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Abstract: Optimal load distribution (OLD) among generator units of a hydropower plant is a
vital task for hydropower generation scheduling and management. Traditional optimization
methods for solving this problem focus on finding a single optimal solution. However, many
practical constraints on hydropower plant operation are very difficult, if not impossible, to be
modeled, and the optimal solution found by those models might be of limited practical uses.
This motivates us to find multiple optimal solutions to the OLD problem, which can provide
more flexible choices for decision-making. Based on a special dynamic programming
model, we use a modified shortest path algorithm to produce multiple solutions to the
problem. It is shown that multiple optimal solutions exist for the case study of China’s
Geheyan hydropower plant, and they are valuable for assessing the stability of generator
units, showing the potential of reducing occurrence times of units across vibration areas.

Keywords: hydropower; optimal load distribution; multiple optimal solutions;
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1. Introduction

Worldwide, hydropower plants produce about one-quarter of the world’s electricity and supply more
than 1 billion people with electric power [1]. For example, there are more than 11,000 hydropower plants
operating in China, providing about 20% of the country total electric power and making hydropower
the country’s largest renewable energy source [2]. It has been shown that improving the operation of
hydropower plants can increase the total profit by 1%–3% [3], which is of great significance for making
energy production more efficient and reducing greenhouse gas emissions.

Hydropower plant operation involves issues such as optimal load distribution (OLD) and unit
commitment [4,5]. In this paper, the OLD problem is defined as a deterministic optimization problem
with a fixed hydraulic head and a single time step [6], namely economic dispatch. The objective is to
minimize the total water discharge by optimizing the load distribution among multiple generator units.
Since the OLD is a subproblem involved in unit commitment problems, it is a basic and vital module for
a hydropower plant’s economic operation and generation scheduling [4].

It is noted that the OLD problem does not take into account the following factors: the amount of water
in the basin is limited and therefore the objective usually aims at finding the optimal production levels
at each period of an optimization horizon (e.g., a week) in order to achieve the maximum benefits from
the limited quantity of water available in the basin; the level of the water in the basin (i.e., the hydraulic
head) influences also the amount of electric energy that could be produced by a given amount of water.

A wide range of optimization methods have been applied to solving the OLD problem, including
mixed integer linear programming (MILP) [7–12], mixed integer nonlinear programming [13], dynamic
programming (DP) [14–16], Lagrangian relaxation [12,17,18], hierarchical optimization [6,19–23],
genetic algorithm (GA) [18], particle swarm optimization (PSO) [2,24–27] and cultural algorithm [28].
These methods generally produce a single optimal or near-optimal solution. However, to practically
assist the operation of large-scale hydropower plants, it is often more useful to provide a set of
alternatives to decision makers so that they can choose the most appropriate solution. This is especially
important because some practical constraints, such as the stability of generator units, are difficult to be
taken into account in the optimization models.

There are many situations in which multiple optimal solutions (MOS) (i.e., solutions with the same
objective value but with different values for the decision variables) may exist. For example, a general
non-convex function, such as sin(x), has multiple minima and maxima. For the OLD problem, the
input/output (I/O) function of a generator is often non-convex, piece-wise linear with many pieces having
the same slopes (Figure 1) [8]. In this case, suppose x∗1, x

∗
2 are the optimal loads for generators 1 and 2,

and suppose x∗1 and x∗2 on the pieces with the same slopes, then we can freely adjust x∗1 and x∗2 by the
same amounts but in the opposite direction while still achieving the same objective value and satisfying
the fixed total load constraint. In fact, it was reported that there were MOS for the refill operation of the
Three Gorges Reservoir in China [29].
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Figure 1. An example showing that multiple solutions might exist in the OLD problem.
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MOS have been studied in different contexts. For example, in integer linear programming, all
optimal solutions are found by iteratively solving the original problem with new integer constraints
added to exclude the optimal solutions found from the previous iterations [30]. For general nonlinear
programming problems, a dynamical trajectory-based methodology was developed for computing
multiple local optimal solutions [31]. In the shortest path problem, all the optimal and near-optimal
solutions are found by using a near-shortest path algorithm, which is a modified version of backtracking
in DP [32]. For general optimization problems, the Niche PSO technique was developed to locate and
refine MOS [33]. The multiple near-optimal solutions, whose objective values are equal or sufficiently
close to the optimum, were explored in the deterministic reservoir operation problems [34]. However, as
far as we know, the problem of finding multiple solutions has not been addressed in the OLD problem.
In fact, we will show in the case study that MOS do exist in the OLD problem.

