
CM2202: Scientific Computing and Multimedia
Applications

MATLAB Programming: 1. MATLAB Basics

Dr. Yukun Lai

School of Computer Science & Informatics

Introduction Basic Programming Multimedia Data Operators Summary

What is MATLAB?

MATLAB is:

An interactive, matrix-based system for
scientific and engineering numeric
computation and visualization.

You can solve complex numerical problems in a fraction of the
time required with a programming language such as Java or C++.

The name MATLAB is derived from MATrix LABoratory.

2 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB System (1)

The full MATLAB system consists of:

MATLAB language — high level interpreted language optimised
for matrix/array operations and contains many other
useful features.

Integrated Development Environment — MATLAB’s IDE
contains a number of tools for managing programs,
editing files, saving workspace, command history,
debugging and more.

Handle Graphics R© — Unparalleled suite of tools for
both high-level graphing and display of data and basic
graphic/image processing, as well as low-level
commands for displaying and controlling graphics and
building GUIs.

3 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB System (2)

Extensible system — Vast array of Mathworks supplied, third
party and freely available toolboxes to provide
facilities for doing almost any sort of computation.

Application Program Interface — API link to Java/C/Fortran
programs.

4 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB IDE

5 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB Graphics Examples

6 / 56

http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/MATLAB_Programming/seashell.m
http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/MATLAB_Programming/shadingex.m
http://www.cs.cf.ac.uk/Dave/CM2202/MATLAB/MATLAB_Programming/eyeplot.m

Introduction Basic Programming Multimedia Data Operators Summary

Why MATLAB for this module? (1)

MATLAB advantages

MATLAB is a platform-independent interpreted language
optimised for numerical (matrix and array) computation:

It allows one to perform numerical calculations easily:
Simple High Level Syntax

It allows one to visualize the results without the need for
complicated and time consuming programming:
One or two line of MATLAB code in most simple cases

Optimised for matrix and array structures — all our
multimedia data structures are arrays or matrices

Simple yet powerful MATLAB Integrated Development
Environment (IDE)

7 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Why MATLAB for this module? (2)

MATLAB advantages

Rich support of multimedia formats
One or two line of MATLAB code reads audio and imagery
direct to arrays for immediate simple processing

Rich support of computational algorithms and tools
Proprietary and freely available web toolboxes for Signal,
Image, Video and many more processing

Summary: MATLAB allows its users to
accurately solve problems, produce graphics
easily and produce code efficiently, thus
particularly suitable for Scientific Computing
and Multimedia Applications.

8 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Why MATLAB for this module? (3)

MATLAB disadvantages

Because MATLAB is an interpreted language

It can be slow:
But generally quicker development cycle than
coding/debugging/(re)compiling normal languages
Can easily port MATLAB to faster implementations later.

Poor programming practices can make it unacceptably slow.
Attend Lectures and Lab Classes to learn how to do it properly

Cost: not gnu! or open source/freeware
Student editions available — not full MATLAB toolbox
support.
Free alternatives: Octave, Scilab: similar syntax but not 100%
compatible.

9 / 56

http://www.mathworks.com/academia/student_version/
http://www.gnu.org/software/octave/
http://www.scilab.org/

Introduction Basic Programming Multimedia Data Operators Summary

Useful Web Links

MATLAB Primer — now a text book but older web page still
relevant.

Mathworks online MATLAB tutorials

MATLAB — some basics

UNH Math Dept’s MATLAB Tutorials, Clarkson Univ.

10 / 56

http://math.ucsd.edu/~driver/21d-s99/matlab-primer.html
http://www.crcpress.com/product/isbn/9781439828625
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.math.utah.edu/~eyre/computing/matlab-intro/
http://www.cyclismo.org/tutorial/matlab/

Introduction Basic Programming Multimedia Data Operators Summary

Getting MATLAB Started

From Mac Finder:

From Applications folder double click on
MATLAB R20XXa/b Folder.

11 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Getting MATLAB Started (cont.)

From Mac Dock:

Double click on MATLAB launcher application icon.

To add this application to your dock, run application as above
and then from dock control/right mouse click on the
application icon, select Keep in Dock

12 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Getting MATLAB Started (cont.)

From Mac Desktop:

Place or add MATLAB launcher
application alias into your Mac
desktop.

Double click on MATLAB
launcher
application icon.

To add an alias to your desktop,
find and select application in
finder, from main menu File pull
down menu select Make Alias
(apple key+L).

