
Complex Analysis
Final Exam Study Guide

1. Multivalued Functions and Branches
Many important functions in complex analysis are multivalued, meaning that they take more
than one value at each point. For example, the logarithm is multivalued, with

log z � Log z + 2πni (n ∈ Z).

Here Log z is the principal branch of the logarithm

Log z � ln |z | + i Arg z

where −π < Arg z ≤ π. In general, a branch of the logarithm is any function L(z) that
satisfies

exp
(
L(z)

)
� z

for all z ∈ C. For example,
L(z) � Log(e−iφz) + iφ

is a branch of the logarithm for any φ ∈ R. Every branch of the logarithm must have at least
one curve on which it is discontinuous, known as a branch cut. For example, the branch cut
for Log z is along the negative real axis.
Another multivalued function is the complex square root:

z1/2
� ±
√

z.

Here
√

z � exp
(
Log(z)/2

)
is the principal square root, which satisfies

−π2 < Arg
√

z ≤ π
2

for z , 0. In general a branch of the square root is any function S(z) that satisfies S(z)2 � z
for all z ∈ C. For example,

S(z) � e iφ
√

e−2iφz

is a branch of the square root for any φ ∈ R. Every branch of the square root has at least one
branch cut, with the principal branch having a branch cut along the negative real axis.
The nth root function is also multivalued, with

z1/n
� ωk n√

z (k � 0, 1, . . . , n − 1)

where 1, ω, ω2, . . . , ωn−1 are the nth roots of unity (with ω � e2πi/n) and n√z � exp
(
Log(z)/n

)
is the principal nth root.



2. Integrals Involving Logarithms
Contour integrals of the form ∫

C

1
z − a

dz

can be tricky, since they involve the multivalued function

log(z − a) � ln |z − a | + i arg(z − a).

If C is a contour that begins at z � z0 and ends at z � z1, then∫
C

1
z − a

dz �

[
ln |z − a | + i θ(z)

] z1

z0

where θ(z) is a value for arg(z − a) that changes continuously as we move from the beginning
to the end of C.

3. Power Series
A power series centered at z � a is an infinite series of the form

∞∑
n�0

cn(z − a)n � c0 + c1(z − a) + c2(z − a)2 + c3(z − a)3 + · · ·

where the coefficients c0, c1, c2, . . . are complex numbers.
Every power series centered at z � a converges on the interior of a disk |z − a | < R, and
diverges for |z − a | > R. The disk |z − a | < R is known as the disk of convergence, and R is
the radius of convergence. The sum of a power series is always a holomorphic function on its
disk of convergence.

4. Finding the Radius of Convergence
The radius of convergence of a power series can be found using either the ratio test or the root
test. Given a series

∑
an , the ratio test involves the limit

r � lim
n→∞

����an+1
an

����
and the root test involves the limit

r � lim
n→∞

n
√
|an |.

For either test, the series converges if r < 1 and diverges if r > 1. For example, consider the
power series

∞∑
n�1

(−1)n 2n

n2 (z − 1)n

centered at z � 1. Either the ratio test or the root test gives r � 2|z − 1|, so the series converges
for 2|z − 1| < 1, or equivalently |z − 1| < 1/2. Thus the radius of convergence for this series
is R � 1/2.



5. Taylor’s Theorem
If f (z) is a holomorphic function with no singularities on the disk |z − a | < R, then f (z) is the
sum of a power series on this disk:

f (z) �
∞∑

n�0
cn(z − a)n where cn �

f (n)(a)
n! .

This is called the Taylor series for f (z) centered at z � a.
The radius of convergence R of the Taylor series is always the radius of the largest disk on
which f (z) can be made holomorphic. For a function with only isolated singularities, R is
always the distance from a to the closest pole or essential singularity.
For a multivalued function, the radius of convergence of the Taylor series is the largest radius
around a on which there exists a holomorphic branch of the function.

6. Working With Power Series
There are certain power series that you should be familiar with:

1
1 − z

�

∞∑
n�0

zn
� 1 + z + z2

+ z3
+ · · · for |z | < 1.

Log(1 + z) �
∞∑

n�1

(−1)n+1zn

n
� z − z2

2 +
z3

3 −
z4

4 + · · · for |z | < 1.

ez
�

∞∑
n�0

zn

n! � 1 + z +
z2

2! +
z3

3! + · · · for all z ∈ C.

cos z �

∞∑
n�0

(−1)n z2n

(2n)! � 1 − z2

2! +
z4

4! −
z6

6! + · · · for all z ∈ C.

cosh z �

∞∑
n�0

z2n

(2n)! � 1 +
z2

2! +
z4

4! +
z6

6! + · · · for all z ∈ C.

sin z �

∞∑
n�0

(−1)n z2n+1

(2n + 1)! � z − z3

3! +
z5

5! −
z7

7! + · · · for all z ∈ C.

sinh z �

∞∑
n�0

z2n+1

(2n + 1)! � z +
z3

3! +
z5

5! +
z7

7! + · · · for all z ∈ C.

There are also many functions whose series can be figured out by starting with one of these.
For example,

1
3 − z

�
1/3

1 − z/3 �
1
3

∞∑
n�0

(
z
3

)n

�

∞∑
n�0

zn

3n+1 .



You should be comfortablewith such substitutions, aswell as other operations such as addition
and subtraction of power series, and derivatives and antiderivatives of power series.
You can multiply two power series using the distributive law, e.g.(

z + 3z2
+ 5z3

+ 7z4
+ · · ·

) (
z + z2

+ z3
+ z4

+ · · ·
)
� z2

+ 4z3
+ 9z4

+ 16z5
+ · · · .

