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During the past few years there has been an increasing interest in
applying higher-order statistics to a wide range of signal processing and
system theory problems. These statistics are very useful in problems where
either non-Gaussianity, nonmi phase, colored noise, or nonlinear-
ities are important and must be accounted for. More than 200 papers
have already been published. These papers contain both theoretical and
algorithmic results. The purpose of the present tutorial paper is twofold,
namely: 1) to collect what this author believes to be some of the most
useful theoretical results in one place (they are presently scattered in
many papers), thereby making them readily accessible to readers for the
first time (derivations are provided in the Appendix for many of the
results), and, 2) to describe the applications of higher-order statistics 1o
the identification of (possibly) i phase ch Is from just noisy
output measurements. More than 20 new methods are summarized for the
latter.

1. INTRODUCTION

During recent years higher-order statistics (spectra) have begun
to find wide applicability in many diverse fields; e.g., sonar,
radar, plasma physics, biomedicine, seismic data processing,
image reconstruction, harmonic retrieval, time-delay estimation,
adaptive filtering, array processing, and blind equalization. For
overviews, see [30] and [35]; (see, also, [57]). These statistics,
known as cumulants, and their associated Fourier transforms,
known as polyspectra, not only reveal amplitude information
about a process, but also reveal phase information. This is impor-
tant, because, as is well known, second-order statistics (i.e., cor-
relation) are phase blind.

Cumulants, on the other hand, are blind to any kind of a Gauss-
ian process, whereas correlation is not; hence, cumulant-based
signal processing methods handle colored Gaussian measurement
noise automatically, whereas correlation-based methods do not.
Consequently, cumulant-based methods boost signal-to-noise ratio
when signals are corrupted by Gaussian measurement noise.

Higher-order statistics are applicable when we are dealing with
non-Gaussian (or, possibly, nonlinear) processes, and, many real-
world applications are truly non-Gaussian. In the past, due to lack
of analytical tools, we have been forced to treat such applications
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as though they were Gaussian. With the new results that are being
developed and those that are described in this paper, it should be
possible to reexamine every application and/or method that has
ever made use of second-order statistics, using higher-order sta-
tistics, to see if better results can be obtained.

The development of cumulants and polyspectra has paralleled
the development of traditional correlation and its associated spec-
trum. The early works applied these higher-order statistics to dif-
ferent types of data sets to infer new properties about the data.
With the boom in interest in spectral analysis it was quite natural
for this interest to spill over into polyspectral analysis. Just as
spectral analysis has split into two camps, so has polyspectral
analysis, namely: nonparametric polyspectral and parametric
polyspectral methods. The former are subject to the same prob-
lems that plague nonparametric spectral methods, namely, high
variances and low resolution. The latter first estimate the param-
eters of an underlying data-generating model and then use the
model to compute the polyspectrum. These models are in the
classes of moving average (MA), autoregressive (AR), or auto-
regressive moving average (ARMA) processes.

The biggest drawback to-date to the use of either nonparamet-
ric or parametric polyspectral methods is that they require longer
data lengths than do correlation-based methods. Longer data
lengths are needed in order to reduce the variance associated with
estimating the higher-order statistics from real data using sample-
averaging techniques (see Section XI).

Mendel [29] gives an overview of parametric polyspectral
results obtained prior to 1987. His paper focuses on the activities
of three groups (Northeastern University, University of Southern
California, and Exxon) that were generating almost all of the par-
ametric results prior to that date. A lot of the post 1982 work was
motivated by the seminal paper of Lii and Rosenblatt [24], who
proved that a nonminimum phase transfer function can be restored
just from output measurements using any higher-order spectra.
Mendel’s 1988 update [30] is organized by the type of problem
studied, because in the 1987-1988 period more people joined in
this activity and some of the three groups split. The problems
studied are: 1) identification of MA processes, 2) identification
of AR processes, 3) identification of ARMA processes, 4) order
determination, 5) calculation of cumulants, 6) computation of
polyspectra, 7) extensions to multichannel and multidimensional
systems, and 8) applications. Since 1988, much has happened,
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including a June 1989 Workshop on Higher-Order Spectral Anal-
ysis, which was attended by more than 125 people, and whose
Proceedings contains 50 papers; a five paper special issue of the
IEEE TRANSACTIONS ON AUTOMATIC CONTROL in January, 1990;
and, an eight paper mini-special issue of the IEEE TRANSACTIONS
ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING in July, 1990.

From time to time a new approach emerges on the scene that
leads to a large number of new and important theoretical results
that can hopefully help us solve a wide range of problems. Such
is the case with the emergence of higher-order statistics. Unfor-
tunately, most of these results are scattered in the literature, which
makes it very difficult for the newcomer to see the forest from the
trees. One purpose of this tutorial paper is to collect together in
one place a compendium of new theoretical results which are
associated with using higher-order statistics in signal processing
and system theory. Most of our results are given for one-dimen-
sional processes; some extensions to vector processes and mul-
tichannel systems are discussed in Section IX. Proofs of many of
the results are given in the Appendix. It is assumed, however,
that the reader is familiar with [35].

A second purpose of this paper is to demonstrate the utility of
higher-order statistics to practical problems. Space does not per-
mit us to survey all the applications to which higher-order statis-
tics have been or are being applied. To give the reader a feeling
for the breadth of the applications, we list the titles of the appli-
cation sessions at the June 1989 Workshop: identification of non-
minimum phase systems, sonar and radar applications, nonlinear
system analysis, harmonic retrieval and detection, multidimen-
sional signal processing, biomedical signal analysis, and array
processing. We shall survey in depth some of the applications of
higher-order statistics to identification of (possibly) nonminimum
phase channels from just noisy output measurements.

II. DEFINITIONS

Letv = col (v, v3, *** , ) and x = col (xy, xp, = * * , X)
where (x, x5, * * * , x;) denote a collection of random variables
(the material in this section is taken, for the most part, from [45]).
The kth-order cumulant of these random variables is defined [41]
as the coefficient of (v,v, - - - v;) in the Taylor series expansion
(provided it exists) of the cumulant-generating function

K(v) -—-lnE{exp(jv’x)}. (1)

The kth-order cumulant is therefore defined in terms of its joint
moments of orders up to k. See Appendix A, (A-1), for the explicit
relationship between cumulants and moments.

For zero-mean real random variables, the second-, third-, and
fourth-order cumulants are given by

cum (x,, x,) = E{x.x,} . (2a)
cum (x,, Xz, X3) = E{xyx,x3} (2b)
cum (x1, %3, X3, %) = E{xpyxsxe} — E{xix;} E{x3xs}
— E{xx;} E{x,x4}
- E{xx,} E{x;x3}. (2¢)

In the case of nonzero mean real random variables [23], one
replaces x; by x; — E {x;} in these formulas. The case of complex
signals is treated in Section X.
Let {x(#)} be a zero-mean kth-order stationary random pro-
cess. The kth-order cumulant of this process, denoted Cy (7, 73,
©, Te-1}, is defined as the joint kth-order cumulant of the
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random variables x(2), x(t + 7,), -+ -, x(t + 74,_y), i.e.,
Ck‘x(‘rlv Tas "0 Tk—l)
= cum (x(r), x(t + ), - -, x(t + 7). (3a)

Because of stationarity, the kth-order cumulant is only a function
ofthek — llags 7|, 75, - ** , T4y The 7y — 75 — = =+
space constitutes the domain of support for C; (7, 72, * **
74-1). If {x(¢)} is nonstationary, then the kth-order cumulant
depends explicitly on ¢ as well as on 7, 75, * = * , 74—, and, we
use the notation C; ,(#; 71, 73, * * * , T¢—1) (€.8., see Section IX).

For a zero-mean stationary random process, and, fork = 3,4,
the kth-order cumulant of {x(#)} can also be defined as

= Tk

s Th=1)

= E{x(n) - x(n-)} — E{g(r) - -

Ck.x(Tla Ty "

g(Tk—l)}
(3b)

where { g(¢)} is a Gaussian random process with the same sec-
ond-order statistics as {x(¢)}. Cumulants, therefore, not only
display the amount of higher-order correlation, but also provide
a measure of the distance of the random process from Gaussian-
ity. Clearly, if x(¢) is Gaussian then the cumulants are all zero;
this is not only true for k = 3 and 4, but for all k.

The second-, third- and fourth-order cumulants of zero-mean
x(t), which follow from (2) and (3a), are

Con(7) = E{x(t) x(t + 1)} (4a)
Ciylryy 1) = E{x(t) x(1 + 7)) x(1 + 1)} (4b)
Cax(m, 15, 73) = E{x(1) x(1 + 7)) x(1 + ) x(t + )}
= Cu(1y) Cox(m2 — 73)
- Cz,x(‘fz) G713 = 1)
= Cyx(73) Cox(my — ). (4¢)

Of course, the second-order cumulant C, ,(7) is just the autocor-
relation of x (7). We shall use the more familiar notation for auto-
correlation, namely r.(7), interchangeably with C, (7).

A 1-D slice of the kth-order cumulant is obtained by freezing
(k — 2) of its k — 1 indexes. Many types of 1-D slices are pos-
sible, including radial, vertical, horizontal, diagonal, and offset-
diagonal. A diagonal slice is obtained by setting 7; = 7, i = 1,
2, *+ -,k — 1. All these 1-D slices are very useful in applica-
tions of cumulants in signal processing.

A logical question to ask is ‘“Why do we need fourth-order
cumulants, i.e., aren’t third-order cumulants good enough?’’ If a
random process is symmetrically distributed, then its third-order
cumulant equals zero; hence, for such a process we must use
fourth-order cumulants. For example, Laplace, Uniform, Gauss-
ian, and Bernoulli-Gaussian distributions are symmetric, whereas
Exponential, Rayleigh and k-distributions are nonsymmetric.
Additionally, some processes have extremely small third-order
cumulants and much larger fourth-order cumulants; hence, for
such processes we would also use the latter. Finally, in some
specific applications (e.g., retrieval of harmonics and cubic phase
coupling) third-order cumulants equal zero (see Section X),
whereas fourth-order cumulants are nonzero.

Another logical question to ask is ‘“Why not work with higher-
order moments instead of cumulants?’’ This question has a num-
ber of answers, some quite mathematical and others more prac-
tical. Focusing on the latter, we give the following two reasons
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for preferring to work with cumulants: 1) just as the covariance
function of white noise is an impulse function and its spectrum is
flat, the cumulants of (higher-order) white noise are multidimen-
sional impulse functions and the polyspectra of this noise is mul-
tidimensionally flat; and 2) the cumulant of two statistically inde-
pendent random processes equals the sum of the cumulants of the
individual random processes [see (6¢) below], whereas the same
is not true for higher-order moments. This second property lets
us work with the cumulant very easily as an operator.

Assuming that C; ,(7,, 75, - = * , 7,_;) is absolutely summable,
the kth-order polyspectrum is defined as the (k — 1)-dimensional
discrete-time Fourier transform of the kth-order cumulant, i.e.,

Sk,x(wls Wy, ', wk—l)

-] @©
= 2 .03 Coxlris 72 * 1))
T =—-® o

Th—1=—

k=1
X exp [—j Z}I w,-‘r,]. (5)
The @, — @, — *** — w,_; space is the domain of support for
Sex(@ys wp, v 0, wyy). 83 (wy, w;) is known as the bispectrum

[in many papers the notation B, (w,;, w,) is used to denote the
bispectrum], whereas S, ,(w;, wp, ws) is known as the trispec-
trum. For continuous-time signals, (5) is replaced by the multi-
dimensional Fourier transform.

Many symmetries [35], [43] exist in the arguments of C; (7,
Ty, ', Tk—y) and S ,(w), wy, " * * , w_,) which make their
calculations manageable. For example, C; ((7,, 7,) = Cs (7,
) = G117 — 1) =G (-7, = 1) = Cy {7, —
71, —71) = G5 ;(7, — 72, —73). Using these five equations, we
can divide the 7y — 7, plane into six regions. Knowing the cumu-
lants in any one of these regions, we can calculate the cumulants
in the other five regions using these equations. The principal
region is the first-quadrant 45 degree sector, 0 < 7, < 7,. The
symmetry relationships for cumulants do not hold in the nonsta-
tionary case. For many more details about symmetry relationships
for the bispectrum, see [35], [43], and, for the trispectrum, see
[7}.

Following are some important properties of cumulants, which
are used in theoretical developments [43] (see Appendix A, Sec-
tion B, for proofs).

[CPIJIf N, i =1, -+ , k, are constants, and x;, { = 1,
*++, k, are random variables, then

k
cum (Nxp, ©c 0, Nexy) = <I_Il )\,«) cum (x;, -+ -, x).

(6a)
[CP2] Cumulants are symmetric in their arguments, i.e.,
cum (x5, - -+, %) = cum (x;, "+ * , x,) (6b)
where (i}, -+, §}) is a permutation of (1, * - - , k).
[CP3] Cumulants are additive in their arguments, i.c.,
cum (xo + Yo, 21, ", %)
=cum (x, 21, *** , ) + cum (yo, 71, * * , 7). (6¢c)

This means that cumulants of sums equals sums of cumulants
(hence, the name *‘cumulant’’)
[CP4] If « is a constant, then

cum (a + 2,2, *** L, ) =cum (g, * - ,z) (6d)
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[CP5] If the random variables {x;} are independent of the ran-

dom variables {y;},i=1,2, - - -, k, then
cum (x; + y;, 0, X+ )
=cum (x;, = -+, x) +cum (y, -+, x). (6e)

[CP6] If 3 subset of the k random variables {x;} is independent
of the rest, then

cum (x;, **+ ,x) = 0. (6f)

Cumulants of an independent, identically distributed random
sequence are delta functions (the same is not true for joint
moments), i.e., if w(z) is an i.i.d. process, then C; (7, 72,

*5 Tim1) = Yewd (1) 8(73) ¢+ ¢ 8(7-y), where vy, ,, is the
kth-order cumulant of the stationary random sequence w(n).

Suppose z{(n) = y(n) + v(n) where y(n) and v(n) are inde-
pendent; then from [CP5]

Ck'z('rh T2 © 0, Tk—l)

s i) + G772 0, Tisy)
(7)

If v(n) is Gaussian (colored or white) and k = 3 then C; (7,
T2 s ko) = Coo(71, T2yt 70, Tymy), Whereas Gy (1) =
Cy,,(7) + G, (7). This makes the higher-order statistics more
robust to additive measurement noise than correlation, even if
that noise is colored. In essence, cumulants can draw non-Gauss-
ian signals out of Gaussian noise, thereby boosting their signal-
to-noise ratios.

= Gyr, 1, o

III. CUMULANT-POLYSPECTRA FORMULAS: LINEAR SYSTEMS

A familiar starting point for many problems in signal process-
ing and system theory is the single-input single-output (SISO)
linear and time-invariant (LTI) model depicted in Fig. 1, in which

Fig. 1. Single-channel system.

v (k) is white Gaussian noise with finite variance ¢2; H(z) [h (k)]
is causal and stable; n(k) is also white Gaussian noise with vari-
ance ¢2; and, v (k) and n(k) are statistically independent. Letting
r(-) and S(-) denote correlation and Fourier transform of cor-
relation (i.e., spectrum), respectively, then it is well known, that
(e.g., [38])

r.(k) = r,(k) + r,(k) = o2 _%}h(i) h(i + k) + o28(k)

(8)
5.(w) = o|H(w)| + o2 (9)
(k) & E{v(n) z(n + k)} = o2h(k). (10)

From (9) we see that all phase information has been lost in the
spectrum (or in the autocorrelation); hence, we say that correla-
tion or spectra are phase blind.

A major generalization to (8) and (9) was established in 1955
by Bartlett [2] and in 1967 by Brillinger and Rosenblatt [5]. In
this case, the system in Fig. 1 is assumed to be causal and expo-
nentially stable, and { v(i)} is assumed to be independent, iden-
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tically distributed (i.i.d.), and non-Gaussian, i.e.,

Ck.u(Tl’ L T Tk—l)
Yi,v ifry=n=-"=75_,=0
= (11)
0 otherwise

where v, , denotes the kth-order cumulant of v (i ). Additive noise
n(k) is assumed to be Gaussian, but need not be white. Their
generalizations to (8) and (9) are

Ck.z(fl? T2 "7, kal)
= n.uEOh(n) h(n + 1) -« h(n + 71) (12)

and

Sk.z(wl’ @y, ", wk—l)

= YeoH(w)) H(w,) * * * H(wp-y) H<—é:1 wi>~ (13)

Observe that when k = 2, (12) and (13) reduce to (8) [subject to
the addition of ¢25(k)] and (9). Equations (12) and (13) have
been the starting points for many nonparametric and parametric

polyspectral techniques that have been developed during the past - -

five years (e.g., [35] and [30]).

The generalization of (12) to the case of colored non-Gaussian
input v (i) is ([2] only considers the k = 2, 3, 4 cases; [5] pro-
vides results for all k)

Ck,z(Th Ty "7 Tk-])
=X X Ck‘v(Tl_mlyTZ_st"' B
my m mi—)
Tecr = M) Cen(my, my, ===, m_y) (127)
where
Cen(my, my, ==+, my_y)

= ;h(kl)h(kl +my) - h(ky + myey).

