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Abstract

The pioneering work of sparse local embeddings
for extreme classification (SLEEC) (Bhatia et al.,
2015) has shown great promise in multi-label
learning. Unfortunately, the statistical rate of con-
vergence and oracle property of SLEEC are still
not well understood. To fill this gap, we present
a unified framework for SLEEC with nonconvex
penalty. Theoretically, we rigorously prove that
our proposed estimator enjoys oracle property
(i.e., performs as well as if the underlying model
were known beforehand), and obtains a desirable
statistical convergence rate. Moreover, we show
that under a mild condition on the magnitude of
the entries in the underlying model, we are able to
obtain an improved convergence rate. Extensive
numerical experiments verify our theoretical find-
ings and the superiority of our proposed estimator.

1. Introduction
Extreme multi-label learning (Yu et al., 2014; Prabhu &
Varma, 2014; Bhatia et al., 2015; Yen et al., 2016; Liu &
Tsang, 2017; Babbar & Schölkopf, 2017) refers to learn a
classifier that is able to automatically annotate a data point
with the most relevant subset of labels from an extremely
large number of labels, which has opened up a new research
frontier in data mining and machine learning. A wide range
of challenging applications, such as product categorization
for e-commerce (Shen et al., 2011) and document, video
and image annotation, can benefit from being formulated as
multi-label learning (Dembczynski et al., 2010; Tsoumakas
et al., 2012; Liu & Tsang, 2015b; Gibaja & Ventura, 2015;
Du et al., 2017; Liu et al., 2017; Shen et al., 2018a;b) tasks
with hundreds of thousands or even millions of labels.

Due to the simplicity and ease of implementation, embed-
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ding approaches (Hsu et al., 2009; Yu et al., 2014; Prabhu
& Varma, 2014; Liu & Tsang, 2015a; Bhatia et al., 2015;
Babbar & Schölkopf, 2017; Liu et al., 2019) have been
proved to be the most popular methods for addressing ex-
treme multi-label learning tasks. Specifically, based on an
assumption that the label matrix is low-rank, embedding
approaches project label vectors into a lower dimensional
compressed label space. A regression is then learned for
each compressed label and a decompression matrix is used
to lift the embedded label vectors back to the original la-
bel space. Because the low rank assumption is violated in
most real world applications, leading embedding approach-
es can not obtain high prediction accuracies, and scale to
large-scale data sets.

To break the low-rank assumption and boost classification
accuracy, the pioneering work of SLEEC (Bhatia et al.,
2015) is developed to learn a small ensemble of local dis-
tance preserving embeddings. Extensive empirical studies in
(Bhatia et al., 2015) show that SLEEC significantly outper-
forms the state-of-the-art embedding and tree-based method-
s. Although SLEEC has achieved great success in extreme
multi-label classification, the statistical rate of convergence
and oracle property of SLEEC remain less explored.

To bridge this gap, we propose a unified framework for
SLEEC with nonconvex penalty. Theoretically, we show
that our proposed estimator enjoys oracle property, which
performs as well as if the underlying model were known
beforehand, as well as attains a desirable statistical con-
vergence rate of O(σ

√
$+
√
s∗

µ
√
n

), where σ,$, µ are positive
constants, n is the sample size and s∗ denotes the cardinality
of the true support of underlying model. Considering the
magnitude of the entries in the underlying model, we are
able to achieve a refined convergence rate of O(

√
s∗

µ
√
n

) un-
der suitable conditions. Moreover, we adapt an accelerated
proximal gradient method with soft-thresholding to solve
the proposed estimator. Empirical results on various data
sets validate our theoretical results and the superiority of
our proposed estimator.

We organize this paper as follows. §2 presents some prelim-
inaries of SLEEC. §3 introduces our proposed estimator. §4
analyzes the statistical properties of our proposed estima-
tor. §5 presents an optimization algorithm and experimental
results are presented in §6. The last section provides our
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conclusions.

2. Preliminaries
In this section, we briefly review some preliminaries of
SLEEC. SLEEC learns low dimensional embeddings which
non-linearly capture label correlations by preserving the
pairwise distances between only the closest (rather than all)
label vectors. Regressors are then trained in the embedding
space. SLEEC uses a k-nearest neighbour (kNN) classifier
in the embedding space for prediction.

