, therefore

(
g′
)−1

(x) = x+
2

σ2

(
1−

√
1 + σ2x

)
.

A.2 Loss “Fenchel-Youngization”

Not all loss functions proposed in the literature can be written in Fenchel-Young loss form.
In this section, we present a natural method to approximate (in a sense we will clarify)
any loss ` : Rd × {ei}di=1 → R+ with a Fenchel-Young loss. This has two main advantages.
First, the resulting loss is convex even when ` is not. Second, the associated regularized
prediction function can be used for probabilistic prediction even if ` is not probabilistic.

From loss to entropy. Equations (16) and (17), which relate entropy and conditional
Bayes risk, suggest a reverse construction from entropy to loss function. This direction
has been explored in previous works (Grünwald and Dawid, 2004; Duchi et al., 2018). The
entropy H` generated from ` is defined as follows:

H`(p) := inf
θ∈Rd

Ep[`(θ;Y )] = inf
θ∈Rd

d∑

i=1

pi`(θ; ei). (34)

This is the infimum of a linear and thus concave function of p. Hence, by Danskin’s theorem
(Danskin, 1966; Bertsekas, 1999, Proposition B.25), H`(p) is concave (note that this is true
even if ` is not convex). As an example, Duchi et al. (2018, Example 1) show that the
entropy associated with the zero-one loss is H`(p) = 1 −maxj pj . As we discussed in §4.3,
this entropy is known as the Berger-Parker dominance index (Berger and Parker, 1970),
and is a special case of norm entropy (20).

The following new proposition shows how to compute the entropy of pairwise hinge losses.
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Figure 11: Contour comparison of Gini index Ht
2 and pairwise hinge entropies H`.

Proposition 10 Entropy generated by pairwise hinge losses

Let `(θ; ek) :=
∑

j 6=k φ(θj − θk) and τ(p) := minj 1− pj. Then, for all p ∈ 4d:

1. If φ(t) is the hinge function [1 + t]+ then H`(p) = τ(p)d.

2. If φ(t) is the smoothed hinge function (48), then H`(p) = −τ(p)2

2

∑d
j=1

1
1−pj + τ(p)d.

3. If φ(t) is the squared hinge function 1
2 [1 + t]2+, then H`(p) =

1
2
d2∑d

j=1 1/(1−pj)
.

See Appendix B.9 for a proof. The first one recovers (Duchi et al., 2018, Example 5) with
a simpler proof. The last two are new. These entropies are illustrated in Figure 11. For
the last two choices, H` is strictly concave over 4d and the associated prediction function
ŷ−H`(θ) is typically sparse, although we are not aware of a closed-form expression.

And back to Fenchel-Young loss. A natural idea is then to construct a Fenchel-Young
from H`. The resulting loss is convex by construction. Let us assume for simplicity that `
achieves its minimum at 0, implying H`(ek) = 0. Combining (14) and (34), we obtain

L−H`(θ; ek) = (−H`)∗(θ)− θk
= max
p∈4d

〈θ,p〉+ H`(p)− θk

= max
p∈4d

min
θ′∈Rd

d∑

i=1

pi(`(θ
′; ei) + θi)− θk.

By weak duality, we have for every (possibly non-convex) `

L−H`(θ; ek) ≤ min
θ′∈Rd

max
p∈4d

d∑

i=1

pi(`(θ
′; ei) + θi)− θk

= min
θ′∈Rd

max
i∈[d]

`(θ′; ei) + θi − θk.

We can see (θ; ek) 7→ maxi∈[d] `(θ
′; ei) + θi − θk as a family of cost-augmented hinge losses

(Tsochantaridis et al., 2005) parametrized by θ′. Hence, L−H`(θ; ek) is upper-bounded by
the tightest loss in this family.
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If ` is convex, strong duality holds and we obtain equality

L−H`(θ; ek) = min
θ′∈Rd

max
i∈[d]

`(θ′; ei) + θi − θk.

