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Abstract
Model free exploratory methods available for functional MRI analysis of one subject such as Principal
Component Analysis (PCA) and Independent Component Analysis (ICA) are investigated for generalisations
when analysing more than one subject. Introducing the subject dimension makes a three-way data: brain,
time, subject, and multiway methods are proposed either to optimise the variance (PCA) or the Negentropy
(ICA). Results of folded methods and purely multiway ones are described on a 12 subjects verbal study.

1 Introduction

Principal Component Analysis (PCA)[6] and Independent Component Analysis (ICA)[7] are established ex-
ploratory methods for single subject analysis in Functional MR imaging. The spatio-temporal decomposition
of the data matriz (up to a given level r) in both cases can be written:

T
X=> Bi®Ti+e (1)
i

with different statistical properties according to the chosen method. Inferences for location on the brain with
components B; [1][2] and stimulus influence with associated time course component T; (e.g. correlation with
the paradigm) describe the functional activation. For multi-subject analysis generalisations of these methods
to 3-way arrays are needed to get a decomposition of the data tensor of order 3 (space, time, and subject) in a
form:

T
Y=Y BieT;®S;+¢ (2)
(2
Testing the subject component would allow a population inference and can be viewed as a spatio-temporal
omnibus test. For the variance criterion (PCA) the PTA-k method [3, 4] offers a decomposition like (2) and
potentials to describe multi-subject fMRI data will be illustrated. On the way to optimal rank one decomposition
using ICA criterion, analyses of a three-way data seen as a stacked two-way data offers a first step forward:
the Single-ICA and Multiple-ICA methods. With an analogy of a new interpretation of the algorithm used for
PTA-k method [3] we will also present a rank-one version of the Single-ICA. Other 3-way ICA methods can be
derived fixing the independence criterion in one dimension only, or on two dimensions (space and time) with a
similar algorithm. These latter will be illustrated with a rank one version of the Multiple-ICA.

2 Variance criterion

For the variance criterion (PCA) the PTA-k method [3, 4] offers decompositions like (2). The optimisation
scheme was derived from searching for singular values:

o1 = max Y.(¥ ® o ® ¢)
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Table 1: PTA-3modes listing of the decomposition up to the third kmodes and associated solutions.

++++ PTA- 3 modes ++++
data= Ji12.gmi6 576 100 12
just slice 16

—————— Percent Rebuilt---- 23.34021Y%

—————— Percent Rebuilt from Selected —---- 17.01323%

-no- --Sing Val-- --ssX-- --local Pct-- --Global Pct--
vsiil 1 191.376 599772 6.1064 6.1064
576 vs111 100 12 3 86.062 70189 10.3088 1.2064
100 vsi11 576 12 6 97.382 81266 11.6694 1.5812
100 vsi11 576 12 7 87.138 81266 9.3434 1.2660
12 vs111 576 100 9 87.616 80815 9.4988 1.2799
vs222 11 133.299 440752 4.0314 2.9625
vs333 21 97.991 370027 2.5950 1.6010
12 vs333 576 100 28 77.825 42284 14.3237 1.0098

bt pEaey
Shown are selected over 21 PT with var> 1% total

= Y(Bl RTI ® Sl) (3)

where E, F, G are the Hilbert spaces of finite dimensions (embedding of components in functional Hilbert
spaces is also possible), the operation .. is the contraction of the the tensors considered, here equivalent to
inner product in the tensor space. To search for the second singular values and Principal Tensor associated an
orthogonality constraint is added [4].

An illustration of the output of the method using the PTAk package [4] follows. The table (1) gives the be-
ginning of the decomposition (pruned). The first Principal Tensor shown on figure (2) is well correlated (the
time component) to the paradigm of the experiment. Each component can be tested (with appropriate tests)
separately to confirm BOLD activation at a population level, i.e. the correlation is significant showing some
activation, related globally to the population (with no apparent differences due to sex), and high values® locates
activation on the left fronto-temporal of the brain (right on the image). The second Principal Tensor (figure 2)
shows a motion artifact of one particular subject.

vs111 local 6.11% B.11% global

L5
g :Q, FE—
I
- # 7 4 T :
— L= 1 I.".‘.
=] T o —+ F + Iy
@ b _ #
- 3 — 1
3 o = B4 —=F
I E o 2 =
i m
. B - +M
= - 2 "
LT T T T T 1 E o T T
0 20 40 B0 &0 F M

Time corr 0.6Y6 lagged &t —2 corr 0.849

Figure 1: PTA3-modes of the detrended time series and subject scaled of a 12 subjects fMRI data: activation

In fact the criterion of singular values (3) can be written in variance criterion form reminiscent of the optimisation
for eigenvalues of a “covariance” matrix:

07 = max E(V.(p®d)
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INote one should test the image for local maximum to confirm inferentially the spatial description of activation
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Figure 2: PTA3-modes of the detrended time series and subject scaled (whole sequence masked brain )of a 12
subjects fMRI data: motion artefact
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where here Y is a random matrix in F' ® G from which N observations (here voxels) were collected in Y. This
random version is interesting in giving some differnets ways of implementing an algorithm and in describing the
PTA-3modes method in a statistical framework rather than in algebra. By analogy generalisation in term of a
different optimisation index based on distribution of the component rather than only on the variance of can be
derived.

