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W
hether it’s an exploding fire-
ball in Star Wars: Episode 3 or
a swirling maelstrom in Pirates
of the Caribbean: At World’s End,
special effects leveraging numerical

simulations can be seen in a wide range of
Hollywood blockbusters. Although previously
considered too involved and prohibitively expen-
sive for applications like movie special effects,
as computers get faster and architectures evolve,
simulation of such phenomena is now much
more practical. Moreover, as the bar has been
raised for increasingly realistic effects and even
for computer-generated imagery to blend seam-
lessly with live performances, physically based
simulation has become not only tractable but an
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invaluable tool for creating realistic virtual worlds

in movies and video games.

Some of the physical phenomena commonly

simulated in movie and video game special effects

include water, fire, smoke, explosions, rigid body

dynamics, and the deformation of elastic bodies.

The governing equations for these processes are

most often in the form of a system of partial differ-

ential equations. The development of algorithms

for solving such equations with the computer is

one of the cornerstones of applied mathematics

and scientific computing. In fact, some techniques

(most notably, level set methods) have completely

revolutionized the industry and have even been

honored with technical Academy Awards.

In this article we will describe some of the

most compelling applications of applied math and

scientific computing in the visual effects indus-

try. Specifically we will talk about the techniques

used to simulate every imaginable component

of the digital environment, as well as the in-

teractions between these components within a

scene. Furthermore, we will discuss some of the

ways in which physical simulation techniques for
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special effects differ from those developed for

more classical applications in physics and engi-

neering. Particularly, there are many cases in which

the artistic vision of a scene requires a high level

of controllability in the outcome of a simulation.

To this end, special effects simulation tools, while

physically based, must be able to be dynamically

controlled in an intuitive manner in order to en-

sure both believability and the quality of the effect.

We will highlight techniques from computational

fluid dynamics, computational solid dynamics,

rigid body simulation, and collision detection and

resolution.

Computational Fluid Dynamics

Computational fluid dynamics (CFD) techniques

are used to simulate a number of phenomena.

Obviously, crashing waves and oceans can leverage

CFD, but explosions, fireballs, and smoke effects

all make use of CFD nowadays as well. Before

the use of CFD, computer generated (CG) special

effects such as explosions were driven by force

fields applied to passive unconnected particles,

producing less than realistic results. However,with

the combination of improved hardware and faster

algorithms, realistic CFD-based special effects for

smoke, fire, water, and other fluids have become

much more prevalent.

The governing equations for fluid dynamics can

be derived from the principle of the conservation

of mass and momentum. Although compressible

fluid models have been used for some special

effect applications (e.g., explosions and shock

waves), these models are more difficult to solve

numerically. As such, practitioners tend to use

incompressible fluid models whenever possible,

so we will overview their derivation here.

From an Eulerian frame of reference, i.e., a

reference frame which is independent of the

fluid’s motion, an incompressible fluid’s velocity

is governed by the Navier-Stokes equations

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p + µ∇2v+ f(1)

∇ · v = 0,

where ρ is density, p is pressure, µ is viscosity,

and f represents outside forces.

The first equation can be derived directly from

the conservation of momentum (with some sim-

plifications from the conservation of mass and

incompressibility), but perhaps a more intuitive

derivation begins with Newton’s Second Law,

F = ma. The left side of the equation can be

thought of as the “mass times acceleration” term

with ρ corresponding to mass and
∂v

∂t
+ (v · ∇)v,

or the material derivative of v, corresponding to

acceleration. The forces acting on the fluid can

be divided into two types: those from internal

stresses and those acting on the fluid from out-

side (e.g., gravity). For an incompressible fluid, the
internal forces can be described by −∇p + µ∇2v.

The second equation can be derived from the

conservation of mass and the assumption that
the fluid is incompressible. By the conservation of
mass, the material derivative of density, i.e., the
change in density of a parcel of advected fluid

through time, is zero:

∂ρ

∂t
+∇ · (ρv) = 0.

