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RESUME
Visualisations interactives des espaces vectoriels sémantiques pour ’analyse lexicologique

Dans le domaine de la Linguistique Computationnelle, les modeles sémantiques distributionnels
sont devenus les piliers pour modéliser la sémantique lexicale a grande échelle. La modélisation
distributionnelle présente également un grand potentiel pour la recherche dans le domaine de la
Linguistique proprement dite. Elle permet aux linguistes de baser leurs analyses sur des grandes
quantités de données authentiques et d’élargir ainsi considérablement leur base empirique,
ainsi que de détecter des motifs sémantiques potentiellement intéressants. Cependant, jusqu’a
présent, il y a eu relativement peu d’applications, principalement en raison de la complexité
technique et de I'absence d’une interface conviviale permettant aux linguistes d’explorer les
résultats obtenus. Dans cet article, nous proposons une visualisation interactive d'une matrice
de similarité distributionnelle basée sur le Positionnement Multidimensionnel. Nous présentons
un prototype d’un outil de visualisation que nous avons construit en Processing *. Il permettra
d’ouvrir de nouvelles voies pour I'analyse visuelle des modeles au niveau de I'occurrence (token)
et nous I'appliquons a une petite étude de cas d'un mot polysémique néerlandais.

ABSTRACT
Within Computational Linguistics, distributional models of semantics have become the mainstay
of large-scale modelling of lexical semantics. Distributional modelling also holds a large potential
for research in Linguistics proper : It allows linguists to base their analysis on large amounts of
usage data, thus vastly extending their empirical basis, and makes it possible to detect potentially
interesting semantic patterns. However, so far, there have been relatively few applications,
mainly because of the technical complexity and the lack of a linguist-friendly interface to explore
the output. In this paper, we propose an interactive visualization of a distributional similarity
matrix based on Multi-Dimensional Scaling. We present our prototype for a visualization tool
built in Processing ! which opens up new possibilities for the visual analysis of token-based
models and apply it to a small case study of a Dutch polysemous word.

MOTS-CLES : visualisation, sémantique distributionnelle, espaces vectoriels sémantiques, niveau
d’occurence, positionnement multidimensionnel, sémantique lexicale, lexicographie, néerlandais.

KEYWORDS: visualization, distributional semantics, semantic vector spaces, token-level, multidi-
mensional scaling, lexical semantics, lexicography, Dutch.
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1 Introduction

Distributional approaches to lexical semantics model a word’s meaning in terms of the contexts
it appears in. In Computational Linguistics this idea has been implemented in the form of
high-dimensional co-occurrence matrices that can be manipulated with linear algebra. Under
the heading of Vector Space Models (VSMs), Semantic Vector Spaces (SVSs) or Word Spaces,
distributional models have since the middle of the 1990s, become the mainstay in statistical
NLP for the large-scale analysis of lexical semantics (see Turney and Pantel (2010) for an
overview). They have been applied to different tasks like Thesaurus Extraction, Word Sense
Disambiguation or Lexical Entailment, and are traditionally evaluated in terms of precision,
recall and F-score against a gold standard. On the other hand, distributional approaches have
been used in Linguistics proper and Applied Linguistics to study lexical semantics for over half
a century in the form of collocational analysis. However, these studies analyse co-occurrence
frequencies on a much smaller scale than the computational Vector Space Models and tend to look
at individual words in their most typical usage contexts. The identification and interpretation of
more general patterns is typically left to the linguists themselves. The possibilities of Vector Space
Models for large-scale semantic modelling and automatic pattern finding in Big Data have not
been widely adopted in theoretical and applied linguistic subdisciplines. However, Vector Space
implementations could greatly contribute to the analysis of lexical semantics in lexicology (the
linguistic study of word meaning), provided that they are made accessible to lexicologists through
an interactive visualization of their output that also allows easy access to the original input data
and that enables the linguists to gauge effect of different parameter settings in the models. In this
paper, we report on work in progress in the development of such a visualization and the features
and functionalities that we added in response to the needs experienced in a practical case study.
As such, the work in this paper is situated on the cross roads of Distributional Semantic Modelling
in Computational Linguistics, Visual Analytics and (Applied) Linguistics. Although the creation
of a tool for linguistic analysis is our first priority, such a tool could also allow computational
linguists to tap into the expert knowledge of lexicologists and lexicographers to perform an
in-depth, qualitative evaluation of their models that can complement the traditional precision
and recall scores obtained on standard tasks.