Observe that the right-hand side of (12’) is a multidimensional
convolution of C; (7, 7, *** , Ty—y) With the deterministic
correlation function of k(n), which we have denoted C; ,(m,,
m,, + + + , m_;). Consequently, the generalization of (13) to the
case of colored non-Gaussian input v (i) is

Sl'c,z(wl: Wyttt W)

= Sio(w, wp, **

s Woy) H(wy) H(wy) « -+ H(w-1)

. H<_i§l w,->. (13%)

Derivations of these results are given in Section C. of Appendix
A.

Example: Suppose that i (k) is the impulse response (IR) of a
causal moving average (MA) system. Such a system has a finite
IR, and is described by the following model.

q
y(k) = X b(i) v(k - i) (14)
The MA parameters are b(0), b(1), - - , b(q), where g is the

order of the MA model, and b(0) is usually assumed equal to
unity [the scaling is absorbed into the statistics of v(k)]. It is
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well known that for this model £(i) = b(i),i =0,1, -+, q;
hence, when {#(/)} is i.i.d., we find from (12) that

q
qmmm=w%§mnw+ﬁwu+m.(m
An interesting question is ‘‘for which values of 7, and 7, is

C;,,(7y, 1) nonzero?”’ The answer to this question'is depicted in
Fig. 2. The domain of support for C; ,(7, = m, 7, = n) is the

Fig. 2. The domain of support for C; ,(7,, 7,) for an MA(q)
system. The dark shaded triangular region is the principal region.

six-sided shaded region. This is due to the FIR nature of the MA
system. The dark shaded triangular region in the first quadrant is
the principal region. In the stationary case, we only have to deter-
mine third-order cumulant values in this region, R, where

R={m,n:0$n5m$q}. (16)

Qbserve, from Fig. 2, that the third-order cumulant equals zero
for either one or both of its arguments equal to g + 1. This sug-
gests that it should be possible to determine the order of the MA
model, g, by testing, in a statistical sense, the smallness of a
third-order cumulant such as C; ,(¢ + 1, 0). See [17] to deter-
mine how to do this.

In the rest of this paper we always assume that v (k) is i.i.d.

IV. IMPULSE RESPONSE FORMULAS

Equation (10) is by now a “‘classical’” way for computing the
impulse response (IR) of a SISO system; however, it requires that
one have access to both the system’s input and output in order to
be able to compute the cross-correlation r,,(k). In many appli-
cations, one only has access to a noise-corrupted version of the
system’s output (e.g., blind equalization, reflection seismology).
A natural question to ask is ‘“Can the system’s IR be determined
just from output measurements?”’ Using output cumulants, the
answer to this question is ‘‘yes.”’

Giannakis [11] was the first to show that the IR of a gth-order
MA system can be calculated just from the system’s output cumu-
lants, as (see Appendix A, Section D, for a derivation)

h(k) = Cs,(q, k)/Cs,(—4. —q) = G3,(q, k)/C3,(q, 0),
k=0,1,""",q. (17)

Note that C; ,(—g, —q) = C3,(q, 0) follows from symmetry
properties of the third-order cumulant. Equation (17) expresses
h(k) in terms of third-order cumulants. Comparable results for
fourth-order cumulants are

h(k) = C4,y(q’ 07 k)/CA,y(—'qa -q, _q)
= C4.y(qa 0’ k)/c4.y(q’ 0’ 0)» k= 0’ Loy, q.
(18)
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The generalization of these results to arbitrary order cumulants is
obvious (see, e.g., [49], eq. (13)).

Equation (17) is often referred to as the ““C (g, k) formula.”’
Lohmann et al., [26] and Lohmann and Wirnitzer [27] provide a
nonrigorous derivation of the C(gq, k) formula for 1-D and 2-D
continuous-time processes. If the system’s input is not symmet-
rically distributed, so that ¥3,» * 0, we would use (17) to com-
pute h(k); however, if it is symmetrically distributed, so that V3,0
=0, but y, , # 0, then we must use (18) (or comparable for-
mulas that involve higher-order cumulants) to compute h (k). Note
that (17) and (18) only use 1-D slices of the output cumulant.
Note, also, that they require exact knowledge of MA order gq.
They are interesting and important from a theoretical point of
view, but they are impractical from an actual computation point
of view. This is because, in practice, the output cumulant must
be estimated, and (17) or (18) do not provide any filtering to
reduce the effects of cumulant estimation errors.

A by-product of the derivation of the C( g, k) formula are the
following formulas for v, ,, and V4,0

Y30 = C3,y(0v 0)/k§0 [C3,y(q’ k)/CS,y(q’ 0)]3 (193)

and

kd 4
74.0 = CAvy(O’ 0’ 0)/k§0 [C‘Ly(q’ 07 k)/c4,y(q’ 0’ 0)] N
(19b)

If h(k) is associated with an infinite impulse response (IIR)
system, such as an autoregressive (AR) or autoregressive moving
average (ARMA), then (17) and (18) do not apply. Giannakis
[11] has shown that if Csy(my, my) = 0 forall m; > M then

h(k) = CS,y(M’ k)/c3,y(_M9 —M)

=G,(M, k)/C; (M, 0), k=01,---. (20)

A comparable result exists for A(k) as a function of fourth-order
(or, higher-order) cumulants.
Suppose h(k) is associated with the following ARMA model:

éo a(k) y(n — k) = éo b(k) v(n — k). (21)

The MA parameters are b(0), b(1), - - - , b(q), where q is the
order of the MA part of the model; the AR parameters are a(0),
a(l), - -+, a(p), where p is the order of the AR part of the
model; a(0) = b(0) £ 1 [this fixes h(0) = 1] in order to fix
the inherent scale ambiguity. Model order ( P, q) is assumed to
be known. (For results on determining model order ( p, ¢) using
cumulants and statistical tests, see [15], [17].) Impulse response
h(n) of this ARMA model satisfies the recursion

kéoa(k) hn —k) = kz:qlo b(k)8(n — k) = b(n),

n=0,1,--+,q. (22)

Swami and Mendel [49] have developed the following formula
for computing 4 (7) under the assumption that the AR coefficients
of the ARMA model are known (we discuss some methods for
computing the AR coefficients in Section V) (see Appendix A,
Section E, for a derivation):
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h(n) = ‘:kgoa(k) Cuy(qg —k,n,0,---, O)jl/

,:é:o a(k) Cpy(q = k0,0, -, 0):|,

n=0,1,---. (23)

If the ultimate goal is to compute the MA coefficients b(1),
b(2), - -+, b(q), then (22) reveals that we only need to know
h(0), h(1), - -+ , and h(q), as well as the AR coeflicients
(remember, our system is assumed to be causal). Because we have
assumed a(0) = b(0) = 1, it follows from (22) that 4(0) = 1;
hence, in reality we only need to know k(1), h(2), - - - , h(q).
In addition to C,, ,(¢ — k, 0,0, - - - , 0), (23) uses exactly g
(horizontal) slices of the output cumulant to estimate the first q
coefficients of the IR, namely Cny(q—k,1,0,---,0), Cny(q
-k 2,0,--+,0), -+ ,and C, (¢ — k, q,0, -+, 0).
Consequently, (23) is usually referred to as the ‘“‘g-slice algo-
rithm.”’

Observe that when p = 0, in which case the ARMA model
reduces to the MA model in (14), (23) reduces to Giannakis’ C (g,
k) algorithm in (17) or (18). Just as the C(q, k) algorithm is a
theoretical result, and is not advocated for computational pur-
poses, so is the g-slice algorithm. Using results found in [49] it
is possible, however, to turn the g-slice algorithm into a practical
computational tool. This is discussed further in Section XII-D.

V. AR COEFFICIENTS

Many ways exist for determining the AR coefficients of either
the ARMA model in (21) or the following AR model

éoa(k)Y(" — k) =v(n) (24)

where a(0) = 1. One of the most popular ways is to use the
following correlation-based normal equations [3]:

k§0 a(k) ry(k — m) =0,

form > 0 (orm > qin the ARMA case). (25)

If AR order p is known then (25) is collected for p values of m,
from which the AR coefficients a(1), a(2), - - - , a(p) can be
determined.

The authors of [65], [10], [16], [45], [52], [58], and [59] have
shown that the AR coeflicients can also be determined using
cumulants. Parzens [65] credits Akaike [66] for the ‘‘idea of
extending’’ correlation-based normal equations to cumulants. For
example, any 1-D cumulant slice satisfies the following AR
recursion of maximum order p (see Appendix A, Section E, for
a derivation). B

P
kZ a(k) Cp\ (7 — k, kg, 0, - -+, 0) = 0,
=0

for7 > 0 (or 7 > q in the ARMA case) (26)

where k is a parameter whose choice is discussed as follows.

Concatenating (26) for7 = 1,2, -+ ,p + M, (or 7 = q+
l,g+2, - ,q+ p+ Minthe ARMA case) where M = 0,
and k; is arbitrary, we obtain the cumulant-based normal equa-
tions

C(kp)a =0 (27)
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where the entries in Toeplitz matrix C(kg) are easily deduced,
and a = col (1, a(1), -+, a(p — 1), a(p)). If C(ky) has
rank p then the corresponding 1-D slice (parameterized by ko) of
the mth-order cumulant is a full rank slice and the p AR coeffi-
cients can be solved for from (27). If C(ky) does not have rank
p then some of the AR coefficients cannot be solved for from (27),
and those that can be solved for do not equal their true values. In
essence, some poles of the AR model, and subsequently some of
the AR coefficients, are invisible to (27).

Until recently, the issue of whether C(kp) has rank p for an
arbitrary k, was an open question (raised initially in [60] and [16],
and subsequently in [45], [12], and [52]). In [45] and [52] it is
shown by means of ARMA examples that 1) every 1-D cumulant
slice need not be a full rank slice, and 2) a full rank cumulant
slice may not exist. Swami and Mendel, as well as Giannakis,
have shown that the AR coefficients of an ARMA model can be
determined when p + 1 slices of the mth-order cumulant are used.
Furthermore, these cannot be arbitrary slices. Equation (26) must

be concatenated for 7 = 1,2, - - -, p + M and (at least) k, =
~p,+++,0[orr=q+1,q+2,-+,q+p+ Mand (at
least) kp, = ¢ — p, * * * , q in the ARMA case] where M = 0.

Tugnait [68] obtained a comparable result for the third-order
cumulant case; however, he did not provide results for the general
case of mth-order cumulants. Note that, to-date, all of the counter-
examples and resulting fixes are for the problem of estimating the
AR portion of an ARMA(p, q) system. The issue of whether
or not more than one slice is needed to estimate the coefficients
of a ““truly”” AR(p) system is an open question. To-date, no
counter-example exists that demonstrates that it cannot be done.
For reasons of ‘‘safety,”’ people use p + 1 slices even in the AR
case.

VI. RELATIONSHIPS BETWEEN SECOND-ORDER AND HIGHER-
ORDER STATISTICS FOR LINEAR SYSTEMS

Let C;,,(7) denote the diagonal slice of the 3rd-order cumu-
lant, i.e., C3,(7) = G, (7, = 7, 7, = 7). Its z-transform is
denoted S; ,(z). In [10] and {16] it is shown that (see Appendix
A, Section G)

T

Su@) = (1/2m) | S,(-o0)de  (28)

where 85 ,(w, ¢) is the Bispectrum. S3.,(w) is referred to by
Giannakis and Mendel as the ‘13-D spectrum.”” It has a tomo-
graphic flavor to it.

Let

Hy(z) = H(z) * H(z) (29)

where ““*”* denotes complex convolution in the z domain. Gian-
nakis and Mendel have also shown that (see Appendix A, Section
H, for a derivation) for the linear system in Fig. 1

Hy(z) 5,(z) = (03/73.0) H(2) $3,4(2)- (30)

This interesting equation links the usual spectrum of y(k) to its
13-D spectrum. Its extension to higher-than third order polyspec-
tra [10] is

Hi—1(2)Sy(2) = (U%/‘Yk,v)H(z)Sk,y(z) 31)
where
H(z) = H(z) * H(z) * - -+ * H(2)
- (k — 1 complex convolutions) (32)
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and S ;(z) is the z transform of G (1) = Cp(n =7, 12 =7,

S T =T

Variations of the results in (30) can be developed by working
with G (1, =7, 7, =7 + m) instead of C3 (7 =7, 7, = T)
(e.g., [9], [63] and (80)), or by working with interrelationships
between two 1-D cumulants slices [63].

Thus far (31) has only found widespread applicability in the
MA case (e.g., [10], [16], 8], [9], and [39]; Friedlander and
Porat refer to it as the ‘‘GM equation’’), for which

H(z) = élob(k)z"", b(0) = 1. (33)

In this case, the time-domain version of (30) is (see Appendix A,
Section H)

9

ZO B(k) ry(m — k)

q
= (03/73,11) kzzlob(k) C’S,y(m - k’ m — k) (34)

where —q < m < 2q (work this out from Fig. 2). The counter-
part of this equation for fourth-order cumulants is

k‘;o b (k) ry(m — k)

9q
= (63/78.0) B b(K) Coy(m = kom =k, m = k)

(35)

where —q < m < 2q. These formulas, especially (34), have
been used to estimate the MA coefficients, b(1), b(2), = -+,
b(q), using least-squares or adaptive algorithms. Observe, in (34)
for example, that both b(k) and b*(k) appear. After b(k) and
b2(k) are computed by concatenating (34) and using least squares
(this is suboptimal, because it treats b (k) and b*(k) as indepen-
dent parameters, which, of course, they are not), the estimates
of b(k) and b*(k) are combined to provide a final estimate of
b(k).

It is possible (A. Swami, private communicatijon) that the rank
of the matrix in the concatenated (34) will not equal 2g + 1;
hence, more than the diagonal-slice GM equation may have to be
used to extract the 2¢ + 1 unknowns b(1), b(2), -+ -, b(q),
(1), b*(2), - -+, bX(q), 0%/v3.,- Exactly how many slices and
which slices are needed is an open question.

When measurement noise is present, in which case r,(m — k)
=r,(m—k)— 626(m — k), the range on m cannot include the
values 0, 1, - -+ , g, (recall that k ranges from O to g) or else
we would need to know ¢2. In this case, (34) becomes an under-
determined system of equations [63], i.e., it is a system of 2g
equations in 2¢ + 1 unknowns. See the discussions after (80) for
a way to handle this important case.

The use of (30) or (31) in other situations remains to be
explored.

VII. DouBLe C(g, k) FORMULAS FOR EXTRACTING ARMA
COEFFICIENTS

Giannakis and Swami [18], [19] have developed a method for
computing AR coefficients that is analogous to Giannakis’ C(q,
k) formula for computing MA coefficients. They have also devel-
oped a method for computing ARMA coefficients by a double
application of the C(g, k) formula.
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If we begin with the z transform version of (13), fork = 3, we
find that

$33(z1, 22) = v, H(z)) H(z,) H(z'55)
¥3..B(21) B(%) B(z'23')/

I

A(21) A(z) A(z7'm ") (36)
where
B(z) =1+ é)l b(i)z™ (37)
and
AR) =1+ é]l a(i)z™. (38)

Let D(z1, 22) = A(2)) A(z) A(z'7;") and multiply (36) by
D(z,, z;) to obtain the following time-domain recursive equation

P P
X 2d(i,j) Cy(m—iyn—j)=0 (39)
i=0j=0

for (m, n) outside of the Fig. 2 six-sided shaded region (i.e., the
time-domain version of B(z,) B(z,) B(z{'z7") is nonzero only
in the six-sided shaded region), where

14

d@i,j) = k,:ZO a(k)a(k + i) a(k + j). (40)

Observe that d(i, j ) in (40) looks exactly like the formula for the
third-order cumulant of an MA process of order p (referring to
Fig. 2, observe that d(i, j ) is nonzero only in the six-sided shaded
region on which g is replaced by p). If we consider (39) for the
case when m = n (using the symmetry properties of d(i, j) (see
Fig. 2) and C; , (s, 1)) then it can be rewritten as

o

, Cay(m — i, m — i)[d(i, i)/d(0, 0))

i

[

+ 2é)l J% Csy(m — i, m — j)[d(i, j)/d(0, 0)]
= =G, ,(m, m) (39")

for (m, m) outside of the Fig. 2 six-sided shaded region. The
number of variables [d(i, j)/d(0, 0)] isp+(1+2+--- +
p)=p(p+3)/2

Concatenating (39") form =p + 1, - - - , p(p + 5)/2 leads
top(p+5)/2—-p=p(p+3)/2 linear equations in the same
number of unknowns. This system of equations can be expressed
as Cd = ¢, where € and ¢ are defined in an obvious manner, and
d is the vector of lexicographically ordered [d (i,j)/d(0, 0)]’s.
It is possible to compute d(i, j) /d(0, 0) from this equation, for
i, j belonging in the triangular nonredundant region enclosed by
the linesi = p, i = j, andj = 0 (see Fig. 2). Note also that more
than p(p + 3)/2 of the equations (39') could have been used
[e.g., Giannakis and Swami [19] do not just use m = n). Then
Cd = ¢ would be an overdetermined system and d could be
obtained using least squares.