Margin. We can easily upper-bound the margin of L−H` . Indeed, assuming `(θ; ei) is
upper-bounded by m for all θ and i ∈ [d], we get

0 ≤ L−H`(θ; ek) ≤ max
i∈[d]

`(θ; ei) + θi − θk ≤ max
i∈[d]

m+ θi − θk.

Hence, from Definition 4, we have margin(L−H`) ≤ m. Note that if margin(L−H`) ≤
margin(`), then L−H`(θ; ek) = 0⇒ `(θ; ek) = 0.

B. Proofs

B.1 Proof of Proposition 1

Effect of a permutation. Let Ω(µ) be symmetric. We first prove that Ω∗ is symmetric
as well. Indeed, we have

Ω∗(Pθ) = sup
µ∈dom(Ω)

(Pθ)>µ− Ω(µ) = sup
µ∈dom(Ω)

θ>P>µ− Ω(P>µ) = Ω∗(θ).

The last equality was obtained by a change of variable µ′ = P>µ, from which µ is recovered
as µ = Pµ′, which proves ∇Ω∗(Pµ) = P∇Ω∗(µ).

Order preservation. Since Ω∗ is convex, the gradient operator ∇Ω∗ is monotone, i.e.,

(θ′ − θ)>(µ′ − µ) ≥ 0

for any θ,θ′ ∈ Rd, µ = ∇Ω∗(θ) and µ′ = ∇Ω∗(θ′). Let θ′ be obtained from θ by swapping
two coordinates, i.e., θ′j = θi, θ

′
i = θj , and θ′k = θk for any k /∈ {i, j}. Then, since Ω is

symmetric, we obtain:

2(θj − θi)(µj − µi) ≥ 0,

which implies θi > θj ⇒ µi ≥ µj and µi > µj ⇒ θi ≥ θj . To fully prove the claim, we need
to show that the last inequality is strict: to do this, we simply invoke∇Ω∗(Pµ) = P∇Ω∗(µ)
with a matrix P that permutes i and j, from which we must have θi = θj ⇒ µi = µj .

Approximation error. Let y? := argmaxy∈Y 〈θ,y〉 and µ? := argmaxµ∈dom(Ω) 〈θ,µ〉 −
Ω(µ). If f is a differentiable γ-strongly convex function with unique minimizer µ?, then

γ

2
‖y − µ?‖22 ≤ f(y)− f(µ?) ∀y ∈ dom(f).

We assume that Y ⊆ dom(Ω) so it suffices to upper-bound f(y?) − f(µ?), where f(µ) :=
Ω(µ)− 〈θ,µ〉. Since L ≤ Ω(µ) ≤ U for all µ ∈ dom(Ω), we have 〈θ,µ?〉 ≥ −f(µ?) +L and
−f(y?) +U ≥ 〈θ,y?〉. Together with 〈θ,y?〉 ≥ 〈θ,µ?〉, this implies f(y?)− f(µ?) ≤ U −L.
Therefore, 1

2‖y? − µ?‖2 ≤ U−L
γ .
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Temperature scaling & constant invariance. These immediately follow from prop-
erties of the argmax operator.

B.2 Proof of Proposition 3

We set Ω := Ψ + IC .

Bregman projections. If Ψ is Legendre type, then ∇Ψ(∇Ψ∗(θ)) = θ for all θ ∈
int(dom(Ψ∗)). Using this and our assumption that dom(Ψ∗) = Rd, we get for all θ ∈ Rd:

BΨ(p‖∇Ψ∗(θ)) = Ψ(p)− 〈θ,p〉+ 〈θ,∇Ψ∗(θ)〉 −Ψ(∇Ψ∗(θ)). (36)

The last two terms are independent of p and therefore

ŷΩ(θ) = argmax
p∈C

〈θ,p〉 −Ψ(p) = argmin
p∈C

BΨ(p‖∇Ψ∗(θ)),

where C ⊆ dom(Ψ). The r.h.s. is the Bregman projection of ∇Ψ∗(θ) onto C.