Assume xi ∈ Rd×1 is a real vector representing an in-
put or instance (feature), yi ∈ {0, 1}L×1 is the corre-
sponding output or label vector (i ∈ {1, . . . , n}). n
denotes the number of training data. The input matrix
is X = [x1, . . . , xn] ∈ Rd×n and the output matrix is
Y = [y1, . . . , yn] ∈ {0, 1}L×n. SLEEC maps the label
vector yi to $-dimensional vector zi ∈ R$×1 ($ < L is
a small constant) and learns a set of regressors V ∈ R$×d
s.t. zi ≈ V xi,∀i ∈ {1, . . . , n}. During the prediction, for a
testing instance x, SLEEC first computes its embedding V x
and then perform kNN over the set [V x1, . . . , V xn]. We
denote the transpose of the vector/matrix by the superscript
T and the logarithms to base 2 by log. Let || · ||F represent
the Frobenius norm. Given a matrix A, ||A||1 denotes the
sum of absolute elements of A.

SLEEC aims to learn a embedding matrix Z =
[z1, . . . , zn] ∈ R$×n through the following formula:

min
Z∈R$×n

||PΩ(Y TY )− PΩ(ZTZ)||2F (1)

where the index set Ω denotes the set of neighbors: (i, j) ∈
Ω iff j ∈ Ni. Ni denotes a set of nearest neighbors of i.
PΩ(·) is defined as:

(
PΩ(Y TY )

)
(i,j)

=

{
yTi yj , if (i, j) ∈ Ω

0, otherwise.

Based on embedding matrix Z, SLEEC minimizes the fol-
lowing objective with l1 and l2 regularization to find regres-
sors V , which is able to reduce the prediction time and the
model size, and avoid overfitting.

min
V ∈R$×d

||Z − V X||2F + µ||V ||2F + λ||V X||1 (2)

where µ > 0 and λ > 0 are the regularization parameters.

However, the l1 penalty used in Eq.(2) introduces a bias into
the resulting estimator (Zou, 2006; Zhang & Huang, 2008;
Zhang, 2010), which compromises the estimation accuracy.
Moreover, Fan et al. (Fan & Li, 2001) has argued that the
oracle property does not hold for l1 penalty. The following
section introduces a novel estimator to address the issues.

3. The Proposed Estimator
This section proposes a unified framework for SLEEC with
nonconvex penalty. We follow SLEEC to learn Z and per-
form prediction. Given embedding matrix Z, we consider a
multiple regression model as follows:

Z = V ∗X +W (3)

where V ∗ ∈ R$×d represents the unknown sparse regres-
sion coefficient matrix and W ∈ R$×n denotes a noise
matrix with independent and identically distributed (i.i.d)
zero mean Gaussian entries with variance σ2 (σ > 0). We
propose to estimate V ∗ by minimizing the following objec-
tive:

V̂ = arg min
V ∈R$×d

||Z − V X||2F + µ/2||V ||2F + Pλ(V ) (4)

where Pλ(V ) is a decomposable nonconvex regularization:
Pλ(V ) =

∑
(i,j) pλ(V(i,j)) and pλ(·) is a univariate non-

convex function. Nonconvex penalty functions, such as
smoothly clipped absolute deviation (SCAD) penalty (Fan
& Li, 2001) and minimax concave penalty (MCP) (Zhang,
2010), have recently attracted much attention because they
can eliminate the estimation bias and attain attractive statis-
tical properties. This work takes SCAD and MCP penalties
as the example. Let I(·) be the indicator function. pλ(·) in
SCAD is defined as

pλ(t) = λ

∫ |t|
0

(I(a ≤ λ) +
(bλ− a)+

(b− 1)λ
I(a > λ))da (5)

where (bλ− a)+ = max(0, bλ− a), b > 2 and λ > 0. For
MCP, we have

pλ(t) = λ

∫ |t|
0

(1− a

λb
)+da (6)

where b > 0 is a fix parameter. These nonconvex penalties
can be further decomposed as an l1 penalty plus a concave
part: pλ(t) = λ|t|+ qλ(t). For SCAD, the concave compo-
nent is

qλ(t) =
−(|t|+ λ)2

2(b− 1)
I(λ < |t| ≤ bλ) + (

(b+ 1)λ2

2
−

λ|t|)I(|t| > bλ)

Regarding MCP, we have

qλ(t) = − t
2

2b
I(|t| ≤ bλ) + (

bλ2

2
− λ|t|)I(|t| > bλ)

The decomposability of pλ(t) is equivalent to the decompos-
ability of Pλ(V ) as: Pλ(V ) = λ||V ||1 + Qλ(V ), where
Qλ(V ) =

∑
(i,j) qλ(V(i,j)). This paper relies on the fol-

lowing regularity conditions on pλ(t) and qλ(t):



Sparse Extreme Multi-label Learning with Oracle Property

(i) Both function qλ(t) and its derivative q′λ(t) pass
through the origin: qλ(0) = q′λ(0) = 0.