3 Negentropy criterion

With PCA one obtains a decomposition like 1 with variance criterion and the constraints on the components
is no correlation. Generalisations of these criterion and constraints has been a continuous endeavour and the
literature is abondant about this subject. Recently the concept of Independent Components Analysis has been
widely used in fMRI analysis. Initially the purpose was to look for Independent Components at a higher order
than two (no correlation). The motivation was to recover non-gaussian latent variables (called sources) who
generated the data by linear mixing of them, and supposed to be mutually independent. The link between this
two concepts can be understood as follows.

A measure of mutual independence [5] of the p variables y; is the Kullback-Liebler divergence between the joint
density and the product of the marginal densities :

MI(y)=KL(fy||jlj1fyj) = Eyan(%) (5)
B n(e D g
= [ fytn Aok (6)

and is often termed mutual information. Negentropy itself can be defined as the Kullback-Liebler divergence
between the density (single or vector variable) and the normal equivalent i.e. with the same mean and variance,
or difference of the corresponding entropies 2

N(y) = h(¢y) — h(fy) = —Ep(In(¢y(v)) + Ef(In(fy(u)) = KL(fyl|¢y) (7
The Negentropy can be related to the mutual information:
Vs
MI(y) Z N (y;) (dﬂet(ng (8)

2The difference is always positive i.e. the entropy of a normal distribution h(¢y) = —E(In(¢y)) = 1/2(p+pIn(27) +1n(det(V)))
has the largest entropy among p-dimensional distributions. The proof of the equivalent definitions comes from E; (In(gy)) =
Ef, (In(¢y)) because In(¢y) is a polynomial of degree two and ¢y and f, have same first and second moments [5]
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Figure 3: Single-ICA of the detrended time series and subject scaled of a 12 subjects fMRI data: unmixing
matrix split by subject with best mean time-course lagged correlation to paradigm; the mean time-course is in
black.

then as the Negentropy is invariant by invertible transformation minimising the mutual information is equivalent
to maximising negentropies of components which then are the least Gaussian variables obtained by linear
transformation of the original vector variable. This assertion is in fact true is the third term is null as it is not
invariant by invertible transformation. This term which would correspond to a PCA criterion is null when the
data is spherised. One can see the analogy with Projection-Pursuit where projections of the data who are the
least Gaussian are looked for often using also the negentropy as non-Gaussianity measure. The difference is
that in Projection-Pursuit [8] the projections are not necessarily fixed to unidimensional ones.

4 Single and Multiple ICA

For a three-way data array Y being a sample of size N (number of voxels of the brain image) of a random
matrix Y’ of dimensions T' x S (T= number of Time points , S=number of Subjects), different two-ways ICA
can be investigated. It is possible to look for an Independent Components in the spatial dimension associated
to time — course X subject unmixing matrices. We call it Single-ICA by analogy with single subject ICA. Note
this is done with classical ICA on a data matrix, the unmixing matrices are in fact the unmixing vectors of
length the product 7.S.

r
i

Intuitively one supposes the unmixing vector as “different” from subject to subject but the sources should be
similar i.e. we hope the sub-components (unmixing for each subjects) to be similar. This should be considered
as a random subject model but here is considered only as a fixed subject effect as in fact we may want to
look at the variation a posteriori. At this stage in a similar way of nested PCA one could look at the SVD
decomposition of the unmixing vector as bilinear forms (time — course x subject) and probably retain the best
low rank approximation of the unmixing matrix.

One gets very similar results as with PTAk for the correlation with the paradigm and spatial representation. For
the subject representation on figure (4) is slightly different even if the interpretation of it remains the same.
The variances within group seem similar not like for PTAk where the Female group had a smaller variance.

It is also possible to look for combined subject-brain Independent Components associated to the same time-course
mixing vector:

,
Y:ZBSi@)TH—E (10)
i

It is called Multiple-ICA as the “traditional” spatial (brain) component is multiple. One would hope the
component to reflect a “narrow” distribution over subjects of this traditional spatial component. This last
model correspond more to the intuitive consideration that the subjects responses to an fMRI experiment are
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Figure 4: Single-ICA of the detrended time series and subject scaled of a 12 subjects fMRI data: brain component

associated to the best correlated average time-course to paradigm; 2.121 is the Jones & Sibson approximation
of the Negentropy for this component.
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Figure 5: Single-ICA smooth SVD [4] of the unmixing matrix (fig.4) of ICA6; the first component well correlated
with the paradigm is associated with no apparent difference for sex; on the scree plot ¢ is for cumulated and r
an estimation of a risk in choice dimension.
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Figure 6: Multiple-ICA standardised mean over subjects of ICA20 and unmixing time-course.

independent identically distributed and we are looking for a random variation of activation pattern hopefully
i.e. the random variation between subjects is accessible at each voxel. Nonetheless this last method is biased
towards non-Gaussian subject samples, i.e. as well as looking for spatial distribution the least Gaussian the
method will try to separate the subjects and with small samples of subjects this may destroy any hope of getting
similar spatial distributions.