Difference of Bregman divergences. Let p = ŷΩ(θ). Using (36), we obtain

BΨ(y‖∇Ψ∗(θ))−BΨ(p‖∇Ψ∗(θ)) = Ψ(y)− 〈θ,y〉+ 〈θ,p〉 −Ψ(p)

= Ω(y)− 〈θ,y〉+ Ω∗(θ)

= LΩ(θ;y), (37)

where we assumed y ∈ C and C ⊆ dom(Ψ), implying Ψ(y) = Ω(y).

If C = dom(Ψ) (i.e., Ω = Ψ), then p = ∇Ψ∗(θ) and BΨ(p‖∇Ψ∗(θ)) = 0. We thus get the
composite form of Fenchel-Young losses

BΩ(y‖∇Ω∗(θ)) = BΩ(y‖ŷΩ(θ)) = LΩ(θ;y).

Bound. Let p = ŷΩ(θ). Since p is the Bregman projection of ∇Ψ∗(θ) onto C, we can
use the well-known Pythagorean theorem for Bregman divergences (see, e.g., Banerjee et al.
(2005, Appendix A)) to obtain for all y ∈ C ⊆ dom(Ψ):

BΨ(y‖p) +BΨ(p‖∇Ψ∗(θ)) ≤ BΨ(y‖∇Ψ∗(θ)).

Using (37), we obtain for all y ∈ C:

0 ≤ BΨ(y‖p) ≤ LΩ(θ;y).

Since Ω is a l.s.c. proper convex function, from Proposition 2, we immediately get

p = y ⇔ LΩ(θ;y) = 0⇔ BΨ(y‖p) = 0.
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B.3 Proof of Proposition 4

The two facts stated in Proposition 4 (H is always non-negative and maximized by the
uniform distribution) follow directly from Jensen’s inequality. Indeed, for all p ∈ 4d:

• H(p) ≥∑d
j=1 pjH(ej) = 0;

• H(1/d) = H
(∑

P∈P
1
d!Pp

)
≥∑P∈P

1
d!H(Pp) = H(p),

where P is the set of d× d permutation matrices. Strict concavity ensures that p = 1/d is
the unique maximizer.

B.4 Proof of Proposition 5

We start by proving the following lemma.

Lemma 1 Let H satisfy assumptions A.1–A.3. Then:

1. We have θ ∈ ∂(−H)(ek) iff θk = (−H)∗(θ). That is:

∂(−H)(ek) = {θ ∈ Rd : θk ≥ 〈θ,p〉+ H(p), ∀p ∈ 4d}.

2. If θ ∈ ∂(−H)(ek), then, we also have θ′ ∈ ∂(−H)(ek) for any θ′ such that θ′k = θk
and θ′i ≤ θi, for all i 6= k.

Proof of the lemma: Let Ω = −H. From Proposition 1 (order preservation), we can
consider ∂Ω(e1) without loss of generality, in which case any θ ∈ ∂Ω(e1) satisfies θ1 =
maxj θj . We have θ ∈ ∂Ω(e1) iff Ω(e1) = 〈θ, e1〉 − Ω∗(θ) = θ1 − Ω∗(θ). Since Ω(e1) = 0,
we must have θ1 = Ω∗(θ) ≥ supp∈4d 〈θ,p〉−Ω(p), which proves part 1. To see 2, note that

we have θ′k = θk ≥ 〈θ,p〉 − Ω(p) ≥ 〈θ′,p〉 − Ω(p), for all p ∈ 4d, from which the result
follows. �

We now proceed to the proof of Proposition 5. Let Ω = −H, and suppose that LΩ has
the separation margin property. Then, θ = me1 satisfies the margin condition θ1 ≥ m +
maxj 6=1 θj , hence LΩ(me1, e1) = 0. From the first part of Proposition 2, this implies
me1 ∈ ∂Ω(e1).

Conversely, let us assume that me1 ∈ ∂Ω(e1). From the second part of Lemma 1, this
implies that θ ∈ ∂Ω(e1) for any θ such that θ1 = m and θi ≤ 0 for all i ≥ 2; and more
generally we have θ + c1 ∈ ∂Ω(e1). That is, any θ with θ1 ≥ m + maxi 6=1 θi satisfies
θ ∈ ∂Ω(e1). From Proposition 2, this is equivalent to LΩ(θ; e1) = 0.