In the rest of this paper, we present the description for the OLD problem in Section 2, followed by
our solution approach in Section 3. Using discretization, which is usually used to solve DP models, we
reformulate the discretized OLD problem as a shortest path problem. We then develop a special shortest
path algorithm to find MOS. The case study of the Geheyan hydropower plant is then shown in Section 4.
Section 5 draws the conclusions of this research.

Since the discretization resolution affects the optimality of the solutions found, our method requires a
reference or benchmark on the optimum as a guidance for the discretization. Therefore, though the focus
of this study is on finding multiple solutions, we also provide models for finding an optimal solution in
the Appendix as well. These include a MILP model to find the global optimal solution for the case of
piece-wise linear I/O function and a Lagrangian relaxation model for general I/O functions. Additionally,
we provides some cases with a nonlinear I/O function to illustrate that MOS might also exist in the
OLD problem.
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2. Problem Description

The problem of optimal load distribution among hydropower plant units is to minimize the total water
discharge while ensuring the power system reliability [2,4,6]. This problem is modeled as follows:

Q∗ = min
n∑
i=1

Qi(xi)

s.t.

n∑
i=1

xi = L, xi ∈ Ri, ∀ i = 1, . . . , n

(1)

where n is the number of generator units, xi and Qi(xi) are the electric load and the water discharge
for generator unit i respectively. L is the required total electric load for the hydropower plant. Ri is
the feasible load for generator unit i and is often equivalent to [li, z

l
i] ∪ [zui , ui], i.e., either li ≤ xi ≤ zli

or zui ≤ xi ≤ ui. The minimum li, maximum ui and infeasible range (zli, z
u
i ) for unit i impose the

operational constraints upon the real-time unit commitment and load distribution. The infeasible range
(zli, z

u
i ) is defined as the vibration area where the generator shaft tends to vibrate violently [35]. It should

be noted that this problem is independent of time.
The water discharge function Qi(xi) is often non-convex and hence the OLD problem shown in (1)

often has a non-convex objective function [36]. In addition, the feasibility space is discontinuous due
to the vibration range of the loads. Therefore, the OLD problem is often very difficult to solve even for
finding just a single optimal solution. In fact, traditional methods such as Lagrangian relaxation, MILP
or DP often can only find a near-optimal solution. On the contrary, our method will find multiple optimal
or near-optimal solutions using discretization and a shortest path algorithm.

3. Solution Approach for Finding Multiple Solutions

We notice that the OLD problem has only one join constraint on the decision variables, i.e.,
n∑
i=1

xi = L.

This special structure allows us to consider applying dynamic programming algorithms. We first review
the general DP framework in Subsection 3.1 to show the general idea. However, this general framework
and traditional DP algorithms might not work for the OLD problem due to the non-convexity of the
objective function and a discontinuous feasible region. This leads to the idea of using discretization that
allows us to find not only a single optimal solution but a multiple of them.

3.1. Review of General Dynamic Programming (DP) Framework

DP, based on Bellman’s principle, is a classic optimization method that improves computational
efficiency greatly by saving some intermediate results into memory, which can be reused [37]. A DP
model can be formulated by the following procedures [14,15]:

(1) Setting the decision variable xi as the load allocated to the ith generator.

(2) Setting the stage variable as the accumulative load of the first i generators: si =
i∑

j=1

xi.

(3) Establishing the state equation as:

si = si−1 + xi (2)
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(4) Define fi(si) as the minimum total water discharge when the accumulative electric load from the
first generator to the ith one is si, i.e.,

fi(si) = min
x1,x2,...,xi

i∑
j=1

Qj(xj)

s.t.
i∑

j=1

xj = si, xj ∈ Rj, ∀j ∈ {1, . . . , i}
(3)

We also defined fi(si) =∞ if equation (3) is infeasible. Then problem (1) is equivalent to finding
fn(L). We can find fi(si) recursively using the following Bellman equation:

fi(si) = min
xi∈Ri

{Qi(xi) + fi−1(si − xi)} (4)

where f0(s0) = 0 is defined as the boundary condition.

