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1 Introduction

The imaging (and spectroscopy) of astrophysical systems isprobably one of the most impor-
tant elements of astronomy: without a correct understanding of the chain of causation between
the emission of photons from a source, their transmission through a medium, and their eventual
capture by detectors on Earth, we cannot produce any valid insights as to the nature of the astro-
physical system we observe.

The physics we are concerned with, is of courseradiative transfer. The interaction of the radi-
ation field with opacity sources such as dust and gas directlyinfluence the images we make of
astrophysical systems. For example, in a star-disc system,the dust grains in the disc absorb and
scatter starlight, as well as inducing polarisation. The equations governing radiative transfer can
be solved analytically in certain cases, i.e. if the system is spherically symmetric, or the distribu-
tion of opacity sources is homogeneous. In reality, astrophysical systems are not axisymmetric,
and the medium is in general inhomogeneous. In these circumstances, the equations of radiative
transfer become intractable, and can only be solved numerically.

There are many means of approximating radiative transfer: one such method which is gaining
credence is the Monte Carlo Radiative Transfer (MCRT) technique, which “mimics” reality by
tracking the passage of photons through a density field to their eventual end (either absorption or
escape from the medium). Although a process originally regarded as CPU-intensive, systems can
now be imaged using Monte Carlo Techniques on a desktop CPU towithin reasonable accuracy
on timescales of a few hours.

This lecture intends to serve as an introduction to these techniques, and should hopefully be a
sufficient resource for interested audience members to develop and implement their own codes.
The lecture will focus on the use of MCRT in the context of starand planet formation: however,
MCRT has had great successes in larger scale systems, which the reader is free to explore using
the references given at the end (hopefully well-informed thanks to these notes).

I am indebted to Kenny Wood of the University of St. Andrews for introducing me to MCRT;
the information provided by him to me is referenced at the endof these notes.
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1.1 The Radiative Transfer Problem

Figure 1:Defining the specific intensity

Let’s begin by outlining the problem to be solved. Consider abeam of radiation. This beam is
characterised by its specific intensityIν . This is the beam’s energy that passes through surface
areadA (at an angle ofθ to the surface normal) within a solid angledΩ, in timedt and frequency
rangedν (seeFigure 1).

Iν =
dEν

cos θ dA dt dν dΩ
(1)

The equation of radiative transfer describes the evolutionof this beam as it passes through a
medium:

dIν
dℓ

= −Iνκν + jν (2)

κν is the opacity of the medium, andjν is its emissivity. All terms in these equations are depen-
dent on the frequency of the beam. The functional forms of theopacity and emissivity, which
are sensitive to the composition and dynamics of the medium,are extremely complex when con-
sidered over all frequencies, and are a formidable obstacleto any attempts to model radiative
transfer. The above equation can be recast in terms of the optical depth,τν :
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dIν
dτν

= −Iν + Sν (3)

whereSν = jν/κν is the source function of the medium, and the optical depth ofa line of sight
L is defined as

τν =
∫

L
ρκν dℓ (4)

Radiative transfer is an inherently three-dimensional problem, with variables that can have up to
four dimensions (when frequency is included). The full radiative transfer equation can only be
solved analytically in special cases and simple geometries: in general it must be approximated,
or solved numerically.

1.2 Scattering and Phase Functions

When a photon interacts with the medium, one of two things canhappen: it can be scattered,
or it can be absorbed. Which eventuality occurs depends on the albedo, a, which is simply the
probability that a photon is scattered (and not absorbed):

a =
nsσs

nsσs + naσa

(5)

wheren is the number density, andσ is the cross section (subscripts depiciting scatterers and
absorbers respectively). Photon absorption occurs in a variety of different ways (line absorption,
resonant line scattering, continuum absorption). In general, the terms in equation (5) are de-
pendent on incident photon wavelength. For the sake of simplicity, we will consider continuum
absorption only. Typically, absorption of a photon resultsin re-emission at a new frequency (in
a different direction of travel).