Let us now determine the margin of LΩ, i.e., the smallest m such that me1 ∈ ∂Ω(e1). From

Lemma 1, this is equivalent to m ≥ mp1−Ω(p) for any p ∈ 4d, i.e., −Ω(p)
1−p1

≤ m. Note that
by Proposition 1 the “most competitive” p’s are sorted as e1, so we may write p1 = ‖p‖∞
without loss of generality. The margin of LΩ is the smallest possible such margin, given by
(22).
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B.5 Proof of Proposition 6

Let us start by showing that conditions 1 and 2 are equivalent. To show that 2 ⇒ 1, take
an arbitrary p ∈ 4d. From Fenchel-Young duality and the Danskin’s theorem, we have
that ∇(−H)∗(θ) = p ⇒ θ ∈ ∂(−H)(p), which implies the subdifferential set is non-empty
everywhere in the simplex. Let us now prove that 1 ⇒ 2. Let Ω = −H, and assume that
Ω has non-empty subdifferential everywhere in 4d. We need to show that for any p ∈ 4d,
there is some θ ∈ Rd such that p ∈ argminp′∈4d Ω(p′)− 〈θ,p′〉. The Lagrangian associated
with this minimization problem is:

L(p,µ, λ) = Ω(p)− 〈θ + µ,p〉+ λ(1>p− 1).

The KKT conditions are:




0 ∈ ∂pL(p,µ, λ) = ∂Ω(p)− θ − µ+ λ1
〈p,µ〉 = 0
p ∈ 4d, µ ≥ 0.

For a given p ∈ 4d, we seek θ such that (p,µ, λ) are a solution to the KKT conditions for
some µ ≥ 0 and λ ∈ R.

We will show that such θ exists by simply choosing µ = 0 and λ = 0. Those choices are
dual feasible and guarantee that the slackness complementary condition is satisfied. In this
case, we have from the first condition that θ ∈ ∂Ω(p). From the assumption that Ω has
non-empty subdifferential in all the simplex, we have that for any p ∈ 4d we can find a
θ ∈ Rd such that (p,θ) are a dual pair, i.e., p = ∇Ω∗(θ), which proves that ∇Ω∗(Rd) = 4d.

Next, we show that condition 1 ⇒ 3. Since ∂(−H)(p) 6= ∅ everywhere in the simplex, we
can take an arbitrary θ ∈ ∂(−H)(ek). From Lemma 1, item 2, we have that θ′ ∈ ∂(−H)(ek)
for θ′k = θk and θ′j = min` θ`; since (−H)∗ is shift invariant, we can without loss of generality
have θ′ = mek for some m > 0, which implies from Proposition 5 that LΩ has a margin.

Let us show that, if −H is separable, then 3⇒ 1, which establishes equivalence between all
conditions 1, 2, and 3. From Proposition 5, the existing of a separation margin implies that
there is some m such that mek ∈ ∂(−H)(ek). Let H(p) =

∑d
i=1 h(pi), with h : [0, 1] → R+

concave. Due to assumption A.1, h must satisfy h(0) = h(1) = 0. Without loss of generality,
suppose p = [p̃; 0k], where p̃ ∈ relint(4d−k) and 0k is a vector with k zeros. We will see
that there is a vector g ∈ Rd such that g ∈ ∂(−H)(p), i.e., satisfying

−H(p′) ≥ −H(p) + 〈g,p′ − p〉, ∀p′ ∈ 4d. (39)

Since p̃ ∈ relint(4d−k), we have p̃i ∈]0, 1[ for i ∈ {1, . . . , d − k}, hence ∂(−h)(p̃i) must
be nonempty, since −h is convex and ]0, 1[ is an open set. We show that the following
g = (g1, . . . , gd) ∈ Rd is a subgradient of −H at p:

gi =

{
∂(−h)(p̃i), i = 1, . . . , d− k
m, i = d− k + 1, . . . , d.