In the cases when the I/O function is quadratic and there is no constraint on the loads, we can find
the closed form for fi(si) and the optimal load distribution xi. However, this is not the case for the OLD
problem since the discharge function is non-convex and the feasible range is discontinuous. We can also
try approximate dynamic programming [38] to approximate fi(si). However, this method might be time
consuming and inaccurate because of the discontinuous feasible region involves in this problem.

We will discretize the feasible space of the loads and show that the discretized OLD problem is
equivalent to a shortest path problem that can be solved efficiently. The discretization resolution is
adjusted such that the optimum total discharge found by the discretized OLD is relatively close to the
optimum total discharge found using Lagrangian relaxation or MILP methods (see Appendix A). We
modify the shortest path algorithm slightly to keep track of all the optimal paths. Although discretization
generally provides only approximate solutions, near-optimal solutions are often accepted in practice. In
addition, for this particular case study, we will show that the solutions obtained were actually the global
optima solutions.

3.2. Discretized OLD as a Shortest Path Problem

The decision variable xi in the OLD problem is continuous and can take any value in its feasible
domain Ri. Let us discretize the interval [0, L] into discrete values {p0, p1, . . . , pK} with pj = j∆,
∀j = 0, 1, . . . , K and ∆ = L/K. Suppose we can impose a further constraint that xi ∈ {p0, p1, . . . , pK},
and consider a new optimization problem:

min
n∑
i=1

Qi(xi)

s.t.
n∑
i=1

xi = L, xi ∈ Si,∀ i = 1, . . . , n

(5)

where Si is defined to be the feasible set for xi in the discretized OLD problem, i.e.,

Si =
{
xi | xi ∈ Ri, xi ∈ {p0, p1, . . . , pK}

}
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It is noted that an optimal solution of the new problem shown in Equation (5) might be different from
that of the original (continuous) problem shown in Equation (1). In addition, the optimum of the new
problem should not be smaller than that of the original problem. However, if the discretization resolution
is fine enough and if multiple solutions do exist, the gap could be small. In fact, we will show in the case
study that the discretized problem can produce optimal solutions.

We will show how the discretized OLD problem can be reformulated as a shortest path problem.
In the two dimensional coordinate system, we draw coordinates (i, pk) where i = {0, 1, . . . , n} and
k = {0, 1, . . . , K}. Let (x1, x2, . . . , xn) be a feasible solution to the discretized OLD problem,
i.e.,

∑n
i=1 xi = L and xi ∈ Si. In Figure 2, we draw the points (0, 0), (1, s1), (2, s2), . . . , (n, sn) on

the two dimensional coordination system, where si =
∑i

j=1 xi. If we connect the points sequentially,
we obtain a path from (0, 0) to (n, L). In other words, each of the paths from (0, 0) to (n, L) would
be a solution to the total load constraint

∑n
i=1 xi ≡ L. We also set the cost of the arc from coordinate

(i− 1, si−1) to coordinate (i, si) is set as follows:

c(i−1,si−1)→(i,si) =

Qi(xi), if xi ∈ Si
∞ otherwise.

(6)

Then, the total cost of the path would be the total discharge
∑n

i=1Qi(xi) when (x1, x2, . . . , xn) is
a feasible solution. The discretized OLD problem is equivalent to finding a shortest path from the
origin (0, 0) to the destination (n, L). We then can apply different shortest path algorithms to solve the
discretized OLD problem efficiently [39].

Figure 2. A solution to the discretized OLD problem can be viewed as path from the origin
S(0, 0) to the destination E(n, L).
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Figure 3 shows that the discretized OLD problem becomes the shortest path problem from the origin
(0, 0) to (n, L). The nodes of the network represent the accumulative loads, the edges represent the load
distribution and the costs of the edges are the water discharges.

Figure 3. The discretized OLD is equivalent to a shortest path problem for finding an optimal
path from the origin (0, 0) to the point (n, L) that passes through the points on the grid.

3.3. Finding MOS

The solution approach for finding MOS in the OLD problem is same as the standard shortest path
algorithm. Let us define q(i, pk) as follows:

q(i, pk) = min
x1,x2,...,xi

i∑
j=1

Qj(xj)

s.t.

i∑
j=1

xj = pk, xj ∈ Sj, ∀j ∈ {1, . . . , i}
(7)

which is a discretized version of fi(pk) as shown in the general DP framework in Equation (4). We define
q(i, pk) =∞ if the problem is infeasible.

The idea of a shortest path algorithm is to solve the subproblems with small i and k and then use the
results to solve subproblems with larger i, k until i = n and pk = L. In addition, this algorithm keeps
track of all the optimal subpaths to produce multiple solutions for the shortest paths.

