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Abstract

In this research thesis, we have described some new mathematical connections
between Maxwell’s Equations, some sectors of the String Theory and Particle
Physics, and some sectors of Number Theory, precisely various Ramanujan’s
expressions and equations.
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This paper is dedicated to the memory of the great genius J.C. Maxwell, a man of
science, a man of God!
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From:
http://web.mit.edu/8.02t/www/mitxmaterials/Presentations/Presentation W13D2.pdf

Maxwell’s Equations
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James Clerk Maxwell

Man of science, man of God.

Maxwell's faith also manifested itself in his approach to scientific activity. He
declared himself a "reader of the book of nature". According to Maxwell, this book
appears to the scientist as orderly and harmonious, revealing the infinite power and
wisdom of God in his unattainable and eternal truth. Maxwell justified the knowable
of nature and the success of science, that is man's ability to develop a science that
knew how to preach some truths about nature, through an act of faith. In fact he
claimed that God had created human mind and nature in correspondence.

Maxwell’s Equations



Law Equation

Physical Interpretation

Gauss's law for E

Electric flux through a closed surface
is proportional to the charged enclosed

Gauss's law for B 7

- _ dD ; i i : <
Faraday's law @E s T Changmg magnetic flux produces an
dr electric field
dbB-dA =0 The total magnefic flux through a

closed surface is zero

Ampere — Maxwell law ¢E_l ds = el + &y -

@

Electric current and changing electric
flux produces a magnetic field

Collectively they are known as Maxwell’s equations. The above equations may also be

written in differential forms as

v.ﬁzﬁ
&
ot
V.B=0

~
s
e

3e1)

_— °E
V~B :ﬂaJJrﬂoE&C.._
cl

where pand Jare the free charge and the conduction current densities. respectively. In

the absence of sources where O = 0. 7 = 0. the above equations become
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An important consequence of Maxwell's equations. as we shall see below, is the
prediction of the existence of electromagnetic waves that travel with speed of light

c=1/\ty&, . The reason is due to the fact that a changing electric field produces a

magnetic field and vice versa. and the coupling between the two fields leads to the
generation of electromagnetic waves. The prediction was confirmed by H. Hertz in 1887.




From:

A Dynamical Theory of the Electromagnetic Field
J. Clerk Maxwell - Phil. Trans. R. Soc. Lond. 1865 155, 459-512, published 1
January 1865

Absolute Values of the Electromotive and Magnetic Forces called into play in the
Propagation of Light.
(108) If the equation of propagation of light is

F=Acos 2—”(z-—-VL‘),

. x
the electromotive foree will be .
P=—A —;—r V sin %(Z—Vt} ;

and the energy per unit of volume will be
L5
8au V¥
where P represents the greatest value of the electromotive force. Half of this consists
of magnetic and half of electric energy.
The energy passing through a unit of area is
PQ
—_-m H
P =,/8zu VW,
where V is the velocity of light, and W is the energy communicated to unit of area by
the light in a second.
According to PourLLET's data, as calculated by Professor W. THoMsox ¥, the mecha-
nical value of direct sunlight at the Earth is
834 foot-pounds per second per square foot.

W
so that

This gives the maximum value of I’ in direct sunlight at the Earth’s distance from the Sun,
P=060,000,000,
or about 600 DaNIELL’S cells per metre.

Now, we calculate the integral of half value of P, that represent the greatest value of
the electromotive force. Indeed, half of this consists of magnetic and half of electric
energy:

1.08643 * integrate [3*1077] x, [0, Pi/10"4]

SeRl | i
l.DEﬁ43JlD4 3107 xdx
u}

1.6084



We calculate now the double integral of the value of P:

1.08643 * integrate integrate [6*10"7] [P1/73.7%10"4]
where Pi/73.7 = 0,0426267659 = 0,6740782248°

1.08643 f[[h 107 dx]dx
J L 73.7x 10%
138.933 x°
¥
200 |
\"\._ : jj
\ 150
/

| 1
100 | (x from=1.2t01.2)
50 |

Now we calculate the integral of the value of W = 477464.8292 that is the energy
passing through the unit of area:

1.08643 * 1/10°25 integrate [477464.8292] [0, Pi]

.
1.08643 » —— {14??4ﬁ4u8292dx
102 Jo

1.62064 %107

Result that is a good approximation of the electric charge of positron.



Mecharical Force on an Electrified Body.
(79) If there is no motion or change of strength of currents or magnets in the field,
the electromotive force is entirely due to varation of electric potential, and we shall
have (§ 65)

Integrating by pé.rts the expression (I) for the energy due to electric displacement, and
remembering that P, Q, R vanish at an infinite distance, it becomes

E{¥(+i+%) |

or by the equation of Free Electricity (G), p. 485,
—43(Ye)dV.

By the same demonstration as was used in the case of the mechanical action on a magnet,
it may be shown that the mechanical force on a small body containing a quantity e, of
free electricity placed in a field whose potential arising from other electrified bodies
is ¥, has for components

d¥
X:eﬂ W]= — Pleg,

Y=6fl=—Qenl.. . . . .. ... .. (D

av,
A -..83?;=—Rleg.

So that an electrified body is urged in the direction of the electromotive force with a
force equal to the product of the quantity of free electricity and the electromotive force.

If the electrification of the field arises from the presence of a small electrified body
containing ¢, of free electrity, the only solution of ¥, is

v=ta, ... ... ... 49

where r is the distance from the electrified body.
The repulsion between two electrified bodies ¢,, ¢, is therefore
Mo BB . o 5 5 s powmom o x v s (0

ba dr ~ dx r*



Measurement of Electrical Phenomena by Electrostatic Effects.
(80) The quantities with which we have had to do have been hitherto expressed in
terms of the Electromagnetic System of measurement, which is founded on the mecha-
nical action between currents. The electrostatic system of measurement is founded on

the mechanical action between electrified bodies, and is independent of, and incom-
patible with, the electromagnetic system; so that the units of the different kinds of
quantity have different values according to the system we adopt, and to pass from the
one system to the other, a reduction of all the quantities is required.

According to the electrostatic system, the repulsion between two small bodies charged
with quantities #,, 3, of electricity is
nhe
Fa

where r is the distance between them.
Let the relation of the two systems be such that one electromagnetic unit of elec-

tricity contains v electrostatic units; then z,=ve, and z,=ve,, and this repulsion becomes

fﬁrg_e_—.gﬁ_;byequaﬁm(44},. powonow e w w (4B)

whence &, the coefficient of “electric elasticity” in the medium in which the experi-
ments are made, 7. e. common air, is related to v, the number of electrostatic units in one

lect etic unit, by the equation
SRR J qu=4w*.........._.(43)

The quantity v may be determined by experiment in several ways. According to the
experiments of MM. WeBER and KonLrAUSCH,

v=310,740,000 metres per second.
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PART VI..-ELECTROMAGNETIC THEORY OF LIGHT.

(91) At the commencement of this paper we made use of the optical hypothesis of
an elastic medium through which the vibrations of light are propagated, in order to
show that we have warrantable grounds for seeking, in the same medium, the cause of
other phenomena as well as those of light. We then examined electromagnetic pheno-
mena, seeking for their explanation in the properties of the field which surrounds the
electrified or magnetic bodies. In this way we arrived at certain equations expressing
certain properties of the electromagnetic field. We now proceed to investigate whether
these properties of that which constitutes the electromagnetic field, deduced from electro-
magnetic phenomena alone, are sufficient to explain the propagation of light through
the same substance.

(92) Let us suppose that a plane wave whose direction cosines are [, m, n is propa-
gated through the field with a velocity V. Then all the electromagnetic functions will

be functions of we=lr4my+nz—Vt.
The equations of Magnetic Force (B), p. 482, will become
dH 1€
="M P n P
ar dH
wB=mn T l p g
dG dF

M=l Mg

1f we multiply these equations respectively by /, m, n, and add, we find
lpe+mup4npy=0, . . . . . . . . . (62)
which shows that the direction of the magnetization must be in the plane of the wave.
(98) If we combine the equations of Magnetic Force (B) with those of Electric
Currents (C), and put for brevity

dF dG  dH a2 &b 4 .
dxi"'E!;"‘R?:J’ and @+dfy‘fc+‘,§fg=v: coeo .. (83)
aJ s,
4«@:5—-? T,
47@_@’::@--‘72(},_» i B o5 08 o35 B & 5 @ (04
dy i
4#,:97" =g—V’H. :
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If the medium in the field is a perfect dielectric there is no true conduction, and the
currents p', ¢/, #' are only variations in the electric displacement, or, by the equations of

Total Currents (A),

1 b7 %
=z - 4= ?r_dt' Y (1))

But these electric displacements are caused by electromotive forces, and by the equations
of Electric Elasticity (E), _
P=Fkf, Q=ky, R=kh. . . . . . . . (66)

These electromotive forces are due to the variations either of the electromagnetic or

the electrostatic functions, as there is no motion of conductors in the field ; so that the
equations of electromotive force (D) are

dF  dVv

P="'_a£T_EzT’

__4G_av | .. ... (6T

Q_dz_._??,. . (67)
dH V¥

R=——p——.

(94) Combining these equations, we obtain the following :(—

BBV )+ tm( G+ i) =0,
B =G )+t + ) =0 ¢ (69)
Kz~ V') + (G + ) =0

If we differentiate the third of these equations with respect to ¥, and the second with
respect to z, and subtract, J and ¥ disappear, and by remembering the equations (B) of
magnetic force, the results may be written

.
kN e =4u‘p% et

. a2
KV =" g P,

~—

(69)

a2
kN wy = 4w pwy.

(95) If we assume that e, 3, ¥ are functions of lo+my+nz—Vi=w, the first equa-
tion becomes

,%P%ﬂmav%, e owm i s ¥ F 3w U
or
=i ...&.... . . . . . . ¥ 0 - ‘ - (71)
4y

The other equations give the same value for V, so that the wave is propagated in either
direction with a velocity V.
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This wave consists entirely of magnetic disturbances, the direction of magnetization
being in the plane of the wave. No magnetic disturbance whose direction of magneti-
zation is not in the plane of the wave can be propagated as a plane wave at all.

Hence magnetic disturbances propagated through the electromagnetic field agree with
light in this, that the disturbance at any point is transverse to the direction of propaga-
tion, and such waves may have all the properties of polarized light.

(96) The only medium in which experiments have been made to determine the value
of % is air, in which p=1, and therefore, by equation (46),

V= ‘a‘" L] L * L] Ll * . L] L ] L . (72)
By the electromagnetic experiments of MM. Weper and KoHLRAUSCH *,

v=310,740,000 metres per second

The value of k, that is the “coefficient of electric elasticity, of (46) is equal to
1213400548222332932.49

Now we calculate the following integral:

1.08643/2 * 0.61803398"3 * (1/(10"37)) integrate [1213400548222332932.49] x,
[0, Pi/1074]

T

l s
1.08643% . 0.61803398° —r fln“ 1.21340054822233203249 % 10'® x dx
10°7 Jo

1.66845 % 10727

value very near to the mass of the proton.
Now we calculate the following double integral:

1.0864372 * 0.61803398"e *e * (1/10741) integrate integrate
[1213400548222332932.49] [Pi/104]

z !Jd
ax X
10*

) l " -
1.08643% - 0.61803398° ¢ on fU1.2134DD5432223329324Q><m”

1.65324% 10797 &°
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¥ from=1.21t01.2)

Results that, practically, are excellent approximations of the proton mass. Recall that
when a proton collides with its antiparticle (and in general when any baryon collides
with an antibarion), the reaction is not as simple as electron-positron annihilation.
Unlike the electron, the proton is not an elementary particle. In fact it is a particle
composed of three valence quarks and an indeterminate number of sea quarks, linked
by gluons. So when a proton collides with an antiproton, one of the valence quarks
that constitute it can annihilate itself with an antiquark, while the remaining quarks
will rearrange into mesons (mainly pions and kaons) that will move away from the
point where the annihilation occurred. The mesons created are unstable particles and
will decay. In particle physics, mesons are a group of subatomic particles composed
of a quark and an antiquark bound by a strong force. They are unstable particles and
typically decay into photons or leptons.

From:

https://www.rit.edu/studentaffairs/asc/sites/rit.edu.studentaffairs.asc/files/docs/service
s/resources/handouts/C7_Areasbylntegration BP9 22 14.pdf

14



Ex. 2. Find the area bounded by the following curves: v =x" —4. v =0, x =4.

Graph: A
\ ri
h
\ | £
— AR "
\Eﬂ_r. a b
v
Finding the boundaries:
y=x>—4 and y=0 implies v —4=0s0 (x =2 x+2)=0
¥ at ¥ A 1—' it ) wr 'l‘. 'I\ ’[
x=28rx=2

From the graph we see that x = 2 is our boundary at a. The value x = —2 is a solution to the

equation above but it is not bounding the area. (Here's why the graph is an important tool to help
us determine correct results. Don’t skip this step!)

Solve
] 1 e 1 ; 1 .
[ —aax 1y —:'r:ﬂ| = (—-{4}3 —4-4]—(—-{2}3 4.2
: \3 ), 3 ) \3 )
64 ) (8 )_64 8 6 32
=(——16 R E iR
3 4 3 4
Wi A gy = = =
) 32
nnnnnnnnnnnn And s 4l mrrrmrms 1 — == A s — M v — A io amrral 4 Sy 11
Lide ai'ed oulihed Oy uie Curves .' — WA T, ¥ — W, A — T 1D ':}‘l.iL.LCIJ. L 3 DLlLI.Cl. 2 Uil
Now:

integrate [32/3] x, [0, e”2/14] * 1.08643

1114 32
] 3

Result:

1.61407

2
e xd’x] 1.08643
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the result is very near to the electric charge of the positron

Pi/(4e) * integrate integrate [32/3] * 1.08643
ii ((["%g LDBE43JIJJI

1.67416 x°

(& from=1.2t01.2)

and this is very near to the value of the mass of proton.
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Ex.7. Find the area of the region enclosed by the following curves: v =2, v=x+6, x=0

Y
\ &
/
B ¥
-
Il
L

",
Y

v

In this case it is verv important to draw the graph. since the functions intersect between the
boundaries. This means that we will have to actually calculate two separate integrals and then add
the results. Otherwise we would end up subtracting the two pieces from each other.

First we need the “middle” intersection point so we will sclve the equation: ¥° = ¥ +35

' —x-5=0

(x—3)x+2)=0

x=3orx=-2
The intersection point at ¥ = —2 is outside our arca. We are interested in x =3 , this is our
“middla” boundary value.

In this case the integral set-up will look as follows:

- : (1 L Fldm . &
4= “v—:—ﬁ—w‘l‘ﬁ_v—l- ”xz—l'x—l-ﬁll v =1 — 7 +_1nr——'r3| 4+l o ¥ _pBx |:
gt b S SR AR T i T L
0 3 % Sl - 3 )
1 1 Bl 3 1 1 '
:[— 3 46-3—=.3 |+| =8 -=5-6-5|-| =3 -—=3-6-3|=
> 3 3 2 3 2
W= = Yt = 4 = e 4
9 125 23 9 5
—+18—-0+4 —— —30-9+_+I8= semara nnite
2 3 2 2 6
s
So the area of the rezion enclosed by the curves v—v- v=v1 6l vy=0aond v=25
I_bj.ul]. TLIVAWOTLL LMY LELT WLl VOO ¥ o ) L Al T iy A e Y P
157

Now:

integrate [157/6] x, [0, €°2/22] * 1.08643  0.66940042>7'%%* = 0.3358657...= ¢*/22

.2 157
JEE . xd’x] 1.08643
il

Result:

17



1.60344
integrate [157/6] x, [0, °2/21.54] * 1.08643 where 0,343039 one obtain from
0.66453261803398 _

0343039 157 x
dx = 1.67266

1.08643 f
o

Pi/(10e) * integrate integrate [157/6] * 1.08643

e [{J"ng LD8543dx]dx

10 .

1.64277 x*

(x from=1.2t01.2)

value very near to the mass of the proton

From: https://www.berkeleycitycollege.edu/wp/wjeh/files/2012/08/calculus_note_area_bt curve.pdf
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Example: Find the area bounded hetween x = 0, z = 2, y = cos(2zx), y = sin(z)

cos(2ir)

s

05+

sin(x

2
Ans: We are interested in / \cos(2z) — sin(z)| dzx
0

Inside the interval [0, 2], for some values of z, cos(2z) > sin(z), and for some other values
of r, sin(z) > cos(2x). We set the two functions equal to each other to find the points of
inlberseelion:

cos(2z) = sin(x)
1 — 2sin?(z) = sin(x)
2sin” o 4+ sin(xr) —1=0
(2sin(x) — 1)(sin(x)+1)=0

sin(x) = % or sin(z)=-—1
m bx ar
Ui it i O Wi
For u iuside the intervals (0, %) U (%, 2’n) ,cos(2x) > sin(x) (al e = S?H, the two [unclions
intersect, but the relaticnship between which is greater is not changed at that point.)

Y
Fur «x iuside the interval (é %) ,sin(r) > cos(2z)

The definite integral can be evaluated as:

19



2
A= / |cos(2x) — sin(x)| dr =
Jo

2n

/6 7/6
/ cos(2x) — sin(x) dx +/ sin(z) — cos(2x) dxr + / cos(2zr) — sin(r) dx
/G 57 /6

6 0N (BT/6 ' ey
== ( 5 + cos( ) + (— cos(z) — hm(gl}) + (5111?)21’) + cos(;r))
o w6 =

2
et T/G + cos(mw/6) ) (74111(2(0}) -+ COS(O))
-+ (— cob(Eﬂ'/b) = w) o (_ C’O.S('_:T/G) Sl]leFT/G)))

2
s 9
+ 5111(2 +co=~ 2?_) (M.,.COS(BH/G))

2

5m /6

]

[

= (%+§)—(O+1)+(?+?)— (—%—?) +{0+1)—(—§—§)
3V3 33 3v3
(2 (2 ()

We calculate the following integral:

integrate [3*sqrt(3)] x, [0, Pi/4]

Li[B\G]xdx: 3\.2;12 -~ 1.6026

Visual representation of the integral:
|

a

3|

7|

0.2 0.4 0.6 0.8

Pi/(2e) * integrate integrate [3*sqrt(3)] * 1.08643  or:

Pi/(2e) * integrate integrate [(((3*sqrt(3)/4))-1))+(((3*sqrt(3)/2)))+((1+3*sqrt(3)/4))]
*1.08643

if f LI N L T
2e X 4 2 4

Result:

1.63109 »°

20



El “ [[3 u'?] 1.08643 dx|dx
i b

1.63100 x°

¥

y [ /
Y

\ 20| /
i s 7
\ = (x from -1.2to 1.2)
1.0 |
0.5 |
~— 1 o
1.0 0.5 0.5 1.0

All the values are very near to the electric charge of the positron

Wave function of the Universe concerning the Hartle-Hawking no-boundary
proposal

Now we calculate the following integral regarding the wave function of the Universe
of the Hartle-Hawking no-boundary proposal, that is:

2. 2 3r2

3H? 4
Yoa, = —3,357714479.

plag) =2 cos

1.08643 * integrate [-3.357714479] x,[0, -P172/10.53] where 0,937284 is

0,6354749"7

“_0.937284
1.08643 ( -3.35771 xdx = -1.60235
Jo

Now we calculate the following double integral:
1.08643 * integrate integrate [-3.357714479] [0, -P1"2/11]
where —Pi"2/11 = — 0.89723676 that is

0,6480794355" (172) = 0.89723676 * — 1 = — 0.89723676
21



1.08643 f[f-3.35??144?9{u, —E}dx dx

0, 1.63652 x°)

P ¥ from =1.1t01.1)

MM A -

X == 1.63652Re(x?)

1.0 0.5 ' 0.5 1.0

x (xfrom-1.1to1.1)

1.0 0.5 | 0.5 1.0

= 1 63652 Im{x<)

2.0

[ from=1.21t01.2)
1.0

1.0 0.5 L 0.5 1.0

Values very near to the electric charge of the electron and to the mass of the proton.

From these examples it can be seen that also from an integration of an integration on
a parabola, with the appropriate definition range, we obtain solutions correspondent
to the charges of the positron and mass of the proton. D-branes are usually classified
by their size, which is indicated by a number written after D: a DO-brane represents a
point, a D1-brane (also called D-string) a line, a D2 brane a plane , a D25-brane
represents a possible space predicted by string theory.

22



From:

https://www.secret-bases.co.uk/wiki/History of Maxwell%?27s_equations

Relationships among electricity, magnetism, and the speed of light

The relationships among electricity, magnetism, and the speed of light can be summarized by the
modern equation:

1
A/ MOS0 L

The left-hand side is the speed of light and the right-hand side is a quantity related to the constants
that appear in the equations governing electricity and magnetism. Although the right-hand side has
units of velocity, it can be inferred from measurements of electric and magnetic forces, which
involve no physical velocities. Therefore, establishing this relationship provided convincing
evidence that light is an electromagnetic phenomenon.

The discovery of this relationship started in 1855, when Wilhelm Eduard Weber and Rudolf
Kohlrausch determined that there was a quantity related to electricity and magnetism, "the ratio
of the absolute electromagnetic unit of charge to the absolute electrostatic unit of charge" (in
modern language, the value /v ) and determined that it should have units of velocity. They
then measured this ratio by an experiment which involved charging and discharging a Leyden jar
and measuring the magnetic force from the discharge current, and found a value
3.107x10% m/s, remarkably close to the speed of light, which had recently been measured at
3.14x10° m/s by Hippolyte Fizeau in 1848 and at 2.98x10° m/s by Léon Foucault in 1850.
However, Weber and Kohlrausch did not make the connection to the speed of light. Towards the
end of 1861 while working on part Il of his paper On_Physical Lines of Force, Maxwell
travelled from Scotland to London and looked up Weber and Kohlrausch's results. He
converted them into a format which was compatible with his own writings, and in doing so he
established the connection to the speed of light and concluded that light is a form of
electromagnetic radiation

The four equations we use today appeared separately in Maxwell's 1861 paper, On Physical Lines

of Force:

" =

1. Equation (56) in Maxwell's 1861 paperis V* B =0.

2. Equation (112) is Ampere's circuital law, with Maxwell's addition of displacement current.
This may be the most remarkable contribution of Maxwell's work, enabling him to derive the
electromagnetic wave equation in his 1865 paper A Dynamical Theory of the Electromagnetic
Field, showing that light is an electromagnetic wave. This lent the equations their full
significance with respect to understanding the nature of the phenomena he elucidated.
(Kirchhoff derived the telegrapher's equations in 1857 without using displacement current, but
he did use Poisson's equation and the equation of continuity, which are the mathematical
ingredients of the displacement current. Nevertheless, believing his equations to be applicable
only inside an electric wire, he cannot be credited with the discovery that light is an
electromagnetic wave).

23



3. Equation (115) is Gauss's law.

4. Equation (54) expresses what Oliver Heaviside referred to as 'Faraday's law', which addresses
the time-variant aspect of electromagnetic induction, but not the one induced by motion;
Faraday's original flux law accounted for both."M"] Maxwell deals with the motion-related
aspect of electromagnetic induction, v X B, in equation (77), which is the same as equation
(D) in Maxwell's original equations as listed below. It is expressed today as the force law
equation, F = g(E + v x B), which sits adjacent to Maxwell's equations and bears the name
Lorentz force, even though Maxwell derived it when Lorentz was still a young boy.

The difference between the B and the H vectors can be traced back to Maxwell's 1855 paper
entitled On Faraday's Lines of Force which was read to the Cambridge Philosophical Society. The
paper presented a simplified model of Faraday's work, and how the two phenomena were related.
He reduced all of the current knowledge into a linked set of differential equations.

O O
O O
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Figure of Maxwell's molecular vortex model. For a uniform magnetic field, the field lines point outward from the
display screen, as can be observed from the black dots in the middle of the hexagons. The vortex of each hexagonal
molecule rotates counter-clockwise. The small green circles are clockwise rotating particles sandwiching between the
molecular vortices.

It is later clarified in his concept of a sea of molecular vortices that appears in his 1861 paper On
Physical Lines of Force. Within that context, H represented pure vorticity (spin), whereas B was a
weighted vorticity that was weighted for the density of the vortex sea. Maxwell considered
magnetic permeability x4 to be a measure of the density of the vortex sea. Hence the relationship, (a)
Magnetic induction current causes a magnetic current density B = u H was essentially a rotational
analogy to the linear electric current relationship, (b) Electric convection current J = p v where p
is electric charge density. B was seen as a kind of magnetic current of vortices aligned in their axial
planes, with H being the circumferential velocity of the vortices. With u representing vortex
density, it follows that the product of ¢ with vorticity H leads to the magnetic field denoted as B.
The electric current equation can be viewed as a convective current of electric charge that involves
linear motion. By analogy, the magnetic equation is an inductive current involving spin. There is no
linear motion in the inductive current along the direction of the B vector. The magnetic inductive
current represents lines of force. In particular, it represents lines of inverse-square law force.

The extension of the above considerations confirms that where B is to H, and where J is to p, then it
necessarily follows from Gauss's law and from the equation of continuity of charge that E is to D.
i.e. B parallels with E, whereas H parallels with D.
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From Wikipedia:

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows
without loss of kinetic energy. When stirred, a superfluid forms cellular vortices that continue
to rotate indefinitely.

It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-
energy physics, and theories of quantum gravity.! The phenomenon is related to Bose—Einstein
condensation, but neither is a specific type of the other: not all Bose-Einstein condensates can be

regarded as superfluids, and not all superfluids are Bose—Einstein condensates.