By definition of subgradient, we have

−ψ(p′i) ≥ −ψ(p̃i) + ∂(−h)(p̃i)(p
′
i − p̃i), for i = 1, . . . , d− k. (40)
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Furthermore, since m upper bounds the separation margin of H, we have from Proposition 5

that m ≥ H([1−p′i,p′i,0,...,0])
1−max{1−p′i,p′i}

=
h(1−p′i)+h(p′i)
min{p′i,1−p′i}

≥ h(p′i)
p′i

for any p′i ∈]0, 1]. Hence, we have

−ψ(p′i) ≥ −ψ(0)−m(p′i − 0), for i = d− k + 1, . . . , d. (41)

Summing all inequalities in Eqs. (40)–(41), we obtain the expression in Eq. (39), which
finishes the proof.

B.6 Proof of Proposition 7

Define Ω = −H. Let us start by writing the margin expression (22) as a unidimensional
optimization problem. This is done by noticing that the max-generalized entropy problem

constrained to max(p) = 1− t gives p =
[
1− t, t

d−1 , . . . ,
t

d−1

]
, for t ∈

[
0, 1− 1

d

]
by a similar

argument as the one used in Proposition 4. We obtain:

margin(LΩ) = sup
t∈[0,1− 1

d ]

−Ω
([

1− t, t
d−1 , . . . ,

t
d−1

])

t
.

We write the argument above as A(t) = −Ω(e1+tv)
t , where v := [−1, 1

d−1 , . . . ,
1
d−1 ]. We will

first prove that A is decreasing in [0, 1 − 1
d ], which implies that the supremum (and the

margin) equals A(0). Note that we have the following expression for the derivative of any
function f(e1 + tv):

(f(e1 + tv))′ = v>∇f(e1 + tv).

Using this fact, we can write the derivative A′(t) as:

A′(t) =
−tv>∇Ω(e1 + tv) + Ω(e1 + tv)

t2
:=

B(t)

t2
.

In turn, the derivative B′(t) is:

B′(t) = −v>∇Ω(e1 + tv)− t(v>∇Ω(e1 + tv))′ + v>∇Ω(e1 + tv)

= −t(v>∇Ω(e1 + tv))′

= −tv>∇∇Ω(e1 + tv)v

≤ 0,

where we denote by∇∇Ω the Hessian of Ω, and used the fact that it is positive semi-definite,
due to the convexity of Ω. This implies that B is decreasing, hence for any t ∈ [0, 1],
B(t) ≤ B(0) = Ω(e1) = 0, where we used the fact ‖∇Ω(e1)‖ <∞, assumed as a condition

of Proposition 6. Therefore, we must also have A′(t) = B(t)
t2
≤ 0 for any t ∈ [0, 1], hence A

is decreasing, and supt∈[0,1−1/d]A(t) = limt→0+A(t). By L’Hôpital’s rule:

lim
t→0+

A(t) = lim
t→0+

(−Ω(e1 + tv))′

= −v>∇Ω(e1)

= ∇1Ω(e1)− 1

d− 1

∑

j≥2

∇jΩ(e1)

= ∇1Ω(e1)−∇2Ω(e1),
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which proves the first part.

If Ω is separable, then ∇jΩ(p) = −h′(pj), in particular ∇1Ω(e1) = −h′(1) and ∇2Ω(e1) =
−h′(0), yielding margin(LΩ) = h′(0) − h′(1). Since h is twice differentiable, this equals
−
∫ 1

0 h
′′(t)dt, completing the proof.

B.7 Proof of Proposition 8

We start by proving the following lemma, which generalizes Lemma 1.

Lemma 2 Let Ω be convex. Then:

1. We have ∂Ω(y) = {θ ∈ Rd : 〈θ,y〉 − Ω(y) ≥ 〈θ,µ〉 − Ω(µ), ∀µ ∈ conv(Y)}.
2. If θ ∈ ∂Ω(y), then, we also have θ′ ∈ ∂Ω(y) for any θ′ such that 〈θ′ − θ,y′〉 ≤
〈θ′ − θ,y〉, for all y′ ∈ Y.

