OWASP Cheat Sheets

Martin Woschek, owasp@jesterweb.de

April 9, 2015

Contents

Developer Cheat Sheets (Builder)

1 Authentication Cheat Sheet

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Introduction L e
Authentication General Guidelines
Use of authentication protocols that require no password
Session Management General Guidelines
Password Managers v v v v i vt e e e e e e e e e e e
Authors and Primary Editors o0 L.
References e

2 Choosing and Using Security Questions Cheat Sheet

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Introduction L L e
The Problem e
Choosing Security Questions and/or Identity Data
Using Security Questions L0 oo
Related Articles L e
Authors and Primary Editors 000
References e

3 Clickjacking Defense Cheat Sheet

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Introduction L e
Defending with Content Security Policy frame-ancestors directive
Defending with X-Frame-Options Response Headers
Best-for-now Legacy Browser Frame Breaking Script.
window.confirm() Protection
Non-Working Scripts.
Authors and Primary Editors
References e

4 C-Based Toolchain Hardening Cheat Sheet

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Introduction
Actionable Items
Build Configurations e
Library Integration L o e
Static Analysis L e
Platform Security
Authors and Editors L L
References e e e

5 Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.1
5.2
5.3
5.4
5.5

Introduction L e
Prevention Measures That DoNOTWork
General Recommendation: Synchronizer Token Pattern
CSRF Prevention without a Synchronizer Token
Client/User Prevention @ v v v v v i i i v

Contents

5.6 No Cross-Site Scripting (XSS) Vulnerabilities
5.7 Authors and Primary Editors 00,
5.8 References e e e e
6 Cryptographic Storage Cheat Sheet

6.1 Introduction e e
6.2 Providing Cryptographic Functionality
6.3 Related Articles e e e
6.4 Authors and Primary Editors0 L.
6.5 References e
7 DOM based XSS Prevention Cheat Sheet

7.1 Introduction e
7.2 Guidelines for Developing Secure Applications Utilizing JavaScript
7.3 Common Problems Associated with Mitigating DOM Based XSS
7.4 Authors and Contributing Editors
7.5 References e e e e
8 Forgot Password Cheat Sheet

8.1 Introduction e e
8.2 TheProblem
8.3 Steps e e e e e
8.4 Authors and Primary Editors
8.5 References
9 HTMLS Security Cheat Sheet

9.1 Introduction e e e
9.2 Communication APIs
9.3 Storage APIs e
9.4 Geolocation L e e e
9.5 Web Workers e
9.6 Sandboxed frames e
9.7 Offline Applications e
9.8 Progressive Enhancements and Graceful Degradation Risks
9.9 HTTP Headers to enhance security
9.10 Authors and Primary Editors L 0oL
9.11 References i i e e e e
10 Input Validation Cheat Sheet

10.1 Introduction e e e e
10.2 Authors and Primary Editors o Lo,
10.3 References e e
11 JAAS Cheat Sheet

11.1 Introduction e e e e
11.2 Related Articles e e e
11.3 Disclosure. e e e e
11.4 Authors and Primary Editors
11.5 References e e
12 Logging Cheat Sheet

12.1 Introduction e e e e
12.2 Purpose e e e e e e e e e
12.3 Design, implementation and testing
12.4 Deployment and operation oL,

Contents

12.5 Related articles e e e
12.6 Authors and Primary Contributors
12.7 References o o o o e e e e e e e s

13 .NET Security Cheat Sheet

13.1 Introduction e e e e
13.2 .NET Framework Guidance,
13.3 ASP.NET Web Forms Guidance
13.4 ASP.NETMVC Guidance i,
13.5 XAML Guidance e e e e e e
13.6 Windows Forms Guidance
13.7 WCF Guidance e i e e e e e e e e
13.8 Authors and Primary Editors
13.9 References e e e e e e

14 Password Storage Cheat Sheet

14.1 Introduction e
14.2 Guidance e e e e e e e
14.3 Related Articles e e
14.4 Authors and Primary Editorso 0oL
14.5 References @ i i i e e e

15 Pinning Cheat Sheet

15.1 Introduction e e e e e
15.2 What'sthe problem?
15.3 WhatIsPinning? e
15.4 What Should Be Pinned?
15.5 Examplesof Pinning e
15.6 Related Articles e e e e
15.7 Authorsand Editors e
15.8 References e e e e

16 Query Parameterization Cheat Sheet

16.1 Introduction e
16.2 Parameterized Query Examples 0000,
16.3 Related Articles e
16.4 Authors and Primary Editors o 0.
16.5 References @ . i e e e

17 Ruby on Rails Cheatsheet

17.1 Introduction e
172 Ttems L 0 e e
17.3 Updating Rails and Having a Process for Updating Dependencies
17.4 Tools e e e
17.5 Further Information L Lo L
17.6 Authors and Primary Editors o000
17.7 References e

18 REST Security Cheat Sheet

18.1 Introduction e
18.2 Authentication and session management
18.3 Authorization L L e
18.4 Inputvalidation e
18.5 Outputencoding e e
18.6 Cryptography e

Contents

18.7 Authors and primary editors L L Lo 124
18.8 References e 124
19 Session Management Cheat Sheet 126
19.1 Introduction e e e 126
19.2 Session ID Properties oo 127
19.3 Session Management Implementation 128
19.4 CooKies e e e e e e 130
19.5 SessionID Life Cycle 131
19.6 Session Expiration Lo L L 132
19.7 Additional Client-Side Defenses for Session Management 134
19.8 Session Attacks Detection Lo oo oL, 135
19.9 Related Articles e e 137
19.10 Authors and Primary Editors 138
19.11References i e e e e e e e e 138
20 SQL Injection Prevention Cheat Sheet 139
20.1 Introduction e e e 139
20.2 Primary Defenses 140
20.3 Additional Defenses e e 145
20.4 Related Articles L e e 146
20.5 Authors and Primary Editors o000 147
20.6 References e e 147
21 Transport Layer Protection Cheat Sheet 149
21.1 Introduction e e 149
21.2 Providing Transport Layer Protection with SSL/TLS 149
21.3 Providing Transport Layer Protection for Back End and Other Connections 161
21.4 Tools e e e e e e e e e e 161
21.5 Related Articles L e e 161
21.6 Authors and Primary Editors Lo 0oL 163
21.7 References e e e e e 163
22 Unvalidated Redirects and Forwards Cheat Sheet 166
22.1 Introduction e e e e e 166
22.2 Safe URL Redirects it 166
22.3 Dangerous URL Redirects. 166
22.4 Preventing Unvalidated Redirects and Forwards 168
22.5 Related Articles e e e 168
22.6 Authors and Primary Editors o 0oL 169
22.7 References e e e e 169
23 User Privacy Protection Cheat Sheet 170
23.1 Introduction e e e e e 170
23.2 Guidelines e e e 170
23.3 Authors and Primary Editors 0oL 173
23.4 References e e e 173
24 Web Service Security Cheat Sheet 175
24.1 Introduction e e e 175
24.2 Transport Confidentiality 175
24.3 Server Authentication Lo Lo L 175
24.4 User Authentication e 175
24.5 Transport Encoding e 176
24.6 Message Integrity L o Lo Lo oo 176

Contents

24.7 Message Confidentiality 176
24.8 Authorization e e e 176
24.9 Schema Validation e 176
24.10Content Validation L L 177
24.110utput Encoding L L e 177
24.12Virus Protection 177
24.13Message Size Lo e e e e e e e 177
24.14 Availability L 178
24.15 Endpoint Security Profile o o oo 178
24.16 Authors and Primary Editors 0L 0L 178
24. 17References e e e e 178
25 XSS (Cross Site Scripting) Prevention Cheat Sheet 179
25.1 Introduction e 179
25.2 XSS PreventionRules oo 180
25.3 XSS Prevention Rules Summary0 0000 186
25.4 Output Encoding Rules Summary 188
25.5 Related Articles L e 189
25.6 Authors and Primary Editors Lo oL 190
25.7 References e e e 190
Il Assessment Cheat Sheets (Breaker) 191

26 Attack Surface Analysis Cheat Sheet 192
26.1 What is Attack Surface Analysis and Why is it Important? 192
26.2 Defining the Attack Surface of an Application 192
26.3 Identifying and Mapping the Attack Surface 193
26.4 Measuring and Assessing the Attack Surface 194
26.5 Managing the Attack Surface, 195
26.6 Related Articles e 196
26.7 Authors and Primary Editors 0oL 196
26.8 References 196
27 XSS Filter Evasion Cheat Sheet 197
27.1 Introduction e 197
27.2 Tests e e e e e e e 197
27.3 Character Encoding and IP Obfuscation Calculators 219
27.4 Authors and Primary Editors 0oL 219
27.5 References e 220
28 REST Assessment Cheat Sheet 221
28.1 About RESTful Web Services 221
28.2 Key relevant properties of RESTful web services. 221
28.3 The challenge of security testing RESTful web services. 221
28.4 How to pen test a RESTful web service? 222
28.5 Related Resources e 223
28.6 Authors and Primary Editors o000 223
28.7 References 223
Il Mobile Cheat Sheets 224

29 10S Developer Cheat Sheet 225
29.1 Introduction e 225

Contents

290.2 BasiCs e e e e e e e e e
29.3 Remediation’s to OWASP Mobile Top 10Risks
29.4 Related Articles L e e e e e
29.5 Authors and Primary Editors 0oL
29.6 References e e e e

30 Mobile Jailbreaking Cheat Sheet

30.1 What is "jailbreaking", "rooting" and "unlocking"?
30.2 Whydotheyoccur? e
30.3 What are the common toolsused?
30.4 Why can it be dangerous? o oo
30.5 Conclusion e e
30.6 Authors and Primary Editors
30.7 References e

IV OpSec Cheat Sheets (Defender)

31 Virtual Patching Cheat Sheet

31.1 Introduction e e e
31.2 Definition: Virtual Patching
31.3 Why NotdJust Fixthe Code?
31.4 Value of Virtual Patching,
31.5 Virtual Patching Tools,
31.6 A Virtual Patching Methodology
31.7 Example Public Vulnerability 0000
31.8 Preparation Phase
31.9 Identification Phase e
31.10Analysis Phase e
31.11 Virtual Patch Creation Phase
31.12 Implementation/Testing Phase
31.13Recovery/Follow-Up Phase
31.14Related Articles L e e e
31.15 Authors and Primary Editorso ...
Sl1.16References e e e e e e

V Draft Cheat Sheets
32 OWASP Top Ten Cheat Sheet

33 Access Control Cheat Sheet

33.1 Introduction e e e e e
33.2 Attackson Access Control e
33.3 Access ControllIssues e
33.4 Access Control Anti-Patterns
33.5 Attacking Access Controls oo oo
33.6 Testing for Broken Access Control
33.7 Defenses Against Access Control Attacks
33.8 Best Practices e e e e
33.9 SQL Integrated Access Control
33.10 Access Control Positive Patterns
33.11Data Contextual Access Control,
33.12 Authors and Primary Editors,

240

241
241
241
241
241
242
242
242
243
243
244
245
247
247
248
248
248

Contents

34 Application Security Architecture Cheat Sheet

34.1 Introduction e e e
34.2 Business Requirementso 00000 Lo o o s
34.3 Infrastructure Requirements,
34.4 Application Requirements 0.
34.5 Security Program Requirements
34.6 Authors and Primary Editors o 000

35 Business Logic Security Cheat Sheet

35.1 Introduction e e
35.2 What is a Business Logic Vulnerability?
35.3 Related Articles e e
35.4 Authors and Primary Editors 0.

36 PHP Security Cheat Sheet

36.1 Introduction e
36.2 Configuration L L
36.3 Untrusteddata
36.4 Database CheatSheet,
36.5 Other Injection Cheat Sheet
36.6 XSSCheatSheet o
36.7 CSRF CheatSheet o,
36.8 Authentication and Session Management Cheat Sheet
36.9 Configuration and Deployment Cheat Sheet
36.10 Authors and Primary Editors

37 Secure Coding Cheat Sheet

37.1 Introduction
37.2 How To Use This Document
37.3 Authentication e
37.4 Session Management Lo e e
37.5 Access Control L e
37.6 Input Validation e
37.7 OutputEncoding e
37.8 Cross Domain Request Forgery
37.9 Secure Transmission e
37.10File Uploads i i i e e e
37.11Authors e e e e e e e

38 Secure SDLC Cheat Sheet

38.1 Introduction
38.2 Purpose e e e
38.3 Implementing a secure software development life cycle (S-SDLC)
38.4 Related articles L e
38.5 Authors and primary contributors. 0000000 L

39 Threat Modeling Cheat Sheet

40 Web Application Security Testing Cheat Sheet

40.1 Introduction e e e e e
40.2 PUIPOSE o it i e e e e e e e e e
40.3 The Checklist e e e e
40.4 Other Formats e e e e e
40.5 Authors and primary contributors.o 000
40.6 Other Contributors e

260
260
260
261
262
263
264

265
265
265
267
267

268
268
271
272
272
274
275
276
277
280
280

281
281
281
281
282
283
283
284
285
286
286
287

288
288
288
288
291
292

293

Contents

40.7 Related articles e e e,
41 Grails Secure Code Review Cheat Sheet

42 10S Application Security Testing Cheat Sheet

42.1 Introduction e e
42.2 Information gathering oL oL oo
42.3 Application trafficanalysis 0.,
42.4 Runtime analysis e
42.5 Insecure data storageo
42.6 TOOIS e e e e
42.7 Related Articles L e
42.8 Authors and Primary Editors 0.,

43 Key Management Cheat Sheet

44 Insecure Direct Object Reference Prevention Cheat Sheet

44.1 Introduction L e e e
44.2 Architectural Options e
44.3 Authors and Primary Editors 0oL

45 Content Security Policy Cheat Sheet

45.1 Introduction L e e e
45.2 CSPBasiCs« i e e e e
45.3 CSP Sample Policies e
45.4 CSP Cheat Sheet - Guide for main technologies
45.5 Authors and Primary Editors 0oL
45.6 References e e e e

301

302
302
302
303
304
304
305
306
306

307

Contents

These Cheat Sheets have been taken from the owasp project on https://www.owasp.
org. While this document is static, the online source is continuously improved and
expanded. So please visit https://www.owasp.org if you have any doubt in the
accuracy or actuality of this pdf or simply if this document is too old.

All the articles are licenced under the Creative Commons Attribution-ShareAlike 3.0
Unported!. I have slightly reformatted and/or resectioned them in this work (which
of course also is CC BY-SA 3.0).

"Mttp://creativecommons.org/licenses/by-sa/3.0/

10

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
http://creativecommons.org/licenses/by-sa/3.0/

Part I.

Developer Cheat Sheets (Builder)

11

1. Authentication Cheat Sheet

Last revision (mm/dd/yy): 02/24/2015

1.1. Introduction

Authentication is the process of verification that an individual or an entity is who it
claims to be. Authentication is commonly performed by submitting a user name or
ID and one or more items of private information that only a given user should know.
Session Management is a process by which a server maintains the state of an entity
interacting with it. This is required for a server to remember how to react to sub-
sequent requests throughout a transaction. Sessions are maintained on the server
by a session identifier which can be passed back and forward between the client
and server when transmitting and receiving requests. Sessions should be unique per
user and computationally very difficult to predict.

1.2. Authentication General Guidelines
1.2.1. User IDs

Make sure your usernames/userids are case insensitive. Regardless, it would be
very strange for user 'smith’ and user 'Smith’ to be different users. Could result in
serious confusion.

Email address as a User ID

Many sites use email addresses as a user id, which is a good mechanism for ensuring
a unique identifier for each user without adding the burden of remembering a new
username. However, many web applications do not treat email addresses correctly
due to common misconceptions about what constitutes a valid address.

Specifically, it is completely valid to have an mailbox address which:

* [s case sensitive in the local-part
* Has non-alphanumeric characters in the local-part (including + and @)
* Has zero or more labels (though zero is admittedly not going to occur)

The local-part is the part of the mailbox address to the left of the rightmost @ char-
acter. The domain is the part of the mailbox address to the right of the rightmost @
character and consists of zero or more labels joined by a period character.

At the time of writing, RFC 5321[2] is the current standard defining SMTP and what
constitutes a valid mailbox address.

Validation

Many web applications contain computationally expensive and inaccurate regular
expressions that attempt to validate email addresses.

Recent changes to the landscape mean that the number of false-negatives will in-
crease, particularly due to:

12

1. Authentication Cheat Sheet

* Increased popularity of sub-addressing by providers such as Gmail (commonly
using + as a token in the local-part to affect delivery)

* New gTLDs with long names (many regular expressions check the number and
length of each label in the domain)

Following RFC 5321, best practice for validating an email address would be to:
* Check for presence of at least one @ symbol in the address
* Ensure the local-part is no longer than 64 octets
¢ Ensure the domain is no longer than 255 octets
* Ensure the address is deliverable

To ensure an address is deliverable, the only way to check this is to send the user an
email and have the user take action to confirm receipt. Beyond confirming that the
email address is valid and deliverable, this also provides a positive acknowledgement
that the user has access to the mailbox and is likely to be authorised to use it.

Address Normalisation

As the local-part of email addresses are, in fact - case sensitive, it is important to
store and compare email addresses correctly. To normalise an email address input,
you would convert the domain part ONLY to lowercase.