Scattering is governed by the angular phase functionP (cosΘ) of the scattering particle. This is
simply the probability that the photon will be scattered from its initial direction through an angle
Θ. For example, the isotropic phase function is

P (cosΘ) =
1

2
(6)

and the Rayleigh phase function (commonly used in scattering atmospheres) is

P (cos Θ) =
3

8
(1 + cos2 Θ) (7)

We have seen the use of probabilities to describe the physicsof scattering and absorption: if
we can do something similar for finding the location of interaction, then we have a completely
probabilistic formalism for tracking the progress of an individual photon through a medium. Let
us construct the probability that a photon can traverse a distancex without interaction. First, we
define the mean free path:
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ℓ =
1

ρκ
(8)

Which of course is the mean distance between photon interactions. From this we can deduce that
the probability that a photon interacts within an infinitesimal lengthdx is

dx

ℓ
= ρ κ dx (9)

Hence, the probability of no interaction withindx is

1 −
dx

ℓ
= 1 − ρ κ dx (10)

If we then define a distancex using N segments of lengthdx, we can then write

P (x) =
(

1 −
ρ κ x

N

)

.
(

1 −
ρ κ x

N

)

... =
(

1 −
ρ κ x

N

)N

(11)

If N is sufficiently large, then this can be written

P (x) = 1 − ρ κ x = e−τ (12)

Where we have utilised the Taylor expansion for the exponential function, and substituted for
optical depth. Therefore, the probablity that an interaction doesoccur is the complementary
probability

P (τ) = 1 − e−τ (13)

We now have all the tools for using the Monte Carlo Method to solve the radiative transfer
equation.

2 The Monte Carlo Method

As we have seen, it is difficult to know how a single photon willbehave in a medium. What is
easier to constrain is how an ensemble ofN photons behave in terms of their statistical properties.
This is ideally suited for Monte Carlo methods. The basic procedure is as follows:

1. EmitN photon packets(hereafter referred to simply as photons).

2. Track the progress of each photon, one-by-one, through the medium. The locations of
interaction are found by sampling optical depth from the distribution described in equation
(13). The scattering and absorption of the photons are determined by sampling from the
albedo and phase functions - how this is done will be described in more detail below.

3. As photons exit the medium, capture them on a pixelated image plane (much like real
photons are captured on a CCD).

The rest of this lecture will follow the Monte Carlo Radiative Transfer (MCRT) process chrono-
logically, from the emission of a photon to its eventual capture in the image plane.
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2.1 Sampling Random Variables from a Probability Distribution

A key feature of MCRT is the sampling of parameters from probability distribution functions
(PDFs). The two main methods of sampling from distributionsused here are:

2.1.1 The Cumulative Distribution Method

The most straightforward means of sampling from the cumulative distributionψ(x0) utilisesthe
fundamental principle:

∫ x0

a
P (x)dx = ψ(x0) (14)

wherea here is the lower limit of the distribution function, andx0 is the parameter we wish to
obtain. All that’s required is the generation of a random numberζ , such that

ζ = ψ(x0) (15)

And inverting to obtainx0. In the case of optical depth, equation (13) is already a cumulative
distribution function (as we have integrated over the distancex), so sampling optical depths from
this distribution uses the equation

τ = − log(1 − ζ) (16)

2.1.2 The Accept/Reject Method

If an analytic solution forx0 is not possible, then the accept-reject method is a viable alternative.
Provided that the peak of the PDF is known, then the algorithmbelow can be used:

1. Samplex0 from a uniform distribution within the range of the PDF.

2. Sampley from a uniform distribution between zero and the peak value of the PDFymax.

3. Calculatey0 = P (x0).

4. If y > y0, then reject thisx0 and return to 1. Otherwise, accept thisx0.

3 How to Emit a Photon

The birth of a photon is very simple in MCRT. The only issue of note is how many photons
are emitted by a given object. This is solved by calculating the total luminosity of all emitting
objects in the system, and using the prescription:

Nγ,object = Nγ,tot

(

Lobject

Ltot

)