Once the d(i, j) coefficients have been determined, it is pos-
sible to extract the AR coefficients using Giannakis’ C(gq, k)
method, where g is set equal to p. To do this, (40) must be reex-
pressed as

d(i, j)/d(0, 0) = k§0 a'(kya'(k + i)a'(k +j) (40")
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where a’(k) = a(k)/[d(0, 0)]1/3. After we obtain the a'(k)’s
fork =0,1, - ,p, thea(kysfork =1,2, - - , p can be
obtained from the fact that a(k) = a’'(k)/a’(0) [since a(0) =
1, d(0, 0)'/* = a'(0)].

This method is applicable to causal or noncausal AR models.
Of course, any other cumulant-based MA parameter estimation
technique could also be used to compute the scaled AR coeffi-
cients from (40').

Once the AR coefficients have been determined, we can mul-
tiply (36) by A(z;) A(z;) A(z1 'z7") and take inverse z transforms
to obtain

P

i % 2 a(iy) a(i) a(iy)

=0 =0 i3=0
cGy(m+ iy — iy, n+ i3 — i) =b(m,n) (41)

where
b(m,n) =y, é:o b(i)b(i + m)b(i + n).  (42)

After computing b(m, n) using (41), we can use the C(q, k)
formula to determine the MA coefficients [i.e., the b(j) from
b(j) =b(q,j)/b(q, 0)] because b(m, n) in (42) has the form
of the third-order cumulant of a MA system; or, we can use any
other cumulant-based MA parameter estimation technique.

To summarize, the double C(q, k) algorithm is 1) estimate a
sufficient number of output third-order cumulant values necessary
to accomplish steps 2 and 4, 2) solve (39’) for d(i, j)/d(0,0),
0 =i =j = p,3)use the C(q, k) algorithm (with q replaced
by p) (or any other cumulant-based MA parameter estimation
algorithm) to solve for the AR coefficients from (40’) and the fact
that a(k) = a'(k)/a’(0), 4) compute b(m, n) from 41) for 0
=m =n = g, and 5) use the C(q, k) algorithm (or any other
cumulant-based MA parameter estimation algorithm) to solve for
the MA coefficients from (42). This algorithm is applicable to
causal or noncausal ARMA processes. Its practical application
requires a modified formulation so that steps 2) and 5) can be
performed using least squares, and an accurate determination of
AR order p.

The fact that this algorithm is applicable to noncausal models
is important, because no cumulant-based technique for determin-
ing AR coefficients is guaranteed to lead to a stable AR model.
In the double C(gq, k) method, unstable poles can be associated
with the anticausal portion of the noncausal model. In this way
model stability has been made a nonissue.

VIII. BICEPSTRAL FORMULAS

The complex cepstrum is widely known in digital signal pro-
cessing circles (e.g, [36], ch. 12). One starts with the transfer
function H(z), takes its logarithm, H(z) = log H(z), and then
takes the inverse z transform of H(z) to obtain the complex cep-
strum f1(n). When H (z) is decomposed into the product of its
minimum and maximum delay components, as H,;,(z2) Hy.y(2),
so that h(n) = h,(n) * hy,(n), then it is well known that
hemin (1) and hy,,, (1) can be computed recursively in terms of i (n)
(see (A-28) and (A-29) in Appendix A). In fact, only a finite
number of elements from the infinitely long cepstral sequence are
actually needed to recursively compute h(n) (as long as H(z)
has no zeros or poles on the unit circle).

Nikias and Pan [34] and Pan and Nikias [37] have shown how
similar ideas apply to the bispectrum. Beginning with the z trans-
form of (13) for k = 3, namely
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S5.9(21s 22) = 13,0H(z1) H(z2) H(zi'55 ") (43)

they take the logarithm of 5 , (21, 22), $5,,(21, 22) = log S5 ,(z,
22), and then take the inverse z transform of 33 ,(z,, z;) to obtain
the complex bicepstrum S‘g,,(m, n). (Our notation is quite differ-
ent from the notation used by Pan and Nikias, because we are
trying to keep our notation consistent with the just described com-
plex cepstrum notation.) Just as the complex cepstrum can be
used to reconstruct k(n), so can the complex bicepstrum.

The new theoretical result that is associated with the complex
bicepstrum is the following bicepstrum-cumulant equation that
links the complex bicepstrum with the third-order output cumu-
lants (see Appendix A, Section I, for a derivation)

k=E_m [=Z_)m kS, (k, 1) G (m — k, n — 1) = mCs ,(m, n).

(44)

Note that this result is true for any non-Gaussian process { y(i)};
i.e., it is not limited to processes that are derived from linear
systems.

For (44) to be a practical result we must somehow truncate the
double-infinite limits in (44). Pan and Nikias do an analysis of
§3'y(k, 1) for an ARMA model. They show that §3‘y(k, 1) has
nonzero values only at: k = [ = 0, integer values along the k and
1 axes, and at the intersection of these values along the 45-degree
line k£ = [ (Fig. 3). Substituting the nonzero values of .S"';,y(k, D

rl
R2
R!

-1
-2

Fig. 3. The support of the complex bicepstrum is the union of
the points labeled along R,, R, and R;.

into (44) (which can be expressed in terms of h(k), using (43);
see, also, (A-35)), they show that (44) reduces to the following
complex cepstrum-cumulant equation (see Appendix A, Section
1, for a derivation)

k:_i {Kh (k) [ Cs p(m — k, m) = Csy(m + K, m + k)]
+ kh(—K)[Cyy(m =k, n = k) — C5,(m + k, n)]}
= mC; ,(m, n). (45)

Assuming that kh(k) - O for k > p* and kh(—k) ~ O fork >
g*, then (45) simplifies to

:§1 {kh(k)[Cs.y(m — K n) = Cs(m + k. n + 0]}
+Z {iR(=D)[Csy(m — s n = j)
= Cyy(m + j, m)]} = mCs,(m, n). (46)

By concatenating (46) for a sufficiently large number of m and
n, it is possible to solve for the p* values of A(k) and the g*
values of 2( —k). From these values it is then possible to recon-
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struct A, (k) and Ay, (k), using (A-28) and (A-29), after which
h(k) is computed as A (k) = hgyin(k) * Apay (K).

The derivation of (46) relies on the bicepstral factorization
given in (43). Tekalp and Erdem [56] have studied the existence
of such a factorization. Their results are for the more general
polyspectral factorization given in (13), and have even been given
by them for 2-D as well as 1-D systems. We shall state their 1-D
results for the bispectral factorization, in our own words.

Recall that we just stated that *S; ,(k, I) has nonzero values
only at: k = [ = 0, integer values along the k and [ axes, and at
the intersection of these values along the 45-degree line k = 1.’
Tekalp and Erdem prove that there exists a unique (up to a time
shift and scaling factor) stable LTI system H(z) such that the
bispectral factorization in (43) occurs, if and only if §3' y(k, 1)
has nonzero values only at the k and [ values just stated. They
also show, by means of an example, thz}t if §3'y(k, 1) is nonzero
off of these lines then a factorization of S; ,(z;, z;) as in (43) may
not be possible. It is very interesting that the bicepstral domain
leads to a nice resolution of such an important existence question.
Whether this question can be resolved in another domain remains
an open question. Unfortunately, Tekalp and Erdem’s results do
not assume noisy measurements; hence, when measurement noise
is present and sample averages of cumulants are used, so that
S'3Vy(k, 1) almost certainly will be nonzero off the three lines,
some sort of statistical tests need to be developed in order to test
whether those values are close enough to zero to be treated as
zero.

IX. MULTICHANNEL FORMULAS

In order to extend any of the preceding results to the multi-
channel case we must first define the cumulant of a vector. The
material in this section is taken from Swami and Mendel [53].

If y(z) is a vector process of dimension p, i.e., y(¢) = col

[yi(£), y(1), - - -, ¥,(1)], we have two choices. We could let
y=col[oy, ***,vp),i=1,",kandy = [y' ),y
+#), - -,y (t+ t_;)]in (1) (note that now » and y in (1)

are vectors of dimension pk). Alternatively, we could define the
cross-cumulants of the elements of the vectors and then gather
them into a single vector or a multidimensional array, e.g.,

Coyun(t 1 1) = E{Yi(t) yit + 0) et + ’2)} (47)

which is the third-order cross-cumulant of y;(t), y;(t + 1), and
y(t + t,). Instead of collecting all of the cross-cumulants into
multidimensional arrays, we find it more convenient to represent
the kth-order cumulant as a p*-element vector.

Notation: If C is a p*-element vector (in which p refers to the
dimension of y(¢) and k refers to the cumulant order), we will
let CLiy, iy ==+ 5 iklsdpy ** 5 i = 1, =+, p, denote its [(i;
- D+ G, - DPFTE+ + i/Jth element. The
p*-element vector is treated as a k-dimensional array.

Example: Suppose p = 2 and k = 2; then, we create a 22 x1
= 4 X 1 second-order cumulant vector C (instead of the usual 2
X 2 covariance matrix ), where

C(1,1) = [(1 = 1)2°7" + 1] element of C

= first element of C

C(1,2) = [(1 = 1)2°7" + 2] element of C
= second element of C
Cc(2,1) = [(2 = 1)2*7" + 1] element of C

third element of C
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€(2,2) = [(2 = 1)2*" + 2] element of C
= fourth element of C.

Hence, C = col [C(1, 1), C(1, 2), C(2, 1),C(2,2)].Ifp =
2and k = 3 then C = col [C(1, 1, 1), C(1,1,2), C(1,2, 1),
C(1,2,2),C(2,1,1),C2, 1, 2), C(2,2,1),C(2,2,2)].
Definition: The cumulant of the p-element random vectors x,,
X, ***, X;, denoted by cum (x,, x,, - - - , X;) is the p*-element
vector whose [iy, iy, - - -, i,]th element is given by cum (x, ;,,
Xoie T s Xeads B, vt =1, - , p- In particular, the
kth-order cumulant of the vector process y(n), i.e., cum (y(n),

y(n+ 1), -+, yn+ 74—1)) denoted by Cry(n; 7y, + v+,
Ti-1), has cum (y,(n), y,(n + 77), « - - s Yi(n + 7_1)) as its
[io, &1, = * -, i¢—;]th element, fo, *** 4y =1, -+, p. This

definition is easily generalized to vectors of different dimensions.

The motivation for representing cumulants as p*-element vec-
tors, rather than a k-dimensional array is twofold; first, it enables
us to use the usual algebra of vectors and matrices for computa-
tional purposes; second, it allows us to exploit the algebra of Kro-
necker products to obtain rather simple-looking expressions for
the cumulants of vector processes.

The Kronecker product approach handles the multiinput mul-
tioutput (MIMO) case easily and leads to rather nice looking for-
mulae. We will let ® denote the Kronecker product operator. See
[4] and Appendix A (Section J) for background on Kronecker
products.

Swami and Mendel [50], [53] have shown that the kth-order (k
=2, 3, 4) cumulants of a zero-mean p-element (in general) non-
stationary vector process y(n), are given by the p* vectors, Ce.ys
as (see Appendix A, Section K)

Gy 1) = E{y(1) ® y(1 + 1)} (48)
Cy(t1.0) =E{y(t) ® y(t + 1,) ® y(r + n)}  (49)
Ciy(t; 11, 1y, 13)
=E{y(t) ® y(t + 1,) ® y(t + 1) ®y(t + 1)}
- E{y(t) @ y(t + )} ® E{y(t + ;) ® y(r + )}
- PE{y(t) ® y(¢ + 1)}
® E{y(r + 1;) ® y(r + )}
— PE{y(1) ® y(t + )}
®E{y(t+t1)®y(t+12)} (50)

where P, is the p* x p* permutation matrix 7 ® U,:, in which
the p* x p3 permutation matrix U, p2xp has unity entries in ele-
ments [(i — Dp + &k, (k~ D)p*+il,i=1,---,plandk
=1, -+, p, and zeros elsewhere. For a formal definition of
U2, see (104) in [53].

Equations (48), (49), and (50) generalize (4a), (4b), and (4¢),
respectively, from scalar to vector processes. Equation (50) is
complicated by its last three terms, each scalar component of
which must look like the last three terms of (4c¢).

The cumulants of random vectors satisfy properties analogous
to those summarized in Section II for scalar processes (see [50],
[53]), e.g., if A;, i = 1, -+ - | k are constant r X p matrices,
andx;, i = 1, * -+, k are p-element random vectors, then (see

Appendix A, Section L, for a derivation)
[CP1] cum (Axy, » - v, Arxy)

=[A® - ®A]cum (x;, - - - , %), (51)
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Consider a vector process y(n) to be the output of a linear
dynamical system, one whose IR matrix is H (n, k), and input is
v(k),i.e.,

v = Z B k) o) (52)

where y(n) € R™, v(n) € R™, and H(n, k) € R™ X R™. Addi-
tionally, we assume that v(n) is independent of v(m), n #+ m;
hence, its cumulants are multidimensional Kronecker delta func-
tions, i.e.,

Coo(msm, -+, Ti-1)
= cum (v(n), v(n + 7,), - - -, v(n + 1))
=Tyu(n)86(ry) - - - 8(r-y) (53)

where the input cumulant T, is an n¥-element vector. We also
assume that the IR matrices H(n, k) are absolutely summable so
that the output cumulants are weli-defined. Then the counterpart
of (12) is [50], [53] (see Appendix A, Section M, for a deriva-
tion),

Coy(ns 7y, -+, miey)
= 2 [H(ni)® H(n + 1, i)

@ -+ @ H(n + 1y, i)] T (i). (54)

Observe that the single-input single-output (SISO) result given in
(12) is a special case of (54) (in the SISO case ® becomes mul-
tiplication; in the time-invariant case, H(l, m) = H(l — m)).

“ Use of Kronecker products has led to a beautiful generalization

of (12).
Next, we assume that our MIMO system can be described by
the following state-space model (SSM):

x(n + 1) = ®(n) x(n) + B(n) v(n) (55)
y(n) = ¥(n) x(n) + w(n) (56)

where x(n) € R™, v(n) € R™ and w(n) € R™. Input process
v(n) is zero-mean and non-Gaussian; v(n) is independent of
v(m), forn # m, but the components of v (n) are not mutually
independent; and, all the relevant cumulants of v(n) are finite.
Measurement noise process w(n) is zero-mean and independent
of v(n). The system is causal and stable. Matrices ®(n), B(n),
and ¥ (n) and the noise statistics are assumed known. Finally,
we assume that E{x(0)} = 0.

Swami and Mendel [50], [53] have obtained closed-form, lag-
recursive, time-recursive, and simultaneous lag- and time-recur-
sive expressions for Cix(n; 7y, - -+, 7,_,), the Kronecker state
cumulant vector (KSCV) of the SSM in (55). For example, they
show that the KSCV can be expressed forall 7, I = 1, - -+ |k
— 1, in terms of its zero-lag values, as (see Appendix A, Section
N, for a derivation)

Cox(msr, -+, 1)
=[A(n,n —m) ® A(n + 1,,n — m)
® - @A+ 1my, n — m)]
*Cix(n =m0, -+ ,0) (57)

where (see discussion associated with (A-54)) m = —min (0, 7,,
"5 Te-1), and
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A(n+i,n)=<l)(n+i—1)0(n+i—2)--'tl>(n).
(58)

This result handles the entire (k — 1) dimensional space, —o
<71 <o,l=1,-+-,k— 1. For causal systems C..x(1; 0,
.++,0) = 0forl < 0. Observe, from (57) and the formula for
m, that cumulants at positive lags at time n are expressed in terms
of the zero-lag values at time n, G . (n; 0, - - - ,0), because for
such lags m = 0; however, cumulants elsewhere at time n are
expressed in terms of the zero-lag values at previous times n —
m,m > 0.

It is well known that the mean of the state vector, m(n), and
its covariance matrix, P,(n), can be computed recursively in
temporal variable n. For example 11

P.(n + 1) = ®(n) P(n) ®'(n) + B(n) @(n) B'(n),
n=0 (59)
where Q(n) is the covariance matrix of input v (n). Equation (59)
is initialized by P.(0).
Analogous to (59), Swami and Mendel have shown that the
Kronecker state-cumulant vector C; ,(n; 71, ** * , T4-1) can be
computed recursively in its temporal variable, n, as follows, for

positive lags, i.e., for7; = 0(l=1,---,k—1)(see Appendix
A, Section O, for a derivation)

Cex(n+1;0,--:,0)
= ®(n) C;(n; 0, -+, 0) + B(n) Ty ,(n) (60)
Co.(n+ L7y, 0, Tect)
= [®3®(n + )] Cex(ms 11, =+ 4 Tica)
+D(n; 1y, -0, The) (61)
where

D(n; 1y, -, Tk-1)
= [®IZ3A(n + 7+ 1, n + 1)]Bi(n) Tiu(n),  (62)
75 = 0, and for any matrix M
M=M_ OM, M=M (63)

Observe that (60) can be used to initialize (57). Just as (59) is
initialized by P.(0), (60) is initialized by C; ,(0; 0, - - -, 0).

It turns out that KSCV C; ,(n; 71, = * * , T4—1), where at least
one of the lags is negative, can be expressed in terms of cumu-
lants at positive lags and earlier times; hence, it is not necessary
to have a recursive-in-time formula for C; ,(n; 71, * * * , Tk—1)
for negative 7,’s. This is analogous to the well known fact that
E{x(n) x'(j)}, where n # j, can be calculated from P.(n).