(ii) There exits a constant ν such that the derivative p′λ(t)
satisfies p′λ(t) = 0, for |t| ≥ ν > 0.

(iii) q′λ(t) is monotone and Lipschitz continuous: for ẗ ≥ t,
there exists a constant ζ ≥ 0 such that q′λ(ẗ)− q′λ(t) ≥
−ζ(ẗ− t).

(iv) |q′λ(t)| is upper bounded by λ: |q′λ(t)| ≤ λ for any t.

A variety of nonconvex penalty functions satisfy the above
conditions. For example, SCAD penalty satisfies the condi-
tions with ν = bλ and ζ = 1/(b− 1). Regarding MCP, we
have ν = bλ and ζ = 1/b.

4. Main Theory
In this section, we show that the estimator in Eq.(4) en-
joys the oracle properties, namely, our proposed estimator
performs as well as if the underlying model were known
beforehand. For matrices A and B with compatible di-
mension, 〈A,B〉 denotes the trace inner product on ma-
trix space that 〈A,B〉 = trace(ATB). Given a matrix
A ∈ Rn1×n2 , we define ||A||∞ = max(i,j)∈S{|A(i,j)|},
||A||0 = |supp(A)|, where S denotes the set of index no-
tation for matrix A, supp(A) represents the support of A:
supp(A) = {(i, j) : A(i,j) 6= 0}, and |supp(A)| is the
cardinality of supp(A). Before we present the following
theorem, we introduce the definition of an oracle estimator,
denoted by V̂O. Let S∗ = supp(V ∗). Its complement and
cardinality are denoted by S̄∗ and s∗ = |S∗|, respectively.
The oracle estimator V̂O is defined as

V̂O = arg min
supp(V )⊆S∗

L(V ) (7)

where L(V ) = ||Z − V X||2F + µ/2||V ||2F . Because we
do not know the true support of V ∗ in practice, the oracle
estimator defined above is not a practical estimator. We
define L̃λ(V ) = L(V ) + Qλ(V ). The following theorem
shows that our proposed estimator enjoys oracle property.

Theorem 1. Suppose the nonconvex penalty Pλ(V ) =∑
(i,j) pλ(V(i,j)) satisfies regularity conditions (i), (ii), (iii).

We assume the oracle estimator V̂O defined in Eq.(7) satis-
fies min(i,j)∈S∗ |(V̂O)(i,j)| ≥ ν. If µ > ζ, ||X||F ≤ 1/n,
and V ∗ satisfies ||V ∗||∞ ≤ 1/(µ

√
n), we have

(i) V̂ = V̂O.

(ii) ||V̂ − V ∗||F ≤ 4σ
√
$+2

√
s∗

µ
√
n

.

Remark. Theorem 1 shows that our proposed estimator
in Eq.(4) is identical to the oracle estimator under suitable

conditions. This is a very strong result because we do not
even have any oracle knowledge on the true support. More-
over, our proposed estimator is able to achieve the desirable
statistical convergence rate of O(σ

√
$+
√
s∗

µ
√
n

) for estimating
V ∗.

Before proving Theorem 1, we first present the following
lemmas.

Lemma 1. Under regularity conditions (iii), we have

L̃λ(V̈ ) ≥ L̃λ(V ) + 〈∇L̃λ(V ), V̈ −V 〉+
µ−ζ

2
||V̈ −V ||2F

Proof. Recall that Qλ(V ) is the concave part of the non-
convex penalty Pλ(V ), which implies −Qλ(V ) is convex.
Because Qλ(V ) =

∑
(i,j) qλ(V(i,j)), where qλ(V(i,j)) sat-

isfies regularity condition (iii), we have(
q′λ(V̈(i,j))− q′λ(V(i,j))

)
(V̈(i,j) − V(i,j))

≥− ζ(V̈(i,j) − V(i,j))
2

This implies the convex function −Qλ(V ) satisfies

〈∇(−Qλ(V̈ ))−∇(−Qλ(V )), V̈ − V 〉 ≤ ζ||V̈ − V ||2F
(8)

Following (Nesterov, 2014), Eq.(8) is equivalent to the defi-
nition of strong convexity, and −Qλ(V ) satisfies

−Qλ(V̈ ) ≤ −Qλ(V )−〈∇Qλ(V ), V̈ −V 〉+ ζ

2
||V̈ −V ||2F

(9)

Because L(V ) = ||Z − V X||2F + µ/2||V ||2F is strongly
convex with modulus µ, we have

L(V̈ ) ≥ L(V ) + 〈∇L(V ), V̈ − V 〉+
µ

2
||V̈ − V ||2F (10)

By subtracting Eq.(9) from Eq.(10), we obtain the result.