Our visualization of Semantic Vector Spaces was guided by two traditional subtasks in lexicology :
(1) identifying the different senses of a word in a large set of attestations of that word, and
(2) charting the variation in word meaning and word choice between different varieties of
the same language. Consequently, our vector spaces are situated in the Word Sense Induction
paradigm and have vector representations for individual occurrences (tokens) of a word. In order
to study lexical variation, word tokens are represented by vectors from multiple corpora that
are representative of different varieties of the same language. Differences in word choice for the
same concept are analysed by simultaneously modelling tokens from a set of near-synonymous
words rather than from one word type at the time. This way we recreate the typical input for a
lexicological analysis, viz. a long list of concordances of a set of near-synonyms, in which the
lexicologist has to identify structure in terms of word senses and regional patterns. The idea is
now that a token-level semantic vector space can help the lexicologist to discern the structure and
patterns quicker and more easily through statistical modelling of word distributions. Importantly,
the aim is NOT to provide a ready-made analysis of the semantic structure, but rather a starting
point for analysis by a human expert. That expert can then interact with and improve upon the
discovered semantic structure by inspecting the tokens’ concordances. It is therefore important



that the lexicologist does not experience the semantic vector space as a black box, but rather can
see the effect of different parameter settings and play with them. Such more direct assessments of
the semantics captured by distributional models is also desirable from a Computational Linguistic
point of view : Baroni and Lenci (2011) point out that "To gain a real insight into the abilities of
DSMs (Distributional Semantic Models, A/N) to address lexical semantics, existing benchmarks
must be complemented with a more intrinsically oriented approach, to perform direct tests on
the specific aspects of lexical knowledge captured by the models".

For this interactive and intrinsic assessment we first construct a number of token vector spaces
where we vary parameters like weighting and context size. Next, we make two dimensional
visualizations of the semantic structure that is captured by the high-dimensional vector spaces
and we present these visualization in an interactive chart where the lexicologist can inspect the
concordances and track the effect of the different parameters. The two dimensional visualization
relies on a Multidimensional scaling analysis of the token-by-token similarity matrix that is
calculated from the underlying token vectors. For the interactive functionality of the charts, we
have tried out different packages including the Python Image Library and Google Motion Charts.
As a response to their short-comings in desired functionality, we developed our own tool in the
Java-based programming language Processing. The usability and functionality of the tool was
tested in a case study where we look at a set of near-synonyms in Belgian and Netherlandic
Dutch that refer to the concept COMPUTER SCREEN.

The rest of this paper is structured as follows. In the next section we discuss related approaches in
distributional semantics and visual analytics. Section 3 introduces our corpus and our implemen-
tations of a token-level semantic vector space. In Section 4 we discuss the different visualizations
we experimented with. In Section 5 we present our interactive visualization tool and discuss how
its functionality was adapted in response to needs in the case study. Finally, Section 6 wraps up
with conclusions and prospects for future research.

2 Related work

A number of approaches have applied distributional semantic models to the linguistic study of
lexical variation. Diachronic variation, or meaning change, has been modelled on a type and
a token-level. Gulordava and Baroni (2011), Cavallin (2012), Cook and Hirst (2011) try to
detect new meanings of word types in general. Cook and Stevenson (2010) look specifically at
the change in semantic orientation of word types. On a token-level, Sagi et al. (2009) aims to
model semantic generalisation and specialisation processes. Rohrdantz et al. (2011) and Lau
et al. (2012) try to identify tokens with new meaning using topic models. Regional variation in
word semantics is modelled by Peirsman et al. (2010).

The visualization of distributional semantic models has most notably been undertaken by
Rohrdantz et al. (2011) They explicitly aim to combine distributional semantics and visual
analytics to track changes in word meaning. More specifically, they train a topic model on text
snippets in which words occur that have undergone recent semantic change like mouse or surf.
They then plot for each topic how the number of occurrences changed over time. This visualizes
how topics that represent newer meanings, have more high-scoring tokens in more recent years.