Once C, . (n; 71, - =+, T¢—1) has been computed, it is easy to
compute Cy y(n; 71, * * * Tr—1), 1.€.,

Ck,y("§ T Tko1) = ¥, (n) Cox(nsm, -, Tk-1)-

(64)

This is analogous to the fact that once P,(n) has been computed
it is easy to compute P,(n), i.e.,

P,(n) = ¥(n) P,(n) ¥'(n) + R(n) (65)

where R(n) is the covariance matrix of Gaussian additive mea-
surement noise w(n). Note that because w(n) is Gaussian it does
not appear in (64).

When the MIMO system in (55) and (56) is time-invariant and
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stationary, so that all the matrices in its description are constant,
then simplifications occur in all of the preceding KSCV resuits.
See [53] for the details.

Many of the results which have been presented in Sections v,
V, and VII have already been extended to the multichannel situ-
ation, as described in [13] and [46].

The nonrecursive and recursive cumulant formulas of this sec-
tion are even useful for SISO time-invariant and stationary sys-
tems. The usual approach to calculate cumulants for such systems
is to use (12), which, of course, involves the IR of the system.
Note, however, that (12) contains an infinite number of terms, so
that in practice some truncation error is inevitable. It seems
redundant, however, to compute a system’s IR when a system’s
internal description is given. For example, if we model a system
as an AR, MA, or ARMA model, it is a simple matter to reex-
press each as an equivalent state-variable model. Even in the SISO
case, such a model is in terms of a state vector; hence, even for
such a SISO model we will need to calculate a KSCV. Doing this
enables us to compute such a system’s cumulants directly in terms
of its parameters rather than in terms of its IR, and without any
truncation errors.

X. HARMONIC PROCESSES

There are important signal processing applications where sig-
nals are either real or complex harmonic (sinusoidal) processes.
The former occur in a wide range of array processing problems,
whereas the latter occur in a wide range of harmonic retrieval
problems. Without getting into notation for multiple measure-
ments, frames, etc., we shall direct our attention in this section
at cumulants for the following general class of signals:

y(n) = Z ai(n) su(w) (66)

where the s,( - )’s are signal waveshapes, w;’s are constants, and
the a;(n)’s are random variables. Prasad et al. [40], have shown
that this model describes a wide range of important signal pro-
cessing applications, including retrieval of harmonics in noise,
bearing estimation with linear arrays (estimation of direction of
arrival), time-delay estimation for broad-band sources, echo res-
olution, and transient response analysis. For example, in the har-
monic retrieval problem, (66) can be expressed as

y(n) = ‘Z;l «; eXp {j(win + ¢i)} (67)

where the ¢;'s are independent identically distributed random
variables uniformly distributed over [—7, 7], w; # ; fori # j,
and the ¢;’s and w;’s are constants (i.e., not random). In this case,
s.(w;) = exp (jnw;) and g;(n) = a; = a €xp (jo:), and y(n) is
complex. The comparable model for real signals is

y(n) = é:l a; cos (wn + ¢;). (68)

Leta = exp (j), where ¢ is uniformly distributed over [ —,
x]. Then Swami [45] has shown (see Appendix A, Section P, for
derivations) the following.

1) All third-order cumulants of complex harmonic a are
always zero.

2) Of the three different ways (different in the sense of which
of the variables should be conjugated) to define a fourth-
order cumulant of a complex harmonic only one always
yields a nonzero value, i.e., cum (a, a, a, a) = 0, cum
(a*, a, a, a) = 0, but, cum (a*, a*,a,a) = —1.
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Consequently, we define the fourth-order cumulant of the com-
plex process y(n), as

Cay(15 735 73) = cum (y¥(n), y*(n + 7)),

y(n+ ), y(n+ 1)) (69)

where the fourth-order cumulant on the right-hand side of (69) is
defined as in (4c¢).

Note that when y(n) = L g exp (jw;n), where the a;’s are
random, then the fourth-order cumulant is totally independent of
the temporal variable n (prove this using (69) and some cumulant
properties). Note, also, that in (67) for example, if o; = o;(n),
in which case we would have a damped complex exponential, a
different approach from the one we are now discussing is advo-
cated, because one does not get simple closed form formulas for
the cumulants (we will obtain such formulas below for the models
in (66), (67), and (68)). When one believes that complex damped
exponentials are present then it is advisable to use an ARMA
model as the starting point rather then the summation model in
(67).

Next, we state formulas for the fourth-order cumulants of the
signals in (66), (67), and (68) [45], [55]. In (66), if the a;(n) are
random, zero-mean and mutually independent, with fourth-order
cumulant C, (7, 75, 73), then (see Appendix A, Section P, for
derivations)

cum (y*(n), Y (n + 7)), y(n + 1), y(n + 13))
= é S:(wi) s:+11(“’i)
: sn+n(wi) sn+13(wi) C4.a,(71: T2, 73)~ (70)

For (67), the case of complex harmonics,

P
Cay(T1, 72, 13) = _k§1 at exp {jwk(—Tl + 7+ 7'3)}-

(71)
Additionally,

4
Coy(r) = 2 e exp (jra). (72)
For (68), the case of real harmonics,

P
C4.y(7h T3, T3) = “éka ‘12[003 o — 7, ~ 73)

+ cos w(m, — 73 — 77)
+cos w(ry — 1, — 7). (73)

Additionally,
P
Cy(1) = Jz-kgl at cos (wr). (74)

We are now ready to state a major theoretical result: If y(n)is
a sum of p real-valued sinusoids, then the diagonal slice (or, any
1-D slice) of the fourth-order cumulant retains all of the pertinent
information about the number of harmonics, their amplitudes and
frequencies [45], [55]. Specifically, set r, = 7, = 73'in (73) to
see that
P

C,\(1) = -3 12;1 a} cos (wr) (75)
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which is identical (ignoring the scale factor of —3 /4; see (74))
with the autocorrelation of the signal

y(n) = z:;l aj cos (wn + ¢). (76)

It is well known that p, w,, and o can be estimated from the
output correlation in the noiseless or additive white noise case;
hence, they can also be estimated from C, ,(7), which is espe-
cially useful in the additive gglpred noise case. This means that
already existing high-resolution methods, such as the Pisarenko,
MUSIC, minimum-norm, Kumeresan-Tufts, or, Toeplitz approx-
imation (ESPRIT) methods can be applied, just about as is, by
replacing correlation quantities with C, y(7).

XI. EsTIMATES OF CUMULANTS

Cumulants can be calculated from channel models using: (12)
or (12') in the case of single-channel systems that are described
in terms of an IR; (54) in the case of multi-channel systems that
are described in terms of IR matrices; or, (57) (or the recursive
equations given in Section IX) in the case of single- or multi-
channel systems that are described in terms of state space models.

In many practical situations we are given data and want to cal-
culate cumulants from the data. In Section XII we describe some
applications where this must be done in order to extract useful
information about non-Gaussian signals from the data. Cumulants
involve expectations, and as in the case of correlations, they can-
not be computed in an exact manner from real data; they must be
approximated, in much the same way that correlations are
approximated. Cumulants are approximated by replacing expec-
tations by sample averages, e.g.,

G (1, ) = és,x(Th )

= (1/Ng) ’ax(t) x(t+7)x(t+ 1) (77)

where Ny is the number of samples in region R. A similar but
more complicated equation can be obtained for (:'4,,(11, Ty, T3)
by beginning with (4c). It will not only involve a sum of a product
of four terms (analogous to (77)), but it will also involve products
of sample correlations.

It is well known (e.g., [25], [41]) that exponential stability of
the underlying channel model guarantees the convergence in
probability of the sampled autocorrelation function to the true
autocorrelation function. The convergence of sampled third-order
cumulants to true third-order cumulants is studied in [44]. Essen-
tially, if the underlying channel model is exponentially stable,
input random process v(n) is stationary, and its first six (eight)
cumulants are absolutely summable, then the sampled third-order
(fourth-order) cumulants converge in probability to the true third-
order (fourth-order) cumulants.

Formulas for estimating the covariances of higher-order
moment estimates can be found in [9] and [39]. Although they

- are quite complicated, they may be of value in certain methods

where estimates of such quantities are needed.

The reason it is important to know that sample estimates of
cumulants converge in probability to their true values (i.e., are
consistent) is that functions of these estimates are used in many
of the techniques that have been developed to solve a wide range
of signal processing problems (e.g., (23)). From estimation the-
ory (e.g., [28]), it is well known that arbitrary functions of con-
sistent estimates are also consistent; hence, we are assured of
convergence in probability when using these techniques.

It is well known (e.g., [28]) that sampled estimates of Gaussian
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processes are also optimal in a maximum-likelihood sense; hence
they inherit all of the properties of such estimates. Unfortunately,
sampled estimates of non-Gaussian processes are not necessarily
optimal in any sense; hence, it may be true that estimates other
than the conventional sampled estimates provide ‘‘better’” results.
This is an open question.

XII. APPLICATIONS

Because the field of higher-order spectra is growing at an expo-
nential rate, there is no way we can cover all applications. The
Proceedings of the Workshop on Higher-Order Spectral Analysis
(Vail, CO, June, 1989) cover a wide range of applications, rang-
ing from identification of nonminimum phase systems, sonar and
radar, nonlinear systems, harmonic retrieval and detection, image
processing, biomedical signal analysis, and array processing. For
other papers that discuss the wide range of applications to which
higher-order statistics have already been applied, see [30], [35].

The application we shall cover is identification of systems from
just noisy output measurements. The material in this section was
first presented by the author at the Vail Workshop (June 1989) as
a 90 minute tutorial.

A. Identification of Systems Just from Output Measurements

Consider the single-input single-output system depicted in Fig.
1, in which: v(k) is a zero-mean, non-Gaussian, independent,
identically distributed random sequence; H(z) is the transfer
function of a stable possibly nonminimum phase system (i.e., a
system some of whose zeros lie outside of the unit circle in the
complex z domain), i.e.,

H(z) = B(2)/A(2) = Lé’ b(j)z"}/[é)o a(i)z_i]_

(78)

n(k) is a zero-mean colored Gaussian random sequence (which
can include white Gaussian noise as a special case) that is inde-
- pendent of v(k); a(0) = b(0) £ 1, for scaling purposes; and,
orders p and g are assumed to be known. The problem is: given
time-limited noisy measurements z(k), k = 1,2, - - - , N, esti-
mate H(z)’s parameters, b(1), - -+ , b(q), and a(1), a(2),

-, a(p). This is an output measurement identification prob-
lem. it does not include the wide range of problems where one
has access to both the input and the output of the system. It suf-
fices to say that cumulant-based techniques can also be applied to
the input/output rmeasurements identification problem when the
input is non-Gaussian.

The output measurement identification problem occurs in many
fields, including communications and reflection seismology. In
the former, v (k) is a ‘‘message,’’ h (k) is a ‘‘channel,’’ and y (k)
is a ““distorted message’” (intersymbol interference). An accurate
model of the channel is needed in order to restore the message at
the receiver. This model is used in many equalization schemes.
In reflection seismology wv(k) is the earth’s ‘‘reflectivity
sequence,”’ h(k) is the ‘‘seismic source wavelet,”” and y(k) is
the ‘‘seismogram.”” An accurate model of the source wavelet is
needed in order to estimate the earth’s reflectivity sequence via
deconvolution.

When the numerator parameters in (78) all equal zero except
for b(0), we have an all-pole model, in which case we are in the
realm of AR parameter estimation. When all of the denominator
parameter$ équal zero except for a(0), we are in the realm of
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MA parameter estimation. These two special cases have been
widely studied not only for their own interest, but also because
some methods for estimating ARMA parameters proceed in two
steps, by first estimating the AR parameters of the ARMA model
and then estimating the MA parameters of the ARMA model,
making use of the just-estimated AR parameters. We shall present
a brief survey of methods that use higher-order statistics for the
identification of AR, MA and ARMA systems just from noisy
output measurements.

As a reminder, we use higher-order statistics to solve these
problems because second-order statistics are phase blind (hence,
they can only give rise to minimum phase or maximum phase
models, i.e., to spectrally-equivalent minimum phase (SEMP)
models), and higher-order statistics are blind to additive Gaussian
noise.

Ideally, we seek a model that most-likely produced the given
data. To do this we need the entire probability density function
(p.d.f.), because likelihood is proportional to probability [28];
but, unless the data is Gaussian or conditionally Gaussian, it is
almost impossible to determine the entire p.d.f., and to subse-
quently obtain the most-likely model. The Gaussian assumption
means our p.d.f. is completely characterized by its first two
moments; hence, when we use the Gaussian model we are fitting
the data by a two-moment p.d.f. If we abandon the Gaussian
model, then in theory we need an infinite number of moments to
best fit the data. Suppose we determine models that are based on
a subset of more than two moments (or cumulants). The methods
described below determine linear models that are based on such
a subset. A nonlinear model may be a more likely one.

B. Identification of AR Systems

Two methods for estimating the coefficients of a causal AR
model have been described in Section V. The correlation-based
normal equations in (25) can be solved by a wide variety of linear
algebra techniques. When more equations are collected than
unknowns, so that the resulting system (known as higher-order
Yule-Walker equations) is overdetermined, least-squares, total
least-squares [20], or singular-value decomposition (SVD) 6]
techniques can be used to solve for the AR parameters. SVD tech-
niques can also be used to determine the AR order p.

The cumulant-based normal equations in (26) must be collected
forr=1,2,--+,p+ Mand (at least) ky = —p, * ** , 0 (or
T=q+1,q+2, " ,q +p+ Mand (at least) kp = ¢ — p,

-, q in the ARMA case) where M = 0. Singular-value
decomposition techniques are then applied to not only determine
the AR coefficients, but to also estimate the AR order p. For more
details, see [10], [12], [16], [49].

If a system is truly linear and we are given true cumulants then
cumulant-based (as well as correlation-based) AR methods lead
to a stable AR model. Unfortunately, we are never given true
cumulants; we are given estimates of cumulants (see Section XI).
Additionally, we are sometimes given an arbitrary time series for
which we assume a linear data generating model. In both cases
cumulant-based (as well as cofrelation-based) AR methods are
not guaranteed to lead to stable AR models.

If a correlation-based method leads to an unstable AR model,
the unstable poles can be reflected outside of the unit circle with-
out affecting the correlation, because R(z) = AN A7
= R(z™!). The result is a noncausl AR model. If a cumulant-
based method leads to an unstable AR model, we cannot just
reflect the unstable pole outside of the unit circle to obtain the
cure. Reflection changes S; ,(zi, 2), because S3(z1, 22) =
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A7) 47M(z) 472", and Syt m') = A7)
A7) A7 (2iz,), so that S (27, 737)) # S3,4(21, z2). The
same is true for other polyspectra.

This has motivated interest in identifying noncausal AR models,
i.e., models that have some of their poles inside or outside of the
unit circle. In the noncausal AR case, we view H(z) as follows:

H(z) = 1/4(z) = [1/1(2)][1/0(z™)] (79)

where /(z) is associated with the minimum phase (stable) com-
ponent of A(z) and O(z) is associated with the maximum phase
(unstable) component of A(z). Of course, noncausal AR models
occur naturally in certain applications, such as astronomical sig-
nal processing, spatial signal processing (e.g., blurring distortion
of images), geophysical signal processing (Vibrator input), and
indirectly in methods for identifying noncausal MA models [33].
Three cumulant-based approaches have been developed to iden-
tify noncausal AR models: exhaustive search, optimization, and
conversion to a related problem of identifying the coefficients of
an MA model.

In the exhaustive search method [62], 1) a spectrally-equiva-
lent (SE) stable causal AR(p) model is fit to the noisy measure-
ments using only second-order statistics, 2) the resulting A(z) is
factored into n, + n, terms, where n, is the number of real roots
and n, is the number of complex roots, 3) 2/ SE A (z)’s are cre-
ated, where [ = n, + n./2, by reflecting one or more of the /
roots or root-pairs of 4(z) to reciprocal locations outside of the
unit circle; let 8 (i ) denote the AR parameters for the ith model,
wherei =1,2, .- 20 4) a squared-error function is evaluated
between C; ,(m, n) and G .(m,n| 9(1' )) over an admissible range
of m and n values, for each i = 1,2, -+, 2 where G ,(m, n)
is estimated from the given data and Gy, (m, nlé(i )) is com-
puted for the ith SE model using (12) or (57), and, 5) the “‘win-
ning’’ model is chosen as the /* for which & (z) has the smallest
squared error. Some of H( z)’s poles will lie inside the unit circle,
and some will lie outside of the unit circle; hence, H, * (z) will
be noncausal.

Huzii [22] developed a similar method. Steps 1 through 3 of
his method are identical with Tugnait’s method. Huzii then cal-
culates the theoretical cumulant of the innovations sequence for
each of the 2’ models and tests each innovations sequence for
whiteness. The whitest result provides the winning AR model.

In the optimization method [62] the coefficients of the noncau-
sal AR model, as well as the statistics of the non-Gaussian input
and the Gaussian additive measurement noise are chosen to min-
imize an objective function. This objective function combines
squared differences between correlations computed from the data
and from an AR model, and cumulants computed from the data
and from the same AR model. The respective differences are
summed over correlation or cumulant ranges. The AR parameters
are determined by minimizing this objective function using a

mathematical programming algorithm. We shall describe this
method in more detail in subsection D.