Unfortunately this does and will make input harder to normalise and correctly match
to a users intent.

It is reasonable to only accept one unique capitalisation of an otherwise identical
address, however in this case it is critical to:

* Store the user-part as provided and verified by user verification

* Perform comparisons by lowercase(provided)==lowercase(persisted)

1.2.2. Implement Proper Password Strength Controls

A key concern when using passwords for authentication is password strength. A
"strong" password policy makes it difficult or even improbable for one to guess the
password through either manual or automated means. The following characteristics
define a strong password:

1.2.2.1. Password Length

Longer passwords provide a greater combination of characters and consequently
make it more difficult for an attacker to guess.

¢ Minimum length of the passwords should be enforced by the application.
— Passwords shorter than 10 characters are considered to be weak [3].

While minimum length enforcement may cause problems with memorizing passwords
among some users, applications should encourage them to set passphrases (sen-
tences or combination of words) that can be much longer than typical passwords
and yet much easier to remember.

* Maximum password length should not be set too low, as it will prevent users
from creating passphrases. Typical maximum length is 128 characters.

13

1. Authentication Cheat Sheet

- Passphrases shorter than 20 characters are usually considered weak if they
only consist of lower case Latin characters.

¢ Every character counts!!

- Make sure that every character the user types in is actually included in
the password. We've seen systems that truncate the password at a length
shorter than what the user provided (e.g., truncated at 15 characters when
they entered 20).

- This is usually handled by setting the length of ALL password input fields
to be exactly the same length as the maximum length password. This is
particularly important if your max password length is short, like 20-30
characters.

1.2.2.2. Password Complexity

Applications should enforce password complexity rules to discourage easy to guess
passwords. Password mechanisms should allow virtually any character the user can
type to be part of their password, including the space character. Passwords should,
obviously, be case sensitive in order to increase their complexity. Occasionally, we
find systems where passwords aren’t case sensitive, frequently due to legacy system
issues like old mainframes that didn’t have case sensitive passwords.

The password change mechanism should require a minimum level of complexity that
makes sense for the application and its user population. For example:

* Password must meet at least 3 out of the following 4 complexity rules

- at least 1 uppercase character (A-Z)
at least 1 lowercase character (a-z)
at least 1 digit (0-9)

at least 1 special character (punctuation) — do not forget to treat space as
special characters too

¢ at least 10 characters
* at most 128 characters
* not more than 2 identical characters in a row (e.g., 111 not allowed)

As application’s require more complex password policies, they need to be very clear
about what these policies are.

* The required policy needs to be explicitly stated on the password change page
- be sure to list every special character you allow, so it’s obvious to the user
Recommendation:

* Ideally, the application would indicate to the user as they type in their new
password how much of the complexity policy their new password meets

- In fact, the submit button should be grayed out until the new password
meets the complexity policy and the 2nd copy of the new password matches
the 1st. This will make it far easier for the user to understand and comply
with your complexity policy.

Regardless of how the Ul behaves, when a user submits their password change re-
quest:

14

1. Authentication Cheat Sheet

¢ If the new password doesn’t comply with the complexity policy, the error mes-
sage should describe EVERY complexity rule that the new password does not
comply with, not just the 1st rule it doesn’t comply with

Changing passwords should be EASY, not a hunt in the dark.

1.2.3. Implement Secure Password Recovery Mechanism

It is common for an application to have a mechanism that provides a means for a
user to gain access to their account in the event they forget their password. Please
see Forgot Password Cheat Sheet on page 65 for details on this feature.

1.2.4. Store Passwords in a Secure Fashion

It is critical for a application to store a password using the right cryptographic tech-
nique. Please see Password Storage Cheat Sheet on page 98 for details on this fea-
ture.

1.2.5. Transmit Passwords Only Over TLS

See: Transport Layer Protection Cheat Sheet on page 149

The login page and all subsequent authenticated pages must be exclusively accessed
over TLS. The initial login page, referred to as the "login landing page", must be served
over TLS. Failure to utilize TLS for the login landing page allows an attacker to mod-
ify the login form action, causing the user’s credentials to be posted to an arbitrary
location. Failure to utilize TLS for authenticated pages after the login enables an at-
tacker to view the unencrypted session ID and compromise the user’s authenticated
session.

1.2.6. Require Re-authentication for Sensitive Features

In order to mitigate CSRF and session hijacking, it’s important to require the current
credentials for an account before updating sensitive account information such as the
user’s password, user’s email, or before sensitive transactions, such as shipping a
purchase to a new address. Without this countermeasure, an attacker may be able
to execute sensitive transactions through a CSRF or XSS attack without needing to
know the user’s current credentials. Additionally, an attacker may get temporary
physical access to a user’s browser or steal their session ID to take over the user’s
session.

1.2.7. Utilize Multi-Factor Authentication

Multi-factor authentication (MFA) is using more than one authentication factor to
logon or process a transaction:

¢ Something you know (account details or passwords)
¢ Something you have (tokens or mobile phones)
¢ Something you are (biometrics)

Authentication schemes such as One Time Passwords (OTP) implemented using a
hardware token can also be key in fighting attacks such as CSRF and client-side
malware. A number of hardware tokens suitable for MFA are available in the market
that allow good integration with web applications. See [6].

15

1. Authentication Cheat Sheet

1.2.7.1. SSL Client Authentication

SSL Client Authentication, also known as two-way SSL authentication, consists of
both, browser and server, sending their respective SSL certificates during the TLS
handshake process. Just as you can validate the authenticity of a server by using
the certificate and asking a well known Certificate Authority (CA) if the certificate is
valid, the server can authenticate the user by receiving a certificate from the client
and validating against a third party CA or its own CA. To do this, the server must
provide the user with a certificate generated specifically for him, assigning values to
the subject so that these can be used to determine what user the certificate should
validate. The user installs the certificate on a browser and now uses it for the website.
It is a good idea to do this when:

* It is acceptable (or even preferred) that the user only has access to the website
from only a single computer/browser.

* The user is not easily scared by the process of installing SSL certificates on his
browser or there will be someone, probably from IT support, that will do this for
the user.

* The website requires an extra step of security.

e It is also a good thing to use when the website is for an intranet of a company
or organization.

It is generally not a good idea to use this method for widely and publicly available
websites that will have an average user. For example, it wouldn’t be a good idea to
implement this for a website like Facebook. While this technique can prevent the
user from having to type a password (thus protecting against an average keylogger
from stealing it), it is still considered a good idea to consider using both a password
and SSL client authentication combined.

For more information, see: [4] or [5].

1.2.8. Authentication and Error Messages

Incorrectly implemented error messages in the case of authentication functionality
can be used for the purposes of user ID and password enumeration. An application
should respond (both HTTP and HTML) in a generic manner.

1.2.8.1. Authentication Responses

An application should respond with a generic error message regardless of whether
the user ID or password was incorrect. It should also give no indication to the status
of an existing account.
1.2.8.2. Incorrect Response Examples

¢ "Login for User foo: invalid password"

* "Login failed, invalid user ID"

* "Login failed; account disabled"

¢ "Login failed; this user is not active"

16

1. Authentication Cheat Sheet

1.2.8.3. Correct Response Example

¢ "Login failed; Invalid userID or password"

The correct response does not indicate if the user ID or password is the incorrect
parameter and hence inferring a valid user ID.

1.2.8.4. Error Codes and URLs

The application may return a different HTTP Error code depending on the authenti-
cation attempt response. It may respond with a 200 for a positive result and a 403
for a negative result. Even though a generic error page is shown to a user, the HTTP
response code may differ which can leak information about whether the account is
valid or not.

1.2.9. Prevent Brute-Force Attacks

If an attacker is able to guess passwords without the account becoming disabled
due to failed authentication attempts, the attacker has an opportunity to continue
with a brute force attack until the account is compromised. Automating brute-
force/password guessing attacks on web applications is a trivial challenge. Pass-
word lockout mechanisms should be employed that lock out an account if more than
a preset number of unsuccessful login attempts are made. Password lockout mech-
anisms have a logical weakness. An attacker that undertakes a large number of
authentication attempts on known account names can produce a result that locks
out entire blocks of user accounts. Given that the intent of a password lockout sys-
tem is to protect from brute-force attacks, a sensible strategy is to lockout accounts
for a period of time (e.g., 20 minutes). This significantly slows down attackers, while
allowing the accounts to reopen automatically for legitimate users.

Also, multi-factor authentication is a very powerful deterrent when trying to prevent
brute force attacks since the credentials are a moving target. When multi-factor is
implemented and active, account lockout may no longer be necessary.

1.3. Use of authentication protocols that require no password

While authentication through a user/password combination and using multi-factor
authentication is considered generally secure, there are use cases where it isn’t con-
sidered the best option or even safe. An example of this are third party applications
that desire connecting to the web application, either from a mobile device, another
website, desktop or other situations. When this happens, it is NOT considered safe
to allow the third party application to store the user/password combo, since then it
extends the attack surface into their hands, where it isn’t in your control. For this,
and other use cases, there are several authentication protocols that can protect you
from exposing your users’ data to attackers.

1.3.1. OAuth

Open Authorization (OAuth) is a protocol that allows an application to authenticate
against a server as a user, without requiring passwords or any third party server that
acts as an identity provider. It uses a token generated by the server, and provides
how the authorization flows most occur, so that a client, such as a mobile application,
can tell the server what user is using the service.

The recommendation is to use and implement OAuth 1.0a or OAuth 2.0, since the
very first version (OAuth1.0) has been found to be vulnerable to session fixation.

17

1. Authentication Cheat Sheet

OAuth 2.0 relies on HTTPS for security and is currently used and implemented by
APT's from companies such as Facebook, Google, Twitter and Microsoft. OAuth1.0a is
more difficult to use because it requires the use of cryptographic libraries for digital
signatures, however does not rely on HTTPS for security and can therefore be more
suited for higher risk transactions.

1.3.2. Openld

Openld is an HTTP-based protocol that uses identity providers to validate that a user
is who he says he is. It is a very simple protocol which allows a service provider
initiated way for single sign-on (SSO). This allows the user to re-use a single identity
given to a trusted Openld identity provider and be the same user in multiple websites,
without the need to provide any website the password, except for the Openld identity
provider.

Due to its simplicity and that it provides protection of passwords, Openld has been
well adopted. Some of the well known identity providers for Openld are Stack Ex-
change, Google, Facebook and Yahoo!

For non-enterprise environment, Openld is considered a secure and often better
choice, as long as the identity provider is of trust.

1.3.3. SAML

Security Assertion Markup Language (SAML) is often considered to compete with
Openld. The most recommended version is 2.0, since it is very feature complete
and provides a strong security. Like with Openld, SAML uses identity providers, but
unlike it, it is XML-based and provides more flexibility. SAML is based on browser
redirects which send XML data. Unlike SAML, it isn’t only initiated by a service
provider, but it can also be initiated from the identity provider. This allows the user
to navigate through different portals while still being authenticated without having
to do anything, making the process transparent.

While Openld has taken most of the consumer market, SAML is often the choice
for enterprise applications. The reason for this is often that there are few Openld
identity providers which are considered of enterprise class (meaning that the way
they validate the user identity doesn’t have high standards required for enterprise
identity). It is more common to see SAML being used inside of intranet websites,
sometimes even using a server from the intranet as the identity provider.

In the past few years, applications like SAP ERP and SharePoint (SharePoint by us-
ing Active Directory Federation Services 2.0) have decided to use SAML 2.0 authen-
tication as an often preferred method for single sign-on implementations whenever
enterprise federation is required for web services and web applications.

1.3.4. FIDO

The Fast Identity Online (FIDO) Alliance has created two protocols to facilitate on-
line authentication : the Universal Authentication Framework (UAF) protocol and
the Universal Second Factor (U2F) protocol. While UAF focuses on passwordless au-
thentication, U2F allows the addition of a second factor to existing password-based
authentication. Both protocols are based on a public key cryptography challenge-
response model.

UAF takes advantage of existing security technologies present on devices for authen-
tication including fingerprint sensors, cameras(face biometrics), microphones(voice
biometrics), Trusted Execution Environments(TEEs), Secure Elements(SEs) and oth-
ers. The protocol is designed to plug-in these device capabilities into a common

18

1. Authentication Cheat Sheet

authentication framework. UAF works with both native applications and web appli-
cations.

U2F augments password-based authentication using a hardware token (typically
USB) that stores cryptographic authentication keys and uses them for signing. The
user can use the same token as a second factor for multiple applications. U2F works
with web applications. It provides protection against phishing by using the URL of the
website to lookup the stored authentication key.

1.4. Session Management General Guidelines

Session management is directly related to authentication. The Session Management
General Guidelines previously available on this OWASP Authentication Cheat Sheet
have been integrated into the Session Management Cheat Sheet on page 126.

1.5. Password Managers

Password managers are programs, browser plugins or web services that automate
management of large number of different credentials, including memorizing and
filling-in, generating random passwords on different sites etc. The web application
can help password managers by:

¢ using standard HTML forms for username and password input,

* not disabling copy and paste on HTML form fields,

¢ allowing very long passwords,

* not using multi-stage login schemes (username on first screen, then password),

* not using highly scripted (JavaScript) authentication schemes.

1.6. Authors and Primary Editors

¢ Foin Keary eoinkeary[at]owasp.org

1.7. References

1. https://www.owasp.org/index.php/Authentication_Cheat_Sheet
2. https://tools.ietf.org/html/rfc5321

3. http://csrc.nist.gov/publications/nistpubs/800-132/
nist-sp800-132.pdf

4. http://publib.boulder.ibm.com/infocenter/tivihelp/v5rl/index.
Jjsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_
security_ssl_authent2way.html

5. http://www.codeproject.com/Articles/326574/
An-Introduction—-to-Mutual-SSL-Authentication

6. http://en.wikipedia.org/wiki/Security_token

19

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://tools.ietf.org/html/rfc5321
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_security_ssl_authent2way.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_security_ssl_authent2way.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_security_ssl_authent2way.html
http://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication
http://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication
http://en.wikipedia.org/wiki/Security_token

2. Choosing and Using Security Questions
Cheat Sheet

Last revision (mm/dd/yy): 04/17/2014

2.1. Introduction

This cheat sheet provides some best practice for developers to follow when choos-
ing and using security questions to implement a "forgot password" web application
feature.

2.2. The Problem

There is no industry standard either for providing guidance to users or developers
when using or implementing a Forgot Password feature. The result is that developers
generally pick a set of dubious questions and implement them insecurely. They do
so, not only at the risk to their users, but also-because of potential liability issues—
at the risk to their organization. Ideally, passwords would be dead, or at least less
important in the sense that they make up only one of several multi-factor authenti-
cation mechanisms, but the truth is that we probably are stuck with passwords just
like we are stuck with Cobol. So with that in mind, what can we do to make the
Forgot Password solution as palatable as possible?

2.3. Choosing Security Questions and/or Identity Data

Most of us can instantly spot a bad "security question" when we see one. You know
the ones we mean. Ones like "What is your favorite color?" are obviously bad. But
as the Good Security Questions [2] web site rightly points out, "there really are NO
GOOD security questions; only fair or bad questions".

The reason that most organizations allow users to reset their own forgotten pass-
words is not because of security, but rather to reduce their own costs by reducing
their volume of calls to their help desks. It's the classic convenience vs. security
trade-off, and in this case, convenience (both to the organization in terms of reduced
costs and to the user in terms of simpler, self-service) almost always wins out.

So given that the business aspect of lower cost generally wins out, what can we do to
at least raise the bar a bit?

Here are some suggestions. Note that we intentionally avoid recommending specific
security questions. To do so likely would be counterproductive because many de-
velopers would simply use those questions without much thinking and adversaries
would immediately start harvesting that data from various social networks.

2.3.1. Desired Characteristics

Any security questions or identity information presented to users to reset forgotten
passwords should ideally have the following four characteristics:

20

2. Choosing and Using Security Questions Cheat Sheet

1. Memorable: If users can’t remember their answers to their security questions,
you have achieved nothing.

2. Consistent: The user’s answers should not change over time. For instance,
asking "What is the name of your significant other?" may have a different answer
5 years from now.

3. Nearly universal: The security questions should apply to a wide an audience of
possible.

4. Safe: The answers to security questions should not be something that is easily
guessed, or research (e.g., something that is matter of public record).

2.3.2. Steps
2.3.2.1. Step 1) Decide on Identity Data vs Canned Questions vs. User-Created
Questions

Generally, a single HTML form should be used to collect all of the inputs to be used
for later password resets.

If your organization has a business relationship with users, you probably have col-
lected some sort of additional information from your users when they registered with
your web site. Such information includes, but is not limited to:

* email address

* last name

¢ date of birth

* account number

* customer number

¢ last 4 of social security number
* zip code for address on file

¢ street number for address on file

For enhanced security, you may wish to consider asking the user for their email
address first and then send an email that takes them to a private page that requests
the other 2 (or more) identity factors. That way the email itself isn’t that useful
because they still have to answer a bunch of 'secret’ questions after they get to the
landing page.

On the other hand, if you host a web site that targets the general public, such as
social networking sites, free email sites, news sites, photo sharing sites, etc., then
you likely to not have this identity information and will need to use some sort of the
ubiquitous "security questions". However, also be sure that you collect some means
to send the password reset information to some out-of-band side-channel, such as a
(different) email address, an SMS texting number, etc.