Another approach to visualize high-dimensional semantic space was presented by Kievit-Kylar



and Jones (2012). In their "Word-2-Word" visualization tool, words are represented as nodes
and word similarities are represented by directed edges between these nodes. The software
implements 22 common similarity-based metrics, both corpus- and WordNet-based, and the
visualizations allow direct user input. They present various case studies varying from an artificial
language, over the CHILDES corpus to a visual analysis of Bush and Obama State of the Union
Adresses.

The most direct precursor of our approach is Heylen et al. (2012) who propose a token-level,
interactive visualization of the regional variation in the semantics of Dutch near-synonyms. They
present an interactive scatter plot using Google Chart Tools, but point out that these charts are
not designed to display larger chunks of texts that are needed for informative concordances. It is
this approach whose interactive visualization we try to optimize in this paper.

3 Corpus and Token-level SVS

The corpus for our study consists of Dutch newspaper materials from 1999 to 2005. For Nether-
landic Dutch, we used the 500M words Twente Nieuws Corpus (Ordelman, 2002) 2, and for
Belgian Dutch, the Leuven Nieuws Corpus (aka Mediargus corpus, 1.3 million words?). The
corpora were automatically lemmatized, part-of-speech tagged and syntactically parsed with the
Alpino parser (van Noord, 2006).

Token-level SVSs have been developed for modelling word meaning in context for different
tasks (see Dinu et al. (2012) for an overview). The token-level SVS we use here is a fairly basic
implementation and constitutes an adaptation of the early approach proposed by Schiitze (1998).
He models the semantics of a token as the frequency distribution over its so-called second order
co-occurrences. These second-order co-occurrences are the type-level context features of the (first-
order) context words co-occurring with the token. This way, a token’s meaning is still modelled
by the “context” it occurs in, but this context is now modelled itself by combining the type vectors
of the words in the context. This higher-order modelling is necessary to avoid data-sparseness :
any token only occurs with a handful of other words and a first-order co-occurrence vector would
thus be too sparse to do any meaningful vector comparison. Note that this approach first needs
to construct a type-level SVS for the first-order context words that can then be used to create a
second-order token-vector.

In our study, we therefore first constructed a type-level SVS for the 573,127 words in our corpus
with a frequency higher than 2. Since the focus of this study is visualization rather than finding
optimal SVS parameter settings, we initially chose a number of settings that gave good results in
our previous studies Peirsman et al. (2008); Heylen et al. (2008); Peirsman et al. (2010). For
the context features of this SVS, we used two bag-of-words approaches, one with a window of 4
to the left and right around the targets and one with a window of 7 words on both sides of the
context word. Furthermore, we experimented with two different weighting schemes : Positive
Pointwise Mutual Information (PPMI), where negative PMI values are set to zero on the one
hand and an adapted version of Log Likelihood Ratio (LLR) on the other. The context feature
set was restricted to the 5430 words, that were among the 7000 most frequent words in the

2. Publication years 1999 up to 2002 of Algemeen Dagblad, NRC, Parool, Trouw and Volkskrant
3. Publication years 1999 up to 2005 of De Morgen, De Tijd, De Standaard, Het Laatste Nieuws, Het Nieuwsblad and
Het Belang van Limburg



corpus, (minus a stoplist of 34 high-frequent function words) AND that occurred at least 50
times in both the Netherlandic and Belgian part of the corpus. The latter was done to make sure
that Netherlandic and Belgian type vectors were not dissimilar just because of topical bias from
proper names, place names or words relating to local events.

In a second step, we took a random sample of 100 Netherlandic and a 100 Belgian newspaper
issues from the corpus and extracted all occurrences of 476 nouns in 218 semi-automatically
constructed Dutch synsets by Ruette et al. (2012). For each occurrence, we built a token-vector
by averaging over the type-vectors of the words in a window of 10 words to the left and right of
the token. We experimented with two averaging functions. In a first version, we followed Schiitze
(1998) and just summed the type vectors of a token’s context words, normalizing by the number
of context words for that token :
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where o_fv is the token vector for the i‘" occurrence of noun w and C/" is the set of n type vectors
c_} for the n context words in the window around that i*" occurrence of noun w. However, this
summation means that each first-order context word has an equal weight in determining the
token vector. Yet, not all first-order context words are equally informative for the meaning of a
token. In a sentence like “While walking to work, the teacher saw a dog barking and chasing a
cat”, bark and cat are much more indicative of the meaning of dog than say teacher or work. In
a second, weighted version, we therefore increased the contribution of these informative context
words by using the first-order context words’ PMI or LLR values with the noun in the synset. PMI
and LLR can be regarded as measures for informativeness and target-noun/context-word weights
were available already from our large type-level SVS. The PMI or LLR of a noun w and a context
word c; can now be seen as a weight pmi?}f or llrcvj. In constructing the token vector o_f” for the