13 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB Main Window

The MATLAB IDE
has 4 Main sub panels:

Current Folder

Workspace

Command History

Command Window

It also has:

Menu bar

Toolstrip/Toolbar

14 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Getting Help

MATLAB provides a few ways to get help or more information
about all its functions and utilities.

From the command line,

type help or help fn name for help text in Command
Window.
type doc or doc fn name for detailed document in Help
Browser.
type lookfor keyword to search functions for keyword.

15 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Getting Help (cont.)

From the main toolstrip, select Help button

Many options: Full documentation and Examples

16 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Getting Help (cont.)

MATLAB Help Window

17 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB Programming

The command window is the main area for entering and
running commands.

Later we will learn to use the MATLAB’s editors (and other
tools/GUIs) to also enter commands and make functions etc.

18 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Entering Commands

The MATLAB command prompt: >>

At this prompt you can enter commands to:

Create or modify a variable: E.g. A = 3

Perform a computation: E.g. 1 + 2

Call a function: E.g. max([1 2 3])

Get help: E.g. help, help max

Manage workspace: E.g. who

Save workspace variables: E.g. save Afile A

and some other things.

19 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Scalars, variables and basic arithmetic

Variables are declared at any time in your code.

Simply use = operator E.g. A=3

MATLAB has no notion of data types — a variable can be
scalar one minute and an array or structure at another
instance. Maybe this is what is required otherwise be
careful with change of type

MATLAB is much like any other language for performing
basic arithmetic

MATLAB can perform arithmetic directly at the command
line: E.g. 1 + 2

Strings are declared using ’’: E.g. S = ’string’

20 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Returning computation results

MATLAB can return a computation to a variable: E.g.

>> B = A + 3

B =

6

MATLAB can perform arithmetic directly at the command
line: E.g. 1 + 2

>>1 + 2

ans =

3

No permanent variable is assigned.
But the temporary variable ans is returned.
(This is an important basic notion of MATLAB)

21 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Semicolon terminated commands

Semicolon typically ends statements in MATLAB. Strictly
speaking the return or newline ends the statement (forces
evaluation)

If semicolon is omitted then the result of the computation is
echoed to the command window:

Ideal for code development and debugging
Annoying and time consuming in larger bodies of code!

>> 6+5

ans =

11

>> 6+5;

>> ans;

>> ans

ans =

11

>> A = 3

A =

3

>> A = 3;

>> B = A + 3;

>> B

B =

6

22 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Matrices or Arrays

MATLAB works with essentially only one kind of object — a
rectangular numerical matrix with possibly complex entries:

All variables represent matrices.

In some situations, 1-by-1 matrices are interpreted as scalars
and matrices with only one row or one column are interpreted
as vectors.

23 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Entering Matrices

Matrices can be introduced into MATLAB in several different
ways:

Entered by an explicit list of elements,

Generated by built-in statements and functions,

Created in a text file with your local editor,

Loaded from external data files or applications (not dealt
with here — see the User’s Guide).

24 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Entering Matrices (cont.)

For example, either of the statements

A = [1 2 3; 4 5 6; 7 8 9]

and

A = [

1 2 3

4 5 6

7 8 9]

creates the obvious 3-by-3 matrix and assigns it to a variable A.

25 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Entering Matrices (cont.)

The elements within a row of a matrix may be separated by
commas as well as a blank.

A = [1,2,3; 4,5,6; 7,8,9]

26 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Entering Larger Matrices

Best done in an ASCII file with your local editor, where errors
can be easily corrected

File should consist of a rectangular array of just the numeric
matrix entries. If this file is named, say, data.ext (where
.ext is any extension except .mat),

The MATLAB command load data.ext will read this file to
the variable data in your MATLAB workspace. E.g.

A.dat:

1 2 3

4 5 6

7 8 9

>> load A.dat

>> A

A =

1 2 3

4 5 6

7 8 9

27 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Built-in Matrix Creation Functions

Example functions that create simple matrices:

rand(n) will create an n × n matrix with randomly generated
entries distributed uniformly between 0 and 1,
while rand(m,n) will create an m × n one.

magic(n) will create an integral n× n matrix which is a magic
square (rows, columns, and diagonals have common sum).

eye(n), eye(m,n) will create a square n or an m × n
Identity matrix.

ones(n), ones(m,n) will create a square n or an m × n
matrix of ones.

zeros(n), zeros(m,n) will create a square n or an m × n
matrix of zeros.

