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1 Introduction

The imaging (and spectroscopy) of astrophysical systerpsoisably one of the most impor-
tant elements of astronomy: without a correct understandirithe chain of causation between
the emission of photons from a source, their transmissigutih a medium, and their eventual
capture by detectors on Earth, we cannot produce any valights as to the nature of the astro-
physical system we observe.

The physics we are concerned with, is of couia@iative transfer The interaction of the radi-
ation field with opacity sources such as dust and gas diredtlyence the images we make of
astrophysical systems. For example, in a star-disc syshengdust grains in the disc absorb and
scatter starlight, as well as inducing polarisation. Thea#igns governing radiative transfer can
be solved analytically in certain cases, i.e. if the systespherically symmetric, or the distribu-
tion of opacity sources is homogeneous. In reality, asiysjgll systems are not axisymmetric,
and the medium is in general inhomogeneous. In these citameess, the equations of radiative
transfer become intractable, and can only be solved nuailgric

There are many means of approximating radiative transfiee: sich method which is gaining
credence is the Monte Carlo Radiative Transfer (MCRT) tegpien which “mimics” reality by
tracking the passage of photons through a density field toglaentual end (either absorption or
escape from the medium). Although a process originallynegrhas CPU-intensive, systems can
now be imaged using Monte Carlo Techniques on a desktop CRlithon reasonable accuracy
on timescales of a few hours.

This lecture intends to serve as an introduction to thedentques, and should hopefully be a
sufficient resource for interested audience members tdaeesd implement their own codes.
The lecture will focus on the use of MCRT in the context of stad planet formation: however,
MCRT has had great successes in larger scale systems, wkiceader is free to explore using
the references given at the end (hopefully well-informeahits to these notes).

| am indebted to Kenny Wood of the University of St. Andrewsiftroducing me to MCRT;
the information provided by him to me is referenced at the@rttiese notes.
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1.1 TheRadiative Transfer Problem

Figure 1:Defining the specific intensity

Let’s begin by outlining the problem to be solved. Consideeam of radiation. This beam is
characterised by its specific intensity. This is the beam’s energy that passes through surface
areadA (at an angle ofl to the surface normal) within a solid angl€, in timedt and frequency
rangedv (seeFigurel).

dFE,
L= cos 0 dA dt dv dS2 (1)
The equation of radiative transfer describes the evolubiothis beam as it passes through a

medium:

L S (2)
K, 1S the opacity of the medium, ang is its emissivity. All terms in these equations are depen-
dent on the frequency of the beam. The functional forms ofoibecity and emissivity, which
are sensitive to the composition and dynamics of the medanenextremely complex when con-
sidered over all frequencies, and are a formidable obstacky attempts to model radiative
transfer. The above equation can be recast in terms of theabgepth,r, :
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dl,
dr,

whereS, = j,/k, is the source function of the medium, and the optical depthlofe of sight
L is defined as

=—1,+5, 3)

= [ pndt @

Radiative transfer is an inherently three-dimensionabfenm, with variables that can have up to
four dimensions (when frequency is included). The full edidie transfer equation can only be
solved analytically in special cases and simple geometinegeneral it must be approximated,
or solved numerically.

1.2 Scattering and Phase Functions

When a photon interacts with the medium, one of two thingshegwpen: it can be scattered,
or it can be absorbed. Which eventuality occurs dependsealltiedq a, which is simply the
probability that a photon is scattered (and not absorbed):

o= "9 (5)

/n’SO—S _'_ nao—a

wheren is the number density, and is the cross section (subscripts depiciting scatterers and
absorbers respectively). Photon absorption occurs iniatyaf different ways (line absorption,
resonant line scattering, continuum absorption). In ganéhe terms in equation (5) are de-
pendent on incident photon wavelength. For the sake of siityplwe will consider continuum
absorption only. Typically, absorption of a photon resultse-emission at a new frequency (in
a different direction of travel).