Superfluid vacuum theory (SVT) is an approach in theoretical physics and quantum

mechanics where the physical vacuum is viewed as superfluid. The ultimate goal of the

approach is to develop scientific models that unify quantum mechanics (describing three of the four

known fundamental interactions) with gravity. This makes SVT a candidate for the theory of
25



quantum gravity and an extension of the Standard Model. It is hoped that development of such
theory would unify into a single consistent model of all fundamental interactions, and to describe all
known interactions and elementary particles as different manifestations of the same entity,
superfluid vacuum.

Vortex-quantisation in a superfluid

A superfluid has the special property of having phase, given by the wavefunction, and the velocity
of the superfluid is proportional to the gradient of the phase (in the parabolic mass approximation).
The circulation around any closed loop in the superfluid is zero if the region enclosed is simply
connected. The superfluid is deemed irrotational; however, if the enclosed region actually
contains a smaller region with an absence of superfluid, for example a rod through the
superfluid or a vortex, then the circulation is:

fﬁ v-dl= L § Vo, - dl = iﬂi‘”*cﬁ:,.,
{__‘ m ('_l Tn.

where /4 is Planck's constant divided by 2m, m is the mass of the superfluid particle, and A*" ¢, is the
total phase difference around the vortex. Because the wave-function must return to its same
value after an integer number of turns around the vortex (similar to what is described in the
Bohr model), then A" ¢, = 27n, where n is an integer. Thus, the circulation is quantized:

2nh
§ v-dl = Tn
o 171

See paper: “Bose-Einstein condensation of photons in an optical microcavity” -
https://arxiv.org/ftp/arxiv/papers/1007/1007.4088.pdf ),

For m=6.7* 10°°kg e

% 3 3 ] 21h
h = 1,054 571 726(47) x 10 * J.s = 6,582 119 28(15) x 10 '* eV s from the —n

We have: forn=1 0,9889656 * 10*, forn=2 1.9779312 * 10, thence the two
values 98,89656 and 197,79312

We carry out the following double integrals:

(1/(12e)) * 1.08643 * integrate integrate [98.89656]

é 1.08643 ‘{1[‘(198.89656dx.]dx

e

1.64604 x*
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(o from=1.2t01.2)

a result very near to the value of the mass of the proton

(1/(24e)) * 1.08643 * integrate integrate [197.79312]

i l.D8643L”Il??.?@:}lﬂdx]dx

e

1.64604 x*

(x from=1.2t01.2)

also this result is very near to the value of the mass of the proton

From:
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Uri Ben-Ya’acov*
Physics Department, Ben Gurion University, Beer-Sheva 84103, Israel
(Received 29 December 1989; revised manuscript received 27 February 1991)

In the standard global string model [5,7], its dynamics
are determined by an action of the form

S=— [[¢* "+ 1016122 )d*x , (2)

and the quantum-phenomenological description of
superfluid vortices [10] is nothing but a nonrelativistic

version of it [9]. Since most of the results of the present
work (except for numerical values of some coefficients)

are model independent, I shall use instead the general ac-
tion [14]

s=— [[¢* $*+Ullp|>]d*x , 3)

with the corresponding field equation ¢, =U'(|¢|*)é,
whose real and imaginary parts are

g1+ = (@ + Vi), + V)| =U'(Ig1)e] (4a)

[2|¢|Xg*+ V)] ,=0. (4b)

It is assumed here that U(|#|?) is a potential that allows
vortex solutions under some conditions, such as a “Mexi-
can hat,” a Ginzburg-Landau potential, or a sine-Gordon
potential. Since asymptotically ¢ ,—0, we get by substi-
tution of this limit in (4a) that there is a one-to-one
correspondence between the chemical potential of the

medium and the vacuum or ground-state expectation
value of the field,

mz=—V“V#=U’{¢ﬂ1} : (3)

Using this combined model for superfluid vortices and
global strings, we can now test the validity of the HIA for
vortex arrays. Consider stationary arrays of straight and
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Adp=@ v, dx¥=27r3T,; , (6)
jdx#=27S

where the sum extends over all the vortices that are in-
cluded in C. In order to bring Eq. (6) to a differential
form, we assume that the vortices can be represented by
two-dimensional world sheets; x*=§gM(£%), a=0,1.
Then Eq. (6) leads to

Uv,p_uy,vzﬂ'z rfaeﬁvlpf fﬁ-“ix —&; }dEEAF ’ )
i

where €,,;, is the fully antisymmetric unit pseudotensor
(€p123=1) and dZ,#*"=d &  NdE," is a surface element on
the world sheet. The relativistic condition for incompres-
sibility is that the sound velocity be equal to the velocity

of light, leading to the equation [19]

ik o) (8)

Together Eqgs. (7) and (8) are the fundamental equations
for relativistic incompressible flow with isolated vortices.
They were already obtained by Lund and Regge [2], who
have shown their equivalence to the Kalb-Ramond field
equations [1], and we see that they are naturally obtained
from relativistic hydrodynamics. The general solution
for v, is given by

g,= F.u +E.' Uiy
=V, +4 3 Tieun, [ [8G(x =gz, 9
!
where G (x —£;) is a Green’s function satisfying

OG(x —§&;)=—4n8%x —§&,) ,

and ¥V, is an arbitrary constant vector, to be determined
by boundary conditions. In the original Lund and Regge
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Po ., .. _Fo i
J“=pu“=?{f“‘ lpdlpl-v“EFvlnE# Py
val:Apv.l+Avl.#+ AJ..;,:,V . (11)

Inverting Eq. (11), we obtain the relation

EE'. FHvh =g gtevip ¥

P

which, upon taking its divergence and using (7), yields
the field equation for F s,

Po

Fp'u.i'n.

P

o L
o

=4r I T [ [o4x—&MdZH.  (12)

An interesting interpretation of the vortices® field equa-
tion (12) is suggested by introducing the “medium vortici-
ty” j,,'*" defined by
FPo— P Jal v

fFul

b
dqr

Ju = ; (28)

s

so that the field equation becomes
(FHry , =0 AR =4a(j*+j, ") . (29)

Ignoring for a moment the dependence of j,"" on
05, Eq. (29) is in the form of a Kalb-Ramond field equa-
tion, with the right-hand side of it standing for the source
term. In analogy with the electromagnetic theory, the
Kalb-Ramond equations correspond to a free-space in-
teraction [1]. Equation (29) is then formally analogous to
electromagnetic theory in a medium [23]. It suggests,
then, that the existence of the singular vortices induces
some vorticity in the medium in which the vortices ap-
pear, which is significant only when the distances be-
tween the vortices or their radii of curvature are of the
order of the core radius. The medium does not need to
be material, since these results apply to global strings as
well as to vortices in a fluid.

We carry out the following double integral on (29). We have:

(2/(3e)) * 1.08643 * integrate integrate [4P1]

2 108643 j[ f4mfx]4x
3 :

e
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1.67416 x°

(x from=1.2t01.2)

value very near to the value of the mass of the neutron

From:

Vortices on world sheets of strings and superstrings
A. A. Abrikosov, Jr. and Ya. I. Kogan

Institute of Theoretical and Experimental Physics

(Submitted 15 January 1989)

Zh. Eksp. Teor. Fiz. 96,418-436 (August 1989)

The defining role in the vortex system of the X'Y model
is played by vortices with the smallest charge 0= + 1.
Their contribution is described by the partition function of
the two-dimensional Coulomb gas:

e

&t /at, . A%, /at d'z/d,..d'z, /a?
P Z J' Ea t../ab dz,/a z,./a

M= n+l n_l
gy —&,|14a? —z;| 3+t
a
i Jeai
—r |2t
i & z:g' @ )] (3.1)
i

Expression (3.1) has a field representation. It can be shown
that Eq. (3.1) is equivalent to the partition function for the
sine-Gordon model '*;

Z=N," J Dg exp[ — 5 d'g (% (Fap)*+A cos 2n (2p) ‘I"P) ]:

N,,=chp exp[- % Sd"@{ﬂ@) 2], k=2e"M/g} (3.2)
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Expansion of Eq. (3.2) in a power series in A coincides with
Eq. (3.1). Upon making in Eq. (3.2) the change of variable
y=2w(28)""* ¢ we obtain the Lagrangian

F=(8,y)*/16n*p+L coz y. (3.3)

Let us consider the mean square value of the dipole moment
of the vortex-antivortex pair, where the divergence corre-
sponds to pair dissociation and BK T-transition:

(p*= Icﬂ; d'n|t—n |’&xp(—2:i§ In W)QJE.T\)

e n e zopin 4 e m ]

. ap
2np—1'

—

1 1
ﬁe’=Eﬂ"’=?,ﬁ=. (5.8)

i.e., the critical value for ,B;’f'and therefore for R_?, is two
times smaller than in the bosonic case.

There exists a field description of supervortices, analo-
gous to Eq. (3.2), with the Lagrangian in this case being

- ;— (0.0)* + -?31— Pivadap—APyp cosl2n (28) "D ].

(5.9)

The equivalence between t artition functions corre-
sponding to Eqgs. (5.9) and (5.6) is proved by term-by-term
comparison of the series in powers of A, just as in the bosonic
case. The factor (0, (£,,2;) [see Eq. (5.7) ] arises from eval-
uation of thee average of the product ¥W.

The Lagrangian, Eq. (5.9), differs from the supersym-
metric Lagrangian in the sine-Gordon model by the absence
of the term (A */47°B)sin?[27(25) 1], which is of higher
order in A and immaterial in the limit of smali A.

Thecritical value 5./ = 4o ~ ' can be obtained from Eq.
(5.9) by, for example, bosonization
YW —cos [27(28) 1@ ],i¥8,3,¥ — (4, ®)*. Comparing the
Lagrangian

.,
=
[y ]

3

F=(3.0)*1" cos[4n (2p) D)

with Eq. (3.3) we arrive at the value 8. = 47~ '. As in the
bosonic case there is the duality (3.4), and the action (5.9)
describes the superstring in the tachyonic field condensate.
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We take the value of %n_l = 0.63661977 ... and carry out the following double

integral:
(P1"2*sqrt(2))/30 *(1/10718)) * 1.08643 * integrate integrate [(Pi/2)"-1)]

where (1°V2)/30, Korkin-Zolotarev constant

L g 1 11
[E [}T 1.;'2]] ﬁ l.DSEI‘]-E.([.(EJI]JI

2

1.60896x107'° ¥?

¥

‘*-.\ 2.x10-19 | ;’
\ 1.5x10719 /

| (x from=1.2t01.2)
w1019
Aelo M|

[

— x

1.0 0.5 ' 0.5 1.0

value very near to the electric charge of the positron

From:

Rotating black strings in f(R)-Maxwell theory
A. Sheykhi, S. Salarpour and Y. Bahrampour

33



II. FIELD EQUATIONS AND SOLUTIONS

We start from the four-dimensional R + f(R) theory coupled to the Maxwell field

Ic = — | &% /=g(R+ F(R) —F F") — = | Be/—RO(R), (1)
e IBWjM LA B Sl = i / Sﬁ—jaM L e

where R is the Ricci sealar curvature, F,, = 8,4, — &,4, is the electromagnetic field tensor, and A4, is the electro-
magnetic potential. The last term in Eq. (1) is the Gibbons-Hawking boundary term. It is required for the variational
principle to be well-defined. The factor © represents the trace of the extrinsic curvature for the boundary M and
h is the induced metric on the boundary. The equations of motion can be obtained by varying the action (1) with

ST o M IEE e e e o e oy . ey i, B e I DR, [l SO L ottt ) 0 S L
TESpPECL 10 the gravitational neia g, anda tne gauge neida A, wiicn yields tne [olowling neid equatlons

R (14 () = 3050 (B + J(R)) + (00 V? = V¥, 1'(R) = 85T, 2)

20

104

—101

720 ,

FIG. 3: The function N(r) versus v for m =2, f'(#) = =2 and ¢ = 1. Its = 12 (bold line) and g = —12 (continuous line).
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V F# =0, (3)
with the energy-momentum tensor
Ty = = (FH,.‘,FV’F - lgm’FAﬂFlw) : (4)
4 4
The above energy-momentum tensor is traceless in four dimension, i. e., T# = 0. As we mentioned already this

property plays an important role in our derivation. In Eq. (2) the “prime” denotes differentiation with respect to
curvature scalar R. Assuming the constant curvature scalar ® = Ry, the trace of Eq. (2) yields

Ro (1+ f'(Ro)) —2(Ro + f(Ro)) =0, (5)

Solving the above equation for negative Ry, gives

2f(Ry)
Ry=—+~+"—=4A; < 0. 6
0 _]”(R{}) = f ( )
Substituting the above relation into Eq. (2), we obtain the following equation for Ricei tensor
1 f(Ro) 2
Ry, == g 7
(e Qgﬁw' (f’{Ru)fl + 1+f;£RD) HE ( )

Now, we want to construct charged rotating black string solutions of the field equations (2) and (3) and investigate
their properties. We are looking for the four-dimensional rotating solution with cylindrical or toroidal horizons. The
metric which deseribes such a spacetime can be written in the following form [17, 18]

d,rz 1.2

2
ds? = —N(r) (Sdt — adg)? + 12 (%dt - Ed¢) AR i3

T dz?,
N 2

2

=14 ViR (8)
where a is the rotation parameter. The funetion N (r) should be determined and [ has the dimension of length which
is related to the constant A; by the relation [° = —3/A¢. The two dimensional space, t=constant and » =constant,
can be (i) the flat torus model T? with topology S' x S1, and 0 < ¢ < 27, 0 < z < 2xl, (ii) the standard cylindrical
model with topology R x S, and 0 < ¢ < 27, —o0 < 2 < oo, and (iii) the infinite plane R? with —oo < ¢ < co and
—oo < z < oc. We will focus upon (i) and (ii). The Maxwell equation (3) can be integrated immediately to give

q=
Fy = .I"T
a

Fqb = 7EF¢;~, (9}

where g is the charge parameter of the black string. Substituting the Maxwell fields (9) as well as the metric (8) in
the field equation (2) with constant curvature, the non-vanishing independent components of the field equations for
a = 0 reduce to

(14 f'(Ro)) (21-4 d?gr) + 45 dlz(_?) ~ Rw-'*) —4¢* =0, (10)
(1+ 1(Ro)) (43 ‘”L” +4r2N(r) + Rov--‘) +4¢% =0, (11)

One can easily show that the above equations have the following solution

Noy=-T R 12)
S (T o T A

where m is an integration constant which is related to the mass of the string. One can also check that these
solutions satisfy equations (2)-(3) in the rotating case where a # 0. Tt is apparent that this spacetime is similar with

asvmptotically AdS black string. Indeed, with the following replacement
2

q 2
T rE) ¢ (13)
% —+ A (14)
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where N and V7 are the lapse funetion and shift veetor. Then the cleetrie Held is £F = g*PF,, ¥, and the clectric
charge per unit length of the string can be found by calculating the Hiux of the electric field at infinity,

[1l

q

dwl\/1 + f/(Ry)
The electric potential U, measured at infinity with respect to the horizon, is defined by [22]
U= Au\# |‘r—) o A.u \.lu|r=.}"+ 3 {QQJ

where x is the null generator of the event horizon gziven in Iiq. (23). One can easily obtain the electric potential as

U= L /T FHy). (30)

E?._‘_

27 4 7
e / /

4 / iz

124 N, z |
13 o /
0.3 g
054 ——— -
024

0 ""p2 04 0B 08 1 12 14 1% 18 2

FIG. 4: The function (82M/85%) .o versus ¢ for [ =1, E=1.25, ry = 0.7 and Bo = —12. f'(Ro) = 0 (bold line), f'(Ro) =1
(continuons line) and f'(Ra) = 2 (dashed line).

FI:. 6 The fanetion fr')z.-’r!jr‘).‘?ﬁ)J,Q versng g far [ = 1. f'(Ro) =1 and Rg = —12. E=1.25, (bold line), E = 1.75, (comtinmons
line) and Z — 2.25, [dashed line).

From the eq. (28), we obtain:

_ =
Arwl\/1+ f'(Roy)

Q=(2.25* 1)/ 4n*1*J(1+1) = 0,12660698195959304103119988623532;

Q

We calculate the following double integral for Q:

7P1 * 1.0864372 * integrate integrate [0.12660698195959304103119988623532]
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711.08643° [1[[!3.1255D5981959593[341[)3119988523532dx]dx

1.64316 x°

(x from=1.2t01.2)

(24) * 1.08643 * integrate integrate [0.12660698195959304103119988623532]

24 . 1.08643 H f'u.lzﬁﬁuﬁgs195959304103119933523532i:x' g

1.6506 x°

(o from=1.2t01.2)

values very near to the mass of the proton.

And:
(53Pi*11) * 1.08643 * integrate integrate [0.12660698195959304103119988623532]

(537 11)~ 1.08643 ([ fn::.1255&5981959593(:41(:3119988523532Jx i

125.964 x*

value practically equal to the value of the mass of the Higgs boson
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Where 53 is a prime number and is the sum of five prime numbers
53=5+7+11+13+17.

Then:

Q)" =0,66144163923697434151492565583228

Q)" * (10)*° = 0,66144163923697434151492565583228 *
2,5118864315095801110850320677993 = 1,6614662788348105459451448294251

Now, we calculate the following double integrals of this result:

1/(10719) e*(0.6530256) * 1.08643 * integrate integrate [
1.6614662788348105459451448294251]

1 Tl :
o ¢ 0.6530256 - 1.08643 ([(1.5514652?88348105459451448294251 dx] dx

1.60200% 107 &°

¥

\ | /
\ 2.x10°19 | /
B |"|:
1.5x107 | I :
3 " _ (x from =1.2to 1.2)
w1019
Sc10-2 |
| .
1.0 0.5 i 0.5 T+
and:

1/(107-33) * 1/(10752) * e*(0.64180256) * 1.1056 * integrate integrate [
1.6614662788348105459451448294251]
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¢~ 0.64180256 - 1.1056

ll:|5.2

[[ f1.5514552?383431D5459451443294251 dx)dx

1.60234 %107 &*

(o from=1.2t01.2)

values practically equals to the electric charges of the positron

Note that we have calculated the first double integral with the “Ramanujan new

constant”, while the second double integral with the value of Cosmological Constant
given the Planck (2018), where A has the value of

A=1.1056x 1072 m2,

or: 4.33x10 ° eV? in natural units. Thus, look evident that the Ramanujan new
constant is a good approximation of the Cosmological constant, perhaps also more
precise than the given value from Planck satellite, being the result of precise
mathematical calculations of a inspired genius.

We note that the eq. (3), i.e.

V, FH =0,

is the fundamental following Maxwell’s equation, i.e. the Gauss’ law for magnetism:

V-B=0

Or in integral form
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fB-dazﬂ
g

Thence, evident mathematical connections between this Maxwell’s equation and the
charge of black strings (charged rotating black holes).

Now from the eq. (30) concerning the electric potential:

U=—2_\/1+ f'(Rp).

U=1/(125*%0.7)\3 =

1,1428571428571428571428571428571 * 1,7320508075688772935274463415059 =
=1,979486637221574049745652961721

Now we calculate the following integral:

(P1*(In1.606695)) * 1.08643 * integrate integrate
[1.979486637221574049745652961721]

where 1.606 695 is the “Erdds - Borwein constant”

(rlogi1.606695)) - 1.08643 ” (11.9?948653?2215?4049?456529l51?21 dx|dx

1.60183 x°

¥

\ ] /

\
kY
1.0

2.0 f
15 | / ;
| (x from -1.2to 1.2)
1.0 |
05|
e v
0.5 i 0.5 T+

Now, we calculate the following double integral:

(11Pi*2) * 1.086432 * integrate integrate [1.979486637221574049745652961721]

(1127) » 1.08643 ﬂ[11.9?948663?2215?4D49?4565296l?21dx. dx

126.829 x°
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150 |

[ from=1.2t01.2)

results very neat to the electric charge of positron and to the mass of the Higgs boson.

Maxwell’s equation concerning the Gauss’ law in differential and integral form:

fE-dazi pdV
s

€0

From:

ELEVEN-DIMENSIONAL SUPERGRAVITY ON A MANIFOLD WITH
BOUNDARY

Petr Horava - Joseph Henry Laboratories, Princeton University - Jadwin Hall,
Princeton, NJ 08544, USA and Edward Witten*x School of Natural Sciences,
Institute for Advanced Study * Olden Lane, Princeton, NJ 08540, USA

The supergravity multiplet consists of the metrie g, the gravitino i,, and a three-
form 7 (with field strength (7, normalized as in a previous footnote). The supergravity

Lagrangian, up to terms quartic in the gravitino (which we will not need), is [§]

1 : Co1 1— A 1 )
Le=— dlz. gl =R =% F”'r‘Dj-u'.-'h- —__G'”p.;;_(?”‘“‘
- K2 Al v 2 2 d ' 48 o
Via f—  ITIKLMN . —J KL "
- (!.x";l IIKLMN o 4 197 l‘i"'?;-"*f)(ﬂn‘fbl"-f (2.1)
V2 o
T e Bt Gy TG Ty | -

/
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Note that: 3456 = 1728 * 2 and that —— = —
3456  1728v2

From Polchinski book “String Theory vol. I”’, we have that:

I = ] : D —_— 36 A / 3 s
S = - fd”X I—G)'f’“[— ( = }E,-im,m—_l + R
2 3

2K

L _sd/p-2) Py v i 4 PR TP r—‘ 4
— —e TVVTHH G HY — 40D+ 0') ] (3.725)

ij ‘lllu it D . 2 }l 2 !
where tildes have been inserted as a reminder that indices here are raised
with G". In terms of G. the gravitational Lagrangian density takes
. oy l.'"_ﬂ 7 b | N
the standard Hilbert form (—G)"/2R/2x%. The constant xk = we® is the
gravitational coupling, which in four-dimensional gravity has the value

; : 1/2
: 1/2 (87) (oansy—1 e B e T
i = LIC W | % (D 7.40]

Mp

{7 A1 ., 1nl8
— lad0 K Lu

Thence: (8nGy)"* =1 =(2.43 * 10'® GeV)' =4,115226337448 * 107",
and k> =1,693508780843 * 107" .

We have that:

=

1 Lo crom 1. JJKL V2 - rIJKLMN oI KL M v
(_ER_ Il DYk — 2CikLG ~ Jo2 (l.e-‘:r YN +12¢ T7 ™Y ) GikLM

3
Vo L0 .
“3m6¢ “Chfaf:sGr.z..J.era...r“) :

1 1 1 ﬁ_12ﬁ V2

2 2 48 192 192 3456

_ —1728-1728 - 72— 18V2 - 216v2 -2 _
- 3456 -

1728 1728 72 18V2 216v2 V2
3456 3456 3456 3456 3456 3456

-3860,34018656 / 3456 =— 1,11699658
1/« = 59049 * 10°°  that multiplied to — 1,11699658 = — 6,59575311 * 10°°

Now the gravitational coupling is:
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_ Gmi
" he

ag

2
_ (m“— ) ~ 1.751751596 x 10~
mp

(1) In weakly coupled heterotic string theory, the gauge
and gravitational couplings unify at tree level to form one
dimensionless string coupling constant gsering [10]

. . e
ky gy = kags = kg3 = i = Btz (1)

where gy. g2, and g3 are the gauge couplings for the

U(l)y, SU(2)., and SU(3)c, respectively, Gy is the

gravitational coupling and o' is the string tension. Here,

by, ks and kq are the levels of the corresponding Kac-

Moody algebras: ko and ks are positive integers while ky

is a rational number in general [10].
In the paper “INTRODUCTION TO STRING THEORY * version 14-05-04

of Gerard ’t Hooft” o’ appeared to be universal, approximately 1 GeV™ . Thence:
g® =8m (1,751751596 * 107) = 4,40263196 * 10™**; g=12,09824497 * 107,
Vg = 1,44853201 * 107",

Now, we calculate the following integral:

5.9049 * (10"36) integrate [(1.44853201 * 107-11)*(-1.11699658)] x

.6 (144853201

5.0049 - 10 “T [—1.11599558}me
Result:

_4.77708 % 10°° »°

Plot:

(x frem=1.2ta1.2)

Indefinite integral assuming all variables are real:

23 3 Tt o
-1.59236 x10°° x” + constant
Now:
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(1/10754) * 1.08643/2 * 5.9049 * (10°36) integrate [(1.44853201 * 10/-11)*(-
1.11699658)] %, [0, 34/(2Pi)]

-3
% 1.08643” - 5.9049 - 10% EH[M

= e 1.115995581dex
]

Result:

~1.65106x107%7

This results is a good approximation to the value of the mass of the anti-proton.

We note that:
1 j (o . 1 N
g | ——R=< i TR Dl = G G
v‘ﬂ( B o ¥1 JVK = 2 CIIKL
,§ — 1 N —Jf 4
‘v—. (EJFIJP\LMJ\ Un + 129 FI\L??I,-,M) S A—
192
V2 TiTa..k
_—El Dine llC 4'-G "G : ’
3456 LiIIs\al,. . 115,11,
is equal to
144853201
—— x{-1.11699658)
1|:|11

Result:

-1.6180053011905258 x 101!

Now, we calculate the following double integral:

(1%107-52) * (2%0.618)"3 * 1.08643 integrate integrate [-4.77708%10"25]

1107220618y - 1.08643 f'[f-ar.???as 107 dx] dx

Result:

~4.80003 % 10727 »?

Plot:

(# from=1.2t01.2)

B.x10-2 |

T.xlo~ |
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_1.63331x107%27 x°

Also this result is a good approximation of the value of the mass of the anti-proton.