(17)
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Using this prescription clearly conserves the total numberof photons, and allows more luminous
objects to emit more photons than less luminous objects. Emitting objects in MCRT can be split
into two classes:

1. Point Sources - the classic example being a star

2. Diffuse Emission from the local density field- e.g. from a protostellar disc surrounding a
star

For point sources, the luminosity is approximated by a blackbody. However, only a finite range
of frequencies can be simulated:

Ls = 4π2R2
s

∫ νmax

νmin

Bν(Ts)dν (18)

Where we have utilised the relation

∫

Bν(Ts)dν =
σT 4

s

π
(19)

For diffuse emission, the luminosity is:

Lcell = 4πmcell

∫ νmax

νmin

κνBν(Tcell)dν (20)

Usually, emission is assumed to be isotropic: the directionof emission (usually measured in
(θ, φ), or (µ, φ), whereµ = cos θ) is sampled from a uniform distribution:

µ = −1 + 2ζ (21)

φ = 2πζ (22)

The photon wavelength is typically sampled from a Planck distribution (given the effective tem-
perature of the emitter).

4 How to Calculate Optical Depth

Calculating the optical depth along a line of sight is by far the most CPU intensive portion of any
MCRT code. Calculating a line integral through an inhomogeneous medium is very difficult: the
value ofτ becomes extremely sensitive to the line of sight - this is indeed the key reason that
typical radiative transfer processes cannot be solved analytically.

4.1 Gridding

A typical solution to the inhomogeneous density field is to grid it in 3 dimensions. The nature of
the grid used depends on the geometry of the system. The Cartesian grid is of course the most
simple; however, systems with high degrees of spherical symmetry are better suited to spherical
polar or cylindrical polar grids.
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4.2 Ray Tracing in a Grid

Let’s first consider the Cartesian Grid for simplicity.

4.2.1 Cartesian Grids

Figure 2:Ray tracing in a Cartesian Grid

Inside each cell, the value of the density is constant. Therefore, the optical depth through the cell
is:

τcell = ρcell κ s (23)

wheres is the distance travelled inside the cell along the photon’strajectory (seeFigure 2).
Determinings is straightforward for Cartesian Grids: if we know the photon’s direction vector
n = (nx, ny, nz), and the positions of the nearest cell faces(xface, yface, zface), then we can cal-
culate the distance to each cell wall along the photon’s trajectory.

The resulting equations for these distances are simple to derive, but the derivation of them is
informative, especially for when the grids become more geometrically complex. Let’s derive the
result for thex cell face: we define thex cell face as

x = xface (24)

And the equation of a line with unit direction vectorn = (nx, ny, nz) as

r2 = r1 + sn (25)
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Wherer1 is the photon’s original position. The x-component of this equation is:

x2 = x1 + sxnx (26)

Settingx1 = x andx2 = xface, we can solve simply forsx (and similarly fory andz):

sx =
xface − x

nx
(27)

sy =
yface − y

ny

(28)

sz =
zface − z

nz
(29)

To find the distances, we must discover which cell face the photon hits first, i.e. simply

s = MIN(sx, sy, sz) (30)

The optical depth along a given line of sightτrun is simply the sum of the optical depths in each
cell the photon intersects.

4.2.2 Spherical Polar Grids

Figure 3:Ray tracing in a Spherical Grid

Calculating intersections in a spherical polar grid is similar in principle to the Cartesian grid.
We calculates = MIN(sr, sθ, sφ), where these are distances to the nearest(r, θ, φ) faces. The
geometry is, however, somewhat more complex.

Firstly, we can define ther cell faces using
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x2
2 + y2

2 + z2
2 = r2

face (31)

(As r2 is our desired endpoint). If we substitute the 3 components of equation (25) and rearrange,
we get:

s2
(

n2
x + n2

y + n2
z

)

+ s (x1nx + y1ny + z1nz) +
(

x2
1 + y2

1 + z2
1 − r2

face

)

= 0 (32)

This is now a quadratic equation fors. Solving this gives two values fors = sr: any negative
solutions are rejected. A similar procedure can be carried out for sθ andsφ. The equations of the
surfaces are:

x2
2 + y2

2 + z2
2 tan2 θface = 0 (33)

x2 sinφface − y2 cosφface = 0 (34)

The observant will notice that the equation forθface will become undefined atθ = π/2. In this
case, the surface of interest isz = 0, and the equation for calculatingsz can be used instead.