ith occurrence of noun w with PMI as weight, we now multiply the type vector ¢; of each context
word with the PMI weight pmi’, and then normalize by the sum of the pmi-weights :
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The same can be done with LLR as weight. The token vectors of all nouns from the same synset
were then combined in a token by second-order-context-feature matrix. Note that this matrix
has the same dimensionality as the underlying type-level SVS (5430). By calculating the cosine
between all pairs of token-vectors in the matrix, we get the final token-by-token similarity matrix
for each of the 218 synsets *.

3.1 A polysemous case

Heylen et al. (2012) discusses the interesting case of the concept COMPUTER SCREEN in Dutch
which is represented by three near-synonyms : computerscherm, beeldscherm and monitor. The

4. string operations on corpus text files were done with Python 2.7. All matrix calculations were done in Matlab
R2009a for Linux



latter appeared to have interesting properties : the first meaning of monitor is ‘(computer) screen’
or ‘display’ in both Netherlandic and Belgian Dutch. In Belgian Dutch, however, monitor is
polysemous and can also refer to a supervisor of youth leisure activities, henceforth youth leader”.

To demonstrate the sensitivity of Semantic Vector Spaces models we limit our case study to the
monitor tokens. In a token-level SVS for these tokens, one can expect two distinct token clouds :
one with all the screen tokens and a second one with the youth leader tokens. The latter should
only contain tokens from Belgian Dutch newspapers and we expect more instances from ‘popular’
newspapers than from ‘quality’ newspapers because the youth leader meaning is explicitly marked
as Belgian Dutch in dictionaries and is thus not regarded as Standard Dutch.

To verify whether the spatial position of a token corresponds to the actual meaning, we needed
manually disambiguation of the tokens. ® Using their context, the tokens were manually assigned
to three categories : ‘display’, ‘youth leader’ and ‘other’. It is explicitly not the aim to apply time
consuming manual disambiguation on a larger scale. We solely use this manual approach to
analyse the effects of the different parameters on the result.

4 Towards an interactive visualization

The token-by-token similarity matrix is a high-dimensional matrix, which is not very informative
by itself. To visualize it in 2 or 3 dimensional representation, we need to apply a dimension
reduction technique. One way to visualize a similarity matrix is to apply Multidimensional Scaling
(MDS) (Cox and Cox, 2000). MDS reduces the high-dimensional space to a 2 or 3 dimensional
representation while respecting the original distances in high-dimensional space in the best
possible way. We apply Kruskal’s non-metric Multidimensional Scaling in R using the 1soMDs
function from the MASS package. The degree of faithfulness to the original distance for the MDS
solution is called stress. The stress values in this case study are roughly between 20 and 25%
which is quite high, but still acceptable.

Our first attempt to visualize the token clouds was an R scatter plot (see Figure 1) 7. This type
of visualization allows to quickly eyeball the different types in the token cloud, but the level of
interaction is rather low which make it fairly difficult to analyse a specific token . In the next
step, we integrated more of meta-data, such as country and newspaper and assign a colour code
for the former categories so that in addition to word type, each country and newspaper gets its
own colour. Heylen et al. (2012) uses Motion Charts from the Google Chart Tool to colour-code
the data points in an interactive chart using the R-package GooGLEVIS as an interface between R
and the Google Motion Charts. These interactive charts for 218 Dutch near-synonyms (Ruette
et al., 2012) can be explored online as well°. The chart for compUTER ScrREEN 1° in Figure 2 shows

5. A recent example from the Belgian ’popular’ newspaper Het Nieuwsblad found in a report on a court case
following an accident during a youth leisure activity : "Volgens het [H]of van [B]eroep was er onvoldoende toezicht
door de monitoren." (According to the Court of Appeal there was insufficient supervision by the youth leaders.)
http://www.nieuwsblad.be/article/detail.aspx?articleid=DMF20130403_00528125