Now:

“Ramanujan — Twelve lectures on subjects suggested by his life and work” — by
G. H. Hardy — Cambridge at the University Press - 1940

10.5. The congruencesof § 10.4 are satisfied by all » of certain arithmetical
progressions. There are also congruences satisfied by “almost all” n,
For example

(10.5.1) 7(n)=0 (mod5)
for almost all » (in the sense of § 3.4).

We begin by proving that

(10.5.2) T(n)=n20(n) (mod5),

where o(n) is tﬁe sum of the divisors of =, for all ». This depends on two
identities in the theory of the modular functions, viz.

(10.5.3) Q3— R? = 1728g(x),
and
nixn
(10.5.4) Q— P = 28325-‘:—:‘:;-)—2,
where . ‘
x 22 322
(10.5.5) P = 1_24(1—x+1-—x2+1-—x3+"')’

8.2 3,3
(10.5.8) Q= 1+24o(1fx+ 2% o )

T e

z 252 307
1_:G+1_$2+1_x:,+...).

(10.5.7) R=1- 504(

The identity (10.5.8) is familiar, but I have not seen (10.5.4) anywhere
except in Ramanujan’s work.

We have that Q =241, P=-23 Q—-P*=241-529= —288
Q’ —R* = (1 +240)° — (1 — 504)* = 13997521 — 253009 = 13744512;
Where 13744512 = 1728 * 7954; 1728 * 7954 = 13744512;

1728 = 13744512 / 7954
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We calculate the following integral:

integrate [13744512] x, [0, 1/(1.644934"13*Pj)]

1

[ 164493413 7 13744512 x dx = 1.67086
Wi

where 1,644934 = {(2) = n/6
And the following double integral:
1/(10734) * 1.08643 * (Pi/sqrt(2)) integrate integrate [13744512]

1 " " &
 1.08643 % —— [[13?445124;:]4;:
10%¢ v2 Jh

1.65858 %1077 »*

¥

25105

\\\\ 2.'~:|[]':T§ /

1.5x10"2 |

_ [ from=1.2t01.2)
w10~ |

Results that are very near to the value of the mass of the proton.

From:

INTRODUCTION TO STRING THEORY
version 14-05-04 - Gerard 't Hooft

12.2. Computing the spectrum of states.

The general method to compute the number of states consists of calculating, for the entire
Hilbert space,

Glg) =Y Wog" =Trqg" | (12.12)

n=I
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where ¢ is a complex number corresponding to 1/z = ¢, as in Eq. (10.3), W, is the
degree of degeneracy of the n'* level, and N is the number operator,

D-2 oo ] oo
N=Y (Y onwmt+Yrdd)=3 (L nN2 4+ rN==) (1213)
| =0 p=l  n=1 ' >0 '

where the sum over the fermionic operators is either over integers (Ramond) or integers
+% (Neveu-Schwarz). Since N receives its contributions independently from each mode,
we can write G(g) as a product:

D-2 oo

G(q) = II II II £u(9)9-(a) . (12.14)

;z.=1 n=1r=0

with

fnlg) = Z " = ; (12.15)

while

il
gl@)=D adm=1+q". (12.16)

m =D

We find that, for the purely bosonic string in 24 transverse dimensions:

o0

G(g) = [1(— ). (12.17)

n=1

The Taylor expansion of this function gives us the level density funetions W, . There are
also many mathematical theorems concerning functions of this sort.
For the superstring in & transverse dimensions, we have
8

n—=

= g™ 2
G(q) = sl (l§9) ;
(2) Iz]1 I— ¢ )

50 a\B
Glg) = 16]] (T—FZ“) (Ramond) , (12.18)
n=1

where, in the Ramond case, the overall factor 16 comes from the 16 spinor elements of
the ground state.

Now let us impose the GSO projection. In the Ramond case, it simply divides the
result by 2, since we start with an 8 component spinor in the ground state. In the NS
case, we have to remove the states with even fermion number. This amounts to

Glg) = $Tr (¢" — (-1)"¢") , (12.19)
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where F is the fermion number. Multiplying with (—1)F implies that we replace g¢(r) in
Eq. (12.16) by
1
gr)=>(—¢gm™=1-q". (12.20)

m=

This way, Eq. (12.18) turns into

1 1
1 oo 1. +qn—§ 8 00 = q‘i‘]—ﬁ & )
Gole) = 7= [T (L2 - /(2] o
) 2Va g l—g E[l l1—g» (
= (147 4 .
Gr(g) = 8]] — (Ramond) . (12.21)
n=1 — 4
Here, in the NS case, we divided by /g because the ground state can now be situated at
M= —%, and it cancels out.

The mathematical theorem alluded to in the previous subsection says that, in Eq.
(12.21), Gns(g) and Gr(g) are equal. Mathematica gives for both:

Glg) = 8+128¢+ 1152¢% + 7680 ¢ + 42112 ¢* + 200448 ¢°
+ 855552 ¢% + 3345408 ¢ + 121662724° + - - - . (12.22)

We note that:

1152/288=4 12166272 /288 =42244 200448 /1728 =116
3345408 / 1728 = 1936; where 288 * 6 =1728

We calculate the following double integral:

1/(10722) * 1.0864372 * (P1/2) integrate integrate [1728]

1 " -
= 1.086432 ;—TJU l?EEJx]dx

Result:

1.60191 %107 &°

Plot:
¥
|

2. w10-19 |

1.5%10719 |
[ (o from=1.2t01.2)
1.x10719 |

Bwge 10

et

-1.0 -0.5 ' 0.5 1.0
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And:

1.08643 integrate [1728] x, [0, Pi/((1.618)"9)]

"0.0413374
1.08643 [ 1728 x dx = 1.60399
Jo

results very near to the values of the electric charges of the positron.

Now we take some parts of the following very interesting paper: “RAMANUJAN’S
UNPUBLISHED MANUSCRIPT ON THE PARTITION AND TAU FUNCTIONS
WITH PROOFS AND COMMENTARY - Bruce C. Berndt and Ken Ono”

PROPERTIES OF pn) AND 7(n)
DEFINED BY THE FUNCTIONS

L0 P(M)T" = (69,
Yoo m(n)g" = q(g; 9)42

5. RAMANUJAN

We take:
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Modulus 5

1. Let
oc nqn
P:=1_-_24 !
; 1 qu 4
?13q”
Q:=1+20) ———
=1 —4q
and
o
R:=1-504)"
=1 - q
so that?
(1.1) Q* — R® = 1728q(q; 9)22.

Let o, (n) denote the [sum of the] s* powers of the divisors of n. Then it is easy
to see that

(1.2) Q—=1+5J; R—=P+5J.

Hence,

(1) QP-R=Q-P2+51J.

But?

(1.4) Q- P? =288 "noi(n)g™;
n=1

and it is obvious that

(™),

2 4+ 5]
(¢:9)

(1.5) (g:9)% =

Now:

Q* — R? = 1728¢(q; 9)22.
where
Yoo T(n)g™ = q(q; q)2

Wenote that: Q=1+240=241; R =1-504=-503; thence
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Q’ —R*=241° — (- 503%) = 13997521 — 253009 = 13744512;
We have that: 13744512 /1728 = 7954; thence q(q; q)% = 7954. Indeed:

13744512 = 1728 * 7954.
Now, we calculate the following double integral:

1/(10733) * 1/((sqrt(e))*3) * 1.08643 * integrate integrate [ 13744512]

o5 ¥ 3 © 108643 [”13?44512&::']43‘:
Ve A

1.66504 % 10727 ¥?

¥

. 25107 p
\ 2 w10~ | i
'-._\ | /

1.5x10-% | /

| (x from=1.2tc 1.2}
L x10=H |
Ewe 10— |

— x

1.0 0.5 ' 0.5 1.0

results that is a good approximation to the mass of the proton.

(1.4) Q—P° =288 noi(n)g™;

n=1

We note that 288 / 144 = 2 and that 288 * 6 = 1728 and 1728/ 144 =12

(3.2) Q* — PR =1008 _ nas(n)q™;
n—1

We note that 1008 / 144 =7

We have:
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(5.2) Q*=P+1J; BR=147T;
and so
(5.3) (Q* —R%)2=P*—-2PQ+ R+17J.

But®

PQ—R =720 noa(n)q",

(5_1) n—=1

- - 3PQ) + 2R =— 1728 Z noq (n)g™:;

n=1

We note that 720 / 144 = 5; 1728 /288 =16

Then: R=1+7J; forR=-503; 1+7J=-503; 7] =-504; J=-504/7=-72.
Q*=P-504; P—504=Q% P=Q"+504=241%+ 504 = 58585;

PQ — R =58585 * 241 - (- 503) = 14118985 + 503 = 14119488;

Indeed: 720 * 19610,4 = 141194888;

P’ —3PQ + 2R =201075567351625 — 3(14118985) — 1006 = 201075524993664;
Indeed: -116363151038 * -1728 =201075524993664

Now, we calculate the following double integral:

1.105672 * 1/(10740) * 1/(e)*2 integrate integrate [201075524993664]

where 1.1056 is the value of the cosmological constant (Planck 2018)

1.1056° e “(2010?5524993554dx T
F Y -

1.66317% 10727 &°
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(x from=1.2t01.2)

value that is a excellent approximation to the value of the mass of the proton

Now:
Q* — 1798 z (n)g",
re—1
(7.1) ! 303 L 2R? _5POR — 1584 nogln)q”,
=
5Q% + 4R? _ 18PQR +9P2Q? = 3640\_‘ n2or(n)g
n=1
We have that:

5% 241° + 4 * (-503)” — 18(58585%241%* -503) + 9(58585° * 241%) =

= 69987605 + 1012036 + 127833290190 + 1794111636872025 =
=1794239541161856. We have that

1038333067802 * (8640/5) = 1794239541161856 and 1728 * 5 = 8640
Now, we calculate the following double integral, where -0.165421 is {'(-1):
1/(10733) * (-0.165421) * 1.08643 * integrate integrate [1794239541161856]
é (-0.165421) - 1.08643 “[1 794239541 161 35543:] dx

~1.61229x 107 »?
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(x from=1.2t01.2)

results that is a good approximation to the value of the electric charge of the electron.

Now:

P _10P*Q + 20P2R — 15PQ? + 4QR = —20736 Z nto1(n)q",
n=1
P’Q—3P°R+3PQ" — QR = 3456 ) n’o3(n)q",
(93} N n—=1
P?R - 2PQ* + QR = 1728 " n’os(n)q",
rn—1

PQ* — QR =120 no:(n)q™;
\ n—=1

585857 * (-503) —2(58585)(241)" + 241* (-503) =

= 1726397719175 — 6805350770 — 121223 = 1719592247182:
We have that - 995134402,304398148 * - 1728 = 1719592247182
Now, we calculate the following double integral:

1.0864372 * 1/(10737) * 1/(4e’e) integrate integrate [1719592247182]

1 " u %
1.08643% x —— x —— [[ 1719 592247 182 dx) dx
1037 4 J\
1.67419x 10727 &
¥
\ 2a=l0™= /
2.x10"% | /

\

1.5x10-3 |

[ from=1.2t01.2)

1.0 0.5 ) 0.5 1.0

results that is practically equal to the value of the mass of neutron.
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And:

(13.3)
5(P% — 15P'Q + 40P3*R — 45P2Q? 4+ 24PQR)

(o n)

— (9Q® + 16R?) = —248832 Y " n"oy(n)q"
n—=1

7(P*Q —4P3R + 6P2Q? — 4PQR) + (3Q® + 4R?) = 414:22 o3(n)q",

AP R — 3P%Q? +3PQR) — (Q* + R?) = —5184 Z n’os(n)q

9(PO — B2 +5(Q% = 8{3402 ntar

5PQR — (3Q° + 2R )——1J84an, n)q",

n=1

\ n=1

Where — 248832/ 1728 =— 144

Thence:

2(9%241° + 16%(-503)*) = -(125977689 + 4048144) = - 130025833
-248832 * 522,54466065457818930041152263374 = - 130025833

(1728 * (-144)) * 522,54466065457818930041152263374 = - 130025833.

Now, we calculate the following double integral:

1.08643"2 * 1/(10725) * 1/(Pi*e”e) integrate integrate [-130025833]
1.08643° L gL [ 130025 EEEJI]JI

1055 me® .

_1.61183x107%° ¥*
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¥

S — x

1.0 05" | 1.5 10
/T; '_".|:
/ 1.%10 I*..If ¥ from=1.2t01.2)

1.5%10-19 | A
f/ 2.x10719 | \
value that is an excellent approximation to the electric charge of the electron.
Now:
6912 " n’si(n)q" = 6P°Q —8PR +3Q* — P*.
n=1
6*58585 * 241 — 8*58585%(-503) + 3*241° — 58585 =
= 4962964417350 + 235746040 + 174243 — 11780012113294950625 =
=-11780007150094769992

(4*1728) * -1704283441853988,7141203703703704 = -11780007150094769992

Now, we calculate the following double integral:

1.0864372 * 1/(10736) * 1/(P1"2*1.61803398*¢) integrate integrate |-
11780007150094769992]

1
1035 x° . 1.61803398 ¢ -

1.08643 {[ [1- 11780 007 150 094769 992 d x| dx

_1.60154 %107 ¥

S - X

1.0 0.5 | 1.5 o
ﬁ :‘.I:
/ 1.x10-19 | v from =1.2t01.2)

/ 1.5%10719 | A

i 2.x10719 | \
f |

value that is an excellent approximation to the electric charge of the electron.

From: Canad. Math. Bull. Vol. 42 (4), 1999 pp. 427-440
“Ramanujan and the Modular j-Invariant” - Bruce C. Berndt and Heng Huat Chan

Now, we have the following Ramanujan function:
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Except for four entries, the last two pages in Ramanujan’s third notebook, pages 392 and
393 in the pagination of [21, vol. 2], are devoted to values of the modular j-invariant. Recall
[14, p. 81], [15, p. 224] that the invariants J(7) and j(r), for T € H:= {7 : Im 7T > 0}, are
defined by

(1.1) J(r) = i;} and j(r) = 1728](7),
where
(1.2) AlT) =glr)— 27g(T),
2(T) =60 i (mr+n)"%,
() £(0.0)
and

o

Gr) =140 > (mr+n)~".

M H=—0C
(m,m)Z00,00

Furthermore, the function :(7) is defined by [15, p. 249]

f4 2% EPRl (il | L& g 8

Theorem 1.1  For q = exp(—m/n), define

s F @) ()
1.13 k= f" ::\/g 1"18'17.
e TR
Then
1/6
(1.14) fy = (2 64}3,—241”+9—(16L,—3'J) .

Ramanujan then gives a table of polynomials satisfied by t,,, for five values of n.

Theorem 1.2 For the values of n given below, we have the following table of polynomials
pult) satisfied by t,,.

n Pn(r)
11 t—1
35 t2+r—1
59 £ +2r—1

83 [ £ +20+2t—1
107 | 2 —222 +4t— 1
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Proof of Theorem 1.2 It is well known that J;; = 1[15, p. 261]. Thus, we find that

i =(2-7—13)V% =1,

as desired.
Secondly, from a paper of W. E. Berwick [6],

B\
Jis =v5 L ‘
Hence,
,n" I= 8 =
o (zxisq. 5 (“D?H) = 24%("/‘1“

I )l.-'ﬁ

= (2\/"7349+ 32765 — 117 — 56+/5 '
N, v

We have:
J35=15,3262379; and

o

tys = (2*121,1377674149 — 117 — 125,219806739)"° = (0,0557280908) " =

=0,618033990227 = (5 - 1) /2

For

i) = 1728 Iir),

we have: 1728 * 15,3262379 = 26483,7390912

We calculate the following double integral:

1.0864372 * 1/(10720) * 1/(P1"6) integrate integrate [26483.7390912]

1.08643° sy {[[25433.?39&912&]4;:

oo

1.62575% 107 &*
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2. 110

. |5.1§

T
1.5%10719 | ) :

! | (# from=1.2t01.2)
1.x10719|
A lo M|
t x
1.0 0.5 0.5 1.0

result that is a good approximation to the value of the electric charge of the positron.

It is easy to verify that if a> — db® = (2, then

! .'Ilﬂ‘l'f J’a—f

Now, since
7349* — 5.3276° = 5392,

we find that

[~ [7349+580  [7349 — 589
\/ 7349 + 3276V/5 = \; ; + L"ﬂ . T — /3960.+ /3380 = 63 + 26V/5,

&

by (4.1). Hence,

1/6 ; /5 —1
tss = (3 (53 + zﬁﬁ) - 55v’§) — (9 45 =T

=

Hence, t35 is a root of t? + t — 1, and the second result is established.
For n = 59, Greenhill [ 18] showed that usq, defined by (1.4), is a root of the equation

u—392.2"34%°% 4 1072. 4341 — 2816 = 0.

We have that: 63 +26V5 = 121,13776741499453210663851538701;
Note that (121,1377674149)""° = 1,61557809657...
We calculate the following double integral:

1.0864372 * 1/(107°20) * 0.226 integrate integrate
[121.13776741499453210663851538701]

where 0.225791 = log(sqrt(n/2) = 0.226

1 i _
1.08643% « —— 0.226 H[121.13??5?41499453219553351533?91irx].f,:x
1|:| H -

59



1.6157x 10719 %7

Plot:

[ from=1.2t01.2)

-1.0 -0.5 0.5 1.0

result that is a good approximation to the electric charge of the positron.

From: “On Faraday’s Lines of Force” — J.C.Maxwell (From the Transactions of the
Cambridge Philosophical Society, VoL x. Part I) - [Read Dec. 10, 1855, and Feb. 11,
1856.]

Treorem IIL

Let U and V be two functions of z, y, 2 then

([[g(EV  EF SN o pge o [[(AUSY 4TIV _ QUAVN 5y
UJ"\dz’ Pt e S RGN

- [[| (G + G+ T2 Ve

where the integrations are supposed to extend over all the space in which U
and V have values differing from 0.—(Green, p. 10.)

This theorem shews that if there be two attracting systems the actions
between them are equal and opposite. And by making U=V we find that
the potential of a system on itself is proportional to the integral of the square
of the resultant attraction through all space; a result deducible from Art. (30),
since the volume of each cell is inversely as the square of the velocity (Arts.
12, 13), and therefore the number of cells in a given space is directly as the
square of the veloeity.
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Since the mathematical laws of magnetism are identical with those of elec-
tricity, as far as we now consider them, we may regard o, B, y as magnetizing
forces, p as magnetic tension, and p as real magnetic density, k being the
coefficient of resistance to magnetic induction.

The proof of this theorem rests on the cetermination of the minimum value

of
0 1 dp dF\ 1 d dVy 1 dp . dV\] . )
where ¥ is got from the equation

&V &V &V
e +mf +~E+-irrp=0,

and p has to be determined.

The meaning of this integral in electrical language may be thus brought
out. If the presence of the media in which % has various values did not
affect the distribution of forces, then the “quantity” resolved in x would be

simply % and the intensity L({% But the actual quantity and intensity are

%( —{u—f,_‘:) and a—j—%, and the parts due to the distribution of media alone

are therefore

dx Ef.;‘_ dr *

1 (E_E‘ff_’) _4V d o _p 4V

Now the product of these represents the work done on account of this
distribution of media, the distribution of sources being determined, and taking
in the terms in y and z we get the expression @ for the total work done

by that part of the whole effect at any point which is due to the distribution
of conducting media, and not directly to the presence of the sources.

This quantity € is rendered a minimum by one and only one value of p,
namely, that which satisfies the original equation.

61



The integral throughout infinity

Q=[/] (a0, + b8 + ciy,) diedydz,
where abc,, a8y, are any functions whatsoever, is capable of transformation into

Q=+ J”{'-t"’?Pa — (G‘,ﬂ', + ﬁnbf + '}’.C_.)} d‘.l‘-l.fydz,
in which the quantities are found from the equations

da, db, de
P + I—J 4 = + dnmp, =
d"-’* d}g: &ﬁ

d;r+d'y i +4mp,=0;

aBy.V are determined from abgc, by the last theorem, so that

dp, dy,  dV
W= "dy de

ab,e, are found from @8y, by the equations

_dﬁx d'ﬁ
a,= H; = HE}- &c..

and p is found from the equation

dp  d’p dﬁ

VOL. I 26

For, if we put a, in the form

dB, _dy, 4V
dz dy " dx’

and treat b, and ¢, similarly, then we have by integration by parts through
infinity, remembering that all the functions vanish at the limits,

o=-[[{r(@+ 5+ L)+~ (E-F) = (E-2)
+%, (d-i‘— ‘B‘)} drdydz,

or Q=+ [[[{4nVp) ~(at+ Bby+ye)} dady s,
and by Theorem III.
[[[Vp' dadydz= [[[ppdadydsz,

Q=[[[{4mpp — (a2, + B, + y.e.)} dxdy dz.

If abe, represent the components of magnetic quantity, and e8y, those
of magnetic intensity, then p will represent the real magnetic density, and p
the magnetic potential or tension. abe, will be the components of quantity
of electric currents, and apBy will be three functions deduced from abc,,
which will be found to be the mathematical expression for Faraday's Electro-
tonie state.

so that finally

We calculate the following triple integrals before of 41t and after of 4npp for the
values 0f 0.618 and 3 for p and p. We obtain:
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(1/10°12 )* 1.08643 * integrate 12.56637(x,y,z) dx dy dz, x=0..Pi/253.8
y=0..Pi/253.8 z=0..Pi/253.8

l . I . i - I
—— +1.08643 fﬁ” [353-8 IESH 12.56637 x, v, sl dxdy dz
T Jo Jo Jo

[1.60256 % 107", 1.60256 x 107'%, 1.60256 x 107"}

Or:
3/(2e) * 1/(10720 )*1.08643 * integrate (12.56637*0.618*3)(x,y,z) dx dy dz,
x=0..P1/253.8 y=0..P1/253.8 z=0..P1/253.8

3 l . I . I - a1
1.08643 f 2318 f Ay f 253811256637 «0.618«3) |x, ¥, sldxdy dz
"] My

0

2 e lDED

[1.63954 1077, 1.63954 % 1077, 1.63954 x 107

Results that are very near to the values of the electric charge of the positron and of

the mass of the proton.
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a perfect differential of a function of z, 2z On the principle of analogy we
may call p, the magnetic tension,

The forces which act on a mass m of south magnetism at any point are

—m dp, -mdﬂ' and —m dp-‘,
dx dy’ dz
in the direction of the axes, and therefore the whole work done during any
displacement of a magnetic system is equal to the decrement of the integral

foa Wy o ¢ o J L R
=) PahbeSy o

throughout the system.

Let us now call ¢ the toial potential of the system on iiself. The increase
or decrease of § will measure the work lost or gained by any displacement
of any part of the system, and will therefore enable us to determine the

forces acting on that part of the system.
By Theorem III. € may be put under the form

0=+ [[[ o +b.8+ev) dudys,

in which a8y, are the differential coefficients of p, with respect to z, ¥, =
respectively.

If we now assume that this expression for @ is true whatever be the
values of a, B, 7, we pass from the consideration of the magnetism of permanent

magnets to that of the magnetic effects of electric currents, and we have then
by Theorem VIL

Q= [”{P,A - % (u,ad-,ﬂ,b,-%ync,)} dzdydz.

So that in the case of electric currents, the components of the currents have
to be multiplied by the functions a,, B,, ¥, respectively, and the summations of

all such products throughout the system gives us the part of @ due to those
currents.

We have now obtained in the functions a,, B,, ¥, the means of avoiding
the consideration of the quantity of magnetic induction which passes through
the circuit. Instead of this artificial method we have the natural ome of com-
sidering the current with reference to quantities existing in the same space
with the current itself. To these I give the name of Electro-tonic functions, or
components of the Electro-tonic intensity.

The conductor is lone | = 1.5m the magnetic field is equal to B = 0.5T. the speed v= 4mv/s. Find the
potential difference at the ends of the conductor

We use the
formula

E=vxB —— E=vBsin9°=vB we know that the
potential is

V:jf-d.‘r: El — V=vB=4.15-05=3V

Formula for magnetic sphere flow density

Formula for the field B on the symmetry axis of a magnetic sphere axially

magnetized:
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2
B=B2——
"3(z+R)3

B,: remanence field, independent of the magnet geometry
z: distance on the axis of symmetry from the edge of the sphere
R: half the diameter (radius) of the sphere

The unit of length measurement can be chosen at will, as long as it is the same for all
lengths. For R =26, Grade = N42, z =3 we have a flow density of 0.618 T

From the equation:
@=][[ppdrdyds

For a magnetic density of 0,618 T and a magnetic potential of 3V, we calculate the
following triple integral:

1.08643 * integrate (0.618*3)(x,y,z) dx dy dz, x=0..1.129 y=0..1.129 z=0..1.129
where 1.129 = 1.63047"

"1.120 1120 1,120
1.08643 ( ( f (0.618 «3)x, ¥, sldxdydz
J0 0 0

(1.63628, 1.63628, 1.63628

result that is a good approximation to the value of the mass of the proton.