However, foran incompressible fluid,ρ is a positive
constant, so this simplifies to ∇ · v = 0.

A number of numerical schemes are used in

CFD to solve these equations. We can classify many
methods commonly used in computer graph-
ics into two categories: splitting or projection
methods typically solved on a grid, and grid-

less methods typically solved using a smoothed
particle hydrodynamics (SPH) algorithm.

Smoothed particle hydrodynamics (SPH) were

initially developed for simulation of astrophysical
problems. Müller et al. introduced the notion of
using SPH to simulate liquids to computer graph-
ics [25]. Particle methods such as SPH are good

at simulating very active fluids (e.g., splashing
water, smoke) in real time, making them excellent
candidates for video game simulations, and more
complex and high resolution particle simulations

can be used to create realistic effects for motion
pictures as well. Furthermore, this particle repre-
sentation of the fluid makes it easy to determine

the boundary between the simulated fluid and air.
As the name suggests, SPH represents the fluid

as particles whose attributes (e.g., velocity, pres-
sure, density) are spatially smoothed using a

radially symmetric smoothing kernel W(r). Any
scalar quantity A is thus interpolated to a location
x to produce the smoothed field

As(x) =
∑

j

mj

Aj

ρj
W(|x− xj|),

where j iterates over all of the particles,mj is the

mass of the j th particle, xj is its location, ρj the
density, and Aj the field value at xj . Derivatives
on A can then be computed by differentiating W ,
e.g.,

∇As(x) =
∑

j

mj

Aj

ρj
∇W(|x− xj |).

Applying SPH to the Navier-Stokes equations then
is a matter of representing the quantities in (1)

with these weights. Furthermore, since
∂v

∂t
+ (v ·

∇)v in fact represents the time derivative of

a fluid particle’s velocity in an Eulerian frame,
we can simplify this expression when using a
particle representation with the material derivative
Dv

Dt
. Some complications arise when using SPH,

particularly, the force terms (i.e., ∇p and ∇2v)
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are not symmetric, but these can be alleviated by
using different approximations. (See [25] for one
such approximation.)

Many grid-based methods use finite differenc-
ing on a staggered grid where the pressure is
defined on cell centers and velocity components
are defined on cell faces. The timestepping scheme
then depends on the Helmholtz-Hodge decompo-
sition, which states that any vector field v∗ can
be decomposed into v∗ = v + ∇p where v is
divergence-free and p is a scalar field. With this,
the problem can be broken into two basic steps.
In the first step, the velocity is advected (i.e., it
is moved along the velocity field) and forces and
diffusion are applied by solving

ρ

(

∂v∗

∂t
+ (v∗ · ∇)v∗

)

= µ∇2v∗ + f

with initial data

v∗|t=tn = vn.

This candidate velocity v∗ is then made
divergence-free by solving

∇2p = ∇ · v∗(2)

v = v∗ −∇p

for v, the projection of v∗ onto the divergence-
free subspace. (See [34] for a frequently used
discretization to these equations.)

While the Navier-Stokes equations and these
discretizations are enough to determine much of
the behavior of a fluid, additional quantities must
be solved for and specialized treatment is needed
to better capture the behavior of different types
of fluids. We will look into grid-based methods for
smoke, fire, and water in more detail.

Smoke

Made up of fine particles suspended in heated air,
smoke can be modeled as an inviscid (i.e., µ = 0)
incompressible fluid. In addition to (1), the smoke
density ρs (which is different from the constant
air density) and the gas temperature T are evolved
through the velocity field via

∂ρs

∂t
+ (v · ∇)ρs = 0(3)

and

∂T

∂t
+ (v · ∇)T = 0,(4)

respectively. The force f is typically defined as a
function of T and ρs and is used to capture the
effects of buoyancy.