6. Jocelyne Daems deserves our eternal gratitude for performing this drudgery task as part of her M.A. project.

7. This is the token cloud for the concept of coMPUTER SCREEN with 3 near-synonymous types : beeldscherm, computer-
scherm and monitor

8. A more interactive version of the R plot can be consulted online : https://perswww.kuleuven.be/
~u0038536/committees/data/beeldscherm/

9. https://perswww.kuleuven.be/ u0038536/googleVis

10. https://perswww.kuleuven.be/ u0038536/googleVis/wSOCC/beeldscherm.html
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FIGURE 1 — Visualization of COMPUTER SCREEN

that the Belgian monitor tokens form a separate cloud on the left-hand side ! of the plot.

5 Case study : monitor tokens

As we base our tests on the manually disambiguated monitor tokens from both corpora, we use
this example as a ‘touchstone’ to try different parameter settings. The visualizations become
more informative by displaying the underlying properties of a token in the data points of
the scatter plot. Despite the adaptability of the Google Charts it is not possible to display
additional (textual) information next to the plot that could enhance the interpretation of the
clouds. Therefore, we propose an early version of our own visualization tool, built in Processing 2.

For the evaluation of our manually disambiguated monitor tokens, we colour-code the tokens
based on the manually assigned senses rather by country, newspaper or word type. The red dots
are the ‘youth leader’ tokens, the green ones represent the ‘display’ tokens and we use blue for
other categories. For now, we can ignore the blue, other tokens because of their small number

11. The isoMDS algorithm can freely rotate the solution, so one should be careful with describing the plot in terms of
left and right.

12. Processing is a Java-based programming language for quick visual applications It allows to build GUIs with a
fraction of the code Java Swing would require. Processing has a Javascript mode which relies and HTMLS5 instead of Java.
See http://www.processing.org and http://www.processingjs.org for more information.
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and diverse nature. Interested readers can explore the online version ' of the plot themselves.
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FIGURE 3 — Processing implementation of the monitor tokens

In Figure 3 we can see three drop down menus, right of the plot. With the first one, we can
choose the dataset we want to visualize. The selection shown in Figure 3 is ‘SJwoCutoff’, where
‘ST’ refers to the name of the sample and ‘woCutoff’ (without cut-off) means that we used the
original weights rather than replacing values below the cut-off with a (low) standard value. For
the other parameters we used our standard settings : 10-10 first-order co-occurrences window,
4-4 second-order co-occurrences window and Positive Pointwise Mutual Information for the
weighting. The second drop down menu can be used to change the size of the dot depending on
the weights assigned to the words within the 10-10 context window for each token. We have
implemented three options : the maximum weight, the sum of weights and the absolute number
of non-zero weights. Exploring these parameters allows the user to get a better insight in the
impact of the weighting on the token’s position.

5.1 Misclassification analysis

Analysing a token’s position is particularly useful in the case of ‘misplaced’ tokens. In Figure 3
we can spot a very large green dot between the red ones in right half of the token space. This

13. https://perswww.kuleuven.be/ u0083608/tcViz/



means that a ‘display’ token is closer to the ‘youth leader’ than to the ‘display’ sense despite a
high-weighted context word. For improving the algorithm, it is indispensable to get an insight
in the factors that pushed this token out of the ‘display’ token cloud where it belongs. We can
analyse the token properties by clicking on the dot (see Figure 4) and examine the broader
context of this token. The curly brackets in the text delimit the scope of the context window
while the square brackets define the context words accompanied by their respective weight.

For the selected token in Figure 4, the context word risicobaby '*(risk baby) has been assigned a
weight of 9.36. As the size of the dot corresponds to the maximum weight over all the context
words, risicobaby is the major factor that puts the token in the wrong cloud. Other context words
with a weight above 1 should also be considered, namely zoeken (search), leggen (lay) and
ouder (parent). Focussing on the context words weighted above 1 is somewhat arbitrary, but the
function words, which are not considered very informative in bag-of-word models, tend to have
a weight below 1 with PMI weighting.
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FIGURE 4 — Token cloud visualization with misclassified risicobaby token selected