Scattering is governed by the angular phase funcii¢tos ©) of the scattering particle. This is
simply the probability that the photon will be scatteredhirits initial direction through an angle
0. For example, the isotropic phase function is

P(cos®©) = % (6)

and the Rayleigh phase function (commonly used in scatjatimospheres) is

P(cos©) = g(l + cos® ©) (7)

We have seen the use of probabilities to describe the phgsissattering and absorption: if
we can do something similar for finding the location of int#i@n, then we have a completely
probabilistic formalism for tracking the progress of aniundual photon through a medium. Let
us construct the probability that a photon can traversetartber without interaction. First, we
define the mean free path:
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1
(= — 8)
PR
Which of course is the mean distance between photon intensctFrom this we can deduce that

the probability that a photon interacts within an infiniteal lengthdz is

d% =prdx (9)
Hence, the probability of no interaction withifx: is
d
1—733:1—;)&(135 (10)
If we then define a distanceusing N segments of lengttx, we can then write
N
_ _ pPRT _ pPRT _ _pKT
Pl = (1= Y (1 250) L (1 o) 1)

If N is sufficiently large, then this can be written

Plz)=1—prox=e" (12)
Where we have utilised the Taylor expansion for the expoakfinction, and substituted for

optical depth. Therefore, the probablity that an intemattioesoccur is the complementary
probability

P(r)y=1—¢T" (13)
We now have all the tools for using the Monte Carlo Method tlvesdhe radiative transfer
equation.

2 TheMonteCarlo Method

As we have seen, it is difficult to know how a single photon Wwehave in a medium. What is
easier to constrain is how an ensembl@digbhotons behave in terms of their statistical properties.
This is ideally suited for Monte Carlo methods. The basicpdure is as follows:

1. Emit N photon packetghereafter referred to simply as photons).

2. Track the progress of each photon, one-by-one, throughmiadium. The locations of
interaction are found by sampling optical depth from thérdiation described in equation
(13). The scattering and absorption of the photons are méted by sampling from the
albedo and phase functions - how this is done will be desgiibenore detail below.

3. As photons exit the medium, capture them on a pixelatedjegmdane (much like real
photons are captured on a CCD).

The rest of this lecture will follow the Monte Carlo RadiaiVransfer (MCRT) process chrono-
logically, from the emission of a photon to its eventual captn the image plane.
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2.1 Sampling Random Variables from a Probability Distribution

A key feature of MCRT is the sampling of parameters from pholig distribution functions
(PDFs). The two main methods of sampling from distributiosed here are:

2.1.1 TheCumulative Distribution Method

The most straightforward means of sampling from the curivdatistributiony(z) utilisesthe
fundamental principle

/a " P(x)dz = ¥(zo) (14)

wherea here is the lower limit of the distribution function, ang is the parameter we wish to
obtain. All that’s required is the generation of a random beng, such that

¢= Qﬂ(%) (15)

And inverting to obtainr,. In the case of optical depth, equation (13) is already a tatia
distribution function (as we have integrated over the dis¢éa’), So sampling optical depths from
this distribution uses the equation

7= —log(1— ) (16)

2.1.2 The Accept/Reect Method

If an analytic solution for, is not possible, then the accept-reject method is a viatderaltive.
Provided that the peak of the PDF is known, then the algorliklow can be used:

1. Sampler, from a uniform distribution within the range of the PDF.
2. Sampley from a uniform distribution between zero and the peak vafue®PDFy,,,...
3. Calculateyy = P(z).