In the conversion method [19] we use (40’), which is the first
component of the ‘‘Double C(g, k)*’ method. In effect, we have
converted an AR parameter estimation problem into a related MA
parameter estimation problem, since the scaled AR coefficients,
which appear on the right-hand side of (40") play the role of MA
parameters. In this method, we first solve (39’) for the scaled d(i,
J)’s; then we solve for the scaled AR parameters using any one
of the MA parameter estimation techniques to be described in
subsection C; finally, we solve for the unscaled AR parameters.

In summary (see Table 1), although AR coefficients can be
determined using correlation-based normal equations, they can
also be determined using cumulant-based normal equations. The
latter are unaffected by additive Gaussian noise, either white or
colored, whereas the former are seriously affected by such noise.
At least p + 1 cumulant slices must be used to reconstruct all of
the AR coefficients using the cumulant-based normal equations;
hence, in practice AR parameter estimation proceeds hand-in-hand
with AR order determination [17]. Unfortunately, none of the
causal cumulant-based methods can guarantee recovery of a sta-
ble AR model. Fortunately, however, causal or noncausal AR
models can be identified using cumulants. Viewing a model as
noncausal resolves the stability dilemma.

C. Identification of MA Systems

To-date numerous methods have appeared in the literature for
the identification of causal MA systems using cumulants. In order
to see the forest from the trees, we will group these methods in
one of the following three categories of solutions: closed-form
solutions, linear algebra solutions, and optimization solutions.

1) Closed-Form Solutions: Giannakis [10] and Giannakis and
Mendel [16] were the first to show that MA coefficients could be
computed recursively in closed form using both correlation and
the 1-D third-order diagonal slice cumulant Cs,y(m, m). A more
elegant form of this solution was provided by Swami and Mendel
[48]. Unfortunately, this recursive-method-1 contains a step in
which one might be dividing zero by zero, and, it does not carry
over to fourth-order cumulants. Finally, it is not a very practical
algorithm because it does not smooth out the effects of measure-
ment noise. In retrospect, recursive-method-1 demonstrated the
“‘possibility”” of identifying MA systems using cumulants.

Tugnait [63] developed a different closed form solution, one
that also uses both correlation and 1-D third-order cumulant slices
Gs,,(7, 7 + q). This recursive-method-2 does not suffer from a
zero divided by zero problem, and was inspired by recursive-
method-1. No version of recursive-method-2 has been presented
for fourth-order cumulants, and, it also is not a very practical

Table 1 Summary of Methods for Identifying AR Systems

AR
System Method References
Causal Correlation-based normal equations Box and Jenkins [3]
Cumulant-based normal equations Parzen [65], Akaike [66], Giannakis
[10, 12], Giannakis and Mendel
[16], Swami [45], Swami and
Mendel [52], Tugnait [60, 68]
Noncausal Exhaustive search Huzii [22], Tugnait [62]
Optimization Tugnait [62]
Conversion Giannakis and Swami [19]
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algorithm because it does not smooth out the effects of measure-
ment noise.

The third closed-form solution is the C(gq, k) method, given in
(17) for third-order cumulants, and (18) for fourth-order cumu-
lants. These formulas can also be given for an arbitrary mth-order
cumulant. Unlike recursive-methods 1 or 2, the C(g, k) method
is not limited to third-order cumulants. It does not suffer from a
zero divided by zero problem. As pointed out in Section IV, the
C(q, k) method is impractical because it also does not smooth
out the effects of measurement noise.

Consequently, the closed-form solutions, while interesting from
a theoretical point of view, in that they demonstrate the possibil-
ity of extracting MA coefficients from just output measurements,
are not recommended for numerical calculations.

2) Linear Algebra Solutions: The GM-Method, described in
Section VI, is the first of three methods which we have called
““Linear Algebra Methods.”” Each of these methods requires
solution of a system of equations which are viewed to be linear
in a set of parameters; hence, the name ‘‘Linear Algebra
Method.”’ In the GM-Method, (34) is treated as a linear system
in both b(k) and b(k) (k = 1,2, -+, q). Equation (34) is
concatenated for appropriate values of m (e.g., in the noise-free
casem = —q, ~++, 0, ,2q); b(k)and b*(k) (k = 1,2,
-+« , g) are solved for using least-squares; and, then b(k) and
pk) (k=1,2, -+, q) are combined to obtain the final esti-
mate forb (k) (k =1,2, - - -, ). For different ways to combine
b(k) and b(k), see [8], [16]. Even though the GM-Method treats
b(k) and b*(k) as independent parameters, which they obviously
are not, it seems to lead to reasonably good results, and, is a
simple method to implement. Another approach would be to treat
the concatenated (34) as a system of nonlinear equations in the
MA coefficients and to solve this system using a mathematical
programming technique. As mentioned in Section VI, when mea-
surement noise is present (34) becomes an underdetermined sys-
tem of equations.

Tugnait [63] developed another linear algebra method, which
we shall refer to as the *“T-Method.’" It is based on the following
equation which also links correlations and third-order cumulants
(for a derivation, see Appendix A, Section Q):

q
Z (k) Cry(r — kT —k+q) - [b(@) 110/ 03] (7)
= —GCy,(7, 7 + q). (80)

This equation (which uses 1-D off-diagonal cumulant slices) is
concatenated for —q < 7 < ¢q; b(1), b(2), -, b(gq), and
b(@)vs.o/ o2 are its unknowns; the resulting system is lower tri-
angular and is always solvable for b(1), b(2), - -+ , b(q), and
b(q)vs,»/ o2. In practice, least-squares is used to solve for b(1),
b(2), -+, b(q), and b(q)'ya,,,/af,. When measurement noise
is present, in which case r,(7) = r.(7) — 028(7), we do not use
7 = 0; in this way we do not need to know a2. Observe that (80)
is truly linear in the g + 1 MA coefficients, whereas (34) is really
nonlinear in those coefficients; however, (34) makes use of much
more correlation information than does (80). In the case of noisy
measurements, it is quite reasonable to combine (80) and (34),
and to then solve for b(k) and b*(k) using least squares or to
sotve for just b (k) using mathematical programming.

The third and final linear algebra method for causal MA sys-
tems is the Bicepstral Method, developed by Pan and Nikias [37]
and described in Section VIII. Equation (46) is linear in h(k) and
h(—k). By concatenating (46) for a sufficiently large number of
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m and n, least-squares can be used to solve for the p* values of
h(k) and the g* value of h(—k). From these values it is then
possible to reconstruct the minimum phase and maximum phase
components of h(k), namely hy,(k) and Bomax (k), after which
h(k) is computed as h (k) = Apyin (k)* hax (k). Of course, for an
MA system h(k) = b(k). This method is easily extended to
determine the IR’s of AR and ARMA systems, as described by
Pan and Nikias. The method does not require order determination
of the underlying model, because it reconstructs the system’s IR,
h(k), rather than AR or ARMA parameters. The method also
does not require a priori knowledge of the system type (i.e., MA,
AR or ARMA). The lengths of Ay, (k) and hg,, (k) are deter-
mined by the method. Unfortunately, cepstra are not defined for
band-limited signals (the logarithm of zero blows up), which may
impede the use of the Bicepstral Method in some situations. The
computational complexity of the method increases when the sys-
tem’s poles or zeros are close to the unit circle (in the AR or
ARMA cases), which means that more & (k) and h(—k) param-
eters will need to be estimated, and more cumulants will have to
be computed. Good estimates of p* and g* are required (this, in
effect, is order determination). If they are severely underesti-
mated the phase and magnitude information will not be recovered
accurately. The effects of additive noise needs to be studied (none
of the examples given in Pan and Nikias include this effect). A
first step in this direction is the recent paper by Petropulu and
Nikias [64] which provides analytical performance evaluation of
the complex cepstrum and bicepstrum. It gives approximate
expressions of the bias and variance of the cepstrum parameters
due to the presence of additive Gaussian measurement noise.

Unlike cepstral methods that usually require phase unwrap-
ping, which is difficult to accomplish, the Bicepstral Method does
not require phase unwrapping. One explanation for this is that
(46) involves both the complex cepstrum of the channel and the
third-order cumulants, and, of course, cumulants contain phase
information.

Finally, Nikias and Chiang [33] have developed an approxi-
mate linear algebra method for estimating the magnitude and phase
of a noncausal MA model. Their method is to transform the non-
causal MA model into a noncausal AR model, for which there is
a two-sided system of normal equations (which can only be
obtained if we know for sure that the original MA model is truly
noncausal) that are then concatenated and solved for the coeffi-
cients of the noncausal AR model using least squares. From these
coefficients it is then straightforward to obtain the desired esti-
mates of the magnitude and phase of the original noncausal MA
model.

3) Optimization Solutions: Lii and Rosenblatt [24] proposed
the following MA exhaustive search method for determining MA
coefficients: 1) use output correlation to obtain the SEMP MA
process, 2) factorize the MA polynomial and obtain 27 competing
MA models by reflecting one or more minimum-phase zeros to
reciprocal locations outside the unit circle, 3) compute theoretical
cumulant values for the 29 MA models (using (12) or (57)), and
4) choose the model whose cumulant values match, in a least-
squares sense, the output cumulant sequence as the true model.

Lii and Rosenblatt [24] also proposed the following MA opti-
mization-method 1 for determining MA coefficients by minimiz-
ing the sum of the squared differences between the observed
cumulants and the cumulants of the proposed model.

Although Lii and Rosenblatt proposed both of these methods,
they apparently never tried them out, for no simulation results are
given for either method in their 1982 paper. The two methods
were later extended and expanded upon by Tugnait in connection
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with identifying the coefficients of an ARMA model (see subsec-
tion D).

An interesting feature of optimization-method-1 is that, because
we are able to express the third- or fourth-order cumulant directly
in terms of the MA parameters (e.g., see (15)), we can obtain a
closed-form formula for the gradient of the squared error func-
tion, i.e., if

2
&= § [éﬁ b(k) b(k + m) b(k +-n) — C; ,(m, n):l

(81)
denotes the squared error function for third-order cumulants (a
similar expression can be formulated for fourth-order cumulants),

in which R denotes the shaded triangular region shown on Fig.
2, then

9e%/db (i)

=2 %} [é)o b(k) b(k + m) b(k + n) = &, (m, n):,

“[b(i + m) b(i + n) +b(i —m)b(i —m + n)
+o(i—n)b(i —n+m) (82)

wherei =0, 1, - - - , g. This equation is very useful when we
use an optimization algorithm such as steepest descent to mini-
mize (81).

In the preceding optimization approach all of the data was used
at one time and the MA coefficients were chosen to fit all the data
simultaneously in a minimum squared-error sense. In a structured
network approach Mendel and Wang [32] view each nonredun-
dant value of GCs,,(m, n) [or Cyy(l, m, n)] and ry(1) as a pattern
to be learned by a structured network. The structured network is
trained using estimated values of C; y(m, n) [or Ciy(l, m, n)]
and r, (1) as its training samples. The network has two-levels and
three-layers; it belongs to the class of structure-controllable net-
works [21]. The weights of this network correspond to the MA
parameters (this is very different from usual neural networks in
which the weights usually have no physical meaning), and are
trained using a steepest descent algorithm, that makes use of (82).
Simulations have demonstrated that this structured network
approach is very useful for simultaneous order determination and
parameter estimation, i.e., if the MA order is overspecified then
the overspecified parameters do converge to zero (in a probabi-

listic sense) via this training procedure. A similar behavior should
be obtained using MA optimization-method 1.

Friedlander and Porat [9] developed the following MA opti-
mization-method 2 for estimating moving-average coefficients: 1)
establish a vector, s, of second- and third-order statistics, 2) esti-
mate s as § = sy(yy), where yy is a vector of N samples of the
system’s output, 3) estimate the asymptotic covariance of s, I,
as £ ( Yn), 4) obtain an initial estimate of the MA parameters b,
by, 5) compute the gradient of s evaluated at b;, 6) let

V(x) = [s(x) ~ S)'E " s(x) - §] (83)
then
b =arg I;ﬁn V(x). (84)

The actual minimization is accomplished using a Newton-Gauss
algorithm which uses the gradient of s, and 7) iterate on steps 5)
and 6) until | V(b,,,) — V(b;)| < e. Steps 1 and 2 are straight-
forward. Step 3 is quite involved. Formulas for the elements of
I have been computed in [39]. Friedlander and Porat use the
GM-Method to provide &,. If £ is not positive definite, an eigen-
value decomposition must be performed to convert s into a lower-
dimensional vector &. Step 5 is actually performed for & rather
than s; it is in this step where the MA nature of the model is
exploited. Noise-free examples demonstrate that this MA opti-
mization method outperforms the GM-Method. No results have
been provided however for the case of noisy measurements.

This entire procedure is not limited to MA models. It can also

be applied to ARMA models, but to do so requires knowing an
effective MA order (i.e., length of the ARMA IR) to estimate the
covariance of third-order cumulants. It then uses the residual time-
series method (see subsection D).
. Note that (83) and (84) differ from the mathematical formula-
tion of MA optimization-method 1 only in the introduction of the
term £, This term down-weights the errors in which one does
not have high confidence.

In summary (see Table 2), we have described ten methods for
estimating the coefficients in an MA ( g) model. Prior to these
methods nothing really new had occurred regarding the solution
to this problem in a very long time.

D. Identification of ARMA Systems

To-date, several methods have been reported in the literature
for identifying the coefficients of an ARMA model from just noisy
output measurements.

Table 2 Summary of Methods for Identifying MA Systems

Class of Methods Method References
Closed-Form Solutions Recursive-1 Giannakis [10], Giannakis and Mendel
[16], Swami and Mendel [48]
Recursive-2 Tugnait [63]
C(q, k) Giannakis [11)
Linear Algebra Solutions GM Giannakis {10], Giannakis and Mendel
[16], Friedlander and Porat [8, 9],
Porat and Friedlander [39)
T Tugnait [63]
Bicepstral

Optimization Solutions

MA Exhaustive search

Pan and Nikias [37), Nikias and Pan
[34)

Lii and Rosenblatt [24]

MA Optimization-1
Structured network
MA Optimization-2

Lii and Rosenblatt [24]

Mendel and Wang [32]

Friedlander and Porat [9], Porat and
Friedlander [39)]
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Tugnait [58] extended the exhaustive search technique, first
proposed by Lii and Rosenblatt [24], to the identification of
ARMA coefficients. In this ARMA exhaustive search method, we
1) use prediction-error identification techniques to determine a
SEMP model; this leads to a model with p poles and p — 1 zeros,
2) form the 2/ possible sets of SE zeros, where [ = n, + n./2,
by reflecting one or more minimum-phase zeros to reciprocal
locations outside of the unit circle; this leads to 2' SE models,
M,, My, -+ , My, that all have the same poles but different
zeros, 3) choose M* as

0 0
M* = Arg min DI

Mivi n=-Lnp=-L
2 2
. 13=Z—L [Cay(ti, 2, t3| M) = Cuy(tr, 12, 53)] . (85)

Cumulant estimate 6’4_y(11, t,, t;) is obtained from the data,
whereas Cy (21, 12, 13 | M;) is computed for the ith model M;. The
latter can be computed from (12) or (57). This ARMA exhaustive
search method is, as noted by Tugnait, blind to all-pass factors
because only correlation information is used in step 1.

Tugnait [61] has also extended the optimization technique, first
proposed by Lii and Rosenblatt [24] to the identification of ARMA
coefficients. In this ARMA optimization method, we 1) use sam-
ple statistics to compute sampled estimates of both correlations
and fourth-order cumulants, 2) fix the ARMA order at p and let
9=col(a, " ,a,by, """, by1,00 00 Va,), and, 3) choose
0* as

0
0x = Argomin {% =Z_L [ () - ry(r|0)]2

0 0 0

A2 U X X

n=-Ln=-nnBn=-n

(G, 1, 15) = Cay(ny, 12, 1319)]2- (86)

This is now a mathematical programming problem in which 0 is
chosen by minimizing a weighted combination of squared errors
between second- and fourth-order statistics. If the system’s input
is not symmetrically distributed, so that its third-order cumulant
is nonzero, then (86) can be modified by replacing fourth-order
cumulants with third-order cumulants. A formula for \ is given
in [61]. This ARMA optimization method is not blind to all-pass
factors.

Giannakis [10] and Giannakis and Mendel [16] developed the
following three step residual time-series method for estimating
ARMA coefficients: 1) estimate the AR coefficients, 2) compute
the residual time series, and 3) estimate the MA parameters from
the residual time series. The AR parameters can be estimated
using any one of the methods that we have described in subsection
B, although Giannakis and Mendel emphasize the cumulant-based
normal equations. The so-called “‘residual time series,”’ denoted
$(n), equals y(n) — y(n), where

9(n) = = % a(k) y(n — k). (87)

Beginning with the ARMA model in (21), letting a(k) = a(k)
— a(k), and using (87), it is straightforward to rearrange (21) as

5) = £ b0 o(n ) = T a(k)y(n = 0. (88)
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If 4(k) = a(k), then
q
y(n) = 2 b(k)v(n — k) (89)

in which case the residual satisfies an MA (g) model. Generally
speaking, d(k) # a(k), in which case the second sum on the
right-hand side of (88) is present. Unfortunately, this term is a
doubly stochastic process (because d(k) depends on y(j), j=
1, - -+, n, so that @(k) y(n — k) is a product of two dependent
random sequences) that (to-date) defies analysis. The customary
approach, therefore, is to assume that a(k)y =0.