Believe it or not, there is a certain merit to allow your users to select from a set of
several "canned" questions. We generally ask users to fill out the security questions
as part of completing their initial user profile and often that is the very time that
the user is in a hurry; they just wish to register and get about using your site. If
we ask users to create their own question(s) instead, they then generally do so under
some amount of duress, and thus may be more likely to come up with extremely poor
questions.

21

2. Choosing and Using Security Questions Cheat Sheet

However, there is also some strong rationale to requiring users to create their own
question(s), or at least one such question. The prevailing legal opinion seems to
be if we provide some sort of reasonable guidance to users in creating their own
questions and then insist on them doing so, at least some of the potential liabilities
are transferred from our organizations to the users. In such cases, if user accounts
get hacked because of their weak security questions (e.g., "What is my favorite ice
cream flavor?", etc.) then the thought is that they only have themselves to blame and
thus our organizations are less likely to get sued.

Since OWASP recommends in the Forgot Password Cheat Sheet on page 65 that
multiple security questions should be posed to the user and successfully answered
before allowing a password reset, a good practice might be to require the user to select
1 or 2 questions from a set of canned questions as well as to create (a different) one
of their own and then require they answer one of their selected canned questions as
well as their own question.

2.3.2.2. Step 2) Review Any Canned Questions with Your Legal Department or Privacy
Officer

While most developers would generally first review any potential questions with what-
ever relevant business unit, it may not occur to them to review the questions with
their legal department or chief privacy officer. However, this is advisable because
their may be applicable laws or regulatory / compliance issues to which the ques-
tions must adhere. For example, in the telecommunications industry, the FCC’s
Customer Proprietary Network Information (CPNI) regulations prohibit asking cus-
tomers security questions that involve "personal information", so questions such as
"In what city were you born?" are generally not allowed.

2.3.2.3. Step 3) Insist on a Minimal Length for the Answers

Even if you pose decent security questions, because users generally dislike putting
a whole lot of forethought into answering the questions, they often will just answer
with something short. Answering with a short expletive is not uncommon, nor is
answering with something like "xxx" or "1234". If you tell the user that they should
answer with a phrase or sentence and tell them that there is some minimal length to
an acceptable answer (say 10 or 12 characters), you generally will get answers that
are somewhat more resistant to guessing.

2.3.2.4. Step 4) Consider How To Securely Store the Questions and Answers

There are two aspects to this...storing the questions and storing the answers. Ob-
viously, the questions must be presented to the user, so the options there are store
them as plaintext or as reversible ciphertext. The answers technically do not need to
be ever viewed by any human so they could be stored using a secure cryptographic
hash (although in principle, I am aware of some help desks that utilize the both the
questions and answers for password reset and they insist on being able to read the
answers rather than having to type them in; YMMYV). Either way, we would always
recommend at least encrypting the answers rather than storing them as plaintext.
This is especially true for answers to the "create your own question" type as users
will sometimes pose a question that potentially has a sensitive answer (e.g., "What is
my bank account # that I share with my wife?").

So the main question is whether or not you should store the questions as plaintext
or reversible ciphertext. Admittedly, we are a bit biased, but for the "create your own
question" types at least, we recommend that such questions be encrypted. This is
because if they are encrypted, it makes it much less likely that your company will

22

2. Choosing and Using Security Questions Cheat Sheet

be sued if you have some bored, rogue DBAs pursuing the DB where the security
questions and answers are stored in an attempt to amuse themselves and stumble
upon something sensitive or perhaps embarrassing.

In addition, if you explain to your customers that you are encrypting their questions
and hashing their answers, they might feel safer about asking some questions that
while potentially embarrassing, might be a bit more secure. (Use your imagination.
Do we need to spell it out for you? Really???)

2.3.2.5. Step 5) Periodically Have Your Users Review their Questions

Many companies often ask their users to update their user profiles to make sure
contact information such as email addresses, street address, etc. is still up-to-date.
Use that opportunity to have your users review their security questions. (Hopefully,
at that time, they will be in a bit less of a rush, and may use the opportunity to select
better questions.) If you had chosen to encrypt rather than hash their answers, you
can also display their corresponding security answers at that time.

If you keep statistics on how many times the respective questions has been posed
to someone as part of a Forgot Password flow (recommended), it would be advisable
to also display that information. (For instance, if against your advice, they created
a question such as "What is my favorite hobby?" and see that it had been presented
113 times and they think they might have only reset their password 5 times, it would
probably be advisable to change that security question and probably their password
as well.)

2.3.2.6. Step 6) Authenticate Requests to Change Questions

Many web sites properly authenticate change password requests simply by request-
ing the current password along with the desired new password. If the user cannot
provide the correct current password, the request to change the password is ignored.
The same authentication control should be in place when changing security ques-
tions. The user should be required to provide the correct password along with their
new security questions & answers. If the user cannot provide the correct password,
then the request to change the security questions should be ignored. This control
prevents both Cross-Site Request Forgery attacks, as well as changes made by at-
tackers who have taken control over a users workstation or authenticated application
session.

2.4. Using Security Questions

Requiring users to answer security questions is most frequently done under two quite
different scenarios:

* As a means for users to reset forgotten passwords. (See Forgot Password Cheat
Sheet on page 65.)

* As an additional means of corroborating evidence used for authentication.

If at anytime you intend for your users to answer security questions for both of these
scenarios, it is strongly recommended that you use two different sets of questions /
answers.

It should noted that using a security question / answer in addition to using pass-
words does not give you multi-factor authentication because both of these fall under
the category of "what you know". Hence they are two of the same factor, which is
not multi-factor. Furthermore, it should be noted that while passwords are a very

23

2. Choosing and Using Security Questions Cheat Sheet

weak form of authentication, answering security questions are generally is a much
weaker form. This is because when we have users create passwords, we generally
test the candidate password against some password complexity rules (e.g., minimal
length > 10 characters; must have at least one alphabetic, one numeric, and one
special character; etc.); we usually do no such thing for security answers (except
for perhaps some minimal length requirement). Thus good passwords generally will
have much more entropy than answers to security questions, often by several orders
of magnitude.

2.4.1. Security Questions Used To Reset Forgotten Passwords

The Forgot Password Cheat Sheet already details pretty much everything that you
need to know as a developer when collecting answers to security questions. However,
it provides no guidance about how to assist the user in selecting security questions
(if chosen from a list of candidate questions) or writing their own security questions
/ answers. Indeed, the Forgot Password Cheat Sheet makes the assumption that
one can actually use additional identity data as the security questions / answers.
However, often this is not the case as the user has never (or won’t) volunteer it or is
it prohibited for compliance reasons with certain regulations (e.g., as in the case of
telecommunications companies and CPNI [3] data).

Therefore, at least some development teams will be faced with collecting more generic
security questions and answers from their users. If you must do this as a developer,
it is good practice to:

* briefly describe the importance of selecting a good security question / answer.

* provide some guidance, along with some examples, of what constitutes bad vs.
fair security questions.

You may wish to refer your users to the Good Security Questions web site for the
latter.

Furthermore, since adversaries will try the "forgot password" reset flow to reset a
user’s password (especially if they have compromised the side-channel, such as
user’s email account or their mobile device where they receive SMS text messages),
is a good practice to minimize unintended and unauthorized information disclosure
of the security questions. This may mean that you require the user to answer one
security question before displaying any subsequent questions to be answered. In this
manner, it does not allow an adversary an opportunity to research all the questions
at once. Note however that this is contrary to the advice given on the Forgot Pass-
word Cheat Sheet and it may also be perceived as not being user-friendly by your
sponsoring business unit, so again YMMV.

Lastly, you should consider whether or not you should treat the security questions
that a user will type in as a "password" type or simply as regular "text" input. The
former can prevent shoulder-surfing attacks, but also cause more typos, so there
is a trade-off. Perhaps the best advice is to give the user a choice; hide the text by
treating it as "password" input type by default, but all the user to check a box that
would display their security answers as clear text when checked.

2.4.2. Security Questions As An Additional Means Of Authenticating

First, it bears repeating again...if passwords are considered weak authentication,
than using security questions are even less so. Furthermore, they are no substitute
for true multi-factor authentication, or stronger forms of authentication such as
authentication using one-time passwords or involving side-channel communications.
In a word, very little is gained by using security questions in this context. But, if you
must...keep these things in mind:

24

2.5.

2.6.

2.7.

2. Choosing and Using Security Questions Cheat Sheet

Display the security question(s) on a separate page only after your users have
successfully authenticated with their usernames / passwords (rather than only
after they have entered their username). In this manner, you at least do not
allow an adversary to view and research the security questions unless they also
know the user’s current password.

If you also use security questions to reset a user’s password, then you should
use a different set of security questions for an additional means of authenticat-
ing.

Security questions used for actual authentication purposes should regularly
expire much like passwords. Periodically make the user choose new security
questions and answers.

If you use answers to security questions as a subsequent authentication mech-
anism (say to enter a more sensitive area of your web site), make sure that you
keep the session idle time out very low...say less than 5 minutes or so, or that
you also require the user to first re-authenticate with their password and then
immediately after answer the security question(s).

Related Arficles

Forgot Password Cheat Sheet on page 65

Good Security Questions web site

Authors and Primary Editors

Kevin Wall - kevin.w.wall[at]gmail com

References

. https://www.owasp.org/index.php/Choosing_and_Using_Security_

Questions_Cheat_Sheet

. http://goodsecurityquestions.com/

. http://en.wikipedia.org/wiki/Customer_proprietary_network_

information

25

https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
http://goodsecurityquestions.com/
http://en.wikipedia.org/wiki/Customer_proprietary_network_information
http://en.wikipedia.org/wiki/Customer_proprietary_network_information

3. Clickjacking Defense Cheat Sheet

Last revision (mm/dd/yy): 02/11/2015

3.1. Introduction

This cheat sheet is focused on providing developer guidance on Clickjack/UI Redress
[2] attack prevention.

The most popular way to defend against Clickjacking is to include some sort of
"frame-breaking" functionality which prevents other web pages from framing the site
you wish to defend. This cheat sheet will discuss two methods of implementing
frame-breaking: first is X-Frame-Options headers (used if the browser supports the
functionality); and second is javascript frame-breaking code.

3.2. Defending with Content Security Policy frame-ancestors
directive

The frame-ancestors directive can be used in a Content-Security-Policy HTTP re-
sponse header to indicate whether or not a browser should be allowed to render a
page in a <frame> or <iframe>. Sites can use this to avoid Clickjacking attacks, by
ensuring that their content is not embedded into other sites.

frame-ancestors allows a site to authorize multiple domains using the normal Con-
tent Security Policy symantics.

See [19] for further details

3.2.1. Limitations

* Browser support: frame-ancestors is not supported by all the major browsers
yet.

¢ X-Frame-Options takes priority: Section 7.7.1 of the CSP Spec [18] says X-
Frame-Options should be ignored if frame-ancestors is specified, but Chrome
40 & Firefox 35 ignore the frame-ancestors directive and follow the X-Frame-
Options header instead.

3.3. Defending with X-Frame-Options Response Headers

The X-Frame-Options HTTP response header can be used to indicate whether or not a
browser should be allowed to render a page in a <frame> or <iframe>. Sites can use
this to avoid Clickjacking attacks, by ensuring that their content is not embedded
into other sites.

3.3.1. X-Frame-Options Header Types

There are three possible values for the X-Frame-Options header:

* DENY, which prevents any domain from framing the content.

26

3. Clickjacking Defense Cheat Sheet

* SAMEORIGIN, which only allows the current site to frame the content.

* ALLOW-FROM uri, which permits the specified 'uri’ to frame this page. (e.g.,
ALLOW-FROM http://www.example.com) Check Limitations Below this will fail
open if the browser does not support it.

3.3.2. Browser Support

The following browsers support X-Frame-Options headers.

’ Browser ‘ DENY/SAMEORIGIN Support Introduced ‘ ALLOW-FROM Support Introduced
Chrome 4.1.249.1042 [3] Not supported/Bug reported [4]
Firefox (Gecko) 3.6.9 (1.9.2.9) [5] 18.0 [6]
Internet Explorer 8.0 [7] 9.0 [8]
Opera 10.50 [9]
Safari 4.0 [10] Not supported/Bug reported [11]

See: [12], [13], [14]

3.3.3. Implementation

To implement this protection, you need to add the X-Frame-Options HTTP Response
header to any page that you want to protect from being clickjacked via framebusting.
One way to do this is to add the HTTP Response Header manually to every page. A
possibly simpler way is to implement a filter that automatically adds the header to
every page.

OWASP has an article and some code [15] that provides all the details for implement-
ing this in the Java EE environment.

The SDL blog has posted an article [16] covering how to implement this in a .NET
environment.

3.3.4. Common Defense Mistakes

Meta-tags that attempt to apply the X-Frame-Options directive DO NOT WORK. For
example, <meta http-equiv="X-Frame-Options" content="deny">) will not work. You
must apply the X-FRAME-OPTIONS directive as HTTP Response Header as described
above.

3.3.5. Limitations

* Per-page policy specification
The policy needs to be specified for every page, which can complicate deploy-
ment. Providing the ability to enforce it for the entire site, at login time for
instance, could simplify adoption.

* Problems with multi-domain sites
The current implementation does not allow the webmaster to provide a whitelist
of domains that are allowed to frame the page. While whitelisting can be dan-
gerous, in some cases a webmaster might have no choice but to use more than
one hostname.

e ALLOW-FROM browser support
The ALLOW-FROM option is a relatively recent addition (circa 2012) and may
not be supported by all browsers yet. BE CAREFUL ABOUT DEPENDING ON
ALLOW-FROM. If you apply it and the browser does not support it, then you
will have NO clickjacking defense in place.

27

3. Clickjacking Defense Cheat Sheet

* Multiple options not supported
There is no way to allow the current site and a 3rd party site to frame the same
response — browsers only honour one X-Frame-Options header and only one
value on that header.

* Nested Frames don’t work with SAMEORIGIN and ALLOW-FROM
In the following situation, the http://framed.invalid/child frame does not load
because ALLOW-FROM applies to the top-level browsing context, not that of the
immediate parent. The solution is to use ALLOW-FROM in both the parent and
child frames (but this prevents the child frame loading if the //framed.invalid /parent
page is loaded as the top level document).

+-//friendlysite.invalid-—----—----———————————— +
| |
| +-//framed.invalid/parent————————————————- + |
[||
| | ALLOW-FROM http://friendlysite.invalid ||
[|
| | +-//framed.invalid/child-——————- + |
[| |
| | | SAMEORIGIN | |
[| |
lf - + |
| e + |
Rt L +

¢ X-Frame-Options Deprecated
While the X-Frame-Options header is supported by the major browsers, it was
never standardized and has been deprecated in favour of the frame-ancestors
directive from the CSP Level 2 specification.

* Proxies
Web proxies are notorious for adding and stripping headers. If a web proxy
strips the X-Frame-Options header then the site loses its framing protection.

3.4. Best-for-now Legacy Browser Frame Breaking Script

One way to defend against clickjacking is to include a "frame-breaker" script in each
page that should not be framed. The following methodology will prevent a web-
page from being framed even in legacy browsers, that do not support the X-Frame-
Options-Header.

In the document HEAD element, add the following:

First apply an ID to the style element itself:

<style id="antiClickjack">body{display:none !important;}</style>

And then delete that style by its ID immediately after in the script:

<script type="text/javascript">

if (self === top) {
var antiClickjack = document.getElementByld (" antiClickjack");
antiClickjack.parentNode.removeChild (antiClickjack) ;

} else {
top.location = self.location;

}

</script>

28

3. Clickjacking Defense Cheat Sheet

This way, everything can be in the document HEAD and you only need one method-
/taglib in your API [17].

3.5. window.confirm() Protection

The use of x-frame-options or a frame-breaking script is a more fail-safe method of
clickjacking protection. However, in scenarios where content must be frameable,
then a window.confirm() can be used to help mitigate Clickjacking by informing the
user of the action they are about to perform.

Invoking window.confirm() will display a popup that cannot be framed. If the win-
dow.confirm() originates from within an iframe with a different domain than the par-
ent, then the dialog box will display what domain the window.confirm() originated
from. In this scenario the browser is displaying the origin of the dialog box to help
mitigate Clickjacking attacks. It should be noted that Internet Explorer is the only
known browser that does not display the domain that the window.confirm() dialog
box originated from, to address this issue with Internet Explorer insure that the
message within the dialog box contains contextual information about the type of
action being performed. For example:

<script type="text/javascript">
var action_confirm = window. confirm ("Are you sure you want \
to delete your youtube account?")
if (action_confirm) {

/ /... perform action
} else {
//... The user does not want to perform

// the requested action.

}

</script>

3.6. Non-Working Scripts

Consider the following snippet which is NOT recommended for defending against
clickjacking:

<script>if (top!=self) top.location.href=self.location.href</script>

This simple frame breaking script attempts to prevent the page from being incorpo-
rated into a frame or iframe by forcing the parent window to load the current frame’s
URL. Unfortunately, multiple ways of defeating this type of script have been made
public. We outline some here.