We have:

q(i, pk) = min
xi∈Si

{q(i− 1, pk − xi) +Qi(xi)} (8)
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This is basically the Bellman equation or the principle of optimality [37]. This equation is equivalent to
saying that the optimal path from the origin (0, 0) to (i, pk) can be found by identifying the points among
the set of (i − 1, pk − xi), i.e., the best points with the minimum total cost as shown in Figure 3. The
following shortest path algorithm shows the formal procedure for finding an OLD solution:

• For i = 1:
We set q(1, pk) for k ∈ {1, 2, . . . , K} as follows:

q(1, pk) =

Q1(pk) if pk ∈ S1

∞ otherwise
(9)

• For i = 2 to n:
We set q(i, pk) for k = {1, 2, . . . , K} as follows:

q(i, pk) = min
xk∈Sk

{
q(k − 1, pj − xk) +Qk(xk)

}
The number of operations for each i that is in the range [2, n−1] is, at most, the number of links between
node (i, k) and (i + 1, k′), which is equal to K(K+1)

2
. The number of operations for i = 1 and i = n are

at most K each. Thus, the total number of evaluations is at most (n− 2)K2 + 2K.
To find of all the optimal solutions, we can modify the traditional shortest path algorithm slightly to

keep track of the optimal subpaths. The idea is to use the principle of optimality in dynamic programming
as follows: if an optimal path from (0, 0) to (i, pk) contains the point (i − 1, pk′), then the set of all the
optimal subpaths to (i− 1, pk′) is also contained in the set of all the optimal subpaths to (i, pk).

Let D(i, pk) be the set of all the optimal solutions of problem (7) at each i ≥ 1 and pk (each optimal
solution is a vector of length i). Let {x∗i1, . . . , x∗im} be the set of optimal solutions for the recursive
problem (8). Then, with i = 1, we have:

D1,j =

pj if pj ∈ S1

∅ otherwise

and with i ≥ 2, we have:

D(i, pk) =

{
(D(i− 1, pk − x∗i1), x∗i1), . . . , (D(i− 1, pk − x∗im), x∗im)

}
The formal modified shortest path algorithm for finding MOS of the OLD is as follows:

• For i = 1:
We set q(1, k) for k ∈ {1, 2, . . . , K} as follows:

q(1, k) =

Q1(pk) if pk ∈ S1

∞ otherwise

and

D(1, pk) =

pk if pk ∈ S1

∅ otherwise
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• For i = 2 to n:
We set q(i, pk) for k = {1, 2, . . . , K} as follows:

q(i, pk) = min
xi∈Si

{
q(i− 1, pk − xi) +Qi(xi)

}
If q(i, pk) <∞, we set,

D(i, pk) =

{
(D(i− 1, pk − x∗i1), x∗i1), . . . , (D(i− 1, pk − x∗im), x∗im)

}
where {x∗i1, . . . , x∗im} are the optimal solutions of problem (8). Otherwise, we set D(i, pk) = ∅.

Notice that the algorithm works with all types of I/O functions and the discontinuous feasible region
involved in this problem.

The algorithm’s computational complexity includes two parts: (1) the traditional computational
complexity for the shortest path, which is (n − 2)K2 + 2K; and (2) the computational complexity for
procedure of trace back, M , which is the number of multiple optimal solutions. Since the M is not often
a large number, the proposed approach could offer a practical solution in terms of computation time.

3.4. Multiple Solutions Space

The multiple solutions found by the special shortest path algorithm are scattered points in space.
However, the space of all the optimal solutions could form continuous regions. In the case of piece-wise
linear discharge functions, we can find this space by using marginal utility analysis. Among all the
optimal solutions for which the constraints xi ∈ Ri are not binding, the marginal utilities must be the
same, i.e., ∂Q1

∂x1
= ∂Q2

∂x2
= · · · = ∂Qn

∂xn
. Let x∗i1, x

∗
i2, . . . , x

∗
im be a particular set of optimal unit loads. Then

we can perturb these solutions at the same time such that their sum does not change. For example, we
can adjust the optimal solution to x∗i1 + ε, x∗i2 − ε, where ε is small enough, while keeping all other unit
loads unchanged. The range of ε is chosen so that the new loads x∗i1 + ε and x∗i2 − ε still lie within their
original linear pieces of the piece-wise discharge functions.