The finite difference scheme described in [34]
can produce numerical dissipation and diffusion
(i.e., modeled quantities such as velocity can lose
energy and be smoothed out due to interpola-
tion), especially on low-resolution grids. In the
case of smoke, this can damp out the pluming

and other interesting effects one would wish to

capture in smoke. While a higher-resolution grid
may be able to capture some of these effects,
this would be computationally expensive. Instead,
Fedkiw et al. introduced vorticity confinement
techniques (created by Steinhoff for extremely

turbulent flow fields about helicopters [35]) for
smoke which are able to counteract this dissipa-
tion even on low-resolution grids [11]. Additional
techniques to add even more turbulence or speed

up computations have also been explored [31, 23].
Examples of smoke CFD special effects can be seen
in Terminator 3 [14] and Star Wars: Episode 3 [15].

Fire

In many cases, fire can be modeled as an incom-
pressible fluid in a way very similar to smoke.
Again, vorticity confinement can be used to pro-
duce turbulent fireballs and swirling flames, and
additional combustion particles can be added to

the simulation to spark new flames [15].
While these combustion particles can produce

gas expansion effects for fireballs and exploding
spaceships, additional tools are necessary to simu-

late true fuel-based combustion such as a burning
building or a gas-powered blowtorch. Nguyen et
al. introduced the idea of modeling the gaseous
fuel and the flaming gaseous products as separate
(but coupled) incompressible fluids. The reaction

front where fuel turns into fire is defined by a level
set function which evolves according to the fuel
velocity [26] (more about level set functions and
their evolution can be found in the section “The
Level Set Method”). These techniques were used to

create the dragon’s flaming breath in Harry Potter
and the Goblet of Fire.

Water

Of course, one of the more obvious applications
of CFD to special effects is the simulation of
water-based phenomena. The state-of-the-art in
water simulation techniques used in the movies
are by and large based on the particle level set

method introduced by Foster and Fedkiw [12],
further refined by Enright et al. [10] and for which
Fedkiw shared an Academy Award for Technical
Achievement. Just as the reaction front for fire is
defined by a level set function, the surface of the

water can be defined in the same way. However,
numerical dissipation and diffusion can cause the
level set defined surface to lose volume in high
curvature regions. The particle level set method

provides a means to retain this volume by defining
the water surface as a combination of a level set
function and particles.

Several improvements and artist controls to
this method have been introduced, and a number

of films feature particle level set-based special
effects, including the turbulent seas and flooding
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Figure 1. (top) CG ocean simulated using the
particle level set method in Poseidon [13].
(bottom) The surface of the tarmonster in
Scooby Doo 2 is modeled as a level set
function and is evolved dynamically using CFD
[40].

waters of Poseidon [13], the storm surge in The
Day After Tomorrow [19], and the maelstrom in

Pirates of the Caribbean: At World’s End.
In Hollywood, CFD techniques aren’t limited

to modeling run-of-the-mill gases and fluids. The
melting Terminatrix in Terminator 3 [36] and the
mud,beer, andotherfluids inShrek were simulated

with particle level set methods. Additionally, CFD-
inspired techniques have been used to simulate
nonfluids such as hair (see the subsection “Cloth

and Hair” ).

The Level Set Method
First introduced by Osher and Sethian in 1988

[29], the level set method provides a dynamic
implicit representation of surfaces (see also [8]
and [9] for interesting precursors). In this method,

a closed curve (or set of curves) in R2 or closed
surface(s) in R3 can be implicitly defined by the
zero isocontour of a “level set function” which is

defined throughout space. The implicitly defined
surface can then be evolved by an underlying flow,
handling topological changes such as merging and

break-up automatically.
The most commonly used level set function

is the “signed distance function”. As the name

suggests, the function is defined by the signed

distance to the implicit surface where the sign is
negative inside the surface and positive outside.
For example, the function φ(x, y) =

√

x2 + y2 −

1 is the signed distance function for the unit
circle. Signed distance functions have a number
of properties which make them very useful for
defining object surfaces in physical simulations.
The fast-marching method of Tsitsiklis [28] makes
initializing a signed distance function from an
explicit representation (such as a triangulated
surface) computationally inexpensive. By checking
the sign of the function evaluated at a point, one
can quickly determine if the point is inside or
outside of the object. Furthermore, the surface
normal (useful in collision handling) is defined

by n =
∇φ

|∇φ|
, and the curvature of the surface is

simply κ = ∇ ·
∇φ

|∇φ|
.