3.6.1. Double Framing

Some frame busting techniques navigate to the correct page by assigning a value
to parent.location. This works well if the victim page is framed by a single page.
However, if the attacker encloses the victim in one frame inside another (a double
frame), then accessing parent.location becomes a security violation in all popular
browsers, due to the descendant frame navigation policy. This security violation
disables the counter-action navigation.

Victim frame busting code:

29

3. Clickjacking Defense Cheat Sheet

if (top.location!=self.locaton) {
parent.location = self.location;

}

Attacker top frame:

<iframe src="attacker2.html">

Attacker sub-frame:

<iframe src="http://www.victim .com">

3.6.2. The onBeforeUnload Event

A user can manually cancel any navigation request submitted by a framed page. To
exploit this, the framing page registers an onBeforeUnload handler which is called
whenever the framing page is about to be unloaded due to navigation. The handler
function returns a string that becomes part of a prompt displayed to the user. Say
the attacker wants to frame PayPal. He registers an unload handler function that
returns the string "Do you want to exit PayPal?". When this string is displayed to the
user is likely to cancel the navigation, defeating PayPal’s frame busting attempt.
The attacker mounts this attack by registering an unload event on the top page using
the following code:

<script>

window. onbeforeunload = function () {
return "Asking the user nicely";

}

</script>

<iframe src="http://www.paypal.com">

PayPal’s frame busting code will generate a BeforeUnload event activating our func-
tion and prompting the user to cancel the navigation event.

3.6.3. No-Content Flushing

While the previous attack requires user interaction, the same attack can be done
without prompting the user. Most browsers (IE7, IE8, Google Chrome, and Firefox)
enable an attacker to automatically cancel the incoming navigation request in an
onBeforeUnload event handler by repeatedly submitting a navigation request to a site
responding with \204 - No Content." Navigating to a No Content site is effectively a
NOP, but flushes the request pipeline, thus canceling the original navigation request.
Here is sample code to do this:

var preventbust = O
window. onbeforeunload = function () { killbust++ }
setInterval (
function () {
if (killbust > 0) {
killbust = 2;
window. top.location = ’'http://nocontent204.com’
}
}
1);

30

3. Clickjacking Defense Cheat Sheet

H <iframe src="http://www.victim .com">

3.6.4. Exploiting XSS filters

IE8 and Google Chrome introduced reflective XSS filters that help protect web pages
from certain types of XSS attacks. Nava and Lindsay (at Blackhat) observed that
these filters can be used to circumvent frame busting code. The IE8 XSS filter com-
pares given request parameters to a set of regular expressions in order to look for
obvious attempts at cross-site scripting. Using "induced false positives", the filter
can be used to disable selected scripts. By matching the beginning of any script tag
in the request parameters, the XSS filter will disable all inline scripts within the page,
including frame busting scripts. External scripts can also be targeted by matching
an external include, effectively disabling all external scripts. Since subsets of the
JavaScript loaded is still functional (inline or external) and cookies are still available,
this attack is effective for clickjacking.

Victim frame busting code:

<script>
if (top != self) {

top.location = self.location;
}

</script>

Attacker:

<iframe src="http://www.victim.com/?v=<script>if’’ >

The XSS filter will match that parameter "<script>if" to the beginning of the frame
busting script on the victim and will consequently disable all inline scripts in the
victim’s page, including the frame busting script. The XSSAuditor filter available for
Google Chrome enables the same exploit.

3.6.5. Clobbering top.location

Several modern browsers treat the location variable as a special immutable attribute
across all contexts. However, this is not the case in IE7 and Safari 4.0.4 where the
location variable can be redefined.

IE7

Once the framing page redefines location, any frame busting code in a subframe
that tries to read top.location will commit a security violation by trying to read a
local variable in another domain. Similarly, any attempt to navigate by assigning
top.location will fail.

Victim frame busting code:

if (top.location != self.location) {
top.location = self.location;

}

31

3. Clickjacking Defense Cheat Sheet

Attacker:

<script>

var location = "clobbered";
</script>

<iframe src="http://www.victim.com">
</iframe>

Safari 4.0.4

We observed that although location is kept immutable in most circumstances, when a
custom location setter is defined via defineSetter (through window) the object location
becomes undefined. The framing page simply does:

<script>
window. defineSetter ("location" , function () {}) ;
</script>

Now any attempt to read or navigate the top frame’s location will fail.

3.6.6. Restricted zones

Most frame busting relies on JavaScript in the framed page to detect framing and
bust itself out. If JavaScript is disabled in the context of the subframe, the frame
busting code will not run. There are unfortunately several ways of restricting JavaScript
in a subframe:

In IE 8:

<iframe src="http://www.victim.com" security="restricted"></iframe>

In Chrome:

<iframe src="http://www.victim.com" sandbox></iframe>

In Firefox and IE:

Activate designMode in parent page.

3.7. Authors and Primary Editors

[none named]

3.8. References

1. https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
2. https://www.owasp.org/index.php/Clickjacking

3. http://blog.chromium.org/2010/01/security-in-depth—-new-security—-features.
html

4. https://code.google.com/p/chromium/issues/detail?id=129139

32

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
https://code.google.com/p/chromium/issues/detail?id=129139

10.

11.
12.

13.

14.

15.

16.

17.
18.

19.

3. Clickjacking Defense Cheat Sheet

https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?
redirectlocale=en-US&redirectslug=The_ X-FRAME-OPTIONS_response_
header

https://bugzilla.mozilla.org/show_bug.cgi?id=690168

http://blogs.msdn.com/b/ie/archive/2009/01/27/
ie8-security-part-vii-clickjacking-defenses.aspx

http://erlend.oftedal.no/blog/tools/xframeoptions/

. http://www.opera.com/docs/specs/presto26/#network

http://www.zdnet.com/blog/security/apple-safari-jumbo-patch-50-vulnerabil
3541

https://bugs.webkit.org/show_bug.cgi?id=94836

Mozilla Developer Network: https://developer.mozilla.org/en-US/docs/
HTTP/X-Frame-Options

IETF Draft: http://datatracker.ietf.org/doc/
draft-ietf-websec-x-frame-options/

X-Frame-Options Compatibility Test: http://erlend.oftedal.no/blog/
tools/xframeoptions/ - Check this for the LATEST browser support info for
the X-Frame-Options header

https://www.owasp.org/index.php/ClickjackFilter_for_Java_EE

http://blogs.msdn.com/sdl/archive/2009/02/05/
clickjacking-defense-in-ie8.aspx

https://www.codemagi.com/blog/post/194

https://w3c.github.io/webappsec/specs/content-security-policy/
#fframe—-ancestors—and-frame-options

https://w3c.github.io/webappsec/specs/content—-security-policy/
#directive-frame—ancestors

33

https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_header
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_header
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_header
https://bugzilla.mozilla.org/show_bug.cgi?id=690168
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://erlend.oftedal.no/blog/tools/xframeoptions/
http://www.opera.com/docs/specs/presto26/#network
http://www.zdnet.com/blog/security/apple-safari-jumbo-patch-50-vulnerabilities-fixed/3541
http://www.zdnet.com/blog/security/apple-safari-jumbo-patch-50-vulnerabilities-fixed/3541
https://bugs.webkit.org/show_bug.cgi?id=94836
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
http://datatracker.ietf.org/doc/draft-ietf-websec-x-frame-options/
http://datatracker.ietf.org/doc/draft-ietf-websec-x-frame-options/
http://erlend.oftedal.no/blog/tools/xframeoptions/
http://erlend.oftedal.no/blog/tools/xframeoptions/
https://www.owasp.org/index.php/ClickjackFilter_for_Java_EE
http://blogs.msdn.com/sdl/archive/2009/02/05/clickjacking-defense-in-ie8.aspx
http://blogs.msdn.com/sdl/archive/2009/02/05/clickjacking-defense-in-ie8.aspx
https://www.codemagi.com/blog/post/194
https://w3c.github.io/webappsec/specs/content-security-policy/#frame-ancestors-and-frame-options
https://w3c.github.io/webappsec/specs/content-security-policy/#frame-ancestors-and-frame-options
https://w3c.github.io/webappsec/specs/content-security-policy/#directive-frame-ancestors
https://w3c.github.io/webappsec/specs/content-security-policy/#directive-frame-ancestors

4. C-Based Toolchain Hardening Cheat
Sheet

Last revision (mm/dd/yy): 04/7/2014

4.1. Introduction

C-Based Toolchain Hardening Cheat Sheet is a brief treatment of project settings that
will help you deliver reliable and secure code when using C, C++ and Objective C
languages in a number of development environments. A more in-depth treatment of
this topic can be found here [2]. This cheatsheet will guide you through the steps
you should take to create executables with firmer defensive postures and increased
integration with the available platform security. Effectively configuring the toolchain
also means your project will enjoy a number of benefits during development, includ-
ing enhanced warnings and static analysis, and self-debugging code.

There are four areas to be examined when hardening the toolchain: configuration,
integration, static analysis, and platform security. Nearly all areas are overlooked
or neglected when setting up a project. The neglect appears to be pandemic, and
it applies to nearly all projects including Auto-configured projects, Makefile-based,
Eclipse-based, and Xcode-based. It’s important to address the gaps at configuration
and build time because it’s difficult to impossible to add hardening on a distributed
executable after the fact [3] on some platforms.

For those who would like a deeper treatment of the subject matter, please visit C-
Based Toolchain Hardening [2].

4.2. Actionable Items

The C-Based Toolchain Hardening Cheat Sheet calls for the following actionable items:
* Provide debug, release, and test configurations
* Provide an assert with useful behavior
* Configure code to take advantage of configurations
* Properly integrate third party libraries
* Use the compiler’s built-in static analysis capabilities
* Integrate with platform security measures

The remainder of this cheat sheet briefly explains the bulleted, actionable items. For
a thorough treatment, please visit the full article [2].

4.3. Build Configurations

You should support three build configurations. First is Debug, second is Release,
and third is Test. One size does not fit all, and each speaks to a different facet of the
engineering process. You will use a debug build while developing, your continuous

34

4. C-Based Toolchain Hardening Cheat Sheet

integration or build server will use test configurations, and you will ship release
builds.

1970’s K&R code and one size fits all flags are from a bygone era. Processes have
evolved and matured to meet the challenges of a modern landscape, including threats.
Because tools like Autconfig and Automake do not support the notion of build config-
urations [4], you should prefer to work in an Integrated Develop Environments (IDE)
or write your makefiles so the desired targets are supported. In addition, Autconfig
and Automake often ignore user supplied flags (it depends on the folks writing the
various scripts and templates), so you might find it easier to again write a makefile
from scratch rather than retrofitting existing auto tool files.

4.3.1. Debug Builds

Debug is used during development, and the build assists you in finding problems
in the code. During this phase, you develop your program and test integration with
third party libraries you program depends upon. To help with debugging and di-
agnostics, you should define DEBUG and _DEBUG (if on a Windows platform) pre-
processor macros and supply other 'debugging and diagnostic’ oriented flags to the
compiler and linker. Additional preprocessor macros for selected libraries are offered
in the full article [2].

You should use the following for GCC when building for debug: -O0 (or -O1) and
-g3 -ggdb. No optimizations improve debuggability because optimizations often rear-
range statements to improve instruction scheduling and remove unneeded code. You
may need -O1 to ensure some analysis is performed. -g3 ensures maximum debug
information is available, including symbolic constants and #defines.

Asserts will help you write self debugging programs. The program will alert you to
the point of first failure quickly and easily. Because asserts are so powerful, the
code should be completely and full instrumented with asserts that: (1) validates and
asserts all program state relevant to a function or a method; (2) validates and asserts
all function parameters; and (3) validates and asserts all return values for functions
or methods which return a value. Because of item (3), you should be very suspicious
of void functions that cannot convey failures.

Anywhere you have an if statement for validation, you should have an assert. Any-
where you have an assert, you should have an if statement. They go hand-in-hand.
Posix states if NDEBUG is not defined, then assert "shall write information about the
particular call that failed on stderr and shall call abort" [5]. Calling abort during de-
velopment is useless behavior, so you must supply your own assert that SIGTRAPs.
A Unix and Linux example of a SIGTRAP based assert is provided in the full article
[2].

Unlike other debugging and diagnostic methods - such as breakpoints and printf
- asserts stay in forever and become silent guardians. If you accidentally nudge
something in an apparently unrelated code path, the assert will snap the debugger
for you. The enduring coverage means debug code - with its additional diagnostics
and instrumentation - is more highly valued than unadorned release code. If code is
checked in that does not have the additional debugging and diagnostics, including
full assertions, you should reject the check-in.

4.3.2. Release Builds

Release builds are diametrically opposed to debug configurations. In a release config-
uration, the program will be built for use in production. Your program is expected to
operate correctly, securely and efficiently. The time for debugging and diagnostics is
over, and your program will define NDEBUG to remove the supplemental information
and behavior.

35

4. C-Based Toolchain Hardening Cheat Sheet

A release configuration should also use -O2/-03/-Os and -g1/-g2. The optimizations
will make it somewhat more difficult to make sense of a stack trace, but they should
be few and far between. The -gN flag ensures debugging information is available for
post mortem analysis. While you generate debugging information for release builds,
you should strip the information before shipping and check the symbols into you
version control system along with the tagged build.

NDEBUG will also remove asserts from your program by defining them to void since
its not acceptable to crash via abort in production. You should not depend upon
assert for crash report generation because those reports could contain sensitive in-
formation and may end up on foreign systems, including for example, Windows Error
Reporting [6]. If you want a crash dump, you should generate it yourself in a con-
trolled manner while ensuring no sensitive information is written or leaked.

Release builds should also curtail logging. If you followed earlier guidance, you have
properly instrumented code and can determine the point of first failure quickly and
easily. Simply log the failure and and relevant parameters. Remove all NSLog and
similar calls because sensitive information might be logged to a system logger. Worse,
the data in the logs might be egressed by backup or sync. If your default configura-
tion includes a logging level of ten or maximum verbosity, you probably lack stability
and are trying to track problems in the field. That usually means your program or
library is not ready for production.

4.3.3. Test Builds

A Test build is closely related to a release build. In this build configuration, you want
to be as close to production as possible, so you should be using -02/-03/-Os and
-g1/-g2. You will run your suite of positive and negative tests against the test build.
You will also want to exercise all functions or methods provided by the program and
not just the public interfaces, so everything should be made public. For example, all
member functions public (C++ classes), all selectors (Objective C), all methods (Java),
and all interfaces (library or shared object) should be made available for testing. As
such, you should:

* Add -Dprotected=public -Dprivate=public to CFLAGS and CXXFLAGS
* Change __attribute__ ((visibility ("hidden"))) to __attribute__ ((visibility ("default")))

Many Object Oriented purist oppose testing private interfaces, but this is not about
object oriented-ness. This (q.v.) is about building reliable and secure software.

You should also concentrate on negative tests. Positive self tests are relatively useless
except for functional and regression tests. Since this is your line of business or area
of expertise, you should have the business logic correct when operating in a benign
environment. A hostile or toxic environment is much more interesting, and that’s
where you want to know how your library or program will fail in the field when under
attack.

4.4. library Integration

You must properly integrate and utilize libraries in your program. Proper integration
includes acceptance testing, configuring for your build system, identifying libraries
you should be using, and correctly using the libraries. A well integrated library can
compliment your code, and a poorlly written library can detract from your program.
Because a stable library with required functionality can be elusive and its tricky to
integrate libraries, you should try to minimize dependencies and avoid thrid party
libraries whenever possible.

36

4. C-Based Toolchain Hardening Cheat Sheet

Acceptance testing a library is practically non-existent. The testing can be a simple
code review or can include additional measures, such as negative self tests. If the
library is defective or does not meet standards, you must fix it or reject the library.
An example of lack of acceptance testing is Adobe’s inclusion of a defective Sablotron
library [7], which resulted in CVE-2012-1525 [8]. Another example is the 10’s to
100’s of millions of vulnerable embedded devices due to defects in libupnp. While its
popular to lay blame on others, the bottom line is you chose the library so you are
responsible for it.

You must also ensure the library is integrated into your build process. For ex-
ample, the OpenSSL library should be configured without SSLv2, SSLv3 and com-
pression since they are defective. That means config should be executed with -no-
comp -no-sslv2 and -no-sslv3. As an additional example, using STLPort your de-
bug configuration should also define _STLP_DEBUG=1, _STLP_USE_DEBUG_LIB=1,
_STLP_DEBUG_ALLOC=1, _STLP_DEBUG_UNINITIALIZED=1 because the library of-
fers the additional diagnostics during development.

Debug builds also present an opportunity to use additional libraries to help locate
problems in the code. For example, you should be using a memory checker such as
Debug Malloc Library (Dmalloc) during development. If you are not using Dmalloc,
then ensure you have an equivalent checker, such as GCC 4.8’s -fsanitize=memory.
This is one area where one size clearly does not fit all.

Using a library properly is always difficult, especially when there is no documenta-
tion. Review any hardening documents available for the library, and be sure to visit
the library’s documentation to ensure proper API usage. If required, you might have
to review code or step library code under the debugger to ensure there are no bugs
or undocumented features.

