Chapter 2

Design and Fabrication of VLSI Devices

Jason Cong

1

Design and Fabrication of VLSI Devices

Objectives:

- To study the materials used in fabrication of VLSI devices.
- To study the structure of devices and process involved in fabricating different types of VLSI circuits

Jason Cong

2

The Three Regions in a n-p Junction

A *mask* is a specification of geometric shapes that need to be created on a certain layer. Masks are used to create a specific patterns of each material in a sequential manner and create a complex pattern of several layers

Jason Cong

3

Basic Design Rules 1. Size Rules

- 2. Separation Rules
- 3. Overlap Rules

Basic nMOS Design Rules

Diffusion Region Width 2l **Polysilicon Region Width 2**l **Diffusion-Diffusion Spacing 3**l **Poly-Poly Spacing 2**l **Polysilicon Gate Extension 2**l **Contact Extension** -1 **Metal Width 3**l

Jason Cong

12

Layout of Basic Devices

- nMOS Inverter
- **☼ CMOS Inverter**
- nMOS NAND Gate
- **SOLUTION** CMOS NAND Gate
- on nMOS NOR Gate
- **SOLUTION** CMOS NOR Gate

Complicated devices are constructed by using basic devices

Jason Cong

15

Comparison of CMOS and MOS Characteristics

CMOS	MOS
Zero static power dissipation	Power is dissipated in the circuit with output of gate at "0"
Power dissipated during logic transition	Power dissipated during logic transition
Requires 2N devices for N inputs for complementary static gates	Requires (N+1) devices for N inputs
CMOS encourages regular layout styles	Depletion, load and different driver transistors create irregularity in layout

Jason Cong

4

18

Additional Fabrication Factors

- 9 Scaling
- Parasitic Effects
- Yield Statistics and Fabrication Costs
- Delay Computation
- Solution Noise and Crosstalk
- **9** Power Dissipation

Jason Cong

23

Scaling and Parasitic Effects

The process of shrinking the layout, in which every dimension is multiplied by a factor is called *scaling*

Parameter	Full scaling	CV scaling
Dimensions: width, length, oxid thickness	1/s	1/s
Voltage: power, threshold	1/s	1
Gate capacitance	1/s	1/s
Current	1/s	S
Propagation delay	1/s	1/s²

Parasitic effects includes the stray capacitance, the capacitance between the signal paths and ground, and the inherent capacitance of the MOS transistor

Jason Cong

24

Integrated Circuit Costs

Die cost = Wafer cost

Dies per Wafer * Die yield

Dies per wafer = $\frac{p * (Wafer_diam / 2)^2}{Die Area}$ - $\frac{p * Wafer_diam}{\ddot{0} 2 * Die Area}$ - Test dies » Wafer Area Die Area

Die Yield = Wafer yield

{ 1+ Defects_per_unit_area * Die_Area a

Die Cost is going roughly with (die area)³ or (die area)⁴

Jason Cong

25

Die Yield

Raw Dice Per Wafer

wafer diameter	d	ie area (mm²)			
	<u>100</u>	144	196	256	324	400
6"/15cm	139	90	62	44	32	23
8"/20cm	265	177	124	90	68	52
10"/25cm	431	290	206	153	116	90
die yield	23%	19%	16%	12%	11%	10%

typical CMOS process: α =2, wafer yield=90%, defect density=2/cm2, 4 test sites/wafer

Good Dice Per Wafer (Before Testing!)

6"/15cm	31	16	9	5	3	2
8"/20cm	59	32	19	11	7	5
10"/25cm	96	53	32	20	13	9

typical cost of an 8", 4 metal layers, 0.5um CMOS wafer: ~\$2000

Jason Cong

26

Real World Examples

Chip	Metal	Line	Wafer	Defect	Area	Dies/	Yield	Die Cost
	layers	width	cost	$/cm^2$	mm^2	wafer		
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
PowerPC 60	01 4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 710	0 3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
SuperSPAR	.C 3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

From "Estimating IC Manufacturing Costs," by Linley Gwennap, Microprocessor Report, August 2, 1993, p. 15

Jason Cong

27

Other Costs

IC cost = Die cost + Testing cost + Packaging cost
Final test yield

Packaging Cost: depends on pins, heat dissipation

Chip	Die cost	Package pins type cost			Test & Assembly	Total
386DX	\$4	132	QFP	\$1	\$4	\$9
486DX2	\$12	168	PGA	\$11	\$12	\$35
PowerPC 601	\$53	304	QFP	\$3	\$21	\$77
HP PA 7100	\$73	504	PGA	\$35	\$16	\$124
DEC Alpha	\$149	431	PGA	\$30	\$23	\$202
SuperSPARC	\$272	293	PGA	\$20	\$34	\$326
Pentium	\$417	273	PGA	\$19	\$37	\$473

Jason Cong

28

RC Parasitic Parameters

$$R = \frac{rl_c}{h_c W_c}$$

 $\pmb{R} = \frac{r \pmb{l}_c}{\pmb{h}_c \, W_c}$ r=resistivity, w_c , \pmb{h}_c , and \pmb{l}_c are width, thickness and length of the conductor.

R=resistance of a uniform slab of conducting material.

$$C = \underbrace{\mathring{\text{e}}}_{\ddot{\text{e}}}^{1.15}(\frac{W_c}{t_o}) + 2.80(\frac{h_c}{t_o})^{0.222} + \underbrace{\mathring{\text{e}}}_{\ddot{\text{e}}}^{\dot{\text{e}}}0.06(\frac{W_c}{t_o}) + 1.66(\frac{h_c}{t_o}) - 0.14(\frac{h_c}{t_o})^{0.222} \underbrace{\mathring{\text{u}}}_{\ddot{\text{u}}}(\frac{t_o}{W_{cc}})^{1.34} \underbrace{\mathring{\text{u}}}_{\ddot{\text{u}}}^{\dot{\text{u}}} e_s \, e_0 \, l_c$$

C=capacitance of the conductor, w_{ic} = spacing of chip interconnections,

 t_0 = thickness of the oxide, e_s = permittivity of free space, e_{θ} = dielectric constant of the insulator

Jason Cong

29

Noise Crosstalk

Noise principally stems from capacitive and inductive coupling.

One of the forms of noise is crosstalk, which is a result of mutual capacitance and inductance between neighboring lines

Jason Cong

30

Power Dissipation

- Temperature must be as uniform as possible over the entire chip surface.
- Heat generated must be efficiently removed from the chip surface
- A CMOS gate uses 0.003nW/MHz/gate in 'off' state and 0.8 mW/MHz/gate during its operation.
- A ECL system uses 25 mW/gate irrespective of state and operating frequency

Jason Cong

31

Summary

- The three types of materials are insulators, conductors and semiconductors
- A VLSI chip consists of several layers of different materials on a silicon wafer.
- Seach layer is defined by a mask
- © VLSI fabrication process patterns each layer using a mask
- © Complex VLSI circuits can be developed using basic VLSI devices
- © Design rules must be followed to allow proper fabrication
- Several factors such as scaling, parasitic effects, yield statistics and fabrication costs, delay computation, noise and crosstalk and power dissipation play a key role in fabrication of VLSI chips

Jason Cong

32

