
CHAPTER 9    

SIGNAL CONDITIONING 

In this chapter the term signal conditioning represents the enormous variety of systems 
used to “condition” a sensor’s output, or “signal,” so that it can effectly serve as an input 
to a computer-controlled data acquistion system.  In short, system herein referred to as 
a “signal conditioning” system fills  the function supplied by the darker shaded block in 
the diagram below. 
 

 
Figure 1:  Overview of Measurement System 

The desired output from the signal conditioning system, which is the input to the 
data acquisition system, is often a voltage with a range of a few volts—1 to 5 volts is a 
common range.   A data acquisition system often includes sampling and analog-to-
digital conversion.  At this stage, the physical quantity being measured is in a digital 
format fit to be read by digital computer.  Once read by a computer system, a variety of 
means are available to   

What type of systems could be included in the “signal conditioning” block?   
Suppose the sensor output is too small a voltage.  In this case, the signal 

conditioning block would need to include amplification.  For a sensor output that is too 
large a voltage, attentuation would become part of the signal conditioning block. 

If the sensor output were in the form of an electric current, the signal conditioning 
block would need to include a conversion from current to voltage. 

For a resistive sensor—one in which a change in resistance (∆R) is the sensor’s 
output, the signal conditioning (SC) block would include a ∆R to ∆V conversion.  
Similarly, when using a capacitive sensor, the SC block would include a ∆C to ∆V 
conversion, and, for an inductive sensor, a ∆L to ∆V conversion would be needed. 

The output of the signal conditioning system must be able to supply the current 
required of the data acquisition system while, at the same time, maintaining the required 
voltage.  That is, is must be able to supply the needed power and not have too high a 
Thevenin resistance.  Such a situation would arise, for example, when using a 
piezoelectric accelerometer, in which case signal conditioning would include buffering.  

A wide-variety of signal processing can be included in the signal processing block.  
Filtering is the type treated in this chapter and is important in ensuring that unwanted 
noise is not present in the signal input to the data acquisition system.   

 



9.1  Introduction 
Some type of conditioning is often required for the signals output from sensors.  When 
the output is too small, amplification may be necessary.  The presence of interfering 
noise may require filtering.   
 Frequently the form of the signal must be altered.  A strain gage provides, as an 
output signal, a change in resistance, ∆R.  This signal may need to be changed into a 
change of voltage.   
 These are examples of signal conditioning which may be required to interface 
between the raw sensor signals and data acquisition systems.   
 

9.2  Amplifier Circuit Models 
Amplifiers are modeled with the aid of dependent sources.  Fig. 9.1 shows a voltage 
amplifier which amplifies a voltage from a non-ideal source (the amplifier input) and 
supplies a voltage (the amplifier output) to a load modeled as a resistance. 

 
Figure 2: Voltage-Voltage Amplifier 

 The circuit can be analyzed by employing voltage division twice, once for the input 
circuit (the left loop) and once for the output circuit (the right loop). 
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 The overall gain can be found by taking the ratio of the output voltage to the input 
voltage.   
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 How might the amplifier be designed so that the overall gain is maximized for a 
given A?  As one can see from the ratios above, if the amplifier input resistance, Ri, is 
much larger than the source resistance, Rs, and if the amplifier output resistance, Ro, is 
smaller than the load resistance, RL, the overall gain is approximately equal to A. 
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 One can design amplifiers in which both the input and output are currents. 

 
Figure 9.3: Current-Current Amplifier 

 The model in Fig. 9.2 can be analyzed using current division in both the input circuit 
and the output circuit. 
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 How might the amplifier be designed so that the overall gain is maximized for a 
given A?  For this case, the amplifier should have a low input resistance and a high 
output resistance.  
 
9.3   Operational Amplifiers 
9.3.1 General 
Many of the building blocks used in circuits can be designed using operational 
amplifiers.  An operational amplifier is modeled as a voltage amplifier. 

 



Figure 9.4: Op-Amp Circuit Model 

 Op-amps are realized as an integrated circuit (IC).   The op-amp must be powered 
by an external power supply consisting of two voltages, one positive with respect to 
ground, and the other negative with respect to ground.  Voltages are commonly 
between 9 to 18 volts.   
 The amplifier within in Fig. 9.3 is most often symbolized by a triangle.  Fig. 9.4 
shows the op-amp as a triangle together with its external power supplies. 

 

Figure 9.5:  Op-Amp Circuit Symbol with External Supplies 

 Most often, the op-amp is drawn with the external power supplies implied.  That is, 
they are often not explicitly shown but rather are assumed present. 

 
Figure 9.6:  Op-Amp Circuit Symbol with Implied External Supplies 

 The external power supplies have current flowing in them, and, to account for this 
current, a line is often drawn from ground to the  operational amplifier as shown in Fig. 
9.6.  The left representation, less used, emphasizes that there is a current path for 
output current to flow.  Below the representation on the right will be used, but the reader 
should keep in mind the existence of this current path through the implied supply 
voltages. 
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Figure 9.7:  Op-Amp Circuit Symbol 

9.3.2 Ideal op-amp 
 In this chapter, the ideal op-amp model will be used. The input resistance of an op-
amp is very high with bipolar op-amps having input resistances above 106 MΩ and FET 
op-amps having input resistances around 1012 Ω.  The output resistance of op-amps 



with feedback is quite low and is usually neglected (assumed to be zero).  The voltage 
gain (A in Fig. 9.3) is very large, greater than 105 at DC.   The voltages involved in op-
amp circuits are small—typically less than ±18V.   
 What are the implications?  Consider Vo to be 10 V, A to be 105, and R i to be 107 Ω.  
In this case, V i would be 10 µV and the current input to the positive or negative op-amp 
inputs would be 1 pA.  In most circuits, these small voltages and currents can safely be 
assumed negligible, and, in the ideal op-amp model, they are assumed zero.  The 
resulting Vo is very close to the actual value (notice that, since V i = 0, this requires A to 
be infinite).   In the ideal op-amp model, Ro is assumed to be zero.  This typically 
introduces very little error since the other resistances in op-amp circuits are typically 
greater than 2 KΩ. 
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Figure 9.8:  Op-Amp Circuit Symbol 

Note:  The maximum possible output voltage (V0) for the amplifier is limited by the supply 
voltages used.  The maximum output voltage is typically about 1.5 V less than the supply 
voltages used.   For example, if a ±15V power supply were used to power an op-amp chip, the 
maximum possible output voltage would be ±13.5 volts.  The amplifier would amplify only so 
long as Vo remained between ±13.5 volts.    
 