The power of the level set method for two phase
incompressible flows was originally shown in the
computational mechanics literature by Sussman
et al. [37]. Here, the idea of using an Eikonal
equation-based reinitialization at every time step
was first introduced, along with accurate advection
schemes for the level set evolution. The method
allowed for natural topology changes associated
with pinching and merging in contrast with ex-
plicit representations of the boundary (e.g., by
parameterized surfaces), where topology changes
are more tricky.

One widely used application of the level set
method in special effects is the particle level
set method for fluid simulation (see the section
“Water”). This method uses a combination of
particles and a level set to define the water surface.
The level set function, φ, can be evolved with the
fluid velocity field, v, by integrating φt +v ·∇φ =
0. Changes in the fluid surface’s topology (as
occurs in the presence of splashing or air pocket
formation/destruction) are automatically defined
by the implicit surface. Numerical dissipation and
diffusion can cause volume loss in high-curvature
regions of the fluid surface, producing visible
artifacts such as disappearing droplets. Here, the
particle representation can compensate for this
loss, and fast marching allows for easy surface
reconstruction. Conversely, since the level set
function is defined throughout space, the implicit
surface can fill in low-curvature regions where the
particle number is too low to properly resolve the
surface. The convenient definition of curvature for
level sets makes determining high/low curvature
regions automatic. Additionally, this significantly
simplifies the inclusion of effects such as surface
tension which depend directly on the surface
curvature.

Solids
Between complicated meshing problems and
physics-based solids simulations, applied math
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Figure 2. Geometric fracturing of Rhino’s ball
(bottom left, bottom right) and a roadway (top)

in BOLT [18].

plays an integral role in CG sequences involving
more than just fluids. Whether it’s your favorite
Pixar animated character or the apocalyptic
cityscapes of The Day After Tomorrow, virtually
every CG solid has an explicit representation
as a meshed surface or volume. Mesh genera-
tion, deformation, and topological changes are
all mathematically complex challenges faced
by CG engineers. Artists turn to physics-based
simulations in scenes where physical effects
such as inertia can provide more realism or the
complexity of the scene would be difficult to
control by hand. Flesh simulations can endow
CG characters with realistically bulging muscles
and rippling fat. Hair simulators can tackle the
complexity of thousands of interacting hairs, and
rigid body simulations can control the dynamics
of an exploding spacecraft.

Geometry, Meshing, and Fracture

Mesh generation is the first problem encountered
when creating a new CG object. Artists typically
work with surface meshes, which are created ei-
ther by combining and deforming primitives or by
converting laser-scanned data from a model into
a triangulated or quadrilateral surface. One com-
monly used algorithm for building a triangulated
surface and level set function from scanned data
was introduced by Curless and Levoy [7]. First,
the data from each scan is converted to a level
set function defined over a discrete cubic lattice
whose individual cells we will refer to as voxels.
Voxels near the surface then take on signed dis-
tance function values, and voxels away from the
surface are either marked as “empty” (between
the surface and the sensor) or “unseen”. The level
set functions from each scan are then combined
to form a single level set function. A surface

extraction method such as marching cubes [22]
is used to construct the triangulated surface at
the zero-isocontour of the level set function. The
surface is also extracted on boundaries between
empty and unseen regions, which effectively fills
any holes in the scan (Figure 3).

Figure 3. Extracting a surface from
laser-scanned data [7].