From the equation of the total potential of the system on itself:

Q= j f f {Pnpl—%(qna,-l—ﬁub,-lr}'ﬁ}} dzdydz.

for a magnetic density of 0.031416 T and a magnetic potential of 1.571V, we have
the following triple integral:

1.08643 * integrate ((0.06*1.5)-(0.07957))(x.y,z) dx dy dz, x=0..4.1 y=0..4.1
7z=0..4.1 where 4.1 = 1.60052063°

4.1 41 /41
1.08643 [ ( f (0.06 x 1.5 —0.07957) x, y, 2} dx dy dz
JOO Ao W

(1.601, 1.601, 1.601
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or:

1.08643 * integrate ((0.06*1.5)-(((0.07957)*aa+Bb+yc)))(x,y,z) dx dy dz, x=0..4.1
y=0..4.1 z=0.4.1

Input interpretation:

41 41 4l
1.08643 j J J (0.06 1.5 -(0.07957 cva+ b +yc)ix, ¥, sldxdyds
o oo o

{153.5(-0.07957aa -b g -cy+0.09),
153.5(-0.07957aa -b p-cy +0.09), 153.5(-0.07957aa -b g-cy +0.09))

where 153.5(— 0.07957aa) = — 12.213995aa and 153.5(0.09) =13.815 for which :
—12.213995a0. — 153.5bp — 153.5¢cy + 13.815 = 1.601005

(puttingaa=1,bp=1lecy=-1)

The result is very near to the value of the electric charge of the positron.

From:

[From the Philosophical Magazine, Vol. xxi.] - XXIII. J.C.Maxwell
“On Physical Lines of Force”.

from +x to 4y parallel to the plane of zy. Now if an electric eurrent whose
strength is r is traversing the axis of z, which, we may suppose, points
vertically upwards, then, if the axis of z is east and that of y north, a unit
north pole will be urged round the axis of z in the direction from = to y, so

that in one revolution the work done will be =4xr. Hence < (@—@) repre-
im \dz dy
sents the strength of an electric current parvallel to z through unit of area; and
if we write
1 [dy dﬁ)_ 1 /da dy 1 /dB da
Hr(u‘_y &) =P E;(a-a;a)—% a(ﬁ“d—y)*"" ----------- (9),

then p, q, » will be the quantity of electric current per unit of area perpen-
dicular to the axes of z, y, and z respectively.

Vo=t (};_% (Vi Vob BC)vevvvnreernnins (82)
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or dividing by V="V, + V,+&e,

dy d
=3p ({T;"d;f) ........................... (33)
If we make P—_*il; O T L T T T Doy =i

then equation (33) will be identical with the first of equations (9), which give
the relation between the quantity of an electric current and the intensity of
the lines of foree surrounding it.

thence:

Pt

(@ @)

Calculate the following double integral:
13e * 1.08643"2 * integrate integrate [1/(4P1)]

[d(y/y — B/z)] 13e * 1.08643"2 * integrate integrate [1/(4P1)]
13 ¢ - 1.08643° jU% d’x};{x

(d G —f]] 13 ¢ « 1.08643° JU&% d’x]dx

Result:

1.65050 x°

Result:

1.65959 d x* (3 _ E]
¥ =

Plot:

(x from=1.2t01.2)

1.0 -0.5 i 0.5 1.

result that is very near to the value of the mass of the proton.
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Let a, B8, v be the components of the eircumferential velocity, as in Prop. IL,
then the actual energy of the vortices in unit of volume will be proportional
to the density and to the square of the velocity. As we do not know the
distribution of density and velocity in each vortex, we cannot determine the
numerical value of the energy directly; hut since p also bears a constant
though unknown ratio to the mean density, let us assume that the energy

in unit of volume is

E=Cu(a’+8'+7),
where (' is a constant to be determined.

Let us take the case in which
dé de %
a=—- I’ E——d—, y= T R T R e (35}.

Let S= ity revirreraernennsrassrsssassasssens (36),
and let E"'"(d.#" %’i‘+%’f—') =m, and = (%+§f—;’+ df,")nm,.... (37);

then ¢, is the potential at any point due to the magnetic system m, and ¢,
that due to the distribution of magnetism represented by m. The actual
energy of all the vortices is
=3Ck (@ + B +7) AV ovieriiriiiianiinnnnneee. (38),
the integration being performed over all space.
This may be shewn by integration by parts (see Green's ‘Essay on Elee-
tricity,’ p. 10) to be equal to
E= —4nC= (dm, + g+ g+ b ) d Voo ooievnieniin (39).
Or since it has been proved (Green's ‘Essay’ p. 10) that
ZdmdV=SgmdV,
E= —4xC(dpm, +pmy+2m,) dV .oooevnianinninnes (40).
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Now let the magnetic system m, remain at rest, and let m, be moved
parallel to itself in the direction of = through a space &x; then, since ¢,
depends on m, only, it will remain as before, so that ¢m, will be econstant;
and since ¢, depends on m, only, the distribution of ¢, about m, will remain
the same, so that ¢ym, will be the same as before the change. The only part
of E that will be altered is that depending on 2¢m,, because ¢, becomes

¢,+%3&: on account of the displacement. The variation of actual energy due
to the displacement is therefore
SE = — 4rCS (2 < m,) AV vvesvnerrsereenrans (41),

But by equation (12) the work done by the mechanical forces on m, during
the motion is

W =3 (‘% m.dl'f’) T (42);

and since our hypothesis is a purely mechanical one, we must have by the
conservation of force,

SELFW =0 cviiisniainds o (49!

that 1s, the loss of energy of the wvortices must be made up by work done in
moving magnets, so that

- 47 CE (2 %mﬁ?’) Sx43 (i—‘i‘m,d?’) dx =0,
or c=.§1; e e £

so that the enexgy of the vortices in unit of volume is

1
EJ‘I’-{ﬂ."i'ﬂg'!')’!}-..-------------;-.....-...;..{45};
and that of a vortex whose volume 18 ¥V is

El;#(ﬂu,ﬁwf)v. ....... L . (46).

In order to produce or destroy this energy, work must be expended on,
or received from, the vortex, either by the tangential action of the layer of
particles in contact with it, or by change of form in the vortex. We shall first
investigate the tangential action between the vortices and the layer of particles
in contact with them.

1
E = 2 2 2
g @+ +y%)
Now calculate the following double integral:
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26e * 1.08643"2 * p(a"2+p"2+y"2 ) integrate integrate [1/(8P1)]

1
26 ¢« 1.08643% pfa” + 2 +'y2}f( S dx]dx
m

Result:

1.65959 x° p{az+ﬁ2 +}'2}

result that is very near to the value of the mass of the proton.

Now:

Electromotive force acting on a dielectric produces a state of polarization
of its parts similar in distribution to the polarity of the particles of iron under
the influience of a magnet®, and, like the magnetic polarization, capable of
being described as a state in which every particle has its poles in opposite
conditions,

In a dielectric under induction, we may conceive that the electricity in
each molecule is so displaced that one side is remdered positively, and the
other negatively electrical, but that the electricity remains entirely connected
with the molecule, and does not pass from one molecule to another.

The effect of this action on the whole dielectric mass is to produce a
general displm:ement of the electricity in a certain direction. This displace-
ment does not amount to a current, because when it has attained a certain
value it remains constant, but it is the commencement of a current, and its
variations constitute currents in the positive or negative direction, according as
the displacement is increasing or diminishing. The amount of the displacement
depends on the nature of the body, and on the electromotive force; so that
if h is the displacement, fi the electromotive force, and £ a coefficlent
depending on the nature of the dielectric,

R==AnEh;

and if r i3 the value of the electric current due to displacement,

T=E.
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Prop, XII. To find the conditions of equilibrium of an elastic sphere
whose surface is exposed to normal and tangential forces, the tangential forces
being proportional to the sine of the distance from a given point on the sphere.

Let the axis of z be the axis of spherical co-ordinates.
Let £ 7, L be the displacements of any particle of the sphere in the direc-
tions of =z, ¥, and =

Let pes Pys P be the stresses normal to planes perpendicular to the three
axes, and let Py, Pun Do be the stresses of distortion in the planes yz, 2z,

and zy.

Let p be the coeflicient of cubic elasticity, so that if
Pa=Py=Pu=D

£ dy, di
p= p(d£+dy+d“) Sisediessisieliniiss LBOY

Let m be the coefficient of rigidity, so that
PH-Pﬂ=m (if_ — d_'l?) - &c “.“”.””;;nunu'{B]}-

de dy
Then we have the following equations of elasticity in an isotropic medium,
d d o
Pas= {F_l-}n}( f -—..ﬂ-l-g-f)v}vmd—i ...........-...-..,..{EE};
with similar equations in y and z, and also
In the case of the aphare, Iet us assume tha radius=a, and
E=exz, n=ey, {=f(+y)+g2+d.cccriiiiiiai. (84).
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Prop. XIII.—To find the relation between electromotive force and electric
displacement when a uniform electromotive force f¢ acts parallel to the axis of z.

Take any element 8S of the surface, covered with a stratum whose density
is p, and having its normal inclined @ to the axis of z; then the tangential

force upon it will be

sl o A SO e, )

T" being, as before, the tangential force on each side of the surface. Putting
P:)l as in equation (34)*, we find
2T
R=—2mma (e+2f ). cocrecrreiisriraraension (100).
The displacement of electricity due to the distortion of the sphere is
¥8SLptsin @ taken over the whole surface............ (101};

and if % is the electric displacement per unit of volume, we shall have

ir.r[i-’hzﬁ-ﬂ'ﬂ..........,.,“.............,..i:]':l';"),
ar ?i=n1—{15 .......... L (103);
s 421
so that Rodwtmn EE B misnmiisiessonss (104),
or we may write R A B s o varanvavisssss s car sl D O3 )y
. e 2f :
prﬂvided we assuine  Dr— —+ j R AT R b A 'I:]ﬁb]

Finding e and f from (87) and (90), we get

'."I= —.‘_"..............-.........-Hn- lﬂ--
£’ 1m1+5m (107)
d B

The ratio of m to u varies in different substances; but in a medium whose
elasticity depends entirely upon forces acting between pairs of particles, this
ratio 18 that of 6 to 5, and In this case

.E::= TN wssnsmansimnsnanssine bnaniaiate |+1-r{105}-

* Phil, fag. Apeil, 1861 [p. 471 of this vol.}

So E* is a coefficient dependent on the nature of the dielectric, m = 6 the coefficient
of rigidity, and p = 5 the cubic elasticity coefficient. By performing the following
double integral on E, we obtain:

(e/4) *1.08643 integrate integrate [sqrt(6*P1)]

where e/4 =0.67957 but we can also utilize the “Body-centered cubic” that is equal
to 0.680174 = (1\3)/8
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£ . 1.08643 J‘[fmdx]dx

4

Result:

1.60272 x°

Plot:

(x from=1.2t01.2)

or:

((mV3)/8 ) ¥1.08643 integrate integrate [sqrt(6*Pi)]

[é [mﬁ]} 1.08643 f[fmdx]dx

Result:

1.60414 x°

Plot:

(& from=1.2t01.2)

results that are very near to the values of the electric charge of the positron.
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We have seen that electromotive force and electric displacement are
connected by equation (105). Differentiating this equation with respect to ¢, we

find
%R: — 4n K % s £ S D

shewing that when the electromotive force wvaries, the electric displacement also

varies, But a variation of displacement is equivalent to a current, and this
current, must be taken into account in equations (9) and added to 7. The three

equations then become
=X fdy a8 l'—'_"-‘_"')'
P'E(dy"dz Edi
_ 1 da dy 1 d@
7= (&;‘E& - E!?) L e T,
_1/dB da 1 dR
"E(ﬁ“’&'g F )|
where p, ¢, » are the electric currents in the directions of x, ¥, and z; a, B, ¥

are the components of magnetic intensity; and P, @, R are the electromotive
forces. Now if e be the quantity of free electricity in umit of volume, then the

equation of continuity will be

dp dg dr de__
ﬁ+@+$ +E—ﬂ e e D G

* See Rankine “On Elasticity,” Camb, and Dub. Math. Jowrn. 1351.
t+ Phil Mag. March, 1861 [p. 462 of this vol].

Differentiating (112) with respect to z, y, and z respectively, and substituting,
we find

de 1 d P dQ dR .
mz:lméfﬂ (a..u""a:r" ?E;) .................. {114},
I fadl & ¥ {4
whenee =55 (T +§ L) — (ELE),

the constant being omitted, because c=0 when there are no electromotive forces.

Then:

- 47E* = - 236,8705 taken from (111) which shows that when the electromotive force
changes, the electric displacement also varies.

e=1/4nE*=1/236.8705 = 0.0042217 taken from (115) which shows the
equations of electric currents due to the effect due to the elasticity of the medium.

74



We calculate the following double integral for: —4xn * nm = - 236,8705
(e/216) *1.08643 integrate integrate [-(4*P1)*6P1]

e

57 108643 j'[f-[ﬂfm 6 wdx)dx

e

57 108643 f[f—EBE.S'?Dde]Jx

~1.61929 x*

(x from=1.2t01.2)

Now for 1/47E* = 1/236,8705 = 0,0042217
(260e) *1.08643 integrate integrate [1/(4*Pi*6P1)]

(260 ¢) - 1.08643 f[( dx}dx

FL EI.FT

(260 ¢) - 1.08643 ﬂfa.umzmmx]ﬂ

1.6208 x°

(x from=1.2t01.2)

results that are very near to the values of the charges of the electron and positron.
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Or also:

(264¢) *1.08643 integrate integrate [1/(4*Pi*6P1)]

(264 ¢) - 1.08643 f[( dx}dx

dabam

1.64573 x°

(x from=1.2t01.2)

1 X
1.0 0.5 0.5 1.0

result that is very near to the value of the mass of the proton.

Now:
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PART IIL

THE THEORY OF MOLECULAR VORTICES APPLIED TO STATICAL ELECTRIUITY.

In the first part of this paper™ I have shewn how the forces scting between
magmets, electric currents, and matter capable of magnetic induction may be
accounted for on the hypothesis of the uwgoetlc field being occupied with
innumetable vortices of revolving matter, their axes coinciding with the direction
of the mognetie force at every peint of the fiald.

The centrifugal force of Lese vortives produces pressures distributed in such
o way that the final effect is a force identical in direction and magnitude

(=3
with thet ﬁhieh we observe.

In the second partt I described the imeclauism by which these rotations
may be made to coexist, and to be distributed accerding to the known laws
of magnetic lines of farce.

I conceived the rotaling meatier to be the substance of certain gells, divided
from each other by cellwalla composed of particles which are very smnall com-
pared with the cells, and that it is by the motions of these particles, and their
tangential action on the substanee in the cells, that the rotation is cormununi-
eated from one cell to another.

I have not nttempted to explain this tangential action, but it is necessary
to sappose, in arder to account for the transmission of rotation from the exterior
tc the interior parts of each cell, that the substance in Lhe cells possesses
slasticity of figure, similar in kiod, though different in degree, to that observed
in solid bodies. The undulatory theory of light requires us to admit this kind
of elasticity in the luminiferous medium, in order to aeonnt for transverse
vibratisna  We need not then be surprised if thz magneto-electric medium
possesses the same property.

That electric curreat which, circulating round & ring whose aren is unity,
omodnces the same effect on a distant magnet as a magnet weuld produce
whose strength is unity and leagth unity placed perpendiculaly to the plane
of the ring, is a unit eurrent; snd F units of electricity, measared statically,

77



traverse the section of this current in one second,—these units heing such that
any two of them, placed at unit of distance, repel each other with unit of force.

We may suppose either that K unite of positive electricity move in the
positive direction through the wire, or that & umits of negative electricity move
in the negative direction, or, thirdly, that $£ umits of positive electricity move
in the positive direction, while 1% units of negative electricity move in the
negative direction at the same time.

The last 1s the supposition on which MM. Weber and Kohlrausch® proceed,

who have found
3E=155,370,000,000 .......convuieneniennnes (130),

the unit of length being the millimetre, and that of time being one second,
whence

E=310,740,000,000 -...coervrrerernenen. (131).

Pror. XVIL.—To find the rate of propagation of transverse vibrations
through the elastic medium of which the cells are composed, on the suppo-
sition that its elasticity is due entirely to forces acting between pairs of particles,

By the ordinary method of investigation we know that

7 = /E 2
T A SRR DRSS 1 o

P

where m is the coefficient of transverse elasticity, and p is the density. By
referring to the equations of Part I., it will be seen that if p is the density
of the matter of the vortices, and p is the “coefficient of magnetic induction,”

BT ¢ 0r6is samsnsronnsnnreassnnsnssnnes LLODS
whence e T T O L S e (184);
and by (108), E=VJpooeeeoeeeesevneserenennnne (135).
In air or vacuum p=1, and therefore
V=E
=310,740,000,000 millimetres per second f.uvvirvvnneenen (136),

=193,088 miles per second

We note that L= 1, m = (310740000000"2)/Pi = 3,07357949E22
for =5, m=((310740000000°2)*5))/Pi = 1,53678975%10%

p = 1.591549430918954
V =9,65593478E22 = 310.740.000.000 = 310.740.000.280,3659973

Calculate the following double integrals for 1,53678975%10> , for
1.591549430918954 , for 155370000000, and for 310740000000
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1/(2*%10740) * 1/(26) * 1.08643 * integrate integrate [1.53678975*10723]
l l . " 29 Y
e 1.03543“1 1.53678975 - 10% dx)dx

1.6054%10°1% »*

(o from=1.2t01.2)

x
0.5 1.0

1/(2%10725) * 1/(26) * 1.08643 * integrate integrate [1.591549430918954]
1 yon _
— s < 5 108643 [ ([ 1:591549430918954 ax) ax

1.6626x107%7 »°

(# from=1.2t01.2)

1/(10736) * (sqrt(6)/4)"8 * 1.08643 * integrate integrate [155370000140.18299865]

dove “(\6)/4 = Circumradius sphere, congruent with vertices (Tetrahedron)”

1 S :
Bl v 1.08643 ”I1.553?000014018299865x1D11dx]dx
1038 | 4 2 L

1.66903% 1077 °
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¥ from=1.21t01.2)

1/2 * 1/(10"36) * (sqrt(6)/4)"8 * 1.08643 * integrate integrate
[310740000280.3659973]
— 4B

V6

1 1

e = 1.08643 [[[3.10?4000023036599?3xln:u“dx' dx
l|:| = 5

1.66903 %1077 °

¥ from=1.21t01.2)

Also these results are excellent approximations of the proton mass. Recall that when
a proton collides with an antiproton, one of the valence quarks that constitute it can
annihilate itself with an antiquark, while the remaining quarks will rearrange into
mesons. The mesons created are a group of subatomic particles composed of a quark
and an antiquark bound by the strong force. They are unstable particles and typically
decay into photons or leptons. This means that the light, hence the electromagnetic
waves concerning the Maxwell's equations, seems to have a fermionic origin
(electron-positron / proton-antiproton annihilation), also if it consists of photons
(bosons). In fact this is only the logical consequence of the formalization of the
Einstein’s equation E = mc” in which the energy is closely connected with the mass,
and which is closely related also to the Maxwell’s equations. In the our proposal, it is
the mass that becomes energy, which in turn, following at the various breaks of
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symmetry, returns mass, in an cycle eternal in the time and infinite in the space. This
is a further try to support of the theory of a cyclical oscillating universe (or eventually
also a multiverse). But the most extraordinary thing is the possibility that the universe
itself, which has neither beginning nor end, was born as a wave-particle of infinite
density and energy (wave function of universe-model "no-boundary proposal" of
S.W. Hawking).

The lines of gravitating force near two dense bodies are exactly of the
PR mwm s Toows Al snaisaadl Lrnrm wioew B cuuwmle  wilt Ll Lo
SiklIves 10T 43 L8 1ifies Ol llld—EJlUL-LLI AVICO JIGdal Lwo I.PUJ.UH 01 '.rllt: bﬂulﬂ II&EE,
but whereas the poles are repelled, the bodies are attracted. Let X be the
intrinsic energy of the field surrounding two gravitating bodies M, JI,, and
let E° be the intrinsic energy of the field surrounding two magnetic poles,

m. m. eoual in numerical wvalue to W. M. and let X he the rn'nv'lfqhng

17 9 e et aa— LES PN Ll st e SRR - i 1] =t gy Liita AT W LA = & wile wia

force acting during the displacement 8r, and X’ the magnetic force,

Xéx= S.E, X’S&B:SEN;
now X and X’ are equal in numerical value, but of opposite signs; so that
oL = —oF,
or E=C-F

— &Y 'l:'lfg1ﬂr!|_£'\_7'r}'
~u—AE;LﬂTP Ty )ur

where a, B, v are the components of magnetic intensity. If R be the resultant
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gravitating force, and I’ the resultant magnetic force at a corresponding part
of the field,

R=-FK, and '+ B +y'=I'= 1"
Hence

BGafl IR oo

The intrinsic energy of the field of gmvitatiun must. therefore be less where-
ever there is a resultant gravitating force.

As energy is essentially positive, it is impossible for any part of space to
have negative intrinsic energy. Hence those parts of space in which there is
no resultant force, such as the points of equilibrium in the space between the
different bodies of a system, and within the substance of each body, must have
an intrinsic energy per unit of volume greater than

1
— I

B '
where &2 is the greatest possible value of the intensity of gravitating force in
any part of the universe.

The assumption, therefore, that gravitation arigses from the action of the
surrounding medium in the way pointed out, leads to the conclusion that every
part of this medium possesses, when undisturbed, an enormous intrinsic energy,
and that the presence of dense bodies influences the medium so as to diminish
this energy wherever there is a resultant attraction.

Putting that R is equal to the Gravitational universal constant, that is

G=6,67 x 107" N'm2/kg?. We obtain:
1
E= o (6,674 x 10711)2 = 1,77228085 x 10722

Now calculate the following double integral:

(0.6389474) * 1074 * 1.08643 * integrate integrate [(1.77228085) *(107-22)]

+1.77228085
0.63894% . 10% » 1.08643 fU T .d’x]d’x

Result:

1.60452% 107 &*
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\ 15x10719] g

[ (o from=1.2t01.2)
1.x10719 |
Belo~ |

| _‘__.-"'

— x

1.0 0.5 ' 0.5 1.0

result that is very near to the value of the electric charge of the positron.

From:

A TREATISE ON ELECTRICITY AND MAGNETISM

BY JAMES CLERK MAXWELL,

M.A - LLD. EDIN., P.E.SS. LONDON AND EDINBURGH HONORARY FELLOW
OF TRINITY COLLEGE, AND PROFESSOR OF EXPERIMENTAL PHYSICS IN
THE UNIVERSITY OF CAMBRIDGE VOL. I AT THE CLARENDON PRESS 1873
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Finally, let 8 n @ represent the triple integral

8§70 =ff -I%(az+éﬂ+c2)dmdg;dz, (9)

extended over a space bounded by surfaces, for each of which either
V' = constant, _

- 75§ e @V | AV dV (10

L i - Firasd 14 i E? l\l U),

BT, —— A
T-felr = U\ - LW —=— = AT ——
da dy dz

where the value of ¢ 1s given at every point of the surface ; then, if
@, b, ¢ be supposed to vary in any manner, subject to the above
conditions, the value of @ will be a unigue minimum, when

14 dV av

bkt B - x2. an
da dy’ :
Proof.
If we put for the general values of , 4, ¢,
av av av
a=K—+u, b=K—+v, ¢=K— +w; 1

a‘!.r + 3 dy + ) {zz + b] ( 2)
than he an 1 Jaadq ;“ﬂt thasa walizas 1 proaps b oo [ 7, 5 W o UG |
LiiGin, W U fau 1. UL VAILDU Valuos in l.?liu.a.ll.lLUJ.lB \‘-JJ anda Ay WE dLU

that , v, w satisfy the general solenoidal condition
du dv dw
(1) T -+ Ey + = =),

We also find, by equations (6) and (8), that at the surfaces of
discontinuity the values of #,, v,, w0, and #,, »,, w, satisfy the
superficial solenoidal condition

(2) 2(wy—wy)+m (v, —v))+n(w—w,) = 0,

The quantities %, », w, therefore, satisfy at every point the sole-

noidal conditions as stated in the preceding lemma.
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We may now express @ in terms of , v, w and 7,

dVﬂ T~ 2 I7712
r Q@ =fff}i' (—— d_I_’ d—-r )tﬂrdydz +fff?lf (u® +v2+w?)dedydz

frr. dv JV av.
+2jjj(ﬂ,— e wa-f;)d.z'dydz. (13)

The last term of @ may be written 2&[, where A is the quantity
considered in the lemma, and which we proved to be zero when the
space is bounded by surfaces, each of which is either equipotential
or satisfies the condition of equation (10), which may be written

(4) lu+mv+4nw = 0,
@ is therefore reduced to the sum of the first and second terms.

In each of these terms the quantity under the sign of integration
consists of the sum of three squares, and is therefore essentially
positive or zero. Hence the result of integration can only be
positive or zero.

Let us suppose the function 7 known, and let us find what values
of #, v, w will make @ a minimum.

If we assume that at every point #» = 0, v = 0, and w = 0, these
values fulfil the solenoidal conditions, and the second term of Q
is zero, and @ is then a minimum as regards the variation of
%, v, W,

For if any of these quantities had at any point values differing
from zero, the second term of @ would have a positive value, and
Q would be greater than in the case which we have assumed.

Butif # = 0,» = 0, and w = 0, then

av av av
(11) @—K-Jx-—: 5:3@-1 c—K(—f:
Hence these values of @, 4, ¢ make @ a minimum.

But the values of o, 4, ¢, as expressed in equations (12), are
perfectly general, and include all values of these quantities con-
sistent with the conditions of the theorem. Hence, no other values
of @, &, ¢ can make ¢ a minimum.

Again, @ is a quantity essentially positive, and therefore @ is
always capable of a minimum value by the varation of g, 4, c.
Hence the values of a, 4, ¢ which make @ a minimum must have
a real existence. It does not follow that our mathematical methods

are sufficiently powerful to determine them.
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Butif #u = 0, v = 0, and w = 0, then

av av
— e=K—.
dy dz

Hence these values of 4, §, ¢ make @ a minimum.

(ll) d:K%: b= K

Green’s Theorem shews that the quantity @, when it has its
minimum value corresponding to a given distribution of electricity,
represents the potential energy of that distribution of eleetrieity.
See Art. 100, equation (11).