4. If y > yo, then reject thisy and return to 1. Otherwise, accept this

3 Howto Emit a Photon

The birth of a photon is very simple in MCRT. The only issue otenis how many photons
are emitted by a given object. This is solved by calculatheytbtal luminosity of all emitting
objects in the system, and using the prescription:

Lo jec
N’y,object = N’y,tot ( & t) (17)

Ltot
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Using this prescription clearly conserves the total nunab@hotons, and allows more luminous
objects to emit more photons than less luminous objectsttiagbbjects in MCRT can be split
into two classes:

1. Point Sources - the classic example being a star

2. Diffuse Emission from the local density field- e.g. fromratpstellar disc surrounding a
star

For point sources, the luminosity is approximated by a Wdady. However, only a finite range
of frequencies can be simulated:

L, = 47°R? / " BT dy (18)
Where we have utilised the relation
T4
/ B(Ty)dy = = (19)
m
For diffuse emission, the luminosity is:
Lcell = 47Tmcell/ - /QVBV (Tcell)dy (20)

Usually, emission is assumed to be isotropic: the directibemission (usually measured in
@, ¢), or (i, ), whereu = cos 6) is sampled from a uniform distribution:

p=—1+2 (21)
¢ = 2 (22)

The photon wavelength is typically sampled from a Planckithstion (given the effective tem-
perature of the emitter).

4 How to Calculate Optical Depth

Calculating the optical depth along a line of sight is by fa& most CPU intensive portion of any
MCRT code. Calculating a line integral through an inhomagers medium is very difficult: the
value ofr becomes extremely sensitive to the line of sight - this izedithe key reason that
typical radiative transfer processes cannot be solveqtceilly.

4.1 Gridding

A typical solution to the inhomogeneous density field is td grin 3 dimensions. The nature of
the grid used depends on the geometry of the system. Thes@ertgrid is of course the most
simple; however, systems with high degrees of sphericahsstry are better suited to spherical
polar or cylindrical polar grids.
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4.2 Ray TracinginaGrid

Let’s first consider the Cartesian Grid for simplicity.

421 Cartesian Grids

p <

Xface

P(x.y,2) Le——=

-

Figure 2:Ray tracing in a Cartesian Grid

Inside each cell, the value of the density is constant. Thexethe optical depth through the cell
is:

Teell = Peell K S (23)

wheres is the distance travelled inside the cell along the phottmafectory (sedrigure 2).
Determinings is straightforward for Cartesian Grids: if we know the phosadirection vector
n = (n,,n,,n,), and the positions of the nearest cell fateg,.., y race, 2face), then we can cal-
culate the distance to each cell wall along the photon’s¢tayy.

The resulting equations for these distances are simplerteeddut the derivation of them is
informative, especially for when the grids become more getacally complex. Let's derive the
result for ther cell face: we define the cell face as

T = Tface (24)

And the equation of a line with unit direction vector= (n,,n,, n.) as

s =11+ sn (25)
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Wherer; is the photon’s original position. The x-component of thasiation is:

Tog = T + SyNy (26)

Settingzr,; = z andz, = x 4., We can solve simply fos, (and similarly fory andz):

5, = o T (27)
Ny

Sy = Yface — Y (28)
Ty

s, = Zface T < (29)
n,

To find the distance, we must discover which cell face the photon hits first, iuepdy

s = MIN(sz,Sy,S:) (30)

The optical depth along a given line of sight,, is simply the sum of the optical depths in each
cell the photon intersects.

4.2.2 Spherical Polar Grids

q)face

Figure 3:Ray tracing in a Spherical Grid

Calculating intersections in a spherical polar grid is famin principle to the Cartesian grid.
We calculates = MIN(s,, sp, s4), Where these are distances to the nedrest ¢) faces. The
geometry is, however, somewhat more complex.

Firstly, we can define the cell faces using
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L5+ Y5 + 25 = THace (31)

(Asrq is our desired endpoint). If we substitute the 3 compondrggoation (25) and rearrange,
we get:

s (ni + 7%2/ + ni) + s (z1ng, + yiny + z21n,) + (xf +yi+ 27 — r?aae) =0 (32)

This is now a quadratic equation fer Solving this gives two values for = s, any negative
solutions are rejected. A similar procedure can be carnigdias s, ands,. The equations of the
surfaces are:

T3+ Y5 + 25 tan® O e = 0 (33)
X2 sin ¢face — Y2 COS ¢face =0 (34)

The observant will notice that the equation &f,.. will become undefined & = 7/2. In this
case, the surface of interestzis= 0, and the equation for calculating can be used instead.