Proof of the lemma: The first part comes directly from the definition of Fenchel con-
jugate. To see the second part, note that, if θ ∈ ∂Ω(y), then 〈θ′,y〉 −Ω(y) = 〈θ′ − θ,y〉+
〈θ,y〉 − Ω(y) ≥ 〈θ′ − θ,y〉+ 〈θ,µ〉 − Ω(µ) for every µ ∈ conv(Y). Let µ =

∑
y′∈Y p(y

′)y′

for some distribution p ∈ 4|Y|. Then, we have 〈θ′ − θ,y〉 + 〈θ,µ〉 − Ω(µ) = 〈θ′ − θ,y〉 +∑
y′∈Y p(y

′)〈θ,y′〉 − Ω(µ) ≥ 〈θ′ − θ,y〉 +
∑
y′∈Y p(y

′)(〈θ′,y′〉 − 〈θ′ − θ,y〉) − Ω(µ) =
〈θ′,µ〉 − Ω(µ).

We now proceed to the proof of Proposition 8. Suppose that LΩ has the separation margin
property, and let θ = my. Then, for any y′ ∈ Y, we have 〈θ,y′〉+ m

2 ‖y−y′‖2 = m〈y,y′〉+
m
2 ‖y − y′‖2 = m

2 ‖y‖+ m
2 ‖y′‖2 = mr2 = 〈my,y〉 = 〈θ,y〉, which implies that LΩ(θ,y) = 0.

From the first part of Proposition 2, this implies my ∈ ∂Ω(y).

Conversely, let us assume that my ∈ ∂Ω(y). From Lemma 2, this implies that θ ∈ ∂Ω(y) for
any θ such that 〈θ −my,y′〉 ≤ 〈θ −my,y〉 for all y′ ∈ Y. Therefore, we have 〈θ,y〉−mr2 ≥
〈θ,y′〉 − m〈y,y′〉, that is, 〈θ,y〉 = 〈θ,y′〉 + m

2 ‖y − y′‖2. That is, any such θ satisfies
θ ∈ ∂Ω(y). From Proposition 2, this is equivalent to LΩ(θ;y) = 0.

Let us now determine the margin of LΩ, i.e., the smallest m such that my ∈ ∂Ω(y). From
Lemma 2, this is equivalent to mr2 − Ω(y) ≥ 〈my,µ〉 − Ω(µ) for any µ ∈ conv(Y), i.e.,
−Ω(µ)+Ω(y)
r2−〈y,µ〉 ≤ m, which leads to the expression (28).

B.8 Proof of Proposition 9

Let Ω(p) =
∑d

j=1 g(pj) + I4d(p), where g : [0, 1] → R+ is a non-negative, strictly convex,
differentiable function. Therefore, g′ is strictly monotonic on [0, 1], thus invertible. We
show how computing ∇(Ω)∗ reduces to finding the root of a monotonic scalar function, for
which efficient algorithms are available.
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From strict convexity and the definition of the convex conjugate,

∇(Ω)∗(θ) = argmax
p∈4d

〈p,θ〉 −
∑

j

g(pj).

The constrained optimization problem above has Lagrangian

L(p,ν, τ) :=
d∑

j=1

g(pj)− 〈θ + ν,p〉+ τ(1>p− 1).

A solution (p?,ν?, τ?) must satisfy the KKT conditions





g′(pj)− θj − νj + τ = 0 ∀j ∈ [d]

〈p,ν〉 = 0

p ∈ 4d, ν ≥ 0.

(44)

Let us define

τmin := max(θ)− g′(1) and τmax := max(θ)− g′
(

1

d

)
.