28 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Built-in Matrix Creation Functions Examples

>> eye(3,2)

ans =

1 0

0 1

0 0

>> eye(3)

ans =

1 0 0

0 1 0

0 0 1

>> ones(3)

ans =

1 1 1

1 1 1

1 1 1

>> zeros(3)

ans =

0 0 0

0 0 0

0 0 0

>> ones(2,3)

ans =

1 1 1

1 1 1

>> rand(2)

ans =

0.9501 0.6068

0.2311 0.4860

>> magic(3)

ans =

8 1 6

3 5 7

4 9 2
29 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Multimedia Data as Vectors, Matrices, Arrays etc.

As we shall see in coming lectures, basic media data is simply
represented as a matrix or array in MATLAB:

Audio — 1-D array or vector of amplitudes of sound wave

Image — 2-D array or matrix of colour intensities

Video — 3-D array or matrix: Each frame a 2-D image, n
frames per second

30 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Audio Data as Vector

Reading Audio : MATLAB can natively read Wav and AU files via
wavread() and auread(). E.g.
[y,Fs] = wavread(’handel.wav’);

A vector y is returned along with the sample rate, Fs
of the input file.

Processing : Now we have the audio in a 1-D array or vector we
can do things to it — we leave this for later.

Display the waveform : More on graphics later but a simple
plot(y) displays the audio data.

Playing the sound : Again more later. But a simple audioplayer

and play() the sound will do for now.
Alternatively, you may use sound(y, Fs) or
soundsc(y, Fs) to play the sound.

31 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Audio Data as Vector (cont.)

Output the data to a command window : y stores the data as

a long MATLAB 1-D array. So we can simply type: >>y to look at
the numbers (not that meaningful best to plot()?)
>> [y,Fs] = wavread(’handel.wav’); % read in wav file

>> plot(y); % plot in figure

>> p = audioplayer(y, Fs); % create audioplayer

>> play(p, [1 n]); % play audio

>> y % list elements

ans =

0

-0.0062

-0.0750

-0.0312

0.0062

0.0381

0.0189

-0.0250

-0.0312

.............
32 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Images as Matrices

Images (uncompressed) are represented as a grid of pixels
(intensities for greyscale images).

99 71 61 51 49 40 35 53 86 99
93 74 53 56 48 46 48 72 85 102
101 69 57 53 54 52 64 82 88 101
107 82 64 63 59 60 81 90 93 100
114 93 76 69 72 85 94 99 95 99
117 108 94 92 97 101 100 108 105 99
116 114 109 106 105 108 108 102 107 110
115 113 109 114 111 111 113 108 111 115
110 113 111 109 106 108 110 115 120 122
103 107 106 108 109 114 120 124 124 132

33 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Reading/Writing Images in MATLAB

imread(’filename’) reads a file and assigns it to an array
variable:
im = imread(’parrots.jpg’);

MATLAB can read many file formats including: JPEG, GIFF,
TIFF, BMP, PNG — see help imread

This is a colour image so it has 3 images planes (RGB) —
more in lectures Its actually a 3-D array in MATLAB.

size() is useful to get the dimensions of the image:
[l m n] = size(im);

34 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Reading/Writing Images in MATLAB (cont.)

whos(var) is also useful — it lists a given variable in long
form.

imwrite() write an image to a specified file format.

Images (indeed any graphics) may also be saved directly from
the MATLAB figure window.

35 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Reading/Writing Images in MATLAB

imread(’filename’) reads a file and assigns it to an array
variable:
imshow(im);

36 / 56

Introduction Basic Programming Multimedia Data Operators Summary

MATLAB Image Code Example
%read image

>>im = imread(’parrots.jpg’);

% get image size (note 3 colours)

>>[l m n] = size(im)

l =

256

m =

384

n =

3

% list variable in long form

>>whos im

Name Size Bytes Class

im 256x384x3 294912 uint8 array

Grand total is 294912 elements using 294912 bytes

% output as tiff image

>>imwrite(im,’im.tiff’,’tiff’);

%display image

>>imshow(im);

37 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Videos as Matrices in MATLAB

MATLAB has a movie structure: it is a 2D array of image
frames over time (frame rate)

movie(movie array) will play the video in a figure.

As with images and audio size() and whos are useful
commands.