5 Towards rank-1-ICA

The last point of the previous section illustrates that in fMRI we may be interested in Single-ICA (unmixing
dimension is time-subject) or in a Multiple-ICA if the multiple component is the spatio-temporal dimension,
the subject dimension being the unmixing dimension. For these two ways of approaching ICA for multi-subject
experiments a rank-one version of the ICA is certainly more interesting. With the Single-ICA model we would
look for a rank-one unmixing matrix (time x Subject)and with the Multiple-ICA model we will look for a
rank-one component (a spatio-temporal component).

The first idea of getting a rank-one component is in nested way of performing analysis, to do it once the ICA
is finished and in summarising the unmixing matrix by it best rank-one approximation by an SVD. Note that
doing the same thing for the Multiple-ICA approach (i.e. best approximation of the ICA component) one
would not get necessary an optimised negentropy! Note also that for the Single-ICA the two steps are optimised
separately but that usually does not mean that the rank-one unmixing is achieving maximum negentropy. This
is what we naturally did on figure 4 or when looking at the average time-course a a pot-hoc way of describing
the result.

In order to achieve a better algorithm one have to rewrite the optimisation incorporating the rank-one “con-
straint”. For Single-ICA that look really like a constraint as one wants the unmixing matrix to be of rank one.
With the Multiple-ICA approach it is different as one want the component to be of rank one. This last one is
more complicated, so we will focuses on the first one which was also the most sensible approach for fMRI data.
A simple approach for rank-one-Single-ICA is to use a penalised SVD as describe in [4] and force “smoothing”
on the principal components during optimisation as to be issued from a rebuild from a one component ICA
model. This was suggested by the equivalence (modulo some orthogonality constraints) between penalised
(smoothing as best rank-one SVD) SVD and the PTA-3modes. The problem with this approach is that the
“smoothing” may violate too much the conditions for least squares optimisation under smoothing constraint
making the algorithm fails to converge [11]. Another rank-one-Single-ICA can be derived incorporating in the
ICA algorithm a constraint on the unmixing to be of rank-one. This is done after every updating unmixing
vector then alternating uptdating the Newton algorithm for best direction and best least squares rank-one
approximation of the unmixing vector put as a matrix time x subject. Figure 5 shows one set of components
resulting from this approach. The problem here is that the unmixing vector length is huge comparatively to
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Figure 8: rank one Single-ICA by constraint in an ICA: ICA28 the best correlated time-course

dimension the data is susppected to lies in [2]. A dimension reduction is usually done before ICA and the
unmixing vector “projected back” onto the original space. Because of the rank-one contraint here one has
either not to reduce the dimension before ICA making difficult to find ICA’s in a raisonnable time or to try to
incorporate this reduction anyway!

This heuristic looking approach can be in fact derived directly from the rewriting of the optimisation problem
as in [10] with a tensor of rank one as argument instead of a vector.

6 Conclusions and Perspectives

Some statistical properties and comparisons of these new multiway methods are still needed to complete our
first ideas. The application on a verbal study with 12 subjects gave some insights on their different interests.
It seems rather obvious that when looking for activation with a regular paradigm one certainly expects the
variance criterion to give good results especially if the subject dispersion (between groups and /or within
groups) is expected to be relatively Gaussian in the direction of interest. In that purpose Single-ICA achieve
similar results as in using PTA3. This is because of the first step of reducing the dimensionality (using variance
criterion) in te ICA algorithm. Without this first step too many time-courses have to be fit. Probably with
a drastic dimension reduction using a variance criterion, the real interest of ICA is less evident and certainly
the rank-one approach is an other way of reducing the dimensionality enforcing initial Gaussianity by forcing
independence of time and subject in the unmixing component. .

Finding complicated group structures and/or expecting non regular paradigm would be better achieved with
Negentropy approach, but the Multiple-ICA approach has too many degrees of freedom for that purpose.
In reducing the degree of freedom on the independent Components the rank-one Multiple-ICA should give
better results than the Multiple-ICA. Nonetheless using special metrics[9,4] with PTAk may provide interesting
alternatives and may be a rank-one Single-ICA using these special metrics on the time-subject unmixing would
allow to find these

Another 3-way ICA methods can be thought fixing the independence criterion on two dimensions (space and
time). This is the other rank-one ICA approach i.e. like a Multiple-ICA but looking for a rank-one independent
components.
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