From:

ELETTROMAGNETISMO
PARTE II - POTENZIALE ELETTRICO
ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA

Exercise 14. Trovare il potenziale che raggiunge una sfera conduttrice isolata di raggio 16.0 cm con una carica
di 1.50 - 10~% C con V = 0 all’infinito.

Soluzione: 11 potenziale di una sfera conduttrice isolata & espresso da
g 899-10784m .150-107%C

V =kl
o 0.16m

=843V

From the example above, considering the charge of an electron, then q = 1.6 * 10"
and the radius of the sphere of 1cm, remembering the coulomb constant, whose value
is:

1 i

k= ~ —c-10 THm ' = 8.987 551 787368 176 - 10° Nm? C
dmey 4

from the formula of the potential energy electric
Ug(r) = kﬁ
r

that in our case is: V = k| g , we have:

qg 899 10°Nm?2C~2%-1.602-1071°C
V=ky—= = 1,440198-1077
T 0.01m
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Now we take the equation (9):

8w =fff—%—(@2+62+cz)dm(fydz,

where Q represents the potential energy of a certain distribution of electricity. We
have, for Q =1,440198- 1077, 87Q =3,61961236 * 10°.

We proceed to carry out the following double integration on the value obtained. We
have:

1/(1079) * ((0.61803398/(0.66482"3)) * 1.08643 * integrate integrate [(3.61961236)
*(107-6)]

1 (0.61803398 ¢ r3.61961236
S (— 1.D854BJU —d‘x}d’x}
10° \ 0.664823 108

Result:

4.13556% 10717 &7

Plot:

[ from=1.2t01.2)

0.5 1.0

Now we take the following example:

Exercise 28. Due cariche ¢ = +.20uC" sono fisse nello spazio a una distanza d = 2.0 ern, come mostrato
in figura. Con V = 0 all'infinito, trovare il potenziale elettrico nel punto C. Una terza carica identica alle
precedenti viene portata lentamente dall'infinito nel punto C. Trovare il lavoro necessario. Trovare, infine,
I’energia potenziale della configurazione quando anche la terza carica & al suo posto.
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Soluzione: Il potenziale elettrico nel punto C si calcola applicando il principio di sovrapposizione, som-
mando cioé il potenziale in C relativo alle due cariche considerate sole. La distanza di ogni carica dal
punto C puo essere calcolata osservando che tale distanza & la diagonale di un quadrato di lato d/2, cioé

d
§v2

. 1 1 4 2q/2 Nm? 2v/2x20-1078C

Ve = dLJr dq = . = q‘[zs.gg-wg ﬂ; X ik =2.54-105V
d7eg ?ﬁ 51/5 dmeg dy/2  4weod : 0.02m

Se una terza carica gs, uguale alle precedenti, viene portata nel punto C contro le forze del campo
elettrico si compira un lavoro positivo

L=U=¢qV=20-10°%Cx254-10V =5.1J

Calcoliamo ora l'energia potenziale della configurazione con le tre cariche

| (9% @193 | 8
U:UQGG"A +UQ'1Q.3 +£’FQ'2¢13 = 47e T+T+T
mEo A G
le cariche sono tutte uguali, per cui

1 2 9./242 2 Nm?2 (1+2v2) x (20-10-%0)°
U= R o Y (1+2v2) =899-10° =2 x (L+2va)x( )
dmeg \ d d 4dwegd C? 0.02m

=6.9J

Now, we calculate the following double integration, for Q = 2.54 * 10° V. We have:

1/(10735) * (1.6156351)*10 * 1.08643 * integrate integrate [(2.54) *(10°6)]

1 - "
— +1.6156351%° 1.DSﬁ43]UE.S4 10%::}.—;1:
1035

Result:

1.67201% 1077 &*

Plot:
¥y
25102 |
2 x10-27 |
Ll ; (% from-12tc 1.2}
w1027 |

1.0 0.5 ) 0.5 1.0

result that is very near to the value of the mass of the proton.

or:

1/(10721) * (3) * 1.08643 * integrate integrate [(2.54) *(10°6)]
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1 » -
o 1.D8543]UE.54 108 dx| dx
1021

Result:

4.1393 %1071 &°

Plot:

6.x10715]

5.x10715 |

4.x10715 )

;j_ﬂ[]—l.?; [ from=1.2t01.2)

2, x10"15 |
10715 |

-1.0 -05 ' 0.5 1.0

Finally, taking into account also 8Pigreco, we have:
1/(10753) * (1.6156351)"128 * 1.08643 * integrate integrate [8*Pi*(2.54) *(1076)]

1 - »
P 1.6156351 %" 1.DE&43][JS;¢ 2.54 . 10% dx|dx

Result:

1.6143x1071° ¥°

Plot:

2 10719 |

1.5x10719 |
[ [ from=1.2t01.2)
1.x10719 |

-1.0 -0.5 ' 0.5 1.0

result that is very near to the value of the electric charge of the positron.

Now:

=L [[[ x| ar| +&c)dxdya’z+—[[{f{ gl ¢.)dwdydz. (7)

R 'l’ Ol W W

We note that é + é = é = 0,079577471545947. Now we calculate the following

double integral:
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1/(10726) * (1.645)"e) * 1.08643 * integrate integrate [(1/(8P1)+(1/(8P1)]

1 . S
o 1.645" 1.08543]“[—+—]Jx].1x
1028 JABr 8

Result:

1.67248 x 10727 x?

Plot:
¥

2.5%107% |

2.%107 |

(x from=1.2t01.2)

1.0 0.5 ) 0.5 1.0

result that is very near to the value of the mass of the proton.

and:

Q = gl—&fff;{ (22402 +c?) de dy dz (14)

We have the following double integral:

1/(10726) * (1.63358)"4) * 1.08643"2 * integrate integrate [(1/(8Pi)]

1 <y
—~_ .1.63358° 1.D854321[J—dx]dx
1028 8

Result:

1.67223% 10777 &°

[ from=1.2t01.2)
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result that is very near to the value of the mass of the proton.

or:
1/(1073) * (0.6359)7(1/-0.8) * 1.0864372 * integrate integrate [(1/(8Pi)]

1 : vl
—— . 0.6359°1%% .1 086437 [U —dx}dx
1013 JW Br

4.13521 %107 1% &2

6,107
\‘x 5.x10715]

4. =107

3. %10 (x from=1.2t01.2)

Now:
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If o, o, are the surface-densities on the opposed surfaces of a
solid sphere of radius , and a spherical hollow of radius 4, then
v il A—B - B—4
e e S U e o e S
1f E, and E, be the whole charges of eleetricity on these surfaces,
A—B

a—_-ija_—l = —Eg.
al

The capacity of the enclosed sphere is thercfore R
If the outer surface of the shell be also spherieal and of radius ¢,

then, if there are no other conductors in the neighbourhood, the
charge on the outer surface is

E:-l = He.
Hence the whole charge on the inner sphere is

B = 4nd’cy =

. ab
| = (4= B),
and that of the outer

E,+E, = &

b—a

(B—4)+ Be.

If we put 4 =, we have the case of a sphere in an infinite
space. The electric capacity of such a sphere is a, or it is nu-
merically equal to ite radius.

The electric tension on the inner sphere per unit of area is

1 8 (4—0B)°
=87 a (I—a)f

The resultant of this tension over a hemisphere is wa%p = F
normal to the base of the hemisphere, and if this is balanced by a
surface tension exerted across the circular boundary of the hemi-
sphers, the tension on unit of length being 7} we have

F=32zal
0P (4—B)p E?
HEIIQE F—"é“w-—‘é";—zj
52 {A_B)'l

= 167 _(ﬂ—é)z_ )

92



If a spherical soap bubble 1s electrified to a potential A, then, if
its radius is a, the charge will be Aa, and the surface-density
will be 1 4

= — —

47 @

The resultant electrical force just outside the surface will be 47 ¢,
and inside the bubble it 1s zero, so that by Art. 79 the electrical
force on unit of area of the surface will be 2702, acting outwards.
Hence the electrification will diminish the pressure of the air
within the bubble by 2o, or

1 42
87 o

But it may be shewn that if 7' is the tension which the liquid

film exerts across a line of unit length, then the pressure from

within required to keep the bubble from collapsing is 2 EI’ . Ifthe

electrical foree is just sufficient to keep the bubble in equilibrium
when the air within and without is at the same pressure
A2 = 167al.

Now, we analyze

8 (4—By

~ 167a (b—a)?

Where Aa=1.602 * 10" fora= 1 and B =-1.602 * 10™"” where A and B are the
potentials, a =1 and b = 2 are the radii of a solid sphere and a hollow sphere
respectively. We have: T = 8.16911766 * 10™° which represents the electric tension.
We calculate the following double integration:

(10711) * ((2*1.6305*(Pi)/(e)) * 1.08643 * integrate integrate [(8.16911765)*(10/-
39)]

10“[[2 1.6305 f] 1.03543[{[% .-;x]dx]
&

Result:

1.67245 x 10727 ¥?
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25x10" |

i
\ 2.%10 —’_ /

[ from=1.2t01.2)

result that is very near to the value of the mass of the proton.

Now, for:

./12 — 16'!‘]'(!11.

We have A”=4,1062464 * 10°7; A = 6,408 * 10"°. We calculate the following
double integral:

1/10 * ((4Pi)/(e)) * 1.08643 * integrate integrate [(6.408)*(10-19)]

1 4 i 6408
— «— «1.08643 I[[ dx] dx
10 JW

£ Dlo

1.6092x1071° »7

\ 2.%10 "-‘é :/J

(# from=1.2t01.2)

t x
1.0 0.5 0.5 1.0

result that is very near to the value of the electric charge of the positron.

Now, let's take the potential of the previous example Q =2.54 * 10° V
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The quantity of electricity on a planetary ellipsoid maintained at
potential 7 in an infinite field, is
y
Q=c—
3 K

’ (37)

where ¢ sec y 1s the equatorial radius, and ¢ tan y is the polar radius.
If ¥ = 0, the figure is a circular disk of radius ¢, and

V :
o = .n-ﬁ ‘\/0—_—-_—‘2 ._TZ’ (38)
Q=cr. (39)
;

From (39), we obtain, putting c = 1: Q= 2.54 * 10°/1,5707963... = 1617014,22181

We calculate the following double integral:

(1/((1072)* (24*e*26*Pi)) * 1.08643 * integrate integrate [1617014.22181]

1
10% (24 ¢ -26m

1.08643 J U 1.61?01422181):1[)6.;{36] dx

1

1 " "
o [l.DBﬁﬁlﬂj[[1.51?D1422181x1D6Jx]dx]
102 24¢-26m 3

Result:

1.64838 x°

Plot:

(o from=1.2t01.2)

result that is very near to the value of the mass of the proton.

From (38) forc =5 ed r=3, we have: 6 =2.54 * 10°/9.8696044 * 4 = 64338,95
and Q=8085071,109

We calculate the following double integrals:
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1/(10734)* (5*e*11*P1)) * 1.08643 * integrate integrate [64338.95]

1 " "
Bl 1.D8643J[j 64338.95 dx| dx
1034

Result:

1.64154 % 10727 »?

Plot:
¥y
2.5%10 |

2.x10-3 |

5 10 I: - 2t 1.2
[x from =1.2 tc &

1.%107 |

B 103 |

-1.0 -0.5 ) 0.5 1.0

1/(10736)* (4*e*11*Pi)) * 1.08643 * integrate integrate [8085071.109]

1 n »
— (4e~11m~1.08643 J[J 8.085071109 x 10° d’x] Fes

Result:

1.65026% 1077 °

Plot:
¥
2510~ |
i
2. %1077 |

1.5x107 7 |

| (x from=1.2t01.2)
1.x107 77 |

= |

g 10

-1.0 -0.5 ) 0.5 1.0

result that is very near to the value of the mass of the proton.

The quantity of electricity on an ovary ellipsoid maintained at a

potential 7 in an infinite field is

o
=0 44
Q . (44)

If the polar radius is 4 = ecot £y, and the equatorial radius is
B = ¢ cosec /i v,

A 5 Je
y =log &% “é’_ﬁ; . (45)
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We recall that from the mathematical point of view, a reference ellipsoid is usually an
oblate (flattened) spheroid whose semi-axes are defined: equatorial radius (the major
semi-axis a) and polar radius (the minor semi-axis b).

For A =3 and B =5, we have:

Ln((3+sqrt(-16))/10)
lag[l—lcl {3 - u"j]]

-0.6931471805599453094172321214581765680755001343602552541... +
0.9272052180016122324285124629224288040570741085722405276...

(0.92729521800 i)

-0.859876421325667524

y=-1,5530236 and forc =1,V =2.54 * 10°
Q=1635519,2541826151257456744379158 = 1635519,25

We calculate the following double integral:

(1.7323726*10"-6) * 1.08643"2 * integrate integrate [1635519.25]
(sqrt(3)*107-6) * 1.08643"2 * integrate integrate [1635519.25]

1.7323726 % 107% lﬂ86432J({f.LﬁBSSlQEleDﬁdx]dx .

V3 o .
1 . 1.086432 ({{]"53551925xlﬂﬁdx]dx
1,:,5 o L

1.67213%°

1.67182 x°

result that is very near to the value of the mass of the proton.
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Plot:

(x from=1.2t01.2)

1.0 -0.5 i 0.5 1.

We now analyze, always for V =2.54 * 10° and a=1:

If the sphere instead of being at potential zero is at potential 7,
we must superpose a distribution of clectricity on its outer surface
having the uniform surface-density

;T
i .

T 4d7a

We have that the uniform surface-density”, is: o =(2.54 * 10°)/ 41 =202126,77.
We calculate the following double integral:

(1/10724) * 4/e * 1.08643 * integrate integrate [202126.77]

_4 » -
i 1.D8643][1202125.??4x}dx
[

Result:

1.6157%1071° »°

Plot:

(o from=1.2t01.2)

-1.0 -0.5 ' 0.5 1.0

result that is very near to the value of the electric charge of the positron.
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Distribution of Eleetricity on Three Spherical Surfaces whick
Intersect at Right Angles.
169.] Let the radii of the spheres be a, 8, y, then
=/BE432, CA=~7% +a®, AB=+a®+p"%

Let PQR, Fig. 13, be the feet
of the perpendieulars from 4BC
on the opposite sides of the tri-
angle, and let O be the inter-
section of perpendiculars,

Then P 1s the image of B in
the sphere y, and also the image
of C in the sphere 8. Also O is
the image of P in the sphere a.

Let n::_ha,rg'es a, B, and y be
placed at 4, B, and C.

Then the charge to be placed

Fig. 13. at P 1s

VB o 332 + 7 /\/ i
ﬁz ¥
Jﬁzy2+y2a2 +aZ Bl
Also 4P = 7 e » so that the charge at O, con-
+F
sidered as the image of 7, is

afBy _ 1

S BEAE Al - 1 1 1
By +y e +a'p LA
- - 4

In the same way we may find the system of images which are
electrically equivalent to four spherical surfaces at potential umity
mtersecting at right angles.

If the radius of the fourth sphere is 8, and if we make the charge
at the centre of this sphere = &, then the charge at the intersection
of the line of centres of any two spheres, say a and g, with their
plane of interseetion, is 1

1 1
PR

The charge at the intersection of the plane of any three centres

ABC with the perpendicular from D is

1 .
-+ ]

1 1 1
?+:§5+-}3

99




Now we analyze the two equations of the electric charges puttinga =1, =2 and y
=3:

1
,\/1 i
EI'.E ﬁz
1

3]
1 1 1
?-l-?—l‘-?—g

We have the following two double integrals:

4

(1/(3*10718)) * 1.08643 * integrate integrate [-1/(sqrt(1+(1/4))]

1
1.08643
3 1018

~1.61955x 10717 »°

dx|dx

_ \/;

[ from=1.2t01.2)

result that is very near to the value of the electric charge of the electron.

(1/(2.826419*10726)) * 1.08643 * integrate integrate [ 1/(sqrt(1+(1/4)+(1/9))]

where 2.826 419 is the “Murata's constant” that is obtained by the following
asymptotic formula:

B p—1 log log x)
m{x)"" =C+0 ( ’
}Et e(p—1) log x

p:prime

C= 1 (1 —-]——>é2.827.

+
pprime (p = ]2
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1 1
1.08643 — — dx|dx
2.826419 - 10%6 \f

1+-+

b=
0l=

Result:

1.64736% 10727 &°

Plot:

(x from=1.2t01.2)

X

-1.0 -0.5 ) 0.5 1.0

result that is very near to the value of the mass of the proton.

In conclusion:

and the charge at the intersection of the four perpendieulars is
1

/\/1 1+]+1_-
ETETETE

(1/(2.826419%10718)) * 1.08643 * integrate integrate [1/(sqrt(1+(1/4)+(1/9)+(1/16))]

1 1
1.08643 dx|dx
2.826419 - 1018 \,—

1+

Bl=
e s
=

ml“

Result:

1.61079% 107 &*
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Plot:

2.x10719|

1510719 )
[ [ from=1.2t01.2)
110719

et

For 6 = 5, we obtain:

(1/(2.826419%10718)) * 1.08643 * integrate integrate [1/(sqrt(1+(1/4)+(1/9)+(1/25))]

1 1
1.08643 dx|dx
2.826419 - 10'# \/

1+

N
L s
a3

u1|"'

Result:

1.62367 %107 &°

Plot:

(# from=1.2t01.2)

-1.0 -0.5 ' 0.5 1.0

result that is very near to the value of the electric charge of the positron.

Now:
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When the sPheres are equal the charge of each for potential unity
1s s=o
= Es-l 28 23-— 28(25—1)
=a(l—3+4—3+&e),
= alog, 2 = 1.0986 a.

When the éphere 4 is very small compared with the sphere B
the charge on 4 is

2 s=w
B =2 2 - approximately ;

b “is=1 g%
2 p2
W oy
or a 6 &
The charge on B is nearly the same as if 4 were removed, or

-E'b=5'

The mean density on each sphere is found by dividing the charge
by the surface. In this way we get

Recall that in electromagnetism the density of electric current is the vector whose flow through a
surface represents the electric current that passes through that surface A

W, =
Te = Yna® " 24b
- B i
7= 42T and

'172
c, = ?{Tb.

Hence, if a very small sphere is made to touch a very large one,
the mean density on the small sphere is equal to that on the large

2
sphere multiplied by %, or 1.644936.

We have that: fora=1 and b=2, 6,=0,065449 o,=0,03978873 ed E, =
0,822468

We calculate the following double integral on E, =0,822468

(16P1)/(5¢) * 1.08643 * integrate integrate [0.822468]
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Input interpretation:

15 x .
2 1.08643 ju 0.822468 dx] "

[

Result:

1.65233 »°

Plot:

(o from=1.2t01.2)

and then on o, = 0,065449:
5*(3P1) 1.084 * integrate integrate [0.065449]
5(3m/(1.084 f[fn::n.n:n55449 ax) ax)

Result:

1.67164x°

Plot:

(x from=1.2t01.2)

and on o, = 0,03978873
(24P1) 1.08643 * integrate integrate [0.03978873]

(24 1)~ 1.08643 JU 0.03978873 d'x] o

Result:

1.62964 x*
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Plot:

(o from=1.2t01.2)

result that is very near to the value of the mass of the proton and to the electric charge
of the positron.

Now:

Now let us consider the sphere as divided into two parts, one of
which, the spherical segment on which we have determined the
electric distribution, we shall call the dow/, and the other the
remainder, or umoccupied part of the sphere on which the in-
fluencing point @ is placed.

180.] We have now only to suppose p+p"= 0, and we get the
case of the bowl maintained at potential 7 and free from external
influence.

If o is the density on either surface of the bowl at a given point
when the bowl is at potential zero, and is influenced by the rest
of the sphere electrified to density p, then, when the bowl is main-
tained at potential 7, we must increase the density on the outside
of the bowl by p’, the density on the supposed enveloping sphere.

The result of this investigation is that if /' is the diameter of
the sphere, a the chord of the radius of the bowl, and » the c¢hord
of the distance of P from the pole of the bowl, then the surface-
density o on the inside of the bowl is

2_ 42 }‘Taz
- =1 »
o 2n2f{/\/a2—?'3 e az—rﬁ}
and the surface-density on the outside of the bowl at the same
point is

cr+21'rf

Thence, for f=8,a=3,r=2 and for V=2.54 * 10° volt , we have:
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o =1124399,10468

(2.54 * 10%)/2*87> [V(64 - 9) / (9 —4) -tan™ (64 —9) /(9 —4)] =

= (2540000/157,91367) * [3,31662479 —tan™ (3,31662479)] =

= 16084,7379457 * (3,31662479 — 73,22134511) =

=16084,7379457 * (- 69,90472032) = — 1124399,107514

Now we calculate the following double integral:

(1/(5*%262*34e*P1)) * 1.08643 * integrate integrate [— 1124399.107514 ]

where 262 = 233 +21 + 8, 5 e 34 are Fibonacci’s numbers

1.08643 [[[4.12439910?51@ lDE‘e!x] g
526234 (em o L 1

~1.60582 x°

(x from=1.2t01.2)

result that is very near to the electric charge of the electron.

From:

Maxwell, James Clerk (1873), A treatise on electricity and magnetism Vol 11,
Oxford : Clarendon Press
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When X islessthan L, I=-M

When X is equal to L, T

cairo lo

M

ol b bi'r'"i

When X is between L and D,

; waf3 X L? L2 2 X: L2
=455+ (=) A/ =554/ - TS
When X is equal to D,

_arf2 1 L%
When X is greater than D,

o 1X 1 1D (D=L} JX L, ;
I=MY5+5-53* exp —exm % ~3XD+19}.
When X is infinite, I=M,
When X is less than L the magnetization follows the former

law, and is proportional to the magnetizing force. As soon as
X exceeds L the magnetization assumes a more rapid rate of
increase on account of the molecules beginning to be transferred
from the one cone to the other. This rapid increase, however,
soon comes to an end as the number of molecules forming the
negative cone diminishes, and at last the magnetization reaches
the limiting value M.

If we were to assume that the values of L and of D are
different for different molecules, we should obtain a result in
which the different stages of magnetization are not so distinctly
marked.

The residual magnetization, I, produced by the magnetizing
force X, and observed after the force has been removed, is as
follows:

When X is less than L, No residual magnetization.
When X is between L and D,

; L* L?
F=M(1-1) (1-x3)-
When X is equal to D,
I'=M(1—

VAR
%)
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When X is greater than D,

- T T IR [ L%
[_EMlI—X——D-J-\/I—Tﬁ/\/I-F} :
When X is infinite,

, 1 Lzlz
B I = ZM{I + “ﬁ.ﬁ"af "
If we make
M=1000, L=3  D=s5,
we find the following values of the temporary and the residual

#imadian

Magnetizing Tempo Reaidual
Force. Magnetization, Magnetization.
X I ¥
0 0 0
1 133 0
2 267 0
3 400 0
4 729 280
5 837 410
6 864 4835
7 882 537
8 897 575
© 1000 810

For X=5,M=1000,L=3 ¢ D=5, we have I’ =409.6 and 1 =837 (here are all
magnetic forces and magnetizing force, concerning the induced magnetism)

We calculate the following double integral:

(0.6629)"12 * 1.08643 * integrate integrate [409.6 ]

0.6629'2 . 1.08643 ﬂfﬂrog.ﬁi:x]iu

1.60217 x°

(o from=1.2t01.2)

0.5 1.0
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and:

((0.6453)"8)* 1/4 * 1.08643 * integrate integrate [409.6]

1 " "
0.64538 2 1.08643 f[[arﬂg.ﬁ.-;x]i:x

1.6725 x°

(o from=1.2t01.2)

result that is very near to the value of the mass of the proton and to the electric charge
of the positron.

For I =837, we have:
(0.62458)"12 * 1.08643 * integrate integrate [837]

0.62458'2 . 1.08643 “J 83?&1‘]&’3{

1.60234 x°

[ from=1.2t01.2)

and:

(0.6497312)"13 * 1.08643 * integrate integrate [837]
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0.6497312%% . 1.08643 “ fsa?ﬁsx]isx

1.672 x°

(x from=1.2t01.2)

1.0 0.5 0.5 1.0

result that is very near to the value of the mass of the proton and to the electric charge
of the positron.

In the case of air, the electrical permittivity is &, = 1,000 59, approximated to 1 which is the value
assigned to the relative dielectric constant in vacuum. Air is the only physical medium that is in fact
assimilated to empty space. Normally the electrical permittivity is indicated with the symbol €, and
its value is usually written as a product € = &, g of the relative permittivity ¢, of the permittivity of
the void gy also called dielectric constant of the vacuum. The dielectric constant of the vacuum or
electrical permittivity of the vacuum is the characteristic electric permittivity of the vacuum, in
which the electrical susceptibility is null and there is no polarization phenomenon. Its value is:

gg = 8,85418781762-10 ¥ F/m
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626.] Table of Dimensions.
# Dimensions in
lectrostatic  Electromagnetic
Symbal. System. System.

Quantity of electricity . ... e [L¥IM¥T-1] [LiM3)
Line-integral of electro-
B¢ ke =
motive intensity } o B [LRTT] (LR,
Quantity of magnetism -
Electrokinetic momentum {»
of a circuit

. {”;‘} [+ M) [L} ME T-1].
Electric current C ;

...... i ME -2 ¥ ME P
Magnetic pot.ent.ial} {Q% LT [TM T

Electrie displacement 3 g _
Surface-density } coee D [LEMITY] [LE M)

Electromotive intensity . . . . €& [L-¥M}¥T-'] [LE M} T-2]
Magnetic induetion . . .. .. B [L-tMY] L~} M3 7-1].
Magnetic force . . . .. ... . $ [LAMAT-% [L¥MiT-].
Strength of current st a point G [L~¥MiT-7] [L-E M3 7).
Vector potential . . .. . ... 9 LMY [LE MET-1).