38 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Reading Video using VideoReader

VideoReader is a powerful tool to deal with video in
MATLAB. It supports various formats, e.g. AVI(.avi),
MPEG-1(.mpg), Windows Media Video(.wmv, .asf, .asx)
on Windows, and MPEG-4(.mp4, .m4v) and QuickTime
Movie(.mov) on Mac. Details of the video can also be
obtained.

Similarly use VideoWriter to create new videos.

An example:

vr = VideoReader(’origdave.avi’);

Create a VideoReader object.
vidFrames = read(vr);

Read in all the frames. For true-colour video, vidFrames is a four
dimensional array: Width × Height × Channels (3) ×
NumberOfFrames

39 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Reading Video using VideoReader (cont.)

numFrames = get(vr, ’NumberOfFrames’);

Obtain the number of frames.
This is equivalent to: numFrames = vr.NumberOfFrames;

for k = 1:numFrames

mov(k).cdata = vidFrames(:, :, :, k);

mov(k).colormap = [];

end

Construct a movie struct to hold the video data.
movie(mov, 1, get(vr, ’FrameRate’));

Play the movie. Here get(vr, ’FrameRate’) obtains the frame
rate (number of frames per second).

40 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Indexing Matrices/Arrays

Individual matrix and vector entries can be referenced with
indices inside parentheses in the usual manner.
For example, A(2,3) denotes the entry in the second row,
third column of matrix A

Another Example, x(3) denotes the third coordinate of vector
x.
A matrix or a vector will only accept positive integers as
indices.
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> A(2,3)

ans =

6

>> X = [1 2 3 4 5 6 7 8]

X =

1 2 3 4 5 6 7 8

>> X(3)

ans =

3

41 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Matrix Operations

The following matrix operations are available in MATLAB:

+ addition
− subtraction
∗ multiplication
∧ power
′ conjugate transpose
.′ transpose
\ left division
/ right division

These matrix operations apply to scalars (1-by-1 matrices) as well.

42 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Matrix Operator Rules

Matrix Operators have to obey basic Math
laws:

If the sizes of the matrices are incompatible for the matrix
operation, an error message will result:

For addition and subtraction matrices must have same
dimension.
For multiplication must obey matrix product rule.

Exception: The case of scalar-matrix operations (for
addition, subtraction, and division as well as for
multiplication) in which case each entry of the matrix is
operated on by the scalar.

Note Array Operations are different — more
soon

43 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Matrix Multiplication Recap

According to mathematical definition, matrices Am×n and Bp×q
can be multiplied if and only if n = p, and the resulting matrix
C = A · B is a matrix of size m × q.
A * B and B * A are usually different (even if both are valid), i.e.
non-commutative.

A

B

a1,1

a3,1 a3,2

a2,1 a2,2

a4,1 a4,2

a1,2

b1,2

b2,2

b1,3

b2,3

b1,1

b2,1

44 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Matrix Division

If A is an invertible square matrix and b is a compatible
column, resp. row, vector, then
x = A\b is the solution of A ∗ x = b and, resp.,

x = b/A is the solution of x ∗ A = b.

Matrix Division Operators have to obey basic laws of linear
algebra for solution of equations etc. these are not important
here though.

Example: If A and B are invertible (full-rank) square matrices of
the same size, and C = A * B. Then,

A\C equals inv(A) ∗ C and returns exactly B.

C/B equals C ∗ inv(B) and returns exactly A.

45 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Array Operators

Note Array Operations are different to
Matrix Operators

There is a subtle change in syntax but big difference in result
of a matrix v. array operator

Array operators work in an element-by-element or entry-wise
way.

Matrix multiplication, division and power do not.

To make array operator precede similar matrix operator with .

46 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Matrix v Array Operators Examples

>> A

A =

1 2 3

4 5 6

7 8 9

>> B = ones(3)

B =

1 1 1

1 1 1

1 1 1

>> A*B

ans =

6 6 6

15 15 15

24 24 24

>> A.*B

ans =

1 2 3

4 5 6

7 8 9

47 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Summary: Matrix v Array Operators

Matrix Operators Array Operators Operation

+ + addition
− − subtraction
∗ .∗ multiplication
∧ .∧ power
/ ./ right division
\ .\ left division
’ conjugate transpose
.’ transpose

48 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Submatrices: Colon Notation

Submatrices (and Vectors of Matrices (= single rows or columns))
are often used in MATLAB to achieve fairly complex data
manipulation effects.

To appreciate the usefulness of these features, compare these
MATLAB statements with a Java, FORTRAN, or C routine to
effect the same.