Whereas artist versions of most CG objects are
in the form of triangulated surfaces, tetrahedral-
ized volume forms of the object are needed for
most simulations. The first step of many algo-
rithms is to define a body-centered cubic (BCC)
or face-centered cubic (FCC) lattice on a uniform
or octree grid. This initial lattice tetrahedralizes
space with well-conditioned elements. The tetra-
hedralized volume is then modified to conform to
the triangulated surface. The isosurface stuffing
algorithm by Labelle and Shewchuk produces a
well-conditioned mesh by snapping some vertices
to the triangulated surface and refining others
using a precomputed stencil [21].

Additionally, in scenes where an elaborately
shaped triangulated surface cracks or shatters,
it is necessary to somehow create new fragment
meshes defined on the broken pieces. For the
movie BOLT, Hellrung et al. [18] developed an
algorithm which resolves every fragment exactly
into a separate triangulated surface mesh and al-
lows straightforward transfer of texture and look
properties of the unfractured model. This method
takes advantage of a cutting algorithm by Sifakis
et al. [32] which cuts tetrahedralized volumes by
duplicating cut elements and embedding the cut
surface in these elements. In the embedding pro-
cess, the cut elements are divided into “material”
and “void” sections, defining regions inside and
outside of the object, respectively [32]. In the first
step of the triangulated surface algorithm, they
generate a tetrahedral mesh that fully covers the
object to be fractured. The triangulated surface of
the unfractured object itself is used as the first
cut in an application of the cutting algorithm,
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Figure 4. Davy Jones rigid simulation rig from
Pirates of the Caribbean: Dead Man’s Chest
[6].

effectively sectioning the background tetrahedral
volume into “material” and “void” regions. The
fracture surface is then applied as the second cut,
resulting in the separation of the material volume
into separate fragments. The cutting algorithm
computes the triangulated boundary of every vol-
umetric fragment in such a way that every triangle
of a fragment is contained inside a triangle either
of the uncut object or of the fracture surface.

Rigid Body Simulations

The simplest objects to simulate are rigid bodies.
As the name suggests, these objects can only fol-
low rigid motions (i.e., rotations and translations).
Rigid bodies can be divided into two types: un-
constrained rigid bodies, such as the pieces from
a breaking up fighter plane in Pearl Harbor, and
rigid bodies connected by joints which constrain
their degrees of freedom (known as articulated
rigid bodies), such as the battle droids in Star
Wars: Episode I or Davy Jones’ beard in Pirates of
the Caribbean: Dead Man’s Chest [6].

Each rigid body can be described by a state vec-
tor X(t) consisting of its position x(t), orientation
R(t) (or more typically a unit quaternion repre-
senting orientation), momentum p(t), and angular
momentum L(t). By differentiating X(t), we get
to the known quantities that drive the simulation,
force F(t) and torque τ(t):

d

dt
X(t) =









v(t)
ω(t)R(t)
F(t)
τ(t)









.

Here, the velocity v is related to momentum by
mv(t) = p(t), wherem is the mass of the body, and
angular velocityω is related to angular momentum
by I(t)ω(t) = L(t), where I(t) is the inertia tensor.
Using an ordinary differential equations solver to
numerically integrate X′(t), the state vector (and
thus the rigid body’s position and orientation) can
be updated at each timestep.

Figure 5. Hair’s high geometric complexity
presents a challenge to researchers. (left) A
close-up of real hair. (right) Simulated hair [24].

The motion of articulated rigid bodies is con-
strained by the joints that connect the pieces.
Various solution techniques exist for enforcing
these constraints. One class of methods uses
generalized coordinates to reduce the degrees
of freedom, disallowing motions not permitted
by the joint. By handling the constraints locally,
these methods are fast but can break down in
the presence of contact and collisions with other
objects. These constraints can be enforced in a
more global manner by using Lagrange multipliers
[4] or impulses [39].