The visualization with variable dot size allowed us to quickly eyeball misclassified tokens with
misleading context words such as risicobaby. The word risicobaby has a very high weight (9.36)
compared to the second most informative context word, which is zoeken (2.35). With a total
number of 12 occurrences in our Dutch news corpora, risicobaby is a low-frequent word. The high
weight of risicobaby illustrates two more general aspects. First, we use token-level SVSs because

14. risicobaby’s is plural in the original text, but the corpora have been stemmed.



they are, in contrast with type-level SVSs, sensitive to polysemy of the co-occurrences and are
capable of modelling subtle meaning differences. Nevertheless, our model is still sensitive to the
properties of an individual type vector, i.e. risicobaby. Apparently, the context words of risicobaby
overlap more with the typical context words a ‘youth leader’ than with those of a ‘display’. Second,
the large weight of risicobaby is an artefact of the PMI weighting ; Pointwise Mutual Information
is sensitive to low-frequency events (Manning and Schiitze, 1999). Low-frequent word types are
thus more probable to get a high weight than high-frequent ones. In general, this property is not
problematic because low-frequent words can be very informative co-occurrences. In this specific
case though it associates the token with the wrong meaning and there are no other informative
context words that could compensate.

We could remediate the frequency effect of PMI in two ways : use a larger context window for the
weighting, for instance 7-7 instead of 4-4 and hope that a bigger window increases the number
of informative context words and thus lowers the relative weight of risicobaby. We explored this
option with the ‘SJ77 dataset and we found that the weight of risicobaby indeed lowered (8.8),
but not enough to ‘push’ it out of the ‘youth leader’ cloud. Another possible approach is to use a
different association measure such as Log Likelihood Ratio instead of PMI. Again we can vary
the window size or try different cut-off values. We invite the reader to compare these different
parameter settings on our website.

6 Discussion

With our new tool to visualize similarity matrices we continued the work Heylen et al. (2012).
Developing our own visualization tool allows us to imitate the visual appeal of the Google Chart
Tools while remediating its shortcomings for text analytics. Our main goal remains to open
up the black box of Semantic Vector Spaces, not only to computational linguists, but also to
lexicographers and lexicologists with an interest in empirical quantitative data analysis. Of course,
this is still a work in progress and there are some possible improvements.

First and foremost, it is clear that there is almost an infinite number of parameters that can
be used in order to get more coherent token clouds. However, we need a more formal and
efficient measure to evaluate the different solutions. We already tried a fairly simple and naive
algorithm called cLUSTER QuALITY we borrowed from Speelman and Geeraerts (2009). The basic
idea is that for every token, we sum the distances to all the other tokens that belong to the same
manually disambiguated cluster and divide it by the distances to the tokens that belong to a
different cluster. When we then average over all clusters, the result is the cluster quality value.
Unfortunately, we found that this algorithm is so sensitive to outliers that the cluster quality of
the real similarity matrix can not reliably be distinguished from a distance matrix created with
random numbers. A possible solution is taking only the k-nearest neighbours into account. The
value of k is something that needs to be determined in future research. This approach is of course
only useful if we have manually disambiguated data. Obtaining these is very labour intensive
and contrary to our goal to use unsupervised learning for lexical semantics. For the analysis of
the larger dataset, we might have to experiment with traditional cluster analysis algorithms. The
number of clusters should then ideally be decided by the user and entered as a parameter into
the visualization tool.

Secondly, we need to further explore the possibilities to make the SVS’s black box mechanisms



more accessible. We can now visualise the weights of the first-order co-occurrences and explore
some simple calculations based on these weights, but there are more underlying parameters that
could be unveiled. We could for instance make the properties of the second-order co-occurrence
vectors explicit.

Thirdly, creating 3D plots is still on our wish list. Not only is it visually more appealing, it could
also reduce the stress of the isoMDS solution. For our monitor tokens, the stress values are
moderate (roughly ranging between 0.2 and 0.25), but we restricted the plots to one word type
in order to explore the parameter settings.

Finally, the plots do not allow real user input, mainly because the Semantic Vector Spaces are
calculated in advance. There are technical and practical limits for using real time calculations
that are beyond the scope of this paper. However, we could for instance let the user move wrongly
positioned tokens and recalculate the MDS co-ordinates based on these corrections. The 1soMDS
algorithm is fast and requires little resources which makes a real time calculations feasible.
This kind of feature could potentially benefit other fields which make use of high-dimensional
similarity matrices.
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