Since g is strictly convex, g′ is increasing and so τmin < τmax. For any τ ∈ [τmin, τmax], we
construct ν as

νj :=

{
0, θj − τ ≥ g′(0)

g′(0)− θj + τ, θj − τ < g′(0)

By construction, νj ≥ 0, satisfying dual feasibility. Injecting ν into (44) and combining the
two cases, we obtain

g′(pj) = max{θj − τ, g′(0)}. (45)

We show that i) the stationarity conditions have a unique solution given τ , and ii) [τmin, τmax]
forms a sign-changing bracketing interval, and thus contains τ?, which can then be found by
one-dimensional search. The solution verifies all KKT conditions, thus is globally optimal.

Solving the stationarity conditions. Since g is strictly convex, its derivative g′ is
continuous and strictly increasing, and is thus a one-to-one mapping between [0, 1] and
[g′(0), g′(1)]. Denote by (g′)−1 : [g′(0), g′(1)]→ [0, 1] its inverse. If θj − τ ≥ g′(0), we have

g′(0) ≤ g′(pj) = θj − τ ≤ max(θ)− τmin

= max(θ)−max(θ) + g′(1)

= g′(1).

Otherwise, g′(pj) = g′(0). This verifies that the r.h.s. of (45) is always within the domain
of (g′)−1. We can thus apply the inverse to both sides to solve for pj , obtaining

pj(τ) = (g′)−1(max{θj − τ, g′(0)}). (46)

Strict convexity implies the optimal p? is unique; it can be seen that τ? is also unique.
Indeed, assume optimal τ?1 , τ

?
2 . Then, p(τ?1 ) = p(τ?2 ), so max(θ − τ?1 , g

′(0)) = max(θ −
τ?2 , g

′(0)). This implies either τ?1 = τ?2 , or θ − τ?{1,2} ≤ g′(0), in which case p = 0 /∈ 4d,
which is a contradiction.
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Validating the bracketing interval. Consider the primal infeasibility function φ(τ) :=
〈p(τ),1〉−1; p(τ) is primal feasible iff φ(τ) = 0. We show that φ is decreasing on [τmin, τmax],
and that it has opposite signs at the two extremities. From the intermediate value theorem,
the unique root τ? must satisfy τ? ∈ [τmin, τmax].

Since g′ is increasing, so is (g′)−1. Therefore, for all j, pj(τ) is decreasing, and so is the
sum φ(τ) =

∑
j pj(τ)− 1. It remains to check the signs at the boundaries.

∑

i

pi(τmax) =
∑

i

(g′)−1(max{θi −max(θ) + g′ (1/d) , g′(0)})

≤ d (g′)−1(max{g′ (1/d) , g′(0)})
= d (g′)−1

(
g′ (1/d)

)
= 1,

where we upper-bounded each term of the sum by the largest one. At the other end,

∑

i

pi(τmin) =
∑

i

(g′)−1(max{θi −max(θ) + g′(1), g′(0)})

≥ (g′)−1(max{g′(1), g′(0)})
= (g′)−1(g′(1)) = 1,

using that a sum of non-negative terms is no less than its largest term. Therefore, φ(τmin) ≥
0 and φ(τmax) ≤ 0. This implies that there must exist τ? in [τmin, τmax] satisfying φ(τ?) =
0. The corresponding triplet (p(τ?),ν(τ?), τ?) thus satisfies all of the KKT conditions,
confirming that it is the global solution.

Algorithm 1 is an example of a bisection algorithm for finding an approximate solution;
more advanced root finding methods can also be used. We note that the resulting algorithm
resembles the method provided in Krichene et al. (2015), with a non-trivial difference being
the order of the thresholding and (−g)−1 in Eq. (46).

Algorithm 1 Bisection for ŷΩ(θ) = ∇Ω∗(θ)

Input: θ ∈ Rd, Ω(p) = I4d +
∑

i g(pi)
p(τ) := (g′)−1(max{θ − τ, g′(0)})
φ(τ) := 〈p(τ),1〉 − 1
τmin ← max(θ)− g′(1);
τmax ← max(θ)− g′ (1/d)
τ ← (τmin + τmax)/2
while |φ(τ)| > ε

if φ(τ) < 0 τmax ← τ
else τmin ← τ
τ ← (τmin + τmax)/2

Output: ∇ŷΩ(θ) ≈ p(τ)
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B.9 Proof of Proposition 10

We first need the following lemma.