You can also divide power series using long division, e.g.

z + 3z2 + 5z3 + 7z4 + · · ·
z + z2 + z3 + z4 + · · · z2 + 4z3 + 9z4 + 16z5 + · · ·

−
(

z2 + z3 + z4 + z5 + · · ·
)

3z3 + 8z4 + 15z5 + · · ·
−

(
3z3 + 3z4 + 3z5 + · · ·

)
5z4 + 12z5 + · · ·

−
(
5z4 + 5z5 + · · ·

)
7z5 + · · ·

7. Laurent Series
A Laurent series centered at z � a is an infinite series of the form

∞∑
n�−∞

cn(z − a)n � · · · + c−2
(z − a)2 +

c−1
z − a

+ c0 + c1(z − a) + c2(z − a)2 + · · ·

Such a series has an annulus of convergence R1 < |z − a | < R2. The series converges to a
holomorphic function on this annulus, and diverges for |z − a | < R1 or |z − a | > R2.
Here R2 is just the radius of convergence of the power series

c0 + c1(z − a) + c2(z − a)2 + · · ·

and R1 can be found by applying the ratio or root test to the series
c−1

z − a
+

c−2
(z − a)2 +

c−3
(z − a)3 + · · · .

Laurent’s theorem states that if a function f (z) is holomorphic on an annulus R1 < |z−a | < R2,
then there exists a Laurent series for f (z) that converges on this annulus. This includes the case
where R1 � 0, so a functionwith an isolated singularity has a Laurent series in a neighborhood
of the singularity.

8. Finding Laurent Series
The methods for finding Laurent series are very similar to the methods for finding power
series of complicated functions, such as substitution, addition, subtraction, multiplication,
and division. For example,

exp(1/z) �

∞∑
n�0

1
n! zn � · · · + 1

3! z3 +
1

2! z2 +
1
z
+ 1



and
ez

z3 �

∞∑
n�0

zn−3

n! �
1
z3 +

1
z2 +

1
2! z

+
1
3! +

z
4! + · · ·

Laurent series canoften be obtainedusing the sum formula for a geometric series. For example,

1
z − 1 �

1/z
1 − 1/z �

1
z

∞∑
n�0

(
1
z

)n

�

∞∑
n�0

1
zn+1 � · · · + 1

z4 +
1
z3 +

1
z2 +

1
z

for |z | > 1.

9. Residues
Suppose a holomorphic function f (z) has an isolated singularity at z � a, and let

f (z) �
∞∑

n�−∞
cn(z − a)n

be the Laurent series for f (z) centered at z � a. Then

Res
z�a

f (z) � c−1.

It follows that for any n ∈ Z,

cn � Res
z�a

f (z)
(z − a)n+1 �

1
2πi

∮
C

f (z)
(z − a)n+1 dz.

10. Isolated Singularities
A singularity z � a of a function f (z) is called an isolated singularity if there exists a disk
centered at a in which z � a is the only singularity of f (z). For such a singularity, there is
always a Laurent series for f (z) near z � a:

f (z) �
∞∑

n�−∞
cn(z − a)n .

We classify isolated singularities into three types:

• A removable singularity is a singularity for which the Laurent series for z is actually a
power series:

f (z) � c0 + c1(z − a) + c2(z − a)2 + · · ·
Such a singularity can be removed by defining f (a) to be the value of c0, which is the
same as lim

z→a
f (z). For example, since

sin z
z

� 1 − z2

3! +
z4

5! −
z6

7! + · · · ,

the function f (z) � sin z/z has a removable singularity at z � 0.



• Apole is a singularity forwhich the Laurent series has finitelymany termswith a negative
power of z − a:

f (z) � c−n

(z − a)n +
c−n+1
(z − a)n−1 + · · · + c0 + c1(z − a) + c2(z − a)2 + · · ·

The largest power n that appears in the denominator of the Laurent series is called the
order of the pole. If f (z) has a pole of order n at z � a, then

f (z) � h(z)
(z − a)n

for some function h(z) that is holomorphic in a neighborhood of z � a, and satisfies
h(a) , 0.

• An essential singularity is a singularity for which the Laurent series has infinitely many
terms with a negative power of z − a. For example, exp(1/z) has an essential singularity
at z � 0.

We can determine what type of singularity a function has by examining the behavior of the
limit as z approaches a:

• If lim
z→a

f (z), exists, then f (z) has a removable singularity at z � a.

• If lim
z→a

f (z) � ∞, then f (z) has a pole at z � a.

• If lim
z→a

f (z) does not exist but is also not∞, then f (z) has an essential singularity at z � a.

There is a nice trick involving series that can be used to distinguish between poles and
removable singularities. If

f (z) �
g(z)
h(z)

and neither g(z) nor h(z) has an essential singularity at z � a, then the first term of the Laurent
series for f (z) is equal to the first term of the Laurent series for g(z) divided by the first term
of the Laurent series for h(z). That is,

bm(z − a)m + bm+1(z − a)m+1 + · · ·
cn(z − a)n + cn+1(z − a)n+1 + · · · �

bm

cn
(z − a)m−n

+ · · · .

In particular, if m ≥ n then the quotient has a removable singularity at z � a, and if m < n
then the quotient has a pole of order n − m at z � a.



11. Evaluating Improper Integrals
Let f (z) be a rational function satisfying the following conditions:

(a) f (z) is an even function.
(b) The degree of the denominator of f (z) is at least two higher than the degree of the

numerator.
(c) f (z) has no singularities on the real axis.

In this case, it follows that ∫ ∞

−∞
f (x) dx � 2πi

n∑
k�1

Res
z�pk

f (z)

where p1, . . . , pn are the singularities of f (z) that lie in the half-plane Im(z) > 0. For example,∫ ∞

−∞

1
x2 + 1

dx � 2πi
(

Res
z�i

1
z2 + 1

)
� 2πi

(
1
2i

)
� π.