4.5. Static Analysis

Compiler writers do a fantastic job of generating object code from source code. The
process creates a lot of additional information useful in analyzing code. Compilers
use the analysis to offer programmers warnings to help detect problems in their code,
but the catch is you have to ask for them. After you ask for them, you should take
time to understand what the underlying issue is when a statement is flagged. For
example, compilers will warn you when comparing a signed integer to an unsigned
integer because -1 > 1 after C/C++ promotion. At other times, you will need to back
off some warnings to help separate the wheat from the chaff. For example, interface
programming is a popular C++ paradigm, so -Wno-unused-parameter will probably
be helpful with C++ code.

You should consider a clean compile as a security gate. If you find its painful to turn
warnings on, then you have likely been overlooking some of the finer points in the
details. In addition, you should strive for multiple compilers and platforms support
since each has its own personality (and interpretation of the C/C++ standards). By
the time your core modules clean compile under Clang, GCC, ICC, and Visual Studio
on the Linux and Windows platforms, your code will have many stability obstacles
removed.

When compiling programs with GCC, you should use the following flags to help detect
errors in your programs. The options should be added to CFLAGS for a program with
C source files, and CXXFLAGS for a program with C++ source files. Objective C devel-
opers should add their warnings to CFLAGS: -Wall -Wextra -Wconversion (or -Wsign-
conversion), -Wcast-align, -Wformat=2 -Wformat-security, -fno-common, -Wmissing-
prototypes, -Wmissing-declarations, -Wstrict-prototypes, -Wstrict-overflow, and
-Wtrampolines.

C++ presents additional opportunities under GCC, and the flags include -

37

4. C-Based Toolchain Hardening Cheat Sheet

Woverloaded-virtual, -Wreorder, -Wsign-promo, -Wnon-virtual-dtor and possibly
-Weffc++. Finally, Objective C should include -Wstrict-selector-match and -
Wundeclared-selector.

For a Microsoft platform, you should use: /W4, /Wall, and /analyze. If you don’t
use /Wall, Microsoft recomends using /W4 and enabling C4191, C4242, C4263,
C4264, C4265, C4266, C4302, C4826, C4905, C4906, and C4928. Finally, /analyze
is Enterprise Code Analysis, which is freely available with the Windows SDK for
Windows Server 2008 and .NET Framework 3.5 SDK [9] (you don’t need Visual Studio
Enterprise edition).

For additional details on the GCC and Windows options and flags, see GCC Options
to Request or Suppress Warnings [10], "Off By Default" Compiler Warnings in Visual
C++ [11], and Protecting Your Code with Visual C++ Defenses [12].

4.6. Platform Security

Integrating with platform security is essential to a defensive posture. Platform secu-
rity will be your safety umbrella if someone discovers a bug with security implications
- and you should always have it with you. For example, if your parser fails, then no-
execute stacks and heaps can turn a 0-day into an annoying crash. Not integrating
often leaves your users and customers vulnerable to malicious code. While you may
not be familiar with some of the flags, you are probably familiar with the effects
of omitting them. For example, Android’s Gingerbreak overwrote the Global Offset
Table (GOT) in the ELF headers, and could have been avoided with -z,relro.

When integrating with platform security on a Linux host, you should use the fol-
lowing flags: -fPIE (compiler) and -pie (linker), -fstack-protector-all (or -fstack-
protector), -z,noexecstack, -z,now, -z,relro. If available, you should also use _FOR-
TIFY _SOURCES=2 (or _FORTIFY SOURCES=1 on Android 4.2), -fsanitize=address
and -fsanitize=thread (the last two should be used in debug configurations). -
z,nodlopen and -z,nodump might help in reducing an attacker’s ability to load and
manipulate a shared object. On Gentoo and other systems with no-exec heaps, you
should also use -z,noexecheap.

Windows programs should include /dynamicbase, /NXCOMPAT, /GS, and /SafeSEH
to ensure address space layout randomizations (ASLR), data execution prevention
(DEP), use of stack cookies, and thwart exception handler overwrites.

For additional details on the GCC and Windows options and flags, see GCC Options
Summary [13] and Protecting Your Code with Visual C++ Defenses [12].

4.7. Authors and Editors

¢ Jeffrey Walton - jeffrey(at)owasp.org
¢ Jim Manico - jim(at)jowasp.org

¢ Kevin Wall - kevin(atjowasp.org

4.8. References

1. https://www.owasp.org/index.php/C-Based_Toolchain_Hardening_
Cheat_Sheet

2. https://www.owasp.org/index.php/C-Based_Toolchain_Hardening

3. http://sourceware.org/ml/binutils/2012-03/msg00309.html

38

https://www.owasp.org/index.php/C-Based_Toolchain_Hardening_Cheat_Sheet
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening_Cheat_Sheet
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
http://sourceware.org/ml/binutils/2012-03/msg00309.html

10.
11.

12.
13.

4. C-Based Toolchain Hardening Cheat Sheet
https://lists.gnu.org/archive/html/automake/2012-12/msg00019.
html

http://pubs.opengroup.org/onlinepubs/009604499/functions/assert.
html

http://msdn.microsoft.com/en-us/library/windows/hardware/
gg487440.aspx

http://www.agarri.fr/blog/index.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-1525
http://www.microsoft.com/en-us/download/details.aspx?1d=24826
http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

http://blogs.msdn.com/b/vcblog/archive/2010/12/14/
off-by-default-compiler-warnings—-in-visual-c.aspx

http://msdn.microsoft.com/en-us/magazine/cc337897.aspx

http://gcc.gnu.org/onlinedocs/gcc/Option—-Summary.html

39

https://lists.gnu.org/archive/html/automake/2012-12/msg00019.html
https://lists.gnu.org/archive/html/automake/2012-12/msg00019.html
http://pubs.opengroup.org/onlinepubs/009604499/functions/assert.html
http://pubs.opengroup.org/onlinepubs/009604499/functions/assert.html
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx
http://www.agarri.fr/blog/index.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-1525
http://www.microsoft.com/en-us/download/details.aspx?id=24826
http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
http://blogs.msdn.com/b/vcblog/archive/2010/12/14/off-by-default-compiler-warnings-in-visual-c.aspx
http://blogs.msdn.com/b/vcblog/archive/2010/12/14/off-by-default-compiler-warnings-in-visual-c.aspx
http://msdn.microsoft.com/en-us/magazine/cc337897.aspx
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

5. Cross-Site Request Forgery (CSRF)
Prevention Cheat Sheet

Last revision (mm/dd/yy): 08/14/2014

5.1. Introduction

Cross-Site Request Forgery (CSRF) is a type of attack that occurs when a malicious
Web site, email, blog, instant message, or program causes a user's Web browser
to perform an unwanted action on a trusted site for which the user is currently
authenticated. The impact of a successful cross-site request forgery attack is limited
to the capabilities exposed by the vulnerable application. For example, this attack
could result in a transfer of funds, changing a password, or purchasing an item
in the user’s context. In effect, CSRF attacks are used by an attacker to make a
target system perform a function (funds Transfer, form submission etc.) via the
target’s browser without knowledge of the target user, at least until the unauthorized
function has been committed.

Impacts of successful CSRF exploits vary greatly based on the role of the victim.
When targeting a normal user, a successful CSRF attack can compromise end-user
data and their associated functions. If the targeted end user is an administrator
account, a CSRF attack can compromise the entire Web application. The sites that
are more likely to be attacked are community Websites (social networking, email)
or sites that have high dollar value accounts associated with them (banks, stock
brokerages, bill pay services). This attack can happen even if the user is logged into
a Web site using strong encryption (HTTPS). Utilizing social engineering, an attacker
will embed malicious HTML or JavaScript code into an email or Website to request
a specific 'task url’. The task then executes with or without the user’s knowledge,
either directly or by utilizing a Cross-site Scripting flaw (ex: Samy MySpace Worm).
For more information on CSRF, please see the OWASP Cross-Site Request Forgery
(CSRF) page [2].

5.2. Prevention Measures That Do NOT Work

5.2.1. Using a Secret Cookie

Remember that all cookies, even the secret ones, will be submitted with every re-
quest. All authentication tokens will be submitted regardless of whether or not the
end-user was tricked into submitting the request. Furthermore, session identifiers
are simply used by the application container to associate the request with a specific
session object. The session identifier does not verify that the end-user intended to
submit the request.

5.2.2. Only Accepting POST Requests

Applications can be developed to only accept POST requests for the execution of busi-
ness logic. The misconception is that since the attacker cannot construct a malicious
link, a CSRF attack cannot be executed. Unfortunately, this logic is incorrect. There

40

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

are numerous methods in which an attacker can trick a victim into submitting a
forged POST request, such as a simple form hosted in an attacker’'s Website with
hidden values. This form can be triggered automatically by JavaScript or can be
triggered by the victim who thinks the form will do something else.

5.2.3. Multi-Step Transactions

Multi-Step transactions are not an adequate prevention of CSRF. As long as an at-
tacker can predict or deduce each step of the completed transaction, then CSRF is
possible.

5.2.4. URL Rewriting

This might be seen as a useful CSRF prevention technique as the attacker can not
guess the victim’s session ID. However, the user’s credential is exposed over the URL.

5.3. General Recommendation: Synchronizer Token Pattern

In order to facilitate a "transparent but visible" CSRF solution, developers are encour -
aged to adopt the Synchronizer Token Pattern [3]. The synchronizer token pattern
requires the generating of random "challenge" tokens that are associated with the
user’s current session. These challenge tokens are then inserted within the HTML
forms and links associated with sensitive server-side operations. When the user
wishes to invoke these sensitive operations, the HTTP request should include this
challenge token. It is then the responsibility of the server application to verify the
existence and correctness of this token. By including a challenge token with each
request, the developer has a strong control to verify that the user actually intended to
submit the desired requests. Inclusion of a required security token in HTTP requests
associated with sensitive business functions helps mitigate CSRF attacks as suc-
cessful exploitation assumes the attacker knows the randomly generated token for
the target victim’s session. This is analogous to the attacker being able to guess the
target victim’s session identifier. The following synopsis describes a general approach
to incorporate challenge tokens within the request.

When a Web application formulates a request (by generating a link or form that
causes a request when submitted or clicked by the user), the application should
include a hidden input parameter with a common name such as "CSRFToken". The
value of this token must be randomly generated such that it cannot be guessed
by an attacker. Consider leveraging the java.security.SecureRandom class for Java
applications to generate a sufficiently long random token. Alternative generation
algorithms include the use of 256-bit BASE64 encoded hashes. Developers that
choose this generation algorithm must make sure that there is randomness and
uniqueness utilized in the data that is hashed to generate the random token.

<form action="/transfer.do" method="post">
<input type="hidden" name="CSRFToken"
value ="OWYANm@QwODEAODRN2Q2NTThVMZIYWE . . .
wYZU1YWQwWMTVhM2JmNGYXYjJIMGI4MjJjZDE1ZDZ . . .
MGYWMGEwWOA==">

</form>

In general, developers need only generate this token once for the current session.
After initial generation of this token, the value is stored in the session and is utilized
for each subsequent request until the session expires. When a request is issued by
the end-user, the server-side component must verify the existence and validity of the

41

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

token in the request as compared to the token found in the session. If the token was
not found within the request or the value provided does not match the value within
the session, then the request should be aborted, token should be reset and the event
logged as a potential CSRF attack in progress.

To further enhance the security of this proposed design, consider randomizing the
CSRF token parameter name and or value for each request. Implementing this ap-
proach results in the generation of per-request tokens as opposed to per-session
tokens. Note, however, that this may result in usability concerns. For example, the
"Back" button browser capability is often hindered as the previous page may contain
a token that is no longer valid. Interaction with this previous page will result in a
CSREF false positive security event at the server. Regardless of the approach taken,
developers are encouraged to protect the CSRF token the same way they protect
authenticated session identifiers, such as the use of SSLv3/TLS.

5.3.1. Disclosure of Token in URL

Many implementations of this control include the challenge token in GET (URL) re-
quests as well as POST requests. This is often implemented as a result of sensitive
server-side operations being invoked as a result of embedded links in the page or
other general design patterns. These patterns are often implemented without knowl-
edge of CSRF and an understanding of CSRF prevention design strategies. While this
control does help mitigate the risk of CSRF attacks, the unique per-session token is
being exposed for GET requests. CSRF tokens in GET requests are potentially leaked
at several locations: browser history, HTTP log files, network appliances that make
a point to log the first line of an HTTP request, and Referer headers if the protected
site links to an external site.

In the latter case (leaked CSRF token due to the Referer header being parsed by a
linked site), it is trivially easy for the linked site to launch a CSRF attack on the
protected site, and they will be able to target this attack very effectively, since the
Referer header tells them the site as well as the CSRF token. The attack could be
run entirely from javascript, so that a simple addition of a script tag to the HTML of
a site can launch an attack (whether on an originally malicious site or on a hacked
site). This attack scenario is easy to prevent, the referer will be omitted if the origin
of the request is HTTPS. Therefore this attack does not affect web applications that
are HTTPS only.

The ideal solution is to only include the CSRF token in POST requests and modify
server-side actions that have state changing affect to only respond to POST requests.
This is in fact what the RFC 2616 [4] requires for GET requests. If sensitive server-
side actions are guaranteed to only ever respond to POST requests, then there is no
need to include the token in GET requests.

In most JavaEE web applications, however, HTTP method scoping is rarely ever
utilized when retrieving HTTP parameters from a request. Calls to "HttpServletRe-
quest.getParameter" will return a parameter value regardless if it was a GET or POST.
This is not to say HTTP method scoping cannot be enforced. It can be achieved if a
developer explicitly overrides doPost() in the HttpServlet class or leverages framework
specific capabilities such as the AbstractFormController class in Spring.

For these cases, attempting to retrofit this pattern in existing applications requires
significant development time and cost, and as a temporary measure it may be better
to pass CSRF tokens in the URL. Once the application has been fixed to respond
to HTTP GET and POST verbs correctly, CSRF tokens for GET requests should be
turned off.

42

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.3.2. Viewstate (ASPNET)

ASP.NET has an option to maintain your ViewState. The ViewState indicates the
status of a page when submitted to the server. The status is defined through a
hidden field placed on each page with a <form runat="server"> control. Viewstate can
be used as a CSRF defense, as it is difficult for an attacker to forge a valid Viewstate.
It is not impossible to forge a valid Viewstate since it is feasible that parameter values
could be obtained or guessed by the attacker. However, if the current session ID is
added to the ViewState, it then makes each Viewstate unique, and thus immune to
CSREF.

To use the ViewStateUserKey property within the Viewstate to protect against spoofed
post backs. Add the following in the Onlnit virtual method of the Page-derived class
(This property must be set in the Page.Init event)

protected override Onlnit(EventArgs e) {
base.Onlnit(e) ;
if (User.Identity.IsAuthenticated)
ViewStateUserKey = Session. SessionlD;

}

The following keys the Viewstate to an individual using a unique value of your choice.

(Page . ViewStateUserKey)

This must be applied in Page_Init because the key has to be provided to ASP.NET
before Viewstate is loaded. This option has been available since ASP.NET 1.1.
However, there are limitations on this mechanism. Such as, ViewState MACs are
only checked on POSTback, so any other application requests not using postbacks
will happily allow CSRF.

5.3.3. Double Submit Cookies

Double submitting cookies is defined as sending a random value in both a cookie
and as a request parameter, with the server verifying if the cookie value and request
value are equal.

When a user authenticates to a site, the site should generate a (cryptographically
strong) pseudorandom value and set it as a cookie on the user’s machine separate
from the session id. The site does not have to save this value in any way. The
site should then require every sensitive submission to include this random value as
a hidden form value (or other request parameter) and also as a cookie value. An
attacker cannot read any data sent from the server or modify cookie values, per the
same-origin policy. This means that while an attacker can send any value he wants
with a malicious CSRF request, the attacker will be unable to modify or read the
value stored in the cookie. Since the cookie value and the request parameter or form
value must be the same, the attacker will be unable to successfully submit a form
unless he is able to guess the random CSRF value.

Direct Web Remoting (DWR) [5] Java library version 2.0 has CSRF protection built in
as it implements the double cookie submission transparently.

5.3.4. Encrypted Token Pattern

Overview

The Encrypted Token Pattern leverages an encryption, rather than comparison,
method of Token-validation. After successful authentication, the server generates
a unique Token comprised of the user’s ID, a timestamp value and a nonce [6], us-
ing a unique key available only on the server. This Token is returned to the client

43

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

and embedded in a hidden field. Subsequent AJAX requests include this Token in
the request-header, in a similar manner to the Double-Submit pattern. Non-AJAX
form-based requests will implicitly persist the Token in its hidden field, although I
recommend persisting this data in a custom HTTP header in such cases. On receipt
of this request, the server reads and decrypts the Token value with the same key
used to create the Token.

Validation

On successful Token-decryption, the server has access to parsed values, ideally in
the form of claims [7]. These claims are processed by comparing the Userld claim
to any potentially stored Userld (in a Cookie or Session variable, if the site already
contains a means of authentication). The Timestamp is validated against the current
time, preventing replay attacks. Alternatively, in the case of a CSRF attack, the server
will be unable to decrypt the poisoned Token, and can block and log the attack.
This pattern exists primarily to allow developers and architects protect against CSRF
without session-dependency. It also addresses some of the shortfalls in other state-
less approaches, such as the need to store data in a Cookie, circumnavigating the
Cookie-subdomain and HTTPONLY issues.