For larger inputs the amplifier output would remain at ±13.5 V.  At this point, the amplifier is said 
to be saturated and the normal input-output relation does not hold. 

  
 There are literally hundreds of operational amplifiers available commercially, from 
those for application in high-speed systems to those intended for low-power power 
applications to those able to supply high power.  In this discussion, it will be assumed a 
general purpose op-amp is being discussed.   
Example 1 
 The ideal op-amp is a very versatile amplifier!  The gain of the amplifier can be 
changed by merely adjusting the value of external resistors.  The configuration shown in 
Fig. 9.9 a standard configuration, the inverting configuration. 
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Figure 9.9: Inverting Amplifier I 

 Beginning the ana lysis with KVL 1, one obtains: 
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 Since the current into the negative op-amp input is zero (for the ideal op-amp 
model), the current through Rf is the same as that through Rin.  Given this result from 
KCL, one use KVL about loop 2  (KVL 2). 
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 Notice that the gain of the amplifier is controlled by the choice of Rf and Rin.   
 

Note:  For practical op-amp circuits, using general purpose op-amps, choose resistors so that 

the resistance seen by the op-amp output is greater than 1 KΩ.  Resistors having resistances 
below this value can result in the op-amp being unable to supply the required current for proper 
circuit operation.   

 
 The fact that the performance of an op-amp circuit is determined by the external 
components (at least as long as the ideal op-amp model remains valid) makes the op-
amp a very versatile  tool for the designer and is a primary reason op-amp circuits are so 
widely used. 
 It is often good to look at a problem from more than one point-of-view.  With this 
thought in mind, consider the same circuit, this time using nodal analysis. 



 

Figure 9.10: Inverting Amplifier II 

 The one special rule to remember when applying nodal analysis in circuits with ideal 
op-amps is that one may not write a KCL equation at the output of an op-amp due to the 
current paths associated with the external power supplies, which are not included in the 
ideal op-amp model.  By keeping this in mind, nodal analysis can be an effective 
analysis technique for op-amp circuit.  The equations read: 
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One KCL equation at node 2. 
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Example 2 
 Consider an op-amp amplifier powered by an external ±15 V power supply,  and 
suppose the amplifier has been designed for an overall gain of -10.     Since a ±15 V 
supply is used, the output is limited to ±13.5 V.   Since the overall gain is -10, when the 
input is outside the range ±1.35 V, the output will enter saturation.  This is illustrated in 
Fig. 9.11. 



 

      Figure 9.11: Input-Output Curves for an Amplifier Showing Output Saturation  

  
  
 
9.4  Amplifiers and Buffers 
There are a variety of amplifying circuits that can be obtained using one or more op-
amps.  The characteristics a few popular configurations will be explored. 
 
9.4.1 Inverting Configuration 

. 

Figure 9.12: Inverting Amplifier  

Important characteristics for the amplifier are its gain and its input resistance. 
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1. Beginning with its gain, the first item to notice is that the gain is negative, which 
 gives the amplifier its name, the inverting amplifier. 

2. Next is the input resistance as seen by Vs which in this case is just Rin.  

Note: In this case, the source is assumed to be an ideal voltage source.  If it was not and its 
Thevenin resistance could not be neglected with respect to Rin, the voltage gain of the amplifier 

would be ( )f s in
 = -H R R  + R as shown in Fig. 9.13. 



 

Figure 9.13: Inverting Amplifier with Non-Ideal Source 

  This could create a problem from two standpoints.  First, Rs might not be accurately 
 known, or might change with frequency or temperature, for example.  Second, Vs 
 might not be able to supply sufficient current at the input of the op-amp circuit.   

3. Although most applications require the magnitude of the gain be larger than 1, it is 
 possible with the inverting configuration to have an amplifier which attenuates the 
 input.  All that is required is to choose Rf < Rin. 
 
9.4.2 Non-Inverting Configuration 
The non-inverting amplifier is another canonical configuration in op-amp circuits. 

 
Figure 9.14: Non-Inverting Amplifier  

  From KVL 1, one obtains Vy = Vs.  Next, by Ohm’s law, i = Vs/Rin.   Then, by KVL 2,  
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 Taking the ratio of Vo/Vs, the amplifier gain can be obtained.  Important 
characteristics for the amplifier are its gain and its input resistance. 
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1. The gain is positive and, unlike the inverting amplifier, its magnitude cannot be 
 smaller than one. 

2. The input resistance is that of the op-amp input and so is very large.  This would be 
 desirable, for example if the source, Vs, could only source a very small current.  



9.4.3 Differential Amplifier 
The differential amplifier is designed to amplify the difference between two voltages.   

 

Figure 9.15: Differential Amplifier  

The circuit will be analyzed in two ways.  First, superposition (that is, Va and Vb will be 
turned on in turn) will be used to find Vo in terms of Va and Vb. 

 

Figure 9.16: Analyzing the Differential Amplifier using Superposition 

 The circuit on the left in Fig. 9.16 shows the differential amplifier with Vb = 0.  This 
circuit is the non-inverting amplifier with the voltage, V, at the positive input (this voltage 
can be obtained, for example, with voltage division).   
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 The circuit on the right in Fig. 9.14 shows the differential amplifier with Va = 0.  This 
circuit is the inverting configuration.   
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Note:  For the circuit on the right the resistances at the positive input are in parallel and can be 
represented by one resistance.  This equivalent resistance can have no current since the input 
resistance of the ideal op-amp is infinite.  Since the resistance has zero current through it, by 
Ohm’s law it has zero voltage across it.  Therefore, the presence of Ra and Rb at the positive 
input has no impact on the behavior of the circuit on the right in Fig. 9.16. 