Deformable Object Simulations

Artists turn to deformable object simulations to
handle complex systems such as hair, fur, and
cloth or to give realistic responses to a wide range
of objects, from CG food in Ratatouille to flesh
simulations for characters in Van Helsing. Since the
deformable object can stretch and bend, partial
differential equations are needed to model the
material dynamics. The object’s behavior is usually
described in terms of the relationship between its
undeformed (or material) configuration B0 and
its deformed configuration at time t , Bt . This
relationship is defined by x(t) = φ(X, t), where φ
is a function which maps points X ∈ B0 to points
x(t) ∈ Bt .

The governing equations for these simulations
come from continuum mechanics. The first, which
is derived from Newton’s second law, is the equa-

tion of motion, ρφ̈ = ∇ · P + f. Here, ρ is the
density, P is the first Piola-Kirchoff stress tensor,
and f represents external forces. Depending on
the model, another stress tensor may be used in
the place of P. The second governing equation
depends on the constitutive model which defines
the stress-strain relationship for the material; in
other words, it defines how the material deforms
when stressed.

The linear elasticity model is the simplest con-
stitutive model and is based on Hooke’s law of
elasticity. In this model, there is a linear relation-
ship between stress and strain, typically denoted
by σ = C : ε, where σ is the Cauchy stress tensor,
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ε is the infinitesimal strain tensor, and C is the
fourth-order tensor of material stiffness. When the
material is isotropic and homogeneous, this rela-
tionship can be simplified to σ = 2µε + λtr(ε)I,
where µ and λ are the Lamé parameters and I is
the identity matrix. Valid for small deformations,
while it does not accurately model large deforma-
tions, it (and its rotation-invariant analogue) is still
useful for a lot of graphics applications due to its
easy computation. The neo-Hookean constitutive
model is a generalization of linear elasticity for
large deformations, and other even more general
models exist for modeling soft rubber-like objects.

Just as important as the constitutive model to
a simulation is the choice of discretization. Typ-
ically the simulated object will already have an
explicitly meshed form (see the section “Geom-
etry, Meshing, and Fracture”). The finite element
method (FEM) [27] or finite volume method (FVM)
[38] can then be applied to this mesh (or a tri-
angulated/tetrahedralized version of this mesh)
to numerically integrate the governing equations.
Since high-order accuracy is usually not needed,
linear interpolating functions are used for FEM,
and σ and f are assumed to be constant on each
element, so all integrands in the FEM or FVM
formulations are constant and easy to compute.

Collision Detection and Handling

Rarely is an object simulated in isolation, so ad-
ditional work is necessary to detect and handle
contact and collisions with other objects. This
problem can be tricky even in the simple sce-
nario of two convex rigid bodies interacting. In
highly complex collision scenarios (e.g., hair sim-
ulations), this problem can become intractable if
standard geometric collision algorithms are used,
so additional machinery is needed. In this section,
we will describe the framework for a standard
geometric collision detection and handling algo-
rithm and highlight some recent work tackling the
complexity of this problem with cloth and hair.

Geometric Collision Detection. Collisions can be
detected either continuously or at the end of
each simulation timestep. Since results only need
to be physically plausible, not necessarily physi-
cally accurate, continuous collision detection and
resolution are not typically used. For volumetric
objects, collisions are detected by checking for
any intersections at the end of the timestep. This
type of detection can miss collisions where ob-
jects completely pass through each other in one
step, but it is usually assumed that the simula-
tion timesteps are small enough to avoid these
situations.

Rigid body collisions are most easily checked
by using level set representations of the objects.
Intersections between two implicitly defined sur-
faces can then be found by testing sample points

Figure 6. (top) Penny’s hair from BOLT is
simulated using a clumping technique. Only a

few hundred hairs were simulated, and the
rest are added at render time

[disneyanimation.com]. (bottom) All hairs are
simulated in this hybrid volumetric/geometric

collision algorithm [24].