4.3 Finding the Scattering Location

Figure 4:Deducing the Scattering Location (in a Cartesian Grid)

Firstly, the optical depth to scatteringτscatter is determined, using equation (16). The photon
is then allowed to travel along its trajectory: the optical depth from each cell is calculated and
logged, until the running totalτrun > τscatter. Once this criterion is satisfied, the scattering
location is found by travelling a distanceds into the last cell traversed (seeFigure 4):

ds =
τscatter − τrun

ρcellκ
(35)
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5 How to Scatter a Photon

5.1 Isotropic Scattering

Systems with isotropic scattering are the simplest to model. When a scattering event occurs, the
photon’s direction must be resampled using the same prescription as at emission:

µ = −1 + 2ζ (36)

φ = 2πζ (37)

Unfortunately, real systems do not usually exhibit isotropic scattering. Also, the scattering event
usually invokes a non-zero polarisation in the photon. The formalism for calculating scattering
and polarisation is described below.

5.2 Anisotropic Scattering and Polarisation

Figure 5:The Geometry of Scattering (Chandrasekhar 1960)

The Stokes vector is used to trace the various properties of the photon packet: this is constructed
from the four Stokes parameters(I, Q, U, V ), where I is the intensity, Q and U are the linear
polarisation - measured at 45 degrees to each other - and V is the circular polarisation. Often,
the linear polarisation is expressed as



Pedagogical Seminar - IfA - 2009 13

P =

√
Q2 + U2

I
(38)

The scattering is described by a matrix M which acts on the Stokes vector as follows:

S ′ = R(π − i2)M R(−i1)S (39)

TheR matrices are Mueller matrices, which describe rotations toand from the observer’s frame.
They are defined as:

R(ψ) =











1 0 0 0
0 cos 2ψ sin 2ψ 0
0 − sin 2ψ cos 2ψ 0
0 0 0 1











(40)

The scattering matrix M is dependent on the dominant source of scattering in the medium. It can
be expressed as a function of several scattering parameters, as shown below:

M(Θ) = a











M1 M2 0 0
M2 M1 0 0
0 0 M3 −M4

0 0 M4 M3











(41)

Θ is the scattering angle as observed from the incident photondirection, anda is the albedo (as
described before). In general, the components of the matrixMi are dependent onΘ: if magnetic
fields are present, then the entire matrix can be filled. For these purposes, magnetic fields are
neglected.

The scattering angleΘ and azimuthal angleφ are sampled randomly from the scattering matrix.
Firstly, we obtainΘ using the cumulative distribution method:

F (Θ) =

∫Θ

0 M1 sin Θ′dΘ′

∫ π
0 M1 sin Θ′dΘ′

(42)

Once we haveΘ , we can calculateφ:

FΘ(φ) =
1

2π

(

φ−

(

M1 −M2

M1 +M2

)

P

2
sin 2φ

)

(43)

Implementing this scattering and polarisation in MCRT is done thus:

1. Randomly samplei1 from a uniform distribution.

2. Sample(Θ, φ) from the scattering matrix M.

3. Calculatei2, θ2, φ2.

4. CalculateS ′ using equation (39).
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5.2.1 Dust Scattering

Dust scattering is typically described by a single-peaked Henyey-Greenstein (HG) function, al-
though other functions are sometimes used. The scattering matrix M has elements

M1 =
1 − g2

(1 + g2 − 2g cos Θ)3/2
(44)

M2 = −plM1

1 − cos2 Θ

1 + cos2 Θ
(45)

M3 = M1

2 cosΘ

1 + cos2 Θ
(46)

M4 = −pcM1

1 − cos2 Θf

1 + cos2 Θf
(47)

These are dependent on the following parameters:

• g - the Scattering asymmetry parameter. It takes values between 0 and 1: 0 indicates
completely isotropic scattering, 1 indicates forward-throwing scattering.