5.4. CSRF Prevention without a Synchronizer Token

CSRF can be prevented in a number of ways. Using a Synchronizer Token is one way
that an application can rely upon the Same-Origin Policy to prevent CSRF by main-
taining a secret token to authenticate requests. This section details other ways that
an application can prevent CSRF by relying upon similar rules that CSRF exploits
can never break.

5.4.1. Checking The Referer Header

Although it is trivial to spoof the referer header on your own browser, it is impossible
to do so in a CSRF attack. Checking the referer is a commonly used method of pre-
venting CSRF on embedded network devices because it does not require a per-user
state. This makes a referer a useful method of CSRF prevention when memory is
scarce. This method of CSRF mitigation is also commonly used with unauthenti-
cated requests, such as requests made prior to establishing a session state which is
required to keep track of a synchronization token.

However, checking the referer is considered to be a weaker from of CSRF protec-
tion. For example, open redirect vulnerabilities can be used to exploit GET-based
requests that are protected with a referer check and some organizations or browser
tools remove referrer headers as a form of data protection. There are also common
implementation mistakes with referer checks. For example if the CSRF attack origi-
nates from an HTTPS domain then the referer will be omitted. In this case the lack
of a referer should be considered to be an attack when the request is performing
a state change. Also note that the attacker has limited influence over the referer.
For example, if the victim’s domain is "site.com" then an attacker have the CSRF
exploit originate from "site.com.attacker.com" which may fool a broken referer check
implementation. XSS can be used to bypass a referer check.

In short, referer checking is a reasonable form of CSRF intrusion detection and pre-
vention even though it is not a complete protection. Referer checking can detect some
attacks but not stop all attacks. For example, if you HTTP referrer is from a different
domain and you are expecting requests from your domain only, you can safely block
that request.

44

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.4.2. Checking The Origin Header

The Origin HTTP Header [8] standard was introduced as a method of defending
against CSRF and other Cross-Domain attacks. Unlike the referer, the origin will
be present in HTTP request that originates from an HTTPS url.

If the origin header is present, then it should be checked for consistency.

5.4.3. Challenge-Response

Challenge-Response is another defense option for CSRF. The following are some ex-
amples of challenge-response options.

e CAPTCHA
¢ Re-Authentication (password)
* One-time Token

While challenge-response is a very strong defense to CSRF (assuming proper imple-
mentation), it does impact user experience. For applications in need of high security,
tokens (transparent) and challenge-response should be used on high risk functions.

5.5. Client/User Prevention

Since CSRF vulnerabilities are reportedly widespread, it is recommended to follow
best practices to mitigate risk. Some mitigating include:

* Logoff immediately after using a Web application

* Do not allow your browser to save username/passwords, and do not allow sites
to "remember" your login

* Do not use the same browser to access sensitive applications and to surf the
Internet freely (tabbed browsing).

* The use of plugins such as No-Script makes POST based CSRF vulnerabilities
difficult to exploit. This is because JavaScript is used to automatically submit
the form when the exploit is loaded. Without JavaScript the attacker would
have to trick the user into submitting the form manually.

Integrated HTML-enabled mail/browser and newsreader/browser environments pose
additional risks since simply viewing a mail message or a news message might lead
to the execution of an attack.

5.6. No Cross-Site Scripting (XSS) Vulnerabilities

Cross-Site Scripting is not necessary for CSRF to work. However, any cross-site
scripting vulnerability can be used to defeat token, Double-Submit cookie, referer
and origin based CSRF defenses. This is because an XSS payload can simply read
any page on the site using a XMLHttpRequest and obtain the generated token from
the response, and include that token with a forged request. This technique is ex-
actly how the MySpace (Samy) worm [9] defeated MySpace’s anti CSRF defenses in
2005, which enabled the worm to propagate. XSS cannot defeat challenge-response
defenses such as Captcha, re-authentication or one-time passwords. It is impera-
tive that no XSS vulnerabilities are present to ensure that CSRF defenses can’t be
circumvented. Please see the OWASP XSS Prevention Cheat Sheet on page 179 for
detailed guidance on how to prevent XSS flaws.

45

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.7. Authors and Primary Editors

¢ Paul Petefish - paulpetefish[at]solutionary.com
* Eric Sheridan - eric.sheridan[atJowasp.org

* Dave Wichers - dave.wichers[atJowasp.org

5.8. References

1. https://www.owasp.org/index.php/Cross—-Site_Request_Forgery_
(CSRF')_Prevention_Cheat_Sheet

2. https://www.owasp.org/index.php/Cross—Site_Request_Forgery_
(CSRF)

http://www.corej2eepatterns.com/Design/PresoDesign.htm
http://www.w3.0org/Protocols/rfc2616/rfc2616-sec9.htmlfsec9.1.1
http://directwebremoting.org/
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/Claims-based_identity

https://wiki.mozilla.org/Security/Origin

© ® N o O k& W

http://en.wikipedia.org/wiki/Samy_ (XSS)

46

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.corej2eepatterns.com/Design/PresoDesign.htm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
http://directwebremoting.org/
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/Claims-based_identity
https://wiki.mozilla.org/Security/Origin
http://en.wikipedia.org/wiki/Samy_(XSS)

6. Cryptographic Storage Cheat Sheet

Last revision (mm/dd/yy): 03/10/2015

6.1. Introduction

This article provides a simple model to follow when implementing solutions for data
at rest.

6.1.1. Architectural Decision

An architectural decision must be made to determine the appropriate method to pro-
tect data at rest. There are such wide varieties of products, methods and mechanisms
for cryptographic storage. This cheat sheet will only focus on low-level guidelines for
developers and architects who are implementing cryptographic solutions. We will not
address specific vendor solutions, nor will we address the design of cryptographic
algorithms.

6.2. Providing Cryptographic Functionality
6.2.1. Secure Cryptographic Storage Design

Rule - Only store sensitive data that you need

Many eCommerce businesses utilize third party payment providers to store credit
card information for recurring billing. This offloads the burden of keeping credit
card numbers safe.

Rule - Use strong approved Authenticated Encryption

E.g. CCM [2] or GCM [3] are approved Authenticated Encryption [4] modes based on
AES [5] algorithm.

Rule - Use strong approved cryptographic algorithms Do not implement an existing
cryptographic algorithm on your own, no matter how easy it appears. Instead, use
widely accepted algorithms and widely accepted implementations.

Only use approved public algorithms such as AES, RSA public key cryptography, and
SHA-256 or better for hashing. Do not use weak algorithms, such as MD5 or SHA1.
Avoid hashing for password storage, instead use PBKDF2, berypt or scrypt. Note that
the classification of a "strong" cryptographic algorithm can change over time. See
NIST approved algorithms [6] or ISO TR 14742 "Recommendations on Cryptographic
Algorithms and their use" or Algorithms, key size and parameters report — 2014 [7]
from European Union Agency for Network and Information Security. E.g. AES 128,
RSA [8] 3072, SHA [9] 256.

Ensure that the implementation has (at minimum) had some cryptography experts
involved in its creation. If possible, use an implementation that is FIPS 140-2 certi-
fied.

47

6. Cryptographic Storage Cheat Sheet

See NIST approved algorithms [6] Table 2 "Comparable strengths" for the strength
("security bits") of different algorithms and key lengths, and how they compare to
each other.

* In general, where different algorithms are used, they should have comparable
strengths e.g. if an AES-128 key is to be encrypted, an AES-128 key or greater,
or RSA-3072 or greater could be used to encrypt it.

* In general, hash lengths are twice as long as the security bits offered by the
symmetric/asymmetric algorithm e.g. SHA-224 for STDEA (112 security bits)
(due to the Birthday Attack [10])

If a password is being used to protect keys then the password strength [11] should
be sufficient for the strength of the keys it is protecting.

Rule - Use approved cryptographic modes In general, you should not use AES, DES
or other symmetric cipher primitives directly. NIST approved modes [12] should be
used instead.

NOTE: Do not use ECB mode [13] for encrypting lots of data (the other modes are
better because they chain the blocks of data together to improve the data security).

Rule - Use strong random numbers Ensure that all random numbers, especially
those used for cryptographic parameters (keys, IV’s, MAC tags), random file names,
random GUIDs, and random strings are generated in a cryptographically strong fash-
ion.

Ensure that random algorithms are seeded with sufficient entropy.

Tools like NIST RNG Test tool [14] (as used in PCI PTS Derived Test Requirements)
can be used to comprehensively assess the quality of a Random Number Generator by
reading e.g. 128MB of data from the RNG source and then assessing its randomness
properties with the tool.

Rule - Use Authenticated Encryption of data Use (AE [4]) modes under a uniform
API. Recommended modes include CCM [2], and GCM [3] as these, and only these
as of November 2014, are specified in NIST approved modes [12], ISO IEC 19772
(2009) "Information technology — Security techniques — Authenticated encryption",
and IEEE P1619 Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices [15].

¢ Authenticated Encryption gives confidentiality [16], integrity [17], and authen-
ticity [18] (CIA); encryption alone just gives confidentiality. Encryption must
always be combined with message integrity and authenticity protection. Other-
wise the ciphertext may be vulnerable to manipulation causing changes to the
underlying plaintext data, especially if it’s being passed over untrusted channels
(e.g. in an URL or cookie).

* These modes require only one key. In general, the tag sizes and the IV sizes
should be set to maximum values.

If these recommended AE modes are not available

* combine encryption in cipher-block chaining (CBC) mode [19] with post-
encryption message authentication code, such as HMAC [20] or CMAC [21] i.e.
Encrypt-then-MAC.

- Note that Integrity and Authenticity are preferable to Integrity alone i.e.
a MAC such as HMAC-SHA256 or HMAC-SHAb12 is a better choice than
SHA-256 or SHA-512.

48

6. Cryptographic Storage Cheat Sheet

* Use 2 independent keys for these 2 independent operations.
* Do not use CBC MAC for variable length data [22].

* The CAVP program [23] is a good default place to go for validation of crypto-
graphic algorithms when one does not have AES or one of the authenticated
encryption modes that provide confidentiality and authenticity (i.e., data origin
authentication) such as CCM, EAX, CMAC, etc. For Java, if you are using Sun-
JCE that will be the case. The cipher modes supported in JDK 1.5 and later
are CBC, CFB, CFBx, CTR, CTS, ECB, OFB, OFBx, PCBC. None of these cipher
modes are authenticated encryption modes. (That's why it is added explicitly.)
If you are using an alternate JCE provider such as Bouncy Castle, RSA JSafe,
IAIK, etc., then these authenticated encryption modes should be used.

Note: Disk encryption [24] is a special case of data at rest [25] e.g. Encrypted File
System on a Hard Disk Drive. XTS-AES mode [26] is optimized for Disk encryption
and is one of the NIST approved modes [12]; it provides confidentiality and some
protection against data manipulation (but not as strong as the AE NIST approved
modes). It is also specified in IEEE P1619 Standard for Cryptographic Protection of
Data on Block-Oriented Storage Devices [27].

Rule - Store a one-way and salted value of passwords

Use PBKDF2, berypt or scrypt for password storage. For more information on pass-
word storage, please see the Password Storage Cheat Sheet on page 98.

Rule - Ensure that the cryptographic protection remains secure even if access
controls fail

This rule supports the principle of defense in depth. Access controls (usernames,
passwords, privileges, etc.) are one layer of protection. Storage encryption should
add an additional layer of protection that will continue protecting the data even if an
attacker subverts the database access control layer.

Rule - Ensure that any secret key is protected from unauthorized access

Rule - Define a key lifecycle The key lifecycle details the various states that a key
will move through during its life. The lifecycle will specify when a key should no
longer be used for encryption, when a key should no longer be used for decryption
(these are not necessarily coincident), whether data must be rekeyed when a new key
is introduced, and when a key should be removed from use all together.

Rule - Store unencrypted keys away from the encrypted data If the keys are stored
with the data then any compromise of the data will easily compromise the keys as
well. Unencrypted keys should never reside on the same machine or cluster as the
data.

Rule - Use independent keys when multiple keys are required Ensure that key ma-
terial is independent. That is, do not choose a second key which is easily related to
the first (or any preceeding) keys.

49

6. Cryptographic Storage Cheat Sheet

Rule - Protect keys in a key vault Keys should remain in a protected key vault at
all times. In particular, ensure that there is a gap between the threat vectors that
have direct access to the data and the threat vectors that have direct access to the
keys. This implies that keys should not be stored on the application or web server
(assuming that application attackers are part of the relevant threat model).

Rule - Document concrete procedures for managing keys through the lifecycle
These procedures must be written down and the key custodians must be adequately
trained.

Rule - Build support for changing keys periodically Key rotation is a must as all good
keys do come to an end either through expiration or revocation. So a developer will
have to deal with rotating keys at some point — better to have a system in place now
rather than scrambling later. (From Bil Cory as a starting point).

Rule - Document concrete procedures to handle a key compromise

Rule - Rekey data at least every one to three years Rekeying refers to the process
of decrypting data and then re-encrypting it with a new key. Periodically rekeying
data helps protect it from undetected compromises of older keys. The appropriate
rekeying period depends on the security of the keys. Data protected by keys secured
in dedicated hardware security modules might only need rekeying every three years.
Data protected by keys that are split and stored on two application servers might
need rekeying every year.

Rule - Follow applicable regulations on use of cryptography

Rule - Under PCI DSS requirement 3, you must protect cardholder data The Payment
Card Industry (PCI) Data Security Standard (DSS) was developed to encourage and
enhance cardholder data security and facilitate the broad adoption of consistent data
security measures globally. The standard was introduced in 2005 and replaced in-
dividual compliance standards from Visa, Mastercard, Amex, JCB and Diners. The
current version of the standard is 2.0 and was initialized on January 1, 2011.

PCI DSS requirement 3 covers secure storage of credit card data. This requirement
covers several aspects of secure storage including the data you must never store but
we are covering Cryptographic Storage which is covered in requirements 3.4, 3.5 and
3.6 as you can see below:

3.4 Render PAN (Primary Account Number), at minimum, unreadable anywhere it is
stored Compliance with requirement 3.4 can be met by implementing any of the
four types of secure storage described in the standard which includes encrypting
and hashing data. These two approaches will often be the most popular choices
from the list of options. The standard doesn’t refer to any specific algorithms but
it mandates the use of Strong Cryptography. The glossary document from the PCI
council defines Strong Cryptography as:

Cryptography based on industry-tested and accepted algorithms, along with strong
key lengths and proper key-management practices. Cryptography is a method to pro-
tect data and includes both encryption (which is reversible) and hashing (which is not
reversible, or "one way”). SHA-1 is an example of an industry-tested and accepted
hashing algorithm. Examples of industry-tested and accepted standards and algo-
rithms for encryption include AES (128 bits and higher), TDES (minimum double-length
keys), RSA (1024 bits and higher), ECC (160 bits and higher), and ElGamal (1024 bits
and higher).

50

6. Cryptographic Storage Cheat Sheet

If you have implemented the second rule in this cheat sheet you will have imple-
mented a strong cryptographic algorithm which is compliant with or stronger than
the requirements of PCI DSS requirement 3.4. You need to ensure that you identify
all locations that card data could be stored including logs and apply the appropriate
level of protection. This could range from encrypting the data to replacing the card
number in logs.

This requirement can also be met by implementing disk encryption rather than file
or column level encryption. The requirements for Strong Cryptography are the same
for disk encryption and backup media. The card data should never be stored in the
clear and by following the guidance in this cheat sheet you will be able to securely
store your data in a manner which is compliant with PCI DSS requirement 3.4

3.5 Protect any keys used to secure cardholder data against disclosure and misuse
As the requirement name above indicates, we are required to securely store the en-
cryption keys themselves. This will mean implementing strong access control, audit-
ing and logging for your keys. The keys must be stored in a location which is both
secure and "away" from the encrypted data. This means key data shouldn’t be stored
on web servers, database servers etc

Access to the keys must be restricted to the smallest amount of users possible. This
group of users will ideally be users who are highly trusted and trained to perform Key
Custodian duties. There will obviously be a requirement for system/service accounts
to access the key data to perform encryption/decryption of data.

The keys themselves shouldn’t be stored in the clear but encrypted with a KEK (Key
Encrypting Key). The KEK must not be stored in the same location as the encryption
keys it is encrypting.

3.6 Fully document and implement all key-management processes and procedures
for cryptographic keys used for encryption of cardholder data Requirement 3.6
mandates that key management processes within a PCI compliant company cover
8 specific key lifecycle steps:

3.6.1 Generation of strong cryptographic keys

As we have previously described in this cheat sheet we need to use algorithms which
offer high levels of data security. We must also generate strong keys so that the
security of the data isn’t undermined by weak cryptographic keys. A strong key is
generated by using a key length which is sufficient for your data security require-
ments and compliant with the PCI DSS. The key size alone isn’t a measure of the
strength of a key. The data used to generate the key must be sufficiently random
("sufficient" often being determined by your data security requirements) and the en-
tropy of the key data itself must be high.

3.6.2 Secure cryptographic key distribution

The method used to distribute keys must be secure to prevent the theft of keys in
transit. The use of a protocol such as Diffie Hellman can help secure the distribution
of keys, the use of secure transport such as TLS and SSHv2 can also secure the keys
in transit. Older protocols like SSLv3 should not be used.

3.6.3 Secure cryptographic key storage
The secure storage of encryption keys including KEK’s has been touched on in our
description of requirement 3.5 (see above).