(e.g., vertices of its triangulated surface represen-

tation) on one object with the level set function on

the other. Of course, this check is not sufficient for

edge-face collisions since all vertices are outside
of the implicit surface. On high-resolution meshes

this case can be ignored, but additional checks are

necessary for low-resolution meshes.

This implicit surface-detection method cannot
detect self-collisions for deformable objects or be

used for objects without a level set representation

(e.g., open surfaces and curves in 3D). In these

cases, point-face and edge-edge collisions can be

detected by considering the linear interpolations
between time n and time n + 1 configurations.

Define a tetrahedron by the four vertices in a

point-face or edge-edge pair. A collision is detected

if at any point between time n and time n + 1,

the linearly interpolated positions of the four
points become coplanar, i.e., the volume of the

tetrahedron is 0. The time at which intersection

occurs can then be determined by solving a cubic

equation in time [5].
In both cases, acceleration structures are used

to reduce the number of intersection tests that

need to be performed. Structures such as bounding

box hierarchies are used to eliminate element pairs
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from the detection list which are too far away from

each other.

Geometric Collision Handling. Although continu-

ous collision resolution, in which collisions are

resolved in the order in which they occur, can pro-

duce more accurate and stable results, it can also

be prohibitively expensive when a large number of

collisions need to be processed. Instead, less ac-

curate (though physically plausible) solutions are

found by simultaneously resolving all collisions

detected in the timestep between time n and n+1.

The first step in collision resolution is to deter-

mine the normal direction between two colliding

elements, n, and the relative velocities of the two

objects at the collision point, urel . Whenurel ·n < 0,

the objects are colliding, and something must be

done to prevent interpenetration. In the absence

of friction, the collision is then resolved by ap-

plying impulses to the colliding objects in the

normal direction so that the new normal relative

velocity is u′rel · n = −ǫurel · n. Here, ǫ ∈ [0,1] is

the coefficient of restitution and determines how

“bouncy” the collision is. When ǫ = 1, the collision

is said to be perfectly elastic, and kinetic energy

is conserved. When ǫ = 0, the collision is perfectly

inelastic, and all kinetic energy is lost. The choice

of ǫ depends on the materials being modeled. If

collisions are resolved in a pairwise fashion (which

is common to many collision algorithms), new col-

lisions between different pairs may be created by

these impulses, so this algorithm must be iterated

over more than once.

When urel · n = 0, the objects are considered to

be in contact. In this case, the forces between the

objects must be resolved to prevent the objects

from accelerating toward each other. This case

is much more difficult, as any force or impulse

applied that is too strong can cause the objects

to bounce apart, and the problem can be com-

plicated when many objects are stacked on top

of each other. One method, proposed by Baraff,

analytically calculates the contact forces between

objects [2, 3]. Another method by Guendelman et

al, uses impulses similar to those for collisions;

however, by partially ordering the contact pairs to

work from the ground up, unwanted bouncing is

avoided [16]. It is also possible to determine the

necessary impulses to resolve all collisions and

contact at once. See [20] for one such example.

Friction can be handled in similar ways by apply-

ing impulses or modifying forces in the tangential

direction, and the development of physically accu-

rate models with nice numerical representations

is an active area of research today.

Figure 7. The images show a simulated
malignant melanoma removal procedure using
the framework of [33]. The bottom array of
images uses an imposed surface texture to
better visualize the post procedure
equilibrium configuration of the tissue.

Cloth and Hair. Due to their complexity, CG cloth

and hair/fur are almost always simulated rather
than controlled by hand. However, this complexity

also means that the standard geometric collision
handling algorithms are not able to effectively

resolve all collisions, and the cloth/hair can easily
become tangled, producing visible artifacts.