• pl - the Peak Linear Polarisation

• pc - the Peak Circular Polarisation

• s - the skew factor, generally taken to be unity (e.g. White (1979)).

• Θf = Θ(1 + 3.13 s e−
7Θ

π )

To first order, this approximates Mie Scattering (the scattering of light from rigid spheres), and
works best in the ultraviolet. At optical wavelengths, the second order HG function is a better
approximation.

To sampleΘ, we useM1 above and substitute into equation (42) to get:

cos Θ =
1 + g2 −

[

1−g2

1−g+2gζ

]2

2g
(48)

The dust scattering parameters listed above are wavelengthdependent, so each photon emitted
will require values for(a, κ, g, pl, pc, s). These are generally interpolated from a dataset given as
input.
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6 Outputs

As we track the progress of each individual photon, we are afforded a high degree of control over
output. We can track photons as they exit the system, and bin them inx andy to make images
(given a specification of the image plane); we can simply collect all photons and bin by their
wavelengthλ to obtain spectra; or we can bin in(x, y, λ) to create a datacube, akin to Integral
Field Units (IFU).

6.1 Images

Figure 6:Defining the Image Plane

To obtain images, an image plane must be defined before the code is run. An image plane is
typically defined by its angles of orientation to the system(θv, φv) (seeFigure 6). This allows
us to extrapolate the position of a photon on the image plane,given its last position in the grid
(x, y, z):

ximage = z sin θv − y cos θv sin φv − x cos θv cosφv (49)

yimage = y cosφv − x sin φv (50)

It is then straightforward to bin photons into(x, y) bins, which are analogous to the(x, y) pixels
of a CCD. If wavelength data is to be kept then a similar binning procedure is used forλ also.

6.2 Flux Normalisation

To link the outputs to observables, we must normalise the bins to represent the flux received. We
have already calculated the total luminosity of the system (equation (17)), and we have specified
that every photon will carry
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Eγ =
Ltot∆t

Nγ,tot
(51)

Typically ∆t = 1 for most cases, so each photon emits an equal fraction of the total energy,
which is then received in the pixels of the image plane. It is common practice to choose units
such that numericallyEγ = 1, and hence the total energy received in these units isEγ,tot = Nγ,tot.
Therefore, if we wish to receive fluxes, then the pixel valuesare multiplied by

f =
Ltot

d2
(52)

whered is the distance to the observer.

7 Errors

MCRT is by definition a stochastic process: the random numbers used introduces random sam-
pling errors. Fortunately, these errors are simple to quantify. The emission (and capture) of
photons is essentially a Poisson process, so the errors obtained must obey Poisson statistics.
Therefore, the error in each pixel bin of the datacube(i, j, k) is simply

σijk =
Eijk
√

Nijk

(53)

Therefore, with the correct normalisation, the accuracy ofthe images (and SEDs) is quantifiable.
This also illustrates one of the weaknesses of MCRT: to achieve good signal in an image, a large
number of photons must be emitted and captured.

8 Computational Constraints

The timescale for an MCRT code to complete can be simply parametrised:

T ∼ NγNsteps (54)

WhereNsteps describes the (average) number of calculation steps required to simulate a photon’s
entire journey in the medium until its eventual egress. We can estimate this as:

Nsteps =
dγ

dx
(55)

Wheredγ is the typical path length of a photon, anddx is the resolution of the grids used. This
will be sensitive to the amount of scattering the photon receives:

dγ = Nscattℓ (56)
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Whereℓ is the mean free path, as before. For a simple sphere,Nscatt can be approximated.
Assuming that the photon is free to scatter in 3 dimensions, and the sphere has radiusR, then the
photon must travel approximately

√

Nscatt/3 mean free paths to escape:

R =

√

Nscatt

3
ℓ (57)