627.] We have already considered the products of the pairs of
these quantities in the order in which they stand. Their ratios
are in certain cases of scientific importance. Thus

Electrostatic Electromagnetic

Symbol. System. System.
2%
%, = capacity of an accumulator . . ¢  [L] I:% ;
coefficient of self-induction T2
£ ={ of a circuit, or electro- } L [—#] [L].
¢ . . L
magnetic capacity
D _ ( specific inductive capacity } E [0] [_1__‘2
[Ch { of dielectric ’ L"’J
D . . . i
H= magnetic induetive capaeity . . p TT‘] [o].
L = resistance of a conductor. . . . R [ﬁ] [&C',] .
& _ ( specific resistance of a L?
@*{ substance } Byef [T] [T]
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Esercizio 8

Si osserva che una particella di carica g=+e con velocita v=3 -10° m/s descrive una
traiettovia di raggio R=0.3 m in un campo magnetico B=0,001 T ortogonale alla traiettoria
della particella. Calcola la massa della particella.

Esercizio 8:soluzione

Una particella di carica g e velocita vin presenza di un campo magnetico B é soggetta ad
una forza

F=qvxB

Hl moto della particella avverra conformemente al secondo principio della dinamica
F=ma

Nel nostro caso essendo B uniforme ed ortogonale a v, il moto della particella ¢é civeolare
uniforme, Si ha quindi con riferimento all intensita dei vettori

2
v :
ma=gvB ed a= " da cui

_RgB_16-107".3.107".107*
v 310

=16-107" kg

m

chiaramente, si tratta di un protone.

Magnetic Energy.

1632.] We may treat the energy due to magnetization in a way
similar to that pursued in the case of electrification, Art. 85. If
4, B, C are the components of magnetization and a, 8, y the
components of magnetic force, the potential energy of the system
of magnets is then, by Art. 389,

_;fff(4q+ﬂﬁ+0y)dmdydz, (6)

+#L 4 3 o B s

the integration being extended over the space occupied by mag-
netized matter. This part of the energy, however, will be
ineluded in the kinetic energy in the form in which we shall
presently obtain it.

633.] We may transform this expression when there are no
electric currents by the following method.

We know that da db de

'a'—x'f-@-l'@:ﬂ. (7)
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Hence, by Art. 97, if
dQ dQ a9
a=—%.1 ﬁ:—d—yl ‘}’—""d"';" (8)

as is always the case in magnetic phenomena where there are no

S f f (@a+bB+cy)dwdyds = o, )

the integrgl being extended throughout all space, or

fff{(a+41r.&)a+ (3+47B)B+(y+47C)y} dudydz = 0. (10)
Hence, the energy due to a magnetic system

_fof(ﬁa+BB+Cy)dxdydz=;—wf/f(a2+,ﬂ2+)f2)dxdydz,

= 'sl“ﬂfff@m“’@dz' (11)

We have the following value for the magnetic force: B=10>T = 0,01 . Thence, for
the normal triple integral, we obtain:

1 « Ao
= ( I (D':”:'Dl JJCJ__}’JZ
BxJ J .

3.97887x10 % x yz
We calculated the following double integral of the result 3,97887 * 10 :

(1/10721)(0.768225) * 1.08643 * integrate integrate [3.97887*10"-6]

1 o 3
—— «0.768225 . 1.08643 I[[B.Q?SS? lD'E’dx] dx
1021 o

1.66043% 10727 &°

(# from=1.2t01.2)

0.5 1.0
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result that is a good approximation to the value of the mass of the proton.

We note that 0,768225 is T'(1/4)/( 21*™*); one of four values found by Ramanujan!
Indeed, we have that (from: “Theta-function identities and the explicit formulas

for theta-function and their applications” - Jinhee Y1 -
https://core.ac.uk/download/pdf/82662862.pdf)

23,."-1-

My

hys=

) 23/4 1,681792830...
that is equal to 3 =
V2+1  1,189207115..41

= 0,76822 ...

We can write the expression also as follow:

(1/10°21)((27(3/4)/(27(1/4))+1)) * 1.08643 * integrate integrate [3.97887%10°-6]

1 P

104 g 4

1.08643 (”3.9?33? m"‘ﬁ;x]ﬁ;x

1.66042 x 10727 x?

From the same integral, multiplied 10", the constant 1,08643 and 0.61803398” i.e.
the square of the golden ratio conjugate, we obtain:

(1/(10°21)) * 1.08643 * (0.61803398)"2 * 1/(8Pi) * integrate [0.0001] dx dy dz

l l " " -
— .0.61803398° - 1.08643 » — [ [ (D.Gﬂﬂle!xdydz
1041 8rJ J.

1.65115%x10 " x ¥z

A result very near to the mass of proton.
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The equations el e S

S
!
Y
!
3
2

(8)

de " dy — " dz !
which connect the components F, G, H of the vector-pote'ntlal
due to the current-sheet with the scalar potential Q, are satisfied

if we make dep’ G:—ii——P-, Heo (9)
dy dx . '
We may also obtain these values by direct mtegra,tlox.l, thus
for F' {we have by Art. 616 if u is everywhere equal to unity},

Uy, [flAdd ., .,

_ [® g fﬁ_l ‘ot

Since the integration is to be estimated over the infinite plane
sheet, and since the first term vanishes at infinity, the expression
18 reduced to the second term ; and by substituting

dl, d1
dyr T dyr’
and remembering that ¢ depends on 2’ and y’, and not on z, y, z,

we obtain d ¢ ., .,
F= &—:-yff?—dw dy’,
apP

= .CTZ;, by (1).

If @' is the magnetic potential due to any magnetic or electrie
system external to the sheet, we may write

P = —fsz'dz, (10)
and we shall then have
, _dP’ ,_ dP ,
F._@, G"'_dw’ H=o0, (11)

for the components of the vector-potential due to this system.
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Now, we have the following potential Q” = 2.54 * 10° volt

Now, we calculate the following integral from 0 to 7, multiplied 10° and the
constant (1,08643)” :

1/(10726) * 1.086433 * - integrate [2540000] z,[0, Pi]

1 Y
. 1.08643° [—1}[125%0003“
10 Jo

~1.60734x 10"
And also with the following double integration, we obtain:

1/(10725) * 1.08643"3 * -( integrate integrate [2540000])

1 » n X
= 1.08643> [—1}[[ [2540DDD4x]4x

~1.62858x 10717 »°

(x from=1.2t01.2)

p

result that is a good approximation to the value of the electric charge of the electron.
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If Q, is the magnetic potential due to external magnets, and

if we write P _ fﬂz dz, (21)
the component of the magnetic force normal to the disk due to
the magnets will be A2 P’
Ye = Tz (22)
We may now write equation (18), remembering that
Y =" + V2>
o d*Q d3Q d* P
Trde “dod2T Y dF (23)
Integrating twice with respect to 2, and writing R for %T ’
d d
(R—d—z—w(_iﬁé)Q:wP’. (24)

If the values of P and @ are expressed in terms of 7, the dis-
tance from the axis of the disk, and of £ and { two new variables
such that

2 = +§e, 2§=z—§6, (25)
w

[N

equation (24) becomes, by integration with respect to ¢,
w
Q= f P d¢ (26)

669.] The form of this ekpression taken in conjunction with
the method of Art. 662 shews that the magnetic action of the

currents in the disk is equivalent to that of a trail of images of
the magnetic system in the form of a helix.

We put that the disk have o = 0,3456 rad/s , R = o/27 = 0,1591549 for 6 = 1 and that
P’ 1s equal to:

-integrate [2540000] x, [0, P1]

- (32540 000 xdx = -1270000 7% =~ -1.2534 % 107
Jo
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- {254DDDDI£EI— ~1270000 x*

(we take the value of the indefinite integral)
Thence, Q is equal to:

integrate [((0.3456* (-1270000))/(0.1591549)]

(‘ 0.3456 (-1270000)
0.1591549

dx = -2.75777x10% x

Now, we calculate the following integral double:
1.0864372 * integrate integrate [((0.3456* (-1270000))/(0.1591549)]

(1/10°25) * 1.08643/2 * integrate integrate [((0.3456* (-1270000))/(0.1591549)]

1 o [{ [0.3456 - (-1270000)
— . 1.08643 H[

dl’]dl’
1023 0.1591549

~1.62754 % 10717 &7

1.0 0.5

e 102 |
/ w107 19|
1.5%107 19 |

/ 2.%10-19 | \

¥ from=1.2t01.2)

It is very significant the result that is a value very near to the charge of the electron.

Now:
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If the whole number of windings is &, the number between
the pole and the polar distance 6 is 3 N sin20.

The windings are closest at latitude 45°. At the equator the
direction of winding changes, and in the other hemisphere the
windings are in the contrary direction.

Let y be the strength of the current in the wire, then within

the shell 4 2
Q=— %Nyg—z-(% cos?g—1}).

Let us now consider a conductor in the form of a plane closed
curve placed anywhere within the shell with its plane perpen-
dicular to the axis. To determine its coefficient of induction we

have to find the surface-integral of — %&3 over the plane bounded

by the curve, putting y = 1.
4
Now .Q,=-—572.N{z2—%(w2+y2)},

aQ 87
and —_— _(_i; = 5_(1,2 N Z.

Hence, if S is the area of the closed curve, its coefficient of

induction is

8w
M= B—“&ENSZ.

If the current in this conduetor is 3, there will be, by Art. 583,
a force Z, urging it in the direction of 2, where
dM 8«
Z=yy —— = —— 4
rY dz 502 NS 124

and, since this is independent of z, ¥, 2, the force is the same in
whﬁatex_rel; part of the shell the circuit is placed.

The radius of the sphere is a, N is the whole number of windings, S is the area of the
closed curve and y’ is the current. Ify’ = 0,5 N=496 S=1*5"=251 a=8, we
have:

7 = 5% . 496 - 251+ 0,5 = 1529,788

Now, calculate the following integral:

(1/10729)*13/(21P1) * 1.08643 * integrate integrate [1529.788]
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l 13 - - X
— .1.08643 H(lSZ?.?SS;Er] dx
102% 21x N

1.63748 % 107%7 &*

result that is a good approximation to the value of the mass of the proton.

Now:

683.] If the current is a function of 7, the distance from the
axis of z, and if we write

x=7rcosd, and Yy = rsind, (4)

and B for the magnetic force, in the direction in which 6 is

measured perpendicular to the plane through the axis of 2, we

have as 1 1d
_ - R 5
rw =0yt r _frdr(ﬂr)° ()

If C is the whole current flowing through a section bounded
by a circle in the plane xy, whose centre is the origin and whose

radius 18 7, o =fr21r7°'wd7” = 187 (6)
0

If magnetic force B=0,03T r=5, we have that C = 0,075. We calculate the
following double integral:

4P1"2 * 1.08643 * integrate integrate [0.075]

477 .1.08643 [[[O.D?SM]JJ(

1.6084 x°
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Plot:

(o from=1.2t01.2)

ForB=3 and r=5,wehave C=7,5 and

(1/1072) * (4Pi"2) * 1.08643 * integrate integrate [7.5]
1 2 " .

3 (47) 1.D8543]U 7.5 dx)dx

Result:

1.6084 x°

Plot:

(o from=1.2t01.2)

X

1.0 0.5 ' 0.5 1.0

result that is a good approximation to the value of the electric charge of the positron.

Now:
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The vector-potential H, the density of the current w, and the
electromotive intensity at any point, must be considered as func-
tions of the time and of the distance from the axis of the wire.

The total current, C, through the section of the wire, and the
total electromotive force, E, acting round the circuit, are to be
regarded as the variables, the relation between which we have to
find.

Let us assume as the value of H,

H=8+T +Tr*+&ec.+ T, r*+..., (1)
where S, T, T), &e. are functions of the time.

Then, from the equation

d*H 1dH
o T e = 4w, 2)
we find —mrw =T, +&c. +n2T, r2n24 (3)

If p denotes the specific resistance of the substance per unit of
volume, the electromotive intensity at any point is pw, and this
may be expressed in terms of the electrie potential and the
vector-potential H by equations (B), Art. 598,

d¢ dH
==~ g
/ T daT
or —pw=%§+§+%+C—il—#frﬂ+&c.+d—t“r2"+.... (5)
Comparing the coefficients of like powers of » in equations
S\ twEt @) (
w1 dT
SR @
w1dTl,_
Sl )
: ds a¥
Hence we may write P R (9)
xdl = 1 d*T
T0= T’ T1=—p“(7t“,... T"—-p—wdt”o (10)

122



690.] To find the total current C, we must integrate w over
the section of the wire whose radius is «,

0= 2w/avjrdr. (11)
J0

Substituting the value of 7w from equation (3), we obtain
C =~ (Tya?+&e.+nT,a?"+...). (12)
The value of H at any point outside the wire depends only on
the total current C, and not on the mode in which it is distri-
buted within the wire. Hence we may assume that the value of
H at the surface of the wire is AC, where A is a constant to be
determined by calculation from the general form of the circuit.
Putting H = AC when r = a, we obtain

AC =8+ T,+T0*+&ec.+T,a*"+.... (13)

If the density of the current is 2 * 10° A/m? , the radius a = 3, we obtain:
2P1 * integrate [2*1076] x, [0, 3]

] B
2 ( 2000000 xdx = 18000000 7 = 5.6540:%10°
<0

We calculate now the following double integral:
(1/10732)(1/48(e"13*256)) * 1.08643 * (2P1) * integrate integrate [2*1076]

E o :
o7 [4_8 (e 256]] 1.08643 (27) [[ [2 10° dx) dx

1.61068% 107 &*

! / from=1.2t01.2)

result that is a good approximation to the value of the electric charge of the positron.
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We have take the following example:

JZLZ%ZQXIOG _4/”.?2
S 107 m”

3.1 Corrente elettrica e densita di corrente

Consideriamo il moto non accelerato e con velocita piccole rispetto a quella della luce nel vuoto
di un insieme di particelle dotate di carica elettrica. In tali condizioni possono ritenersi valide le
leggi dell’elettrostatica. Supponiamo, per semplicita, che il moto avvenga attraverso un conduttore
filiforme; esaminando una sezione S di tale conduttore, osserveremo che in un tempo df una

quantita di carica dg attraversa la sezione considerata. Si definisce ——
55 I ~— T «3
pertanto 'infensita di corrente I come: —
—_—
d i
4 - —_— —_—— =
= g —_— —>

e si misura in ampere (4), dove 1 A=1C/1s . Se con un opportuno dispositivo si stabilisce ai capi
del conduttore una differenza di potenziale costante nel tempo, a regime s1 osserva che 1l conduttore
¢ sede di una corrente costante che prende il nome di corrente stazionaria.
Una descrizione del moto delle cariche attraverso 1'uso della sola
mtensita di corrente risulta incompleta poiché tale grandezza non
fornisce alcuna informazione riguardo la direzione ed il verso del flusso
delle cariche. Allo scopo di completare questa descrizione consideriamo
un conduttore di sezione S all’interno del quale il numero di portatori
liber1 di carica g per unita di volume sia . Sia ¥, la velocita media di

tali cariche (velocita di deriva). Per stabilire la quantita di carica dq che durante I'intervallo di
tempo dr attraversa una sezione ds , consideriamo un volume dr di base ds, e altezza v, dr . dove
ds, . par1a dscosd, ¢ la proiezione della sezione ds perpendicolarmente alla direzione d1 v, e 9 ¢
I’angolo tra ds e v,. La quantitd di carica che attraversa la sezione ds nel tempo df & pari alla
carica contenuta tra un tempo 7 e il tempo ¢ +d7 nel volume dr | cioe:

dq=ngdr=nqv,dtds, =nqVv,-ds dr . (3.1)
Sia:

J=ngv,, 3.2)

allora, dalla (3.1) segue:
dl :d(d—q) =J.ds:
drt

quindi, integrando sulla sezione S dell’intero conduttore, si ha:

I:Ij-d§.
.

Pertanto. il flusso del vettore J attraverso la sezione S fornisce il valore dell’intensita della corrente

attraverso la superficie considerata: il vettore J prende il nome di densita di corrente.
Nei metalli le cariche associate alla corrente sono gli elettroni, cosi la carica che compare nella
(3.1)éparia —e:

jzfen\a, (

[#%)
(%)
—

e in questo caso 1 vettori J e vV, sono antiparalleli. Ne segue che. qualora in un conduttore

metallico la corrente scorre in una certa direzione, il moto dei corrispondenti elettroni si esplica
nella direzione opposta.
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stabiliamo la velocita media degli elettroni nell‘ipotesi che partecipino alla conduzione due elettroni per atomo di rame.
Siccome una quantita di rame pari al suo peso atomico 4, . 63.5. espresso in grammi, contiene un numero di atomi

SR BT S i S megiges au v e B T LPL e PO J - TP I . S QE i UL, (P e P o0 | Upy (PO e g
Pall al niniero di :1’1'(1“5’({”.“[} IN - 6022 X‘[G - 11 HLLHICTO UL alULll G Talllc pel ullitd il VOIULIC © (a0 (dlld 1C1dZ1011C.

N 6.02x10% ; 3 : :
= 4 __p= );. P qalomt ¢ 94.x10° g/m":8.47K10'ga£‘011rfﬁr:’.

&

(=}

incui p indica la densita del rame. cosi la concentrazione di elettroni di conduzione vale:
n=2n,=169x10" eletnroni/nr’ .

La densita di corrente attraverso il conduttore &:

I 200 4 5
e —2x10° A/m’.
S 107 m- ’

cosi, dalla relazione (3.3) segue:

v 2 2x10° Afnr -=7.36x107 m/fs
" ne (1.69 %107 elettroni/m’ )x(1.60x107° C)

On the Potential Energy of two Circular Currents.

696.] Let us begin by supposing the two magnetic shells
which are equivalent to the currents to be portions of two
concentric spheres, their radii being
¢, and ¢,, of which ¢, is the greater
(Fig. 47). Let us also suppose
that the axes of the two shells
coincide, and that a, is the angle
subtended by the radius of the
first shell, and a, the angle sub-
tended by the radius of the second

shell at the centre C.
Let », be the potential due to
the first shell at any point within
Fig. 47. it, then the work required to carry
the second shell to an infinite dis-

tance is the value of the surface-integral

do,
M=— f-des
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To find M by Elliptic Integrals.

701.] When the distance of the circumferences of the two
circles is moderate as compared with the radius of the smaller,
the series already given do not converge rapidly. In every case,
however, we may find the value of M for two parallel circles by
elliptic integrals.

For let 0 be the length of the line joining the centres of the
circles, and let this line be perpendicular to the planes of the
two circles, and let 4 and a be the radii of the circles, then

M -_»JC [ € e,

the integration being extended round both curves.
In this case,
2 = A2+ >+ b*—24a cos (p—¢’),
e=¢—¢, ds=oad¢, di=Ad¢,

701.] TWO PARALLEL CIRCLES. 339
szz"f“ Aa cos(p—o)ddd¢’
Jo Jo ~A +ar+b*—24acos(p—¢)
= ——411«/A—a{(c—-—2-) F+ gE'} s
¢ %
o—_ 2V4a
V(4 +af+b?
and ¥ and £ are complete elliptic integrals to modulus c.

where

Thence, we have for A=8,a=2 and b =5 that ¢ =0,715541758... The value of the
potential M is

4nVAa ((0,7155418 — 2,79508478)F+2,79508478E) =

-50,2654824(-2,07954298F+2,79508478E) = 104,529231F — 140,4962848E

Putting E and F equal to 1, we have the following result: M =—35,967
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Now, we calculate the following double integral:

-((0.61803398*3)* (1/26 * 1.08643"P1)) * (integrate integrate [-35.967])

_[[D.EISGBBQS 3}[2—15 l.D8543’TDf[f—BS.Qﬁ'?dx]dx

1.66394 x*

(o from=1.2t01.2)

result that is a good approximation to the value of the mass of the proton.
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Coefficient of Induction of Two Parallel Circles when the
Distance between the Arcs is small compared with the
Radius of either Circle.

704.] We might deduce the value of M in this case from the
expansion of the elliptic integrals already given when their
modulus is nearly unity. The following method, however, is a
more direct application of electrical principles.

First Approximation.

Let @ and a +¢ be the radii of the circles and b the distance
between their planes, then the shortest distance between their
circumferences is given by

r = v+ b2
We have to find the magnetic induction through the one circle
due to a unit current in the other.

We shall begin by supposing the two circles to be in one
plane. Consider a small element ds of the circle whose radius is
a+c. At a point in the plane of the circle, distant p from the
centre of 3s, measured in a direction making an angle 6 with the

direction of &s, the magnetic force due to ds is perpendicular to

th plane and equal to 1

— sin 6 &s.
P

To calculate the surface integral of this force over the space
which lies within the circle of radius ¢ we must find the value

of the integral dm prig
288f f 1Snsedﬂdp,
61 19
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705.]  INDUCTION DUE TO A CIRCULAR CURRENT. 343

where 7, 7, are the roots of the equation
r?—2(a+c)sinr+c?+2ac = 0,

viz, 7y = (&+c)sin 6 + /(& +c)? sin?  —c?~ 2 a,
7y = (@ +c)sin 0— +/(a +¢)? sin* 0 —c? — 2 ac,
2+ 2ac
o .
and sin® g, = Txap

When ¢ is small compared to @ we may put
r; = 2a 8in 6,
T, = ¢ /sin 6.
Integrating with regard to p we have
b 2a
2 — 81n24) . sl =
Bsf log( S sin 6) sin6dé

61

g

2a . 0
zas[cos 0 {2—10g (—c— sin? 0)} + 2log tan 5]

0,
S8a
= 238 (loge - 2) » nearly.
We thus find for the whole induction
8a
M, = 47a(log, — —2).

Since the magnetic force at any point, the distance of which
from a curved wire is small compared with the radius of curva-
ture, is nearly the same as if the wire had been straight, we can
(Art. 684) calculate the difference between the induction through
the circle whose radius is @—c and the circle 4 by the formula

M,—M, = 4na {log,c—log,r}.
Hence we find the value of the induction between A and «
to be My, = 47ma (log,8a—log,r—2)

approximately, provided 7 the shortest distance between the
circles is small compared with a.
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From:

M, = 4ma(log, 8—} —2).

For a =35, ¢ =2, we have that the potential M, is 62,5637
Now, we calculate the following integral:

((0.61803398*2)* (1/26 * 1.08643)) * (integrate integrate [62.56370])

1 " " \
(0.61803398 2}[E l.DSﬁﬁl-BJ [[[62.563?(] d‘x] dx

1.61571 x°

(x from=1.2t01.2)

t x
1.0 0.5 0.5 1.0

result that is a good approximation to the value of the mass of the proton.
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(b)

Figure 20 (a) A toroidal solenoid. (b) A section of a toroidal solenoid, having radius R. which is much larger than the coil turns radius R..
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To find the form of a coil for which the coefficient of self-
wnduction is a mazimum, the total length and thickness of
the wire being given.

706.] Omitting the corrections of Art. 705, we find by Art. 693
L =4nnla (Iog8—66—2) )

where 7 is the number of windings of the wire, @ is the mean
radius of the coil, and R is the geometrical mean distance of the
transverse section of the coil from itself. See Art. 691. If this
section is always similar to itself, R is proportional to its linear
dimensions, and n varies as K2

Since the total length of the wire is 27an, o varies inversely
as . Hence

dn adR da dR
-77—2?9 and -a—-——z-I—e’
and we find the condition that L may be a maximum
8a |
log R =2

If the transverse section of the channel of the coil is eircular,
of radius ¢, then, by Art. 692,

R
log _C— — _741?r
8
and log-o — 18
C 4 9
whence @ = 3:22¢;

Thence, for the radius thatis R=2 and ¢=8, a=3,22¢=25,76 n=233, we
obtain:

L = 4xnia (Iogs—a'— 2)

L =21946658,87

Now calculate the following double integral:

(1/10734) * 10/(P1*2.279585) * 1.08643 * integrate integrate [21946658.87]

with the Bessel functions of the first kind 2,279585:
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1 10 &
1.08643 [[[2.19455588?x 107 dx|dx
10°*% x+2.279585 v o\

1.66469 x 10727 x?

[ from=1.2t01.2)

0.5 1.0

result that is a good approximation to the value of the mass of the proton.

and:

1/(1075) * 1.08643 *((1.205932)"0.25)) * integrate integrate [2.194665887*10"7]

1 o ,
s 1.08643 » 1.205932°%° f”z.19455538? m?dx]i:x

124.931 x°

[ from=1.2t01.2)

result that is a good approximation to the value of the mass of the Higgs boson.

Where 1.205932 is the “Polar angle of circumscribed cone”, acos(1/(®V3) that is
cos ' (0.35682209956264315256606828789977)

1.2059324882020269021467177266218...

(resultin radians)

Now return to:
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M=/\2ﬂf2"' Aa cos(p—o¢)de dg’
b ) TErateiasets=h)

=—~4m/A_a{(c—-02-) P+ gE}
. — 2+ Aa
V(A +ap+t?

and F and £ are complete elliptic integrals to modulus c.
From this, remembering that

where

aF _ _ 1 dE 1
= iiem E-a-an, i laop,
and that ¢ is a function of b, we find
dM T be ‘
&b = Al (3= E-2(1=d) F}.