4. Case Study

4.1. Geheyan Hydropower Plant

As shown in Figure 4, the Geheyan hydropower plant is located about 9 km upstream of the Qing
River from Changyang county, Hubei Province in China. The plant has a large hydropower generation
capacity of 2.94 × 109 kWh per year with a firm output of 2.41 × 105 kW. The area of the Geheyan
reservoir basin is 14,430 km2. Corresponding to normal and minimum water levels of 200 m and 160 m,
respectively, the normal and dead water storage are 3.12× 109 m 3 and 1.98× 109 m3. The reservoir is
used for inter-year flow regulation.
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Figure 4. Map showing the location of the Geheyan Hydropower plant in China.

 

The plant is equipped with four generation units, which have the same I/O curves. It should be noted
that the same I/O curves are only an approximate for practice, which was provided by the generator
factory. For a single generation unit, some records of the I/O curve for a water head of 110 m are plotted
in Figure 5. The minimum output is 10 MW and the vibration area ranges from 80 MW to 180 MW. The
model is described as follows:

minQ∗ =
4∑
i=1

Qi(xi)

s.t.
4∑
i=1

xi = L, xi /∈ [80, 180]

xi ≥ 10∀ i = 1, . . . , n

xi ≤ 300

(10)

Figure 5. Efficiencies of generator in the Geheyan Hydropower plant for 110 m water head.
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Based on these records, a piece-wise linear approximating technique is used to describe the I/O curve.
It very often uses this piece-wise linear I/O function in practical operation of hydropower plants [5].

4.2. Global Optimal Solution

The MILP model (Appendix B) is used to find the optimal solution (reference or benchmark), in
which the I/O curve of generation unit is a piece-wise linear function and a penalty function method
(by modification of the I/O curve) is used to avoid vibration. Lingo 9.0r [40] is used to solve the MILP
model. The global optimal solutions are listed in Table 1 when the total electric load varies from 500 MW
to 1200 MW. For simplicity, an assumption is made that the outputs of these units decline from unit 1 to
unit 4.

Table 1. The results of global optimal solution to the OLD problem by using MILP.

Load L

(MW)

Output of units (MW) Total discharge
Q∗ (m3/s)

Total discharge
Q∗

L (m3/s)Unit 1 x∗
1 Unit 2 x∗

2 Unit 3 x∗
3 Unit 4 x∗

4

500 255 245 \ \ 518 517.1

550 295 255 \ \ 562 562.0

600 300 300 \ \ 608 608.0

650 295 285 70 \ 688 686.3

700 265 255 180 \ 734 731.0

750 250 250 250 \ 777 775.6

800 295 255 250 \ 821 820.5

850 300 295 255 \ 866 865.5

900 300 300 300 \ 912 912.0

950 295 295 295 65 991 989.5

1, 000 255 255 255 235 1, 036 1, 034.2

1, 050 275 265 255 255 1, 079 1, 079.0

1, 100 275 275 275 275 1, 124 1, 124.0

1, 150 295 295 295 265 1, 169 1, 169.0

1, 200 300 300 300 300 1, 216 1, 216.0

The Lagrangian relaxation method (Appendix A) is also applied to find lower bounds of the optimal
total water discharges. This method is often applicable in cases when the problem size is large (i.e., with
large n and with more complex I/O function). The total water discharge, Q∗L, are shown in Table 1. For
example, a lower bound total water discharge of 517.1 m3/s is found when the load is set to 500 MW,
which is quite close to the true optimum of 518 m3/s. We can also see that in some cases, e.g., with
L = {550, 600, 900}, the optimal objective value of the OLD problem is equal to one obtained using
the Lagrangian relaxation method. Nevertheless, both the MILP model and the Lagrangian relaxation
method produce only a single solution. The focus of our paper is on finding MOS as we will show in the
next subsection.
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4.3. Multiple Solutions

The multiple-solution approach is implemented to find all solutions to the OLD problem of the
Geheyan hydropower plant. The computation time is several seconds for a specific load. More than
one solution is obtained, all of which have the same total water discharge as that of MILP. Some typical
cases are described as follows.