This gives

dγ ∼
R2

ℓ
(58)

and hence

T ∼ Nγ
R2

ℓdx
∼ Nγ < τ >

R

dx
(59)

Where< τ > is the typical optical depth of the system. However, MCRT is generally deployed
in complex, inhomogeneous circumstances, and scaling relations are often difficult to apply (if
possible at all!). Typically,Nγ > 106 photons for systems that are optically thin to be imaged
with a sufficient level of accuracy: if systems are very optically thick or geometrically complex,
then this number must become even larger. In the past, this condition has proved to be prohibitive
when using this technique - however, modern desktop CPUs cantrackNγ ≈ 108 photons within
a few hours.

9 Advanced Methods

The above information is enough to produce a worthy MCRT imaging code for most purposes.
However, there are more advanced methods currently in use which add extra utility to the algo-
rithm. The interested reader can find information about someof these methods below.

9.1 Radiative Equilibrium

Up until this point, it has been assumed that the temperaturestructure of the medium is known
- perhaps the input grid is the output from a hydrodynamical simulation, which has explicitly
calculated the temperature of each cell. However, MCRT can be used to calculate this tempera-
ture structure (while still providing images and SEDs of thesystem), using a procedure known
asRadiative Equilibrium.

We carry out MCRT as normal, following photon packets through the medium, allowing scat-
tering as usual. But, if a photon is absorbed in a cell, the cell’s temperature is increased. In
order that energy is conserved, the photon is immediately re-emitted at a new frequency, which
is determined by the cell’s temperature. This process continues until the packets have escaped
the medium. As the number of photons absorbed in each cell increases, the temperature structure
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relaxes towards an equilibrium solution. Radiative Equilibrium has several advantages over the
techniques described previously:

1. The contribution to the radiation field due to the diffuse medium is automatically included
(only point source emission needs to be added as input).

2. It can calculate both the temperature structure and the SED of the medium concurrently.

3. The entire process is self-consistent, and no prior information about the medium’s temper-
ature structure is required.

9.1.1 Calculating Temperature Structure

To calculate the temperature structure, we must first assumethat the system is in local thermo-
dynamic equilibrium (LTE). This in effect demands that any energy absorbed by any celli must
be equal to its emission:

Eabs
i = Eem

i (60)

Let’s begin with emission. The thermal emissivity of the dust is

jν = ρκνBν(T ) (61)

We can then calculate the total (bolometric) emitted energyby integratingjν over frequency (and
volume):

Eem
i = 4π∆t

∫

dVi

∫

ρκνBν(T )dν (62)

We can simplify this by using the definition of the Planck opacity:

κP (T ) =

∫

κνBν(T )dν
∫

Bν(T )dν
(63)

And the fact that

∫

Bν(T )dν = B(T ) =
σT 4

π
(64)

To give

Eem
i = 4π∆t

∫

κP (T )B(T )ρdVi (65)

As we are working in a gridded system, each cell has a constantdensity and temperature. This
then simplifies to

Eem
i = 4π∆tκP (Ti)B(Ti)mi (66)

Where we have integrated the density over volume to give the mass inside the cell. Calculating
the absorbed energy is easy:
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Eabs
i = NiEγ =

NiLtot∆t

Nγ,tot
(67)

WhereNi is the number of photons the cell has absorbed. Using Equation (60), we have

NiLtot∆t

Nγ,tot

= 4π∆tκP (Ti)B(Ti)mi (68)

Rearranging (and substituting forB(T )) gives the final result

σT 4
i =

NiLtot

4Nγ,totκP (Ti)mi
(69)

Unfortunately, we now have an implicit equation forTi, which we must solve for every absorption
event. Fortunately, the Planck opacity (for dust scattering) is slowly varying with T, so we can
use simple iteration to achieve a solution without too much computation.

9.1.2 Re-emission and Frequency Adjustment

The observant will have already realised that there is an inconsistency present. Every photon is
re-emitted immediately after it is absorbed, and its frequency will depend on the cell’s emissiv-
ity, and hence its temperatureTi. But, the cell’s temperature is being constantly altered bythe
iteration described above. Therefore, the frequency of photons emitted previously will have been
emitted from an incorrect frequency distribution.