 
 The voltage present at the output voltage is the sum of Voa and Vob. 
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 Nodal analysis can also be employed to analyze the differential amplifier circuit. 

 

Figure 9.17: Analyzing the Differential Amplifier using Nodal Analysis 
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 These equations can be combined to eliminate V1 and V2.  First since V1 is related 
to Va using KCL 1 and since V1 = V2 do to the ideal op-amp, KCL 2 becomes. 
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 Dividing out RaRb, 
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 Obtaining a common denominator, 
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 Solving for Vo, 
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 Notice that if the sources, Va and Vb, were not ideal sources, their resistances would 
affect the gain. 

 
Figure 9.18: Differential Amplifier with Non-Ideal Sources 

 The resulting expression for the output voltage is 
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Note:  As long as the source resistances for Va and Vb are equal the output voltage is a multiple 
of the voltage difference--any common signals on both sources will be rejected.  The rejection of 
common signals is, of course, never perfect but is an important feature in differential amplifiers.  
Common signals can be due to noise of some other source which the engineer wishes to 
eliminate.  The Common Mode Rejection Ratio (CMRR) is a measure of the circuit’s ability to 
reject these common signals.    
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If the source resistances differ the CMRR suffers a significant reduction.  This is a significant 
limitation regarding the differential amplifier. 

 

9.4.4 Voltage Follower 
 The voltage follower has a gain of one—the output voltage is equal to the input 
voltage.  Its usefulness lies in the fact that its input resistance is that of the op-amp (very 
high), while its output resistance is that of the op-amp with feedback (very low). 

 
Figure 9.19: Voltage Follower 



 By applying Kirchoff’s Voltage Law about KVL 1, it can be clearly seen that the 
device Vo = Vs.  The voltage follower is typically used to “buffer” inputs.  That is the 
voltage follower transforms the input impedance of an input to a very large value so that 
any circuit driving the input will not be required to provide much current. 
 

Note:  The reader has been warned not to use resistors with resistances less than 1 KΩ in op-
amp circuits.  But, with the voltage follower, the output is directly connected to the negative 
input (Rf  = 0!).  Why is this permitted?  The answer is that the op-amp output sees only the 
negative input, which offers a very high input resistance (and whatever effective resistance is 
connected to Vo).  The effective resistance connected to Vo must not be too small.   

 
 Two op-amps, connected as voltage followers, can be used to buffer the inputs of 
the differential amplifier to produce an improved differential amplifier.  The resulting 
configuration is an instrumentation amplifier—one with a fixed gain of Rb/Ra. 
 

 
Figure 9.20:  An Improved Differential Amplifier 

9.4.5 Comparator 
An op-amp using no feedback can be used to implement a comparator.   A comparator 
is a circuit that compares an unknown voltage to a known voltage. 

 

Figure 9.21:  Op-Amp Comparators 
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9.5  Filtering 
9.5.1 Frequency Response Background 
The frequency response of a circuit is its steady-state response to a sinusoidal input as 
the frequency of the sinusoidal input varies.  As an example, suppose the system input 
and output are both voltages, vi(t) and vo(t), respectively.   In the time domain 
(sinusoidal steady state), 

vi(t) = V i cos (ωt + θi)      and      vo(t) = Vo cos (ωt + θo) 

In the frequency domain, the corresponding phasor quantities are: 

Vi  =  V i∠θi     and    Vo  =  Vo∠θo 

Note:  Since filtering is used in many other areas than electric power, the convention used in 
power of always representing phasor quantities in RMS will not be followed here.  In this 
section, phasor quantities will be in peak.  That is, the magnitude of phasors will correspond to 
the sinusoidal amplitudes, not their RMS values. 

  
 Recall from Laplace analysis, the transfer function is obtained by taking the ratio 
between the output and input (assuming the initial conditions are zero).   
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 The system's frequency response is the sinusoidal steady-state relation between 
the input and output phasors and  is found by substituting jω for s in the transfer function.  
The system frequency response is a phasor quantity relating the input and output 
phasors as a function of frequency.  The system frequency response is a phasor where 
both the magnitude and phase are functions of ω, the frequency.  Expressing 
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 Expressed in polar form, 
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 The relationship between input and output is 

Vo∠θo   = H∠θH  Vin∠θi 

 It is important for the reader to note that a system’s frequency response is a phasor 
relation which relates magnitudes and phases. 

Vo = HVi    and     θo = θH + θi 



Example 3 
As an example, use nodal analysis to find the transfer function of the system below. 

 Figure 9.22:  Transfer Function 

The strategy will be to first perform nodal analysis on the circuit.  Then, having found the 
node voltages (here V1 and V2), the output variable can be expresses as a linear 
combination of the node voltages and so can be express in terms of the input, V i. 
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In passing, it should be noted that D1 = D2. 
 In linear systems, any circuit variable can be expressed as a linear combination of 
the node voltages.  Here the relation is trivial, Vo = V2 = 0V1 + 1V2.  The general case 
would be, 
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 To proceed with this specific example, the nodal equations read: 
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Nodal equations  

 Maple is a good tool for finding transfer functions.  The required Maple code to find 
H(s) in this example is: 
 

> restart; 
> eqns:={v1=vi, 



> (v2-v1)*s/8+v2/(2*s)-2*(v1-v2)+v2/4=0}: 
> soln:=solve(eqns,{v1,v2}): 
> assign(soln); 
> vo:=v2: 
> TF:=vo/vi; 
                                       s (s + 16) 
                         TF  :=    ------------- 
                                     s2  + 18s + 4  

 To obtain the system frequency response, substitute jω for s. 
 