3.6.4 Periodic cryptographic key changes

The PCI DSS standard mandates that keys used for encryption must be rotated at
least annually. The key rotation process must remove an old key from the encryp-
tion/decryption process and replace it with a new key. All new data entering the

51

6. Cryptographic Storage Cheat Sheet

system must encrypted with the new key. While it is recommended that existing
data be rekeyed with the new key, as per the Rekey data at least every one to three
years rule above, it is not clear that the PCI DSS requires this.

3.6.5 Retirement or replacement of keys as deemed necessary when the integrity of
the key has been weakened or keys are suspected of being compromised

The key management processes must cater for archived, retired or compromised
keys. The process of securely storing and replacing these keys will more than likely
be covered by your processes for requirements 3.6.2, 3.6.3 and 3.6.4

3.6.6 Split knowledge and establishment of dual control of cryptographic keys

The requirement for split knowledge and/or dual control for key management pre-
vents an individual user performing key management tasks such as key rotation or
deletion. The system should require two individual users to perform an action (i.e.
entering a value from their own OTP) which creates to separate values which are
concatenated to create the final key data.

3.6.7 Prevention of unauthorized substitution of cryptographic keys

The system put in place to comply with requirement 3.6.6 can go a long way to
preventing unauthorised substitution of key data. In addition to the dual control
process you should implement strong access control, auditing and logging for key
data so that unauthorised access attempts are prevented and logged.

3.6.8 Requirement for cryptographic key custodians to sign a form stating that they
understand and accept their key-custodian responsibilities

To perform the strong key management functions we have seen in requirement 3.6
we must have highly trusted and trained key custodians who understand how to
perform key management duties. The key custodians must also sign a form stating
they understand the responsibilities that come with this role.

6.3. Related Articles

OWASP - Testing for SSL-TLS [28], and OWASP Guide to Cryptography [29], OWASP
— Application Security Verification Standard (ASVS) - Communication Security Veri-
fication Requirements (V10) [30].

6.4. Authors and Primary Editors

¢ Kevin Kenan - kevin[at]k2dd.com

* David Rook - david.a.rook[at]gmail.com
¢ Kevin Wall - kevin.w.wall[at]gmail.com
¢ Jim Manico - jim[atlJowasp.org

* Fred Donovan - fred.donovan(at)owasp.org

6.5. References

1. https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_
Sheet

2. http://en.wikipedia.org/wiki/CCM_mode

3. http://en.wikipedia.org/wiki/GCM_mode

52

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
http://en.wikipedia.org/wiki/CCM_mode
http://en.wikipedia.org/wiki/GCM_mode

10.
11.
12.
13.

14.

15.
16.
17.
18.
19.

20.
21.
22.

23.
24.
25.
26.

27.
28.

29.
30.

6. Cryptographic Storage Cheat Sheet

http://en.wikipedia.org/wiki/Authenticated_encryption

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_
partl_rev3_general.pdf

http://www.enisa.europa.eu/activities/identity—-and-trust/

library/deliverables/algorithms—-key—-size—and-parameters—-report—-2014/

at_download/fullReport

http

. http:
http:
http:

http:

http

://en.wikipedia.org/wiki/RSA_ (cryptosystem)

//en.wikipedia.org/wiki/Secure_Hash_Algorithm
//en.wikipedia.org/wiki/Birthday_attack
//en.wikipedia.org/wiki/Password_strength

//csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html

://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#
Electronic_codebook_ .28ECB.29

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_
software.html

http://en.wikipedia.

http
http
http

http

://en.
://en.
://en.
://en.

wikipedia.
wikipedia
wikipedia.

wikipedia.

org/wiki/IEEE_P1619

org/wiki/Confidentiality

.org/wiki/Data_integrity

org/wiki/Authentication

org/wiki/Block_cipher_modes_of_operation#

Cipher-block_chaining .28CBC.29

http://en.wikipedia.org/wiki/HMAC

http://en.wikipedia.org/wiki/CMAC

http://en.wikipedia.org/wiki/CBC-MAC#Security_with_ fixed_
and_variable-length_messages#Security_with_fixed_and_
variable-length_messages

http://csrc.nist.gov/groups/STM/cavp/index.html

http://en.wikipedia.org/wiki/Disk_encryption_theory

http://en.wikipedia.org/wiki/Data_at_Rest

http://csrc.nist.gov/publications/nistpubs/800-38E/
nist-sp-800-38E.pdf

http://en.wikipedia.org/wiki/IEEE_P1619

https://www.owasp.org/index.php/Testing_for_SSL-TLS_
(OWASP-CM-001)

https://www.owasp.org/index.php/Guide_to_Cryptography

http://www.owasp.org/index.php/ASVS

53

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://en.wikipedia.org/wiki/RSA_(cryptosystem)
http://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://en.wikipedia.org/wiki/Birthday_attack
http://en.wikipedia.org/wiki/Password_strength
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://en.wikipedia.org/wiki/IEEE_P1619
http://en.wikipedia.org/wiki/Confidentiality
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/CMAC
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages#Security_with_fixed_and_variable-length_messages
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages#Security_with_fixed_and_variable-length_messages
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages#Security_with_fixed_and_variable-length_messages
http://csrc.nist.gov/groups/STM/cavp/index.html
http://en.wikipedia.org/wiki/Disk_encryption_theory
http://en.wikipedia.org/wiki/Data_at_Rest
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://en.wikipedia.org/wiki/IEEE_P1619
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/ASVS

/7. DOM based XSS Prevention Cheat Sheet

Last revision (mm/dd/yy): 03/12/2015

7.1. Introduction

When looking at XSS (Cross-Site Scripting), there are three generally recognized
forms of XSS [2]. Reflected, Stored [3], and DOM Based XSS [4]. The XSS Prevention
Cheatsheet on page 179 does an excellent job of addressing Reflected and Stored
XSS. This cheatsheet addresses DOM (Document Object Model) based XSS and is an
extension (and assumes comprehension of) the XSS Prevention Cheatsheet.

In order to understand DOM based XSS, one needs to see the fundamental difference
between Reflected and Stored XSS when compared to DOM based XSS. The primary
different is where the attack is injected into the application. Reflected and Stored
XSS are server side injection issues while DOM based XSS is a client (browser) side
injection issue. All of this code originates on the server, which means it is the appli-
cation owner’s responsibility to make it safe from XSS, regardless of the type of XSS
flaw it is. Also, XSS attacks always execute in the browser. The different between
Reflected/Stored XSS is where the attack is added or injected into the application.
With Reflected/Stored the attack is injected into the application during server-side
processing of requests where untrusted input is dynamically added to HTML. For
DOM XSS, the attack is injected into the application during runtime in the client
directly.

When a browser is rendering HTML and any other associated content like CSS,
javascript, etc. it identifies various rendering contexts for the different kinds of input
and follows different rules for each context. A rendering context is associated with
the parsing of HTML tags and their attributes. The HTML parser of the rendering
context dictates how data is presented and laid out on the page and can be further
broken down into the standard contexts of HTML, HTML attribute, URL, and CSS.
The JavaScript or VBScript parser of an execution context is associated with the
parsing and execution of script code. Each parser has distinct and separate seman-
tics in the way they can possibly execute script code which make creating consistent
rules for mitigating vulnerabilities in various contexts difficult. The complication is
compounded by the differing meanings and treatment of encoded values within each
subcontext (HTML, HTML attribute, URL, and CSS) within the execution context.
For the purposes of this article, we refer to the HTML, HTML attribute, URL, and CSS
Cheatsheet contexts as subcontexts because each of these contexts can be reached
and set within a JavaScript execution context. In JavaScript code, the main context
is JavaScript but with the right tags and context closing characters, an attacker can
try to attack the other 4 contexts using equivalent JavaScript DOM methods.

The following is an example vulnerability which occurs in the JavaScript context and
HTML subcontext:

<script>

var x = <%= taintedVar %>’;

var d = document. createElement (’div’) ;
d.innerHTML = x;

document. body . appendChild (d) ;
</script>

54

7. DOM based XSS Prevention Cheat Sheet
Let’s look at the individual subcontexts of the execution context in turn.

7.1.1. RULE #1 - HTML Escape then JavaScript Escape Before Inserting
Untrusted Data into HTML Subcontext within the Execution Context

There are several methods and attributes which can be used to directly render HTML
content within JavaScript. These methods constitute the HTML Subcontext within
the Execution Context. If these methods are provided with untrusted input, then an
XSS vulnerability could result. For example:

Example Dangerous HTML Methods

Attributes

element . innerHTML
element . outerHTML

"<HIMI> Tags and markup";
"<HIML> Tags and markup";

Methods

document. write (" <HIMI> Tags and markup") ;
document. writeln (" <HIML> Tags and markup") ;

Guideline
To make dynamic updates to HTML in the DOM safe, we recommend a) HTML en-
coding, and then b) JavaScript encoding all untrusted input, as shown in these
examples:

element.innerHTML = "<%=Encoder. encodeForJS (Encoder.encodeForHTML (
— untrustedData)) %>";

element.outerHTML = "<%=Encoder.encodeForJS (Encoder.encodeForHTML (
— untrustedData)) %>";

document. write("<%=Encoder. encodeForJS (Encoder.encodeForHTML (untrustedData)
—)%>");

document. writeln("<%=Encoder.encodeForJS (Encoder.encodeForHTML (
— untrustedData)) %>");

Note: The Encoder.encodeForHTML() and Encoder.encodeFordS() are just notional
encoders. Various options for actual encoders are listed later in this document.

7.1.2. RULE #2 - JavaScript Escape Before Inserting Untrusted Data into HTML
Attribute Subcontext within the Execution Context

The HTML attribute *subcontext* within the *execution* context is divergent from
the standard encoding rules. This is because the rule to HTML attribute encode
in an HTML attribute rendering context is necessary in order to mitigate attacks
which try to exit out of an HTML attributes or try to add additional attributes which
could lead to XSS. When you are in a DOM execution context you only need to
JavaScript encode HTML attributes which do not execute code (attributes other than
event handler, CSS, and URL attributes).

For example, the general rule is to HTML Attribute encode untrusted data (data
from the database, HTTP request, user, back-end system, etc.) placed in an HTML
Attribute. This is the appropriate step to take when outputting data in a rendering
context, however using HTML Attribute encoding in an execution context will break
the application display of data.

55

7. DOM based XSS Prevention Cheat Sheet

SAFE but BROKEN example

var x = document.createElement ("input");

x.setAttribute ("name", "company name") ;
// In the following line of code, companyName represents untrusted user
— input

// The Encoder.encodeForHTMLAttr () is unnecessary and causes double—
— encoding

x.setAttribute ("value", '<%=Encoder.encodeForJS (Encoder. encodeForHTMLAttr (
— companyName)) %>’) ;

var forml = document.forms[O0];

form1.appendChild (x) ;

The problem is that if companyName had the value "Johnson & Johnson". What
would be displayed in the input text field would be "Johnson & Johnson". The
appropriate encoding to use in the above case would be only JavaScript encoding to
disallow an attacker from closing out the single quotes and in-lining code, or escaping
to HTML and opening a new script tag.

SAFE and FUNCTIONALLY CORRECT example

var X = document.createElement ("input");

x.setAttribute ("name", "company name") ;

x.setAttribute ("value", ’<%=Encoder.encodeForJdS (companyName) %>’) ;
var forml = document.forms[0];

form1.appendChild (x) ;

It is important to note that when setting an HTML attribute which does not execute
code, the value is set directly within the object attribute of the HTML element so there
is no concerns with injecting up.

7.1.3. RULE #3 - Be Careful when Inserting Untrusted Data into the Event
Handler and JavaScript code Subcontexts within an Execution Context

Putting dynamic data within JavaScript code is especially dangerous because
JavaScript encoding has different semantics for JavaScript encoded data when com-
pared to other encodings. In many cases, JavaScript encoding does not stop attacks
within an execution context. For example, a JavaScript encoded string will execute
even though it is JavaScript encoded.

Therefore, the primary recommendation is to avoid including untrusted data in this
context. If you must, the following examples describe some approaches that do and
do not work.

var X = document.createElement("a") ;

x.href="#";

// In the line of code below, the encoded data

// on the right (the second argument to setAttribute)

// is an example of untrusted data that was properly

// JavaScript encoded but still executes.

x.setAttribute (" onclick"”", "\u0061\u006c\u0065\u0072\u0074\u0028\u0032\u0032
— \u0029") ;

var y = document. createTextNode (" Click To Test");

x.appendChild (y) ;

document. body . appendChild (x) ;

The setAttribute(name_string,value_string) method is dangerous because it implicitly
coerces the string_value into the DOM attribute datatype of name_string. In the case

56

7. DOM based XSS Prevention Cheat Sheet

above, the attribute name is an JavaScript event handler, so the attribute value is im-
plicitly converted to JavaScript code and evaluated. In the case above, JavaScript en-
coding does not mitigate against DOM based XSS. Other JavaScript methods which
take code as a string types will have a similar problem as outline above (setTimeout,
setlnterval, new Function, etc.). This is in stark contrast to JavaScript encoding in
the event handler attribute of a HTML tag (HTML parser) where JavaScript encoding
mitigates against XSS.

<a id="bb" href="#" onclick="\u0061\u006c\u0065\u0072\u0074\u0028\u0031\
— u0029"> Test Me

An alternative to using Element.setAttribute(...) to set DOM attributes is to set the
attribute directly. Directly setting event handler attributes will allow JavaScript en-
coding to mitigate against DOM based XSS. Please note, it is always dangerous design
to put untrusted data directly into a command execution context.

 Test Me

//The following does NOT work because the event handler

//is being set to a string. "alert(7)" is JavaScript encoded.

document. getElementByld ("bb") . onclick = "\u0061\u006c\u0065\u0072\u0074\
— 1u0028\u0037\u0029";

//The following does NOT work because the event handler is being set to a
— string.

document. getElementByld ("bb") . onmouseover = "testlt";

//The following does NOT work because of the

//encoded "(" and ")". "alert(77)" is JavaScript encoded.

document. getElementByld ("bb") . onmouseover = \u0061\u006c\u0065\u0072\u0074\
— 1u0028\u0037\u0037\u0029;

//The following does NOT work because of the encoded ";".

//"testlt;testlt" is JavaScript encoded.

document. getElementByld ("bb") . onmouseover \u0074\u0065\u0073\u0074\u0049\
— 1u0074\u003b\u0074\u0065\u0073\u0074\u0049\u0074 ;

//The following DOES WORK because the encoded value

//is a valid variable name or function reference. "testIt" is JavaScript
— encoded

document. getElementByld ("bb") . onmouseover = \u0074\u0065\u0073\u0074\u0049\
— u0074;

function testIt() { alert("I was called."); }

There are other places in JavaScript where JavaScript encoding is accepted as valid
executable code.

for (var \u0062=0; \u0062 < 10; \u0062++) {

\u0064\u006\u0063\u0075\u006d\u0065\u006e\u0074

A\ u0077\u0072\u0069\u0074\u0065\u006c\u006e

(" \u0048\u0065\u006¢c\u006c\u006\u0020\u0057\u006f\u0072\u006¢c\u0064 ") ;
}
\u0077\u0069\u006e\u0064\u006f\u0077
.\u0065\u0076\u0061\u006¢c
\u0064\u006\u0063\u0075\u006d\u0065\u006e\u0074
A\ u0077\u0072\u0069\u0074\u0065(111111111);

or
var s = "\u0065\u0076\u0061\u006¢c";
var t = "\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0031\u0029";

window[s](t) ;

57

7. DOM based XSS Prevention Cheat Sheet

Because JavaScript is based on an international standard (ECMAScript), JavaScript
encoding enables the support of international characters in programming constructs
and variables in addition to alternate string representations (string escapes).
However the opposite is the case with HTML encoding. HTML tag elements are well
defined and do not support alternate representations of the same tag. So HTML
encoding cannot be used to allow the developer to have alternate representations of
the <a> tag for example.

HTML Encoding’s Disarming Nature

In general, HTML encoding serves to castrate HTML tags which are placed in HTML
and HTML attribute contexts. Working example (no HTML encoding):

Normally encoded example (Does Not Work — DNW):

HTML encoded example to highlight a fundamental difference with JavaScript en-
coded values (DNW):

If HTML encoding followed the same semantics as JavaScript encoding. The line
above could have possibily worked to render a link. This difference makes JavaScript
encoding a less viable weapon in our fight against XSS.

7.1.4. RULE #4 - JavaScript Escape Before Inserting Untrusted Data into the CSS
Attribute Subcontext within the Execution Context

Normally executing JavaScript from a CSS context required either passing
javascript:attackCode() to the CSS url() method or invoking the CSS expression()
method passing JavaScript code to be directly executed. From my experience, calling
the expression() function from an execution context (JavaScript) has been disabled.
In order to mitigate against the CSS url() method, ensure that you are URL encoding
the data passed to the CSS url() method.

document.body. style .backgroundlmage = "url(<%=Encoder.encodeFordS (Encoder.
— encodeForURL (companyName)) %>) ";

TODO: We have not been able to get the expression() function working from DOM
JavaScript code. Need some help.