Lemma 2. If ||X||F ≤ 1/n, and V ∗ satisfies ||V ∗||∞ ≤
1/(µ
√
n), we have

||V̂O − V ∗||F ≤
4σ
√
$ + 2

√
s∗

µ
√
n

Proof. Let Ψ = V̂O − V ∗. According to Eq.(3), we have

L(V̂O)− L(V ∗)

=||Z−V̂OX||2F +µ/2||V̂O||2F−||Z−V ∗X||2F−µ/2||V ∗||2F
=||Z − V ∗X −ΨX||2F + µ/2||Ψ + V ∗||2F
− ||Z − V ∗X||2F − µ/2||V ∗||2F

=||ΨX||2F − 2〈W,ΨX〉+ µ/2||Ψ||2F + µ〈Ψ, V ∗〉
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(11)

Because the oracle estimator V̂O minimizes the objective in
Eq.(7), we have L(V̂O) ≤ L(V ∗). Using Hölder’s inequali-
ty and the assumption, we obtain

||Ψ||2F
≤2/µ(2〈W,ΨX〉 − µ〈Ψ, V ∗〉)
≤2/µ(2||W ||F ||Ψ||F ||X||F + µ||Ψ||F ||V ∗||F )

≤4σ
√
$ + 2

√
s∗

µ
√
n

||Ψ||F

(12)

Therefore, we derive the result.

Proof. (of Theorem 1). Let M ∈ ∂||V̂ ||1. Since V̂ satisfies
the optimality condition, we have

max
V̈ ∈R$×d

〈∇L̃λ(V̂ ) + λM, V̂ − V̈ 〉 ≤ 0 (13)

Next, we prove that there exist some MO ∈ ∂||V̂O||1 such
that V̂O satisfies the optimality condition

max
V̈ ∈R$×d

〈∇L̃λ(V̂O) + λMO, V̂O − V̈ 〉 ≤ 0 (14)

By the definition of L̃λ(·), we obtain

〈∇L̃λ(V̂O) + λMO, V̂O − V̈ 〉
= 〈∇Qλ(V̂O) + λMO, V̂O − V̈ 〉︸ ︷︷ ︸

(i)

+ 〈∇L(V̂O), V̂O − V̈ 〉︸ ︷︷ ︸
(ii)

(15)

Regarding term (i) in Eq.(15), we consider two cases:
(i, j) ∈ S∗ and (i, j) ∈ S̄∗.

For (i, j) ∈ S̄∗, since (V̂O)(i,j) = 0 and by regularity
conditions (i), we obtain

(
∇Qλ(V̂O)

)
(i,j)

= 0. As MO ∈
∂||V̂O||1, by setting (MO)(i,j) = 0 for (i, j) ∈ S̄∗, then we
have (∇Qλ(V̂O) + λMO)(i,j)∈S̄∗ = 0.

For (i, j) ∈ S∗, using the assumption |(V̂O)(i,j)∈S∗ | ≥
ν, the definition of Pλ(V ) and regularity condi-
tions (ii), we obtain (∇Qλ(V̂O) + λMO)(i,j)∈S∗ =

(∇Pλ(V̂O))(i,j)∈S∗ = p′λ((V̂O)(i,j)∈S∗) = 0. Therefore,
term (i) in Eq.(15) is always zero: 〈∇Qλ(V̂O)+λMO, V̂O−
V̈ 〉 = 0.

Because V̂O is the global solution to the minimization prob-
lem in Eq.(7), V̂O in term (ii) of Eq.(15) satisfies the op-
timality condition: maxV̈ ∈R$×d〈∇L(V̂O), V̂O − V̈ 〉 ≤ 0.
By taking the maximum over V̈ ∈ R$×d on both sides of
Eq.(15), we obtain Eq.(14). Now, we are going to prove that
V̂ = V̂O.