Any of the MA coefficient methods that were described in sub-
section C can be used to estimate the MA coefficients of (89),
where §(n), which is constructed as y(n) — 9(n), plays the role
of the MA system’s measurement. Giannakis and Mendel empha-
size the GM-Method for doing this.

Swami [45] and Swami and Mendel [49] have developed the
following two-slice algorithm for determining MA coefficients in
an ARMA model: 1) determine the AR coefficients using any one
of the methods described in subsection B, and 2) determine the
MA coefficients, as well as the noise statistics, using two 1-D
cumulant slices. The starting point for the implementation of step
2 is (A-16) and (A-17). Analyzing the right-hand side of (A-17)
forthet = 0 and t = 1 slices of f,(t; 7) reveals that £, (0; 7) is
a function of (note that, because h(!) is causal, the first nonzero
term occurs when j = T) Y ob(7), " * " Ym»b(q), h(1),
-+, h(qg — 7), whereas f,(1; 7) is a function of v, ,b(7),
o Ymob(@), h(1), -+ k(g — 7 + 1). As usual, h(0) is
normalized to be unity. Setting 7 = ¢ in both f,,(0; 7) and £, (1;
7), using the specific structure of the right-hand side of (A-17),
lets us compute v, ,b(q) and h(1), in that order. Setting 7 = g
— 1 in both £,(0; 7) and £, (1; 7), and again using the specific
structure of the right-hand side of (A-17), lets us next compute
Ympb(g — 1) and A(2), in that order. The complete procedure
for step 2 (when ¢ is even) is (2a) iterate f,,(0; 7) and f,(1; 7)
forr=¢q,q—1,*,q/2toobtain v, ,b(q), h(1), Ym..b(q
—1),h(2), ", Ymob(g/2) and h(q/2 + 1); (2b) solve (22)
for (0), b(1), - -+, b(q/2 — 1); (2c) evaluate 22) atk =
q/2 to obtain b(g/2); (2d) having both Ymob(q/2)and b(q/2),
solve for v,, ,; and, (2¢) finally, having vy, ., solve for b(q), b(q
- 1)9 ] b(f1/2 + 1) from 'Ym,vb(q)’ 'Ym,vb(q -1,

L Ymob(g/2 + 1). A very similar procedure exists for ¢
odd.

The novel feature of this two-slice algorithm is that it weaves
together MA and IR estimation. It does not require calculation of
a residual time series. It is also possible to weave together sec-
ond- and higher-order statistics to solve for the MA coefficients.
Thet = 0 and ¢ = 1 slices may even come from cumulants of
different orders. Unfortunately, because of the recursive nature
of this algorithm it is prone to error propogation. In essence, this
algorithm is a generalization of the recursive algorithms for MA
systems to ARMA systems.

Swami [45] and Swami and Mendel [49] have also developed
the following g-slice algorithm for determining MA coefficients
in an ARMA model: 1) determine the AR coefficients by any one
of the methods described earlier in subsection B, 2) determine the
first ¢ IR coefficients using g 1-D cumulant slices, and 3) deter-
mine the MA coefficients using (22). Equation (23) is the
basis for step 2. The g-slice algorithm does not introduce errors
due to the computation of a residual time series, and it is not
recursive so that it is not prone to error propogation. In fact, it is
possible to recast (23) so that it can be combined with the cumu-
lant-based normal equations in (27) (which, of course, can be
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used for step 1), i.e., (23) can be reexpressed as (use the version
of (23) given in (A-22), along with (A-16))

P
2 akK) Coy(g = kom0, -+, 0) = £,(0; ) h(n)

= _Cm,y(qv no,---, 0) (90)

forn =0,1, -, Q = g. The concatenation of (27) and (90)

leads to an overdetermined lower-triangular system of equations
in the p unknown AR coefficients, a(k), and Q unknown scaled
IR coefficients, f,,(0; ¢) h(n). Note that, because h(0) = 1,
Sn(0; g) can be solved for from this system of equations, so that
the unscaled IR coefficients can also be solved for. Simulations
indicate that the g-slice algorithm in which AR and IR coefficients
are solved for simultaneously, using numerically robust tech-
niques, such as singular value decomposition [20] and total least-
squares {20], gives very good results.

In Section VII we described the Double C(q, k) Algorithm,
developed by Giannakis and Swami [18], [19] for estimating
ARMA coeflicients. Recall that this method is applicable to non-
causal as well as causal ARMA models. The key point of this
algorithm is that it reduces the ARMA parameter estimation prob-

lem to two MA parameter estimation problems. In Section VII -

we said that each of these MA problems could be solved by a
direct application of the C(q, k) algorithm that was described in
Section IV; hence, the name ‘‘Double C (g, k) Algorithm.’’ Now
that we have learned that there are (at least) ten new cumulant-
based methods for estimating MA coefficients, let us modify the
statement of the Double C(q, k) algorithm (perhaps, we should
refer to the following version as a ‘‘Double MA Algorithm’”) to:
1) estimate a sufficient number of output third-order cumulant
values necessary to accomplish steps 2 and 4, 2) solve (39’) for
d(i, j)/d(0,0),0 < i < j < p, 3) use any one of the MA
algorithms described in subsection C (with q replaced by p), and
the fact that a(k) = a'(k)/a’'(0), k = 1, 2, -+, p, to estimate
the AR coefficients from (40), 4) compute b(m, n) from (41) for
0 =m=<n < g, and 5) use any one of the MA algorithms
described in subsection C to estimate the MA coefficients from
(42).

All of the preceding methods model H (z) directly as a (pos-
sibly) nonminimum phase system, Hyyp(2). Another possibility
is to model H(z) as a cascade of all-pass and minimum phase
systems, H,p(z) and Hyp(z), respectively. In essence, Hp(z)
alters the phase of Hy;p(z) to produce Hyyp(2) = Hyp(2) Hyp(2);
it does not alter the spectrum of Hyp(2). Hyp(2) Hyp(z) is spec-
trally equivalent to Hyyp(z). Giannakis [10] and Giannakis and
Mendel [14] have developed a minimum-phase all-pass decom-
position method for estimating the coefficients of an ARMA
model. Correlation and a standard stochastic realization algorithm
are used to first obtain Hyp(z). Then H,p(z) is obtained. Because
the steps of this algorithm are a bit involved, we leave its details
to the reader.

In summary (see Table 3), we have presented 7 methods for

Table 3 Summary of Methods for

estimating the coefficients in an ARMA(p, q) model. Some
methods determine all of the ARMA coeflicients simultaneously,
whereas other methods first determine AR coefficients and then
the MA coefficients. Of course, if the system’s input is known,
as in some control system applications, or testing procedures, then
other *‘higher-order’” techniques can be used to exploit all of this
knowledge. These techniques will be (theoretically) immune to
additive colored Gaussian noise, whereas (10) is not.

E. Examples

A multitude of simulated examples can be found in many of
the references for the AR, MA and ARMA identification meth-
ods. These examples have certain things in common, namely: 1)
results are often presented for different data lengths to demon-
strate that, as longer data lengths are used, we get better results,
“‘better’” in the sense of lower parameter estimation error stan-
dard deviations, 2) results are presented for nonminimum phase
channels, and often for channels that include an all-pass factor,
and, 3) results are often presented for additive colored Gaussian
measurement noise.

Showing results for different data lengths confirms the fact that
longer data lengths are needed for cumulant-based estimates as
compared to correlation-based estimates, and that the variances
of both estimates are always limited by signal-to-noise ratio and
the bandwidth of the channel. When cumulant-based parameter
estimates are compared against correlation-based estimates, as
they invariably are, then looking at nonminimum phase channels,
especially those with all-pass factors, and additive colored Gauss-
ian noise, could be viewed as stacking the deck for the cumulant-
based methods. The correlation-based results should be viewed
as baseline results; i.c., results that were obtainable before the
development of the cumulant-based methods, and which were
known to be poor, but about which nothing much could be done.
The cumulant-based results demonstrate how much can be done
when higher-order statistics are used on these same problems;
hence, it is not stacking the deck to test cumulant-based methods
in those situations where it is known ahead of time that they must
do better than correlation-based results.

In this subsection we present two ARMA identification exam-
ples, merely to illustrate what can be obtained using some cumu-
lant-based methods.

Example 1: As in [16], the channel is an ARMA(2, 2) with
polesatz = —0.5 and 0.8, and zeros at z = —2 and 1.25; hence,
this is a second-order all-pass filter, a filter that is totally invisible
to output correlation-based methods. The filter’s input was a non-
Gaussian one-sided i.i.d. exponentially distributed random
sequence, with 2 = 1 and ¥3,» = 2. 1024 Gaussian white noisy
measurements were used, for which signal-to-noise ratio equals
100. The SNR in our examples is defined as SNR =
E{y%i)}/E{n%i)}. A Monte Carlo simulation (different from
the one in [16]) was conducted for 30 runs. The residual time
series method (RTS) was used in which the AR coefficients were

Identifying ARMA Systems

Method

References

ARMA exhaustive search
ARMA optimization
Residual time-series
Two-slice

g-slice

Double C(q, k)
Minimum-phase all-pass

Tugnait [58]

Tugnait [61]

Giannakis [10], Giannakis and Mendel [16]
Swami [45], Swami and Mendel [49]
Swami [45], Swami and Mendel [49]
Giannakis and Swami [18, 19]

Giannakis [10], Giannakis and Mendel [14]
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Table 4 Estimated All-Pass Parameters

Method a(l) a(2) b(1) b(2)

True -0.3 -0.4 0.75 -25

RTS —0.2758 (0.0454) | —0.3875 (0.0512) | 0.8251 (0.0882) | —2.2301 (0.1801)
DC(q, k) | —0.2784 (0.0512) | —0.3772 (0.0627) | 0.8324 (0.0682) | —2.2000 (0.1509)

estimated using AR-based normal equations and the MA coeffi-
cients were estimated using the GM Method. Table 4 summarizes
the true model parameters as well as average values for the esti-
mates of the parameters and their associated standard deviations.
The resulting approximation to the all-pass channel is quite good.

Results obtained from applying the Double C(q, k)(DC(q,
k)) algorithm to the data are also summarized in Table 4. These
results were obtained by applying a structured network training
algorithm, as described in [32], to first determine the AR param-
eters and to then determine the MA parameters. For the former
parameters a network was trained, using a gradient algorithm, on
the patterns d(1, 0)/d(0, 0), d(1, 1)/d(0, 0), d(2, 0)/d(0,
0), d(2, 1)/d(0, 0), d(2, 2)/d(0, 0); d(1, 0)/d(0, 0),
-+ + . For the latter parameters another network was trained, again
using a gradient algorithm, but this time on the patterns b (0, 0),
b(1,0), b(1, 1), b(2, 0), b(2, 1), b(2, 2); b(0, 0), b(1, 0),
-+« . Again, the resulting approximation to the all-pass channel
is quite good. .

Convergence (in a probabilistic sense) of the training procedure
to the true parameter values is depicted in Fig. 4. The true and
estimated impulse responses for the all-pass filter are depicted in
Fig. 5. A comparable plot for the RTS results could not be dis-
tinguished from the DC(gq, k) results; hence, we do not show it
here.

0.1
[

5 10 13 0 28

©

[} 5 10 15 20 23

Fig. 5. True (line with circles) versus estimated impulse rspon-
ses (30 realization).

Example 2: The channel is the following ARMA (3, 2) with
an all-pass factor [49]:

H(z) = [1 — 2.95z7" + 1.90¢7%]/
[1 - 1.30z7" + 1.0577% — 0.325.7°]
= (z — 2)z(z — 0.95)/(z — 0.5)(z* — 0.8z + 0.65].
(91)

-2.35
[}

Fig. 4. Estimates of ARMA parameters: (a) a(1), (b) a(2), (c) b(1), and (d) b(2). The hori-
zontal axis corresponds to the number of training patterns, whereas the vertical axis corresponds

to the value of the parameter.

MENDEL: SIGNAL PROCESSING AND SYSTEM THEORY: RESULTS

295




As in Example 1, the filter’s input was a non-Gaussian one-sided
i.i.d. exponentially distributed random sequence, with 2 = |
and v; , = 2. 2048 Gaussian white noisy measurements were
used, for which signal-to-noise ratio equaled 20. A Monte Carlo
simulation was conducted for 30 runs. Sample averages of the
third-order cumulant G, (m, ko) were computed for ky=—1,0,
1,2 and |m| = 12; p and q were assumed known. Parameters
were estimated by the following four methods.

Method RTS: ARMA parameters were estimated using the
residual time-series method.

Method Qs2: AR parameters were estimated using SVD and
total least-squares; then IR parameters, and subsequently the MA
parameters, were estimated using the g-slice algorithm.

Method Qs: AR and IR parameters were estimated simulta-
neously using leagt-squares in the g-slice method. MA parameters
were then estimated from (22).

Method Qst: Same as Method Qs, except total least-squares
was used instetid of least-squares.

Tables S and 6 summarize the results for the AR and MA param-
eter estimates, respectively. For this example, the Qs2 and Qst

Table 5 AR Parameter Estimates

Method a(l) a(2) a(3)
True | -1.3 1.05 —-0.325
RTS | -1.2148(0.1838) | 0.9732 (0.1851) | —0.2632 (0.1570)
Qs2 | —1.2907 (0.1380) | 1.0395 (0.1366) | —0.3182 (0.1147)
Qs —0.7946 (0.1527) | 0.6358 (0.1255) 0.0437 (0.1130)
Qst | —1.3261(0.1927) | 1.0701 (0.1810) | —0.3497 (0.1644)

Table 6 MA Parameter Estimates

Method b(1) b(2)
True ~2.95 1.90
RTS —2.6808 (2.5098) 1.6058 (1.5808)
Qs2 ~3.0493 (2.7199) 2.2277 (2.6669)
Qs —0.9452 (0.8032) 0.1735 (0.6240)
Qst —2.8646 (2.1578) 1.9737 (2.3018)

methods give the best AR coefficient estimates, whereas the Qst
method gives the best MA coefficient estimates. A point that this
example illustrates is that it is very important to use numerically
robust methods for solving a system of overdetermined equations.
The combination of SVD and total least-squares is quite powerful
and does, indeed, improve results markedly.

XIII. CONCLUSIONS

The main purpose of this paper has been to collect a large num-
ber of relatively new theoretical results for higher-order statistics
in one place so that the reader will have access to all of them.
Extensions of many of the results in Sections IV, V, and VII to
two-dimensional systems can be found in [47]. A second purpose
of this paper has been to illustrate the application of higher-order
statistics to the broad range of problems associated with identi-
fying an unknown, possibly nonminimum-phase channel from just
noisy output measurements. A multitude of new methods has been
developed using higher-order statistics.

No doubt this author has inadvertantly omitted some other
“‘important’’ new theoretical results and some other identification
methods. This was not done intentionally; the field is emerging
very rapidly. Very worthy of mention is the interesting phase-
coupling discrimination results obtained in [42] and [45]. The
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former showed that quadratic phase coupling can be detected by
the bispectrum. The latter showed that cubic phase coupling can
be detected by the trispectrum, and, that the trispectrum is
“blind’’ to quadratic phase coupling, whereas the bispectrum is
“‘blind’’ to cubic phase coupling.

This paper has focused exclusively on higher-order statistics
for linear models because such models fall within the author’s
area of expertise. See [35] for references that deal with applica-
tions of higher-order spectra to nonlinear models, including works
by Brillinger, Hinich, Kim and Powers, and others.

It is hoped that the reader will hve a better picture of some of
what has been happening in the emerging field of higher-order
statistics as a result of this paper. As of the writing of this paper,
more than 200 papers have already been published, mostly in
conference proceedings (see, e.8., [35] or [30]). This represents
an exponential growth, during the past few years.

Much work remains to be done, including testing of the many
algorithms that have been developed across many applications on
real data, extending results to new and interesting processes (e.g.,
multiplicative processes, point processes, hidden Markov pro-
cesses, etc.) and applications, developing more accurate ways to
estimate third- and fourth-order cumulants from data, exploiting
parallelism in cumulant-based methods to develop “‘fast’” algo-
rithms, and, implementing cumulant-based algorithms in VLSI.

A reviewer of this paper asked the question ‘“How could the
reader choose a (nonminimum phase identification) technique
without first trying them all?”’ This question is open to debate
even for the multitude of correlation (spectrum)-based techniques
that have been developed during the past 30 years. No precise
answer 1§ known at this time for the cumulant (polyspectral)-based
techniques. Our limited experience suggests the use of either an
optimization-based method or a linear algebra-based method; but,
the latter must be accompanied by the use of SVD and total least
squares. Establishing performance bounds for many of the meth-
ods remains to be done.

If non-Gaussianity, nonminimum phase, colored noise effects,
or nonlinearities are important to you, then higher-order statistics
offer a new set of tools, methodologies and algorithms for han-
dling some or all of these effects. We are in no way advocating
the abandonment of second-order statistics; we are, however,
advocating the use of more than second-order statistics in the face
of the preceding effects. As stated in the Introduction, “‘with the
new results that are being developed and those that are described
in this paper, it should be possible to reexarine every application
and/or method that has ever made use of second-order statistics,
using higher-order statistics, to see if better results can be
obtained.”’

