COS 513: SEQUENCE MODELS I

LECTURE ON NOV 22, 2010

PREM GOPALAN

1. INTRODUCTION

In this lecture we consider how to model sequential data. Rather than as-
suming that the data are all independent of each other we assume they come
in sequence X1, 7 = X1, x2.., x7. There are two types of sequential mod-
els that are quite similar to each other: Hidden Markov Model (HMM) and
Kalman Filter. This lecture focuses on HMM which has many applications
including genome modeling and action recognition.

HMMs are a generalization of the finite mixture model (MM) to se-
quences. In MM, the process of generating IID data involves choosing a
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FIGURE 1. Diagram representing transitions between mixture
components 1, 2, 3 and observed data. The probability of tran-
sition is shown on the edges. xs represent data points and x| and
Xy are indicated by the yellow and red x respectively.

1



2 PREM GOPALAN

z1 22 23 T

x1 x2 %3 xT

FIGURE 2. Graphical Model

component according to a distribution p(z), independent of choice of com-
ponents in other steps, and choosing a data vector from the distribution,
p(x|z). In HMM, the mixture component is chosen dependent on the pre-
vious component. Each component can be seen as a state, and we augment
the basic MM to include a matrix of transition probabilities.

Figure 1 illustrates this difference. The xs are elements of the sequence.
Let the yellow x represent x| and the red x represent x;. Then in MM, x;
is approximately equally likely to belong to component 2 or 3. In HMM,
x7 is more likely to belong to component 2, since x; belongs to 1, and the
probability of state transition from 1 to 2 is high.

2. GRAPHICAL MODEL FOR HMM

In Figure 2, each of the z; is a multinomial random variable represented
by a indicator vector of size K, whose component i is 1 if the cluster index
i (for the clusters associated with data x;.7) is indicated, and O if not. For
a particular configuration (z, y) = (z1, 22, .., 27, X1, X2, ..Xx7) as shown in
Figure 2, the joint probability is given by the product of local conditional
probabilities as follows:
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We assume above that the distribution p(x;|z;) is independent of t.

2.1. Emission probabilities. For a given state k, there is a set of emission
probabilities governing the distribution of y; and we represent it by 6. For
example, G could be a parameter to a multivariate Gaussian or multinomial
Poisson. Thus p(x;|z;) can be written as:
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2.2. Transition probabilities. Define a K x K state transition matrix A,
where each entry a;; is the probability p(z] = llzi_1 = 1). The probability
of the next state z; given the current z;_ is given by:

K K '
() p(zelzi-1) = H H[ajk]z,’_lzﬁ‘
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Since only one component of z; or z;_ is 1, there is only one factor on
the right-hand side that is different from one.

2.3. Initial distribution. The first state node in the sequence has no par-
ents. Thus we define 7 to be the distribution where 7; = p(z’f =1). A
more formal definition is as follows:

K k
4) p@) =[]z
k=1

2.4. Conditional independence. From the graphical model, and using Bayes
ball, we can see that conditioning on z,_ renders z; and z;—, independent.
Thus the future is independent of the past, given the present. This is the
Markov property. Note that this is not true when conditioned on the output
node x;_j instead of z;_1.

3. ESTIMATING HMM PARAMETERS USING THE EM ALGORITHM

The parameters of an HMM include the emission probabilities é, the tran-
sition matrix A and the initial probability distribution 7. Given data x; 7,
we want to estimate these parameters. First we write down the expected
complete log likelihood using equations 1 to 4 with respect to the posterior

p(zi.rlxi.7):
5
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E step. We need to compute the following conditional expectations. We
will return to these expectations at the end of this section.

(7) E[z¥] = p(z = klx1.7)

8) Elz] 251 = p(zic1 = j, 2 = klxi1)

M step. In the M step, the parameters are adjusted using a process that is
equivalent to assuming that the latent variables have been observed. Hold-
ing the above expectations fixed, we optimize the parameters to try to even-
tually converge to a maximum likelihood estimate. An estimate for the prior
probability of state zy, 7k is given by:

k
L .
) mi = Elz}1/> Elzi]
j=1
We then estimate the probability of moving from j”* state to k’* state. In
equation 10, the numerator is the number of transitions from j’ h to k'™ state
and the denominator the total number of transitions from j** state.

(10) ajk = ZE Zt 1Zt]/ZZE[Zt IZt

t=2 =1

Oy 1s estimated as the welghted maximum likelihood estimate with weights
given by E[z¥]. For example, in the Gaussian case, x, the cluster center, is
estimated as follows:

T T
(11) pe =D Elzln/ Y EBlzy]
t=1 t=1

Each term in the numerator in equation 11 is the probability of x; being
in cluster & multiplied by x;, and the denominator is the expected number
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of data points in cluster k. The multinomial case where each x; has exactly
one of D fixed, finite outcomes, is as follows:

D .
(12) pilon) = [ [ 6%
i=1
T . T
(13) Ori = > Elzf1x/> Elzf]
t=1 t=1

Now, let us consider how to compute E(z/|x1.7) and E[z;—1, z;|x1.7] in
the E step. Define a(z;), f(z;) as follows using a simple application of the
Bayes rule, chain rule and conditional independence.

Elzlxi.r] = p(zlxi.r)

@, x1.7)/px1.7)
p(X1.t520)-pXer.7lz) / p(x1.T)
a(zy).p(z1)/ p(x1.1)

a.(z;) is the probability of emitting a sequence of outputs x|, and ending
up in state z;. S(z;) is the probability of emitting a sequence of outputs
X;+1..7 Starting from state z;.

Elzi—1, zelx1.r] = p(ze—1, zelx1.7)

p(x1.1,2-1,20)/ P(X1..1T)
P(X1—152e—1)-P (K75 Ze|X1.0—15 20—1) / P(X1..T)
P(X1i—1,20-1)-P(@elzi—1).p (1.7 1285 20—1) / P(X1..7)
p(xX1-1,2-1)-P@elzi—1)-P (Xt |2es 2e—1). P (K17 1205 20—1) / P (X1.7)
= pWX1.—1,2=1)-P@elze—1)-p(xe|ze) . p(Xe41.7120) / p(x1.7)
o(zt—1)-p(zelze—1).p(Xe|ze) . B(z0) / p(x1.7)

(14)
In the above sequence of equations, step 3 follows from splitting the se-
quence xi_7 into x1 ;— and x;_7, and applying Bayes rule. In step 4, we
use the independence of z; from xj _;—; given z,—1, and the independence
of x; r from x| ,—1 given z;. Steps 5 and 6 use the independence of x;
from z;—1 and x;41 7 from z;_1, and from each other, given z;. Note that
p(z¢|z:—1) is given by a, ., ,. In the next lecture, we will consider algo-
rithms to compute a(z;) and £(z;).