Applying Lemma 1, we have

L̃λ(V̂ )

≥L̃λ(V̂O) + 〈∇L̃λ(V̂O), V̂ − V̂O〉+
µ− ζ

2
||V̂ − V̂O||2F

L̃λ(V̂O)

≥L̃λ(V̂ ) + 〈∇L̃λ(V̂ ), V̂O − V̂ 〉+
µ− ζ

2
||V̂O − V̂ ||2F

(16)

Using the convexity of l1 norm, we obtain

λ||V̂ ||1 ≥ λ||V̂O||1 + λ〈MO, V̂ − V̂O〉
λ||V̂O||1 ≥ λ||V̂ ||1 + λ〈M, V̂O − V̂ 〉

(17)

Adding Eq.(16) to Eq.(17), we have

0 ≥ 〈∇L̃λ(V̂ ) + λM, V̂O − V̂ 〉

+〈∇L̃λ(V̂O) + λMO, V̂ − V̂O〉+ (µ− ζ)||V̂O − V̂ ||2F
(18)

According to Eq.(13) to Eq.(14), we obtain

〈∇L̃λ(V̂ ) + λM, V̂ − V̂O〉

≤ max
V̈ ∈R$×d

〈∇L̃λ(V̂ ) + λM, V̂ − V̈ 〉 ≤ 0

〈∇L̃λ(V̂O) + λMO, V̂O − V̂ 〉

≤ max
V̈ ∈R$×d

〈∇L̃λ(V̂O) + λMO, V̂O − V̈ 〉 ≤ 0

(19)

Therefore (µ − ζ)||V̂O − V̂ ||2F ≤ 0. As µ > ζ, we derive
V̂ = V̂O.

By Lemma 2 and the first result, we derive the second result
and complete the proof.

Considering the magnitude of the entries in V ∗, the fol-
lowing theorem provides a refined statistical rate of con-
vergence. Let S∗1 ∪ S∗2 = S∗ = supp(V ∗), s∗1 = |S∗1 |,
s∗2 = |S∗2 | and |S∗| = s∗ = s∗1 + s∗2, m1 = min{$, d} and
m2 = max{$, d}.
Theorem 2. We assume that |V ∗(i,j)∈S∗

1
| ≥ ν, while

|V ∗(i,j)∈S∗
2
| < ν. Suppose the nonconvex penalty Pλ(V ) =∑

(i,j) pλ(V(i,j)) satisfies regularity conditions (i), (ii), (iii)
and (iv). Given µ > ζ, for the estimator defined in E-
q.(4) with regularization parameter λ = C

√
logm1/nm2

(C > 0), and max(i,j)∈S∗∪S̄∗ |∇L(V ∗)(i,j)| ≤ λ, we have

||V̂ − V ∗||F ≤
C
√
s∗1 logm1

(µ− ζ)
√
nm2︸ ︷︷ ︸

Ξ1:|V ∗
(i,j)
|≥ν

+
3C
√
s∗2 logm1

(µ− ζ)
√
nm2︸ ︷︷ ︸

Ξ2:|V ∗
(i,j)
|<ν
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Proof. Let M ∈ ∂||V̂ ||1 and M∗ ∈ ∂||V ∗||1. Since V̂
satisfies the optimality condition, we have

max
V̈ ∈R$×d

〈∇L̃λ(V̂ ) + λM, V̂ − V̈ 〉 ≤ 0 (20)

Applying Lemma 1, we have

L̃λ(V̂ )

≥L̃λ(V ∗) + 〈∇L̃λ(V ∗), V̂ − V ∗〉+
µ− ζ

2
||V̂ − V ∗||2F

L̃λ(V ∗)

≥L̃λ(V̂ ) + 〈∇L̃λ(V̂ ), V ∗ − V̂ 〉+
µ− ζ

2
||V ∗ − V̂ ||2F

(21)

Using the convexity of l1 norm, we obtain

λ||V̂ ||1 ≥ λ||V ∗||1 + λ〈M∗, V̂ − V ∗〉
λ||V ∗||1 ≥ λ||V̂ ||1 + λ〈M,V ∗ − V̂ 〉

(22)

Adding Eq.(21) to Eq.(22), we have

0 ≥ 〈∇L̃λ(V̂ ) + λM,V ∗ − V̂ 〉

+〈∇L̃λ(V ∗) + λM∗, V̂ − V ∗〉+ (µ− ζ)||V ∗ − V̂ ||2F
(23)

Using Eq.(20), we obtain

〈∇L̃λ(V̂ ) + λM, V̂ − V ∗〉

≤ max
V̈ ∈R$×d

〈∇L̃λ(V̂ ) + λM, V̂ − V̈ 〉 ≤ 0
(24)

which implies

(µ− ζ)||V ∗ − V̂ ||2F
≤〈∇L̃λ(V ∗) + λM∗, V̂ − V ∗〉

≤
∑

(i,j)∈S∗∪S̄∗

|(∇L(V ∗)+∇Qλ(V ∗)+λM∗)(i,j)||(V̂ −V ∗)(i,j)|

(25)

We divide the summation in Eq.(25) into three parts: (i, j) ∈
S̄∗, (i, j) ∈ S∗1 and (i, j) ∈ S∗2 .