APPENDIX A
DERIVATIONS AND RELATIONSHIPS

A. Relationships Between Cumulants and Moments

Let x denote a collection of random variables, i.e., x = col
(1, %2, =+, ), and I, = {1,2, --- | k} denote the set of
indices of the components of x. If ] < I, then x; is the vector
consisting of those components of x whose indices belong to 1.
We denote the simple moment and cumulant of the subvector Xx;
of the vector x as m, (1) (i.e., my (1) is the expectation of the
product of the elements in x,) and C, (/). The ‘‘partition”’ of the
set I is the unordered collection of nonintersecting nonempty sets
I, such that U,I, = I. For example, the set of partitions corre-
sponding to k = 3 is {(1,2,3)}, {(1), (2, HE{@),1,3)},
{3), (1, D}, {(1), (2), (3)}.
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The moment-to-cumulant (i.e., M-C) formula is [23):

G = uh o

(- Ng - T m) (A

where UZ_, I, = I denotes summation over all partitions of set
1. In the preceding example, ¢ = 1 for {(1, 2, 3)}, g = 2 for
{(1), (2,3}, {(2), (1, 3}, and {(3), (1, 2)},and, g =3
for {(1), (2), (3)}. The cumulant-to-moment (i.e., C-M) equa-
tion is

m(l)= = Iqu Ce(L,)- (A-2)

Ul ifp=1P=

An example which illustrates the use of (A-1) and (A-2) for 1
= {1,2, 3, 4} is given in Table A-1. In its bottom row, T means
add all preceding rows to obtain either cum (x,, X3, X3, X4), using
(A-1),0r E {x)x,x3%, }, using (A-2).

B. Properties of Cumulants of Scalar Processes

Property [CP1]: Lety = col (\xy, =+ * , Nx) and x = col
(%1, *** » ). Note that (see Section A) I, = ,. From (A-1),
we see that

9
G4 = (=1 q - ) T m()  (A3)

Ul-1lp=1ly

where (see, for example, Table A-1)

k
ﬁ m,(I,,) = <H )\p> ( fI mx(’p))' (A4)
p=1 p=1 p=1

Consequently,

k
Cy(ly) = (pI=Il )‘p> Cx(lx) (A“S)

which is (6a).

Property [CP2]: Referring to (A-1), since the partition of the
set I, is an unordered collection of nonintersecting honempty sets
of I, such that Uj-, I, = I, the orderin the curulant’s argument
is irtelevant to the value of the cumulant. As a result, cumulants
are symmetric in their arguments.

Property [CP3]: Let x = col (4, + vy, ¥ * -, x;), where u
= col (u, x3, * * * » %), and v = col (v}, ¥ ' -+, %). Observe
that (because m, (I;) is the expectation of the product of the ele-
ments in J; and u, + v, appears only raised to the unity power)

q q q
I m(t) = 1L m(L) + IL my(L).  (A6)
Substitute (A-6) into (A-1) to obtain the result in (6¢).

Property [CP4]: Lety = col (o + X1, X%, * * * , % ); then, from
(1), we see that

K(v) =In E{exp (jv‘y)}
=1In E{exp (loa +x) + 00 + -+ + vkx,,])}
=1In E{exp (ju,a)}
+ In E{exp (jox, + + - +jukxk)}. (A-7)
According to the paragraph which precedes (1), we know that
cum (& + x;, X, *** , Xg)
= L [#/00de, - 0K,y (AD)

but, from (A-7), we see that

-’:—![3"/6016122 e amKWD)],_,

= L(#/avd0, - - am)[in E{exp (o)}

+1In E{exp (joxi + + - +jUka)}””=o
- % [8/30,3v; - - - 03]
- lIn E{e"P (joxy + - +f”kxk)}]|.,=n
= cum (X, X3, " " * » Xx)
which is (6d).

Property [CP5]: Letz = col (x; + y, = *°
y, where x = col (x;, " -

st ) =x+
’xk) andy = col (yl’ et vyk)~

Table A-1 Calculations 5F Fourth-Order Cumulants in Terms of Moments and Vice-Versa

M-C Equation C-M Equation
q q
~1)9! - ]
P R A I B R I O I i
1 2 |3 |4 |4 —6E{x}E{x)}E{x}E{x} | Cx)C(x)C(x3)C(x)
1,2 3 4 3 | 2E{xx,; } E{x;} E{x,} C(xq, X2) C(x3) C(x4)
1,3 2 4 3 | 2E{xx3 } E{x; } E{xs} C(x1, X3) C(x2) C(x4)
1,4 2 3 3 | 2E{xx } E{x; } E{x3} C(xy, %4) C(x2) C(x3)
2,3 1 4 3 ZE{XZX3}E{X‘}E{X.} C(x3, x3) C(x,)C(x4)
2,4 1 3 3 | 2E{xx }E{x,} E{x;} C(xy, x4)C(x,)C(x3)
3,4 1 2 3 | 2E{xsx  }E{x,} E{x:} C(x3, %) C(x,)C(x2)
1,2 3,4 2 | ~E{xx}E{xsxs} C(xy5 X2) C(x3, Xa)
1,3 2,4 2 | —E@(xx)E(xx,) C(x1, £3) C(x2, X4)
1,4 2,3 2 | —E{xx}E{xx3} C(x), x3) C(x3, X3)
1,2,3 4 2 ~E{xxx;3 }E{xs} C(xy, X3, x3) C(x4)
1,2,4 3 2 | ~E{xxx }E{xs} C(xy, X2, X4) C(x3)
1,3,4 2 2 | —E{xpx}E{x,} C(xy, X3, X4) C(x3)
2,3,4 1 2 | —E{xxx;}E{x} C(x3, X3, %) C(x1)
1,2,3,4 1 | E{xxyx3%} Ci{xy, X2, X3, X2}
£ | cum (x,, X3, X3, X4) E{xx2x3%4 }
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Using the independence of the {x;} and { y,}, it follows that
K(v) =In E{CXP Livs(x + y) + - - + ju(x + )’k)]}

=In E{exp (jox, + « - +jvkxk)}
+ lnE{exp (jouy + +-- +j”k)’k)}
=K. (v) + K,(v) (A-9)

from which the result in (6¢) follows directly.
Property [CP6]: Assume that (x,, -« - - , X;) is independent of
(Xi+15 * * * , x); hence,

K(v) =In E{exp (joxy + - -+ +ju,~x,»)}

+ In E{exp (jOisskivy + ++ - +jvkxk)}~ (A-10)

Now,

1
7 (830,00, - - - du k()] ,_,

1
=u [8*/0v,8v, - - - 3]

. [ln E{exp (jox, + -+ +jvixi)}

+ jvkxk)}] ’ =0

v=0

+ In E{CXP (JjisiXivs + -+ -
which is (6f).

C. Cumulant and Polyspectrum Jor Single Channel Systems

Here we derive the Bartlett-Brillinger-Rosenblatt formulas in
(12) and (13). We also derive (127). Because n(k) is assumed to
be Gaussian, the kth-order cumulant of z(k) equals the kth-order
cumulant of y(k), where

y(k) =’_Zm v(i) h(k - i). (A-11)
Note that the following derivation is expedited by working with
the more general form in (A-11) where i ranges from —oo to o,
instead of the form associated with a causal IR for which i ranges
from O to k. Changes of variables then do not change the ranges
of the summation. Consequently,

Ck,z(Tl’ Tt Tk—l)
= Ck,y(’fh T, Te-1)

=cum (y(I), y(I + 1), -+, y(I + Tk-1))

cum [Z v(ip) k(1 — i), Z v(iy)
Ch(l =iy + 1) e,

E. o) h(I = iy + T“)}
PIDINEE ; cum [v(ig) k(I — i),

io i

v(i)h(l~ i + 1)), -+ -,
(i) h(I — iy + Te=1)]
=XX s N h(l—ig) k(I =iy +7) -

o @
(L= §q + 7y)

s (i) *)

- cum [v(iy), (i), - - -
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To arrive at the third line of this derivation we have used cumu-
lant property {CP3]; and, to arrive at the fourth line we have used
cumulant property [CP1].

In the case of a white noise input, (*) simplifies considerably
to

Ceo(riy =+, Ti-1)

= Yiw 2 h(I = ig) h(I ~ iy + )R~ g + 7y)
0

= Yy é}oh(n) h(n+ 1) h(n + 7))

which is (12). To arrive at the first line we have used (11), noting
that

cum [v(iy), v(iy), +* -, v(ix-1)]
= cum [v(io), v(ip + iy — i), **  , v(ip + ipy — io)]
= Croliy — g, * =, gy — i)

= Yeonlyifip =iy, - -+, i, =i

and, to arrive at the second line we have made a simple substi-
tution of variables and invoked the stationarity of y(k) and the
causality of 4(k). The former tells us that Ceoy(T1, ** , Tely)
= G (71, -+, 7_;) will not depend upon time k; the latter
tells us that h(k) = 0 fork < 0.

In the case of a colored noise input we first make the substi-
tution of variables: jo = ! — ig, j; = I — Q471 e =1
— ix—y + 74—y, so that (*) becomes

Ck,z(Tls Tt Trer)

= Jzo: lzl; o jkz_:] hCjo) k(1) * + * h(jk=r)
- cum [l}(l _jo)’ l/(l + 7 —jl)’ DY

v(l+ 7y ~ fin)]

Using the stationarity of v (1), this last equation can be expressed
as

Ck,z(Tls Tt Tk—l)
=22 B h(jo) k(i) h(iee)

Jo
“Colo—gi+1jo—jot e,

Jo = Jr-1 + T).

Finally, making a second transformation of variables, m; = j, —
Josmy = o = o, t ,my_y = juy — Jo, we obtain the result in
(12") (where we have replaced Jo by k).

The polyspectrum in (13) is easily obtained by taking the
(k ~ 1)-dimensional Fourier transform of (12):

Sk,z("’l’ tet, wey)

= X .- pX Ck.z(Tl""»Tk—l)

n=-o Tk~1=—00
- exp [—-j(wm + -+ wk_lrk_l)]. (A-12)

Substitute (12) into (A-12) to obtain (13).

D. The C(q, k) Formula

Here, as in [11], we derive the C( q, k) formula for third-order
cumulants, leaving the comparable derivation for fourth-order
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cumulants to the reader. We begin with (12) for k = 3, i.e.,
G o1, 1) = 13,0 ’th(”) h(n + 7)) h(n + 1) (A-13)
in which A(0) = 1, for normalization purposes. Set 7, = q and

7, = k in (A-13), and use the fact that for an MA(q) system
h(j) =0V j > g, to see that

C}.z(q’ k) = 73,vh(q) h(k) (A'14)
Next, set 7, = g and 7, = 0 in (A-13), to see that
Cs..(g, 0) = v3,.h(q). (A-15)

Dividing (A-14) by (A-15) we obtain the C(q, k) formula given
in (17).

To obtain (19a) for vs ,, set 7y = 7, = 0 in (A-13), and then
use (17) for h(k).

E. g-Slice Algorithm

To begin, we define the scalar function f,,(¢; 7) as
P
Fult; 7) = an(k) Cuy(T =k, 1,0, -+, 0).  (A-16)

If the AR coefficients are known, and the cumulants are computed
from the data, then these functions can be computed. Next we
show, as in [45], [49], that the right-hand side of (A-16) can be
expressed in terms of the MA coefficients and the system’s
impulse response, i.e.,

q
St 7) = Wm0 ZHTO(G = )R = T+ 1) b)),
(A-17)
To obtain (A-17), we begin by substituting (12) into the right-
hand side of (A-16), i.e.,

»
kzoa(k) Cpy(T =k, 1,0, -+ ,0)

@

= Ym» _§0 K™ D) h(i + 1) é:oa(k) h(i + 7 — k).

(A-18)

From (22), we recognize that the sum on the far right of (A-18)
equals b(i + 7); hence, (A-18) becomes

P
2 a(k) Cpy(7 = k1,0, -7+, 0)

= Ymo é’ KDY (i + ) b(i + 7). (A-19)

Finally, to obtain (A-17) from (A-19): substitute the right-hand
side of (A-19) into (A-16), letting i + 7 = j; truncate the upper
limit in the summation from oo to g, because b(j) = 0 for v j
> g; and, extend the lower limit in the summation from j = 7 to
j = 0, because h(l) is causal (so that h(—7) = h(-7+ 1) =
<o =h(-1)=0).

From (A-17) and the causality of A(]), it is straightforward to
show that

14 (05 @) = Ym,,b(q) (A-20)
and

fm(r; q) = 7m,vb(q) h(t) (A'Zl)
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Consequently,

h(1t) = fu(5; 9)/1x(0; q),

Substituting (A-16) into this result we obtain the g-slice algorithm
in (23).

t=0,1,-+,q (A22)

F. Cumulant-Based Normal Equations

Here, as in [45], we derive (26). Starting with (A-16) and
(A-17), it follows that

P
an(k) Cpy(7 — ki ks 0, -+, 0)

o B HOD = 1) R = 7+ K b (A23)

From the causality of A(1), it follows that the right-hand side of
(A-23) is zero for 7 > g; hence, the result in (26). Of course, in
the AR case ¢ = 0, so that in this case the right-hand side of
(A-23) is zero for 7 > 0.

G. 14-D Spectrum

As in [10], [16], set 7, = 7, = 7 in (12), to see that
Ciy(7) = 130 B (M) H(n + 7). (A24)

In the z transform domaip, this equation can be expressed [36] as

85,4(2) = 12, H(zH[H()* H(2)]

= (v3.,/2m) H(z™") Sr H(u) H(zu™)u™" du

(A-25)

where * denotes complex convolution, and T' is a counterclock-
wise contour within the region of convergence of H(z). In the
frequency domain, z = exp (jw;) and u = exp (jwy), so that
(A-25) becomes

x

Suplor) = (va/28) | H(eH) () H( ) don

(A-26)
Replace w; by —w, and set w; = ¢ in (13), to see that
S5y(—w1, ¢) = 73, H(—w;) H(¢) H(wy — ¢).  (A-27)

Substituting (A-27) into (A-26), we obtain the formula for the
11-D spectrum given in (28).

H. Spectrum/15-D Spectrum Equation and the GM Equation

From (A-25), (as in [10], [16]), we know that S3 ,(z) =
73.1,H(z_') (H(z)* H(z)). We also know from (9), that for a
noise-free signal, S,(z) = 02H(z) H(z™"). Eliminating H(z™YH
between these two equations, and letting Hy(z) = H(2)* H(2),
we obtain the Spectrum/13-D Spectrum Equation in (30).

The GM Equation, given in (34), is obtained by recognizing
that, for the MA system in (33), Hy(z) is simply the z transform
of b*(k); hence, (34) is simply the inverse z transform of (30).

1. Bicepstral Formulas

For the sake of completeness, we state (12.77) and (12.78)
from Oppenheim and Schafer [36], since they are the ones that
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can be used to compute hein(n) and hy, (n), respectively:

0, . n<o0
h(0) —
hmin(n) = ¢ ’ n=0
n—1
. k
h(n) + k.z:o;fz(k) boin(n = k), n>0
(A-28)
and
0, n>0
1, =
Fs (1) = n=0

0
. k .
h(n) + k=§+] ;h(k) hoax(n — k), n <o,

(A-29)
Next, as in [37], we derive the bicepstrum-cumulant equation
(44). Starting with the fact that 83,,(21, ) = log S3.5(21, 29), it
follows that
35‘34(21, 22)/321 = [I/SS.y(z]s 22)][as3,y(zl, Zz)/321]~
(A-30)
Multiplying both sides of this equation by z;, we find that

SJ.y(er 22) Zl[a§3,y(21, Zz)/az.] = 21[053,},(21, 22)/321].
(A-3l)

Taking the 2-D inverse z transform of this equation, using the
fact, for example, that the inverse z transform of zl[a.f;,y(z,,
%)/0z1 is —kSs ,(k, 1), we obtain the bicepstrum-cumulant
equation in (44), i.e.,

% kS (k1) Cy(m ~k,n—1)

k=-00 [=—
= mC; ,(m, n). (44)

In order to derive the complex cepstrum-cumulant equation
(45), we must first evaluate $; , (k, 7). Although Pan and Nikias
[37] do this for an ARMA model, it is possible to do this directly
from (43) without having to introduce a specific parametric model
for h(i). From (43), and the definition of .§3,y(z1, 22), we
see that

SA'g,,(z., %) = log 85 (21, z5) = log Y30 + log H(z;)
+ log H(z,) + log H(z7'z5") (A-32)
hence
S350k 1) = (log v3,)8(k, 1) + h(k) 5(1)
+ h(1) 8(k) + z;'{ﬁ(zr'z;')} (A-33)

where Z;'{ - } denotes the 2-D inverse z transform of ().
As an aside, note that the 2-D z transform of /i ( —k) 5(1 — k)
is

Z{h(~k) 8(1 - k)}
= ; Z,: h(—k) 8(1 — k)z7*5!

= Dh(-K)z''z* = A7), (A34)
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Consequently, (A-33) becomes

SS,y(k’ l) = (IOg 73,1/)6(k’ l) + ;’(k) ﬁ(l)

+h(1) 8(k) + h(~k) 8(1 - k). (A-35)

Clearly §3_y(k, 1) has nonzero values only atk = [ = 0, integer
values along the k and [ axes, and at the intersection of these
values along the 45-degree line k = /.

