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ABSTRACT 

Diagnostic assays that rapidly identify bloodstream pathogens have the potential to improve 

patient outcomes and antibiotic stewardship efforts. Current tests are based on the detection of 

nucleic acids that are specific to a targeted pathogen or organism identification using mass 

spectrometry. Most rapid assays require a positive blood culture as their sample input and 

expedite pathogen identification by 24-72 hours.  For those assays that also report detection of 

drug resistance markers, information on anti-microbial resistance is expedited by 48-96 hours. 

This learning unit reviews the basic principles of rapid microorganism identification assays for 

bloodstream infections with the aim of assisting clinicians in the interpretation and optimal 

utilization of test results.  
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  A 57-year-old man is admitted to the medical intensive care unit (ICU) for evaluation and 

management of septic shock. The microbiology laboratory’s automated blood culture incubation 

system detected microbial growth at 16 hours in blood culture bottles inoculated in the 

emergency department. An initial gram stain result was issued stating “gram positive cocci in 

clusters” and two hours later the laboratory reports “Staphylococcus aureus was detected by a 

FDA-approved molecular method.  The MecA gene was not detected.” An inpatient pharmacist 

calls you to inform you of the result, and he recommends you consider tailoring the patient’s 

empiric vancomycin therapy to cefazolin or nafcillin for treatment of methicillin-sensitive S. 

aureus bacteremia.  

How do you interpret these findings? Can you trust the organism identification and 

prediction of methicillin susceptibility provided by the nucleic acid detection assay your hospital 

laboratory recently began to run on positive blood culture bottles? Is this information actionable 

or should you wait 48 hours until the laboratory determines the organism identification and 

susceptibility pattern by conventional methods?   

This learning unit aims to update clinicians on recent laboratory developments for the 

diagnosis of bacterial or fungal bloodstream infections. Here we focus on the current Food & 

Drug Administration (FDA)-approved tests, with a review of their clinical utility and suggested 

optimal use for patient care.  

 

The Need for More Rapid Identification of Bloodstream Pathogens 

Delays in establishing a microbiologic diagnosis and in instituting effective antimicrobial 

therapy for bloodstream infections lead to poor clinical outcomes. For example, a > 48-hour 

delay in instituting effective therapy for enterococcal bacteremia carried a 5-fold increased risk 

in 14-day mortality [1], while a > 12-hour delay in effective therapy for candidemia carried a 2-

fold increase in hospital mortality [2]. Organism identification by conventional methods (i.e., 
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culture on solid media followed by biochemical identification) can take 12-48 hours after growth 

is first detected in the blood culture bottle.  Additionally, standard phenotypic antimicrobial 

susceptibility testing typically requires an additional 24-36 hours after organism isolation. 

Molecular and proteomic methods have held great promise for expediting organism 

identification and drug resistance detection. While rapid pathogen detection directly from a 

blood specimen remains the ideal approach for septicemia diagnostics, most assays have 

lacked the analytic sensitivity required for direct detection [3]. To date, only one assay has been 

FDA-approved for pathogen detection and identification directly from blood (see T2Candida test 

below). Alternatively, there are now multiple assays that enable rapid organism identification by 

testing aliquots from positive blood culture bottles. We will review these new technologies in two 

methodological groupings, nucleic acid-based detection tests and proteomic-based methods 

using mass spectrometry (MS). We then conclude with a brief summary of the available clinical 

outcomes data that demonstrate the utility and cost-effectiveness of these approaches.  

 

Rapid Pathogen Identification by Nucleic Acid Detection 

 The Table summarizes currently available FDA-approved diagnostic assays that utilize 

nucleic acid detection (i.e., molecular diagnostic tests) and their performance characteristics. 

Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) was one of the first methods 

deployed in the clinical laboratory for the identification of organisms detected on the gram stain 

from a positive blood culture bottle. PNA FISH utilizes a DNA probe that specifically hybridizes 

to target pathogen ribosomal RNA [4]. Compared to conventional identification methods, the 

AdvanDx (Woburn, MA) PNA FISH tests have demonstrated excellent clinical accuracy for 

Staphylococcus aureus [4], Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli 

[5], E. faecalis and other Enterococci [6] as well as Candida albicans/glabrata/tropicalis [7] 

(Table). Of note, PNA FISH test results must be determined by a trained technologist’s review of 
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a stained slide under a fluorescent microscope, and these assessments can be subject to inter-

reader variability in visual discrimination of color fluorescence.   

 There are also two FDA-approved real-time PCR assays that detect S. aureus and 

methicillin-resistant S. aureus from positive blood cultures: the GeneOhm StaphSR (BD, 

Sparks, Maryland) and the Xpert MRSA/SA (Cepheid, Sunnyvale, CA) assays. Compared to 

blood culture, both tests have clinical accuracy > 97% for detection of S. aureus and 

differentiation of methicillin-resistance  (Table) [8-10].  