Lemma 3 Let `(θ; ek) be defined as

`(θ; ek) :=

{∑
j ck,jφ(θj) if θ>1 = 0

∞ o.w.
,

where φ : R→ R+ is convex. Then, H` defined in (34) equals

−H`(p) = min
τ∈R

∑

j

(p>cj)φ
∗
( −τ
p>cj

)
.

Proof We want to solve

H`(p) = min
θ>1=0

∑

j

pj`(θ; ej) = min
θ>1=0

∑

j

pj
∑

i

cj,iφ(θi) = min
θ>1=0

∑

i

(p>ci)φ(θi),

where ci is a vector gathering cj,i for all j. Introducing a Lagrange multiplier we get

H`(p) = min
θ∈R|Y|

max
τ∈R

∑

i

(p>ci)φ(θi) + τ
∑

i

θi.

Strong duality holds and we can swap the order of the min and max. After routine calcu-
lations, we obtain

−H`(p) = min
τ∈R

∑

i

(p>ci)φ
∗
( −τ
p>ci

)
. (47)

We now prove Proposition 10. First, we rewrite `(θ; ek) =
∑

j 6=k φ(θj − θk) as `(θ; ek) =∑
j ck,jφ(θj − θk), where we choose ck,j = 0 if k = j, 1 otherwise, leading to p>cj = 1− pj .

Because φ(θj − θk) is shift invariant w.r.t. θ, without loss of generality, we can further
rewrite the loss as `(θ; ek) =

∑
j ck,jφ(θj) with dom(`) = {θ ∈ R|Y| : θ>1 = 0}. Hence,

Lemma 3 applies. We now derive closed form for specific choices of φ.

Hinge loss. When φ(t) = [1 + t]+, the conjugate is

φ∗(u) =

{
−u if u ∈ [0, 1]

∞ o.w.
.

The constraint set for τ is therefore C :=
⋂
j∈[d]

[
−p>cj , 0

]
=

[
−min
j∈[d]

p>cj , 0

]
. Hence

−H`(p) = min
τ∈C

dτ = −dmin
j∈[d]

p>cj .

This recovers Duchi et al. (2018, Example 5, §A.6) with a simpler proof. We next turn to
the following new results.
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Smoothed hinge loss. We add quadratic regularization to the conjugate (Shalev-Shwartz
and Zhang, 2016):

φ∗(u) =

{
−u+ 1

2u
2 if u ∈ [0, 1]

∞ o.w.
.

Going back to φ, we obtain:

φ(t) =





0 if t ≤ −1

t+ 1
2 if t ≥ 0

1
2(1 + t)2 o.w.

. (48)

The constraint set for τ is the same as before, C =

[
−min
j∈[d]

p>cj , 0

]
.

Plugging φ∗ into (47), we obtain

−H`(p) = min
τ∈C

τ2

2

d∑

j=1

1

p>cj
+ d τ. (49)

Since the problem is unidimensional, let us solve for τ unconstrained first:

τ = −d
/

(

d∑

j=1

1/(p>cj)). (50)

We notice that τ ≤ −minj p
>cj for cj ≥ 0 since

∑
j

mini p
>ci

p>cj
∈ [0, d]. This expression of

τ is not feasible. Hence the optimal solution is at the boundary and τ? = −minj p
>cj .

Plugging that expression back into (49) gives the claimed expression of H`.

Squared hinge loss. When φ(t) = 1
2 [1 + t]2+, the conjugate is

φ∗(u) =

{
−u+ 1

2u
2 if u ≥ 0

∞ o.w.
.

The constraint is now τ ≤ 0. Hence, the optimal solution of the problem w.r.t. τ in (47) is
now (50) for all p ∈ 4d, cj ≥ 0. Simplifying, we get

H`(p) =
1
2d

2

∑d
j=1 1/(p>cj)

.
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