4.3 Finding the Scattering L ocation

[
»

Xface

Yeace
S

Trun=Tscatter -

A 4
>

Trun<Tscatter Trun>Tscatter

Figure 4:Deducing the Scattering Location (in a Cartesian Grid)

Firstly, the optical depth to scattering...... is determined, using equation (16). The photon
is then allowed to travel along its trajectory: the opticapth from each cell is calculated and
logged, until the running totat,.,, > 7..aer- ONCe this criterion is satisfied, the scattering
location is found by travelling a distande into the last cell traversed (s€&gure 4):

dS _ Tscatter — Trun (35)
Peell K
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5 How to Scatter a Photon

5.1 Isotropic Scattering
Systems with isotropic scattering are the simplest to mofdislen a scattering event occurs, the
photon’s direction must be resampled using the same ppéistrias at emission:
w=—-1+2¢ (36)
¢ =2n( (37)

Unfortunately, real systems do not usually exhibit isoicgeattering. Also, the scattering event
usually invokes a non-zero polarisation in the photon. Tre&lism for calculating scattering
and polarisation is described below.

5.2 Anisotropic Scattering and Polarisation

Z A

>y

0F) d1

Figure 5:The Geometry of Scattering (Chandrasekhar 1960)

The Stokes vector is used to trace the various propertidseqgfitoton packet: this is constructed
from the four Stokes parametefs, @, U, V'), where | is the intensity, Q and U are the linear
polarisation - measured at 45 degrees to each other - andhé isiricular polarisation. Often,
the linear polarisation is expressed as
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2 2
p— L;U (38)
The scattering is described by a matrix M which acts on th&e&stoector as follows:

The R matrices are Mueller matrices, which describe rotatiorswbfrom the observer’s frame.
They are defined as:

0 0 0
cos2y sin2¢y 0
—sin2y cos2y 0
0 0 1

The scattering matrix M is dependent on the dominant sourseattering in the medium. It can
be expressed as a function of several scattering paramasesbown below:

R(¢) = (40)

S O O

M, M, O 0
My, M, O 0
0 0 M; —M,
0 0 My M

O is the scattering angle as observed from the incident phaitection, and: is the albedo (as
described before). In general, the components of the ma&fyiare dependent of: if magnetic
fields are present, then the entire matrix can be filled. Fesdlpurposes, magnetic fields are
neglected.

M(©) =a (41)

The scattering angl® and azimuthal angle are sampled randomly from the scattering matrix.
Firstly, we obtain® using the cumulative distribution method:

1€ M, sin ©'de’
F = 42
(©) Jo M sin ©de’ (42)
Once we hav® , we can calculate:
1 My — M\ P
Fol0) =z (0= am) 70%) “3

Implementing this scattering and polarisation in MCRT iséohus:
1. Randomly samplg from a uniform distribution.
2. Samplg O, ¢) from the scattering matrix M.
3. Calculates, 0, ¢s.

4. CalculateS’” using equation (39).
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521 Dust Scattering

Dust scattering is typically described by a single-peakedydy-Greenstein (HG) function, al-
though other functions are sometimes used. The scattertigxV has elements

1—92
Mlz 3/2 (44)
(14 g% —2gcos©)
1 —cos?©
My = —p My ——F— 45
2 Di 1T cos2O (45)
2cos©
M3y =My —— 46
s "1+ cos20© (46)
1 —cos? Oy
My =—pM—— 47
! b "1+ cos? O (47)

These are dependent on the following parameters:

e g - the Scattering asymmetry parameter. It takes values leetWeand 1: O indicates
completely isotropic scattering, 1 indicates forwardsthing scattering.

p; - the Peak Linear Polarisation
e p. - the Peak Circular Polarisation
e s -the skew factor, generally taken to be unity (e.g. White7@)9.