 
9.5.2 Filters 
Filters are frequency selective systems.  The interest here is often in the system’s 
amplitude response.  The phase response is usually of less interest. 
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Where o iH= V V  is the system magnitude response, and H o i=  - θ θ θ  is the system 

phase response. 
 Suppose the input to a system includes signals at a variety of frequencies—some 
desired at the output, some not.  A filter can be used to “filter out” undesired frequencies 
so that the desired frequencies at the output have a greater relative magnitude (relative 
to the amplitudes of the undesired frequencies).   
 Viewing the filter as an input/output relation, filters are classified by how the input 
and output magnitudes are related at different frequencies.   Four basic types of filters 
will be considered here:  lowpass, highpass, bandpass, and notch.     
 Low pass filters pass low frequencies and block high frequencies.  Two things 
should be mentioned here.  First, what is meant by “low” or “high” depends on the 
system under consideration.   Second, a low pass filter does not block high frequencies 
entirely.   For a given input with a range of frequencies, a low pass system will decrease 
the amplitudes of the high frequency components with respect to the amplitudes of the 
low frequency components.     
 Similarly, high pass filters pass high frequencies and block low frequencies; band 
pass filters pass only a band of frequencies while blocking both low and high; and notch 
filters pass both low and high frequencies while blocking a narrow range of frequencies.    
  Another way to classify filters is whether they are passive or active.  Passive 
filters consist solely of passive components (R’s, C’s, L’s, transformers, etc.)    Active 
filters also use active components such as transistors or op-amps.  Active filters can 
provide a gain greater than one whereas the gain greater than one is not possible with 



passive filters.  Filters which utilize op-amps are active filters.  Filters utilizing can 
amplify and filter since they receive the needed energy for amplification external power 
supplies. 
 
Example 4 
 Consider an active filter using the inverting op-amp configuration.  Fig. 9.23 shows 
the s-domain representation. 

 
Figure 9.23:  Active Filter 

 The reader should be able to use circuit analysis to find that the transfer function for 
this circuit is H(s) = Vo(s)/V i = -Zf / Z in. 
  
 
Example 5 
 The circuit in Fig. 9.24 is an active filter using the inverting configuration.  It is a low 
pass filter with a break frequency, ωb = 1/RfC and a low frequency gain Rf/Rin. 

 
Figure 9.24:  Low-Pass Active Filter 

 Analyzing this op-amp circuit, the transfer function is found. 
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 Since, in filtering, the magnitude response is the important aspect of the frequency 
response, only the Bode magnitude plot is necessary to evaluate the filter’s 
performance. 

 
Figure 9.25:  Bode Magnitude Plot of Low-Pass Filter 

Note:  In this case, the gain is actually negative, but it is customary to refer to the gain as being 
the magnitude of the frequency response.  In this view a negative gain is one having a certain 
magnitude together with a 180° phase shift. 

 
 
Example 6 
Suppose a DC signal has been corrupted with a narrow periodic pulse.  The periodic 
pulse, the noise, can cause system malfunctions.   
 

 
Figure 9.26:  DC Signal with Noise Pulses 

 One approach to solve this difficulty would be to filter the noise out.  Using a filter 
will not completely eliminate the noise but can reduce its magnitude with respect to the 



desired signal.   A low pass filter is needed here since the signal is at DC (ω = 0) and 
the noise is a pulse with a range of frequency components. 
 In order to proceed, the frequency content of the input signal needs to be found 
using Fourier analysis.     In this way, the corner frequency can be placed at a lower 
frequency than the first component of the noise.   In this case, this is easily done since 
the signal is at DC so the fundamental frequency, ωo = 2π/T = 2π/0.01s = 628. 3 rad/s, 
will mark the beginning of the noise frequencies.   
 Designing the filter for ωb = 10 r/s and K =1, results in the output being 
 

 
Figure 9.27:  Filtered Output (ωb = 10 r/s) 

 The fact that the noise has not been completely eliminated is evident upon closer 
examination (note the scale in Fig. 9.28). 

 
Figure 9.28:  Close -up of Filtered Output (ωb = 10 r/s) 

 Although the noise has not been eliminated, it has been significantly reduced 
through filtering!   
 How would this circuit be designed?  Starting with the two design equations 

f
b

in f

R 1
K  =  = 1               =  = 10

R R C
ω  

it is evident that one of the three parameters must be chosen.  Then, with this choice, 
the two design equations will determine the other two parameters.    

Choosing C = 1 µF = 10-6 F constrains Rf and Rin to be 100 KΩ. 

 Suppose the filter had been designed for K = 1 and ωb = 100.   What performance 
consequences would be anticipated?  Since the break frequency is relatively close to 



the first fundamental frequency of the noise, one should expect to see more “noise” 
survive at the output.  Fig. 9.29 shows the result 

 
Figure 9.29:  Close -up of Filtered Output (ωb = 100 r/s) 

 At this scale , the noise looks high.  On a larger scale one can see that the noise 
may be acceptable. 

 
Figure 9.30:  Filtered Output (ωb = 100 r/s) 

 For this filter, C = 0.1 µF and Rf  = Rin = 0 would be a possible design. 
 
 
 A passive first-order low pass filter can be designed using one resistance and one 
capacitance.  In Fig. 9.31, a voltage source is input to a first-order passive filter which 
feeds a resistive load. 

 

Figure 9.31:  First -order Passive Low Pass Filter 

 The s-domain relation between V i and Vs is 
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What can one observe from this analysis?  First, the low frequency gain, K, is always 
less than one.   This must be true since this is a passive circuit.  There is no external 
source of power by which V i might be amplified. 
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L

R
  1

R  + R
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Second, both the gain and the break frequency, ωb,  

L
b

L

R  + R
 = 

RRC
ω  

are affected by variations in the load resistance.  One can imagine this might not be 
desired. 
 Consider the benefit achieved by placing an op-amp, configured as a buffer, into 
this first-order low pass filter. 
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Figure 9.32:  Active Filter 

 Here, the relation between Vi and Vs is 
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 Notice, both the gain, K, and the break frequency, ωb, are now independent of the 
load resistance!  This, of course assumes the load resistance is not too low for the op-
amp output (< 1 kΩ). 
 