For (i, j) ∈ S̄∗, since (V ∗)(i,j) = 0 and by regu-
larity conditions (i), we obtain

(
∇Qλ(V ∗)

)
(i,j)

=

q′λ(0) = 0. Using the assumption of Theo-
rem 2, we have max(i,j)∈S̄∗ |∇L(V ∗)(i,j)| ≤
max(i,j)∈S∗∪S̄∗ |∇L(V ∗)(i,j)| ≤ λ, thus we obtain
max(i,j)∈S̄∗ |(∇L(V ∗) + ∇Qλ(V ∗))(i,j)| ≤ λ. S-
ince M∗ ∈ ∂||V ∗||1, we have −λ ≤ λM∗(i,j) ≤ λ.
Thus, there always exist some M∗

(i,j)∈S̄∗ such that

|(∇L(V ∗) + ∇Qλ(V ∗) + λM∗)(i,j)∈S̄∗ | = 0, and we
obtain ∑

(i,j)∈S̄∗

|(∇L(V ∗)+∇Qλ(V ∗)+λM∗)(i,j)|×

|(V̂ −V ∗)(i,j)| = 0

(26)

For (i, j) ∈ S∗1 , using the assumption |(V ∗)(i,j)∈S∗
1
| ≥

ν, the definition of Pλ(V ) and regularity condi-
tions (ii), we obtain (∇Qλ(V ∗) + λM∗)(i,j)∈S∗

1
=

(∇Pλ(V ∗))(i,j)∈S∗
1

= p′λ((V ∗)(i,j)∈S∗
1
) = 0. Using

Hölder’s inequality and the assumption, we obtain∑
(i,j)∈S∗

1

|(∇L(V ∗)+∇Qλ(V ∗)+λM∗)(i,j)||(V̂−V ∗)(i,j)|

=
∑

(i,j)∈S∗
1

|(∇L(V ∗))(i,j)||(V̂ − V ∗)(i,j)|

≤λ
√
s∗1||V ∗ − V̂ ||F

(27)

For (i, j) ∈ S∗2 , we have the assumption
|(V ∗)(i,j)∈S∗

2
| < ν. Using the regularity condition-

s (iv), we obtain max(i,j)∈S∗
2
|(∇Qλ(V ∗))(i,j)| =

max(i,j)∈S∗
2
|q′λ((V ∗)(i,j))| ≤ λ. By the assumption

of Theorem 2, we have max(i,j)∈S∗
2
|∇L(V ∗)(i,j)| ≤

max(i,j)∈S∗∪S̄∗ |∇L(V ∗)(i,j)| ≤ λ. Since M∗ ∈ ∂||V ∗||1,
we have |M∗(i,j)| ≤ 1. Thus, we obtain

|(∇L(V ∗) +∇Qλ(V ∗) + λM∗)(i,j)∈S∗
2
|

≤ max
(i,j)∈S∗

2

|(∇L(V ∗)|+ max
(i,j)∈S∗

2

|∇Qλ(V ∗)|+ max
(i,j)∈S∗

2

|λM∗|

≤3λ

(28)

which implies∑
(i,j)∈S∗

2

|(∇L(V ∗)+∇Qλ(V ∗)+λM∗)(i,j)||(V̂−V ∗)(i,j)|

≤3λ
∑

(i,j)∈S∗
2

|(V̂ − V ∗)(i,j)|

≤3λ
√
s∗2

√ ∑
(i,j)∈S∗

2

|(V̂ − V ∗)(i,j)|2

≤3λ
√
s∗2||V̂ − V ∗||F

(29)

Combining Eq.(25), Eq.(26), Eq.(27) and Eq.(29), we com-
plete the proof.

Remark. The upper bound in Theorem 2 includes two
parts corresponding to different magnitudes of the entries
in V ∗: (1) Ξ1 corresponds to the set of entries with larger
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Table 1. Statistics of six real-world data sets.
Datasets #Training #Testing #Features #Labels #Card-Features #Card-Labels

Bibtex 4,880 2,515 1,836 159 68.47 2.40
Delicious 12,920 3,185 500 983 18.17 19.03

Mediamill 30,993 12,914 120 101 120.00 4.38
Wiki10 14,146 6,616 101,938 30.938 673.45 18.64

Delicious-L 196,606 100,095 782,585 205,443 301.17 75.54
Amazon 490,449 153,025 135,909 670,091 75.68 5.45

Table 2. Precision@k (k=1,3,5) comparisons on three medium-sized data sets. The best results are in bold.
Datasets CS CPLST ML-CSSP 1-vs-All REML FastXML LEML SLEEC SML-SCAD SML-MCP