Equation (45) is obtained by substituting (A-35) into (44) and
simplifying. This is done in three stages: 1) along the k-axis for
which { = 0; 2) along the /-axis for which k = 0; and, 3) along
the line £ = /. The details are straightforward and are left to the
reader.

J. Facts about Kronecker Products

Here we collect a number of facts about Kronecker products
that are useful in the derivations of the multichannel formulas
given in Section IX [4]. The Kronecker product of a (p X q)
matrix A = {a;} and an (m X n) matrix B = {b;} is the (pm

X gn) matrix {a;B}, denoted A ® B,ic., A® B = {a;B}.

y
Five useful facts about Kronecker products are

[KP1]: (A+B)®(C+D)
=A®C+A®D+BRC+B®D (A-36)

[KP2]: (A ® B)(C ® D) = AC ® BD (A-37)
[KP3: (A®B)®(CRD)=A®BRXC®D
(A-38)
[KP4]: (A® B) ' =A~' ® B! (A-39)
[KP5): (A® B) =A' ® B'. (A-40)

Direct consequences of (A-36) and (A-37) are the facts that

[

and

M=

A,-]@l:é B,}= %Z A ® B (A-41)
ji=1 i=1j=1

=1

1}1 (4 ® B) = <I=II A.~> ® <H Bi) (A42)

[®?=1Ai][®?=18i] = ®?=1Ai3i- (A'43)

K. Cumulants of Vector Processes

Proofs of (48)-(50) can be found in [53]. The proofs rely on
showing that each element on the right-hand side of these equa-
tions is a legitimate cross-cumulant (e.g., as in (47) for the third-
order case). The proof for C,,(t; 1y, t,, t3) is a bit tedious because
the fourth-order cumulant contains three products of second-order
terms (e.g., see (4c)). Note that for scalar processes, ® = mul-
tiplication and P, = 1, in which case all these vector cumulant
definitions reduce to their scalar counterparts.

L. Properties of Cumulants of Vector Processes

Here, as in [53], we derive (51) because it is a heavily used
property in later derivations. Let y, = Aix;,i=1,2,++- kand
let C =cum (y,,y, ---, Ye)- Additionally, let ;.1 denote the
(J, 1) element of A;. Then
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C(iy, > &) =cum (yii * 00 s Vo)
P P
= cum <j|z=:] Api X e T s j;\gl )\k;ihjkxk-jk>
P »
= ;E] . ,-El Niin i
Nig o Cum (Xy s 0, X 5)  (A-44)

where we have used cumulant properties [CP1] and [CP3] for
scalar random variables in going from the first line to the second
line of (A-44).

Next we expand the right-hand side of (51) to show that we get
the same result as in (A-44). From the definition of Kronecker
products, we have

(A ® -+ ® Ay)cum (xy, * -+, x)[iy, ~ - - A
... 3
=22 N
N cum (xy, =, ) [, -0 Ll
.3
=jl=] -‘.jk=lxl;il,jl e
N SO (X gy 775 X ) (A-45)

where the last equality follows from the definition of cum (x,,
-+« , x;) given in Section IX. Comparing (A-45) and (A-44), we
see that they are indeed the same; hence, (51) is valid.

M. Cumulant for Multichannel System

Here, as in [53], we derive the multichannel Bartlett-Brillinger-
Rosenblatt formula, given in (54). Our derivation is for a time-
invariant system, for which H(n, k) = H(n — k); the extension
to a time-varying system follows in a straightforward manner from
our derivation.

From (52) and cumulant properties [CP3] and [CP1] (both gen-
eralized to vectors), we see that

Ck,y(Tlv te

cum (y(2), y(r + 71), * -, ¥(t + 7))

s Te-1)

cum <MZ H(t — up) v(up), 2 H(t + 7, — uy)

co(w), o, ukz_; H(t + 7y — W) v(uk-1)>

% Zcum(H(t—uo)v(u())’”.’

H(t + 7=y — wey) v(w-1))

=T ZHG-w)®  ® H(+ re  w)]

- cum (v(up), - -+, v(m-1)). (A-46)
Making use of (53), we find
Ck‘y('rlv Crt, Ter)

=§"'E[H(t_uo)®"'®H(t+7k—1"uk-1)]

“ iUy — wy) =+« 8(ug — ) (A-47)
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but 8(ug — u;)) = 1if u; = up and 6(up — ;) = 0if u; # up;
hence,
Ck,y(‘fh T Tk—l)

[H(t —u) ® --- @ H(t + 7y — o) | T

-
- =

[H()® - QH(;’ + 73-1) T (A48)

which is the time-invariant version of (54).

N. Calculation of the Kronecker State Cumulant Vector

The solution to state equation (55), is, as is well known (e.g.,

[11, [28D),

x(n) = :gOA(n, k + 1) B(k) v(k) + A(n, 0) x(0)

(A-49)

where
A(n+i,n)=®n+i—-1)---®(n), A(nn)=1L
(A-50)

Initial state vector x(0) is assumed to be independent of input
v(n). By cumulant property [CP5], the cumulant of the state vec-
tor x(n) is the sum of the cumulants due separately to the input
and initial state. As in [53], we use the subscripts zis (zero initial
state) and zin (zero input) to represent these two terms.

When the input is zero, the state vector is given by x(n) =
A(n, 0) x(0), n = 0; hence,

cumy, (x(n), x(n +§y), * =, x(n + i-1))
& Crran(ms i * o0 5 1)

cum (A(n, 0) x(0), A(n + i, 0) x(0), -+ -,
A(n + iy, 0) x(O))

[®F3A(n + i, 0)]Cex(0;0, - - -, 0)

(A-51)

where we have used (51), and, by definition, i; = 0. Our goal is
to express Cy ¢|zin(; i1, < * » i) as a function of Cixjzin(n —
m; 0, - - -, 0) (because, as we shall see below, Cp y|4is(n; i1,

-, ix~1) is also expressed in terms of a cumulant whose argu-
ments are (n — m; 0, - - -, 0)), where

Ck,x|zin(n -m 0) ] 0)

I

cumy, (x(n — m), * - -

,x(n — m))
= cum (A(n - m,0)x(0), -+ ,A(n —m,0) x(O))
= [®)3A(n — m, 0)]C,.(0; 0, - - -, 0) (A-52)

where we have again used (51) and ®k=4A(n — m, 0) denotes
the Kronecker product of A(n — m, 0) with itself k — 1 times.
From (A-50) it is easy to show that

A(n +i,0) =A(n +i,n—m)A(n —m,0) (A-53)

as long as n — m is to the left of n + #; on the time axis. Because
there are a product of k A(n + i;, 0)’s in (A-51), forus to replace
all of these quantities by (A-53), in which there is a common

m’’, we must choose n — m so that it is to the left of n + i, n
+ iy, *** ,n + i, where the i/’s can be positive or negative.
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One choice of m that accomplishes this is

m = —min (0, i, - - - (A-54)

s Bget).

Now substitute (A-53) into (A-51), to see that

> ik—l)

= ®t[A(n + iy n - m) A(n — m, 0)]

Ck,xlzin(n; iy, -

° Ck,x(O; 0’ crt, 0)
= [®FZgA(n + i n — m)|[®FZdA(n — m, 0)]
© G x(0;0, -+ -, 0)
= [®;‘;()1A(” + il’ n— m)][ck,xlzin(" - m; 0’ T, 0)
(A-55)
where we have used (A-43) and (A-52).

The contribution to the Kronecker state cumulant vector due to
the input »(n) is obtained by comparing (A-49) (when x(0) &
0) with (52) and then using (54). More specifically, set H(n, k)
=A(n, k + 1) B(k), wherek < n — 1, to see that (i; = 0)

B ik*!)

= L[®I20A(n +inj + 1) B())] (/)

Cxlais(n; iy, -+

= Z[®1GA( +ij + D] BU()Tw(i)  (AS6)

=2 [®JA(n + i n — m)
J
“A(n~m,j+ 1D)]B(i)Tu(J)
= [®ZgA(n + i, n — m)]
F Z[®IA( = m,j + V] Bu(j)Tu())
= [®iZA(n + i n — m)|Copps(n ~ m; 0, - -+, 0)
(A-57)
where B, (j) is short for B(j) ® B(j)® -+ ® B(j) (ie.,
the Kronecker product of k B( J)’s), and we have used [KP2)]

and (A-56).
Finally, from (A-55) and (A-57), we find that

Cox(ns iy, » -+ i)
= Crxlzn(n5 0y, = -+ i) + Coxjzs(ns iy, =+ - L i)
= [®f;01A(ﬂ +i,n - m)][ck,x|zin(n -m0,---, 0)

+ Cexjus(n —m; 0, -+ - | 0)]
= [®iZ4(n + i n ~ m)]Cox(n ~ ms0, - - | 0)
(A-58)
which is (57).
O. Recursive-in-Time Calculation of the Kronecker State
Cumulant Vector

Here, as in [53], we derive (60) and (61). To begin we consider
the zero-lag case of (60). From the definition of cumulants of
vector processes, we have
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Co(n+1;,0,---,0)

cum (x(n + 1), -+, x(n + 1))

cum (®(n) x(n) + B(n) v(n), - - -,
®(n) x(n) + B(n) v(n))

cum (®@(n) x(n), - -+ , ®(n) x(n))

+ cum (B(n) v(n), - - - , B(n) v(n))

I

Il

= ®,(n) cum (x(n), cee, x(n))
+ Bi(n) cum (v(n), « + + , v(n))
= O (1) Coe(n5 0, - -+, 0) + By(n) Ly ()
(A-59)

where we have used (55), [CP5], and [CP1].

Next, we establish the temporal recursion in (61) for the non-
zero positive lag case. From (A-58) and (A-59) and the fact that
m = 0 (see (A-54)), we see that

Coxln + iy, -, i y)
= [®IGA(n+1 +iyn+ D]Ci (n + 150, -+ ,0)
=[®iZA(n + 1+ i,n +1)]
: [‘I’k(”) Cox(n; 0, - -+, 0) + Bi(n) I.(n)]
= [®IZA( + 1 +i,n+ 1) ®(n)]
c Cix(n; 0, -+ -, 0) + D@y, + -+, i-1)
= [®f=_01A(n + 1+, n)]Ck,,(n; 0,:--,0)
+ D(iy, + -+, i)
= [®IZ3®(n + i) A(n + i, n)]Cex(m; 0, - - -, 0)
+ D@y, -0, i)
= [®iZ®@(n + i)][®F{A(n + i\ n)]

! Ck,x(n; 0,---, 0) + D(il’ )

= [ ®(n + i) Coulms iy, -+ -, ipy)
+D(iy, cciey) (A-60)
where we have used [KP2], the definition of D(iy, -+ , i) in

(62), the facts that A(n + i, n) = A(n + i, n + 1) ®(n) and
A(n+i,n)=®(n+i—-1)A(n+i- 1, n), i > 0 (both of
which follow from (A-50)) and (A-58) for (m = 0).

P. Cumulants of Harmonic Processes

If ¢, are independent and identically distributed over [ — 7, 7],
then the following results are easily established (e. g., [38]):

E{exp (jm$)} =0  (A-6la)

E{exp[j(o: + ¢)]} =0 (A-6Ib)

Efexp [j(¢:i ~ ¢)]} =8, (A6lc)
E{exp[j(¢i+ et #)]} =0  (A61d)

E{exp [ (460 + ¢, + 6, + 6,)]} =0 (A-6e)

E{CXP [i (=00 — ¢ + &, + ¢i3)]}
={Lifiy =i, =iy =iyor (ip = i) # (i = iy)

or(ip = i3) # (iy = ip); 0, otherwise}. (A-61f)
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Making use of (A-61a)—(A-61c), it is straightforward to show,
as in [45], that if a = exp (j¢), then

E{a} =0 (A-62a)

cum (a, @) = E{a’} =0 (A-62b)
cum (a*, a) = E{|a|2} =1 (A-62c)
cum (a, a, @) = E{a’} =0 (A-62d)
cum (a*, a, a) = E{a*a’} = 0 (A-62e)

cum (a, a, a, a) = E{a*} - 3E{a*}E{a’} = 0 (A-62f)
cum (a*, a, a, a) = E{a*a’} — 3E{|a|2}E{a2} =0
(A-62g)
cum (a*, a*, a, a)
= E{la['} - |E(«}]" - 2E{|a"}E{al'} = 1.
(A-62h)

This demonstrates that the third-order cumulant of a is identically
zero, and that of the three ways to define the fourth-order cumu-
lant of a only (A-62h) yields nonzero real values.

Next, as in [55], we derive (70). Substituting (66) into (69),
and using [CP3] and [CP1], we find that

cum (y*(n), y*(n + 1), ¥(n + 1), y(n + 7))
= cum (E a,f"(n)s:(w,-),
?af(” + Tl)s:+7|(wj)5 Zk;ak(n + TZ)sn+n(wk)’

B an + 1)sen(e))
= ; ? % ; s:‘("’i)s:+n(“’j)sn+n(“’k)sn+n("’l)

- cum (af(n), af (n + 1), a(n + 75), a(n + 73)).
(A-63)

Because the a;(n) are mutually independent, cum (aF (n), a}"(n
+ 1), aqn+ 1), an+ 7)) =0,unless i =j =k = l, in
which case (A-63) reduces to (70).

Next, as in [55], we derive (71). Equation (71) is easily
obtained from (70). Just below (67) we showed how (67) is the
special case of (66), when s,(w;) = exp (jnw;) and q;(n) = a;
= «; exp (j¢;); hence, in (70)

s:(wx)s:+1|(wi)sn+n(wi) Sn+ms

=exp [j(—7 + 12 + T3)wi] (A-64)

and

C4,a,~(71, T, T3) = CUmM (ai*(n), ai*(n + 1),

ai(n + 1), a(n + 13))

cum (off exp (—jd:), o exp (—jdi)»
o; eXp (Jjoi)» o exp (j¢i))

of cum (exp (—jo; ), exp (—j%i),
exp (jo:), exp (joi))
—aof (A-65)
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where we have used [CP1] and (A-62h). Substituting (A-64) and
(A-65) into (70), we obtain the desired result in (71).

The derivation of (72) is so simple (and should be well known)
that we leave it to the reader. We conclude this section with the
derivation of (73), as in [55]. Not too surprisingly, our approach
will be to reexpress (68) as

y(n) = Z fa{exp [j(no; + 6)] + exp [~ilnos + )]}

(A-66)

and to then compute the fourth-order cumulant of p pairs of com-
plex exponentials. The following result, which is proved in [45],
(55, permits us to do this: Let s = exp (Jj¢), where ¢ is uni-
formly distributed over [ —, 7], and let a(l=0,1,2,3)be
constants; then,

* *
cum (a@os + ag s*, ays + ai's*, ars + a3 5%, azs + ar's*)

= —2 Re(ayaaya¥ +agataras + agaraay). (A-67)

Since the ¢,’s in (A-66) are independent, the pairs are indepen-
dent of each other; hence, the cumulant of y(n) is the sum of the
cumulants due to each of the pairs. Consequently, it suffices to
consider a single pair at frequency +w and amplitude . Let g
= o, exp [jo(n + 7:)1/2,i=0,1,2,3, witho = 0, and s =
exp (jé:). Then, for example, —2 Re (a9a1a3 a3) = —af cos
(; — 7, — 73)/8, which is the first term on the right-hand-side
of (73). The remaining two terms on the right-hand-side of (73)
are obtained by evaluating the corresponding terms in (A-67).

Q. Derivation of Generalized GM-Equation and (80)

Tugnait [63] and Friedlander and Porat [9] have generalized
the GM equation from a diagonal slice result to a 1-D slice result.
Setting 7, = 7 and 7, = 7 + m in (12) (for k = 3), they show
that

Cy(r,7+m)=m, é:oh(n)h(n + 7)h(n + 7 + m).

(A-68)

In the z transform domain, this equation can be expressed as
S;.,(zm) = 3, H(z ) [H(z) * 2"H(z)]  (A-69)

which should be compared with (A-25). As in the derivation of
(30), we now compare (A-69) with the spectrum equation S,(z)
= oXH(z)H(z™") to conclude that

[H(z) * 2"H(2)]S,(z) = (63/73,0) H(2)S3,,(z; m).

Clearly, when m = 0, (A-70) reduces to (30). The generalized
GM equation is obtained by recognizing that, for the MA system
in (33), H(z) * z"H(z) is the z transform of b(k)b(k + m);
hence, the inverse z transform of (A-70) for an MA (gq) system is

(A-70)

é:o b(k)b(k + m)r,(t — k)

— (@) B bUC,(r k7 = K+ m). (AT)

This reduces to the GM equation in (34) when m = 0.

Equation (80), obtained by Tugnait [63], is obtained by setting
m = q in (A-71). Note that only one term survives on the left-
hand side of (A-71), namely b(0)b(q)r,(7) = b(q)ry(7), since
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b(0) £ 1. An extension of (80) to fourth-order cumulants also
appears in the journal version of [63].

Note, also, that (A-69) can be ratioed for m = m; and m =
m;. Doing this eliminates y; ,H(z™') and leads to another inter-
esting relationship, developed by Tugnait in [63].
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