 The Verigene assay (Nanosphere, Northbrook, IL) automates nucleic acid extraction 

from positive blood culture broth followed by pathogen detection via hybridization onto a 

microarray containing complementary nucleic acid targets for multiple bacterial pathogens. 

Verigene has a gram-positive microarray panel (BC-GP) that includes detection of mecA for 

Staphylococci and vanA/vanB for Entercocci as well a gram-negative microarray panel (BC-GN) 

that likewise includes genotypic detection of drug resistance (Table). The clinical laboratory 

selects which panel to test based on the gram stain morphology observed from the blood culture 

bottle.  BC-GP has demonstrated robust concordance with conventional identification methods 

[11, 13-15]. However, multiple studies have described misidentifications of various 

Streptococcus species (spp.) as Streptococcus pneumoniae (i.e., false positive for S. 

pneumoniae) [11, 14, 16]. BC-GN has demonstrated robust concordance with conventional 

identification methods in three of the larger representative studies (Table) [17-19].  

Polymicrobial bloodstream infections pose a challenge for current rapid diagnostics. The BC-GP 

and BC-GN typically detect at least one organism in mixed infections, and they identify all 

organisms in approximately 60-76% [11, 13, 14] and 55-57% of polymicrobial broths, 

respectively[17, 18]. Regarding resistance detection, BC-GP has demonstrated accuracy of 97-

100% for mecA detection and 96-100% accuracy for detection of vanA/vanB [11, 13, 14, 16]. 

The BC-GN showed 94-100% sensitivity and > 99.9% specificity for the 6 resistance genes 
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included in the panel when compared to laboratory-developed PCR and bidirectional 

sequencing [18].         

 The FilmArray Blood Culture Identification Panel (BCID, Biofire Diagnostics, Salt Lake 

City, UT) uses a pouch-based platform to perform a closed system multiplex polymerase chain 

reaction (PCR). The positive blood culture broth sample undergoes fully automated nucleic acid 

extraction, followed by PCR amplification using a pool of nucleotide primers for the > 24 

pathogens targeted by the assay (Table). Like the other platforms, the FilmArray BCID also has 

demonstrated robust clinical accuracy compared to conventional identification methods [20-22]. 

In cases of polymicrobial bloodstream infection, BCID usually detects at least one organism in 

the mixture and may correctly identify all organisms 50-80% of the time [21-23]. BCID has 

demonstrated high accuracy of resistance detection of mecA (94-100%) and vanA/vanB 

(100%), but kpc-harboring organisms have not been well-represented in the published 

assessments to date [20-23]. 

 The T2Dx platform’s T2Candida test (T2 Biosystems, Lexington, MA) is the first FDA-

approved assay for rapid identification of bloodstream infections that detects the pathogen 

directly from patient whole blood specimens, without requiring incubation in blood culture broth. 

This platform detects the five most common Candida spp. (Table) and integrates automated 

DNA extraction followed by PCR amplification of Candida-specific ribosomal RNA targets. The 

amplified nucleic acid product is detected by a novel method involving amplicon-induced 

agglomeration of supermagnetic particles that is measured by T2 magnetic resonance 

relaxation [24]. The assay’s limit of detection for Candida spp. is comparable to blood culture 

(i.e., 1 colony forming unit [CFU]/mL for C. tropicalis and C. krusei, 2 CFU/mL for C. albicans 

and C. glabrata, and 3 CFU/mL for C. parapsilosis).  In a prospective clinical trial, assay 

sensitivity was 91% and specificity > 99% [25].  

As with any laboratory test, the impact of T2Candida results on clinician management 

should depend upon the prevalence of the condition in a given patient population. The Figure 
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demonstrates how even with a highly sensitive and specific test, the negative and positive 

predictive values of a test result depend upon disease prevalence among a given patient 

population. If the prevalence of candidemia is 3% in a typical ICU [26], then the positive 

predictive value of the T2Candida test (i.e., the probability that the disease is present when the 

test is positive) is close to 80%.  Alternatively, a negative T2Candida result has a much higher 

negative predictive value (≈ 99.7%).  In the 3% prevalence scenario, a positive test requires 

confirmation and negative results could potentially inform a decision to withhold empiric 

antifungal therapy. Such considerations are crucial to proper utilization of these rapid 

identification platforms.  