Bibtex
P@1 58.87 62.38 44.98 62.62 65.13 63.42 62.54 65.08 66.43 67.39
P@3 33.53 37.84 30.43 39.09 41.45 39.23 38.41 39.64 41.18 42.86
P@5 23.72 27.62 23.53 28.79 30.12 28.86 28.21 28.87 30.25 31.56

Delicious
P@1 61.36 65.31 63.04 65.02 66.30 69.61 65.67 67.59 67.83 68.79
P@3 56.46 59.95 56.26 58.88 61.73 64.12 60.55 61.36 63.45 65.49
P@5 52.07 55.31 50.16 53.28 56.89 59.27 56.08 56.56 58.39 60.56

Mediamill
P@1 83.82 83.35 78.95 83.57 86.37 84.22 84.01 87.82 89.56 88.32
P@3 67.32 66.18 60.93 65.50 73.97 67.33 67.20 73.45 74.46 73.89
P@5 52.80 51.46 44.27 48.57 59.53 53.04 52.80 59.17 60.53 59.86

magnitudes; and (2) Ξ2 corresponds to the set of entries with
smaller magnitudes. By setting ζ = µ/2, when s∗1 = s∗

or s∗2 = s∗, we are able to achieve the convergence rate of
O(
√
s∗

µ
√
n

), which is sharper than the rate in Theorem 1.

5. Optimization Algorithm
In this section, we present an optimization algorithm to
solve Eq.(4), which can be reformulated as

min
V ∈R$×d

F(V ) := L̃λ(V ) + Gλ(V ) (30)

where Gλ(V ) = λ||V ||1. Given µ > ζ, Lemma 1 shows
that L̃λ(V ) is strongly convex under regularity conditions
(iii). Gλ(V ) is a convex and non-smooth function. Thus, we
adapt an accelerated proximal gradient (APG) method (Beck
& Teboulle, 2009; chuan Toh & Yun, 2009) to iteratively
minimize a quadratic approximation to F(V ) at V̈ ∈ R$×d
by

Φτ (V, V̈ )

=L̃λ(V̈ )+ < ∇L̃λ(V̈ ), V −V̈ > +
τ

2
‖V −V̈ ‖2F + Gλ(V )

=
τ

2
‖V −B‖2F + Gλ(V ) + L̃λ(V̈ )− 1

2τ
‖∇L̃λ(V̈ )‖2F

(31)

where τ > 0 is a constant and B = V̈ − 1
τ∇L̃λ(V̈ ). To

minimize Φτ (V, V̈ ) w.r.t. V , it is reduced to solve the fol-
lowing Moreau projection problem (Wright et al., 2009):

Υτ,λ(B) = arg min
V ∈R$×d

τ

2
‖V −B‖2F + Gλ(V ) (32)

Note that the objective of problem (32) is separable w.r.t
each entry in V . Wright et al. (Wright et al., 2009) have
shown that the optimization problem (32) w.r.t each entry in
V can be solved by the soft-thresholding operator:(

Υτ,λ(B)
)

(i,j)
= sgn(B(i,j)) max{0, |B(i,j)| − λ/τ}

(33)

where sgn(·) denotes the sign function.

6. Experiment
In this section, we evaluate the performance of the proposed
methods for extreme multi-label classification (MLC). All
the computations are performed on a Red Hat Enterprise
64-Bit Linux workstation with 18-core Intel Xeon CPU
E5-2680 2.80 GHz processor and 256 GB memory.

6.1. Experimental Setup

Datasets The experiments are conducted on a variety of
real world multi-label data sets 1, which fall into two cat-
egories. The first category contains three medium-sized
data sets, i.e., Bibtex, Delicious and Mediamill. The second
category contains three large-scale data sets with more than

1http://manikvarma.org/downloads/XC/
XMLRepository.html

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 3. nDCG@k (k=1,3,5) comparisons on three medium-sized data sets. The best results are in bold.
Datasets CS CPLST ML-CSSP 1-vs-All REML FastXML LEML SLEEC SML-SCAD SML-MCP

Bibtex
nDCG@1 58.87 62.38 44.98 62.62 65.13 63.42 62.54 65.08 66.43 67.39
nDCG@3 52.19 57.63 44.67 59.13 60.01 59.51 58.22 60.47 61.02 61.23
nDCG@5 53.25 59.71 47.97 61.58 62.46 61.70 60.53 62.64 62.89 63.04