¢« 0, =0(1+313s¢ %)

To first order, this approximates Mie Scattering (the scateof light from rigid spheres), and
works best in the ultraviolet. At optical wavelengths, tlee@and order HG function is a better
approximation.

To sampled, we usel/; above and substitute into equation (42) to get:
1-¢g2 12
1+ 92 B {1794329(}
29
The dust scattering parameters listed above are wavelelegéndent, so each photon emitted
will require values fof(a, , g, pi, pe, s). These are generally interpolated from a dataset given as
input.

cos© = (48)
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6 Outputs

As we track the progress of each individual photon, we a@aéd a high degree of control over
output. We can track photons as they exit the system, anchbm inz andy to make images
(given a specification of the image plane); we can simplyextblall photons and bin by their
wavelength)\ to obtain spectra; or we can bin {m, y, \) to create a datacube, akin to Integral
Field Units (IFU).

6.1 Images

System

Figure 6:Defining the Image Plane

To obtain images, an image plane must be defined before treeisadn. An image plane is
typically defined by its angles of orientation to the systéyn ¢,) (seeFigure 6). This allows
us to extrapolate the position of a photon on the image plginen its last position in the grid

(z,y,2):

Timage = % sin 6, — y cos b, sin ¢, — x cos 0, cos ¢, (49)

Yimage = Y COS ¢v — xsin ¢v (50)
It is then straightforward to bin photons inte, y) bins, which are analogous to the, y) pixels
of a CCD. If wavelength data is to be kept then a similar bigrprocedure is used foralso.

6.2 Flux Normalisation

To link the outputs to observables, we must normalise the faimepresent the flux received. We
have already calculated the total luminosity of the systequétion (17)), and we have specified
that every photon will carry
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LtotAt
N’y,tot

Typically At = 1 for most cases, so each photon emits an equal fraction obthkdnergy,
which is then received in the pixels of the image plane. Itasimon practice to choose units
such that numerically., = 1, and hence the total energy received in these uniis js = NV, ;o
Therefore, if we wish to receive fluxes, then the pixel valaesmultiplied by

E, =

(51)

_ Ltot
= d2

f (52)

whered is the distance to the observer.

[/ Errors

MCRT is by definition a stochastic process: the random numbsed introduces random sam-
pling errors. Fortunately, these errors are simple to diyanThe emission (and capture) of
photons is essentially a Poisson process, so the errorfethtenust obey Poisson statistics.
Therefore, the error in each pixel bin of the datactbeg, k) is simply

Eiju,
Nij

(53)

Oijk =

Therefore, with the correct normalisation, the accuradpnefimages (and SEDs) is quantifiable.
This also illustrates one of the weaknesses of MCRT: to &etgeod signal in an image, a large
number of photons must be emitted and captured.

8 Computational Constraints

The timescale for an MCRT code to complete can be simply petrésed:

T ~ NyNyieps (54)

WhereN;,.,s describes the (average) number of calculation steps esfjtorsimulate a photon’s
entire journey in the medium until its eventual egress. Weeastimate this as:

d’Y
dzx
Whered, is the typical path length of a photon, aitd is the resolution of the grids used. This
will be sensitive to the amount of scattering the photonixese

Nsteps = (55)

d’y = Nscattg (56)
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Where/ is the mean free path, as before. For a simple sphE€rg,;; can be approximated.
Assuming that the photon is free to scatter in 3 dimensiamsilae sphere has radids then the

photon must travel approximate{)/Nmtt /3 mean free paths to escape:

NSC(J,
R= Ly (57)
3
This gives
R2
dv ~ 7 (58)
and hence
R? R
T~N,— ~ N, — 59
Yz " ST T @ (59)

Where< 7 > is the typical optical depth of the system. However, MCRTasaegyally deployed

in complex, inhomogeneous circumstances, and scalingae$aare often difficult to apply (if
possible at all!). Typically)N, > 10° photons for systems that are optically thin to be imaged
with a sufficient level of accuracy: if systems are very ogiticthick or geometrically complex,
then this number must become even larger. In the past, thditcan has proved to be prohibitive
when using this technique - however, modern desktop CPUgaekV.,, ~ 10° photons within

a few hours.

9 Advanced Methods

The above information is enough to produce a worthy MCRT imggode for most purposes.
However, there are more advanced methods currently in ussghadd extra utility to the algo-
rithm. The interested reader can find information about sohtleese methods below.

9.1 Radiative Equilibrium

Up until this point, it has been assumed that the temperatmeture of the medium is known
- perhaps the input grid is the output from a hydrodynamigaugation, which has explicitly
calculated the temperature of each cell. However, MCRT eaunded to calculate this tempera-
ture structure (while still providing images and SEDs of slgetem), using a procedure known
asRadiative Equilibrium

We carry out MCRT as normal, following photon packets thitotige medium, allowing scat-
tering as usual. But, if a photon is absorbed in a cell, thésdelmperature is increased. In
order that energy is conserved, the photon is immediateiynitted at a new frequency, which
is determined by the cell’'s temperature. This process coa$ until the packets have escaped
the medium. As the number of photons absorbed in each cedlases, the temperature structure
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relaxes towards an equilibrium solution. Radiative Eduilim has several advantages over the
techniques described previously:

1. The contribution to the radiation field due to the diffusedium is automatically included
(only point source emission needs to be added as input).

2. It can calculate both the temperature structure and tize@Ehe medium concurrently.
3. The entire process is self-consistent, and no prior m&tion about the medium’s temper-
ature structure is required.
9.1.1 Calculating Temperature Structure

To calculate the temperature structure, we must first assiateéhe system is in local thermo-
dynamic equilibrium (LTE). This in effect demands that amgrgy absorbed by any celmust
be equal to its emission:

Bt = B (60)

Let's begin with emission. The thermal emissivity of the tdas

ju = p"'iz/Bz/(T) (61)

We can then calculate the total (bolometric) emitted enbygytegrating;j, over frequency (and
volume):

Ee™ = At / dv; / priy By (T)dv (62)
We can simplify this by using the definition of the Planck apac
[ rB,(T)dv
And the fact that
T4
/ B,(T)dv = B(T) = 2 (64)
s
To give
Ee™ = dnAt / kp(T)B(T)pdV, (65)

As we are working in a gridded system, each cell has a condasity and temperature. This
then simplifies to
E{™ = AnAtkp(T;) B(T;)m; (66)

Where we have integrated the density over volume to give tgsmmside the cell. Calculating
the absorbed energy is easy:
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N; L A
B = N,E, = Nileor A (67)
N’y,tot
WhereN; is the number of photons the cell has absorbed. Using Equé@®), we have
N; Lyt At
U — A Atkp(T)B(T)m; (68)
N’y,tot
Rearranging (and substituting f&(7")) gives the final result
N; L
oT} e (69)

P 4N’y,t0t/€P(iFi)mi
Unfortunately, we now have an implicit equation #r which we must solve for every absorption

event. Fortunately, the Planck opacity (for dust scattgris slowly varying with T, so we can
use simple iteration to achieve a solution without too mumtmgutation.

9.1.2 Re-emission and Frequency Adjustment

The observant will have already realised that there is annsistency present. Every photon is
re-emitted immediately after it is absorbed, and its frexyewill depend on the cell’'s emissiv-
ity, and hence its temperatute. But, the cell’s temperature is being constantly alteredhay
iteration described above. Therefore, the frequency ofgtsemitted previously will have been
emitted from an incorrect frequency distribution.