  

Rapid Pathogen Identification by Mass Spectrometry 

 In the past 10 years, organism identification in the clinical microbiology laboratory has 

been revolutionized by methods that utilize mass spectrometry to identify a microbe’s unique 

ribosomal protein profiles. The most widely adopted mass spectrometry approach in clinical 

microbiology is matrix-assisted laser desorption ionization, time-of-flight MS (MALDI-TOF MS, 

reviewed in [27]).   The most common application of MALDI-TOF MS is the identification of pure 

microbial isolates grown by culture.  Protein pattern matching by MALDI-TOF MS is more 

accurate than conventional biochemical phenotypic testing and is faster and less expensive 

than 16S DNA sequencing [28]. Two MALDI-TOF instruments are currently FDA-approved for 

the identification of bacterial isolates from conventional culture on solid media (Microflex 

Biotyper [Bruker Daltonics, Bellerica, MA] and Vitek Mass Spectrometry System [Vitek MS2; 

bioMerieux, Lille, France]).   

 Though not an FDA-approved application, numerous studies have shown that MALDI-

TOF MS can be applied to broth media from a positive blood culture bottle, with a diagnostic 

yield around 80% (range 74-98%) and a turn-around time of 20-60 minutes [29-33]. Of note, the 

identification of yeast in positive blood culture broth by MALDI-TOF MS has been more 
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challenging than identification of bacteria [34], though some studies show yeast identification 

can be optimized with more involved protein extraction protocols [35].  Regarding performance 

in the setting of polymicrobial bloodstream infections, MALDI-TOF MS often detects at least one 

of the organisms, but rarely (<10% of cases) detects all organisms [23, 29-32].  

While current MALDI-TOF MS systems cannot directly detect antimicrobial resistance, 

MALDI-TOF MS can assess for beta-lactamases by incubating a cultured isolate with a given 

antibiotic and then measuring drug metabolites of beta-lactamase mediated antibiotic 

degradation [36, 37]. MALDI-TOF MS has also been incorporated into rapid antimicrobial 

susceptibility testing algorithms.  In these laboratory-developed protocols, centrifuged pellets 

[38] or filtered lysates [39] of broth from a positive blood culture are processed for MS 

identification and simultaneously inoculated into an FDA-approved automated susceptibility 

instrument.    

     

Cost-Effectiveness and Clinical Outcomes Data 

 Adoption of the above-mentioned rapid diagnostic assays requires a considerable capital 

investment for the clinical laboratory and the cost-per-test of the nucleic acid detection assays is 

typically higher than the cost of conventional microbiologic methods. Despite these differences, 

cost savings are potentially derived from targeted de-escalation of empiric broad-spectrum 

antimicrobial therapy (i.e., a decrease in pharmacy costs) [40-42] and from decreased hospital 

length of stay [41, 43]. Most studies demonstrating cost savings have systematically integrated 

rapid pathogen identification into an antimicrobial stewardship program [41, 43].  In fact, a 

recent randomized study showed improved antimicrobial de-escalation with FilmArray BCID 

coupled to real-time stewardship compared to FilmArray BCID coupled to standard laboratory 

results reporting alone [44]. While more clinical outcomes data are needed, at least two studies 

have demonstrated a mortality benefit for rapid pathogen identification direct from positive blood 
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culture [6, 45], and this is consistent with the mortality benefit of expedited diagnosis of gram-

negative bacteremia using MALDI-TOF on blood culture isolates [46].  

 

Conclusion 

 Rapid identification of bloodstream pathogens is now a reality with the various laboratory 

systems discussed in this review. Most of these modalities still require growth detection in an 

incubated blood culture, but novel FDA-approved nanotechnologies, like the T2Dx, or other 

technologies on the horizon, such as PCR-electrospray ionization mass spectrometry and nano-

string, hold promise for the detection of bloodstream pathogens directly from whole blood 

patient samples. More patient outcomes data are needed to assess the clinical impact of rapid 

identification systems, but studies to date show these assays are cost-effective and are 

associated with a mortality benefit when formally integrated into antibiotic stewardship programs 

that act on the test results in near real-time.   

      Returning to the 57-year-old patient with methicillin-sensitive S. aureus bacteremia detected 

from his positive blood culture by the hospital laboratory’s rapid molecular identification platform: 

given the documented test performance for both organism identification and resistance 

detection of the currently FDA-approved tests, these results are clinically actionable and 

tailoring his antimicrobial therapy from empiric vancomycin to cefazolin or nafcillin is indicated 

[47].    
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Table: Food & Drug Administration approved diagnostic assays that utilize nucleic acid detection for the rapid identification 

of bloodstream pathogens 

Assay 

(Manufacturer) 

Pathogens Targeted/Reported Resistance 

Detection 

Clinical 

Accuracy⌘ 

Sensitivity (SN) 

Specificity (SP) 

Turn Around  

Time (hours)# 

References Turn-Around  Time 

(hours) 

PNA FISH 

(AdvanDx)+ 

    S.aureus/CNS 

     

    

   GNR Traffic   

    Light 

    

   E. faecalis/OE 

   

   Yeast Traffic   

      Light* 

    

 

 

S. aureus vs. Coagulase-negative 

Staphylococcus spp. 