(1) In the case that total electric load is equal to 500 MW (L = 500), the optimal solution consumes
water discharge of 518 m3/s and distributes them to unit 1 and unit 2 (Table 1).
Table 2 shows single or multiple solutions under different discrete intervals. When the discrete
interval of DP is 100 MW, a single solution is found but it is not optimal compared to the optimal
water discharge found from MILP (518 m3/s). When the discrete interval is 10 MW, a single
optimal solution is located. When the discrete interval decreases to 1 MW, multiple solutions are
found and they all reach the optimal discharge. With a smaller interval (0.1 MW), even more
optimal solutions are identified.

Table 2. The relationship between discrete the interval and solutions in load of
500 MW.

Discrete interval Unit 1 Unit 2 Total discharge
∆ (MW) x∗

1 (MW) x∗
2 (MW) Q∗ (m3/s)

100 300 200 521

10 250 250 518

255 245

518

254 246

1
...

...
251 249

250 250

255 245

518

254.9 245.1

0.1
...

...
250.1 249.9

250 250

The multiple solutions space can be found by the marginal utility principle, ∂Q1

∂x1
= ∂Q2

∂x2
=

· · · = ∂Qn

∂xn
, e.g., ∂Q1

∂x1
= 263−259

255−250
= ∂Q2

∂x2
= 259−255

250−245
. Figure 6 shows the existence of MOS on a

line segment.
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Figure 6. Multiple solutions to total electric load of 500 MW (output of unit 1 ≥ output of
unit 2).
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(2) When total load is set to 650 MW, four multiple solutions spaces are identified as follows.

(a) x∗1 ∈ [290, 295], x∗2 ∈ [290, 295] and x∗3 ∈ [60, 65]. These ranges, if satisfying OLD
constraints, can be verified by the records of the I/O curve, e.g., 299−295

295−290
= 299−295

295−290
= 94−90

65−60
.

Furthermore, we can obtain multiple solutions from x∗1 = 290 + ε1, x∗2 = 290 + ε2 and
x∗3 = 70− ε1 − ε2 given any values of ε1 and ε2, 0 ≤ ε2 ≤ ε1 ≤ 5 and ε1 + ε2 ≥ 5.

(b) x∗1 ∈ [295, 300], x∗2 ∈ [285, 290] and x∗3 ∈ [65, 70].

(c) x∗1 ∈ [295, 300], x∗2 ∈ [295, 300] and x∗3 ∈ [55, 60].

(d) x∗1 ∈ [295, 300], x∗2 ∈ [295, 300] and x∗3 ∈ [50, 55].

These four areas of multiple solutions are shown in Figure 7 using a three-dimensional figure. This
shows the existence of MOS in the form of a surface.

Figure 7. Multiple solutions space to total electric load of 650 MW (output of unit 1 ≥
output of unit 2 ≥ output of unit 3).
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(3) When the total load is set to 1100 MW, four generation units are used. By using the multiple
solution approach, each unit’s output is either 295 MW, 285 MW, 275 MW, 265 MW or 255 MW.
That is, if a solution sampled from above values satisfies the OLD constraints, it is an optimal
solution. It is shown that the multiple solutions exist in the form of a few scattered points.

4.4. Non-Linear I/O Function

A second degree polynomial interpolation technique is used as a nonlinear approximation to the I/O
curve. That is, the top three nearest points to (Pi,k−1, Qi,k−1), (Pi,k, Qi,k) and (Pi,k+1, Qi,k+1) are used
to construct a quadratic function. This quadratic function is used to estimate the Qi(xi). Based on the
above approximation for the I/O curve, some cases are shown as follows.

(1) In the case that total electric load is equal to 500 MW, the optimal solution consumes water
discharge of 518 m3/s and distributes them to unit 1 and unit 2. Indeed, the multiple optimal
solutions are the same as that from the piece-wise linear approximation (Figure 6) because the
nonlinear and linear approximation are the same within the range of [240 MW, 255 MW].

(2) In the case that total electric load is equal to 650 MW, (296.7 MW, 286.7 MW, 66.6 MW) is the
unique optimal solution.

(3) In the case that total electric load is equal to 1100 MW, a few scattered points, the same as that of
piece-wise linear I/O curve, are the multiple optimal solutions.