This can be corrected photon by photon using a frequencgtid@nt technique (Bjorkmann and
Wood (2001)). Prior to emitting the current packet, the balf emitted packets using a (specific)
emissivity

.]1// = K;I/BI/(E - AT) (70)

Where AT is the temperature increase resulting from the absorptidheolast packet. So,
an additional amount of energy must be radiated away, inrdadeorrect for this temperature
difference, which we can express as a change in emissivity:

If we ensure thaf\T"is small (i.e. we keef’, small by emitting a sufficient number of photons),
then the equation above can be approximated by

dB,
dT
We now have a distribution from which to correctly selecgfrency from. Every photon that
is absorbed is re-emitted, and we use the shapkjpfto define the frequency. The probability
distribution used is

Aj, = kK, AT

(72)
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Kk, (dB
Pv)=—= < ") (73)
C \ dT -1
Where C is a normalisation constant:
o0 dB,
= - 74
¢ /0 o ( aT ) dv (74)

9.2 GridlessMCRT

We have assumed throughout this lecture that in order taledécoptical depths along a line of
sight, the density field needs to be gridded. In reality, ihisot always true: although gridding
the field is straightforward and useful, it is possible thatkeasity field exhibits fluctuations on
scales smaller than the grid scale length, or that a densityii extremely irregular

One example of defining a density field without a grid is therfalism of Smoothed Particle
Hydrodynamics (SPH). SPH uses a disordered ensemble a€lparfwith a given mass), to
define the density field using an interpolating kernedmioothing kernalV:

p(r) = Xm;W(r —r;, h) (75)

Typically, the smoothing kernel is constructed from a setubic splines, but for these pur-
poses we can assume the kernel is Gaussian (and sphengalhyedric, i.e.W is a function of
separation only).

2

1 z
W(r,h) = ﬁhe h (76)

A key parameter is themoothing lengtth: typically, instead of being forced to sum over all
SPH particles in the system, the kernel is parametrisedagootily the nearest neighboursrto
are used. Thereforé,is selected for each particle so that each particle¥as,, nearest neigh-
bours within a sphere of radi@%, sometimes known as tremoothing volumeThis allows us
to think of each SPH particle as a fluid element which occupiésite region (the smoothing
volume rather than a point source).

There are now two means by which the density field can be @kualilising the above technique.
The first is the “gather method”, which implies assigning aething length to the locatior:

p(r;) = X;m;W(r; —rj, hi) (77)

Wherej indicates all particles which are within the smoothing vokiofr;.

IAdaptive Mesh Grids and other forms of tesselation are alkglto tackle these problems, but these can be
notoriously difficult to implement!
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The second is the so-called “scatter” method, where theityaasalculated by calculating the
contribution from every smoothing volume which contains kbcationr, using the smoothing
lengths of each particle:

p(I‘) = Ejij(I' — Iy, hj) (78)

Wherej indicates all particles with a smoothing volume containind)sing this technique, we
can trace a ray in this density field, and discover which plagiare intersected by this ray.

)

‘\

N\

Figure 7: Ray Tracing in a SPH density field. This illustrates the cpbed the smoothing
volume

We now have to integrate the density through these smootiolugnes. As the kernel is defined
analytically, we can do most of the hard work pre-simulatibhe integral varies as a function of
the impact parametér(seeFigure 7). If we do the calculation for a smoothing volume contain-
ing an SPH patrticle of unit mass and unit smoothing lengthgfeeries of values dfbetween 0
and 1), we can then scale this result to volumes of any massaothing length.

This gridless approach has the key benefit of being able teehayy geometry, of varying size
scales, as well as connecting radiative transfer techaiguh a well established algorithm for
hydrodynamics, allowing images to be made of theoretidabpbysical systems without using
any gridding approximations.
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