 

E. coli, K. pneumoniae, P. aeruginosa 

 

 

E. faecalis vs. other Enterococci spp. 

 

C. albicans, C. glabrata, C. tropicalis 

 

 

 

 

No 

 

 

No 

 

 

No 

 

No 

 

 

97% 

 

 

99% 

 

 

100% 

 

96% 

 

 

SN 97%/SP 100% 

 

 

SN 99%/SP 98% 

 

 

SN 100%/SP 100% 

 

SN 98%/SP 83% 

 

 

1.5 

 

 

1.5 

 

 

1.5 

 

1.5 

 

 

          4 

 

 

          5 

 

 

          6 

 

          7 

 

 

1.5 

 

1.5 

 

 

1.5 

 

1.5 

GeneOhm        
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(BD) 

    StaphSR 

 

S. aureus 

 

mec insertion 

site 

 

97% 

 

 

 

SN 99%/SP 97% 

 

2 

 

 

          8,9 

 

 

2 

 

XPert 

(Cepheid) 

    MRSA/SA BC 

 

 

 

S. aureus 

 

 

mecA, attB 

 

 

99% 

 

 

SN 99%/SP 99% 

 

 

1 

 

 

          9,10 

 

 

1 

Verigene 

(Nanosphere) 

   Gram-Positive   

   Blood Culture  

   Test (BC-GP) 

 

 

   Gram-Negative   

   Blood Culture  

   Test (BC-GN) 

 

 

S. aureus, S. epidermidis, S. lugdunensis, 

S. anginosus Group, S. agalactiae, S. 

pneumoniae, S. pyogenes, E. faecalis, E. 

faecium, Listeria spp., Micrococcus spp.^, 

Staphylococcus spp., Streptococcus spp. 

 

E. coli, K. pneumoniae, K. oxytoca, P. 

aeruginosa, S. marcescens^, Acinetobacter 

 

 

mecA, vanA, 

vanB 

 

 

 

CTX-M, IMP, 

KPC, NDM, 

OXA, VIM 

 

 

95% 

 

 

 

 

 

95% 

 

 

 

SN 86-100%/SP 99-100% 

 

 

 

 

 

SN 88-100%/SP 99-

100%15-16 

 

 

2.5 

 

 

 

 

 

2 

 

 

         11-15 

 

 

 

 

 

         17-19 

 

 

2.5 

 

 

 

 

2 
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spp., Citrobacter spp., Enterobacter spp., 

Proteus spp. 

 

 

FilmArray 

(Biofire) 

   Blood Culture  

   Identification  

   Panel 

 

 

L. monocytogenes, S. aureus, S. 

agalactiae, S. pyogenes, S. pneumoniae, 

Enterococcus spp., Staphylococcus spp., 

Streptococcus spp., A. baumanii, E. 

cloacae, E. coli, H. influenzae, K. oxytoca, 

K. pneumoniae, N. meningitidis, P. 

aeruginosa, S. marcescens, Proteus spp., 

Enterobacteriaciae, C. albicans, C. 

glabrata, C. krusei, C. parapsilosis, C. 

tropicalis    

 

 

 

mecA, 

vanA/B, KPC 

 

 

94% 

 

 

SN 83-100%/SP 99-100% 

 

 

1.2 

 

 

          20-23 

 

 

1.2 

T2MR  

(T2 Biosystems) 

   T2Candida     

 

C. albicans, C. glabrata, C. krusei, C. 

parapsilosis, C. tropicalis  

 

No 

 

97% 

 

SN 91%/SP 99% 

 

3-5 

 

          25 
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   Panel 

Note: Contents of this table are not intended to be an exhaustive list, and reader should note that several additional platforms not 

listed here are seeking or pending FDA approval. Performance of resistance marker detection is not included in this Table. For the 

multiplex assays, both polymicrobial and monomicrobial culture results are included in these calculations. 

⌘Accuracy defined as agreement (concordance) with blood culture result.  

# Time is the assay run time on the instrument. 

+AdvanDx also now offer QuickFISH product line for many of the following PNA FISH assays. QuickFISH have reported turn-around 

time of 20 minutes.   

*PNA FISH also have FDA-approved assays for rapid identification of C. albicans and C. albicans vs. C. glabrata. 

^Micrococcus spp. is not an FDA-approved analyte on the Verigene BC-GP panel and S. marcescens is not an FDA-approved 

analyte on the Verigene BC-GN panel. 
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Figure: Predictive values of T2Candida test by function of disease prevalence in the tested patient population. 

Using the published clinical sensitivity (91%) and specificity (99%) of the T2Candida test, this graph plots the variation of the negative 

predictive value (NPV [triangle plots]) and positive predictive value (PPV [square plots]) across a range of disease prevalence.  
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