Essential to grasp this principle: extensively used
later in course

49 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Colon Notation Advantages

Good MATLAB practice:

Colon notation (and subscripting by integral vectors) are keys
to efficient manipulation of these objects.

Creative use of these features to vectorize operations permits
one to minimize the use of loops etc.

Use of Loops to access matrices etc. slows MATLAB

(Once syntax assimilated) Makes code simpler to
read/understand.

Special effort should be made to become familiar
with this.

50 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Colon Notation: Accessing blocks of
Matrix/Array Elements

The basic colon expression

m:n creates a sequence of values from m to n.

It actually creates a row vector m . . . n

Can also be used in for statements — more later

Simple Example 1:5 is actually the row vector [1 2 3 4 5].

>> 1:5

ans =

1 2 3 4 5

51 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Two Colons

The numbers need not be integers nor the increment one.

The syntax m:step:n generates values from m . . . n with given
step size.

For example,

0.2:0.2:1.2 gives

[0.2, 0.4, 0.6, 0.8, 1.0, 1.2],

5:-1:1 gives

[5 4 3 2 1].

52 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Accessing Submatrices

The colon notation can be used to access submatrices of a matrix.
For example:

A(1:4,3) is the column vector consisting of the first four
entries of the third column of A.

A colon by itself denotes an entire row or column:

A(:,3) is the third column of A, and

A(1:4,:) is the first four rows.

end can be used to save remembering the end of a vector
or row/column or a matrix.

If x is an vector, what is the effect of the statement
x = x(end:-1:1)?

53 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Arbitrary Integral Vectors

Arbitrary integral vectors can be used as subscripts:

A(:,[2 4]) contains as columns, columns 2 and 4 of A.

Such subscripting can be used on both sides of an assignment
statement:

A(:,[2 4 5]) = B(:,1:3) replaces columns 2,4,5 of A with the
first three columns of B. Note:

the entire altered matrix A is printed and
assigned.
(sub)matrices/arrays/vectors must be the same
dimension for such operations to work.

A(:,[2,4]) = A(:,[2,4])*[1 2;3 4] Columns 2 and 4 of A
can be multiplied on the right by the 2-by-2 matrix
[1 2;3 4]

54 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Further Examples

A(:, 3:5) = [] removes columns 3 to 5 from A.

only the entire row or column of matrix A can
be removed.

A(:, 3:5) = 10 sets every value to 10 in columns 3 to 5 from A.

It is possible to compose larger matrix from smaller submatrices.
Assume A1 and A2 are two row vectors of the same length, A =

[A1; A2] constructs a new matrix by putting A1 and A2 together.
An example to flip/negate an image:

>> im=imread(’parrots.jpg’); imshow(im);

>> size(im)

ans =

256 384 3

>> im = im(:, end:-1:1, :); imshow(im);

>> im = 255 - im; imshow(im);

>> imwrite(im, ’test.tiff’, ’tiff’);
55 / 56

Introduction Basic Programming Multimedia Data Operators Summary

Summary

Introduction to MATLAB concepts

Basic MATLAB programming

Handling multimedia (audio/image/video) using MATLAB

Basic MATLAB operators

56 / 56

	Introduction to MATLAB
	What is MATLAB
	MATLAB System
	Why MATLAB for this module?
	Useful Web Links
	Getting MATLAB Started
	MATLAB Main Window
	Getting Help

	Basic MATLAB Programming
	MATLAB Programming
	Entering Commands
	Scalars, variables and basic arithmetic
	Returning computation results
	Semicolon terminated commands
	Matrices or Arrays
	Entering Matrices
	Entering Larger Matrices
	Built-in Matrix Creation Functions

	Multimedia Data as Vectors, Matrices, Arrays etc.
	Multimedia Data in MATLAB
	Audio Data as Vector
	Images as Matrices
	Reading/Writing Images in MATLAB
	MATLAB Image Code Example
	Videos as Matrices in MATLAB
	Reading Video using VideoReader

	MATLAB Operators
	Indexing Matrices/Arrays
	Matrix Operations
	Matrix Operator Rules
	Matrix Multiplication Recap
	Matrix Division
	Array Operators
	Matrix v Array Operators Examples
	Summary: Matrix v Array Operators
	Submatrices: Colon Notation
	Colon Notation Advantages
	Colon Notation: Accessing blocks of Matrix/Array Elements
	Two Colons
	Accessing Submatrices
	Arbitrary Integral Vectors
	Further Examples

	Summary