9.5.3 Filter Circuits 
A second-order low pass filter gives a faster drop-off past the break frequency than the 
first-order filter. 
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Figure 9.33:  Second-order Active Low Pass Filter 

 This filter is the second-order Sallen-Key filter, and the relation between Vo and V i is  
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 Given an underdamped filter, the straight line Bode plot is 

 

Figure 9.34:  Straight Line Bode Magnitude Plot 

 



 A first-order passive high-pass filter is shown in Fig. 9.35. 

 

Figure 9.35:  First -order Passive High Pass Filter 

 The relation between Vo and V i is 
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 At DC, the gain is zero (at DC, s = jω = j0 = 0) as one would expect in a high pass 
filter.   Notice that the magnitude of the transfer function (that is, the gain) depends on 
the value of RL as does the break frequency, ω = 1/RPC.  Using a voltage follower, 

similar to that found in Fig. 9.32 will allow the transfer function to become independent 
of RL. 
 A bandpass filter blocks all signals aside from those in a band of frequencies.  This 
band of frequencies is called the pass band 
 A magnitude plot of a 2nd-order bandpass filter (there are no first-order bandpass 
filters) is shown in Fig. 36.  The plot assumes the system is underdamped (ζ < 1). This 
plot is simply a magnitude plot, not a Bode magnitude plot in which 20 log H is plotted. 

 
Figure 9.36:  Normalized Resonance Peak 

 The Sallen-Key second-order bandpass filter is given is shown in Fig. 9.37. 



 

Figure 9.37:  Bandpass Filter 

 The s-domain relationship between Vo and V i is 
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 The denominator can be written as 
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 With this filter design, the half-power bandwidth of the filter (BW = ωu - ωL) can be 
adjusted by varying the gain of the amplifier within the filter. 
 To a good approximation (to within 1% if BW << ωo) the corner frequencies are 

u o L o

BW BW
 =  +                            =  - 

2 2
ω ω ω ω  

 The sharpness of the pass band is a measure of the selectivity of the filter.  The 
quality factor is a useful measure of the sharpness.  In general, Q is defined as a ratio 
between maximum stored energy and the energy dissipated in a radian time. 
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dissipate in t = 1/

E
Q = 

E ω

 

 In the context of filtering, more useful relations are 
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 A high Q corresponds to a sharp resonant peak and therefore to a highly selective 
bandpass filter.  The range of Q for this circuit is 
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 An alternate bandpass design, one in which the designer can independently choose 
the midband gain, lower break frequency (ωL) and upper break frequency (ωu) is 
discussed in Design Problem 6.7.1.  
 A notch filter refers to a filter in which the attenuation rapidly becomes large about a 
particular frequency.  Such a filter might be used to remove a power line harmonic from 
signals.  The Twin-T notch filter, shown in Fig. 9.38, has a notch frequency of 1/RC. 

 
Figure 9.38:  Twin-T Notch Filter 

The components must be well matched in order to obtain high attenuation at the notch 
frequency.   
 Horowitz and Hill (The Art of Electronics, 2nd ed.) give a tunable notch filter. 

 

Figure 9.39:  Tunable Notch Filter (adapted from Horowitz and Hill) 



 The notch frequency for the filter in Fig. 9.33 is c 1 2 = 1/C 3 R Rω . 

 
9.6  Bridge Circuits 
The uses of bridge circuits include the measurement of impedance and frequency.   

9.6.1 Impedance Measurement 
Consider the bridge circuits below. 

 

Figure 9.40:  Null Detecting Bridge Circuits 

 The Wheatstone Bridge is a classic circuit.  The idea is for three of the four resistors 
to be known and the fourth to be determines.  For the presents, consider R1 as the 
resistance to be measured, R2 and R3 has fixed known resistances, and R4 as a known 
variable resistance.  When the voltage measured by the DMM is zero (or null, thus the 
name null detector), voltage division gives 
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The variable resistance, R4, is varied until the null is achieved.  
 Likewise the impedance bridge can be used to determine an unknown impedance.  
If Z1 is the impedance to be measured, Z 2 and Z 3 are fixed impedances (that is, at a 
particular frequency), and Z 4 is a known variable impedance.  Again, when the 
measured voltage (magnitude and phase), voltage division gives, 
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 There have been many ingenious uses of null detecting bridge circuits.  The focus 
here, however, will be the use of bridge circuits in signal conditioning. 
 
9.6.2 Bridge Circuits in Signal Conditioning 
Suppose strain gages are used, together will a cantilever beam, to form a load cell to 
measure forces as illustrated in Fig. 9.41. 



F  

Figure 9.41:  Load Cell 

 It is clear that the force, F, will place the strain gages R1 and R3 in tension and R2 
and R4 in compression.  R1 and R3 will therefore have resistances higher than nominal 
and R2 and R4 will have resistances lower than nominal.  Now suppose these strain 
gages are connected as shown in Fig. 9.36. 

 

Figure 9.42:  Wheatstone Bridge Signal Conditioning (∆R →  ∆Vb) 

 By voltage division 
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Note: This bridge is a four-arm active bridge, where all four bridge resistances are strain gages 
has distinct advantages over the one-arm active bridge, where only one bridge resistance is a 
strain gage, the other three being fixed “dummy” resistances with the strain gages nominal 
resistance.  First, the four-arm active bridge is more sensitive.  In the one-arm active bridge,  

b s

R
V   =    V

4R

∆
 

Second, the four-arm bridge is more robust with respect to temperature changes since all four 
strain gages are more likely to experience more similar changes in temperature than the one 



strain gage and three dummy resistances.  Third, the four-arm bridge, through the placement of 
strain gages on the beam, can be made relatively insensitive to torsion. 