7.1.5. RULE #5 - URL Escape then JavaScript Escape Before Inserting Untrusted
Data into URL Attribute Subcontext within the Execution Context

The logic which parses URLs in both execution and rendering contexts looks to be
the same. Therefore there is little change in the encoding rules for URL attributes in
an execution (DOM) context.

var X = document.createElement("a") ;

x.setAttribute ("href", ’<%=Encoder. encodeForJS (Encoder.encodeForURL (
<« userRelativePath))%>’);

var y = document. createTextElement (" Click Me To Test");

x.appendChild (y) ;

document. body . appendChild (x) ;

58

7. DOM based XSS Prevention Cheat Sheet

If you utilize fully qualified URLs then this will break the links as the colon in the
protocol identifier ("http:" or "javascript:") will be URL encoded preventing the "http"
and "javascript" protocols from being invoked.

7.2. Guidelines for Developing Secure Applications Utilizing
JavaScript

DOM based XSS is extremely difficult to mitigate against because of its large attack
surface and lack of standardization across browsers. The guidelines below are an
attempt to provide guidelines for developers when developing Web based JavaScript
applications (Web 2.0) such that they can avoid XSS.

1. Untrusted data should only be treated as displayable text. Never treat untrusted
data as code or markup within JavaScript code.

2. Always JavaScript encode and delimit untrusted data as quoted strings when
entering the application (Jim Manico and Robert Hansen)

var x = "<%=encodedJavaScriptData%>";

3. Use document.createElement("..."), element.setAttribute("...","value"), ele-
ment.appendChild(...), etc. to build dynamic interfaces. Please note, ele-
ment.setAttribute is only safe for a limited number of attributes. Dangerous
attributes include any attribute that is a command execution context, such
as onclick or onblur. Examples of safe attributes includes align, alink, alt,
bgcolor, border, cellpadding, cellspacing, class, color, cols, colspan, coords, dir,
face, height, hspace, ismap, lang, marginheight, marginwidth, multiple, nohref,
noresize, noshade, nowrap, ref, rel, rev, rows, rowspan, scrolling, shape, span,
summary, tabindex, title, usemap, valign, value, vlink, vspace, width.

4. Avoid use of HTML rendering methods:

a) element.innerHTML ="...";
b) element.outerHTML ="...";
c¢) document.write(...);

d) document.writeln(...);

5. Understand the dataflow of untrusted data through your JavaScript code. If
you do have to use the methods above remember to HTML and then JavaScript
encode the untrusted data (Stefano Di Paola).

6. There are numerous methods which implicitly eval() data passed to it. Make
sure that any untrusted data passed to these methods is delimited with string
delimiters and enclosed within a closure or JavaScript encoded to N-levels based
on usage, and wrapped in a custom function. Ensure to follow step 4 above to
make sure that the untrusted data is not sent to dangerous methods within the
custom function or handle it by adding an extra layer of encoding.

Utilizing an Enclosure (as suggested by Gaz)

The example that follows illustrates using closures to avoid double JavaScript en-
coding.

59

7. DOM based XSS Prevention Cheat Sheet

setTimeout ((function (param) { return function () {
customFunction (param) ;

}

1) ("<%=Encoder. encodeForJS (untrustedData) %>"), y);

The other alternative is using N-levels of encoding.

N-Levels of Encoding If your code looked like the following, you would need to only
double JavaScript encode input data.

setTimeout (" customFunction(’<%=doubleJavaScriptEncodedData%>’, y) ") ;
function customFunction (firstName, K lastName)
alert ("Hello" + firstName + " " + lastNam);

}

The doubleJavaScriptEncodedData has its first layer of JavaScript encoding reversed
(upon execution) in the single quotes. Then the implicit eval() of setTimeout() reverses
another layer of JavaScript encoding to pass the correct value to customFunction.
The reason why you only need to double JavaScript encode is that the customFunc-
tion function did not itself pass the input to another method which implicitly or
explicitly called eval(). If "firstName" was passed to another JavaScript method which
implicitly or explicitly called eval() then <%=doubleJavaScriptEncodedData%> above
would need to be changed to <%=tripleJavaScriptEncodedData%>.

An important implementation note is that if the JavaScript code tries to utilize the
double or triple encoded data in string comparisons, the value may be interpreted as
different values based on the number of evals() the data has passed through before
being passed to the if comparison and the number of times the value was JavaScript
encoded.

If "A" is double JavaScript encoded then the following if check will return false.

var X = "doubledJavaScriptEncodedA"; //\u005c\u0075\u0030\u0030\u0034\u0031

if (x == "A") {
alert ("x is A");
} else if (x == "\u0041") {

alert ("This is what pops");
}

This brings up an interesting design point. Ideally, the correct way to apply en-
coding and avoid the problem stated above is to server-side encode for the output
context where data is introduced into the application. Then client-side encode (using
a JavaScript encoding library such as ESAPI4JS) for the individual subcontext (DOM
methods) which untrusted data is passed to. ESAPI4JS [5] and jQuery Encoder [6]
are two client side encoding libraries developed by Chris Schmidt. Here are some
examples of how they are used:

var input = "<%=Encoder.encodeFordS (untrustedData)%>"; //server—side
— encoding

window. location = ESAPI4JS.encodeForURL (input); //URL encoding is happening
— in JavaScript

document. writeln (ESAPI4JS.encodeForHTML (input)); //HIML encoding is
— happening in JavaScript

It has been well noted by the group that any kind of reliance on a JavaScript library
for encoding would be problematic as the JavaScript library could be subverted by
attackers. One option is to wait till ECMAScript 5 so the JavaScript library could

60

7. DOM based XSS Prevention Cheat Sheet

support immutable properties. Another option provided by Gaz (Gareth) was to use
a specific code construct to limit mutability with anonymous clousures.
An example follows:

function escapeHTML(str) {
str = str + "";

var out = "";
for (var i=0; i<str.length; i++) {
if(str[i] === ’<’) {
out += "<’;
} else if(str[i] === ">’) {
out += '>’;
} else if(str[i] === """) {
out += ''’;
} else if(str[i] === ""7) {
out += '" ’;
} else {
out += str[i]; }

}

return out;

}

Chris Schmidt has put together another implementation of a JavaScript encoder [7].

7. Limit the usage of dynamic untrusted data to right side operations. And be
aware of data which may be passed to the application which look like code (eg.
location, eval()). (Achim)

var X = "<%=properly encoded data for flow%>";

If you want to change different object attributes based on user input use a level
of indirection.
Instead of:

window|[userData] = "moreUserData";

Do the following instead:

if (userData==="location") {
window. location = "static/path/or/properly/url/encoded/value";

}

8. When URL encoding in DOM be aware of character set issues as the character
set in JavaScript DOM is not clearly defined (Mike Samuel).

9. Limit access to properties objects when using object[x] accessors. (Mike
Samuel). In other words use a level of indirection between untrusted input
and specified object properties. Here is an example of the problem when using
map types:

var myMapType = {};
myMapType[<%=untrustedData%>] = "moreUntrustedData";

Although the developer writing the code above was trying to add additional
keyed elements to the myMapType object. This could be used by an attacker to
subvert internal and external attributes of the myMapType object.

10. Run your JavaScript in a ECMAScript 5 canopy or sand box to make it harder
for your JavaScript API to be compromised (Gareth Heyes and John Stevens).

61

7. DOM based XSS Prevention Cheat Sheet

11. Don’t eval() JSON to convert it to native JavaScript objects. Instead use
JSON.toJSON() and JSON.parse() (Chris Schmidt).

7.3. Common Problems Associated with Mitigating DOM Based
XSS

7.3.1. Complex Contexts

In many cases the context isn’t always straightforward to discern.

<a href="javascript:myFunction(’<%=untrustedData%>’, ’test’);">Click Me

<script>

Function myFunction (url,name) {
window. location = url;

}

</script>

In the above example, untrusted data started in the rendering URL context (href
attribute of an <a> tag) then changed to a JavaScript execution context (javascript:
protocol handler) which passed the untrusted data to an execution URL subcontext
(window.location of myFunction). Because the data was introduced in JavaScript
code and passed to a URL subcontext the appropriate server-side encoding would be
the following:

<a href="javascript: myFunction(’<%=Encoder. encodeForJsS (
Encoder.encodeForURL (untrustedData)) %>’, ’test’);">Click Me

Or if you were using ECMAScript 5 with an immutable JavaScript client-side encod-
ing libraries you could do the following:

<l-—server side URL encoding has been removed. Now only JavaScript encoding
— on server side. —>

<a href="javascript: myFunction(’<%=Encoder. encodeForJS (untrustedData) %>’,
— test’);">Click Me

<script>
Function myFunction (url,name) {
var encodedURL = ESAPI4JS.encodeForURL(url); //URL encoding using client—
— side scripts
window. location = encodedURL;
}

</script>

7.3.2. Inconsistencies of Encoding Libraries

There are a number of open source encoding libraries out there:
1. ESAPI [8]
2. Apache Commons String Utils
3. Jtidy

4. Your company’s custom implementation.

62

7. DOM based XSS Prevention Cheat Sheet

Some work on a black list while others ignore important characters like "<" and ">".
ESAPI is one of the few which works on a whitelist and encodes all non-alphanumeric
characters. It is important to use an encoding library that understands which char-
acters can be used to exploit vulnerabilies in their respective contexts. Misconcep-
tions abound related to the proper encoding that is required.

7.3.3. Encoding Misconceptions

Many security training curriculums and papers advocate the blind usage of HTML
encoding to resolve XSS. This logically seems to be prudent advice as the JavaScript
parser does not understand HTML encoding. However, if the pages returned from
your web application utilize a content type of "text/xhtml" or the file type extension
of "*.xhtml" then HTML encoding may not work to mitigate against XSS.

For example:

<script>
alert (1);
</script>

The HTML encoded value above is still executable. If that isn’t enough to keep in
mind, you have to remember that encodings are lost when you retrieve them using
the value attribute of a DOM element.

Let’s look at the sample page and script:

<form name="myForm" ...>

<input type="text" name="IName" value="<%=Encoder.encodeForHTML (last_name)
% %>H>

</form>

<script>

var x = document.myForm.IName.value; //when the value is retrieved the
— encoding is reversed

document. writeln (x); //any code passed into IName is now executable.

</script>

Finally there is the problem that certain methods in JavaScript which are usually
safe can be unsafe in certain contexts.

7.3.4. Usually Safe Methods

One example of an attribute which is usually safe is innerText. Some papers or
guides advocate its use as an alternative to innerHTML to mitigate against XSS in
innerHTML. However, depending on the tag which innerText is applied, code can be
executed.

<script>

var tag = document.createElement (" script");
tag.innerText = "<%=untrustedData%>"; //executes code
</script>

7.4. Authors and Contributing Editors

¢ Jim Manico - jim[at]Jowasp.org
* Abraham Kang - abraham.kang[at]lowasp.org
¢ Gareth (Gaz) Heyes

63

7. DOM based XSS Prevention Cheat Sheet

Stefano Di Paola

Achim Hoffmann - achim[at]Jowasp.org

Robert (RSnake) Hansen

Mario Heiderich

John Steven

Chris (Chris BEEF) Schmidt

Mike Samuel

Jeremy Long

Eduardo (SirDarkCat) Alberto Vela Nava

Jeff Williams - jeff.williams[at]Jowasp.org

Erlend Oftedal

. References

. https://www.owasp.

Sheet

. https://www.owasp.

. https://www.owasp.

Attacks

https://www.owasp.

org/index

org/index

org/index

org/index

http://bit.ly/9hRTLH

.php/DOM_based_XSS_Prevention_Cheat_

.php/XSS

.php/XSS#Stored_and_Reflected_XSS_

.php/DOM_Based_XSS

https://github.com/chrisisbeef/jquery—encoder/blob/master/src/
main/javascript/org/owasp/esapi/jquery/encoder. js

http://yet—-another-dev.blogspot.com/2011/02/
client-side-contextual-encoding-for.html

https://www.owasp.org/index.php/ESAPI

64

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
http://bit.ly/9hRTLH
https://github.com/chrisisbeef/jquery-encoder/blob/master/src/main/javascript/org/owasp/esapi/jquery/encoder.js
https://github.com/chrisisbeef/jquery-encoder/blob/master/src/main/javascript/org/owasp/esapi/jquery/encoder.js
http://yet-another-dev.blogspot.com/2011/02/client-side-contextual-encoding-for.html
http://yet-another-dev.blogspot.com/2011/02/client-side-contextual-encoding-for.html
https://www.owasp.org/index.php/ESAPI

8. Forgot Password Cheat Sheet

Last revision (mm/dd/yy): 11/19/2014

8.1. Introduction

This article provides a simple model to follow when implementing a "forgot password"
web application feature.

8.2. The Problem

There is no industry standard for implementing a Forgot Password feature. The result
is that you see applications forcing users to jump through myriad hoops involving
emails, special URLs, temporary passwords, personal security questions, and so on.
With some applications you can recover your existing password. In others you have
to reset it to a new value.

8.3. Steps
8.3.1. Step 1) Gather Identity Data or Security Questions

The first page of a secure Forgot Password feature asks the user for multiple pieces
of hard data that should have been previously collected (generally when the user first
registers). Steps for this are detailed in the identity section the Choosing and Using
Security Questions Cheat Sheet on page 20.

At a minimum, you should have collected some data that will allow you to send the
password reset information to some out-of-band side-channel, such as a (possibly
different) email address or an SMS text number, etc. to be used in Step 3.

8.3.2. Step 2) Verify Security Questions

After the form on Step 1 is submitted, the application verifies that each piece of data
is correct for the given username. If anything is incorrect, or if the username is not
recognized, the second page displays a generic error message such as "Sorry, invalid
data". If all submitted data is correct, Step 2 should display at least two of the user’s
pre-established personal security questions, along with input fields for the answers.
It's important that the answer fields are part of a single HTML form.

Do not provide a drop-down list for the user to select the questions he wants to
answer. Avoid sending the username as a parameter (hidden or otherwise) when the
form on this page is submitted. The username should be stored in the server-side
session where it can be retrieved as needed.

Because users’ security questions / answers generally contains much less entropy
than a well-chosen password (how many likely answers are there to the typical
"What'’s your favorite sports team?" or "In what city where you born?" security ques-
tions anyway?), make sure you limit the number of guesses attempted and if some
threshold is exceeded for that user (say 3 to 5), lock out the user’s account for some
reasonable duration (say at least 5 minutes) and then challenge the user with some

65

8. Forgot Password Cheat Sheet

form of challenge token per standard multi-factor workflow; see #3, below) to miti-
gate attempts by hackers to guess the questions and reset the user’s password. (It is
not unreasonable to think that a user’s email account may have already been com-
promised, so tokens that do not involve email, such as SMS or a mobile soft-token,
are best.)

8.3.3. Step 3) Send a Token Over a Side-Channel

After step 2, lock out the user’s account immediately. Then SMS or utilize some other
multi-factor token challenge with a randomly-generated code having 8 or more char-
acters. This introduces an "out-of-band" communication channel and adds defense-
in-depth as it is another barrier for a hacker to overcome. If the bad guy has somehow
managed to successfully get past steps 1 and 2, he is unlikely to have compromised
the side-channel. It is also a good idea to have the random code which your system
generates to only have a limited validity period, say no more than 20 minutes or so.
That way if the user doesn’t get around to checking their email and their email ac-
count is later compromised, the random token used to reset the password would no
longer be valid if the user never reset their password and the "reset password" token
was discovered by an attacker. Of course, by all means, once a user’s password has
been reset, the randomly-generated token should no longer be valid.

8.3.4. Step 4) Allow user to change password in the existing session

Step 4 requires input of the code sent in step 3 in the existing session where the
challenge questions were answered in step 2, and allows the user to reset his pass-
word. Display a simple HTML form with one input field for the code, one for the new
password, and one to confirm the new password. Verify the correct code is provided
and be sure to enforce all password complexity requirements that exist in other ar-
eas of the application. As before, avoid sending the username as a parameter when
the form is submitted. Finally, it’s critical to have a check to prevent a user from
accessing this last step without first completing steps 1 and 2 correctly. Otherwise,
a forced browsing [2] attack may be possible.

8.4. Authors and Primary Editors

* Dave Ferguson - gmdaveflat]gmail.com
¢ Jim Manico - jim[atlJowasp.org
¢ Kevin Wall - kevin.w.wall[at]gmail.com

* Wesley Philip - wphilip[at]ca.ibm.com

8.5. References

1. https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

2. https://www.owasp.org/index.php/Forced_browsing

66

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Forced_browsing

9. HTMLS Security Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

9.1. Introduction

The following cheat sheet serves as a guide for implementing HTML 5 in a secure
fashion.

9.2. Communication APIs

9.2.1. Web Messaging

Web Messaging (also known as Cross Domain Messaging) provides a means of mes-
saging between documents from different origins in a way that is generally safer than
the multiple hacks used in the past to accomplish this task. However, there are still
some recommendations to keep in mind:

* When posting a message, explicitly state the expected origin as the second argu-
ment to postMessage rather than * in order to prevent sending the message to
an unknown origin after a redirect or some other means of the target window’s
origin changing.

* The receiving page should always:

— Check the origin attribute of the sender to verify the data is originating from
the expected location.

- Perform input validation on the data attribute of the event to ensure that
it’s in the desired format.

* Don’'t assume you have control over the data attribute. A single Cross Site
Scri