The modified DP algorithm is also used in an economic dispatch problem, EXAMPLE 3D in [4] (See
Appendix C), to illustrate that the multiple solutions can also exist for a theme plant with nonlinear I/O
functions. When a discrete step of 0.1 MW is used for the computation (programming with a 32-bit
floating-point data), some multiple optimal solutions have been found, such as (725.8 MW, 909.4 MW,
864.8 MW), (725.9 MW, 909.3 MW, 864.8 MW), (726.0 MW, 909.6 MW, 864.4 MW), (726.1 MW,
909.5 MW, 864.4 MW), (726.2 MW, 909.5 MW, 864.3 MW), (726.3 MW, 909.4 MW, 864.3 MW) and
(726.7 MW, 909.0 MW, 864.3 MW). It should be noted that these solutions are not the extract optimal
but near-optimal solutions, because they depend on the data length of the computer.

4.5. Application

In the practical operation of a hydropower plant, the total load L often changes from time to time.
In these cases, a small increment in load results in a new dispatch, which may end with the most
economical values as determined by the model, but is not acceptable from an operational point of
view [21]. Typically, some MOS require one or more generators to drop or raise their output dramatically.
We often want to avoid adjusting, especially through the vibration area since this may greatly affect
production safety. Therefore, multiple solutions from OLD are valuable, since they provide more
alternative schemes from which decision maker can choose as shown in the following examples:

(1) Improving unit stability: Multiple solutions provide choices to reduce the readjustment efforts
when certain conditions change. For example, the total load L often changes from time to time as
shown in Table 3, which lists historical data from a practical operation of the Geheyan hydropower
plant. If the decision maker has only a single solution, the solutions with different values of L
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could be very different from each other and hence the readjustment cost is often high when the
plant switches from one total load to another. However, if the decision maker has MOS for each
different L, he/she can choose the solutions that require the least adjustment. For example, the
decision maker could change only the load for unit 2 and keep the load of unit 3 constant when the
total load L changes (because the solutions in the space [75 MW, 85 MW] have the same cost).
This choice can improve the stability of the overall system.

Table 3. The load distribution of units in practical operation.

Date
Output of Units (MW) Load

(MW) LUnit 1 x∗
1 Unit 2 x∗

2 Unit 3 x∗
3 Unit 4 x∗

4

2006-3-23 10:30 0 76.5 78.9 0 155.4
2006-3-23 10:31 0 80.9 78.9 0 159.8
2006-3-23 10:32 0 81.9 78.9 0 160.8
2006-3-23 10:33 0 80.9 78.9 0 159.8

(2) Avoiding unit adjustment over the vibration area: For example, the current total load is
L = 971 MW and the I/O function is piece-wise linear. We can apply our algorithm to find
multiple solutions for this case. The MOS include the following two solutions:
Solution 1: x∗1 = 255.4 MW, x∗2 = 255.3 MW, x∗3 = 255.3 MW and x∗4 = 205.0 MW.
Solution 2: x∗1 = 299.8 MW, x∗2 = 295.8 MW, x∗3 = 295.4 MW and x∗4 = 80 MW.

We notice that all units in solution 1 are greater than 180 MW while one of the units in solution 2
is less than 80 MW, where [80 MW, 180 MW] is the vibration zone. Depending on the current load
distribution, i.e., the solution before the total load is changed to L = 971 MW, we might have different
choices for avoiding unit adjustment within the vibration area. Specifically, solution 1 is chosen when
the previous outputs of all four units are greater than 180 MW, while solution 2 can be used in the case
that one or more generator’s output at the past time period is less than or equal to 80 MW.

5. Conclusions

This paper focuses on finding multiple optimal solutions of the OLD problem. Based on a
discretization scheme and a DP model, a special shortest paths algorithm is proposed to keep track
of MOS. With the case study of the Geheyan hydropower plant, it is shown that the special shortest
paths algorithm is effective for finding multiple solutions, which do exist in the form of scattered points,
line and surfaces. These multiple solutions provide alternative schemes for decision-making, which may
improve system unit stability and safety by avoiding re-adjustment or reducing the number of times
the units run through vibration areas. The dual problem of OLD is the problem of optimal discharge
distribution among multiple generators of a hydropower plant. Therefore, the optimal discharge
distribution problem has MOS because its dual problem OLD has MOS. Further research could involve
MOS methods for other hydropower plant operation models and applying them into practice operation.
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Appendix

Finding an Optimal Solution Using Lagrangian Relaxation

Let β be the Lagrangian multiplier for the constraint
∑n

i=1 xi = L, the Lagrange dual
problem become:

max
β

[ n∑
i=1

min
xi

Qi(xi) + β(L−
n∑
i=1

xi)