 
 What voltages should one expect for Vb?  That is, for typical strain gages with 
typical strains, is Vb going to be 10 V?, 1 V? 1mV? or 1µV?  For the four-arm bridge, the 
typical values below will give an idea of the size of voltages to be expected for Vb. 

typical R (metallic strain gage)   ~  120 Ω 
typical gage factor, S   ~  2 
typical strain, ε   ~  0.001 

typical Vs  ~  10 V 

 The above example shows how a bridge circuit can be used as signal conditioner, 
converting a change in resistance, ∆R, to a change in voltage, ∆V.  In example 8.3, one 
type of accelerometer was shown to couple changes in capacitance to acceleration.   

 

Figure 9.43:  Circuit Model of Accelerometer 

For this sensor, acceleration produces opposing changes in C1 and C2.  That is, either 
C1 increases and C2 decreases or vice versa, depending on the sense of acceleration.   
The Twin-T bridge circuit can be used to convert the change in capacitance, ∆C into a 
change in voltage, ∆V. 

 
Figure 9.44:  Twin-T Bridge Signal Conditioning (∆C → ∆V) 

 The AC source, Vs, powers the bridge.  When the AC waveform is positive, D1 
conducts and charges C1 with the polarity indicated.  When the AC waveform is 
negative, D2 conducts and charges C2 with the polarity indicated.  When one capacitor 
is charging the other is discharging through the resistors. 
 The key to the circuit’s operation is to note that the capacitance of C1 and C2 will not 
effect their being fully charged during their charging time.  This is due to the low 
impedance of the charging path.  The discharge path, however, is a different matter.  



The capacitors discharge through a resistive network and so will have an associated RC 
time constant which grows as C grows.  For example, if an acceleration caused C1 to 
increase and C2 to decrease, then the output voltage, V (a DC voltage, by the way) , 
would be positive.   
 
9.7  Current Sources 
Constant current sources are used measurement and signal conditioning. When using a 
DMM as an ohmmeter, for example, a current source sends a known current through 
the resistance under measurement.   What the meter actually measures is voltages 
which, since the current is known, need only to be properly scaled to be a measure of 
the resistance.  

 
Figure 9.45:  Measuring Resistance 

 Many DMMs can be used to perform either a 2-wire resistance measurement or a 4-
wire measurement.  In the 2-wire measurements, the current source and the voltmeter 
are connected to the same terminals.  In the 4-wire measurements, the current source 
and voltmeter have separate connections.   

 

Figure 9.46:  2-Wire and 4-Wire Resistance Measurement 

 The difference in the two measurements can be appreciated by considering the 
effect that lead resistance would have on the voltmeter reading (and therefore on the 
resistance measurement).   As is apparent from Fig. 9.46, if the lead resistances were 
not negligible, the voltage sensed with the 4-wire measurement would be IsR while the 
voltage sensed in the 2-wire measurement would be Is(R + 2Rlead), where Rlead is the 
resistance of each lead. 
 A circuit which can supply current to a floating load is shown in Fig. 9.47. 



 

Figure 9.47:  Current Source to Floating Load 

The degree to which a constant current is supplied to the load depends upon the degree 
to which V and R remain constant.  The voltage supplied will likely depend on the 
environment, especially on temperature.  The resistance of R will change with 
temperature.  If the aim is for a constant current through the load, it will be important to 
choose a resistor with a low temperature coefficient of resistance (TCR).   
 A current can be supplied to a non-floating load is shown in Fig. 9.48.  As noted 
above, the performance of the current source depends on the degree to which V and R 
remain constant.  Use of a precision voltage reference, such as REF 102 from Texas 
Instruments, will ensure the stability of V (temperature coefficient = 5 ppm/°C and long 
term drift stability of 10 ppm/1000 hrs).  Resistors are widely available with TCRs of ±15 
ppm/°C, with precision resistances available with TCRs 2.5 ppm/°C and lower. 

 

Figure 9.48:  Current Source to Grounded Load 

 
9.8  Limitations of Operational Amplifiers 
Operational amplifiers are limited regarding what output currents and voltages they can 
supply.  They have frequency and speed limitations which must be considered by circuit 
designers.  Operational amplifiers are not perfectly balanced, and many op-amps have 
may need additional circuitry to adjust for input bias currents and output voltage offsets.   
 
9.8.1  Output Current and Voltage Limitations 
Operational amplifiers have definite limits to what currents they can supply.  The 
equivalent resistance seen by the output pin of an op-amp must not fall to such a level 
that the op-amp is required to source too much current.  Most op-amp outputs include 



short circuit protection which protects the op-amp from damage by limiting the output 
current available.  In general purpose op-amps, output current is typically limited to 2-5 
mA.  If the maximum voltage at the output voltage were 10 V, for example, this limitation 
on output cur rent would limit the equivalent resistance permissible at the output pin to 
be greater than 5 KΩ, if for example, the maximum current were 2 mA.   
 

Note:  The limitation in output current is the reason for the guidelines given above warning 
against using resistances below 1 or 2 KΩ in op-amp circuits without good reasons.   Circuit 
design should ensure that the feedback circuit does not require much output current, especially 
if the output current will be used for other purposes. 

 
 The maximum voltage which can be supplied by the op-amp is related to the 
external voltage supplied to power the op-amp.   In general, the output voltage is limited 
to about 1.5 V below the supply voltage level.  For example, if the supply voltage in a 
given application were ±10 V, the output voltage would be limited to ±8.5 V.   

 

Figure 9.49:  Op-Amp Output Saturation 

If an op-amp based amplifier’s input were large to force the output to reach 8.5 V, 
making the input larger would not result in the output likewise growing larger.  The 
output would be said to be saturated and for larger inputs, the amplifier would not 
function as designed. 
 
Example 7 
Given the non-inverting amplifier shown in Fig. 9.50.  The amplifier is strapped for a 
gain of 5 (1 + Rf/Rin).  The input is a 1 KHz triangle wave with a peak-to-peak amplitude 
of 5 V so that the maximum amplitude of the input is ± 2.5 V.   A gain of 5 would give a 
maximum output voltage of ±12.5 V, and, since op-amp is supplied with an external ±15 
V supply, would not result in saturation due to voltage limitations.   
  