For cloth, a modern approach is that of [5], which
uses a three-stage process to ensure no collisions

are missed. First, contact is preconditioned using
penalty-based repulsions that are small enough
to prevent visual artifacts. Then, in the second

phase, collision impulses are iteratively applied, as
in the subsection “Geometric Collision Handling”.

Third, rigid groups (where colliding objects are
rigidly evolved) are used as a final safety net,

postconditioning the collisions. One example of
this algorithm used in practice is Yoda’s robes in

Star Wars: Episode II.
Hair simulation is even more complicated than

cloth due to the massive number of hairs inter-
acting and colliding. Instead of simulating each

individual strand, the most common methods
manage the complexity of many hairs interacting
by simulating a smaller set of guide hairs (typically

no more than several hundred) and interpolating
a larger number of hairs for rendering. The use of

sparse clumps often allows the use of inexpensive
repulsion penalties as opposed to true geometric

collision handling because guides are expected
to have thickness. Examples of this technique in-

clude Penny’s hair in BOLT. Alternatively, there
have been several methods that treat every simu-

lated hair as part of a fluid-like continuum volume
[1, 17, 30]. These approaches naturally model hair

interaction without explicit collisions.
More recently, McAdams et al. [24] explored

a hybrid technique factoring hair computation

into two parts: a coarse, highly coupled volu-
metric behavior, which is efficiently modeled by

a continuum, and a finer, more locally coupled
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Lagrangian particle simulation of hair. However,

unlike previous continuum-based approaches that
only simulate guide hairs that do not interact di-

rectly, this method simulates many hairs (several
thousand) that are allowed to collide directly via

the same geometric collision handling algorithm
as used for cloth. The volumetric step works by

projecting out any divergence in the hair’s velocity

field using the projection method as described in
(2) for computational fluid dynamics. Geometric

collision handling is only tractable because the
volumetric step of the algorithm handles bulk

collision behavior, leaving fewer collisions to be
resolved.

Scientific Computing in Real Time
Simulations using numerical methods for partial

differential equations are being used at an increas-
ing rate due largely to improvements in processor

speed and the availability of multicore processors.
One very new example of this is real-time scien-

tific computing—that is, simulations that run fast
enough that a user can interact with them while

the simulation is running. Perhaps the most obvi-
ous way to make real-time simulation possible is

to reduce the complexity of the model by coarsen-
ing the representations of the simulated objects

(e.g., using a coarser grid for fluid simulation or
a lower resolution mesh for deformable object

simulation). However, in many cases, the level
of coarsening necessary for real-time application

can produce unacceptably poor results. As such,
one active area of research is in model reduction,

where real-time low-resolution simulations make
use of precomputed higher-resolution simulation

information.
Such techniques will soon become common-

place in video games when creating scenes with
natural phenomena. These techniques are also

being used to simulate surgeries [33]. Figure 7
shows a finite element simulation of elastic soft

tissues during a malignant melanoma procedure.
The user makes incisions and deforms and sutures

the tissue in real time while the simulator solves
the governing equations.

Conclusion
With increased applicability of numerical methods

in movies and video games, a new appreciation for
applied math and scientific computing is emerg-

ing. This burgeoning aspect of the effects industry
is serving as an exciting new frontier for applied

mathematicians that uniquely combines the need
for mathematical and computer science insights

with the art of moviemaking. The nascent state of
applied mathematics in the effects industry is driv-

ing research and development efforts to provide
the algorithms and innovations needed to produce

larger-scale and more impressive effects. That is,

because scientific computing techniques are only

recently becoming practical at a large scale in

movies, their full efficacy and final place in the

moviemaking process is far from determined.

There will be efforts for years to come to fully

realize the potential of applied math in the indus-

try, and this can only be done by researchers with

a strong background in mathematics, computer

science, and physics.

Figure Credits

Figure 1 (top): ©2006 Warner Bros. Entertainment,

All Rights Reserved. Figure 1 (bottom): ©2004
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prises, Inc. Figure 3: Courtesy of B. Curless and
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