This can be corrected photon by photon using a frequency adjustment technique (Bjorkmann and
Wood (2001)). Prior to emitting the current packet, the cellhas emitted packets using a (specific)
emissivity

j′ν = κνBν(Ti − ∆T ) (70)

Where∆T is the temperature increase resulting from the absorption of the last packet. So,
an additional amount of energy must be radiated away, in order to correct for this temperature
difference, which we can express as a change in emissivity:

∆jν = jν − j′ν = κν [Bν(T ) −Bν(Ti − ∆T )] (71)

If we ensure that∆T is small (i.e. we keepEγ small by emitting a sufficient number of photons),
then the equation above can be approximated by

∆jν = κν∆T
dBν

dT
(72)

We now have a distribution from which to correctly select frequency from. Every photon that
is absorbed is re-emitted, and we use the shape of∆jν to define the frequency. The probability
distribution used is
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P (ν) =
κν

C

(

dBν

dT

)

T=Ti

(73)

Where C is a normalisation constant:

C =
∫

∞

0

κν

(

dBν

dT

)

dν (74)

9.2 Gridless MCRT

We have assumed throughout this lecture that in order to calculate optical depths along a line of
sight, the density field needs to be gridded. In reality, thisis not always true: although gridding
the field is straightforward and useful, it is possible that adensity field exhibits fluctuations on
scales smaller than the grid scale length, or that a density field is extremely irregular1.

One example of defining a density field without a grid is the formalism of Smoothed Particle
Hydrodynamics (SPH). SPH uses a disordered ensemble of particles (with a given mass), to
define the density field using an interpolating kernel orsmoothing kernelW:

ρ(r) = ΣjmjW(r − rj , h) (75)

Typically, the smoothing kernel is constructed from a set ofcubic splines, but for these pur-
poses we can assume the kernel is Gaussian (and spherically symmetric, i.e.W is a function of
separation only).

W (r, h) =
1

√
πh
e−

x
2

h2 (76)

A key parameter is thesmoothing lengthh: typically, instead of being forced to sum over all
SPH particles in the system, the kernel is parametrised so that only the nearest neighbours tor
are used. Therefore,h is selected for each particle so that each particle hasNneigh nearest neigh-
bours within a sphere of radius2h, sometimes known as thesmoothing volume. This allows us
to think of each SPH particle as a fluid element which occupiesa finite region (the smoothing
volume rather than a point source).

There are now two means by which the density field can be calculated using the above technique.
The first is the “gather method”, which implies assigning a smoothing length to the locationrj:

ρ(rj) = ΣjmjW(ri − rj, hi) (77)

Wherej indicates all particles which are within the smoothing volume ofri.

1Adaptive Mesh Grids and other forms of tesselation are available to tackle these problems, but these can be
notoriously difficult to implement!
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The second is the so-called “scatter” method, where the density is calculated by calculating the
contribution from every smoothing volume which contains the locationr, using the smoothing
lengths of each particle:

ρ(r) = ΣjmjW(r− rj, hj) (78)

Wherej indicates all particles with a smoothing volume containingr. Using this technique, we
can trace a ray in this density field, and discover which particles are intersected by this ray.

Figure 7: Ray Tracing in a SPH density field. This illustrates the concept of thesmoothing
volume.

We now have to integrate the density through these smoothingvolumes. As the kernel is defined
analytically, we can do most of the hard work pre-simulation. The integral varies as a function of
the impact parameterb (seeFigure 7). If we do the calculation for a smoothing volume contain-
ing an SPH particle of unit mass and unit smoothing length (for a series of values ofb between 0
and 1), we can then scale this result to volumes of any mass or smoothing length.

This gridless approach has the key benefit of being able to model any geometry, of varying size
scales, as well as connecting radiative transfer techniques with a well established algorithm for
hydrodynamics, allowing images to be made of theoretical astrophysical systems without using
any gridding approximations.
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