 

 

Figure 9.50:  Non-Inverting Amplifier (gain = 5) 

 Assume, however, that the maximum output current is 2.5 V.  Since the equivalent 
resistance at the op-amp output is 3 KΩ (the 12 KΩ load resistance and the 4 KΩ 
feedback resistance in parallel), the maximum permitted output voltage is ±7.5 V as 
shown in Fig. 9.51. 

 

    Figure 9.51:  Output Waveform Distorted Due to Output Current Limitations 

Notice that the fact the circuit does not perform as intended is due purely to poor 
design.  The resistances chosen for Rf and Rin are too small.  A gain of 4 would result if 
30 KΩ were chosen for Rf and 7.5 KΩ for Ri.  If these values were used the resistance 
seen at the op-am output would be 8.57 KΩ (30 KΩ in parallel with 12 KΩ).  For Vo = 
±12.5 V, the resulting current would be less than 2 mA, well within the capabilities of the 
op-amp. 
 
9.8.2  Frequency and Speed Limitations 
The ideal op-amp model is derived by assuming the open-loop gain of the op-amp is 
infinite.  The actual gain is not infinite and decreases with frequency.     

 



Figure 9.52:  Op-Amp Circuit Model 
Fig. 9.52 shows the model for the op-amp, including open-loop gain, A, and the input 
and output resistances.   
 The parameter which describes the behavior of A is referred to as the unity gain 
bandwidth which is the frequency at which the open-loop gain, A = 1.    The gain acts 
like a first-order low pass filter with a break frequency usually between 1 and 20 Hz.   
Fig. 9.53 shows a high-speed op-amp with a unity gain BW of 3 MHz with a break 
frequency of 30 Hz.  One can see that, for f = 30 KHz, A has been reduced 40 dB or 
100.     

 
Figure 9.53:  Op-Amp Unity Gain Bandwidth 

Example 8 
Consider using an op-amp amplifier, an inverting configuration strapped for a gain of 41 
to amplify a 30 KHz, 40 mV peak-to-peak sinusoid.  Use the inverting configuration with 
Rin = 2 KΩ and Rf = 82 KΩ with the model shown in Fig. 9.46.  Assume an open-loop 
gain as shown in Fig. 9.53.   

 
Figure 9.54:  Amplifier with Non-Ideal Op-Amp 



 
 The nodal analysis equations are, 
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Note:  The voltage source equations are included in the KCL equations. 
 

 Using MAPLE to solve equations, 
> restart; 
> eqns:=(V1-Vs)/2000+(V1-V2)/82000+V1/10^12=0,(V2-V1)/82000+(V2+100*V1)/100=0: 
> soln:=solve({eqns},{V1,V2}): 
> assign(soln); 
> Vo:=evalf(V2,4); 
                              Vo := -28.86 Vs 

 Notice that the gain is actually around -29 rather than -41 which is likely not 
acceptable (%error = -29.6%).  Now consider the same amplifier, this time strapped for 
a gain of 6.8 rather than a gain of 40 (same circuit with R i = 10 KΩ, Rf = 68 KΩ). 

  Vo := -6.307 Vs  (percent error now -7.3%) 

 Exploring this once more, this time with the amplifier strapped for a gain of 2.2 
(same circuit with Ri = 10 KΩ, Rf = 24 KΩ). 

  Vo := -2.321 Vs  (percent error now -3.3%) 

 The point of this example is two-fold.  First, the circuit designer must be aware of 
frequency effects when employing op-amp circuits.  Second, to obtain gain at higher 
frequencies when using op-amps, one may need to employ multistage amplifiers.  For 
example, at 30 KHz, one may wish to use two amplifiers in cascade, each strapped for 
a gain of 6.8  as indicated in Fig. 9.49.  The actual gain then would be 0.927(6.8)2 = 42.9 
for a percent error of 4.5%. 

 

Figure 9.55:  Amplifiers in Cascade  

 
 



 Another parameter that affects op-amp dynamical performance is referred to as 
slew rate.  Op-amps are limited by the time rate of change which their outputs can 
achieve.  The slew rate of an op-amp (usually gives in V/µs) gives the maximum rate  of 
change the op-amp output can maintain.  Whereas frequency limitations typically first 
affect op-amp gain, slew rate limitations can affect op-amp distort op-amp signals.  A 
typical value for a general purpose op-amp would be around 10 V/µs with some high-
speed op-amps offering slew rates of 100 V/µs and above. 
 
Example 9 
Suppose an op-amp voltage follower has a 5 V amplitude pulse train with a period of 10 
µs at its input.     Take the op-amp slew rate to be 10 V/µs. 

 
Figure 9.56:  Signal Distortion due to Slew Rate Limitations  

 The distortions sinusoids suffer due to slew rate limitations are more subtle and 
harder to detect.  The maximum slope for sinusoids is when they cross the time axis.  
Their rate of change is greatest when their value is small.  What can happen is that their 
shape is “straightened out” in this region.  The slope of the straight line being that 
imposed by slew rate limitations. 

 

Figure 9.57:  Sinusoidal Distortion due to Slew Rate Limitations  

 
 
9.8.3  Input Bias Currents and Input Voltage Offset 
Real op-amps have non-zero input currents.  These small currents can cause the output 
to be non-zero if the input pins are not connected to equal impedances.  For example, 



 

Figure 9.58:  Input Bias Current Compensation 

in the inverting amplifier shown in Fig. 9.58, if i- and i+ are not zero then Vd will have two 
components—that due to the source, Vs, and that due to the input bias currents.  This 
effect, always present in real op-amps can be minimized with an input bias current 
resistance, Rc, shown in the circuit on the right.  This resistance is sized so that the two 
input pins of the op-amp are connected to equal equivalent resistances. 
 For many purposes, for non-precision measurements or for applications involving 
large signals, this compensation is not necessary.  For precision work, or for 
applications involving small signals, the small non-ideal behavior due to non-zero bias 
currents needs to be reduced. 
 