If r, and 7, denote the greatest and least values of 7,
r?=(A+a)?+b% k= (A-a)+b%

and if an angle y be taken such that cosy = :;2-,

1
aM bsiny
7 Ry {2F,—(1 +sec’y) K, },
where F, and %, denote the complete elliptic integrals of the
first and second kind whose modulus is 8in y.

IfA=a,coty= 2%&’ and

%]lr)l: —2meosy {2F,—(1 +sec?y) £y},

The quantity — (fl—J—g represents the attraction between two

parallel circular circuits, the current in each being unity.

On account of the importance of the quantity M in electro-
magnetic caleulations the values of log (M /4w v/ Aa), whichis a
function of ¢ and therefore of y only, have been tabulated for
intervals of 6" in the value of the angle y between 60 and 90
degrees. The table will be found in an appendix to this
chapter.

We analyze some values of the following Table, where M is the potential energy:
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M

Table of the values of log PR
63°30°| 1
367 |1
42’1
1

1

5963782
5991329
6018871

48"11.6

54’ 1-6

046408
073942

For the values 1,5963782 and 1,6018871 we calculate the following integrals:
integrate [1.5963782] x, [0, 4Pi]

14.’
( "1.5963782 x dx = 126.045
Jo

46P1 * 1.08643 * integrate integrate [1.5963782]

46 7~ 1.08643 L(L(l.SQﬁE?SEdI]dI

125.319 °

! !
‘*-.H 150 | _f

100 | (x frem=1.2t01.2)
\ 50 | /
s

1.0 0.5 0.5 1.0

integrate [1.6018871] x, [0, 4Pi]

"4
f "1.6018871 x dx = 126.48
Jo

46Pi * 1.08643 * integrate integrate [1.6018871]

46 1+ 1.08643 ‘(1[‘(11.60133?14:‘:']43‘:

125.751 x°
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¥
b . F)
% 150 | 1
g
A !
1.0

' :
/ (x from=1.2t0c1.2)

0.5 1.0

result that is a good approximation to the value of the mass of the Higgs boson.

o |

50 |
-\-\__‘_._.__F..-." "'

0.5 ]

66° 0°|1.6651732
6’|1-6679250
127{1.6706772
18| 1-6734296
24’11-6761824
30°|1-6789356
36”11-6816891
42’ |1-6844431
48’ |1-6871976
54’ 7.6899526

We calculate the following integral:

integrate [1.6734296] x, [e, 4Pi]

(14’11.6?34296 xdx = 125.946

44P1 * 1.08643 * integrate integrate [1.6734296]

447 1.08643 Lf'[tf'l.ﬁ?aﬂrzgﬁﬁ;x]{;x

125.656 x°

¥
3 . !

\ 50 | it

/

] ]
N\ .
100 ! (x from=1.2t01.2)
\.-I[.I_ /
i
1.0 0.5 0.5 1.0

) X
result that is a good approximation to the value of the mass of the Higgs boson.
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789.] The only dielectric of which the capacity has been

hitherto determined with sufficient accuracy is paraffin, for
which in the solid form MM. Gibson and Bareclay found *

K = 1.975. (12)

792.] The electrostatic energy per unit of volume at any point
of the wave in a non-conducting medium is

K dF?
ip=g pr= 00 @)

793.] Thus, if in strong sunlight the energy of the light which
falls on one square foot is 83-4 foot pounds per second, the mean
energy in one cubic foot of sunlight is about 0-0000000882 of a
foot pound, and the mean pressure on a square foot is 0-0000000882
of a pound weight. A flat body exposed to sunlight would ex-
perience this pressure on its illuminated side only, and would
therefore be repelled from the side on which the light falls. It
is probable that a much greater energy of radiation might be
obtained by means of the concentrated rays of the electric lamp.
Such rays falling on a thin metallic disk, delicately suspended
in a vacuum, might perhaps produce an observable mechanical
effect. When a disturbance of any kind consists of terms in-
volving sines or cosines of angles which vary with the time, the
maximum energy is double of the mean energy. Hence, if P is the
maximum electromotive intensity and 3 the maximum magnetic

force which are called into play during the propagation of light,
K

8 17
With Poulllet s data for the energy of sunlight, as quoted by
Thomson, Trans. R. 8. E., 1854, this gives in electromagnetic
measure
P = 60000000, or about 600 Daniell’s cells per metre ;*
B = 0.193, or rather more than a tenth of the horizontal mag-
netie force in Britain §.

= = ,62 = mean energy in unit of volume. (24)

KE
é_r_IP
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We have for K= 1,975 P = 60000000 the following mean energy in unit of volume:
(1,975 * 60000000%) / 87 = 282897911345844,02582716260490228
We calculate the following double integral:

1/(10741) * 1.08643"2 * integrate integrate
[282897911345844.02582716260490228]

1 . :
] 1.08643° f[(2.8289?91134584402582?1525(3490228x 10" ﬁsx].f;x

1.66956% 10727 °

(x from=1.2t01.2)

X

result that is a good approximation to the value of the mass of the proton.

The natural logarithm is 33,276107211196598901862161176809
1.08643 * integrate [33.276107211196598901862161176809] x, [0, 60P1/72]

‘e
1.08643 I 72 33.276107211196598901862161176809 x dx
0

123.892

1.08643 * integrate [33.276107211196598901862161176809] x, [0, 1.618"2]

261

61792
1.08643 f 33.276107211196598901862161176809 x4x = 123.885
Jo

result that is a good approximation to the value of the mass of the Higgs boson.

Now:
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849.] Whatever hypothesis we adopt, there can be no doubt
that the total transfer of eleetricity, reckoned algebraiecally,
along the first circuit, is represented by

ve+ve, = cids,
where ¢ is the number of units of statical electricity which are
transmitted by the unit electric current in the unit of time; so
that we may write equation (9)
3 (v'ed) = ii'dsds. (11)

Henee, if we assumc for the repulsion of the two particles
either of the modified expressions

%[H{?}f(uz_.a f?l‘f)], (18)
or -ﬂfé[l—l-l atﬂ ))] (19)

we may deduce from them both the ordinary electrostatic

forces, and the forces acting between currents as determined by
Ampére.

853.] The formula of Gauss is inconsistent with this prineiple,
and must therefore be abandoned, as it leads to the conclusion
that energy might be indefinitely generated in a finite system by
physical means. This objection does not apply to the formula
of Weber, for he has shewn* that if we assume as the potential
energy of a system consisting of twa electric particles,

ee
¥=gl’ 2{:2 at)_, (20)
the repulsion between them, which is found by differentiating
this quantity with respect to 7, and changing the sign, is that
given by the formula (19).
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Helmholtz 1 has therefore stated a case in which the distances
are not too small, nor the velocities too great, for experimental
verification. A fixed non-conducting spherical surface, of radius
@, 1s uniformly charged with electricity to the surface-density o.
A particle, of mass m and carrying a charge e of electricity,
moves within the sphere with veloeity . The electrodynamic
potential calculated from the formula (20) is

irace(l — :;), (21)

Now, if a=0.08m;6=1* 10" C/m> m=9.109 * 10°' kg, e=-1,602176 * 10" C;

v =2100000 m/s; ¢=0.017 *10°J

We have:

(-1,6106829924345217829206797200798 * 107 *
(1 —2.543.252.595.155.709.342.560,553633218) =

= (-1,6106829924345217829206797200798 * 10™'%) *
(-2.543.252.595.155.709.342.559,553633218) =

= 409,63737004822612818208792625391 V?/s

that is the electrodynamic potential.

We have that: (409,63737004822612818208792625391 V?/s%)'"* =

=20,239500242057018937979878680609 V/s

Now, we calculate the following double integral:

1/(sqrt(Pi)) * 1.08643 * integrate integrate [409.63737004822612818208792625391]

1

1.08643 ([[409.53?3?{104322512313203?92525391 dx)dx

Vo
125.544 x°

result that is a good approximation to the value of the mass of the Higgs boson.
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We have that In (409,637370048226) = 6,0152723050328974854292293082325

Now, we calculate the following integral:

1.08643 * integrate [6.0152723050328974854292293082325] x,[0, 11/(5P1)]

1L

1.08643 f5”I5.D152?230563289?4854292293082325xdx
Jo

1.60241

Or:

11/(2.5176*e*P1) * 1.08643 * integrate integrate
[6.0152723050328974854292293082325]

11 T "
1.08643 ({IE.D152'?23D5D3289T4854292293D82325 d‘x] dx
25176 enm oL

1.67182 x°

|; /

[ / (x from=1.2t01.2)

1 X
1.0 0.5 0.5 1.0

result that is a good approximation to the value of the electric charge of the positron
and of the mass of the proton.

For the electric potential

141



V =Q/ (4ner) where
g0 = 8,854 18782107 C®’m*N1

and the radius of the electron:

1 2
ro = C  — 2,8179403267(27) x 10 ®m
dmey mec
We have:

V= (-1.602176 * 10™%) / (47 * 8,85418782 * 10" * 2,8179403267 * 107'%) =
= (-1.602176 * 10™%) / (3,13537833063641231390271451864 * 10%) =
= -510999,25783909904739184988382171 V

Now:

Helmholtz 1 has therefore stated a case in which the distances
are not too small, nor the velocities too great, for experimental
verification. A fixed non-conducting spherical surface, of radius
a, is uniformly charged with electricity to the surface-density o.
A particle, of mass m and carrying a charge e of electricity,
moves within the sphere with velocity ». The electrodynamic
potential calculated from the formula (20) is

dmace (1 — EW;)’ (21)

and is independent of the position of the particle within the
sphere. Adding to this V| the remainder of the potential energy
arising from the action of other forces, and imv*, the kinetic
energy of the particle, we find as the equation of energy
TATE
é(m—'% 2

)’u3+ 4¢mace+ V = const. (22)

From eq. (22), we have, for a mass 9,10938356 x 10 ' kg and a=0.08m; 6= 1* 10’
*C/m’, e=-1,602176 * 10" C; v =2100000 m/s; ¢ =0.017 *10°J :

0.5 (9,10938356 x 10" —(1,3333 * 1 0.08 * 1 *10™* * -1.602176 * 10™") /

(0.017 * 107)*) * (2100000)* + 47 0.08 * 1 *10™ * -1.602176 * 10" —
510999,257839 ;
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- [0.5(9,10938356 x 10" — (-5,3689433081 * 10™*) / (0,000000000289)) *
(4410000000000) + (-1,610682992434521 * 10™) -510999,257839] =

= 510999,21687526 that is a const. and is defined as the equation of energy.

Now, we calculate the following double integral:

1/(1073) * 1/(sqrt(5)) * 1.08643 * integrate integrate [510999.21687526]
1

= é 1.08643 f[fsm 999.21687526 dx) dx

124,139 x°

. /
H 150 | f

100 | (x frem=1.2t01.2)
\ 50 | /

o, "

x
1.0 0.5 0.5 1.0

result that is a good approximation to the value of the mass of the Higgs boson.

From: “SQUARE SERIES GENERATING FUNCTION TRANSFORMATIONS”
MAXIE D. SCHMIDT - https://arxiv.org/abs/1609.02803v?2

143



Corollary 4.7 (Special Values of Ramanujan’s -Function). For any k € R, the variant of
the Ramanujan o-function, (E_'h_] =3 (e_‘!‘“‘"r), has the integral representation

= dekm (62“ — oS (\/Hf)) .
L4 (6 B ) S /.S V2T L_Hm — 92e2kT 05 (\/Hf) + l] o &

Moreover, the special values of this function corresponding to the particular cases of k €
{1,2,3,5} wn (33) have the respective integral representations

I 5 )
_)(_E Il.u..

1/4 0 212 [ 467 (627 _ cos (v/rct)
Sl :1+/ . _:‘€ (_c . snlVBl]) | g (34)
T(I) Jo Vor | & —2e~”cos(\/2_'rr1‘.) Z i |

Trlf.-l \/E+ 2 ) /x. €—f9f2 [ 462ﬁ (E4ﬁ — cos (2\/'1?1‘}]

5T " =1 - -

r (%) 2 Jo V2w Lﬁﬁﬁ — 2% cos (24/7t) + 1
al/4 V3+1 e /"""' e 12 [ 4edr (667‘_ —cos fw6?rtj)
r (%} 21/433/8 o Vom _s-lzﬁ — 2€57 cos (Vbrrt) + 1

a4 5+2(5 o /’" e 12 [ 457 (e!% — cos (V10nt))

r G} B S 0 V2w _EQO’T — 2107 cos (\,f 10frt] +1

We know that, from the first of (34):

A © g=t?/2 4e™(e*™ — cos(V2mt))

1/4
=1+
r (%) fo V2m |e*™ — 2e27 cos(V2mt) + 1

we have:
F<3) V2 444288293815 | 2254167025
4) r(l) ~ 3,625609908
4
/% 1,3313353638
= = 1,08643481 ...

r (%) ~1,2254167025

With regard the integral, from 0 to 0,58438 for t =2, where
(2.71828"2)/(sqrt6.283185307) = 2,94780 for t=2, we have:

integrate (2.94780)[4e"3.14159265 * (¢6.283185307 -
cos((sqrt6.283185307)2))]/[e112.56637 - 2¢76.283185307
(cos(sqrt6.283185307)2))+1] x, [0,0.58438]
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{_E,_Ssm 2.94780 (4¢3 14159265 (6283185307 _ co(\ 6.283185307 2|)|| x ;
._ ) N R

i (11:.56637 N {2 {16.233185307| [COS[‘JI 6283185307 le s 1

0.0864364

Thence, 1+ 0,0864364 =1,0864364; 1,08643481 = 1,0864364.

In this paper, we have used 1,08643 as a new “Ramanujan’s constant” and we can see
as this constant is fundamental for the results that we have obtained in all the various
equations that we have analyzed and developed.

In conclusion, we observe the new mathematical connection that we have obtained
between the fundamental Maxwell’s equation and the particles, i.e. fermions as
electrons, positrons and protons (that are open strings), by the use of this
“Ramanujan’s constant”.

Indeed, from egs. (130-135) of paper “On Physical Lines of Force”: (from the
Philosophical Magazine, Vol. xxi.] - XXIII. J.C.Maxwell), we have:

1/(10736) * (sqrt(6)/4)"8 * 1.08643 * integrate integrate [155370000140.18299865]

dove “(V6)/4 = Circumradius sphere, congruent with vertices (Tetrahedron)”

— -8
1 (6 i :
— [HT] 1.08643 H[l.553?000Dl40182998ﬁ5xlDlldJc]dx
l|:| . 5

1.66903% 10727 &°

¥

ERp i
2Ex107="

\ { !
\ 2.%107 | I
S /
\, 1sx10 _ [x from=1.2t01.2)
L 10~ |
A 10~ |
|~

— X

1.0 0.5 ' 0.5 1.0

result that is a good approximation to the value of the mass of the proton.

1/2 * 1/(107"36) * (sqrt(6)/4)"8 * 1.08643 * integrate integrate
[310740000280.3659973]
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e 2

1 1

2 1036

1.08643 [[[3.10?4000023036599?3xm” dx)dx

g
1.66003 %1077 ¥°

= s
2hx107=" |

/ ¥ from=1.21t01.2)

result that is a good approximation to the value of the mass of the proton.

Furthermore, from:

Electrical Displacements (f, g, h).

(55) FElectrical displacement consists in the opposite electrification of the sides of a
molecule or particle of a body which may or may not be accompanied with transmission
through the body. Let the quantity of electricity which would appear on the faces
dy.dz of an element dx, dy, dz cut from the body be f.dy.dz, then f'is the component
of electric displacement parallel to 2. We shall use f; ¢, 2 to denote the electric
displacements parallel to x, ¥, 2 respectively.

The variations of the electrical displacement must be added to the currents p, ¢, # to
get the total motion of electricity, which we may call o', ¢, #, so that

' d
P=r+y;
gr=g+§§,t N -8
7"=T+%3
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Coefficient of Magnetic Induction ().

(60) Let u be the ratio of the magnetic induction in a given medium to that in air
under an equal magnetizing force, then the number of lines of force in unit of area
perpendicular to z will be pwe (1 is a quantity depending on the nature of the medium,
its temperature, the amount of magnetization already produced, and in crystalline bodies
varying with the direction).

(61) Expressing the electric momentum of small circuits perpendicular to the three
axes in this notation, we obtain the following

Equations of Magnetic Force.

_dH_do
= 5

i

p=00 | (B)
_ 4G _ d¥
_d.Z' —Ey—.

Equations of Currents.

(62) It is known from experiment that the motion of a magnetic pole in the electro-
magnetic field in a closed circuit cannot generate work unless the circuit which the pole
describes passes round an electric current. Hence, except in the space occupied by the
electric currents,

wde+PBdy+ydz=de . . . . . . . . . . (8])
a complete differential of ¢, the magnetic potential.

The quantity ¢ may be susceptible of an indefinite number of distinct values, acoording
to the number of times that the exploring point passes round electric currents in its
course, the difference between successive values of ¢ corresponding to a passage com-
pletely round a current of strength ¢ being 4=c.

Hence if there is no electric current,

dB

but if there is a current p/,
dy B _, )
@ — Iz —-471'_p v
Similarly,
da dy
EE—_d—-w=4TQ]’ Fe . s . P s . . . . . (C)
8 dx
% o 2'.;/' — 4:‘71'7”.

We may call these the Equations of Currents.
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(65) The complete equations of electromotive force on a moving conductor may now
be written as follows:—

Equations of Electromotive Force.

dF 4% )
PZ("(M: th) —& T |
d.c dz dG d¥ D
Q= {b 7?1’?) TZ‘—-—JZ;"{ ( )
e dy\ dH A
Rz(”(ﬁ}j{ d;) di T dz J!

The first term on the right-hand side of each equation represents the electromotive
force arising from the motion of the conductor itself. This electromotive force is per-
pendicular to the direction of motion and to the lines of magnetic force; and if a
parallelogram be drawn whose sides represent in direction and magnitude the velocity
of the conductor and the magnetic induction at that point of the field, then the area of
the parallelogram will represent the electromotive force due to the motion of the con-
ductor, and the direction of the force is perpendicular to the plane of the parallelogram.

" The second term in each equation indicates the effect of changes in the position or
strength of magnets or currents in the field.

The third term shows the effect of the electric potential ¥. It has no effect in
causing a circulating current in a closed circuit. It indicates the existence of a force
urging the electricity to or from certain definite points in the field.

Equations of Klectric Elasticity,

P=lfj’, '
Q=lkg, b+ =+ o (E)
R=£%h.

(68) Let e represent the quantity of free positive electricity contained in unit of
volume at. any part of the field, then, since this arises from the electrification of the
different parts of the field not neutralizing each other, we may write the

Equation of Free Electricity,
d d df
A TAEE=0 (G
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Mechanical Force on an Electrified Body.

(79) If there is no motion or change of strength of currents or magnets in the field,
the electromotive force is entirely due to variation of electric potential, and we shall
have (§ 65)

S, S 1
Integrating by parts the expression (I) for the energy due to electric displacement, and
remembering that P, Q, R vanish at an infinite distance, it becomes

(@)

or by the equation of Free Electricity (G), p. 485,
—13(¥e)dVv.

By the same demonstration as was used in the case of the mechanical action on a magnet,
it may be shown that the mechanical force on a small body containing a quantity ¢, of
free electricity placed in a field whose potential arising from other electrified bodies
is '¥,, has for components

X=6,t=—Pe,,
av,

Y——ezd —-Qept.. . . . . o o o o . . (D
d

L =é 3’4——1{182.

So that an electrified body is urged in the direction of the electromotive force with a
force equal to the product of the quantity of free electricity and the electromotive force.

If the electrification of the field arises from the presence of a small electrified body
containing ¢, of free electrity, the only solution of ¥, is

v=Rea, . ... (43

where 7 is the distance from the electrified body.
The repulsion between two electrified bodies ¢,, ¢, is therefore

eih=Ftas L (44

dr 47 r?
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Measurement of Electrical Phenomena by Electrostatic Effects.

(80) The quantities with which we have had to do have been hitherto expressed in
terms of the Electromagnetic System of measurement, which is founded on the mecha-
nical action between currents. The electrostatic system of measurement is founded on
the mechanical action between electrified bodies, and is independent of, and incom-
patible with, the electromagnetic system; so that the units of the different kinds of
quantity have different values according to the system we adopt, and to pass from the
one system to the other, a reduction of all the quantities is required.

According to the electrostatic system, the repulsion between two small bodies charged

with quantities #,, #, of electricity is
where r is the distance between them.
Let the relation of the two systems be such that one electromagnetic unit of elec-
tricity contains v electrostatic units; then »=ve, and z,=ve,, and this repulsion becomes
ek ee .

o' =13’ by equation (44),. . . . . . . . (45
whence %, the coefficient of “electric elasticity” in the medium in which the experi-
ments are made, 7. e. common air, 1s related to v, the number of electrostatic units in one
electromagnetic unit, by the equation

N 1)

The quantity v may be determined by experiment .in several ways. .According to the
experiments of MM. WEBER and KoHLRAUSCH,

1):310;740;000 metres per second.

(81) 1t appears from this investigation, that if we assume that the medium which -
constitutes the electromagnetic field is, when dielectric, capable of receiving in every
part of it an electric polarization, in which the opposite sides of every element into
which we may conceive the medium divided are oppositely electrified, and if we also
assume that this polarization or electric displacement is proportional to the electro-
motive force which produces or maintains it, then we can show that electrified bodies
in a dielectric medium will act on one another with forces obeying the same laws as are
established by experiment.

The energy, by the expenditure of which electrical attractions and repulsions are pro-
duced, we suppose to be stored up in the dielectric medium which surrounds the electri-
fied bodies, and not on the surface of those bodies themselves, which on our theory
are merely the bounding surfaces of the air or other dielectric in which the true springs
of action are to be sought.
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PART VI.—ELECTROMAGNETIC THEORY OF LIGHT.

(91) At the commencement of this paper we made use of the optical hypothesis of
an elastic medium through which the vibrations of light are propagated, in order to
show that we have warrantable grounds for seeking, in the same medium, the cause of
other phenomena as well as those of light. 'We then examined electromagnetic pheno-
mena, seeking for their explanation in ‘the properties of the field which surrounds the
electrified or magnetic bodies. In this way we arrived at certain equations expressing
certain properties of the electromagnetic field. We now proceed to investigate whether
these properties of that which constitutes the electromagnetic field, deduced from electro-
magnetic phenomena alone, are sufficient to explain the propagation of light through
the same substance.

(92) Let us suppose that a plane wave whose direction cosines are [, m, n is propa-
gated through the field with a velocity V. Then all the electromagnetic functions will

be functions of w=lo+my+nz—Vt.
The equations of Magnetic Force (B), p. 482, will become
dH G
.me:m;i—-'-% e *
dF dH
UJ@-—-O’I; The —1 el
aG dF

If we multiply these equations respectively by /, m, n, and add, we find.
lwa+mpptnpy=0, . . . . . . . . . (62)
which shows that the direction of the magnetization must be in the plane of the wave.

(98) If we combine the equations of Magnetic Force (B) with those of Electric
Currents (C), and put for brevity

P ), d gkt =Vs .. (63)
dawp/ =Q-.V2F s
=S, L)
o =5 — V'L |
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If the medium in the field is a perfect dielectric there is no true conduction, and the
currents ', ¢, 7' are only variations in the electric displacement, or, by the equations of

Total Currents (A),

y__df ___dg ;_flé
=2, ¢= 7 r=a e - (65)
But these electric displacements are caused by electromotive forces, and by the equations
of Electric Elasticity (E),
- P=Zf, Q=ky, R=kh. . . . . . . . (66)
These electromotive forces are due to the variations either of the electromagnetic or

the electrostatic functions, as there is no motion of conductors in the field ; so that the
equations of electromotive force (D) are

dF  dWT
P=——"u" |
__ dG 4% L 67
Q i . (67)
dd  d¥
R=—Zr—7"

(94) Combining these equations, we obtain the following :—

W= V'F ) +ou (G + 7)) =0
k(——-—V G)—I—‘lvrfb({#?-l-;ﬂ:g) 0, (68)
¥z~ VH) +mu (G + ) =0

If we differentiate the third of these equations with respect to y, and the second with
respect to z, and subtract, J and ¥ disappear, and by remembering the equations (B) of
magnetic force, the results may be written

-~

B e = A
o prdﬂ”‘“’
(69)

v

. d?
EVpfB= 47:{1:325#:6,

dQ
BV py =dappy. |

(95) If we assume that , 8, y are functions of le+my-+nz— Vi=w, the first equa-
tion becomes

? 2
k{»%:élvr(ﬁvz%a N ()]
or ‘ -
vzi\/a............(n)

The other equations give the same value for V, so that the wave is propagated in either
direction with a velocity V. '
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This wave consists entirely of magnetic disturbances, the direction of magnetization
being in the plane of the wave. No magnetic disturbance whose direction of magneti-
zation is not in the plane of the wave can be propagated as a plane wave at all.

Hence magnetic disturbances propagated through the electromagnetic field agree with
light in this, that the disturbance at any point is transverse to the direction of propaga-
tion, and such waves may have all the properties of polarized light.

(96) The only medium in which experiments have been made to determine the value
of k is air, in which p=1, and therefore, by equation (46),

B s s w s % % ¥ v s w.s (18)
By the electromagnetic experiments of MM. WEBER and KonLrauscH ¥,
v=:310,740,000 metres per second

is the number of electrostatic units in one electromagnetic unit of electricity, and this,
according to our result, should be equal to the velocity of light in air or vacuum,
The velocity of light in air, by M. FzEAu’s t experiments, is

V=2314,858,000;
according to the more accurate experiments of M. Fovcavir I,
V =298,000,000.