]
s.t. xi ∈ Ri ∀ i = 1, . . . , n

This is equivalent to:

max
β

βL+

[ n∑
i=1

min
xi

(Qi(xi)− βxi)
]

s.t. xi ∈ Ri ∀ i = 1, . . . , n

For each fixed β, the objective function can be evaluated by solving n subproblems
minxi∈Ri

(Qi(xi) − βxi). Each of these subproblems is often very easy to solve since it has a single
scalar variable xi. There are many possible ways to solve the subproblems depending on the specific
form of the load function Q. For example, if Q is differentiable, a gradient descent method can be
applied. The Lagrange dual problem can be solved using a subgradient method since at each fixed value
β, we have efficient ways to evaluate the dual objective. The subgradient can be set as (L−

∑n
i=1 xi), and

indicates the degree of violation on the constraint (
∑n

i=1 xi = L). The subgradient iterative algorithm
can be employed and β can be updated as follows:

βk+1 = βk + α(L−
n∑
i=1

xi)

where α is the gradient step. There are many ways and rules for setting α. The simplest way is to fix α
with some values say 0.9.

In the case that I/O function is piece-wise linear, which is often true in practice, the subproblem can be
solved easily by comparing the objective values at the ends of the linear pieces. Therefore, the Lagrange
dual problem can be transformed into a linear programming problem and can be solved efficiently. In
addition, if the I/O function is convex piece-wise linear, the optimal load distribution problem can be
reformulated into a linear programming problem.

5.1. Finding a Single Solution Using Mixed Integer Linear Programming

We assume the I/O function Qi(xi) is piece-wise linear and suppose the function is formed by Ki

discrete points (Pi,k, Qi,k), k = 1, . . . , Ki. For any xi ∈ [Pi,1, Pi,Ki
], the discharge value Qi(xi) is often

described using conditional statements, i.e., we need to know the particular piece
[
Pi,k, Pi,k+1

]
that xi

belongs to, to apply the right linear function forQi(xi). In mathematical programming, these conditional
statements can be replaced by binary variables. We will show that the pair of values (xi, Qi(xi)) can be
represented by the variables (xi, qi, λ, y) that satisfied the following set of constraints:
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

xi =
∑Ki

k=1 λi,kPi,k

qi =
∑Ki

k=1 λi,kQi,k∑Ki

k=1 λi,k = 1

λi,k ≥ 0∑Ki

k=1 yi,k = 1

yi,k ∈ {0, 1}

λi,k + λi,k+1 ≥ yi,k

The first four constraints make sure the pair (xi, qi) is a linear combination of the end points
(Pi,k, Qi,k), k = 1, . . . Ki with weights λi,k. The last three constraints make sure that the weights of
at most two consecutive end points are non-zero. Suppose yi,k = 1 and yi,k′ = 0, ∀ k′ 6= k, then
λi,k + λi,k+1 = 1 and λi,j = 0, ∀ j 6= k, k + 1. This ensures that (xi, , qi) belongs to the linear piece
between two points (Pi,k, Qi,k) and (Pi,k+1, Qi,k+1). Thus, we can represent a piece-wise linear function
using MILP.

The MILP model for OLD with piece-wise linear I/O function is as follows:

max
x,q,λ,y

n∑
i=1

qi

xi =
∑Ki

k=1 λi,kPi,k

qi =
∑Ki

k=1 λi,kQi,k∑Ki

k=1 λi,k = 1

λi,k ≥ 0∑Ki

k=1 yi,k = 1

yi,k ∈ {0, 1}

λi,k + λi,k+1 ≥ yi,k

xi ∈ Ri

∀ i = 1, . . . , n,

n∑
i=1

xi = L

5.2. EXAMPLE 3D in [4]

An economic dispatch problem in a thermal power plant is described as follows. The following cubic
functions are used to represent the I/O characteristics of generating plants.

I = A+BO + CO2 +DO3

where O is the energy output (MW); I is the input (MBtu/h); A, B, C and D are coefficients listed in
Table 4 for unit 1 to unit 3. The total load is 2500 MW.
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Table 4. The coefficients and boundaries for the I/O curve.

Value Unit 1 Unit 2 Unit 3

A 749.55 1, 285.0 1, 531.0

B 6.95 7.051 6.531

C 9.68× 10−4 7.375× 10−4 1.04× 10−4

D 1.27× 10−7 6.453× 10−8 9.98× 10−8

Minimum (MW) 320 300 275

Maximum (MW) 800 1, 200 1, 100
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