Note:  In real op-amps, the input currents are not equal.  There is an input bias current offset.  
The above compensation will not completely eliminate errors due to non-equal bias currents, 
but will greatly reduce them.  

 
 Real op-amps also have input voltage offset.  That is, even with the input pins tied 
together, there will be a non-zero voltage at the op-amp output.  Some op-amps provide 
external pin connection, with which to compensate for input voltage offset.    On the 
other hand, op-amps have improved markedly in recent years, and many op-amps do 
not provide any connections for compensation.  The reader should consult more 
specialized texts for further information. 
 
9.9  Summary 
Signal Conditioning involves a wide range of topics.  A sensor’s signal could be in the 
form of a change in resistance and signal conditioning is required to transform this 
signal into one involving a change of voltage.  A signal could be too small and require 
amplification.   A signal could be corrupted with noise and require filtering to obtain a 
cleaner signal.  A sensor may not be able to source much current and buffering may be 
required.   
 Several specific examples have been discussed in this chapter, and many of these 
signal conditioning schemes have been accomplished using the ideal operational 



amplifier.  Circuit designers should be able to consider non-ideal behavior when 
designing signal conditioning circuitry.   
 
9.10 Computer Tools and Other Resources 
Maple is an excellent tool with which to calculate system transfer functions of linear, 
time-invariant lumped element systems.    
 
9.10.1 Electrical Circuit 
Maple is an excellent tool with which to determine transfer functions.  
 

 
Figure 9.59:  Input Bias Current Compensation 

 Performing nodal analysis (since the op-amp is a voltage follower, Vo is on the 
output and the inputs), 
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 Using Maple to solve for Vo in terms of V i, 

> restart: 
> eq1:=(V[1]-V[i])/R+(V[1]-V[2])/R+(V[1]-V[o])*s*C[1]=0: 
> eq2:=(V[2]-V[1])/R+V[2]*s*C[2]=0: 
> eq3:=V[2]=V[o]:soln:=solve({eq1,eq2,eq3},{V[1],V[2],V[o]}): 
> assign(soln): 
> V[o]:=collect(V[o],s): 
> TF:=V[o]/V[i]; 

2 2

1 2 2

1
H := 

R C C s  + 2RC s + 1
 



 In this case, the output is very simply related to one of the node voltages (Vo = V2).  
In a more general case, however, one is still assured that the output can be expressed 
as a linear combination of node voltages. 
 
9.10.2 Mechanical System with Multiple Outputs and Multiple Outputs 
For systems with multiple inputs and multiple outputs (MIMO systems), superposition 
can be used to turn one input on at a time and the relation between one particular input 
and each respective output.   For the MIMO case, the transfer function is a matrix.   
 In a two-input, two-output system, for example, the transfer function relationship 
would be, 
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Example 10 
For the system shown below, consider the two inputs to be the applied torques, T1 and 
T2, and the outputs as θ1 and θ2.  J1 and J2 are rotational inertias, b1 and b2 represent 
rotational viscous dampers, and k1 and k2 represent the spring constants of the 
compliant shafts. 

 

Figure 9.60:  Fourth-Order Mechanical System 

 The equations of motion are, 
2

1 1 1 1 1 2 2 1 1 1

2
2 2 2 2 2 1 2 2

J s  = T  -  k  + k (  - ) -  b s

J s  = T  - k (  - ) - b s

θ θ θ θ θ

θ θ θ θ
 

Using MAPLE, 
> restart: 
> eq1:=J[1]*s^2*theta1=T[1]-k[1]*theta1+k[2]*(theta2-theta1)-b[1]*s*theta1: 
> eq2:=J[2]*s^2*theta2=T[2]-k[2]*(theta2-theta1)-b[2]*s*theta2: 
> soln:=solve({eq1,eq2},{theta1,theta2}): 



> assign(soln): 
> H[11]:=subs({T[1]=1,T[2]=0},theta1); 
> H[12]:=subs({T[1]=0,T[2]=1},theta1); 
> H[21]:=subs({T[1]=1,T[2]=0},theta2); 
> H[22]:=subs({T[1]=0,T[2]=1},theta2); 
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11 4 3 2

1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

J s  + b s + k
H  = 

J J s  + (Jb  + J b )s  + (bb  + Jk  + J k  + J k )s  + (b k  + b k  +  b k )s + k k
 

2

12 4 3 2

1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

k
H  = 

J J s  + (Jb  +  J b ) s  +  ( b b  +  J k  +  J k  +  J k ) s  + (bk  + b k  + b k )s + kk
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21 4 3 2

1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

k
H  = 

J J s  + (Jb  + J b )s  + (bb  +  Jk  +  Jk  + J k )s  + (bk  + b k  + b k )s + kk
 

2

1 1 2

22 4 3 2

1 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

1J s  + bs + (k  + k )
H  = 

J J s  + (Jb  + J b ) s  + (b b  + Jk  + J k  + J k )s  + (b k  + b k  +  b k )s + k k

 
 

 
 
9.11 Design Examples 
9.11.1 Variable Gain Instrumentation Amplifier 
In Fig. 9.15, an improved differential amplifier with high input impedance was obtained 
by applying voltage followers at the input.   A variable gain amplifier, still with high input 
impedance is given in Fig. 9.55.  

 

Figure 9.61:  Variable Gain Instrumentation Amplifier 
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9.11.2 Charge Amplifier 
Some sensors, such as a piezoelectric accelerometer can supply hardly any current.   
Fortunately there are op-amps available that have extremely low input bias currents of 
10 fA and less (for example, the LMC 6081 and LMC 6042 from National 
Semiconductor).    These amplifiers can easily serve as charge amplifiers for most 



piezoelectric amplifiers.  The following circuit for an instrumentation amplifier with input 
currents of less than 100 fA appears on the LMC 6081 data sheet. 

 

Figure 9.62:  Amplifier on LMC 6081 Data Sheet 

 The guard rings do not appear on the data sheet schematic but are help lower 
parasitic input capacitance which is helpful when ultra-low input currents are needed.  