The velocity of light in the space surrounding the earth, deduced from the coefficient
of aberration and the received value of the radius of the earth’s orbit, is

V=308,000,000.

(97) Hence the velocity of light deduced from experiment agrees sufficiently well
with the value of v deduced from the only set of experiments we as yet possess. The
value of v was determined by measuring the electromotive force with which a condenser
of known capacity was charged, and then discharging the condenser through a galvano-
meter, so as to measure the quantity of electricity in it in electromagnetic measure.
The only use made of light in the experiment was to see the instruments. The value
of V found by M. FoucavLt was obtained by determining the angle through which a
revolving mirror turned, while the light reflected from it went and returned along a
measured course. No use whatever was made of electricity or magnetism.

The agreement of the results seems to show that light and magnetism are affections
of the same substance, and that light is an electromagnetic disturbance propagated
through the field according to electromagnetic laws.

(98) Let us now go back upon the equations in (94), in which the quantities J and
¥ occur, to see whether any other kind of disturbance can be propagated through
the medium depending on these quantities which disappeared from the final equations.
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If we determine i from the equation

% d/U + d/Q_l- d72 : . . . . . . . . . . (73)
and ¥, G, H' from the equations
™ G=G—-T W=H-% T
FFL?G__G@,H_ 72,....(/4:)
then
74 L ¢ LN 4 -
d+d/+d4 =1, ............(/5)
and the equations in (94) become of the form
P =tan (g g (Y+5))- - - - - .. (16)
Differentiating the three equations with respect to a, 7, and 2, and adding, we find that
d "
Y=—Xpo(w, 9,2, - - . . . . . . . (TT)
' 3
and that EV?E -—-471—@@:1:’ ,
dt
W=t T (T8)
VH =dap
J

Hence the disturbances indicated by F', G/, H' are propagated with the velocity

V= /\/ Z%c through the field; and since

dF! dG’ Uacy

dx drw =0,

the resultant of these disturbances is in the plane of the wave.

Now, from (45), we have that:

2 €1l __ k eeq

2 " 4y 42

7

k=40,

For V=v=310.740.000, r = 1 and putting e; and e, =-1,602176 * 10", we
obtain:

vZeie, = (310740000)° (-1,602176%107"%)* =

= (96559347600000000)( 2,566967934976 * 10*)
=2,478647491114017816576 * 10

Then, we have that, forr = 1: (V2 €1 )/ V4= (V2 €€, )/ va=(e16)/ vo =(e1€)/ v, .
Now, (e16,)/ v» = (2,566967934976 * 10~*) / (96559347600000000) =
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= 2,6584354583771027881302710872914 * 10™°

If we calculate the natural logarithm of this number, (the natural logarithm can be

defined for any positive real number a as the area under the curve y = 1/x from 1 to a)
we obtain:

Ln (2,6584354583771027881302710872914 * 10™°) = — 125,664...
a value practically equal to the boson Higgs mass that is (125,09 £ 0,24) GeV/c?.
We have that:

(0.6289858)"8 * 1.08643 * integrate [-125.664] x

0.6280858° . 1.08643 f- 125.664 x dx

~1.67228 x°

¥

e x

1.0 0.5 |
0.5 |

v = |
"/ 20|
/ \

[ from=1.2t01.2

Now, we calculate the following double integral for this value:
(0.6289858)"8 * 1.08643 * integrate integrate [125.664]

0.6280858°% . 1.08643 f[trlEE.ﬁﬁﬂrdx]dx

1.67228 x°

|; /

| (x from=1.2t01.2)
1.0 |
[].._lé

— x

1.0 0.5 ) 0.5 1.0
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A value practically equal to the proton and anti-proton mass.

From (21)

47ra,<re(l — 6—”(;)

fora=21m;6=4.51* 10° C/m’ m=9.109 * 10 kg, e =-1,602176 * 107 C; v =
2189000 m/s; ¢ =0.017 *10°J

We obtain: - 5.26936 * 10
We calculate the following double integral:

Pi/(2e) 1.08643 * integrate integrate [-5.26936%10"-7]

i 1.086431‘[‘(1—5.26936 lD'?dx]Jx

e

~1.65407x 1077 x*

(x from=1.2t01.2)

o x
1.0 -05 | ).5 1.0
w1079 |
/ -1.x1077 | \
Fd 1.5%1077 |

\
ll.."/ 2.x1077 |
! _ 1 \

25x107

result that is a good approximation to the value of the mass of the anti-proton.

From:
RAMANUJAN’S THEORY OF THETA FUNCTIONS

Bruce Berndt - University of Illinois at Urbana-Champaign
1, 2009
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a(q) = Z qmz—i—mn—i—nz

m,n=—0oQ

If xo(n) denotes the principal character modulo 3, then

2( )—1+12i i
Gl = n:1\0 1—qn
If () denotes the Legendre symbol, then
33( y = l_gi (f) n2qr;
= —~\3) 1—¢"

Note that 1-9=-8; 1728 /-8 =-216 and 1728 /27 = 64

Examples of class invariants

1/4
G117 = (?)Jrz\/ﬁ) (2\@ + \/ﬁ> e

X (31"4 + m)

is equal to 6,9292879. We note that 1729 /7 =247; 1729/ 6,9292879 = 249,52058
We calculate the following double integral:
1.0864372 * Pi/8 * integrate integrate [6.9292879]

1.08643° g J[ [15.92923?9 ax)dx

1.60591 x°
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/

J / (o from=1.2t01.2)

t x
1.0 0.5 0.5 1.0

result that is a good approximation to the value of the electric charge of the positron.

Now:

Gizsz = (3 4+ V11)M4(5 + 3v/3)1/4
1/4 2
) (11+ \/123) / (6817 4 321\/451)1/1

2 4
1/2
\/17+3\/§ \/25+3\/ﬁ
X +
8 8
1/2
) \/561+99\/ﬁ+ \/569+99\@
8 8

The result is G353 = 103,7118167...

We note that:

1/2

\/561+99\/ﬁ+\/569+99\/@
8 8

is equal to (23,808697708)"* and that 23,80869... is about 24 and 24 *72 = 1728
We calculate the following double integral:

1.08643 * (0.6442)"8 * integrate integrate [103.7118167]
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1.08643 » 0.6442° “ rlDB.?llBlﬁ?dx-]dx

1.67096 x°

1.0 0.5 0.5 1.0

result that is a good approximation to the value of the mass of the proton.

Now:

Let a=60Y4 b=2_ /31 /5. If

s
2¢c =2 b\/§+1,

then

Rie °%) =v/c2+ 11—

We have that 2¢ =43.353157239 and ¢=21,6765786195

e =6,512494708 * 107 ; (469.874 + 1) —21.6765786195 = 0,02305411120225;
Thence R =0,02305411120225/6,512494708 * 10 = 3539981,564

Note that: (3539981,564)"*? = 1,60197701749786

Now, we calculate the following double integral:

1.08643 * (P1/((26*10)"e)) * integrate integrate [3539981.564]

1.08643

T ’Tlmt. ‘{1{‘(13.539981564x 10° x| ax

1.64643 x°
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/

= / (x frem=1.2t0 1.2}

1 x
1.0 0.5 0.5 1.0

result that is a good approximation to the value of the mass of the proton.

Now, from Ramanujan’s cubic class invariant:

6
\, 1 f°(q)

- 3V3/41%(q3)
1+ivn/3
_ o[ 2
- 3V3 ( 14 :’Ja_n)
n 5 /
where g = e~V /3,
Ap= 3,
A7 — 4+ \/ﬁ

6
Aog = (\/ il +8\,/ﬁ s \//3 +8\/ﬁ) |

We have that A,; = 446,1418559374 where (446,1418559374)"'% = 1,6626062706...

Now, we calculate the following double integral:
1.0864372 * Pi/(512) * integrate integrate [446.1418559374]

1.08643° é “ ['445.14135593?4dx']4x

1.61557 x°
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/

/ (o from=1.2t01.2)

x
0.5 1.0

result that is a good approximation to the value of the electric charge of the positron.

Mathematical connections

We know that (see pg.142):

i/4 14 f‘” et?/2 4e”(62” — cos(@t))
T (%) - o V2m |e*™ — 2e27 cos(V2mt) + 1

we have:
(3) _ w2 4,44288293815 | 2254167025
4) r(l) ~ 3,625609908
4
ml/*  1,3313353638
= = 1,08643481 ...

r (%) ~1,2254167025

With regard the integral, from 0 to 0,58438 fort =2, where
(2.71828"2)/(sqrt6.283185307) = 2,94780 for t=2, we have:

integrate (2.94780)[4e"3.14159265 * (¢/6.283185307 -
cos((sqrt6.283185307)2))]/[e*12.56637 - 2¢6.283185307
(cos(sqrt6.283185307)2))+1] x, [0,0.58438]

e e i it cos{\6.283185307 2] o

cos[\." 6.283185307 Jz] +1

dx =
0 1256637 6.283185307
e fir {2 rd |

0.0864364
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Thence, 1+ 0,0864364 = 1,0864364; 1,08643481 = 1,0864364.

With regard the Maxwell’s equations (see pg. 79-81), we have calculate the following

double integrals for 1,53678975*10% , for 1.591549430918954 , for 155370000000,
and for 310740000000

1/(2*%10740) * 1/(26) * 1.08643 * integrate integrate [1.53678975*10723]

1 1 e 23 ]
— 1.03543‘[[1 1.53678975 - 10% dx) dx

1.6054%10°1% »*

4

| / (x from =1.2t0 1.2)

X
0.5 1.0

1/(2*%10725) * 1/(26) * 1.08643 * integrate integrate [1.591549430918954]
1
2% 1023

% 1.08643 ‘r[f1.59154943D918954dx]dx

1.6626x107%7 »°

/

' / (x from -1.2t0 1.2)

x
0.5 1.0

result that is a good approximation to the value of the electric charge of the positron
and to the mass of the proton.

162



1/(10736) * (sqrt(6)/4)"8 * 1.08643 * integrate integrate [155370000140.18299865]

dove “(\6)/4 = Circumradius sphere, congruent with vertices (Tetrahedron)”

— 8
1 | A . X 2
g [”T] 1.08643 [[[ 1.5537000014018299865 = 10! ﬁsx] dx

1.66903% 1077 °

[ from=1.2t01.2)

1/2 * 1/(10"36) * (sqrt(6)/4)"8 * 1.08643 * integrate integrate
[310740000280.3659973]

1 1

2 1036

N3

g
, ] 1.08643 [[fa.m?nrmmzsmﬁwg?axm“ﬁsx]ﬁsx

1.66903% 1077 °

[ from=1.2t01.2)

result that is a good approximation to the value of the mass of the proton.

The above result of double integral, can be related to the following Ramanujan’s
equation concerning the invariant class of theta function:
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Giasz = (3 + V11)Y/4(5 + 3V3)1/4
1/4 1/12
. (11+ \/123) / (6817+321\/451) /

2 4

1/2

X

17+3V33 | [543V
8 * 8

1/2

\/561 +99./33 N \/569 +99+/33
8 8

The result is G353 = 103,7118167...

We have calculate the following double integral:

1.08643 * (0.6442)"8 * integrate integrate [103.7118167]
1.08643 - 0.6442° f[fl%.?ll&lﬁ?.;x].;:x

Result:

1.67096 x°

Plot:

(x from=1.2t01.2)

1.0 0.5 ) 0.5 1.0

result that is a good approximation to the value of the mass of the proton.

Thence, mathematical connection between the fundamental Maxwell’s equation:

J6
4

1 1

8
o = ] 1.0864BJ[J 3.107400002803659973 x 10! x| dx
10

1.66003 %1077 ¥°

and Ramanujan’s equation concerning the invariant class of theta function:
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1.08643 - 0.6442° [[ (11D3.?llﬂll‘3?dx-]dx
1.67096 x*

We have also calculate the integral of the wave function of the Universe of Hawking
regarding the “no-boundary proposal”, that is (see pg.21):

(H%ag*—1)*7
3H? B
Yoa, = —3,357714479.

T
ﬁﬁ{)[ﬁo}—zcoﬂ 4

1.08643 * integrate [-3.357714479] x,[0, -P1"2/10.53] where 0,937284 is

0,6354749""

0,93 7284
1.08643 ( -3.35771 xdx = -1.60235
o

After, we have calculate the following double integral:
1.08643 * integrate integrate [-3.357714479] [0, -Pi1"2/11]
where — Pi"2/11 = — 0.89723676 that is

0,6480794355" (i72) = 0.89723676 * — 1= — 0.89723676

1.08643 f[ [1-3.35??144?9 {0, - E bax |dx

0, 1.63652 x°|

result that is a good approximation to the value of the electric charge of the electron
and of the mass of the proton.
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\ 2.0}

Y | ,.-"'Ill
b 1.5
LY [ £
AN 10| x
“ / (x from=1.1t01.1)
\u.;} / -_—
X =1 fF3IR52Relx=
1.0 0.5 ' 0.5 1.0 1.63652 Re(x /
¥
1.0 |
0.5
| x lxfrom=11tol.1)
1.0 -0.5 | 0.5 1.0
~0.5 il
10| — 1.63652 Im(x")
20
1.5
(x from=1.2t01.2)
1.0
0.5
1.0 ~-0.5 ! 0.4 1.0

From the eq. (28), (see pg.36) we have obtained:

o =
= 4rl\/1+ }”[R()) .

Q=(2.25* 1)/ 4n*1*V(1+1) = 0,12660698195959304103119988623532;

We have calculate the following double integral for Q:

7Pi * 1.0864372 * integrate integrate [0.12660698195959304103119988623532]
Tr LDEE432L[Tvrﬂ.126606981959593D4103119988623532alx]dx

1.64316 x°
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(o from=1.2t01.2)

(24) * 1.08643 * integrate integrate [0.12660698195959304103119988623532]

24 . 1.08643 “ fl:l.lﬂﬁﬁﬁﬁgﬁ1959593D4lﬂ3119988523532dx]dx

1.6506 x°

(x from=1.2t01.2)

values that are a good approximations to the value of the mass of the proton.

And:

(53P1*11) * 1.08643 * integrate integrate [0.12660698195959304103119988623532]

(537 11)~ 1.08643 ([ [h.1255(:15981959593(:41(:3119988523532Jx i

125.964 x*

result that is practically equal to the value of the mass of the Higgs boson.

167



\ ' /

100 | [ from=1.2t01.2)
\._I“. /
= .

— x

1.0 0.5 0.5 1.0

Where 53 is a prime number and is the sum of five prime numbers

53=5+7+11+13+17.

We have obtained (see pg.40-41), evident mathematical connections between this
Maxwell’s equation and the charge of black strings (charged rotating black holes).

From the eq. (30) concerning the electric potential:

{
U - L \/1+ f(Ro)

U=1/(125*0.7)\3=

1,1428571428571428571428571428571 * 1,7320508075688772935274463415059 =
=1,979486637221574049745652961721

We have calculate the following integral:

(P1*(In1.606695)) * 1.08643 * integrate integrate
[1.979486637221574049745652961721]

where 1.606 695 is the “Erdds - Borwein constant”

(rlog(1.606695)) - 1.08643 [[ [11.9?943553?2215?4(149?45652961?21i;x' dx

1.60183 x°
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(o from=1.2t01.2)

We have calculate the following double integral:
(11Pi*2) * 1.08643"2 * integrate integrate [1.979486637221574049745652961721]

(117%) - 1.08643° r[[11.9?948663?2215'?4D49?45I5529l5l?21dx]dx

126.829 x°

‘*--5\i 150 /

(x from=1.2t01.2)

X
1.0 0.5 0.5 1.0

Results that are good approximation to the values of the electric charge of the
positron and of the mass of the Higgs boson,

v-E=2
o

/E-tfa=i pdV
s

€0

are the Maxwell’s equation concerning the Gauss’ law in differential and integral
form.

With regard the mathematical connections with the eleven-dimensional supergravity,
we have that (see pg.41-42)
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The supergravity multiplet consists of the metric g, the gravitino ¥y,, and a three
form €' (with feld strength &, normalized as in a previous footnote). The supergravity

Tt i v g P PLTCAPS T T PR L. CARRP s CTMCEEIMEYRITIL 1 LI S eTo (¥R (L iy LR VEPEERE L | e T | . Fal
Lagrangian, up to terms quartic in the gravitino (which we will not need), is |8

1 - ’ 1, 1o ikp oy L :
_ / s /5 R _.{_I._I.I]_—JH DJ.{}_,H_KG”KLGJH\L

K o it
\,@ - WIJKLMN I KL MY ~ ;
— —(u,T Yy +12¢ T™¢ ) Gukim (2.1)
4 i)
‘f/§ Jr I'J I | i 2 |
- 3_15'36 S Jl{—'111213(—;1'\[...1?(—715...1'_1 :

V2 1

Note that: 3456 = 1728 * 2 and that
3456 1728\/_

We have that:

=

( 783 L' ([LHED gy — —GJJE\LG”M — ;92 (L‘ DKL MN e 4159 FI‘L )GJHLM

V2

= Iila...Ji:
o CnntGL. . ,GL..n, | -
3406 14243 4 7 8 11

1 1 1 V2 12v2 V2

2 2 48 192 192 3456

—1728 — 1728 — 72 — 18V2 - 216v2 - V2 _
3456 B

1728 1728 72 18V2 216v2 V2
T 3456 3456 3456 3456 3456 3456

-3860,34018656 / 3456 =—1,11699658

We have calculate the following integral (see pg.43-44):
5.9049 * (10"36) integrate [(1.44853201 * 10"-11)*(-1.11699658)] x

144853201

5.0049 1035[[ = [—1.11599658}]xdx

~4. 77708 % 10%° ¥*
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1.0 0.5

31075 |
2 %1028 |
~3x10%5 |
4x10% |
51025 |

6x10% | \E

7x10% |

~1.59236 % 10°% x°

and:

(1/10°54) * 1.0864372 * 5.9049 * (10°36) integrate [(1.44853201 * 10/-11)*(-

1.11699658)] x, [0, 34/(2P1)]

i 5 34
— . 1.08643% .5.9049 . 10° fﬂﬂ[
l|:|54 o

_1.65106x107%7

result very near to the value of the mass of the anti-proton.
We have calculate the following double integral:
(1*107-52) * (2*0.618)"3 * 1.08643 integrate integrate [-4.77708*10"25]

11072 20.618)° 1.03543”[-4.???03 10% dx)dx

~4.89993x 10727 *

(% from=1.2t01.2)

1.44853201

( from=1.2t01.2)
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~1.63331 %1077 ¥°

result very near to the value of the mass of the anti-proton.

From pg.46 and 49-50
1728 = 13744512 / 7954
We calculate the following integral:

integrate [13744512] x, [0, 1/(1.644934713*Pj)]

1

[ 164493413 7 13744512 x dx = 1.67086
Wi

where 1,644934 = {(2) = n/6
and the following double integral:

1/(10734) * 1.08643 * (Pi/sqrt(2)) integrate integrate [13744512]

l " " &
— . 1.08643  — {[[13?4451&:;:]“
10 V2 v

1.65858% 1077 &*

result very near to the value of the mass of the proton.

From pg. 49-50

We calculate the following double integral:
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1/(10722) * 1.0864372 * (P1/2) integrate integrate [1728]

l " " 5
o 1.086432 ;—T I[[l?zsﬁsx]isx

1.60191 x107%° ¥?

(o from=1.2t01.2)

and:

1.08643 integrate [1728] x, [0, Pi/((1.618)"9)]

1728 xdx = 1.60399

"0.0413374
1.08643 [

0

results very near to the value of the electric charge of the positron.

From Wikipedia

The Dirac sea is a theoretical model of the vacuum as an infinite sea of particles with
negative energy. It was first postulated by the British physicist Paul Dirac in 1930
to explain the anomalous negative-energy quantum states predicted by the Dirac
equation for relativistic electrons.” The positron, the antimatter counterpart of the
electron, was originally conceived of as a hole in the Dirac sea, well before its
experimental discovery in 1932,

Upon solving the free Dirac equation,

ol _—
B = (c&- P+ me*)¥,

one finds
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W 2T

U\ expli(p-x — et)/A]
‘I’P,‘J, =N {r‘x—r-pj I 3

3
me” +AEy 2mh
where

=ty By= +L"\rl.'";p2 +m?e?, X=sgne

for plane wave solutions with 3-momentum p. This is a direct consequence of the
relativistic energy-momentum relation

- A .
E? = pe +mie

1

upon which the Dirac equation is built. The quantity U is a constant 2 X 1 column
vector and N is a normalization constant. The quantity ¢ is called the time evolution
factor, and its interpretation in similar roles in, for example, the plane wave solutions
of the Schrédinger equation, is the energy of the wave (particle). This interpretation is
not immediately available here since it may acquire negative values. A similar
situation prevails for the Klein—Gordon equation. In that case, the absolute value of ¢
can be interpreted as the energy of the wave since in the canonical formalism, waves
with negative ¢ actually have positive energy E,. But this is not the case with the
Dirac equation. The energy in the canonical formalism associated with negative ¢ is —
E,. In hole theory, the solutions with negative time evolution factors are reinterpreted
as representing the positron, discovered by Carl Anderson. The interpretation of this
result requires a Dirac sea, showing that the Dirac equation is not merely a
combination of special relativity and quantum mechanics, but it also implies that the
number of particles cannot be conserved.

Generalization of the Dirac’s Equation and Sea
H. Javadi, F. Forouzbakhsh and H.Daei Kasmaei - 14 June 2016
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me: 0 0 0
2 0 mc? 0 0
pme” = | o 8 . (16)
0 0 0 —mc?

For eigenvalues and considering p = 0 (in equation (4)), we will have”:

2

E. =me?, E_ = —me? (17)

From the Dirac equation to the photon structure

In pair production of "electron-positron”, one photon with spin 1 and at least energy E = 1.022 MeV
is converted to two fermions, electron and positron with spin s each of them with context of energy

0.511 MeV in vicinity of a heavy nucleus so that we have the following relation:
y—oe +e’ (18)

Relation (18) is justifiable according to Dirac equation by relations (16) and (17), (Figure 1.A). In pair
decay, an electron is combined with a positron and is produced two photons (Figure 1.B).

e+ e
Y Y
A l
time
e et
/ B
space —
Feynman diagram for pair production.
A photon decays into an electron- Feynman diagram of electron/positron
positron pair. annihilation

Figl: Production and decay of pair "electron-positron™
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In pair decay, reverse of relation (18) takes place and we will have:

e”+et o2y (19)
In all physical processes including pair production and decay. it must be held the following conservation
laws:

1-  Electric charge conservation law, pure charge before and after the process must be equal.

2- Linear momentum and total energy conservation laws: These rules has made forbidden
production of just one photon (Gamma ray). As it is seen in Figure (2), two photon with the same energy
move but in two opposite directions. Angular momentum conservation law must be held too. In fact, in
the process of "electron-positron” decay, these following relations hold:

e” +et o2y
E'z}; = ngcz + EE_ + EB'+

mgc? = 0.511 MeV

In which mgc? is zero rest mass of electron (also positron) and E,- , E,+ are kinetic energy of electron
and positron that are converted to energy of photons (E3,) at the time of pair decay.

We take the value E = 1.022 MeV and calculate the following integral:

1.08643 * [(2*0.61803398)"5] integrate integrate [1.022]

1.08643 2 Djlsuaagaﬁhf[[ﬁuazzdx]dx

Result:

1.6019 x*
Plot:

(o from=1.2t01.2)

result that is practically equal to the electric charge of the positron!
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Conclusion

In conclusion, the reason why performing the double integrals of the various
equations of Maxwell's electromagnetic theory are lepton-like solutions (protons,
neutrons, electrons, positrons) and plots involving open curves, it allows to deduce
that in the toroidal infinite-dimensional Hilbert space , as for branes, infinite open
strings are anchored, therefore fermionics. We know that the interactions between
open strings can always result in closed strings, therefore from the collision of two
open strings, as happens for the annihilation between electron and positron, energy is
emitted, which in the case of our model, generates a world toroidal brane, therefore a
closed 3d string, also composed of bosons, just like the photons that make up the
electromagnetic field (light). Practically the ends of two open strings, which come off
the Hilbert space, when the two strings are annihilated, in reality what for us is the
emission of bosons, is the creation from the two open strings, of a closed string that
expanding becomes our D3-brane. The solutions of the integral equations that instead
identify with the mass of the Higgs boson, are the further confirmation that it gives
the mass to the fermions of the Standard Model.

“From the gravitational equations (4) follow the four independent linear
combinations (27) of the basic electrodynamics equations (5) and their first
derivatives. This is the exact mathematical expression of the aforementioned
statement generally expressed on the character of electrodynamics as a consequence
of gravitation” (from David Hilbert Paper).

In our case the Maxwell's equations are a consequence of the 11D supergravity and
therefore connected to it. This is further confirmation that gravity and
electromagnetism at the Planck scale are part of a single superforce. This explains the
reason of the resulting particle-type solutions (fermions) from which, by annihilation,
are produced bosons like photons, the quanta of the electromagnetic field
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Fig.1

Fig.1 shows the infinite-dimensional torus (Hilbert space), a purely geometric entity belonging to
the informal phase. On this space lie the ends of open strings (massive bosons and / or fermions)
and of them a very large number of pairs annihilate each other, giving rise to torus-spheroidal
universes (bubbles). They constitute the finite multiverse of an eternal inflationary cycle (in each
cycle a non-infinite multiverse is born, but with a well-defined number of bubble-universes), of a
succession of phases of singularity / expansion.

(The model proposed here therefore also contemplates the "no-boundary proposal" and the
consequent limited multiverse model of S. W. Hawking, developed by Hertog.)
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