Delicious
nDCG@1 61.36 65.31 63.04 65.02 66.30 69.61 65.67 67.59 67.83 68.79
nDCG@3 57.66 61.16 57.91 60.43 62.65 65.47 61.77 62.87 63.95 66.76
nDCG@5 54.44 57.80 53.36 56.28 59.10 61.90 58.47 59.28 60.12 62.13

Mediamill
nDCG@1 83.82 83.35 78.95 83.57 86.73 84.22 84.01 87.82 89.56 88.32
nDCG@3 75.29 74.21 68.97 73.84 82.67 75.41 75.23 81.50 83.84 82.35
nDCG@5 71.92 70.55 62.88 68.18 78.32 72.37 71.96 79.22 81.32 80.63
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Figure 1. (a) Top P@k and (b) nDCG@k of large-scale MLC on the Wiki10 data set.

hundreds of thousands of labels, i.e., Wiki10, Delicious-L
and Amazon. The split of training and testing sets in the
data sets is publicly available in (Bhatia et al., 2015). The
statistics of the six real-world data sets are summarized in
Table 1.

Baselines and Parameters We abbreviate our proposed
methods with SCAD penalty and MCP penalty to SML-
SCAD and SML-MCP, respectively. We compare the pro-
posed methods with the state-of-the-art embedding methods
including SLEEC (Bhatia et al., 2015), LEML (Yu et al.,
2014) and tree-based FastXML (Prabhu & Varma, 2014),
which can scale to the large-scale data sets. We further com-
pare our methods with CS (Hsu et al., 2009), CPLST (Chen
& Lin, 2012), ML-CSSP (Bi & Kwok, 2013), and 1-vs-All
(Hariharan et al., 2012) on the medium-sized data sets. The
codes of baseline methods are provided by the respective
authors.

For the proposed methods, as µ > ζ in the estimator, µ
is set to µ = 2/(b − 1) for SML-SCAD and µ = 2/b for
SML-MCP, respectively. In addition, b is empirically set
as 3 and 2 for SML-SCAD and SML-MCP, respectively.
The parameter λ is tuned by validation on a small validation
set. The dimensions of embedding are set as 100 and 50
for the medium-sized and large-scale data sets, respective-

ly. Following (Bhatia et al., 2015), the number of nearest
neighbours are selected via cross validation. The parame-
ters for all the other baseline algorithms are set using fine
grained validation on each data set so as to achieve the
highest possible prediction accuracy for each method.

Evaluation Metrics We use two widely-used metrics to e-
valuate the multi-label classification performance. Precision
at k (P@k) is the fraction of true positive predictions in the
top k scoring labels. nDCG at k (nDCG@k) measures the
usefulness or gain of a label based on its position in the pre-
dicted label list. The details of the metrics can be referred
in (Prabhu & Varma, 2014; Bhatia et al., 2015; Zhang et al.,
2015; Peng et al., 2018a;b; Zhou et al., 2018).

6.2. Results

Results on medium-sized data sets We compare the clas-
sification performance on three medium-sized data sets,
i.e., Bibtex, Delicious, Mediamill. The Precision@k and
nDCG@k (k = 1, 3, 5) of all the methods are reported in
Tables 2 and 3, respectively. From Tables 2 and 3, we can
see that 1) SLEEC and its variant REML achieve better
classification results than other baseline methods, which is
consistent with the empirical results in (Bhatia et al., 2015).
2) Our proposed methods, SML-SCAD and SML-MCP, out-
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Figure 2. (a) Top P@k and (b) nDCG@k of large-scale MLC on the Delicious-L data set.
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Figure 3. (a) Top P@k and (b) nDCG@k of large-scale MLC on the Amazon data set.

perform SLEEC and REML, and are most successful on all
data sets, which back up our theoretical analysis.

Results on large-scale data sets We compare the classifi-
cation performance on three large-scale data sets. The clas-
sification performances on Wiki10, Delicious-L, Amazon
are shown in Figures 1, 2, 3, respectively. From Figures 1, 2,
3, we can observe that the proposed method with nonconvex
penalties, including SCAD and MCP penalty, achieve the
best results.

7. Conclusion
SLEEC has been one of the most successful methods in
extreme multi-label classification. However, the statistical
rate of convergence and oracle property of SLEEC remain
less explored. In this paper, we present a unified framework
for SLEEC with nonconvex penalty. Our theoretical results
show that our proposed estimator enjoys oracle property,
and achieves an attractive statistical convergence rate. In
addition, we can obtain a sharper convergence rate when a
certain condition on the magnitude of the entries in the un-
derlying model is imposed. Numerical experiments support
our theoretical results and demonstrate the effectiveness of

the proposed method.
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